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Colon tumors frequently harbor mutation in K-RAS and/or N-RAS, members of a GTPase

family operating as a central hub for multiple key signaling pathways. While these proteins are

strongly homologous, they exhibit diverse downstream effects on cell behavior. Utilizing an

isogenic panel of human colon carcinoma cells bearing oncogenic mutations in K-RAS and/or

N-RAS, we observed that K-RAS and double mutants similarly yield elevated apoptosis in

response to treatment with TNFa compared to N-RAS mutants. Regardless, and in surprising

contrast, key phospho-protein signals were more similar between N-RAS and dual mutants.

This apparent contradiction could not be explained by any of the key signals individually, but a

multi-pathway model constructed from the single-mutant cell line data was able to predict the

behavior of the dual-mutant cell line. This success arises from a quantitative integration of

multiple pro-apoptotic (pIkBa, pERK2) and pro-survival (pJNK, pHSP27) signals in manner

not easily discerned from intuitive inspection.

Introduction

Upon activation by receptor tyrosine kinases, the RAS family

of GTPases (K-RAS4A, K-RAS4B, H-RAS, and N-RAS)

signal to multiple downstream effector pathways. Single amino

acid mutations at codons 12, 13, or 61 place RAS in a

chronically active (GTP-bound) state and are oncogenic.1

While K-RAS and N-RAS are greater than 90% homologous

and share many of the same downstream effectors,2 several

lines of evidence indicate that the RAS isoforms have distinct

physiological functions. For example, mouse models of

K-RasG12D and N-RasG12D expressed in the colonic epithelium

show distinct phenotypes, with K-RasG12D stimulating

hyper-proliferation and N-RasG12D conferring resistance to

apoptosis.3 Oncogenic K-RAS promotes butyrate-induced

apoptosis in human colon carcinoma cells4 while N-RAS

provides anti-apoptotic signals in mouse embryonic

fibroblasts,5 indicating that apoptosis is a key cellular process

that is differentially regulated by the RAS family members.

Historical data for colon cancer suggest that mutations in

K-RAS and N-RAS can co-exist in an individual tumor,6

raising the question of why a given tumor might select for two

mutations that exert opposite effects on a key oncogenic

process such as apoptosis. To help address this question, we

examine here the impact of simultaneous mutation of both

N-RAS and K-RAS on the response of colon carcinoma cells

to exposure to the inflammatory cytokine tumor necrosis

factor-a (TNFa), which is appreciated to be intimately
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Insight, innovation, integration

Activating mutations in the RAS GTPases have been

identified in over 30% of all cancers; however, the impact

of these mutations on the cellular signaling network and

phenotypic behavior is generally confusing. Here, we utilize a

novel systems biology approach that integrates experimental

and computational techniques to analyze the impact of

activating mutations in K-RAS, N-RAS, either alone or in

combination, in human colon epithelial cells on the response

to the inflammatory cytokine TNFa. Through our analysis,

we have identified an important quantitative balance

between multiple pro-survival versus pro-apoptotic path-

ways that resolves seemingly contradictory behavior of dual

RAS mutant cells relative to cells with either individual

mutation.
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involved in tumor progression in the colon as well as in other

tissues.7 We observe that the dual-mutant cells phenocopy

K-RAS single mutant cells with respect to their apoptotic

response to TNFa even while signaling patterns for key

pathways in the dual mutants are more similar to those in

N-RAS mutant cells. To resolve this paradox, we construct a

multi-pathway partial least squares regression (PLSR) model

from the single mutant cell data and test its ability to predict

the sensitivity of the dual-mutant cells. We find that this

model successfully predicts the extent of apoptosis for the

dual-mutant condition, on the basis of a quantitative balance

between multiple pro-apoptotic signals (pERK2, pIkBa) and
pro-survival signals (pJNK, pHSP27). The capability of this

single model to comprehend cellular information processing

with respect to cytokine-challenged survival, invariantly across

the different RAS mutation genotypes, implies that the cells

could transition relatively seamlessly from one mutation to

another (or have both co-exist) during dynamic changes in

degree of inflammatory context that might in some cases be

problematic for the K-RAS mutation.8

Materials and methods

Cell lines and treatments

DLD-1, a colon carcinoma cell line with a single copy

K-RASG13D mutation, and DKs8-N, which over-express

mutant N-RASG12V in an isogenic wild-type K-RAS

background, have previously been described.9,10 DLD-N were

generated by infecting DLD-1 cells with pBabe retrovirus

carrying N-RasG12D. All cell lines were maintained in DMEM

supplemented with 10% fetal bovine serum (FBS). For

experiments, cells were plated in 10% FBS at 15000 cells cm�2;

after 24 h, cells were sensitized with 200 units mL�1 interferon-g
(IFNg, Roche Applied Science, Indianapolis, IN) in 5% FBS.

After 24 h, cells were treated with either vehicle or 100 ng mL�1

TNFa (Peprotech, Rocky Hill, NJ). Data are represented as

average �SEM for three biological replicates.

RAS characterization

The levels of active K- and N-RAS were assessed with a RAS

activation assay kit (Upstate, Billerica, MA). Briefly, cells were

washed twice with ice-cold PBS and then lysed with MLB

buffer (25 mM HEPES, pH 7.5, 150 mM NaCl, 1% Igepal

CA-630, 10 mM MgCl2, 1 mM EDTA and 2% glycerol)

containing protease and phosphatase inhibitors (Roche

Applied Science). After centrifugation at 14000 � g for 5 min,

protein levels were quantified using the Bio-Rad Protein Assay

Kit (Bio-Rad Laboratories, Hercules, CA). Cell lysates

containing 1 mg of protein were incubated at 4 1C for 120 min

with 10 mL of agarose bound with glutathione S-transferase

fusion protein corresponding to the human RAS-binding

domain (RBD, residues 1–149) of RAF1. After the samples

were washed three times with MLB, active RAS was eluted

and the levels of active K- and N-RAS were determined by

Western blotting analysis. Membranes were blocked with

Odyssey Blocking Buffer (Li-Cor, Lincoln, NE), probed

with anti-N-RAS (sc-31) or anti-K-RAS (sc-30, Santa Cruz,

Biotechnology, Santa Cruz, CA), detected with Donkey-

anti-mouse-800, and imaged on the Odyssey infrared imaging

system (Li-Cor). 30 mg of cell lysate was also analyzed for

total levels of K- and N-RAS with the same antibodies and

anti-tubulin (Sigma, St. Louis, MO).

Lysis and signaling measurements

At various times after TNFa stimulation (0, 5, 15, 30, 60, 90,

120, 240, 480, and 720 min) cells were lysed using Bio-Plex

cell lysis buffer (Bio-Rad). Total protein concentrations

were determined using the bicinchoninic acid assay (Pierce,

Rockford, IL). The levels of four phospho-proteins (pERK2,

pIkBa, pJNK, and pHSP27) were detected using commercially

available kits for the Luminex system (Bio-Rad). These

proteins were chosen as they are in the ‘middle layer’ of several

key signal transduction pathways and were informative in our

prior studies.11 pHSP27 was chosen as a readout of p38, which

did not provide a robust signal by this method in our

preliminary studies (data not shown). A master positive-

reference sample was loaded in each assay for normalization

purposes. Full time courses were performed once for

each condition with three biological replicates and technical

duplicates. Median CV’s were 10.8% (technical duplicates)

and 18.7% (biological replicates). A subset of timepoints were

independently repeated to determine overall variation,12 with

a media CV of 16.9%, indicating that assay, biological, and

day-to-day variation are of similar magnitude and the data set

is self-consistent. Importantly, in the repeated samples,

trends within and between samples were preserved. Data is

represented as average �SEM. Hierarchical clustering analysis

on the resulting data set was performed in Spotfire (TIBCO,

Palo Alto, CA) with the unweighted pair group method

using arithmetic averages (UPGMA) and Euclidean distances.

The integrated level of each signal was determined by

trapezoid rule.13

Flow cytometry

Floating and adherent cells were pooled and analyzed for

apoptosis using cleaved caspase-3/cleaved PARP similar to the

previously described methods.12 Cells were fixed with 4%

paraformaldehyde, permeabilized with Tween, and stained

using anti-cleaved caspase-3 (1 : 500) and anti-cleaved PARP

(1 : 250, BD Pharmingen, Franklin Lakes, NJ), followed by

Alexa 488-donkey-anti-rabbit IgG and Alexa 647-donkey-

anti-mouse IgG (both at 1 : 250, Invitrogen, Carlsbad, CA).

A minimum of 25 000 cells per condition was analyzed on a

BD Biosciences LSRII (part of the Koch Institute Flow

Cytometry Core Facility, MIT) and by FlowJo (Tree Star,

Inc, Ashland, OR).

Partial least squares regression (PLSR) modeling

Multi-pathway models were generated using the PLSR

algorithm in SimcaP (Umetrics, Kinnelon, NJ—see ref. 14

for details). Briefly, an independent block matrix (X,

dimensionsMxN) was generated with each column corresponding

to the data for a single time point and phosphoprotein.

There were 40 columns in total (10 times � 4 phosphoproteins).

Each row represented a different cellular condition, with a

This journal is �c The Royal Society of Chemistry 2010 Integr. Biol., 2010, 2, 202–208 | 203
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total of four rows corresponding to untreated and TNFa
treated DLD-1 and DKs8-N cells. A dependent matrix

(Y, dimensions MxP) was generated from the cellular

output data, with the rows corresponding to the same cellular

conditions listed above and three columns for the level of

apoptosis at each time. All data were mean-centered and unit

variance scaled. PLSR was used to solve the regression

problem:

Y = Xb + e (1)

where b is the vector containing the regression coefficients and

e is the residual. A nonlinear iterative partial least squares

(NIPALS) algorithm was used.15 It is instructive to note that

the NIPALS algorithm applied to a single MxN matrix (X) is

the representation of the matrix as a sum of outer products

such that:

X = t1p1
0 + t2p2

0 + � � � + e (2)

where ti is called the scores vector and represents one dimension

in the orthogonal basis set for the column space and pi is called

the loadings vector and represents one dimension in the

orthogonal basis set for the row space. The NIPALS

algorithm was implemented as described elsewhere.16 Briefly,

an iterative process is used to define two vectors, w and c, that

maximize the following term:

[Cov(t,u)]2 = [Cov(Xw,Yc)]2 (3)

where t and u are the scores vectors for the X and Y matrices,

respectively. Loadings vectors for X and Y, called p and q,

respectively, are also defined as:

p = XTt/(tTt); q = YTu/(uTu) (4)

The set of vectors t,u,w, and c are associated with the

maximum eigenvalues for various covariance matrices, and

once defined, their contribution is removed from the X and Y

matrices, leaving a residual matrix that can be further modeled

with a new set of t,u,w,c,p, and q vectors. Each model was

tested for goodness of prediction (Q2) using a leave-one-out

cross validation approach.16 Briefly, cross-validation was

performed by omitting an observation from the model

development and then using the model to predict the Y-matrix

values for the withheld observation. This procedure was

repeated until every observation has been kept out exactly

once. To predict the novel DLD-N condition and analyze the

impact of individual phosphoprotein timecourses, the resulting

Y matrix for each new X signaling matrix was determined by

the derived PLSR function.

Results

To explore the impact of single versus dual mutations in RAS,

we utilized a panel of isogenic colon carcinoma cell lines with

either a mutant form of K-RAS (DLD-1), mutant N-RAS

(DKs8-N), or both mutations (DLD-N, depicted in Fig. 1A).

Western blot analysis confirmed the elevation in active K-RAS

in DLD-1 and DLD-N and active N-RAS in DLD-N and

DKs8-N (Fig. 1B). As expected, there is an increase in total

N-RAS levels with the over-expression of active N-RAS.

Interestingly, N-RAS over-expression also results in a slight

increase in total K-RAS, preserving the ratio of N-RAS to

K-RAS. TNFa treatment of this panel of cell lines results in a

significant increase in apoptosis as measured by positive

staining for cleaved caspase-3 and cleaved PARP (Fig. 1C).

We have previously demonstrated that DLD-1 cells were more

sensitive to TNFa treatment than DKs8-N;11 here, we

observed that DLD-N cells were as sensitive to TNFa as

DLD-1 cells (Fig. 1D). Forty-eight hours after TNFa
treatment, 27% of DLD-N cells and 29% of DLD-1 cells

stained positive for cleaved caspase-3/cleaved PARP, while

only 14% of DKs8-N cells were apoptotic. Thus, the effect of

having both K-RAS and N-RAS mutated on TNFa-induced
cell death is to yield essentially the same apoptosis-sensitization

as the K-RAS mutation by itself. In essence, mutant K-RAS is

epistatic to mutant N-RAS with respect to TNFa-induced
apoptosis.

Previously, we examined the dynamics of several

phosphorylated proteins across key signaling pathways

downstream of TNFa treatment in DLD-1 and DKs8-N cells,

and found that these signals were sufficient to predict

apoptosis and chemokine levels.11 Accordingly, we quantified

the levels of phosphorylated ERK2, HSP27, IkBa, and JNK in

DLD-N cells following TNFa treatment using high-throughput,

multiplexed assays and the Luminex platform (Fig. 2A).

TNFa treatment led to increased levels of each of the

phosphoproteins examined, with dynamics that differed based

on the genetic configuration of the cell. For example, DLD-1

cells demonstrated weak activation of pERK2, pJNK,

and pHSP27, but robust increases in pIkBa. In contrast,

DKs8-N and DLD-N cells showed activation of all proteins.

Fig. 1 Cells with mutations in both N-RAS and K-RAS are sensitive

to TNFa. (A) Overview of the RAS genotypes of the three cell lines.

(B) Levels of active (RBD) and total K- and N-RAS for each cell line.

(C) The percentage of apoptotic cells was determined by flow

cytometry from the percentage of cells that were positive for both

cleaved caspase-3 and cleaved PARP. (D) DLD-1 and DLD-N cells

demonstrated a similar sensitivity to TNFa, while DKs8-N cells were

more resistant.
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The dynamics of pERK2 were strikingly different between

DLD-N and DKs8-N or DLD-1 cells, with elevated levels of

pERK2 seen for longer time periods. Overall, the pattern of

signaling behavior between DKs8-N and DLD-N was similar,

and analysis by hierarchical clustering confirmed that DLD-N

and DKs8-N clustered separately from DLD-1 within both the

untreated and TNFa-treated branches (Fig. 2B). In surprising

contrast to the apoptosis results, then, the effect of having

both K-RAS and N-RAS mutated on TNFa-induced cell

signaling is fairly similar to that of the N-RAS mutation by

itself.

Accordingly, we face a paradox: the behavior of double

K-/N-RAS mutation in response to TNFa is similar to N-RAS

mutation by itself with respect to signaling but is similar to

K-RAS mutation by itself with respect to apoptosis. In order

to understand how this puzzle might be resolved, we use a

systems modeling approach, partial least-square regression

(PLSR), previously found to be helpful in ascertaining

the most informative combinations of signals for predicting

phenotypic behavior.11 In PLSR, the Xmatrix (phosphoprotein

levels) is regressed against the Y matrix (apoptosis),

and dimensionality is reduced by combining independent

measurements that strongly co-vary with the dependent

outcomes into principal components.15 The first principal

component captures the strongest variation in the original

data matrix, while succeeding principal components capture

remaining variation. In our previous studies of various

individual mutations, the N-RAS mutation effects and

K-RAS mutation effects were clearly distinguishable by their

quantitative differences in contribution to the second principle

component, while the first principle component mainly

characterized the effects of TNFa treatment.

Employing this methodology here, a PLSR model

constructed from the signaling and response data for

untreated and TNFa treated DLD-1 and Dks8-N cells was

found to fit the data well, with an R2Y of 0.95 and a Q2Y of

0.75 (Fig. 3A). Previous reports by our group have utilized the

integrated signal intensity or time derivatives as metrics within

the X matrix of the model.17,18 However, since these metrics

are a linear combination of signals, it adds no new information

in PLSR, which is a linear model form; rather, it could be used

to represent the contribution of individual timepoints in

aggregate. Given the small size of the X matrix in this new

study, we found that the individual data points provide more

substantial contributions. Similar to our previous model

incorporating wildtype-RAS cells,11 the projection of the

various conditions along the scores of the model demonstrated

that the first component was a ‘TNFa treatment’ axis

(Fig. 3B). Confirming this interpretation, signaling data from

pERK2 and pIkBa weighed strongly in the first component

(Fig. 3C); these signals result from TNFa treatment by virtue

of TNFR activation of the NFkB pathway and transactivation

of a TGFa autocrine loop.11,13,19 pHSP27 and pJNK have

negative loadings in the second component, in agreement with

their activation in DKs8-N cells that have negative scores in

the second component.

PLSR models might be generally expected to predict similar

phenotypic responses for conditions with similar signaling

patterns. In the double RAS mutants, however, we identified

similar signaling behavior, but divergent apoptotic response,

between DLD-N and DKs8-N cells. Therefore, we might have

expected that the PLSR model constructed from single RAS

mutant cells would have difficulty predicting the response of

double mutant cells. Nonetheless, in a direct test of the

model’s ability to predict DLD-N apoptosis from the

DLD-N signaling data we found successful prediction of

elevated sensitivity of the DLD-N double mutants compared

to DKs8-N (Fig. 3A).

To understand conceptually how the PLSR model was able

to reconcile the apparent contradiction between DLD-N

signaling behavior and apoptotic response, we generated a

series of modified DLD-N data sets, with three of four

phospho-protein time-courses from DLD-N experimental

data and the fourth a substitution of either DLD-1 or

DKs8-N data. For example, for the pERK2 substitution,

pJNK, pHSP27, and pIkBa data would all be used from the

DLD-N cells, while pERK2 time courses would be substituted

from either the DLD-1 or DKs8-N cells. Using these mixed

data sets, apoptosis was predicted from the PLSR model

(Fig. 4A); in this way, we could modify the characteristics of

each set of phospho-proteins to parse its contribution. For

example, DLD-N has elevated pERK2 relative to both cell

lines (Fig. 2A) and pERK2 contributes positively to apoptosis

(component 1, Fig. 3C). Correspondingly, substitution of

either DLD-1 or DKs8-N pERK2 signaling into the DLD-N

data set resulted in a prediction of apoptosis that was lower

Fig. 2 Signaling dynamics in response to TNFa treatment.

(A) Individual time courses for the four phosphoproteins indicated

that DKs8-N and DLD-N cells had similar signaling dynamics.

(B) Cluster analysis by UPGMA confirmed the similarity between

DKs8-N and DLD-N cells. Each box represents the scaled average

signal for a particular time, ordered from early to late times.

This journal is �c The Royal Society of Chemistry 2010 Integr. Biol., 2010, 2, 202–208 | 205
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than the intact DLD-N data set (Fig. 4A). Similarly, DLD-N

cells have lower pIkBa than DLD-1 cells; when a prediction

was made with DLD-1 levels of pIkBa, apoptosis increased as

would be expected from the heavy positive loading of pIkBa
for apoptosis. Substitution of the elevated pERK2 or lower

pIkBa levels from DLD-N to the DLD-1 data set also

increased the predicted apoptosis (data not shown). In the

second component of the model (Fig. 3C), pJNK contributed

negatively to apoptosis; as DLD-N have elevated pJNK

relative to both of the single mutant cell lines (Fig. 2A), the

decrease in pJNK with the single mutant substitution resulted

in a small increase in apoptosis (Fig. 4A). pHSP27 does not

contribute as strongly or consistently in the model loadings

and substitution of pHSP27 had only a slight impact on the

predicted level of apoptosis. To quantitatively determine the

impact of each signaling change, we calculated the integrated

level for each signal’s timecourse and determined the difference

between the DLD-N integrated level and the integrated level

from the substitute data (Table 1). Comparing the differences

between DLD-N and mixed data set apoptosis predictions,

and the change in each integrated signal, we were able to

identify the model interpretation for each signal (Fig. 4B).

pIkBa and pERK2 are both pro-apoptotic while pJNK and

pHSP27 are pro-survival influences. We conclude that the

PLSRmodel predominantly monitors the combined contributions

from pERK2 and pIkBa with counteracting combined

contributions from pJNK and pHSP27. Hence, in DLD-N

Fig. 3 A PLSR model built on single-mutant signaling and apoptosis is able to predict dual-mutant apoptosis. (A) The PLSR model accurately

predicted the elevated sensitivity of DLD-N cells to TNFa. (B) Scores for the three cell lines in the first and second component. The first

component is consistent with a ‘TNFa treatment’ axis. (C) Loadings for the first two components of the single-mutant PLSR model. CP indicates

the loadings for the response metric of cleaved caspase-3 and cleaved PARP positive cells.

Table 1 Quantification of the difference in integrated signal level and
the total difference in predicted apoptosis between DLD-N and the
substituted data set

Signal Substitution
Change in
integrated signal

Change in total
predicted apoptosis

pERK2 DKs8-N 420 �40
DLD-1 520 �47

pHSP27 DKs8-N 22 3.2
DLD-1 210 3.8

pIkBa DKs8-N 7.9 �3.1
DLD-1 �210 14

pJNK DKs8-N 120 11
DLD-1 340 23

Fig. 4 (A) In silico predictions using mixed data sets demonstrate the balance between different signaling components. Apoptosis was predicted

from the PLSR model using the full DLD-N signaling data set (black) versus data sets with three DLD-N time-courses and a single protein

time-course substituted from DKs8-N (DN, red) or DLD-1 (DLD, blue). (B) Summary of the observed impact of changing signal data on the

prediction of apoptosis.

206 | Integr. Biol., 2010, 2, 202–208 This journal is �c The Royal Society of Chemistry 2010
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dual-mutant cells heightened sensitivity to TNFa arises from

increased pERK2 more than from enhanced pIkBa, inverting
the relative contributions of these two pro-apoptotic signals

compared to those in DLD-1 K-RAS mutant cells.

Discussion

Utilizing a multi-pathway model, we were able to predict the

apoptotic response of a novel cell line expressing mutant forms

of both K-RAS and N-RAS, which normally exert differential

effects on the cellular response to TNFa. Following treatment

with TNFa, DLD-N cells demonstrated activation of pERK2,

pJNK, pHSP27, and pIkBa similar to N-RAS single mutant

cells, while apoptosis was similar to K-RAS single mutant

cells. Examination of the model demonstrated that the

successful prediction resulted from the model interpretation

of information from multiple pathways. Elevated pERK2 or

pIkBa was interpreted by the model to correspond to

increased apoptosis. After TNFa treatment, DLD-N exhibited

the highest levels of pERK2 (which the model interpreted as

more apoptosis) and pIkBa levels below DLD-1 (moderating

the prediction of apoptosis). An analogous balance mechanism

has been reported between signals involved in endocytosis and

PI3K signaling in HER2 over-expressing mammary epithelial

cells.14 It is important to remember that PLSR models are

correlative, and therefore, signals such as pIkBa and pERK2

that correlate to TNFa treatment may not be causative of

apoptosis. In our previous studies of the single-mutant cell

lines, experimental evidence suggested that pERK signaling

that resulted from TNFa transactivation of TGFa had a net

pro-death effect.11

Our motivation for this present work was to gain insights

concerning how two mutations in the RAS pathway that exert

opposite effects on apoptosis integrate to yield a cell fate

decision. One potential effect would be for these mutations

to exert additive or synergistic effects on another oncogenic

pathway, for example proliferation or differentiation.

However, our results indicate that with respect to

TNFa-induced apoptosis, dual mutant cells phenocopy

K-RAS mutant cells rather than showing a moderated level

of apoptosis. Moreover, in vivo evidence does not support this

interpretation for K-RAS and N-RAS. When expressed in the

mouse colonic epithelium, mutationally activated K-Ras

promotes proliferation, suppresses differentiation, and confers

sensitivity to apoptotic stimuli.3 Mutant N-Ras, by contrast,

has no effect on proliferation or differentiation, but actively

suppresses apoptosis.3 One possible explanation for the

co-existence of apparently contradictory mutations is that

the mutations arise during circumstances of transient selective

pressure. Currently available cancer genome sequencing

data suggests that KRAS mutation is more effective at

promoting sporadic colon cancer progression than is mutant

NRAS—KRAS mutations occur in 30–40% of colon cancers,

but NRAS mutations occur in only 3–5%. The rarity of

N-RAS mutations suggests that they might arise under special

selective pressure. Given the effect of activated N-RAS on the

cellular response to TNFa, a pro-inflammatory cytokine,

we suspect that NRAS mutations occur in cancers exposed

to inflammation. Because of its deleterious effect with respect

to apoptosis,KRASmutation would likely not be advantageous

during inflammation, and, indeed, KRAS mutations are less

frequent in human colon cancers associated with chronic

inflammation.20 If the inflammation were transient, however,

NRAS mutations might arise early during tumor progression,

but then be expendable later in tumor progression because of

regression of the inflammation. The loss of inflammation

would set-up a permissive state for KRAS mutation.

In essence, mutant N-RAS would allow the cancer to adapt

to a transient selective pressure, but would later become a

passenger mutation.

Conclusions

Integrative systems models such as the multi-pathway

model of apoptosis presented here may provide a platform

to identify key control mechanisms regulating cell behavior,

resulting in novel drug targets. Our findings emphasize that

signal-to-response relationships require multiple signaling

pathways to be included in the model, as it is the balance of

these signals that is interpreted by cells to make decisions.
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