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Abstract
We present a new synchronization-free space-subdivision tree con-
struction algorithm. Despite data races, this algorithm produces
trees that are consistent enough for the client Barnes-Hut center of
mass and force computation phases to use successfully. Our perfor-
mance results show that eliminating synchronization improves the
performance of the parallel algorithm by approximately 20%. End-
to-end accuracy results show that the resulting partial data struc-
ture corruption has a neglible effect on the overall accuracy of the
Barnes-Hut N -body simulation.

We note that many data structure manipulation algorithms use
many of the same basic operations (linked data structure updates
and array insertions) as our tree construction algorithm. We there-
fore anticipate that the basic principles the we develop in this paper
may effectively guide future efforts in this area.

1. Introduction
Many computations (for example, lossy video and image process-
ing computations, information retrieval computations, and many
scientific computations) are designed to produce only an approx-
imation to an (often inherently unrealizable) ideal output. Because
such computations have the flexibility to produce any one of a range
of acceptably accurate outputs, they can productively tolerate oth-
erwise unacceptable events such as skipped loop iterations [11, 17,
18, 29, 37], skipped tasks[21, 22], or data races [15, 16] as long
as these events do not unacceptably degrade the accuracy of the
output. Potential benefits of exploiting this flexibility include re-
duced power consumption [11, 15–18, 29, 37], increased perfor-
mance [11, 15–18, 29, 37], simpler and more powerful automatic
parallelization techniques [15, 16], and the elimination of synchro-
nization between parallel threads [15, 16].

We present a parallel tree construction algorithm that uses only
primitive reads and writes — it uses no specialized synchronization
mechanisms at all (even though multiple parallel updates to the tree
under construction may interfere). Moreover, unlike much early
research in the field [14], the algorithm does not use reads and
writes to synthesize higher-level synchronization constructs.

Now, it may not be clear how to implement a correct parallel tree
construction algorithm without sychronization. Indeed, we do not
attempt to do so. We instead develop an algorithm that 1) does not
crash, 2) produces a tree that is consistent enough for its clients to
use successfully, and 3) contains enough of the inserted elements
so that its clients can produce an acceptably accurate output. In
effect, we eliminate synchronization by leveraging the end-to-end
ability of the client computations to tolerate some imprecision and
corruption in the tree that the algorithm produces.

1.1 Barnes-Hut N -Body Simulation
We use our algorithm for the tree construction phase of the Barnes-
Hut N -body simulation computation [1, 30]. This computation
simulates a system of N interacting bodies (such as stars or galax-
ies). Instead of computing the force acting on each body with the
straightforward pairwise N2 algorithm, Barnes-Hut instead inserts
the N bodies into a space-subdivision tree, computes the center of
mass at each node of the tree, then uses the tree to approximate the
combined forces from multiple distant bodies as the force from the
center of mass of the distant bodies.

Barnes-Hut is a mainstay of parallel computing benchmark
suites [12, 13, 15, 16, 25–27, 33]. Because the force computation
phase consumes the majority of the computation time in sequential
executions, many parallelization efforts have focused on that phase
(even though the tree construction phase can easily become the per-
formance bottleneck in parallel implementations [28]). But unlike
the force computation phase (in which the parallel computations
for the different bodies are independent and therefore data-race
free), the parallel tasks in the tree construction phase may interfere,
specifically when bodies inserted by different parallel tasks fall into
the same region of the tree.

In the absence of synchronization, the parallel tree construction
algorithm will therefore generate data races that complicate its
ability to execute successfully. But because the tree construction
algorithm is a component of the larger N -body simulation, it is also
possible to obtain an end-to-end measure of the effect that these
data races have on the overall accuracy of the computation. We use
this measure to determine the acceptability of our tree construction
algorithm for this computation.

1.2 Key Ideas
As one might anticipate, our starting sequential tree construction
algorithm crashes when executed in parallel. The first step is to
modify the algorithm to ensure that it does not crash. Two key ideas
are central to this modification (Section 4).

• Link At End: Some operations replace part of the tree with a
new subtree. The starting algorithm links the subtree in place
before it was fully constructed, enabling fatal data races as
parallel tasks interact with the subtree construction algorithm.
The modified algorithm first creates the new subtree locally
without interference, then executes a last instruction that links
the subtree in place. This technique ensures that parallel tasks
observe only fully constructed subtrees.

• Local Read, Check, and Index: Some operations insert items
into shared arrays. These operations read the last element index
associated with the array two times: first to to check if the array
is full and (if not) then again to determine where to insert the
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item. The resulting data races can cause out of bounds accesses
that crash the algorithm.
The modified array insert operations read the last element index
into a local variable at the start of the operation. The algorithm
then uses this local variable for both the check and to deter-
mine where to insert the item. This technique eliminates out of
bounds array accesses.

With these modifications, we obtain an unsynchronized algo-
rithm that does not crash, but may produce a tree that does not
contain all of the inserted elements. We next modify the algorithm
to reduce (but not completely eliminate) the number of missing in-
serted elements (Section 5).

• Final Check and Retry: Some operations check a condition,
construct a new subtree, then link the new subtree into place.
While the new subtree is under construction, other parallel tasks
may insert items into the same region of the tree. The instruction
that links the new subtree in place then removes these items.
The modified algorithm performs a final check to see if the
condition still holds. If not, it cancels the instruction that links
the subtree in place and retries the operation in the updated
tree state. This technique reduces the “window of vulnerability”
between the check and link, thereby increasing the number of
inserted items that appear in the final tree.

• Data Structure Repair: Because of (non-fatal) data races in
the modified algorithm, it is possible for the tree to enter a
somewhat inconsistent state in which one of the final checks
always fails. We eliminate the resulting infinite loop with a data
structure repair algorithm that eliminates the inconsistency and
enables the final check to eventually succeed.

1.3 Consistency Properties
Our unsynchronized algorithms contain data races that may drop
inserted bodies from the tree and leave the tree in a partially cor-
rupted state. Nevertheless, the clients (the center of mass and force
computation phases) are still able to use the tree to successfully
compute the force acting on each body in the system.

To explain why the races do not interfere with the ability of the
clients to use the tree successfully, we identify several important
consistency properties that the tree satisfies in spite of the data races
(Section 2). For example, the tree contains a subset of the inserted
bodies, with no body appearing more than once, and the internal
nodes of the data structure form a tree. These properties enable
the clients to traverse the tree without crashing and to compute an
acceptably accurate approximation to the force acting on each body.

1.4 Experimental Results
Our experimental results show that our unsynchronized tree con-
struction algorithms exhibit good parallel performance — on 16
cores they run almost 8 times faster than the original sequential
tree construction algorithm and approximately 20% faster than the
corresponding synchronized version.

We evaluate the acceptability of the trees that our algorithm
produces by measuring how they affect the accuracy of the body
positions that the Barnes-Hut N -body simulation computes. We
compare versions that use our unsynchronized algorithms with
1) a synchronized algorithm that produces a fully consistent tree
and 2) a hyperaccurate algorithm that goes deeper into the space-
subdivision tree during the force computation phase before it ap-
plies the center of mass approximation.

Our results show that the body positions from the synchronized
and unsynchronized versions are much closer to each other than
they are to the body positions from the hyperaccurate version. In
fact, the the synchronized and unsynchronized body positions are

typically two orders of magnitude closer to each other than they are
to the hyperaccurate body positions.

Together, these results show that eliminating synchronization
improves the performance while preserving the ability of our un-
synchronized algorithms to produce acceptably accurate and con-
sistent space-subdivision trees.

1.5 Contributions
This paper makes the following contributions:

• Algorithm: It presents new unsynchronized algorithms for
building space-subdivision trees in parallel.

• Evaluation Methodology: The unsynchronized algorithms
contain data races and may therefore produce somewhat cor-
rupted trees. We evaluate the acceptability of these trees by
comparing the results produced with these trees to results pro-
duced 1) with fully consistent trees and 2) by a hyperaccurate
version of the algorithm.

• Experimental Results: It presents experimental results that
characterize the performance and accuracy of the unsynchro-
nized tree construction algorithms. These results show that the
algorithm exhibits good parallel performance (speedup of ap-
proximately 8 on 16 cores) and good accuracy (corresponding
bodies in the unsynchronized and synchronized versions are
typically two orders of magnitude closer to each other than they
are to corresponding bodies in the hyperaccurate version).

The basic operations in the tree construction algorithm (linked
data structure manipulations and array insertions) are shared by
a broad range of algorithms that manipulate data structures. We
therefore anticipate that the basic principles that the tree construc-
tion algorithm illustrates may help guide developers of other un-
synchronized or only partially synchronized algorithms.

2. Data Structures
The Barnes-Hut N -body simulation algorithm works with a hierar-
chical space-subdivision tree. In our implementation, this tree con-
tains bodies (the N bodies in the simulation), cells (each of which
corresponds to a spatial region within the space-subdivision tree),
and leaves (each of which stores a set of bodies that are located
within the same leaf region of the tree).

In the hierarchical structure of the tree, the regions are nested —
each cell is divided into eight octants. Each cell therefore contains
eight references to either a hierarchically nested cell or leaf, each of
which corresponds to one of the octants in the parent cell’s region.

2.1 Class Declarations
Figure 1 presents the C++ class declarations for the data structures
that our algorithm uses to represent the space-subdivision tree.1 We
omit fields that are not relevant to the tree construction algorithm.
Instances of the class body represent the N bodies in the simu-
lation. Each body has an instance variable position that records
its current position in the simulation. Instances of the class cell
represent cells in the space-subdivision tree. Each cell has an array
children that contains references to the (cell or leaf) data struc-
tures that represents its hierarchically nested octants. Instances of
the class leaf represent leaves in the space-subdivision tree. Each
leaf has an array bodies that contains references to the bodies in
the leaf node. The instance variable numberOfBodies stores how
many leaves the bodies array references.

1 The data structures and algorithms in this paper were all derived from an
implementation of the Barnes-Hut algorithm in the QuickStep benchmark
suite [15, 16].
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class body {
vector position;
...

};

class node {
public:
int cellOrLeaf;
int level;

...
};

class cell : public node {
public:

node *children[NUMBEROFOCTANTS];
...

};

class leaf : public node {
public:
int numberOfBodies;
body *bodies[MAXBODIES];
...

};

Figure 1. Space Subdivision Tree Data Structure Declarations

Both the cell and leaf classes are subclasses of the node
class, which contains a flag cellOrLeaf indicating whether the
instance is a cell or leaf and a field level indicating the level at
which the cell or leaf appears in the tree.

2.2 Consistency Properties
We first discuss consistency properties of a final space-subdivision
tree produced by a tree construction algorithm that starts with an
empty root cell, then inserts all N bodies in the simulation into the
tree. These consistency properties are relevant primarily because
they influence the ability of the Barnes-Hut center of mass and
force computation phases to use the tree to deliver an acceptable
approximation to the forces acting on each body.

2.2.1 Natural Consistency Properties
Some natural consistency properties of the tree include:

• Tree: The cell, leaf, and body objects form a tree, where
the edges of the tree consist of the references stored in the
children fields of the cell objects and the bodies fields of
the leaf objects. Note that this property ensures that each body
appears at most once in the tree.

• Body Inclusion: If a body appears in the tree (i.e., is referenced
by a leaf object reachable from the root), then it was inserted
into the tree by the tree construction algorithm. Conversely,
each body that was inserted into the tree actually appears in
the tree.

• Octant Inclusion: Each leaf object corresponds to a region of
space, with the region defined by the path to the leaf from the
root cell object. The positions of all of the bodies that the leaf
object references must be within that region.

• Leaf Representation: The numberOfBodies field in each leaf
object is at least zero and less than MAXBODIES. For all i at least
zero and less than numberOfBodies, bodies[i] references
a body object (and is therefore not NULL). For all i at least
numberOfBodies and less than MAXBODIES, bodies[i] is
NULL.

• Level: The level of the root object is zero. The level of all
other cell and leaf objects is the level of the enclosing cell object
plus one.

• cellOrLeaf: The cellOrLeaf field in cell objects is CELL; the
cellOrLeaf field in leaf objects is LEAF.

Together, we call these properties the Natural Properties of the
tree construction algorithm. The original sequential tree construc-
tion algorithm produces a tree that satisfies these properties.

2.2.2 Relaxed Consistency Properties
We note that the above properties are stronger than the center of
mass and force computation phases actually require to produce an
acceptable approximation to the forces acting on the bodies. And
in fact, our parallel synchronization-free algorithm may not (and
in practice does not) produce a tree that satisfies the above Natural
Properties. Specifically, it may produce a tree that violates the Body
Inclusion and Leaf Representation properties.

We first consider what requirements the tree must satisfy so that
the center of mass and force computation phases do not crash. The
following Relaxed Body Inclusion and Relaxed Leaf Representa-
tion properties, which replace the Body Inclusion and Leaf Repre-
sentation properties, respectively, are sufficient to ensure that the
center of mass and force computation phases do not crash. Our par-
allel synchronization-free algorithm produces a tree that satisfies
these relaxed properties. It also produces a tree that satisfies the re-
maining Tree, Octant Inclusion, Level, and cellOrLeaf properties.

• Relaxed Body Inclusion: If a body appears in the tree (i.e., is
referenced by a leaf object reachable from the root), then it
was inserted into the tree by the tree construction algorithm.
If a body was inserted into the tree by the tree construction
algorithm, it may or may not appear in the tree.

• Relaxed Leaf Representation: The numberOfBodies field in
each leaf object is at least zero and less than MAXBODIES. For
all i at least zero and less than numberOfBodies, bodies[i]
references a body object (and is therefore not NULL). For all i at
least numberOfBodies and less than MAXBODIES, bodies[i]
may or many not be NULL.

Together, we call these properties the Relaxed Properties. Our
parallel tree construction algorithm will produce a tree that satisfies
these properties.

We note that all of these properties are hard logical correctness
properties of the type that standard data structure reasoning systems
work with [34, 35]. One way to establish that the algorithm always
produces a tree with these properties is to reason about all possible
executions of the program to show that all executions produce a
tree that satisfies these properties.

In addition to these properties, our parallel synchronization-free
algorithm must satisfy the following Accuracy property:

• Accuracy: The tree contains sufficiently many bodies so that
the force computation phase produces a sufficiently accurate
result.

In contrast to the hard logical consistency properties that we discuss
above, we do not establish that our algorithm preserves this prop-
erty by reasoning about all possible executions of the algorithm.
Indeed, this approach would fail, because some of the possible ex-
ecutions violate this property.

We instead reason empirically about this property by observing
executions of the program on representative inputs. Specifically, we
compare the results that the program produces when it uses our
parallel synchronization-free algorithm with results that we know
to be accurate. We use this comparison to evaluate the accuracy of
the results from the parallel synchronization-free algorithm.
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2.2.3 Execution Properties
The properties discussed in the previous two sections relate only to
the final tree that the algorithm produces. But to reason about the
operation of the tree construction algorithm itself, we must identify
properties that the tree satisfies while it is under construction. Our
primary purpose is to ensure that the tree construction algorithm
itself does not crash.

As the algorithm operates, it will create and destroy references
between cells, leaves, and bodies. To state consistency properties
that hold during the execution of the tree construction algorithm,
we consider all references that ever existed at any point during the
execution of the algorithm and all cells and leaves that existed at
any point during the execution of the algorithm (whether or not
these cells and leaves are reachable with the references currently
stored in the tree).

We define the nodes of the full space-subdivision graph to be all
of the cell, leaf, and body objects that ever existed during the exe-
cution of the algorithm and the edges of the full space-subdivision
graph to be all of the references ever stored in children fields of
cell objects or bodies fields of leaf objects.

At all points during the execution of the tree construction algo-
rithm, the full space-subdivision graph satisfies the Relaxed Body
Inclusion, Octant Inclusion, Relaxed Leaf Representation, Level,
and cellOrLeaf properties discussed above in Sections 2.2.1 and
2.2.2. The following two properties also hold:

• Cell Tree: The set of references ever stored in any children
field of any cell object that ever existed during the execution
algorithm is a tree.

• Body Isolation: No leaf object references more than one body
object.

Together, we call this set of properties the Execution Properties. As
we will see, the Execution Properties properties are 1) preserved by
all operations of the parallel synchronization-free tree construction
algorithm, 2) sufficient to ensure that this algorithm will not crash,
and 3) ensure that the algorithm will produce a final tree that
satisfies the Relaxed Properties.

Note that it is possible for multiple leaf objects, specifically an
old leaf object that has been unlinked from the tree and one or more
new leaf objects that may have been subsequently linked into the
tree, to reference the same body object. Also note that the Octant
Inclusion property ensures that each body is referenced by at most
one leaf object in the final tree (because different leaf objects in the
final tree correspond to disjoint regions).

3. Original Sequential Algorithm
Figure 2 presents the (slightly simplified and reconstructed) origi-
nal sequential algorithm for inserting a single body b with integer
coordinates x into the space-subdivision tree rooted at the cell c (the
body b has double coordinates, but the insertion algorithm uses an
integer version of these coordinates).

The insert algorithm first determines the octant of the cell c
into which the body b falls (line 6). If this octant is free, the algo-
rithm allocates a new leaf object to hold the bodies in the octant
(lines 9-10), links the leaf into the enclosing cell (line 11), then in-
serts the body into the leaf (lines 12-13). We assume that new ob-
ject allocations take place atomically and without interacting with
computations running on other processors. We achieve this prop-
erty by providing each processor with its own pools of cells and
leaves from which it can allocate without interference.

If the tree contains a leaf for the octant, the algorithm checks
if the leaf is full of bodies (line 17) and, if not, inserts the body
into the leaf (lines 21-22). If the leaf is full, the algorithm invokes
the divide algorithm to replace the leaf with a new cell (line 18,
algorithm in Figure 3), then retries the insert (line 19).

1 :void insert(cell *c, body *b, int *x) {
2 : int i;
3 : node *n;
4 : leaf *l;
5 :
6 : i = octant(x,c->level);
7 : n = c->children[i];
8 : if (n == NULL) {
9 : l = >newleaf();
10: l->level = c->level >> 1;
11: c->children[i] = l;
12: l->bodies[l->numberOfBodies] = b;
13: l->numberOfBodies++;
14: } else {
15: if (n->cellOrLeaf == LEAF) {
16: l = (leaf*) n;
17: if (l->numberOfBodies == MAXBODIES) {
18: divide(c, l, i);
19: insert(c, b, x);
20: } else {
21: l->bodies[l->numberOfBodies] = b;
22: l->numberOfBodies++;
23: }
24: } else {
25: insert((cell *) n, b, x);
26: }
27: }
28:}

Figure 2. Original Sequential Insert Algorithm

1 :void divide(cell *c, leaf *l, int i) {
2 : cell *newc;
3 : leaf *newl;
4 : body *p;
5 :
6 : int index, x[NDIM];
7 :
8 : newc = newcell();
9 : newc->level = (c->level) >> 1;
10: c->children[i] = newc;
11:
12: for (int j = 0; j < l->numberOfBodies; j++) {
13: p = l->bodies[j];
14: getCoordinates(p, x);
15: index = octant(x, l->level);
16: newl = (leaf*) (newc->children[index]);
17: if (newl == NULL) {
18: newl = newleaf();
19: newl->level = (newc->level) >> 1;
20: newc->children[index] = newl;
21: }
22: newl->bodies[newl->numberOfBodies] = p;
23: newl->numberOfBodies++;
24: }
25:}

Figure 3. Original Sequential Divide Algorithm
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If the tree contains a cell for the octant, the algorithm calls itself
recursively to step down the tree towards the leaf into which it will
eventually insert the body b (line 25).

Figure 3 presents the original divide algorithm. The algorithm
allocates a new cell (lines 8-9), links it into the tree (line 10,
disconnecting the leaf l that c->children[i] previously refer-
enced), then inserts the bodies from the leaf l into the subtree
rooted at the new cell newc (lines 12-23).

3.1 Fatal Data Races In Unsynchronized Parallel Version
We consider an unsynchronized parallel version of this algorithm
that invokes the insert algorithm for the N bodies in the system
in parallel with no additional synchronization. There are multiple
opportunities for data races. Consider, for example, a case when
many bodies (specifically, more than MAXBODIES) fall into the same
leaf and are inserted in parallel. The insertions of these bodies may
hit the check at line 17 of Figure 2 at the same time, with all of the
checks finding that there is room to insert the body. The insertions
next proceed to lines 21-22 of Figure 2, potentially overflowing
the bodies array and causing out of bounds accesses.

There are also other opportunities for race conditions to over-
flow the bodies array, specifically interactions between the leaf
insertions at lines 22-23 of Figure 3 and lines 21-22 of Figure 2.
One of the causes of these fatal race conditions is the fact that the
new cell and new leaves in the original divide algorithm in Fig-
ure 3 are linked into the tree (and therefore made reachable to in-
sertions of other bodies) before they are fully constructed.

We have implemented and tested this parallel algorithm. We
note that, in practice, these race conditions are always fatal — the
parallel version of this tree construction algorithm always crashes.

3.2 Tree Locking
A standard way to synchronize tree insertion algorithms is to use
tree locking — to lock each cell as the algorithm walks down the
tree to find the location at which to insert the body. We have imple-
mented and tested a version of this standard parallel tree construc-
tion algorithm. Although correct, it is hopelessly inefficient for this
task — it always takes longer to execute than the original sequen-
tial tree construction algorithm, with the execution time growing
as the number of cores executing the computation increases (see
Section 6).

4. First Parallel Algorithm
Figure 4 presents our first unsynchronized parallel insert algo-
rithm. This algorithm executes without crashing and preserves the
Execution Properties from Section 2.2.3. There are two main dif-
ferences from the original sequential algorithm. The first main dif-
ference is that the statement that links the new leaf into the tree
(line 13, Figure 4) has been moved until after the statements that
insert the body into the new leaf (lines 11-12, Figure 4). Because
the new leaf is inaccessible to other parallel threads until it is linked
into the tree, the insertion of the body into the leaf executes atomi-
cally without violating the bounds of the bodies array. In terms of
our Execution Properties, the insertion preserves the Relaxed Leaf
Representation property (which is the key property that executing
the original sequential algorithm in parallel may violate).

The second main difference is that the check for a full leaf
(lines 17-18, Figure 4) and insertion of the body b into leaf if it
is not full (lines 22-23, Figure 4) are coded to avoid violating the
bounds of the bodies array even in the presence of interference
in the form of data races with other parallel insertions. The code
sequence stores the number of bodies currently in the leaf into the
variable p (line 17, Figure 4). It then uses p to check if the leaf is
full (line 18, Figure 4). If it is not, it places the reference to the new

1 :void insert(cell *c, body *b, int *x, int t) {
2 : int i, p;
3 : node *n;
4 : leaf *l;
5 :
6 : i = octant(x,c->level);
7 : n = c->children[i];
8 : if (n == NULL) {
9 : l = newleaf(t);
10: l->level = c->level >> 1;
11: l->bodies[l->numberOfBodies] = b;
12: l->numberOfBodies++;
13: c->children[i] = l;
14: } else {
15: if (n->cellOrLeaf == LEAF) {
16: l = (leaf*) n;
17: p = l->numberOfBodies;
18: if (p == MAXBODIES) {
19: divide(c, l, i, t);
20: insert(c, b, x, t);
21: } else {
22: l->bodies[p] = b;
23: l->numberOfBodies = p+1;
24: }
25: } else {
26: insert((cell *) n, b, x, t);
27: }
28: }
29:}

Figure 4. First Parallel Insert Algorithm

1 :void divide(cell *c, leaf *l, int i, int t) {
2 : cell *newc;
3 : leaf *newl;
4 : body *p;
5 :
6 : int index, x[NDIM];
7 :
8 : newc = newcell(t);
9 : newc->level = (c->level) >> 1;
10:
11: for (int j = 0; j < l->numberOfBodies; j++) {
12: p = l->bodies[j];
13: getCoordinates(p, x);
14: index = octant(x, l->level);
15: newl = (leaf*) (newc->children[index]);
16: if (newl == NULL) {
17: newl = newleaf(t);
18: newl->level = (newc->level) >> 1;
19: newc->children[index] = newl;
20: }
21: newl->bodies[newl->numberOfBodies] = p;
22: newl->numberOfBodies++;
23: }
24: c->children[i] = newc;
25:}

Figure 5. First Parallel Divide Algorithm
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body in element p of the bodies array (line 22, Figure 4) and sets
l->numberOfBodies to reference the next element after p (line
23 Figure 4). This approach eliminates the multiple reads to the
numberOfBodies field in the original algorithm from Figure 2 and
ensures that the insert algorithm does not violate the bounds of
the bodies array.

We also add the thread id t of the thread executing the insert
as a parameter to insert and divide. The leaf allocation proce-
dure newleaf(t) and cell allocation procedure newcell(t) now
take this thread id t as a parameter. Each thread has its own alloca-
tion pool of leaves and cells so that it can allocate leaves and cells
locally without synchronizing with other threads. The thread id t
tells the allocation procedures which pool to allocate from.

Figure 5 presents the first parallel divide algorithm (the insert
algorithm in Figure 4 invokes this algorithm at line 19). The main
difference between this algorithm and the original divide algo-
rithm from Figure 3 is that the statement that links the new cell into
the tree (line 24 in Figure 5) has been moved until after the new cell
has been fully constructed. This change ensures that the cell is not
reachable to other parallel insertions while it is under construction
(lines 8-23, Figure 5). The construction therefore executes atomi-
cally and preserves all of the Execution Properties.

4.1 Survivable Data Races
Of course, even though this algorithm preserves the Execution
Properties, it still contains potential data races. We make this con-
cept precise for this algorithm as follows. We say that there is a data
race when the parallel execution causes sequences of instructions
from insertions of different bodies to interleave in a way that the
parallel execution produces a tree that violates one or more of the
Natural Properties from Section 2.2.1. When we reason about par-
allel executions we assume the executions take place on a parallel
machine that implements sequential consistency.

4.2 Tree Construction Operations
We discuss the potential data races further by first dividing the
tree construction algorithm into operations whose atomic execution
renders the algorithm free of data races. Each operation consists of
a check (which examines part of the data structure to determine
if a given condition holds, in which case we say that the check
succeeds) and an action (a data structure update that the algorithm
performs if the check succeeds).

• New Leaf: The check for a null octant reference (lines 7-8,
Figure 4) in combination with the action that creates a new leaf
to hold the inserted body b (lines 9-13, Figure 4).

• Insert Body: The check that determines that the next octant
down is a leaf l with room to insert the body b (lines 7-8 and
15-18, Figure 4) in combination with the action that inserts the
body b in the next available element of the bodies array in the
leaf l.

• Divide Leaf: The check that determines that the next octant
down is a leaf l that is full and therefore does not have room to
insert the body b (lines 7-8 and 15-18, Figure 4) in combina-
tion with the action that replaces the leaf lwith a cell containing
the bodies in the leaf l (the call to divide, line 19, Figure 4).

• Retry: The recursive call to insert that retries the insert after
the call to divide replaces the leaf l with a new cell.

• Downward Step: The check that determines that the next oc-
tant down is a cell (lines 7-8 and 15, Figure 4) in combination
with the action that calls insert recursively on cell n for that
octant (line 26, Figure 4, strictly speaking not an action because
it does not update the data structure).

We next analyze the effects of potential data races. We consider
data races associated with two parallel insertions (data races involv-
ing more operations typically have similar effects):

• New Leaf vs. New Leaf: It is possible for the check at line
8 of Figure 4 to succeed in both insertions. In this case both
insertions will allocate a new leaf containing the inserted body
and link the new leaf into the tree at line 13 of Figure 4. One
of the new leaves will be discarded and the final tree will not
contain the corresponding body.

• New Leaf vs. Insert Body: Because the New Leaf operation
links the new leaf into the tree as its last step, it is not possible
for the New Leaf operation to interleave with an Insert Body
operation on the same leaf. So there is no data race associated
with this combination of operations.

• New Leaf vs. Divide Leaf: It is possible for the check at line
8 of Figure 4 to succeed in one insertion, then other insert
operations allocate a leaf at that same position in the tree,
then fill that leaf with bodies. Then the Divide Leaf operation
attempts to replace that leaf with a cell. The instructions at line
24 of Figure 5 (which links the cell into the tree) and line 13 of
Figure 4 race. If the instruction from the Divide Leaf opertion
that inserts the cell executes first, the subsequent instruction
from the New Leaf operation will remove the cell (and all
of the bodies that it contains) from the tree. If, on the other
hand, the instruction from the New Leaf operation executes
first, the subsequent instruction from the Divide Leaf operation
will remove the new leaf (and the body that it contains) from
the tree. In both cases the final tree will not contain some of the
inserted bodies.

• Insert Body vs. Insert Body: It is possible for the check at
lines 7-8 and lines 15-18 of Figure 4 to determine that there
is room in the leaf l in both insertions. Both insertions proceed
on to place the body in the leaf l at lines 22-23 of Figure 4.
Both insertions have the same value of p. One of the insertions
will execute first, the other will execute second and remove the
first body from the tree. The final tree will not contain this first
body.

• Insert Body vs. Divide Leaf: When the divide operation
replaces a leaf with a cell, it iterates over all of the bodies in
the leaf to reinsert them into the tree rooted at the new cell
(lines 11-23, Figure 5). After the loop terminates, it is possible
for an Insert Body operation to insert another body b into the
replaced leaf node. The assignment at line 24 of Figure 5 will
then remove the leaf (and the body b that it contains) from the
tree. The final tree will not contain the body b.

• Divide Leaf vs. Divide Leaf It is possible for two insertions to
both determine (via the check at lines 7-8 and 15-18, Figure 4)
that the leaf l at the current octant is full. In this case both
insertions will invoke the divide algorithm to replace the leaf
l with a new cell. In this case the tree will temporarily contain
the cell from the first operation to execute line 24 of Figure 5
(which links the new cell into the tree), then contain the cell
from the second operation to execute this line.

The effect of all of these data races is to remove inserted bodies
from the tree. For this reason the parallel algorithm satisfies the
Relaxed Body Inclusion property from Section 2.2.2 rather than
the stricter Body Inclusion property from Section 2.2.1. Note that
we do not consider any races involving Retry or Downward Step
operations as these operations do not modify the data structure and
the effect of any interaction with other operations will show up via
other considered data races.
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4.3 One Three Way Data Race
We next discuss one three-way data race: the Insert Body vs. Insert
Body vs. Insert Body data race. In this race, the first two Insert
Body operations obtain the same value of p and will therefore insert
their bodies into the same element p of the bodies array. The
first Insert Body operation completes and, at line 23 of Figure 4,
changes l->numberOfBodies to index the next free element of
the bodies array.

Before the second Insert Body operation executes the instruc-
tion at line 23 of Figure 4, the third Insert Body operation executes
to completion. At that point the second Insert Body operation exe-
cutes line 23 of Figure 4, setting l->numberOfBodies back to its
value before the execution of the third Insert Body operation.

With this data race 1) the bodies array does not reference one
of the bodies from the first two Insert Body operations (the oper-
ation that executed line 22 in Figure 4 second overwrote this ref-
erence) and 2) the bodies array does reference the body from the
third operation, but at index l->numberOfBodies in the bodies
array. It is for this reason that we work with the Relaxed Leaf Rep-
resentation property from Section 2.2.2 rather than the more strict
Leaf Representation property from Section 2.2.1.

Note that a subsequent insert into the leaf may overwrite the ref-
erence inserted by the third Insert Body operation. Even if no such
insert occurs and the reference remains in the array, any compu-
tation that uses l->numberOfBodies to traverse the references in
the bodies array will terminate the traversal before it accesses the
reference. The net effect is that, with this data race, the final tree
does not contain two of the three inserted bodies.

5. Final Parallel Algorithm
The number of bodies that data races remove from the final tree
depends on the frequency with which the data races occur. While
our final algorithm does not eliminate data races altogether, it uses
a technique (which we call final check) to reduce the data race
frequency. The technique operates as follows.

The tree construction operations follow the general pattern of
first performing a check to determine which action to perform, next
executing a sequence of instructions that to construct a new part of
the data structure (the Insert Body operation does not execute such
a sequence), then executing one or more instructions to commit its
updates from the action into the main tree data structure. All of the
data races change the result of the check so that the check would
no longer produce the same result if executed at the time when the
operation committed the updates from its action. We call the time
between the check and the commit the window of vulnerability.

Our final check technique shrinks (but does not eliminate) the
window of vulnerability by performing part or all of the check again
just before the instructions that commit the action (if the final check
retries the entire first check, we say that it is a full final check,
otherwise we say that it is a partial final check).

If the final check produces a different result than the first check,
the algorithm discards its action and retries the insert. It is possible
to retry immediately or defer the retry until later, for example
by storing the body in a data structure for later processing. We
present a final algorithm that retries immediately; we have also
implemented an algorithm that defers the retries until each thread
has attempted to insert all of its initially assigned set of bodies.

Figure 6 presents the final parallel tree construction algorithm.
Figure 7 presents the final parallel tree divide algorithm. The final
checks occur at lines 14 and 30 of Figure 6 and line 25 of Figure 7.
The retries (immediate in this case) appear at lines 18, 27, 46 in
Figure 6 (note that the retry at line 27 is present in the first parallel
algorithm in Section 4).

1 :void insert(cell *c, body *b, int *x, int t) {
2 : int i, p;
3 : node *n;
4 : leaf *l;
5 :
6 : i = octant(x,c->level);
7 : n = c->children[i];
8 : if (n == NULL) {
9 : l = newleaf(t);
10: l->level = c->level >> 1;
11: l->bodies[l->numberOfBodies] = b;
12: l->numberOfBodies++;
13: // final check (full)
14: if (c->children[i] == NULL) {
15: c->children[i] = l;
16: } else {
17: // retry
18: insert(c, b, x, t);
19: }
20: } else {
21: if (n->cellOrLeaf == LEAF) {
22: l = (leaf*) n;
23: p = l->numberOfBodies;
24: if (p == MAXBODIES) {
25: divide(c, l, i, t);
26: // retry after divide
27: insert(c, b, x, t);
28: } else {
29: // final check (partial)
30: if (l->bodies[p] == NULL) {
31: l->bodies[p] = b;
32: l->numberOfBodies = p+1;
33: } else {
34: // data structure repair
35: // to avoid infinite loop
36: int j = l->numberOfBodies;
37: while (true) {
38: if ((l->bodies[j] == NULL) ||
39: (j == MAXBODIES)) {
40: l->numberOfBodies = j;
41: break;
42: }
43: j++;
44: }
45: // retry
46: insert(c, b, x, t);
47: }
48: }
49: } else {
50: insert((cell *) n, b, x, t);
51: }
52: }
53:}

Figure 6. Final Parallel Insert Algorithm
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1 :void divide(cell *c, leaf *l, int i, int t) {
2 : cell *newc;
3 : leaf *newl;
4 : body *p;
5 :
6 : int index, x[NDIM];
7 :
8 : newc = newcell(t);
9 : newc->level = (c->level) >> 1;
10:
11: for (int j = 0; j < l->numberOfBodies; j++) {
12: p = l->bodies[j];
13: getCoordinates(p, x);
14: index = octant(x, l->level);
15: newl = (leaf*) (newc->children[index]);
16: if (newl == NULL) {
17: newl = newleaf(t);
18: newl->level = (newc->level) >> 1;
19: newc->children[index] = newl;
20: }
21: newl->bodies[newl->numberOfBodies] = p;
22: newl->numberOfBodies++;
23: }
24: // final check (full)
25: if (c->children[i] == l) {
26: c->children[i] = newc;
27: }
28: // caller retries regardless of whether
29: // final check succeeds or not
30:}

Figure 7. Final Parallel Divide Algorithm

5.1 Full vs. Partial Checks
The final checks at lines 13 of Figure 6 and 25 of Figure 7 are both
full final checks — if the check succeeds, all parts of the tree data
structure that the first check accessed are in the same state (so the
first check, if rerun, would give the same result). The final check
at line 30 of Figure 6, however, is partial — it does not check if
c->children[i] still references the leaf l. Replacing line 30 in
Figure 6 with the following line:

30: if (((node *) l == c->children[i]) &&
(l->bodies[p] == NULL)) {

makes the final check full instead of partial.

5.2 Full Final Checks and Atomicity
We have implemented a synchronized version of the algorithm in
which 1) all operations use full final checks and 2) each cell object c
contains a mutual exclusion lock that the algorithm uses to make all
operations execute atomically (recall that each operation consists of
a check plus an action, see Section 4.2). This synchronized version
acquires the lock in the accessed cell object c just before the check
and releases the lock immediately after the action. This version has
no data races and always produces a tree that satisfies the Natural
Properties from Section 2.2.1.

5.3 Data Structure Repair
Lines 37-44 of Figure 6 implement a data structure repair algo-
rithm that enables the algorithm to avoid an infinite loop. Recall
that the three way data race discussed in Section 4.3 may leave a
leaf l in a state in which bodies[l->numberOfBodies] is not
NULL. In this case the final check at line 30 will always fail and
the insertion will infinite loop. The data structure repair algorithm

avoids this infinite loop by reseting l->numberOfBodies so that
either 1) bodies[l->numberOfBodies] is NULL, so that the inser-
tion will succeed in the retry (in the absence of interference from
other parallel insertions), or 2) if all entries of the bodies array are
non-NULL, l->numberOfBodies is set to MAXBODIES so that the
retry will (again, in the absence of interference from other paral-
lel insertions) invoke the divide algorithm to create space in the
tree for the body. In all cases the data structure repair enables the
insertion to make progress and avoid the infinite loop.

5.4 Iterative Extension to Insert Missing Bodies
It is possible to extend the final algorithm to produce a tree that
contains all of the inserted bodies as follows. This extension tra-
verses the final tree to determine which, if any, bodies are missing.
It then retries the insertion of the missing bodies, iterating until the
tree contains all of the N bodies in the system. A drawback of this
approach is the time required to determine which bodies are miss-
ing. An efficient algorithm for this task would make this approach
viable.

6. Experimental Results
We implemented the tree construction algorithms described in Sec-
tions 4 and 5 in C++ using the pthreads threads package. This ver-
sion executes both the tree construction phase and the force compu-
tation phase in parallel. In the tree construction phase each thread
inserts a block of N/T bodies into the tree, where N is the number
of bodies in the system and T is the number of parallel threads.
Similarly, each thread in the force computation phase computes the
forces acting on a block of N/T bodies. The threads in each par-
allel implementation execute a barrier (pthread_barrier_wait)
before and after the tree construction and force computation phases.

We report results for the following versions of the algorithm:

• Original Sequential: The original sequential version of the
algorithm with no parallelization overhead.

• Tree Locking: A parallel algorithm that uses standard tree
locking to synchronize tree insertions. Each cell contains a
mutual exclusion lock (pthread_mutex_t). Each insertion
uses standard pthreads mutual exclusion primitives to acquire
(pthread_mutex_lock) and release (pthread_mutex_unlock)
the lock on each cell that it visits as it walks down the tree.

• First Parallel: The synchronization-free first parallel algorithm
described in Section 4.

• Final Check: The synchronization-free parallel algorithm de-
scribed in Section 5 that performs partial final checks.

• Synchronized: The synchronized parallel algorithm described
in Section 5.2. Each cell contains a mutual exclusion lock. The
algorithm uses this mutual exclusion lock to make the each
operation (which consists of a full final check and an action)
execute atomically. This version executes without data races
and always produces a tree that satisfies the Natural Properties
(see Section 2.2.1).

• Hyperaccurate: The Synchronized version above, but running
with an smaller tol parameter (the original tol parameter
divided by 1.25). With this parameter, the force computation
phase goes deeper into the space-subdivision tree before it ap-
proximates the effect of multiple distant bodies with their center
of mass. We use this version to evaluate the accuracy conse-
quences of dropping bodies from the space-subdivision tree as
compared with making the force computation phase more ac-
curate.

We refer to the First Parallel and Final Check versions as the
Unsynchronized versions. We run all versions on a 16 core 2.4 GHz
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Number of Cores
Version 1 2 4 8 16
Tree Locking 17.21 (0.50) 19.35 (0.44) 18.35 (0.46) 23.46 (0.26) 39.38 (0.22)
First Parallel 8.49 (1.00) 5.56 (1.53) 3.25 (2.62) 1.64 (5.20) 1.01 (7.77)
Final Check 8.44 (1.01) 5.38 (1.59) 3.25 (2.63) 1.72 (4.96) 1.11 (7.70)
Synchronized 9.64 (0.88) 6.33 (1.35) 3.79 (2.25) 2.01 (4.24) 1.323 (6.44)

Table 1. Performance numbers for tree construction phase. Each entry is of the form entry of the form X (Y) where X is the execution time
and Y is the speedup.

Number of Cores
Version 1 2 4 8 16
Parallel 529.06 (1.00) 264.60 (2.00) 112.70 (4.70) 69.47 (7.62) 44.85 (11.80)
Hyperaccurate 632.34 (0.84) 317.00 (1.67) 137.03 (3.87) 82.78 (6.39) 52.29 (10.12)

Table 2. Performance numbers for force computation phase. Each entry is of the form X (Y) where X is the execution time and Y is the
speedup.

Number of Cores
Version 1 2 4 8 16
Tree Locking 17.21, 0.00 (0.0%) 38.43, 0.26 (0.6%) 70.68, 2.73 (3.7%) 255.88, 3.75 (1.4%) 613.339, 11.83 (1.9%)
First Parallel 8.49, 0.00 (0.0%) 10.85, 0.29 (2.6%) 12.02, 0.97 (7.5%) 12.55, 0.56 (4.3%) 16.055, 1.62 (9.2%)
Final Check 8.44, 0.0 (0.0%) 10.57, 0.17 (1.6%) 12.01, 0.98 (7.5%) 12.62, 1.05 (7.7%) 16.23, 1.60 (9.0%)
Synchronized 9.69, 0.0 (0.0%) 12.75, 0.16 (1.2%) 14.04, 1.18 (7.8%) 15.15, 1.09 (6.7%) 18.99, 2.36 (11.1%)

Table 3. Working and waiting times for tree construction phase. Each entry is of the form X, Y (Z%) where X is the total working time
summed over all cores, Y is the total barrier waiting time summed over all cores, and Z is the percentage of total execution time spent barrier
waiting.

Intel Xeon E7340 machine with 16 GB of RAM running Debian
Linux kernel version 2.6.27. We report results from executions that
simulate 200 steps of a system with 128K bodies.

6.1 Performance
Table 1 presents performance numbers for the different space-
subdivision tree construction algorithms. There is a row in the table
for each version. The first column in each row identifies the version
of the algorithm. The following columns present timing results
from running the algorithm on different numbers of cores. Each
entry is of the form X (Y), where X is the tree construction time
and Y is the speedup over the original sequential tree construction
algorithm (running with no parallelization overhead). The number
at the top of each column identifies the number of cores running
the computation (we report results for 1, 2, 4, 8, and 16 core
executions).

We note that the Tree Locking version exhibits poor perfor-
mance — it takes twice as long to run as the original version on
one core, and the performance decreases as the number of cores
increases. We attribute the poor performance to a combination of
synchronization overhead and bottlenecks associated with locking
the top cells in the tree.

The First Parallel and Final Check versions exhibit almost iden-
tical performance with good performance for all numbers of cores.
The Synchronized version also scales reasonably well, but has re-
duced performance in comparison with the First Parallel and Final
Check versions. We attribute this reduced performance to synchro-
nization overhead (note the increase in the single core execution
time relative to the Original Sequential version).

For comparison purposes Table 2 presents performance num-
bers for the parallel force computation phase. We note that this
phase is much more computationally expensive (and therefore con-
sumes more of the execution time) than the tree construction phase.
It also scales better than the tree construction phase as the num-

ber of cores increases — the force computation phase is known
to be more amenable to parallelization than the tree construction
phase [30]. The numbers in Table 2 also illustrate the effect of in-
creasing the precision of the force computation phase by decreasing
the tol parameter.

We note that these executions use a small value for the tol
parameter. This parameter determines how high in the tree the force
computation phase terminates the traversal and approximates the
remote force with the center of mass below the current cell in the
traversal. Smaller versions provide more accurate approximations
but cause the force computation phase to run longer.

Table 3 presents the total working and barrier waiting times
for different versions of the tree construction phase running with
different numbers of cores. Each entry is of the form X, Y (Z%),
where X is the total time spent inserting bodies (summed over
all cores), Y is the total time spent waiting at the barrier at the
end of the tree construction phase (again, summed over all cores),
and Z is the percentage of time spent waiting at the barrier. We
note that, as the number of cores increases, the working time for
the First Parallel and Final Check versions increases. We attribute
this increase to memory system effects. We also note that because
the computation spends a small (typically much less than 10%) of
its time waiting at the barrier, it balances the computational load
effectively. For these reasons, we identify the primary source of
performance degradation for these two versions as memory system
effects.

6.2 Accuracy
Table 4 reports the cumulative number of dropped bodies for the
First Parallel and Final Check versions. Each number is the total
number of bodies dropped from the space-subdivision tree over all
200 steps. We note two properties:

• Low Drop Rate: Over the course of the simulation, each al-
gorithm inserts a total of 128K * 200 bodies into the 200 con-
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Number of Cores
Version 1 2 4 8 16
First Parallel 0 3,689 11,262 28,877 52,864
Final Check 0 769 1,986 3,764 7,703

Table 4. Cumulative number of dropped bodies after 200 simulation steps.

Number of Cores
Version 1 2 4 8 16
First Parallel 1.02%, 0.000% 1.02%, 0.002% 1.02%, 0.013% 1.02%, 0.036% 1.02%, 0.045%
Final Check 1.02%, 0.000% 1.02%, 0.001% 1.02%, 0.002% 1.02%, 0.007% 1.02%, 0.012%
Synchronized 1.02%, 0.000% 1.02%, 0.000% 1.02%, 0.000% 1.02%, 0.000% 1.02%, 0.000%

Table 5. Distances between body positions computed by different versions of the simulation after 200 simulation steps. Each entry is of the
form X, Y where X is ΦS

H and Y is either ΦFP
S (First Parallel row), ΦFC

S (Final Check row), or ΦS
S = 0.000% (Synchronized row).

structed trees. Even running on 16 cores with no final check to
reduce the number of dropped bodies, the First Parallel algo-
rithm drops only 0.2% of the bodies it inserts. Other versions
drop significantly fewer bodies.

• Final Check Effectiveness: The final check algorithm is effec-
tive at reducing the number of dropped bodies, specifically by
a factor of between 5 and 7 depending on the number of cores
executing the simulation.

We next consider the effect of the dropped bodies on the overall
accuracy of the simulation. Starting from the same state, we run
the Hyperaccurate, Synchronized, and (in different runs) either
the First Parallel or the Final Check versions in lockstep. Each
step in each simulation produces a three-dimensional position for
each body. We compute the following measures of how much the
simulations differ in the results that they produce:

• ∆S
H : The sum of the distances between corresponding bodies

in two simulations: one that uses the Hyperaccurate algorithm
and one that uses the Synchronized algorithm. This quantity
provides an estimate of how much accuracy is lost because
of the center of mass approximation in the force computation
phase.

• ∆FP
S : The sum of the distances between corresponding bodies

in two simulations: one that uses the Synchronized algorithm
and one that uses the First Parallel algorithm.

• ∆FC
S : The sum of the distances between corresponding bodies

in two simulations: one that uses the Synchronized algorithm
and one that uses the Final Check algorithm.

We also compute percentage differences ΦS
H , ΦFP

S , ΦFC
S , ΦFP

H ,
and ΦFC

H , which are the corresponding ∆s as a percentage of the
distance between the far corners of the bounding box of the bodies
in the corresponding step of the Synchronized simulation. So to
compute a Φ, we first obtain the corresponding ∆ by summing up
the distances between corresponding bodies, divide the sum by the
distance between the far corners of the bounding box, then multiply
by 100. Table 5 reports the different Φs for the positions of the
bodies after 200 simulation steps.

We note that by the triangle inequality, ΦFP
H ≤ ΦS

H + ΦFP
S ,

ΦFP
H ≤ ΦS

H + ΦFP
S , and similarly for the corresponding ∆s. We

also note that while the triangle inequality provides an upper bound
on ΦFC

H and ΦFP
H , the actual ΦFC

H and ΦFP
H that we compute

from the computed body positions are significantly smaller than
this upper bound. Specifically, they are the same as ΦS

H = 1.02%
to three significant digits.

We highlight the following facts:

• Hyperaccurate Differences: Both the Synchronized and Un-
synchronized versions produce results that differ from the Hy-
peraccurate results by essentially the same amount: 1.02% (at
three significant digits of precision).

• Synchronized vs. Unsynchronized Differences: The results
from the Synchronized and Unsynchronized versions differ
from each other by at most hundredths of percentage points.
This is a very small difference, especially in comparison with
the differences between the Hyperaccurate and Synchronized
results, which are typically two orders of magnitude larger.

• First Parallel vs. Final Check Differences: The reduced num-
ber of dropped bodies that the Final Check version produces
translates into more accurate results, specifically results that are
three to six times closer to the Synchronized result at four pro-
cessors and above.

These facts support the acceptability of the Unsynchronized ver-
sions. The rationale is that, in comparison with the Hyperaccurate
version, the Synchronized and Unsynchronized versions provide
results with essentially identical accuracy. Moreover, the Synchro-
nized and Unsynchronized versions provide approximations that
are typically two orders of magnitude closer to each other than they
are to the more accurate Hyperaccurate results. Even if we use the
loose triangle inequality bound, for the Synchronized version to be
acceptable and the Final Check version unacceptable, it must be
the case that a result that differs from the Hyperaccurate result by
1.02% is acceptable, but a result that differs by 1.032% is not ac-
ceptable. The corresponding numbers for the First Parallel version
are 1.02% and 1.065%.

6.3 Accuracy Over Time
To better understand the effect of the Unsynchronized versions on
the accuracy of the simulation as the number of steps increases,
we recorded ∆S

H , ∆FP
S , and ∆FC

S for each of the 200 steps s of
the simulation. Plotting these points reveals that they form linear
curves characterized by the following equations:

∆S
H(s) = 245731s + 90867

∆FP
S (s) = 10880s + 11883

∆FC
S (s) = 2949.5s + 8731.5

These equations show that the difference between the Hyperaccu-
rate and Synchronized versions grows more than twenty times as
fast as the difference between the Synchronized and Unsynchro-
nized versions as the number of simulation steps increases. Our in-
terpretation of this result is that the Unsynchronized versions will
remain as acceptably accurate as the Synchronized version even for
long simulations with many steps.
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We note that in our simulation, the system is expanding faster
than the ∆s are growing. So even though the ∆s increase as the
simulation executes more steps, the Φs decrease.

7. Related Work
Researchers have invested significant time and effort in obtain-
ing parallel versions of hierarchical N -body simulations, includ-
ing parallel space-subdivision tree construction algorithms [28, 30].
Even though (depending on the parameterization) the force com-
putation phase may consume more than 97% of the total sequential
execution time the tree construction phase can still become the ma-
jor performance bottleneck in the parallel execution [28].

Synchronization is identified as necessary to preserve the cor-
rectness of parallel tree construction algorithms [30], with the syn-
chronization overhead driving the design of an algorithm that first
constructs local trees on each processor, then merges the local trees
to obtain the final tree. Because the local tree construction algo-
rithms execute without synchronization (the merge algorithm must
still synchronize its updates as it builds the final tree) this approach
reduces, but does not eliminate, the synchronization required to
build the tree. The algorithm presented in this paper, in contrast, ex-
ecutes without synchronization and may therefore produce partially
corrupted trees. Our results show that these trees are still acceptable
in the broader context of the N -body simulation.

The QuickStep compiler automatically generates parallel code
for a wide range of loops in both standard imperative and object-
oriented programs [15, 16]. Unlike other parallelizing compilers,
QuickStep is designed to generate parallel programs that may con-
tain data races that change the output of the program. QuickStep
uses training runs to distinguish acceptable data races from unac-
ceptable data races. If the generated parallel program satisfies a
probabilistic accuracy bound, the race is acceptable, otherwise it
is unacceptable. QuickStep eliminates unacceptable races by either
inserting synchronization that eliminates the race, replicating data
to eliminate the race, or by simply generating sequential code for
the loop that contains the data race. Like QuickStep, the research
presented in this paper is designed to produce parallel programs
with data races that acceptably change the output of the program.

The Cilkchess parallel chess program uses concurrently ac-
cessed transposition tables [5]. Standard semantics require syn-
chronization to ensure that the accesses execute atomically. The de-
velopers of Cilkchess determined, however, that the probability of
losing a match because of the synchronization overhead was larger
than the probability of losing a match because of unsynchronized
accesses corrupting the transposition table. They therefore left the
parallel accesses unsynchronized (so that Cilkchess contains data
races) [5]. Like Cilkchess, our parallel tree insertion algorithm im-
proves performance by purposefully eliminating synchronization
and therefore contains acceptable data races.

We are aware of an effort to develop a synchronization-free par-
allel Delauney triangulation algorithm [36]. Like the parallel space-
subdivision tree algorithm presented in this paper, the triangulation
algorithm contained data races that could corrupt the data structure
and data structure repair algorithms designed to repair enough of
the inconsistencies to produce an acceptably consistent final trian-
gulation in spite of the data races. One of the challenges associated
with this research was obtaining and interfacing with a client that
could provide a suitable accuracy metric for evaluating the accept-
ability of the final data structure that the algorithm produced.

The race-and-repair project has developed a synchronization-
free parallel hash table insertion algorithm [32]. Like our parallel
tree construction algorithm, this algorithm may drop inserted en-
tries. An envisioned higher layer in the system recovers from any
errors that the absence of inserted elements may cause.

This paper presents an algorithm that works with clients that
simply use the tree as produced by the algorithm with no higher
layer to deal with dropped bodies (and no need for such a higher
layer). Because we evaluate the algorithm in the context of a com-
plete computation (the Barnes-Hut N -body simulation), we de-
velop an end-to-end accuracy measure and use that measure to
evaluate the overall end-to-end acceptability of the algorithm. This
measure enables us to determine that the relaxed semantics of the
synchronization-free algorithm have acceptable accuracy conse-
quences for this computation.

Chaotic relaxation runs iterative solvers without synchroniza-
tion [2, 4, 31]. Convergence theorems prove that the computation
will still converge even in the presence data races. The performance
impact depends on the specific problem at hand — some converge
faster with chaotic relaxation, others more slowly.

Task skipping [21], early phase termination [22], and loop per-
foration [11, 17, 18, 29, 37] all increase performance by skipping
parts of the computation. All of these techniques may (and typically
do) change the output that the transformed program produces. All
use training runs to characterize the accuracy consequences of ap-
plying the transformation. All accept transformations that produce
acceptably small changes to the output. The algorithm presented in
this paper is conceptually similar in that it may drop inserted bod-
ies (instead of parts of the computation) to acceptably change the
output that the computation produces. It differs in that the mecha-
nism that changes the output is data races, not skipped parts of the
computation.

Data structure repair [6–10] enables systems to recover from
errors that damage the data structures with which that the system
works. The Final Check algorithm presented in this paper contains
a similar data structure repair mechanism that detects and elimi-
nates a certain kind of data structure corruption. In this case the
goal is to recover from the data race that introduced the corruption
and avoid an infinite loop (see Section 5.3).

Cyclic memory allocation [19] eliminates memory leaks by pre-
allocating a fixed-size buffer, then cyclically allocating memory out
of that buffer. It is possible for new memory to overlay previously
allocated memory that is still live. Like the data races in the tree
construction algorithm presented in this paper, one observed effect
is the acceptable deletion of elements of linked data structures.

Acceptability-oriented computing [20] is a set of techniques that
are designed to keep a system operating acceptably in the face of
errors or other anomalies that may perturb the execution of the sys-
tem. One of the key techniques is to do nothing if the consequences
of the errors or anomalies are acceptable. The algorithm presented
in this paper employs a technique (data structure repair) that keeps
the algorithm operating acceptably in the face of data structure cor-
ruption errors that might otherwise cause the program to infinite
loop. It also identifies the data races as having other acceptable
consequences (specifically, dropping inserted bodies) that it does
not try to avoid or eliminate.

It is possible to view the unsynchronized algorithms presented
in this paper as imperfect but acceptable implementations of the
perfect synchronized algorithm. In this view the data races are the
source of the imperfection. Other researchers have demonstrated
that programs are often able to productively tolerate other kinds
of errors [24], for example off by one errors in loop bounds. The
acceptability of our unsynchronized tree construction algorithms
provides additional evidence that software systems can often pro-
ductively tolerate a surprisingly large range of errors.

Jolt [3] implements a technique that recognizes and escapes in-
finite loops. Failure-oblivious computing [23] returns a sequence
of values for out of bounds accesses that is designed to enable a
program to exit an infinite loop that reads beyond the end of an ar-
ray or buffer. These techniques, along with the data structure repair
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technique that eliminates the infinite loop in the Final Check algo-
rithm presented in this paper, highlight the importance of infinite
loop elimination techniques.

8. Conclusion
Since the inception of the field, developers of parallel algorithms
have used synchronization to ensure that their algorithms execute
correctly. In contrast, the basic premise of this paper is that parallel
algorithms, to the extent that they need to contain any synchroniza-
tion at all, need contain only enough synchronization to ensure that
they execute correctly enough to generate an acceptably accurate
result.

We show how this premise works out in practice by develop-
ing a synchronization-free parallel space-subdivision tree construc-
tion algorithm. Even though this algorithm contains data races,
it produces trees that are consistent enough for the Barnes-Hut
N -body simulation to use successfully. Our experimental results
demonstrate the performance benefits and acceptable accuracy con-
sequences of this approach.
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