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Search for resonant production of t �t pairs in 4:8 fb�1 of integrated luminosity
of p �p collisions at

ffiffiffi
s

p ¼1:96 TeV
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We search for resonant production of t�t pairs in 4:8 fb�1 integrated luminosity of p �p collision data atffiffiffi
s

p ¼ 1:96 TeV in the leptonþ jets decay channel, where one top quark decays leptonically and the other

hadronically. A matrix-element reconstruction technique is used; for each event a probability density
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function of the t�t candidate invariant mass is sampled. These probability density functions are used to

construct a likelihood function, whereby the cross section for resonant t�t production is estimated, given a

hypothetical resonance mass and width. The data indicate no evidence of resonant production of t�t pairs.

A benchmark model of leptophobic Z0 ! t�t is excluded with mZ0 < 900 GeV=c2 at 95% confidence level.

DOI: 10.1103/PhysRevD.84.072004 PACS numbers: 13.85.Rm, 14.65.Ha, 14.70.Hp, 14.70.Pw

Many theories of physics beyond the standard model
(SM) predict additional vector bosons (e.g. Z0). These
include (but are not limited to) extended gauge theories
[e.g. SO (10)], Kaluza-Klein states of the gluon or of Z
bosons, axigluons, and topcolor [1–10]. Previous analyses
of Tevatron data have excluded such narrow resonances
with masses less than 725 GeV=c2 [11–14].

In this Letter we describe a search for narrow resonant
states decaying to top-antitop pairs in proton–antiproton
collisions using the CDF II detector at the Tevatron at
Fermilab. We discuss the experimental signature of reso-
nant t�t production and how we are to distinguish it from
standard model t�t production. We describe the reconstruc-
tion technique used in this analysis and the statistical tests
we perform in examining the data for any sign of the
hypothetical resonant production, and we describe the
systematic uncertainties related to this analysis.
Observing no evidence for resonant production of t�t pairs,
we set upper limits on the cross section times branching
ratio for resonant t�t production.

At the Tevatron, the t�t pair-production cross section has
been measured with great precision: �p �p!t�t ¼ 7:70�
0:52 pb [15]. However, this degree of precision leaves
open the possibility that non-SM physics gives rise to a
fraction of the total t�t production.

We search for a heavy vector boson decaying to t�t in the
final state where one top quark decays semileptonically
(t ! ‘�b) and the other hadronically (t ! q �q0b) [16] by
examining the t�t invariant mass spectrum of candidate
events, where the event kinematics have been reconstructed
by applying the SM QCD ‘‘matrix element’’ for t�t produc-
tion and decay [13]. The observed spectrum is then com-
pared to templates—models of signal (i.e., Z0 ! t�t) and
background processes (e.g. SM t�t, W þ jets, WW=WZ) in
an unbinned maximum-likelihood fit. By fitting the data to
these models, we extract upper limits on the Z0 ! t�t cross
section times branching ratio. We consider scenarios where
the Z0 width is 1.2% of the pole mass (this has been the
benchmark scenario for narrow-resonance searches in t�t
enriched samples [6]).

The CDF detector is a general purpose, azimuthally and
forward-backward symmetric multipurpose collider detec-
tor. A detailed description can be found in Ref. [17]; here
we summarize details of detector components important to
this analysis. The transverse momenta (pT) and track pa-
rameters of charged particles are measured by an eight-
layer silicon strip detector [18–20] and a 96-layer drift
chamber (COT) [21], both within a 1.4 T magnetic field.

The COT provides tracking coverage with high efficiency
for j�j< 1 [22]. Electromagnetic [23] and hadronic [24]
calorimeters surround the tracking system. They are seg-
mented in a projective tower geometry and measure the
energies of charged and neutral particles in the central
region (j�j< 1:1). A plug tile calorimeter covers the for-
ward region (1:1< j�j< 3:6). Each calorimeter has an
electromagnetic shower profile detector positioned at the
shower maximum. The calorimeters are surrounded by
muon drift chambers [25]. The central muon detectors
comprise four layers of drift chambers which cover the
region j�j � 0:6. Forward muons, with 0:6< j�j< 1:0,
are detected by an additional four layers of drift chambers.
Gas Čerenkov counters [26] measure the average number
of inelastic p �p collisions per beam-crossing and thereby
determine the beam luminosity.
We select t�t candidates in data corresponding to an

integrated luminosity of 4:8 fb�1 in the leptonþ jets chan-
nel [27] by requiring one isolated charged lepton—an
electron (reconstructed using the central electromagnetic
calorimeter) or a muon (reconstructed with the central or
forward muon detectors).
Primary leptons must have rapidity j�j< 1. Electrons

must have transverse energy ET > 20 GeV and muons
must have transverse momentum pT > 20 GeV=c. Four
or more central jets (j�j< 2) with ET > 20 GeV are also
required. One of these jets must have a secondary vertex
(SECVTX) displaced from the primary event vertex such
that it is ‘‘tagged’’ by the SECVTX algorithm [28] as being
consistent with the decay of a long-lived b-hadron. Jets
with b-tags are restricted to j�j< 1. Large missing trans-
verse energy [29] is also required, 6ET > 20 GeV. Jets
corrected [30] for multiple p �p interactions in the event,
nonuniformities in the calorimeter response along � and
any nonlinearity and energy loss in the uninstrumented
regions of the calorimeters. The 6ET is corrected for the
primary vertex location and for any high-pT muons in the
event.
The contribution of non-t�t backgrounds satisfying this

selection has been derived in precision measurements of
the t�t production cross section [27], these are tabulated in
Table I. Also shown is the expected SM t�t content, given
the event selection. However, in this analysis the SM t�t
content is estimated as the difference between the number
of observed events and the estimate of resonant t�t events
plus non-t�t background events. Table II indicates the num-
ber of events observed in each of the subsamples consid-
ered in this analysis.
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For each candidate event, we apply the t�t hypothesis—the
observed event kinematics are mapped to the parton level
using the information available in the SM QCD ‘‘matrix
element’’ for t�t production and decay [13]. By constraining
the event kinematics to the hypothetical matrix element, we
can reconstruct with enhanced precision any kinematic
quantity which can be expressed in terms of the parton
momenta. In this analysis, we reconstruct the t�t invariant
mass probability density function (pdf) for each event.

The probability for t�t production and decay, given p, the
four-momenta of the decay products of the t�t system, is

�ðpjmtÞ ¼ 1

�ðmtÞ
Z

dzadzbfkðzaÞflðzbÞd�klðpjmt; za; zbÞ;
(1)

where fkðzaÞ and flðzbÞ are the parton density functions
for incoming gluons or quarks with flavor k and l,
with z-components of parton momenta, za and zb.
d�klðpjmt; za; zbÞ is the differential cross section—it is
proportional to the squared SM matrix element for t�t
production and decay. In this analysis, we fix the top-quark
mass, mt ¼ 172:5 GeV=c2.

Any quantity which can be expressed as a function of the
momenta of the top decay products can be estimated as a
probability density. We consider the invariant mass of the
top-antitop pair, and derive the following pdf of x, the
reconstructed t�t invariant mass:

�ðxÞ �
Z X

k

�ðpkjmtÞWðjjpkÞ�ðx�MðpkÞÞdpk: (2)

MðpkÞ is the invariant mass of the top-antitop pair, given
parton configuration pk, andWðjjpkÞ is a transfer function

which maps the observed jets j to the parton level. The sum
is over the number of permutations, or jet-parton assign-
ments, possible given the observed event.
The transfer functions WðjjpkÞ used in Eq. (2) are

estimates of the primary parton energy corresponding to
the observed jet ET. These estimates are derived from
Monte Carlo simulation, where jets are matched to partons

within �R � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��þ ��

p
< 0:15. No other jets or partons

may be within �R< 0:6 of the jet/parton match. We
separate the response function into 10 GeV jet-energy
bins and into five bins of jet pseudorapidity.
The matrix-element calculation produces a probability

density function of the reconstructed t�t invariant mass for
each event. We use this sampled pdf as the observable in a
likelihood calculation. The probability for an event in
sample i is a function of the signal fraction fsig in the

sample:

PiðfsigÞ ¼ fsigPsig;i þ ð1� fsigÞPbg;i: (3)

Here we regard the hypothetical Z0 ! t�t component as
signal and SM t�t and non-t�t processes as background.
The cross section � for Z0 ! t�t and the signal fraction
are proportional,

fsig ¼ 1

n
�
XNs

i¼1

LiAi (4)

where n is the total number of events observed, Ns ¼ 3�
2� 2 ¼ 12 is the number of samples [31], and Li and Ai

are, respectively, the integrated luminosity and absolute
signal acceptance. The signal and background probabilities
Psig;i and Pbg;i are, according to their templates,

Psig;i ¼
Z

Tsig;iðxÞ�ðxÞdx; (5)

and

Pbg;i ¼
Z

Tbg;iðxÞ�ðxÞdx: (6)

These templates, Tsig;i and Tbg;i, are the summed event-by-

event pdfs from each of the model components (e.g. the
Monte Carlo models of SM t�t, W þ jets, etc.). The tem-
plates and the per-event pdfs are normalized to unit area:

Tc;iðxÞ ¼ 1

Nc

XNc

j¼1

�jðxÞ (7)

Z
�ðxÞdx � 1 (8)

where Tc;i is the template for component c in sample

i and Nc is the total number of events used to model
component c.
Templates for each model component are constructed by

summing the per-event probability densities. In Fig. 1 we
show the templates for Z0 ! t�t at several values of the Z0

TABLE II. Number of events observed in each subsample for
data corresponding to an integrated luminosity of 4:8 fb�1.

Central e� Central �� Forward ��

4 jets, 1 tag 480 221 131

4 jets, � 2 tags 110 33 21

� 5 jets, 1 tag 164 81 41

� 5 jets, � 2 tags 47 21 16

TABLE I. Estimate of sample composition in terms of signal
and background.

Component 4 jets � 5 jets

non-W 46:1� 35:7 15:7� 12:2
Zþ light flavor 6:4� 0:5 1:6� 0:1
W þ light flavor 32:9� 8:5 7:4� 3:1
Wb �b 51:5� 12:6 12:4� 3:7
Wc �c 27:7� 6:6 7:3� 2:1
Wcj 14:0� 3:3 3:0� 0:9
single top 8:9� 0:4 1:4� 0:0
diboson 9:1� 0:6 2:4� 0:1
total non-t�t 196:6� 39:5 51:2� 13:3
SM t�t 667:1� 61:8 225:2� 21:0
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pole mass, reconstructed according to the procedure de-
scribed above. Note that the mass peak is generally promi-
nent. For the samples where the Z0 pole mass is
1000 GeV=c2 and above, fewer Z0 particles are produced
on shell. The off shell Z0 is produced with mass according
to the energy available from the parton density functions,
but decays to a real t�t pair. The invariant mass spectrum for
on and off shell Z0 ! t�t depends on the Z0 pole mass; we
are able to distinguish the Z0 mass, given the observed
reconstructed t�t mass spectrum, even in cases where the Z0
mass is very large and the Z0 is largely produced off shell.

To model the background components ALPGEN [32]
version 2.10 with PYTHIA version 6.2.16 [33] parton show-
ering is used for W þ heavy flavor and W þ jets. The
shape of the t�t invariant mass at next to leading order is
softer than the predictions of leading order Monte Carlo
codes. To correct for this effect, PYTHIA weighted at the
generator level by MCFM [34] (version 5.8) is used to model
the SM t�t component. The QCD ‘‘fake’’ component (where
a jet is misreconstructed as an electron) is modeled in data,
where jets are selected which are electron—like in their
identification variables. Compared to the signal templates
(Fig. 1), we notice excellent separation between back-
ground and signal shapes.

We write the likelihood simply as the product of the per-
event probabilities,

Lð�Þ ¼ Y
i;j

Pið�Þ � Gð�jj ��; �jÞ (9)

where G is a Gaussian distribution, �j is nuisance parame-

ter j with expectation ��j and uncertainty �j. We include

among the nuisance parameters each lepton category ac-
ceptance and its error, as well as the lepton trigger effi-
ciencies. SECVTX tagging acceptance is modeled by
applying a scale factor to account for differences between
data and simulation. This scale factor appears as another
nuisance parameter. We integrate over the nuisance pa-
rameters to incorporate these systematic effects into the
likelihood.

The measurement is affected by uncertainties inherent
to our model of the background: the amount of initial-
and final-state radiation and the uncertainty on the jet
energy scale [30] of the calorimeter contribute most sig-
nificantly, while systematic uncertainties due to parton
distribution function and color-reconnection effects
[35,36] are negligible. While the value of the top-quark
mass determines the value at which the t�t invariant mass
spectrum rises [10], the shape of the tail of the mt�t spec-
trum is insensitive to variation of the top mass within its
uncertainty. This analysis is sensitive specifically to varia-
tions of the tail of the mt�t spectrum—uncertainty on the
value of the top-quark mass is not a significant source of
systematic error.
We treat systematic uncertainties due to acceptance

effects as nuisance parameters [cf. Eq. (9)], while we
convolve the likelihood function to include systematic
effects due to background model uncertainties.
Background model systematic uncertainties are esti-

mated by evaluating ensemble tests where the experimen-
tal circumstances are reproduced and the parameter in
question (e.g. initial- or final-state radiation, estimates of
background shape or composition) is varied within its
error. The resulting distribution of the maximum likelihood
estimate of signal cross section form the basis for these
estimates of systematic uncertainty. We take the difference
in the means of theþ1� and�1� distributions as the error
due to the underlying uncertainty at each mass value of the
hypothetical resonances considered. The final tabulation of
estimated systematic uncertainties for this analysis is given
in Table III.
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FIG. 1 (color). Signal templates—summed over b-tag multi-
plicity, jet multiplicity and primary lepton type.

TABLE III. Total background model systematic uncertainties
at each of the mass points considered. These values appear as the
width of the Gaussian convolved with the likelihood in Eq. (10).

Z0 pole

mass [GeV=c2] �� [pb]

450 0.210

500 0.183

550 0.155

600 0.153

650 0.087

700 0.058

750 0.044

800 0.030

850 0.025

900 0.020

950 0.012

1000 0.014

1100 0.016

1200 0.011

1300 0.029

1400 0.036

1500 0.065
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These errors are assumed to be Gaussian in nature. The
likelihood of Eq. (9) is convolved with a Gaussian distri-
bution whose width is equal to the quadrature sum of the
individual systematic uncertainties:

L0ð�Þ ¼
Z 1

0
Gð�;�0;��ÞLð�0Þd�0: (10)

The distribution of reconstructed t�t invariant mass ob-
served in the data is shown in Fig. 2. This histogram shows
the integrated probability density in each t�t invariant mass
bin. For each event we observe a distribution; as a conse-
quence any single event can contribute probability density
to more than one bin. The data show no indication of
resonant t�t production. Moreover, the distribution observed
agrees very well with the background model over 5 orders
of magnitude.

At each value of the Z0 pole mass considered we calcu-
late the Bayesian 95% confidence level (C.L.) upper limit
on the value of the cross section times branching ratio for
Z0 production and decay to t�t. This upper limit is the value
of cross section times branching ratio which covers 95% of
the area under the convolved likelihood, integrating from
zero cross section, where a flat prior is assumed.

Figure 3 shows the expected and observed limits on the
Z0 cross section times branching ratio at each mass point
considered. These data are also given in tabular form in
Table IV. The green band shows the �1� expectation for
the null hypothesis, the yellow band the �2� expectation.
Also included is a curve indicating the theoretical cross
section for a leptophobic Z0 [6].

We have searched for narrow resonant states decaying to
top-antitop pairs in a sample corresponding to an inte-
grated luminosity of 4:8 fb�1 of CDF II data. Events
were selected in the leptonþ � 4 jets topology with at
least one jet tagged as coming from a b quark.
Monte Carlo samples were used to model the appearance
of narrow resonant states decaying to t�t. A matrix-element
reconstruction method was applied, and for each event
a probability density function of the reconstructed t�t

invariant mass was sampled. This formed the basis for a
likelihood fit to extract the cross section times branching
ratio for narrow resonance production, where non-t�t back-
ground fractions are constrained according to their best
estimates, and SM and resonant t�t components may vary
according to the data. Systematic uncertainties such as
those arising from the error on the jet energy scale, or
uncertainties on parton distribution functions were incor-
porated by convolving the likelihood function with a
Gaussian with width equal to the estimated uncertainty
on the cross section times branching ratio due to the under-
lying uncertainty. Systematic uncertainties arising from
acceptance affects such as trigger efficiencies or scale
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FIG. 3 (color). Expected and observed 95% C.L. upper limit
for �ðp �p ! Z0Þ � BRðZ0 ! t�tÞ for L ¼ 4:8 fb�1 of integrated
luminosity as a function of reconstructed t�t invariant mass. The
solid line indicates the observed limit. The dashed line indicates
the theoretical cross section for a leptophobic Z0 [6].

TABLE IV. Expected and observed 95% C.L. limits on the
cross section times branching ratio for narrow resonance pro-
duction.

mZ0 , ½GeV=c2� Expected limit [pb] Observed limit [pb]

450 0.954 1.05

500 0.400 0.49

550 0.400 0.46

600 0.371 0.40

650 0.224 0.26

700 0.159 0.20

750 0.123 0.15

800 0.092 0.11

850 0.080 0.10

900 0.068 0.09

950 0.069 0.08

1000 0.069 0.07

1100 0.069 0.07

1200 0.070 0.08

1300 0.104 0.13

1400 0.134 0.18

1500 0.197 0.24
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FIG. 2. The histogram of total probability density for the 1366
t�t candidate events observed in L ¼ 4:8 fb�1.
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factors are treated as nuisance parameters in the likelihood
function. The benchmark model of a leptophobic Z0 [6] is
ruled out at 95% C.L. for Z0 masses below 900 GeV=c2.
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