MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.L'T.R. No. 753 May 1985

KBEmacs:
A Step Toward the Programmer’s Apprentice

by

Richard C. Waters

ABSTRACT

The Knowledge-Based Editor in Emacs (KBEmacs) is the current demonstration system
implemented as part of the Programmer’s Apprentice project. KBEmacs is capable of acting
as a semi-cxpert assistant {0 a person who is writing a-program — taking over some parts of
the programming task. Using KBEmacs, it is possible to construct a program by issuing a
series of high level commands. 'This serics of commands can be as much as-an order of
magnitude shorter than the program it describes.

KBFEmacs is capable of operating on Ada and Lisp programs of realistic size and
complexity. Although KBlmacs is neither fast enough nor robust enough to be considered a
truc prototype, both of these problems could be overcome if the system were to be

reimplemented.

Copyright (¢) Massachusetts Institute of Technology, 1985

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for the laboratery’s artificial intclligence rescarch has been provided in part by the
Advanced Rescarch Projects Agency of the Department of Defense under Office of Naval Research contract
NO00O14-80-C-0503, in part by National Science Foundation grants MCS-7912179 and MCS-8117633, and in
part by the IBM Corporation,

The views and conclusions contained in this document are those of the author, and should not be interpreted
as representing the policics, cither expressed or implied, of the Department of Defeise, of the National
Science Foundation, or of the IBM Corporation.

This empty page was substituted for a
blank page in the original document.

Acknowledgments

1 would particularly like to acknowledge the assistance of my partner Charles Rich
who has made important contributions to every aspect of my work for a decade.

KBEmacs is the result of a group effort which began with the original
Programmer’s Apprentice proposal of Charles Rich and Howard Shrobe. Over the
years, many other people have contributed to that effort. Gerald Sussman has been an
inspiration and mentor for us all. Kent Pitman implemented the user interface for
KBEmacs and assisted with many other aspects of the system. David Cyphers
developed the initial program documentation facilities. Daniel Brotsky, David
Chapman, Roger Duffey, Gregory Faust, Daniel Shapiro, Peter Sterpe, and Linda
Zclinka contributed ideas to KBEmacs while working on related parts of the
Programmer’s Apprentice project. Special thanks are due Roger Racine (of the C.S.
Draper Laboratory) for his assistance with regard to Ada and Crisse Ciro for her help
with the illustrations.

Contents

I-Introduction e 1
An Example of Using KBEmacs 4
Key Alldecas Underlying KBEmacs oo v v i o i it ot 6
Overview of KBEmMacs 0 it i i 13
I-TispScenario i i e e e 17
LispClicheso i i i e e e e 17
Top-Down Implementation. 23
Bottom-Up Implementation i 42
Modification and Documentation oo 58
DefiningaCliche e 64
IT-AdaSeenario0 e e e 75
AdaCliches s e e e e e e 75
Defining Data Suctures o v v i i it e e e 85
Constraint Propagationt 102
AlargeProgram e 118
IV-Evaluation e e 137
KBEmacs as a Program ConstructionTool 137
KBEmacsasa Step TowardthePA o ... 139
The Next Demonstration System as a Further Step Toward the PA 143
Related Work o i 146
V-Implementation it e e e 155
CHehes . . . e e e e e 156
PlanFormalism i 163
ANAlYZET . . . e e e e e e e e e e e 177
Coder e e e 181
Knowledge-Based Editor i i 184
Interface e e e e 189
Going From a Demonstration Toa Prototype 192
VI-Future Directions i e 197
Applications of the Current Techonology oo oo oo 197
Attacking Other Parts of the Programming Process. 200
APPendiceS e e e e e 205
A-Clichelibrary i i e e e 205
B-SupportingFunctions e, 223

References . . o o v o e e e e 233

This empty page was substituted for a
blank page in the original document.

I - Introduction

The long term goal of the Programmer’s Apprentice project is to develop a theory of programming
(i.c.. how cxpert programmers understand. design, implement, test, verify, modify. and document programs)
and to automate the programming process. Recognizing that fully automatic programming is very far off, the
current rescarch is directed toward the intermediate goal of developing an intelligent computer assistant for
programmers called the Programmer's Apprentice (PA). The intention is for the PA to act as a junior partner
and critic, keeping track of details and assisting with the casy parts of the programming process while the
programmer focuses on the hard parts of the process.

The Knowledge-Based Editor in Emacs (K BEmacs) is the current demonstration system implemented as
part of the PA project. KBEmacs falls short of the PA because it focuses only on the task of program
construction and because the depth of its understanding of a program is quite limited. However, KBEmacs
demonstrates several of the capabilities of the PA and is a useful tool in its own right. The principal benefit of
KBEmacs is that it makes it possible to construct a program rapidly and reliably by combining algorithmic
fragments stored in a library.

Goals of the PA Project

The PA project is pursuing two goals in parallel. On the one hand, the project uses programming as a
domain in which to investigatc human problem solving behavior. On the other hand, the project sceks to
improve programmer productivity by developing programming tools based on Al techniques.

Dramatic improvements in programmer productivity have been frustratingly hard to achieve. One reason
for this is that programming is a complex task which consists of a varicty of subtasks (e.g., requircments
analysis, design, implementation, testing, and maintenance). Since cach of these subtasks is a significant part
of the process as a whole, it is impossible to get a dramatic increasc in productivity without addressing at least
most of these subtasks. '

Looking back over the history of programming, only one development stands out as truly dramatic — the
introduction of high level languages. High level languages have had a positive impact on almost cvery phase
of the programming process by representing programs in a more concise and understandable way. They do
this by delegating a variety of low level programming decisions (c.g. register allocation) to a compiler.

Using Al techniques, it may soon be possible to get a second dramatic improvement in programines
productivity by developing programming tools which can automatically perform middle level programming
decisions (c.g., data structure sclection). Al techniques make it possible to represent a great deal of
knowledge about programming in gencral and then usc this knowledge to understand particular programs.
As has been demonstrated in other areas where Al techniques have been applied, this approach opens the
door to intelligent behavior,

Although Al techniques hold considerable promise as the basis for advanced programming tools, a great
deal more work has to be done. The PA project seeks both to develop the additional techniques which will be
necded and to build demonstration systems which illustrate the potential for Al-basced tools.

Introduction

o

History of the Programmer’s Apprentice Project

Figure 1 shows how KBEmacs fits into the PA project as a whole. The project consists of two principal
lines of rescarch: foundations and demonstrations. ‘The first line secks to develop new representation and
reasoning techniques which can serve as the foundation for the PA. 'The sccond line of rescarch sceks to
construct demonstration systems based on these techniques and to experiment with how the PA might assist a
programmer.

Besides laying out the basic concept of the PA, the most important contribution of the initial phase of the
PA project (up to 1976) was the design of the plan formalism for representing knowledge about particular
programs and about programming in gencral (sec [Rich & Shrobe 76,78] and [Waters 76]). The plan
formalism serves as the "mental language™ of KBEmacs.

[72]

2

o NEXT

.—

?E‘ KBE ———> KBEMACS > eV ONSTRATION

7 SYSTEM

:

[« /

w a——

s N

g PLAN FORMALISM PLAN CALGCULUS >

é /

3| GENERAL PURPOSE AUTOMATED DEDUCTION >

[T : o
1973 1976 1979 1982 1985

Figure 1: History of the Programimer’s Apprentice project.

The first demonstration system constructed as part of the PA project was the Knowledge-Based Editor
(KBE). KBE (sce [Watcrs 82al) was a program cditor which made it possible to operate dircctly on the
algorithmic structure of a program rather than on its textual or syntactic structure. Like KBEmacs, the power
of KBE came principaily from the ability to construct a program out of algorithmic fragments.

The topic of this report is KBEmacs, the second demonstration system. As the name Knowledge-Based
Editor in Emacs is intended to imply, the most obvious difference between KBEmacs and KBE is that
KBEmacs is tightly integrated with a standard Emacs-style [Stallman 81] program editor. The integration
makes it possible for the programmer to freely intermix knowledge-based program editing with text-based
and syntax-bascd program cditing. As discussed in Chapter 1V, K BEmacs extends KBE in a number of other
ways, coming a step closer to the PA. In particular, it increases the range of algorithmic fragments which can
be manipulated; it allows a programmer to define new fragments; it supports the language Ada in addition to
Lisp: and it can assist in the construction of program documentation.

During the implementation of KBE and then KBEmacs, work -has continued in parallel on the
fundamental underpinnings of the PA. 'I'he central part of this work has been the refinement and extension
of the plan formalism. ‘This has resulted in the development of the plan caleulus|Rich 80,81] which extends
the plan formalism by providing a firmer semantic basis and by increasing the range of information about
programs and programming which can be represented. Work has also proceeded on the development of
general purpose automated deduction methods which are appropriate for use in the domain of plans
(sce [Shrobe 79] and [Rich 82.85)).

"There has been a significant amount of interaction between the work on foundations and the work on
demonstrations. Scveral of the improvements in plans have been incorporated into demonstration systems
and cxperience with the demonstration systems has motivated several of the improvements in plans.
However, as highlighted by Figure 1. the two lines of rescarch have been largely separate. In particular, the
magnitude of the implementation required has forced there to be a large delay between the time when new
fundamental concepts arc developed and the time when they are incorporated into a demonstration system.
Impiementation has already begun on a new demonstration system which will incorporate all of the
fundamental ideas developed to date.

Gutline of This Report

'This report focuses almost exclusively on KBEmacs. Other parts of the PA project arc mentioned only
when they are essential for giving a full understanding of KBEmacs. As a result, this report is not intended to
be a summary of the project as a whole,

"The heart of this report is a pair of scenarios showing KBEmacs in action. Chapter II shows the system
being used to construct Lisp programs. Chapter 111 shows the system being used to construct Ada programs.
The scenarios show the output of an actual running system. However, as will be discussed below, there are
several reasons why the current system is merely a demonstration system and cannot be considered to be a
truc prototype. Given this, the scenarios arc perhaps best looked at as a sct of requirements for aspects of the
PA.

Chapter [V evaluates KBEmacs from three points of view: as a stand alone programming tool, as a step
toward the PA, and in relation to other, similar>pr0gramming tools. Chapter V explains how KBEmacs is
implemented. Chapter VI discusscs the future directions of the PA project. The remainder of this chapter
presents a bricf example of using KBEmacs, discusses the basic Al concepts behind the system, and then
summarizes the capabilities of the system.

An Example of Using KBEmacs

In order to give a fecling for the program construction capabilities of KBEmacs. this section presents a
condensed cxcerpt from the scenario in Chapter [I1. In that chapter a programmer uses KBEmacs to
implement several Ada [Ada 83] programs in the domain of business data processing. It is assumed that there
is a data base which contains information about various machines (referred to as units) sold by a company and
about the repairs performed on cach of these units. In the middle of Chapter HI the programmer constructs a
program called UNIT_REPAIR_REPORT which prints out a report of all of the repairs performed on a given
unit. The following dircctions might be given to a human assistant who was asked to write this program.

Define a simple report program UNIT_REPAIR_REPORT. Enumerate the chain of
repairs associated with a unit record, printing each one. Query the user for
the key (UNIT_KEY) of the unit record to start from. Print the title
("Report of Repairs on Unit " & UNIT_KEY). Do not print a summary.

A key feature of these directions is that they refer to a significant amount of knowledge that the assistant is
assumed to possess. First, they refer to a number of standard programming algorithms — i.c., "simple
report”, "enumerating the records in a chain”, "querying the user for a key". Sccond, they assume that the
assistant understands the structure of the data base of units and repairs. Another feature of the dircctions is
that, given that the assistant has a precise understanding of the algorithms to be used and of the data base,
little is left to the assistant’s imagination. Essentially every detail of the algorithm is spelled out, including the
exact Ada code to usc when printing the title.

As discussed in Chapter 111, the following set of commands can be used to construct the program
UNIT_REPAIR_REPORT using KBEmacs. The Ada program which results from these commands is shown on
tlie next page.

Define a simple_report procedure UNIT_REPAIR_REPCRT.

Fi11 the enumerator with a chain_enumeration of UNITS and REPAIRS.
Fi11 the main_file_key with a query_user_for_key of UNITS.

Fi11 the title with ("Report of Repairs on Unit " & UNIT_KEY).
Remove the summary.

A key feature of these commands is that they refer to a number of standard algorithms known to
KBEmacs — i.c., "simple_rcport”, "chain_cnumecration”, and "query_user_for_key". In addition, they
assume an understanding of the structurc of the data basce. Each of the "F 111" commands specifies how to fill
in a part of the simple_report algorithm.

Without discussing cither the commands or the program produced in any detail, two important
obscrvations can be made. First, the commands used arc very similar to the hypothetical directions for a
human assistant. Sccond, a sct of 5 commands produces a 56 line program. (The program would be cven
longer if it did not make extensive usc of data declarations and functions defined in the packages FUNCTIONS
and MAINTENANCE_FILES.)

"The KBEmacs commands and the hypothetical directions differ in grammatical form, but not in semantic
content. This is not surprising in light of the fact that the hypothesized commands were in actuality created
by restating the knowledge-based commands in more free flowing English.

The purpose of this translation was to demonstrate that although the KBEmacs commands may be
syntactically awkward, they are not semantically awkward. The commands are neither redundant nor overly
detailed. They specify only the basic design decisions which underly the program. There is no reason to
believe that any automatic system (or for that matter a person) could be told how to implement the program
UNIT_REPAIR_REPORT without being told at feast most of the information in the commands shown.

An Example of Using KBEmacs

with CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
procedure UNIT_REPAIR_REPORT is
use DEFECT_IO, REPAIR_IQ, UNIT_IO, INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DEFECT: DEFECT_TYPE;
REPAIR: REPAIR_TYPE;
REPAIR_INDEX: REPAIR_INDEX_TYPE;
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..33);
UNIT: UNIT_TYPE;
UNIT_KEY: UNIT_KEY_TYPE;
procedure CLEAN_UP is
begin
SET_OUTPUT(STANDARD_QUTPUT):
CLOSE{(DEFECTS); CLOSE(REPAIRS); CLOSE(UNITS); CLOSE(REPORT);
exception
when STATUS_ERROR => return;
end CLEAN_UP:
begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME): OPEN(REPAIRS, IN_FILE, REPAIRS_NAME);
OPEN(UNITS, IN_FILE, UNITS_NAME); CREATE(REPORT, OUT_FILE, "report.txt");
loop
begin
NEW_LINE; PUT("Enter UNIT Key: "}: GET(UNIT_KEY);
READ(UNITS, UNIT, UNIT_KEY);

exit;
exception
when END_ERROR => PUT("Invalid UNIT Key"); NEW_LINE;
end;
end loop;
TITLE := "Report of Repairs on Unit " & UNIT_KEY;

SET_OUTPUT(REPORT);
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE);
NEW_LINE(2); SET_COL(13); PUT(TITLE); NEW_LINE(80);
READ(UNITS, UNIT, UNIT_KEY);
REPAIR_INDEX := UNIT.REPAIR;
while not NULL_INDEX{REPAIR_INDEX) loop
READ(REPAIRS, REPAIR, REPAIR_INDEX);
if LINE > 64 then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13): PUT(TITLE); SET_COL(61): PUT(CURRENT_DATE); NEW_LINE(2):
PUT(" Date Defect Description/Comment”); NEW_LINE(2);
end if;
READ{DEFECTS, DEFECT, REPAIR.DEFECT);
PUT(FORMAT_DATE(REPAIR.DATE)); SET_COL(13); PUT(REPAIR.DEFECT);
SET_COL{20); PUT(DEFECT.NAME); NEW_LINE;
SET_COL(22); PUT(REPAIR.COMMENT); NEW_LINE;
REPAIR_INDEX := REPAIR.NEXT;
end loop;
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAMF_ERROR | STATUS_ERROR =>
CLEAN_UP: PUT("Data Base Inconsisteat");
when others => CLEAN_UP; raise;
end UNIT_REPAIR_REPORT;

6 Introduction

The leverage that KBEmacs applics to the program construction task is illustrated by the order of
magnitude difference between the size of the set of commands and the size of the program. A given
programmer seems to be able to produce more or less a constant number of lines of code per day independent
of the programming language being used. As a result, there is reason to believe that the order of magnitude
size reduction provided by the KBEmacs commands would transiate into an order of magnitude reduction in
the time required to construct the program. It should be noted that since program construction is only a small
part (around 10 percent) of the programming life cycle, this does not translate into an order of magnitude
savings in the life cycle as a whole.

Another important advantage of KBEmacs is that using cliches enhances the reliability of the programs
produced. Since cliches are intended to be used many times, it is cconomically justifiable to lavish a great
deal of time on them in order to cnsure that they are general purpose and bug free. This reliability is
inherited by the programs which use the cliches. When using an ordinary program cditor, programmers
typically make two kinds of errors: picking the wrong algorithms to use and incorrectly instantiating these
algorithms (i.c., combining the algorithms together and rendering them as appropriate program code).
K BEmacs climinatcs the second kind of error.

Key Al Ideas Underlying KBEmacs

Three basic Al ideas — the assistant approach, cliches, and plans — underlie the PA project as a whole
and K BEmacs in particular. These ideas define the approach taken and arc the basis for the capabilities of the
system. A fourth idca — general purpose automated deduction — is an important aspect of the project as a
whole, but is not used by KBEmacs.

The Assistant Approach

When it is not possibic to construct a fully automatic systemn for a task, it is nevertheless often possible to
construct a system which can assist an cexpert in the task. In addition to being pragmatically uscful, the
assistant approach can lead to important insights into how to construct a fully automatic system.

Figure 2 shows a programmer and an assistant interacting with a programming cnvironment. Though
presumably less knowledgeable, the assistant. interacts with the tools in the environment (c.g., cditors,
compilers, debuggers) in the same way as the programmer and is capable of helping the programmer do what
needs to be done. It is assumed that the programmer will not be able to delegate all of the work which needs
to be done to the assistant and therefore will have to interact with the programming environment dircctly
from time to time in order to do things which the assistant is not capable of doing.

The key issuc in using an assistant cffectively is division of labor. Since the programmer is more capable,
the programmer will have to make the hard decisions about what should be done and what algorithms should
be used. However. much of programming is quite mundane and can easily be done by an assistant. The key
to cooperation between the programmer and the assistant is cffective two-way communication — whose key
in turn is shared knowledge. Tt would be impossibly tedious for the programmer to explain cach decision to
the assistant from first principles. Rather, the programmer nceds to be able to rely on a body of
intermediate-level shared knowledge in order to communicate decisions casily.

The discussion in the last two paragraphs applics cqually well to human assistants and automated
assistants. K BEmacs is intended to interact with a programmer in the same way that a human assistant might,
The long range goal of the PA is to create a "chicl programmer tcam" wherein the programmer is the chief
and the PA is the team.

Key Al ldcas Underlying K BEmacs 7

PROGRAMMING ENVIRONMENT

DEBUGGER

COMPILER

EDITOR

3 ASSISTANT

PROGRAMMER

SHARED
KNOWLEDGE

Figure 2: A programming assistant.

An important benefit of the assistant approach is that it is non-intrusive in nature. The assistant is
available for the programmer to use, but the programmer is not forced to use it. Note that this contrasts
sharply, for example, with program gencrators which completely take over large parts of the programming
task and do not allow the programmer to have any control over them. A key goal of KBEmacs is to provide
assistance to the programmer without preventing the programmer from doing simple things in the ordinary
way. The intent is for the programmer to use standard programming tools whenever that makes things easy
and to use KBEinacs only when doing so delivers real benefits.

A key part of the assistant approach as described above is the assumption that the assistant is significantly
less knowledgeable than the programmer. There are situations where onc might want an assistant system
which was more knowledgeable than the programmer (e.g., a system which assists end users or ncophyte
programmers). However, KBEmacs does not attack these kinds of problems. The goal of KBEmacs is to
make expert programmers supcr-productive rather than to make bad programmers good.

8 Introduction

Cliches

The term cliche is used in this report to refer to a standard method for dealing with a task — a lemma or
partial solution. In normal usage, the word cliche has a pejorative sound which connotes overuse and lack of
creativity. However, it is not practical to be creative all of the time. For example, when implementing a
program, it is usually better to construct a reasonable program rapidly, than to construct a perfect program
slowly.

A cliche consists of a set of roles embedded in an underlying matrix. 'The roles represent parts of the
cliche which vary from onc usc of the cliche to the next but which have well defined purposes. The matrix
specifies how the roles interact in order to achicve the goal of the cliche asa whole.

As an example of a cliche in the domain of programming, consider scarching a onc dimensional structure.
One way to do this is to use the cliche sequential-search. "Ihis cliche enumerates the clements of a structure
one at a time, tests cach clement to see if it satisfies the goal of the scarch, and returns the first clement which
passes the test. If no element passes the test, then a special value signifying the failure of the scarch is
returned.

The cliche sequential-search has three roles: the structure to be scarched, the enumerator to use when
scarching the structure, and the test which defines the goal of the scarch. The matrix of the cliche specifies
several different kinds of information. First, it specifies picces of fixed computation which do not vary form
one use of the cliche to the next. A simple example of this is the special valuc signifying failurc in the cliche
sequential-scarch. Most cliches have fixed computation which is more complex than mere constants.

Sccond, the matrix specifics the control flow and data flow which conncct the roles with cach other and
with the fixed computation. For example, data flow connects the output of the enumerator with the input of
the test and control flow specifics that the first time the test succeeds, the search should be terminated. Third,
the matrix specifics various constraints on the roles (e.g. the constraint that the enumcrator must be

compatible with the data type of the structure to be scarched).

When a cliche is used, it is instantiated by filling in the roles with computations which are appropnatc to
the task at hand. This creates an instance of the cliche which is specialized to the task. For example, in order
to use the cliche sequential-search to find the first negative clement of a vector of integers, the vector would
be used as the structure to be searched, the enumerator would be filled with computation which enumerates a
vector, and the test would be filled with a test for negativity.

Given a particular domain, cliches provide a vocabulary of rclevant intermediate and high level concepts.
Having such a vocabulary is essential for effective reasoning and communication in the context of the domain.
It is important to note that this is just as important for human thought as it is for machine-bascd thought.

Both men and machines are limited in the complexity of the lines of reasoning they can develop and
understand. In order to deal with more complex lines of reasoning, intermediate level vocabulary must be
introduced which summarizes parts of the line of reasoning. Once this intermediate vocabulary is fully
understood. it can be used to express the full line of rcasoning in a sufficiently straightforward way.

Men and machines are similarly limited in the complexity of the descriptions they can communicate. Just
as it is in general never practical to reason about something from first principles, it is in general never practical
to describe something in full detail from first principles. Effective communication depends on the shared
knowledge of an appropriate vocabulary between speaker and hearer.

Key Al Ideas Underlying KBEmacs 9

An essential part of the cliche concept is reuse. Once something has been thought out (or communicated)
and given a name, then it can be reused as a component in future thinking (communication). There is an
overhead in that something must be thought out very carcfully in order for it to serve as a truly rcusable
component. However, if successful, this effort can be amortized over many instances of reusc.

A corollary of the cliche idea is that a library of cliches is often the most important part of an Al system.
In KBEmacs, a large portion of the knowledge which is shared between man and machine is in the form of a
library of algorithmic cliches. ‘This library can be viewed as being a machine understandable definition of the
vocabulary programmers use when talking about programs.

Plans

Sclecting an appropriate knowledge representation is the key to applying Al to any task. As a practical
matter, the only way to perform a complex (as opposed to merely large) operation is to find a knowledge
representation in which the operation can be performed in a relatively straightforward way. To this end,
many Al systems make use of the idea of a plan — a representation which is abstract in that it deliberately
ignores some aspects of a problem in order to make it casicr to reason about the remaining aspects of the
problem.

To be uscful, a knowledge representation must express all of the information relevant to the problem at
hand. The plan formalism used by KBEmacs is designed to represent two basic kinds of information: the
structure of particular programs and knowledge about cliches. The structure of a program is expressed
essentially as a flow chart where data flow as well as control flow is represented by explicit arcs. In order to
represent cliches, added support is provided for representing roles and constraints.

Equally important, a knowledge representation must facilitate the operations to be performed. The two
key operations performed by KBIimacs are simple reasoning about programs (¢.g., determining the souice of
a data flow) and combining cliches together to create programs. The plan formalism is specifically designed
to support these operations. For example, the fact that data flow is expressed by explicit arcs makes it easy to
determine the source of a given data flow.

10 Introduction

The Plan Formalism

The following bricfly summarizes the plan formalism used by KBEmacs. Chapter V discusses the
formalism in more detail. A plan is likc a hicrarchical flow chart wherein both the control flow and data flow
are represented by explicit arcs. Figure 3 shows a diagram of a simple example plan — the plan for the cliche
absolute-value.

ABSOLUTE-VALUE

INPUT ROLE
NUMBER

ABS

MINUSP

JOIN

RESULT

Figure 3: A plan for the cliche absolute-value.

The basic unit of a plan is a segment (drawn as a box in a plan diagram). A segment corresponds to a unit
of computation. It has a number of input poris and output poris which specify the input values it receives and
the output values it produces. It has a name which indicates the operation performed. A segment can either
correspond to a primitive computation (c.g. the segment "-") or contain a subplan which describes the
computation performed by the segment (c.g. the segment ABS). All of the computation corresponding to a
single program or cliche is grouped together into one outermost segment. The roles of a cliche are
represented as specially marked segmeits (¢.g., the segment NUMBER).

Key Al ldeas Underlying KBEmacs 11

As in a flow chart, control flow from onc segment to another is represented by an explicit arc from the first
segment to the second (drawn as a dashed arrow). Similarly, data flow is represented by an explicit arc from
the appropriate output port of the source segment to the appropriate input port of the destination segment
(drawn as a solid arrow). 1t should be noted that like a data flow diagram, and unlike an ordinary flowchart,
data flow is the dominant concept in a plan. Control flow arcs arc only used where they arc absolutely
necessary. In Figure 3, control flow arcs are necessary in order to specify that the operation "-" is performed
only when the input number is less than zero.

A key feature of the plan formalism is that it abstracts away from the syntactic featurcs of programming
languages and represents the semantic features of a program dircctly. Whenever possible, it climinates
features which stem from the way things must be expressed in a particular programming language, keeping
only those features which are essential to the actual algorithm. For example, a plan docs not represent data
flow in terms of the way it could be implemented in any particular programming language — ¢.g. with
variables, or nesting of expressions, or parameter passing. Rather, it just records what the net data flow is.
Similarly, no information is represented about how control flow is implemented.

Abstracting away from the syntactic features of a program has several advantages. One advantage is that it
makes the internal operations of KBEmacs substantially programming language independent. Another
advantage is that plans are much more canonical than program text. Programs (cven in different languages)
which differ only in the way their data flow and control flow is implemented correspond to the same plan.

A second important feature of the plan formalism is that it tries to make information as local as possible.
For example, cach data flow arc represents a specific communication of data from one place to another and,
by the definition of what a data flow arc is, the other data flow arcs in the plan cannot have any cffect on this.
‘The same is true for control flow arcs. This locality makes it possible to determine what the data flow or
control flow is in a particular situation by simply querying a small local portion of the plan.

'I'he key benefit of the locality of data Hlow and control flow is that it gives plans the property of additivity.
1t is always permissible to put two plans side by side without their being any interference between them. This
makes it casy for KBEmacs to create a program by combining the plans for cliches. All KBEmacs has to do is
merely paste the picces together. It docs not have to worry about issues fike variable name conflicts, because
there are no variables.

A third important feature of plans is that the intermediate segmentation breaks a plan up into regions
which can be manipulated separately. In order to ensure this separability, the plan formalism is designed so
that nothing outside of a scgment can depend on anything inside of that scgment. For cxample, all of the data
flow between segments outside of an intermediate segment and segmients inside of an intermediate segment is
channeled through input and output ports attached to the intermediate segment. As a result of this and other
restrictions, when modifying the plan inside of a segment one can be secure in the knowledge that these
changes cannot cffect any of the plan outside of the segment.

12 Introduction

Representing Loops

A final interesting aspect of plans is that loops are represented in a way which increascs locality. Rather
than representing loops by means of cycles in data flow and control flow, the plan is represented as a
composition of computations applied to scrics of values (sce [Waters 79]). IFor example, Figure 4 shows a plan
for summing up the positive clements of a vector. 1tis composed of three subsegments. The first enumerates
the clements in the input vector creating a series (or strecam) of values. ‘The second sclects the positive
clements of this scries. The third sums up the sclected values.

VECTOR
SUM-POSITIVE-VECTOR
VECTOR- SELECT- '
ENUMERAT.ON‘—“;POSHWE ¢ =4 suM

RESULT

Figure 4: A plan for summing up the positive elements of a vector.

Representing a loop as a composition of computations on serics has two important advantages. First, it
increases focality. For example, it makes it possible to modify one of the computations without disturbing the
others (e.g., the vector enumeration could be replaced by a list enumeration). Second, it highlights the
similarity between related loops. For example, it makes explicit the fact that exactly the same summation
cliche is used in a program which sums the positive clements of a vector as in a program which sums the
lengths of a list of queues.

Representation Shift

One of the most powerful ideas underlying Al systems is the idca of a representation shift — shifting from
a representation where a problem is casy to state but hard to solve to a representation which may be less
obvious but in which the problem is casy to solve. Much of the power of KBEmacs is derived more or less
directly from the representation shift from program text to the plan formalism.

From the point of view of a programmer using KBEmacs, Both the assistant approach and cliches are
obvious features of the system. In contrast, plans arc used only internally. KBEmacs goes to considerable
lengths to make it appear to the user as if KBEmacs used program text (extended to support the notion of
roles) as its only knowledge representation. In fact, Chapters 11 & 111 will make no mention of plans. The
entire operation of K BEmacs will be presented from a purely textual point of view.

13

Overview of KBEmacs

As mentioned above, KBEmacs is the current demonstration system implemented as part of the PA
project. It is implemented on the Symbolics Lisp Machine [Lisp 84] and is a restricted version of the PA in
that it focuses primarily on the task of program construction. However, it illustrates a number of the
capabilitics which the PA is expected to possess.

Architecture

Figure 5 shows the architecture of the KBEmacs system. As discussed in Chapter V, KBEmacs maintains
two representations for the program being worked on: program text and a plan. At any moment, the
programmer can cither modify the texi or the plan. If the text is modified, then the analyzer module is used
to create a new plan, If the plan is modificd. the coder module is used to create new program text.

To modify the program text, the programmer can usc the standard Emacs-style Lisp Machine program
editor. This editor supports both text-based and syntax-based program cditing. To modify the plan, the
programmer can use the knowledge-based editor implemented as part of KBEmacs. This editor supports a set
of knowledge-based commands which are phrased in a simple pscudo-English command language.

PROGRAM TEXT

ANALYZER

CLICHE
LIBRARY

PROGRAM TEREAG KNOWLEDGE-
EDITOR INTERFACE BASED EDITOR

Figure 5: Architecture of KBEmacs.

An interface unifies erdinary progran cditing and knowledge-based editing so that they can both be
conveniently accessed through the standard Lisp Machine editor. The knowledge-based commands are

14 Introduction

supported as an cxtension of the standard editor command sct and the results of these commands are
communicated to the programmer by altering the program text in the editor buffer. The cffect is the same as
if a human assistant were sitting at the editor modifying the text under the direction of the programmer.

The major value of KBEmacs stems from the fact that it has a knowledge base of algorithmic cliches (the
cliche library) and a significant amount of knowledge (procedurally embedded in the knowledge-based
editor) about how to combine them. As seen in the example at the beginning of this chapter, a user can build
up a program rapidly and reliably by sclecting various algorithms to use and delegating to the system the task
of combining them together to construct a program. However, the system is non-invasive because the user
can fall back on ordinary program cditing at any time.

As will be scen in the scenarios in the next two chapters, KBEmacs is a real running system which can
operate on programs of realistic sizc and complexity. However, KBEmacs has three pragmatic limitations
which render it usable only as a demonstration system rather than as a true prototype. First, it is too slow.
Knowledge-based commands can take as long as five minutes to exccute. In order for KBEmacs to be truly
convenient o use, this time would have to be reduced to only a few seconds. Second, the system has evolved
over a number of years in a very untidy fashion and is full of bugs. Pilot studies have indicated that both of
these problems could be fixed by rewriting the system, but this would not be a simple task. Third, KBEmacs
has an understanding of only a few dozen cliches. These are sufficient to support the scenarios shown in this
report. However, a practical tool would have to have an understanding of hundreds if not thousands of
cliches. Again, there is no fundamental reason why the appropriate cliches could not be entered into the
system, but it would be a significantly difficult task.

Overview of KBEmacs 15

Capabilities

As will be discussed at length in Chapters 11 & 111, KBEmacs has many capabilitics only onc of which
(rapid program construction in terms of cliches) is illustrated above. As discussed in Chapter IV, these
capabilitics can be divided into two classes: strongly demonstrated and weakly demonstrated. The following
capabilitics are strongly demonstrated in that they arc supported in a general way, and little, if any, additional
research would be needed before a full scale prototype system cxhibiting these capabilitics could be built.

Rapid program construction in terms of cliches — The programmer can construct programs quickly
and rcliably by combining cliches from KBEmacs’ library of cliches.

User definition of cliches — The programmer can define new cliches as easily as he can define new
subroutines.

Editing in terms of algorithmic structure — The programmer can opcrate on a program by using
knowledge-based commands which refer to the logical structure of the algorithms being used.

Escape to the surrounding environment — While using KBEmacs the programmer is not prevented
from using any of the standard programming tools. In particular, he can freely intermix text editing
and knowledge-based cditing.

© Substantial programming language independence — The scenarios below show KBEmacs being used to

operate on both Lisp and Ada programs.

The following capabilities arc only weakly demonstrated. The weakness comes from the fact that the
capabilities arc not supported in a general way. Rather, only certain restricted aspects of each capability are
supported in order to show what the capability would be like and to demonstrate that the PA approach has
leverage on the capability.

A library of cliches — KBEmacs contains a very simple library of several dozen Lisp and Ada cliches.

Reasoning by means of constraints — KBEmacs uses simple constraint propagation in order to
determine some of the consequences of the programmer’s design decisions.

Taking care of details — KBEmacs is able to automatically take care of some kinds of programming
details. For example, it can generate most of the variable declarations in an Ada program,

Program Modification — KBEmacs supports scveral commands which make it casier to modify a
program. For example, it makes it casy to change the way the role of acliche is filled in.

Program Documentation — KBEmacs is able to create a simple comment describing a program.

16 Introduction

Future Directions

As discussed in detail in Chapter VI, work in the PA project is proceeding in several directions. The
largest amount of effort is going into the construction of the next demonstration system. Externally, this
system will appear to the uscr to be very similar to KBEmacs. Tt will use the same interface and support the
same basic capabilitics. However, internally it will be very different form KBEmacs. 1t will be based on the
plan calculus [Rich 80,81} as opposed to the simpler plan formalism used by KBEmacs. In addition, the
reasoning performed by the new system will be supported by a general purpose reasoning system [Rich 82,8]
tailored to support the plan calculus, rather than by special purpose procedures. A primary goal of the new
system will be to strongly demonstrate the capabilities which arc only weakly demonstrated by KBEmacs.
Another goal is to extend the capabilitics of the system into the arca of bug detection and automatic algorithm
sclection.

Another area of activity centers around various applications of the idcas behind KBEmacs. A particularly
interesting application is the Tempest editor implemented by Sterpe [Sterpe 85). This editor is inspired by
KBEmacs as a whole. It has a user extendable library of cliches (called templates) and makes it casy to
combine these templates together. The key difference between Tempest and KBEmacs is that Tempest is
purely text based. This greatly reduces the power of the system. However, it vastly simplifics the system and
reduces the amount of computation which has to be performed by three or four orders of
magnitude — Tempest runs with acceptable speed on an IBM PC.

Another application is the Lisp macro described in [Waters 83a). This macro is inspired by the way loops
are represented in the plan formalism. The macro makes it possible to represent computations as

ompositions of functions on series of values and uses some of the same algorithms which are used by the
coder module of KBEmacs in order to compile the computations into cfficient iterative loops.

A final aim of the PA project is to expand the scope of the rescarch beyond program implementation.
Initial work has begun on the design of a Requirements Analyst’s Apprentice. The intention is to focus on the
opposite end of the programming process from program implementation and apply the basic ideas of the
assistant approach, cliches, plans, and gencral purpose automated deduction to the task of acquiring and
modifving requirements.

Once a system has heen constructed which captures requirements in a machine understandable form it
should be possible to construct a systern which bridges the gap between requirements analysis and
implementation by supporting the process of program design. Eventually it should be possible to build a true
Programmecr’s Apprentice which can assist in all phases of the programming process.

17

I1- Lisp Scenario

This chapter illustrates the various ways KBEmacs can be used by presenting a scenario showing the
construction of several Lisp programs. The chapter is divided into five sections. The first section discusses
Lisp programming cliches. (Appendix A presents the complete Lisp Cliche library.) The second section
shows K BEmacs being used to construct a report program through the top-down combination of cliches. The
third scction shows KBEmacs being used to construct a numerical program through the bottom-up
combination of cliches. The fourth scction shows KBEmacs being used to assist in program modification and
documentation. The fifth section shows the definition of a new cliche. It also illustrates a third method of
program construction — the lateral modification of almost-right cliches.

Lisp Cliches

As discussed in Chapter 1, the heart of KBEmacs is the library of programming cliches. These cliches
provide the basic vocabulary used in the communication between man and machine and embody most of the
knowledge which is shared between the programmer and KBEmacs. One of the basic assumptions
underlying KBFmacs is that the knowledge of cliches is indeed shared between man and machine — i.e., that
the programmer is aware of at least the basic features of the various cliches. In consonance with this, it is
important for the reader to develop an understanding of what these cliches arc like before looking at the
sccnario below.

A Simple Cliche

As a simple example of a cliche, consider the following definition of how to square a number. Lisp cliches
arc defined by using the form DEFINE-CLICHE. This form specifies the name of the cliche, some declarations
describing the cliche, and the computation corresponding to the cliche. ‘The roles of a cliche are represented
by {...}. Herc, the only role is the number to be squared. (The Lisp function (A x y) computes xY.)

(DEFINE-CLICHE SQUARING
(PRIMARY-ROLES (NUMBER)
DESCRIBED-ROLES (NUMBER)

COMMENT "computes the square of {the number}")
(A {the input number} 2))

When communicating with KBEmacs, an instance of a cliche is referred to by using an indefinite noun
phrase — ¢.g., "a squaring of X". Such a phrasc specifics the name of the cliche, and may specify values
which fill roles of the cliche. The PRIMARY-ROLES declaration specifics which roles can be specified this way,
and the order in which they must be specified. (The language for communicating with KBEmacs is described
in detail in Chapter V.)

The COMMENT declaration in the cliche definition is used for generating bricf descriptions of instances of
the cliche. Role references (represented by {. . .}) in the COMMENT string are replaced by descriptions of the
actual computations filling the roles. For example, the cliche instance referred to in the last paragraph would
be briefly described by saying that it "computes the square of X".

The DESCRIBED-ROLES declaration is used for generating in-depth descriptions of instances of the cliche.
As will be discussed in detail in conjunction with the scenario below, this declaration specifies which roles
should be described in detail when constructing a comment for a program.

18 Lisp Scenario

Machine Understandable Program Annotation

Before looking at additional cliches it is uscful to look at the notation {. ..} in morc depth. The most
common use of {...} is to represent roles, however, it is not the only usc. As discussed in detail in
Chapter V, this extension to Lisp syntax is provided to represent a varicty of machine understandable
program annotation.

There are two basic forms of the notation {...}. The first form is {code, annotation} which describes
some feature of an cxisting part of a program. The sccond form is {annotation} which describes a
non-cxistent part of the program. In the latter case, the form acts as a place holder that specifics how the
non-cxistent part fits into the computation as a whole.

If the annotation in a {...} form begins with the word "the" then it specifies the name of a role
(c.g.. {the input number}). (Lower casc is uscd when printing out the annotation in a {. . .} form in order
to differentiate the annotation from the surrounding code.) 1If code is provided as part of the annotation
(c.g.. {(CAR LIST), the output element})then this indicates that the role is alrcady filled in.

If a role name contains the word "input"” then it is treated as logically being an input to the containing
cliche. Similarly, if a role name contains the word "output” then it is treated as logically being an output of
the containing cliche. Information about logical inputs and outputs is used to help determine the data flow
between cliches when they are combined together. Most roles are neither inputs nor outputs but rather
correspond to some internal part of the computation.

The name of a role can either be a simple noun phrase (e.g., {the input number}) or a compound
phrase (e.g., {the empty-test of the enumerator}). As will be discussed below, a compound phrase
implicitly specifies a higher level compound role (e.g., the enumerator) which contains the indicated sub-role.

When {...} annotation acts as a place holder for a role, it can either appear in the form of a simple
quantity (c.g., {the input number})or in the form of a function call (e.g.. ({the operation} DATA)). If
the role annotation is in the form of a function call, then it specifics the arguments which are expected to be
used by the computation filling the role. In the example above, the annotation specifies that the function
filling the operation role should use as an input the value of the variable DATA.

A kind of annotation unrelated to roles is illustrated by the form {DATA, modified}. This specifics that
the given instance of the variable DATA is being side-effected. For example, in the form
(F x {Y, modified}) the annotation specifies that the function F side-cffects its sccond argument. This
kind of annotation is used by KBEmacs as part of the basis for understanding the side-cffects in a program.

Lisp Cliches 19

The Cliche List-Enumeration

The cliche squaring is very simple in nature, and could have been represented as a simple subroutine. A
key feature of cliches is that they are capable of representing algorithmic fragments which cannot be
exprossed as simple subroutines. For cxample, the cliche list-cnumeration (shown below) captures the
concept of enumerating the elements of a list. 'This cliche can be combined together with other looping
cliches in order to efficiently perform various operations on lists.

(DEFINE-CLICHE LIST-ENUMERATION
(PRIMARY-ROLES (LIST)
DESCRIBED-ROLES (LIST)
COMMENT "enumerates the elements of {the 1ist}")

(LET» ((LIST {the dinput 1ist}))
(LooP DO
(IF ({NULL, the empty-test} LIST) (RETURN))
{({CAR, the element-accessor} LIST), the output element}
(SETQ LIST ({CDR, the step} LIST)))))

The cliche list-cnumeration is a member of a general class of cliches referred to as enumerators, all of
which have essentially the same roles. The input role (here the list) is the aggregate structurc which is to be
enumerated. The empty-test (here NULL) tests to see whether all of the clements in the aggregate structure
have been enumerated and therefore whether the enumeration should be terminated. The element-accessor
(here CAR) accesses the individual clements of the aggregate structure. The step (here CDR) steps from one
clement of the aggregate structure to the next. The output of the clement-accessor is given a name (here the
clement) so that it can be conveniently referred to when communicating with K BEmacs.

1t is interesting to note that the cliche squaring also has an output — the result of the squaring operation.
However, this output is not given a special role name. Rather, it is assumed that like functions, must cliches
will have a return value. The return value of a cliche is automatically treaied as a kind of output role by
KBEmacs. Explicit output roles arc only used in situations (such as the one in the cliche list-enumecration)
where the ordinary return value mechanisms arc not sufficient to specify an output.

20 1isp Scenario

The Cliche Simple-Report

A cliche of central importance to the scenario is the cliche simple-report (shown below). This cliche
specifies the high level structure of a simple report program. ‘The cliche is significantly more complex than
the previous ones in several ways. To start with, although it is written using standard Lisp Machine functions,
it makes use of a number of functions which may be unfamiliar to users of other Lisp dialects.

The form WITH-OPEN-FILE combines the actions of opening a file and guarantecing that the file will be
closed even if an error or other interrupt occurs during the evaluation of the form. The opened file is bound
to a variable (here REPORT) during the exccution of the body of the form. The form LET is the same as the
standard Lisp form LET except that the bound-variable value pairs are processed sequentially instead of in
paraliel, The cxpression (TIME:PRINT-CURRENT-TIME NIL) rcturns a string of the form
"mm/dd/yy hh:mm:ss" specifying the current date and time. The function FORMAT prints out textual
information. .ike the Fortran construct it is named after, it is inscrutable but convenient for specifying how
output is io be formatted on the page. The form (LOOP DO ...) repetitively executes the forms in its body
until one of these forms terminates the loop by cvaluating (RETURN). ‘The form (WHEN predicate .. .)
evaluates the forms in its body if and only if the predicare evaluates to non-NIL.

(DEFINE-CLICHE SIMPLE-REPORT
(PRIMARY~ROLES (ENUMERATOR PRINT-ITEM SUMMARY)
DESCRIBED-ROLES (FILE-NAME TITLE ENUMERATOR
COLUMN-HEADINGS PRINT-ITEM SUMMARY)
COMMENT "prints a report of {the input structure of the enumerator}"”
CONSTRAINTS
((DEFAULT {the file-name} "report.txt")
(DERIVED {the line-limit}
(- 65
(SIZE-IN-LINES {the print-item})
(SIZE-IN-LINES {the summary})))))
(WITH-OPEN-FILE (REPORT {the file-name} ':0UT)
(LET* ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(LINE 66)
(PAGE 0)
(TITLE {the title})
(DATA {the input structure of the enumerator}))
(FORMAT REPORT "~5%~66: (~A~>~2%~66: <~A~>~%" TITLE DATE)
(LOOP DO
(1F ({the empty-test of the enumerator} DATA) (RETURN))
(WHEN (> LINE {the line-limit})
(SETQ PAGE {(+ PAGE 1))
(FORMAT REPORT "~/ |~%Page:~3D~50: {~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3)
({the column-headings} {REPORT, modified} {LINE, modified}))
({the print-item} {REPORT, modified}
{LINE, modified}
{{the element-accessor of the enumerator} DATA))
(SETQ DATA ({the step of the enumerator} DATA)))
({the summary} {REPORT, modified}))))

Like any cliche, the cliche simple-report specifics some standard computation (c.g., the printing of the title
page), some roles to be filled in (e.g., the title itself), and the data flow and control flow which combine them
together. The cliche has scven toles. The file-name is the name of the file which will contain the report being
produced. The fitle is printed on a title page and, along with the page number, at the top of cach succeeding
page of the report. The enumerator cnumerates the clements of some aggregate data structure. ‘The print-item
is used to print out information about cach of the enumerated clements. The fine-limit is used to determine
when a page break should be inserted in the report. ‘The column-headings are printed at the top of cach page

Lisp Cliches 21

of the report in order t explain the output of the print-item. ‘The summary prints out some summary
information at the end of the report. Note that the print-item, column-headings, and summary arc all
computations which side-cffect the report file by sending output to it.

‘The enumerator is a compound role which has the four sub-roles (the input structure, the empty-test, the
clement-accessor, and the step) typical of an enumerator. These sub-roles can be filled individually, or they
can be filled together as a unit by using an cnumeration cliche (such as the cliche list-cnumeration) which
specifies values for cach of them.

A significant part of the complexity of the cliche simple-report stems from the fact that code is included
for keeping track of the page number and the line number. and for determining when a page break should
occur. (Unlike some other languages. 1.isp Machine Lisp does not provide any automatic support for these
operations.) Under the assumption that only 66 lines (numbered 0 through 65) can be printed on a page, the
line number is initially sct to 66 in order to force a page break immediately after the title page is printed. A
page break is triggered whenever the line number is greater than the linc-limit. When a page break is
triggered, the page number is incremented, a new page is started with the appropriate page headings, and the
line number is reinitialized. Note that the column-headings and the print-item are both expected to
appropriately update the line number.

An important aspect of the cliche simple-report is that it specifies two constraints on the roles. These are
specified as part of the declarations at the beginning of the cliche definition. The first constraint specifies that
"report.txt" should be used as the default name for the file containing the report. This name will be used
unless the programmer specifies some other name.

'The second constraint specifics that the line limit should be derived as 65 minus the number of lines
printed by the print-item, and the number of lines printed by the summary. (Constraint expressions are
specified as a combination of ordinary lisp code and {...} annotation refcrring to roles,) The constraint
guarantees that, whenever the line number is less than or cqual to the line limit, there will be room for both
the print-item and the summary to be printed on the current page. Becausc the line-limit role is derived by
this constraint the programmer never has to fill it explicitly, and the role will automatically be updated if the
print-item or summary arc changed.

An important aspect of cliches in general is illustrated by the fact that the cliche simple-report contains the
above computation and constraints concerning line numbers, page breaks, and page numbers. The fact that a
standard scheme for dealing with pagination is included in the cliche improves the productivity of the
programmers using the cliche because, in general, they no longer have to worry about it. Perhaps more
importantly, it improves the capability and reliability of the programs produced using the cliche because the
programs contain a fully gencral purpose scheme for dealing with pagination which is at least internally
consistent,

22 Lisp Scenario

The Cliche Print-Out
As a final example of a cliche, consider the cliche print-out (shown below) which prints out an item using
the function FORMAT. 'The key aspect of the cliche print-out is that, in addition to printing the item, it
properly increments the line number. The cliche has three roles: the item to be printed, a format-string which
specifies how to print the item, and the size-in-lines which specifies how many print lines arc used by the
format-string. "The role size-in-lines is automatically derived by a constraint. The function SIZE-IN-LINES is
capable of analyzing a format string (or any other output computation) and determining the maximum
number of lines which will be required.
(DEFINE-CLICHE PRINT-OUT

(PRIMARY-ROLES (FORMAT-STRING ITEM)

DESCRIBED-ROLES (FORMAT-STRING ITEM)

COMMENT “"prints out {the item}"

CONSTRAINTS

((DEFAULT {the format-string} "~%~A")
(DERIVED {the size-in-1ines} (SIZE-IN-LINES {the format-string}))))

(FORMAT REPORT {the format-string} {the input item})
(SETQ LINE (+ LINE {the size-in-lines})))

Suites of Cliches

An important issue underlying cliches in general is that they are not designed in isolation. Rather, cliches
are typically defined in tightly knit groups, or suites, which are intended to be used together. This is
illustrated by the cliches simple-report and print-out. An essential aspect of these cliches is that they
incorporate the same conventions for how to keep track of the line number. Another cxample of the
interrelationships between cliches can be seen in the fact that the cliche list-cnumeration is specifically
designed to fit into the enumecrator role of the cliche simple-report.

Top-Down Implementation

This section begins the presentation of a scenario illustrating the use of KBEmacs. In the first part of the
scenario, the programmer constructs a program (REPORT-TIMINGS) which prints a report. Given a list of
timings (c.g., of some experiment) the program prints out the timings followed by their mean and standard
deviation. In order to implement this program. the programmer proceeds in a top-down fashion by first
specifying the top level cliche to use and then filling in the roles of this cliche.

Directions for a Human Assistant

Suppose that an expert programmer were asked to write the program REPORT-TIMINGS and decided to
delegate the task to an incxperienced programmer who was his assistant. In order to tell his assistant what to
do, the expert programmer might give directions like the following.

Define a simple report program REPORT-TIMINGS with one parameter, a list of
timings. Print the title "Report of Reaction Timings (in msec.)". Print
each timing and then print a summary showing the mean and deviation of the
timings. Do not print any column headings.

A key aspect of the directions above is that they assume a significant amount of shared knowledge between
the expert and his assistant. In particular, they assume that the assistant understands the term "simple
report”. Presumably, understanding this term includes an understanding of how to print a title page, and how
to print headings at the top of the subsequent pages of the report. At a more detailed level it presumably
includes an understanding of how to determine when page breaks should be introduced. It is precisely this
shared knowledge that the cliche simple-report is trying to capture. As we shall sec, by using cliches such as
simple-report, a programmer can tell KBEmacs how to produce the program REPORT-TIMINGS by giving
directions at a similar level of detail to the directions shown above.

24 Lisp Scenario

‘The Layout of Screen Iimages

The scenario below is illustrated with a sequence of Lisp Machine screen images. Most of these screens
show the Emacs-style Lisp Machine cditor in which KBEmacs is embedded. Fach of these screens has two
parts (sec Screen 1). The first few lines show a set of commands. The box which makes up most of the screen
shows the Fmacs buffer which is the result of these commands. The line below this box shows the editor
mode line and the screen number. The mode line is composed of the name of the system (i.c., "KBEmacs"),
the editing mode (e.g., "(LISP)" or "(TEXT)"), and the name of the file being cdited.

In the command area of a screen, bold face italics is used to indicate output typed by the system as
opposed to what the programmer types. In the editor buffer arca of a screen, bold face italics is used to
indicate the changes in the buffer (in comparison with the previous screen) caused by the commands. 1t
should be noted that highlighting changed portions of the editor buffer is unfortunately not currently
supported by KBEmacs. As a step in this direction, whenever KBEmacs modifies the editor buffer, it
positions the editing cursor (indicated by [J in the screens) at the beginning of the first significant change in
the buffer.

Integration with Emacs

Before beginning to construct the program REPORT-TIMINGS the programmer uscs the standard Emacs
command ¢-X ¢-F (find file) in order to creatc a filc which will contain the program (sce Scrcen 1).
KBEmacs is implemented so that it is tightly integrated with Emacs. KBEmacs adds a variety of new editor
commands without interfering with (or rendering obsolete) any of the standard commands. As a result, the
scenario presented here uses standard editor commands in order to perform standard operations. Although it
is not assumed that the reader is familiar with these commands, in the interest of brevity, the standard
commands used are not described in detail. The Lisp Machine documentation [Lisp 84] describes them more
fully.

The Knowledge-Based Command "Def ine”

In analogy with the standard Emacs command m-X (cxtended command), KBEmacs supports a new
command s-X (typed by holding down the Lisp Machine keyboard shift key SUPER and typing an X) which
creates a special window wherein the programmer can type a command requesting KBEmacs to do
something. Once a command is typed, it is exccuted by typing the Lisp Machine Key <end>. These
commands (referred to as knowledge-based commands) are specified in an extremely simple pscudo-English
command language (described in detail in Chapter V). Each knowledge-based command is a verb followed
by one of more noun phrases. 1f a word is typed using capital letters (e.g., "TIMINGS™ as opposcd to
"parameter") it is assumed to be a literal name or a code fragment and is interpreted without regard for any
special meaning it may have in the command language. Automatic word completion in the s-X window is
used to facilitate typing of the command language.

In order to begin the construction of the program REPORT-TIMINGS, The programmer uses the
knowledge-based command "Define” to specify the name of the program and its parameter. KBEmacs
communicates the results of knowledge-based commands to the programmer (and to the rest of the Lisp
Machine system) by dircctly modifying the text in the cditor buffer. In this case, the empty program
definition (DEFUN REPORT-TIMINGS (TIMINGS)) is inscrted into the buffer.

Top-Down Implementation : i %

c-X c-F Find file <KBE. DEMO)TIMIIGS LISP _
- (Now File)
‘ ‘ s-X Define a program REPORT-TIMINGS with a parameter nnms Cend>

DOEFUN REPORT-TININGS (TININGS))

KBEmacs (LISP) <KBE.DEMO>TININGS.LISP Screen 1

26 1isp Scenario

‘The Knowledge-based Command "Insert”

In Screen 2, the programmer uscs the knowledge-based command “Insert" in order to fill in the body of
the program with an instance of the cliche simple-report. In general, the "Insert” command specifies that
an instance of a cliche is to be inserted into a program at the place where the editing cursor is positioned.

The code produced in Screen 2 is an instantiation of the cliche simple-report. For the most part this code
is cxactly the same as the code in the definition of this cliche (sce above). However, there are scveral key
differences. For example, the file-name and line-limit roles have been filled in since they are specified by
constraints. (The line-limit role has been given the value 63 under the default assumption, made by the
function SIZE-IN-LINES, that the print-item and summary will cach take up one output line.)

Suppressing Annotation

Another difference between the code in Screen 2 and the code in the definition of the cliche is that the
{...} annotation marking the file-name and the linc-limit has been suppressed. Once a role is filled in, the
annotation indicating where it is located is no longer displayed. The only exception to this is output role
annotation which is, in general, retained in order to alert the programmer to the name of the output role.

Suppressing the annotation of filled in roles is an acsthetic choice made by KBEmacs. 1t was decided that
for the task of program construction, suppressing such annotation is helpful because it reduces visual clutter
and highlights the roles which are not yet filled in. In other situations (c.g., documentation) it might be
beneficial for KBEmacs to redisplay this annotation.

Remembering Annotation Information

Although K BEmacs does not display annotation for filled in roles, it remembers this information as part of
its understanding of the program. In addition, KBEmacs remembers what cliches have been used to build up
a program. As will be illustrated shorily, there are a number of ways in which KBEmacs can usc both of these
tvpes of information to assist the programmer.

The Purpose of the Code Produced by KBEmacs

The above discussion brings up the interesting question of exactly what is the purpose of the code
produced by KBFinacs. Clearly it is not a complete representation of everything that KBEmacs knows about
a program. Rather, it fulfills two quite distinct purposes.

The first purpose of the code is to serve as the medium of communication between KBEmacs and the rest
of the Lisp Machine system. For exampie, K BEmacs must create ordinary Lisp code for a program so that the
standard Lisp interpreter, debugger, and compiler can operate on the program. This purposc requires only
that the code produced correctly represent the algorithms being used.

The sccond purpose of the code is to serve as the primary medium of communication between KBEmacs
and the programmer. At cach moment, the code summarizes the net cffect of the knowledge-based
commands given so far. Further, becausc the programmer can freely edit the code at any time, the code is a
two way communication channel. In order to fulfill this purpose, the code must be easily rcadable. In the
interest of readability, XBlimacs only displays a small part of the information it could display about a
program.

Top-Down Implementation

s-X Insert a simple-report. <end>

27

(DEFUN REPORT-TIMINGS (TIMINGS)
@WITH-OPEN-FILE (REPORT "report.txt" ':0UT)
(LET+ ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(LINE 66)
(PAGE 0)
(TITLE {the title})
(DATA {the input structure of the enumerator}))
(FORMAT REPORT "~5%~66: (~A~D~2%~66: (~A~>~%" TITLE DATE)
(Loor DO
(IF ({the empty-test of the enumerator} DATA) (RETURN))
(WHEN (> LINE 63)
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~|~%Page:~3D~50: (~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3)
({the column-headings} {REPORT, modified} {LINE, modified}))
({the print-item} {REPORT, modified}
{LINE, modified}
({the element-accessor of the enumerator} DATA))
(SETQ DATA ({the step of the enumerator} DATA)))
({the summary} {REPORT, modified}))))

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP

Screen 2

28 Lisp Scenario

The Commands s-N and s-P

In keeping with the general Emacs philosophy of providing a wide varicty of convenient one character
commands, KBEmacs provides a number of such commands (all of which utilize the shift key SUPER) which
operate on programs. The command s-N moves to the first occurrence of role annotation after the current
cursor position. (In Screen 3. the programmer uscs the command s-N in order to move to the title role.
Ordinary cursor motion commands could also have been used.) The command s-P moves to the first
occurrence of role annotation prior to the current cursor position. The commands s-N and s-P are analogous
to the standard Fmacs commands ¢-N (move to the next linc) and ¢-P (movc to the previous line).

Direct Kditing

In order to fill the title role, the programmer uses ordinary Emacs commands to type in the title string. (In
the command area of the screen the phrase "direct editing” is used in licu of an explicit listing of these
commands since only their net effect is interesting.) The programmer could have used knowledge-based
commands in order to fill in the title. However, he judged that ordinary editing would be simpler. An
important goal of KBEmacs is to provide assistance to the programmer without preventing him from doing
simple things in simple ways. The intent is for the programmer to use ordinary text editing whenever that
makes things ecasy and to use knowledge-based commands only when they deliver real value — ¢.g., when
instantiating the cliche simple-report.

Top-Down Implementation

s-N
direct editing

29

(DEFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" ':0UT)
(LET* ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(LINE 66)
(PAGE 0)
(TITLE "Report of Reaction Timings (in msec.)'{]
(DATA {the input structure of the enumerator}))
(FORMAT REPORT "~5%~66: {~A~>~2%~66: <~A~>~%" TITLE DATE)
(LOOP DO
(IF ({the empty-test of the enumerator} DATA) (RETURN))
{WHEN (> LINE 863)
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~{~%Page:~3D~50: {~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3)
({the column-headings} {REPORT, modified} {LINE, modified}))
({the print-item} {REPORT, modified}
{LINE, modified}
({the element-accessor of the enumerator} DATA))
(SETQ DATA ({the step of the enumerator} DATA)))
({the summary} {REPORT, modified}))))

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP

Sereen 3

30 1isp Scenario

The Knowledge-based Command "F111"

In Screen 4, the programmer specifies that the program should enumerate the list of timings. He doces this
by using the knowledge-based command "Fi11" to fill in the enumerator of the program with an instance of
the cliche list-cnumeration. The fill command specifies that an instance of a cliche is to be used to fill in an
unfilled role. Definite noun phrases in a knowledge-based command are disambiguated with respect to the
position of the cursor. As a result. the phrasc "the enumerator” in the knowledge-based command in
Screen 4 is interpreted to mean the enumerator of the program REPORT-TIMINGS because the cursor was
positioned in this program when the command was typed (sce Screen 3).

Filling a Compound Role

The most important thing to notice about Screen 4 is that all four sub-roles which are part of the
enumerator of the program have been filled in at once. The cliche list-cnumeration specifies these four roles
as a logical unit even though thesc roles arc distributed through the program. (The cursor is positioned on the
empty-test on the theory that changes to the body of a program are more interesting than changes to variable
initializations.)

Another thing to notice about the program in Screen 4 is that it no longer uscs the variable DATA but rather
the more informative variable name LIST. The readability of a program depends to a surprising cxtent on
how the data flow is implemented and, in particular, on what variable names are used. Therefore, KBEmacs
works hard to use nesting of expressions where appropriate and to pick the best variable names possible. In
this case, the variable name LIST is chosen because it is specifically suggested by the cliche list-enumeration.

An additional minor change in the program in Screen 4 is that the order of the bound-variable value pairs
in the LET* has been changed. In general, KBEmacs puts the bound-variable value pairs in alphabetical
order. There arc only two cxceptions to this. First, data flow may require some other order. Sccond,
uninformative variable names such as DATA are put at the end of the list {scc Screen 3.)

Top-Down Implementation

s-X Fi11 the enumerator with a list-enumeration of TIMINGS. <end>

3

(DEFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" ':0UT)
(LET» ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(LINE 66)
(LIST TIMINGS)
(PAGE 0)
(TITLE "Report of Reaction Timings (in msec.)"))
(FORMAT REPORT "~5%~66: (~A~>~2%~66: <~A~>~%" TITLE DATE)
(LOOP DO
(1F QuULL LIST) (RETURN))
(WHEN (> LINE 63)
(SETQ PAGE (+ PAGE 1))

(FORMAT REPORT "~|~%Page:~3D~50: <~A~>~17A~2%" PAGE TITLE DATE)

(SETQ LINE 3)

({the column-headings} {REPORT, modified} {LINE, modified}))

({the print-item} {REPORT, modified}
{LINE, modified)}
{(CAR LIST), the output element})
(SETQ LIST (CDR LIST)))
({the summary} {REPORT, modified}))))

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP

Screen 4

n © LispScenao

The Knowledgc-lhscd Command "Remove” : :
After specifying the cnumcrator, the programmer proceeds to ﬁll in the rest of the program. Since no

" column headings are to be used in- this program, the programmer uses the knowledge-based command
~ "Remove" in order to get rid of the column-headings role (sec Screcn 5). Note that the cdmas cursor 1s '

positioned where the column-hcadings uscd to be.
Screen S is an example of the fact that in addition © &ﬁmm roles, ﬂlepmsmmercan pmneaway :

unnceded ones. In gencral, cliches (such ass;mplc-mpoﬂ)mdeﬁmdsomatm include a wide variety of

fcamrcsonﬂmmwwmatnmasmformepmgmmcrmpmncawmymmﬂmtmmup

Top-Down Implementation

s-X Remove the column-headings. <end>

33

(DEFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" ':0UT)
(LET+ ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(LINE 68)
(LIST TIMINGS)
(PAGE 0)
(TITLE "Report of Reaction Timings (in msec.)"))
(FORMAT REPORT "~5%~66; {~A~>~2%~66: <~A~>~%" TITLE DATE)
(LOOP DO
(IF (NULL LIST) (RETURN))
(WHEN (> LINE 63)
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~|~%Page:~3D~50: {~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3)Q
({the print-item} {REPORT, modified}
{LINE, modified}
{(CAR LIST), the output element})
(SETQ LIST (CDR LIST)))
({the summary} {REPORT, modified}))))

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP

Screen §

34 Lisp Scenario

The Abbreviated Command s-F

In Screen 6, the programmer specifics how to print out cach of the timings being enumecrated. He doces
this by using the command s-F. In addition to the basic command s-X, KBEmacs supports a number of
abbreviated commands which make it casicr to type knowledge-based commands. Each of these commands
creates the same interaction window as the command s-X. However, when the window is created it is
initialized with a partial (or complete) knowledge-based command. The result of using one of the abbreviated
commands is identical to using s-X and typing the knowledge-based command in full. In the screens in the
scenario, initialized text is highlighted with bold face italics since it is supplicd by the system.

The command s-F scts up a "Fi11" command for the first unfilled role which textually follows the
current cursor position (in this case the print-item). The programmer completes the command by specifying
that the print-item role should be filled with the cliche print-out. The programmer specifies the format-string
as a literal picce of code in the knowledge-based command. (The format string forces a new line, prints 5
spaces, and then prints out an 8 digit decimal number.) The fact that program text can be dircctly included in
a knowledge-based command is convenient in many situations.

Deducing Data Flow Connections

The most difficult part of filling in a role with an instance of a cliche is deciding how to conncct up the
data flow. This is done by comparing the data flow environment of the unfilled role with the data flow
requirements of the cliche.

The print-item rolc in Screen 5 (reproduced below) specifies that this role takes as inputs the output file
REPORT, the line number variable LINE, and the output element of the cnumerator. In addition, it specifics
that REPORT and LINE arc modified by the print-item and thercfore are outputs of the role.

({the print-item} {REPORT, modified}
{LINE, modified}
{(CAR LIST), the output element})

The definition of the cliche print-out (reproduced below) specifies that the cliche has a logical input role
called item. It also specifies that the cliche has two additional inputs REPORT and LINE because these values
are referenced as free variables in the body of the cliche. In addition, these vatues are outputs of the cliche
because they arc modified by the bedy of the cliche. (The variable REPORT is side-cffected by the function
FORMAT and the variable LINE is assigned to.)

(DEFINE-CLICHE PRINT-OUT

(PRIMARY-ROLES (FORMAT-STRING ITEM)

DESCRIBED-ROLES (FORMAT-STRING ITEM)

COMMENT "prints out {the item}"

CONSTRAINTS

((DEFAULT {the format-string} "~%~A")
(DERIVED {the size-in-1ines} (SIZE-IN-LINES {the format-string})}))

(FORMAT REPORT {the format-string} {the input item})
(SETQ LINE (+ LINE {the size-in-lines})))

When the prini-item role is filled with an instance of the cliche print-out the data flow is connected up as
follows. The REPORT and LINE inputs to the print-out are connected to the REPORT and LINE arguments of
the print-item role because they have the same names. The same identity of names connects the REPORT and
LINE outputs of the print-out to the side-cffected outputs of the print-item rofe. The input item role of the
print-out is connccted to the output element of the enumerator because this clement is the only remaining
argument of the print-item which has not been accounted for, The return value of the print-out is not
connccted o anything because the return value of the print-item role is not used for anything.

Top-Down hnplementation

s-F Fi11 the print-item with a print-out of "~&~5X~8:D".. <end>

35

(DEFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" ':0UT)
(LET+ ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(LINE 66)
(LIST TIMINGS)
(PAGE 0)
(TITLE "Report of Reaction Timings (in msec.)"))
(FORMAT REPORT "~5%~66: <(~A~>~2%~66: <~A~>~%" TITLE DATE)
(LOOP DO
(IF (NULL LIST) (RETURN))
(WHEN (> LINE 63)
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~|~%Page:~3D~50: <~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3))
KFORMAT REPORT "~8~5X~8:D" {(CAR LIST), the output element})
(SETQ LINE (+ LINE 1))
(SETQ LIST (CDR LIST)))
({the summary} {REPORT, modified})))})

KBEmacs (LISP) <KBE.DEMQ>TIMINGS.LISP

Screen 6

36 1isp Scenario

Asking What Needs to be Done

Up to this point in the scenario, KBEmacs has been used solely to assist in program construction.
Although this is the dominant mode of interaction with KBEmacs, there are many other ways in which the
system can support the programmer. For example, KBEmacs keeps track of what remains to be done in order
for a program to be complete. In Screen 7, the programmer asks the system to report what still needs to be
done with the program REPORT-TIMINGS. (Hec uscs the abbreviated command s-W to save typing.)
K BEmacs reports that the summary role still needs to be filled. In addition to unfilled roles, the system will
also list any output roles which have not been used for anything.

In order to fill the summary, the programmer moves the cditing cursor to the position of the summary
role, and uses ordinary editing commands to type in an cxpression which prints out a summary showing the
mean and deviation of the timings. In this cxpression he assumes the existence of a subroutine
MEAN-AND-DEVIATION which rcturns the the mean and deviation of a list of numbers.

Top-Down Implementation

s-W What needs to be done? <end>
for the function REPORT-TIMINGS
Fi11 the summary.
s-N s~N direct editing

37

(DEFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" ':0UT)
(LET+ ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(LINE 66)
(LIST TIMINGS)
(PAGE 0)
(TITLE "Report of Reaction Timings (in msec.)"))
(FORMAT REPORT "~5%~66;: <(~A~>~2%~66: <~A~>~%" TITLE DATE)
(LOOP DO
(IF (NULL LIST) (RETURN))
(WHEN (> LINE 63)
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~|~%Page:~3D~50: (~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3))
(FORMAT REPORT "~&~5X~8:D" {(CAR LIST), the output element})
(SETQ LINE (+ LINE 1))
(SETQ LIST (CDR LIST)))
(FORMAT REPORT "~28&~{mean:;~8:D (deviation: ~:D)~}"
(MEAN-AND-DEVIATION TIMINGS))@)

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP

Screen 7

38 Lisp Scenario

The Knowledge-Based Command "Finish”

In Screen 8, the programmer uses the knowledge-based command "Finish™ (triggered by the abbreviated
command s-<end>) in order to signal that he is finished implementing the program REPORT-TIMINGS. 'This
command first checks that the program is indecd completed. 1t would complain if there were any unfilled
roles or any output roles which were not used for anything, Next, the command removes all output role
annotation (in this case, for the role clement). This is done in order to render the program in completely
standard Lisp. This annotation can be reintroduced at a later time if the programmer desires.

Analyzing Direct Editing Done by the Programmer

Before executing any knowledge-based command (c.g., s-X, s-F, or as here s-<end>), KBEmacs first
analyzes the cffects of any direct editing which the programmer has performed. Here, KBEmacs concludes
that the code added by the programmer in Screen 7 is intended to fill the summary role since the only change
in the program is that the new code replaces the summary textually. (KBEmacs waits until the next
knowledge-based command is used in order to avoid analyzing partially cdited programs which are in
inconsistent states.)

This same kind of analysis occurred after the programmer used direct editing to fill in the title role in
Screen 3. However, it was not mentioned there because it did not lead to any interesting results. Here
however, KBEmacs changes the line-limit role of the program from 63 to 62.

The line-limit is changed due to the constraint on this role which is part of the definition of the cliche
simple-report. As mentioned above, the value 63 was originally chosen under the assumption that the
print-item and the summary would cach require one output line. The line-limit did not change when the
programmer filled the print-item, because he filled it with a computation which did require one output line.
However, by using the FORMAT code ~2& the programmer filled the summary with a computation which
requires two output lines.

Enhanced Program Reliability

The automatic updating of the line-limit role is a good example of the way KBEmacs can enhance
program reliability. The main leverage KBEmacs applies to the reliability problem is that cach cliche is
internally consistent. ‘The use of constraints can help maintain this consistency.

It is interesting to note that if KBEmacs did not update the line-limit role, the programmer would
probably not have realized that it necded to be updated. The bug which would result, though minor, would
have the pernicious quality of being rather hard to detect during program testing since the bug only manifests
itself when the program attempts to print the summary as the last linc of a page.

‘Top-Down Implementation 39

s-<end> Finish editing the function REPORT-TIMINGS. <end>

{DEFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" ':0UT)
(LET* ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(LINE 66)
(LIST TIMINGS)
(PAGE 0)
(TITLE "Report of Reaction Timings (in msec.)"))
(FORMAT REPORT "~5%~66: <(~A~>~2%~66: <(~A~>~%" TITLE DATE)
(LooP DO
(IF (NULL LIST) (RETURN))
(WHEN (> LINE @2)
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~|~%Page:~3D~50: <~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3))
(FORMAT REPORT "~&~5X~8:D" (CAR LIST))
(SETQ LINE (+ LINE 1))
(SETQ LIST (CDR LIST)))
(FORMAT REPORT "~2&~{mean:~8:D (deviation: ~:D)~}"
(MEAN-AND-DEVIATION TIMINGS)))))

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP Screen 8

40 Lisp Scenario

Integration With the Lisp Machine Environment

In Screen 9, the programmer uses the standard Emacs command c-shift-C (compile definition) to
compile the program REPORT-TIMINGS so that he can test the program. As part of its normal functioning,
this command warns the programmer that the function MEAN-AND-DEVIATION has not yet been defined. This
is another example of the fact that KBEmacs attempts to build on top of the standard programming
environment and usc its facilities wherever possible.

Evaluating the Commands Used

Consider the set of knowledge-based commands which were used in order to implement the program
REPORT-TIMINGS. These commands are suminarized below with the direct editing recast as equivalent uses
of the knowledge-based command "Fi11",

Define a program REPORT-TIMINGS with a parameter TIMINGS.

Insert a simple-report.

Fil1l the title with "Report of Reaction Timings (in msec.)".

Fi11 the enumerator with a list-enumeration of TIMINGS.

Remove the column-headings.

Fi11 the print-item with a print-out of "~&5X~8:D",

Fill the summary with (FORMAT REPORT "~2&~{mean:~8:D (deviation: ~:D)~}"
(MEAN-AND-DEVIATION TIMINGS)).

It is interesting to compare these commands with the hypothetical set of directions for an inexperienced
assistant programmer (reproduced below). The two sets of directions are quite similar in tone. They share the
approach of relying on key terms such as "simple report” and the basic viewpoint of specifying all of the key
features of the algorithm.

Define a simple report program REPORT-TIMINGS with one parameter, a list of
timings. Print the title "Report of Reaction Timings (in msec.)". Print
each timing and then print a summary showing the mean and deviation of the
timings. Do not print any column headings.

However, the knowledge-based commands are significantly more detailed. For example. using KBEmacs
the programmer must explicitly refer to the cliche list-cnumeration. In addition, he must specify the exact
format-strings to use for printing timings and the summary. As will be discussed in Chapter IV, an important
future dircction for KBEmacs is increasing the capability of the system in order to reduce the detail which has
to be specified by the programmer,

Top-Down Implementation 41

c-shift-C Compiling REPORT-TIMINGS
The following functions were referenced but do not seem defined:
MEAN-AND-DEVIATION referenced by REPORT-TIMINGS

[EFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" ':0UT)
(LET+ ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(LINE 66)
(LIST TIMINGS)
(PAGE 0)
(TITLE "Report of Reaction Timings (in msec.)"))
(FORMAT REPORT "~5%~66: (~A~>~2%~66: <~A~>~%" TITLE DATE)
(LOOP DO
(IF (NULL LIST) (RETURN))
(WHEN (> LINE 62)
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~|~%Page:~3D~50: <~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3))
(FORMAT REPORT "~&~5X~8:D" (CAR LIST))
(SETQ LINE (+ LINE 1))
(SETQ LIST (CDR LIST)))
(FORMAT REPORT "~28&~{mean:~8:D (deviation: ~:D)~}"
(MEAN-AND-DEVIATION TIMINGS)))))

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP Screen 9

42

Bottom-Up Implementation

In the next part of the scenario, the programmer proceeds to implement the function
MEAN-AND-DEVIATION. In doing this, he uscs a rather different style of interaction with KBEmacs. [nstcad
of constructing the program in a top-down fashion starting from a top levet cliche, he builds up the program
from the bottom up by combining various low level cliches. This bottom-up approach is appropriate because
there is no interesting top Ievel cliche which captures the overall structure of the desired program.

Directions for a Human Assistant

Consider the kind of directions an expert programmer might give to his assistant. The dircctions shown
below assume that the assistant does not know how to compute the mean and deviation. Although the
dircctions do not refer to any overall high level concept, they make use of lower level concepts such as
computing a sum.

Define a program MEAN-AND-DEVIATION with one parameter, a 1ist of timings.
Return a list of the mean and deviation of these timings. The mean is the
sum of the timings divided by the number of timings. The standard deviation
is the square root of the difference between the second moment and the sguare
of the mean. The second moment is the sum of the squares of the timings
divided by the number of timings.

It would have been equally plausible to assume that the assistant did know how to compute the mean and
deviation. Tn consonance with this, it would also be perfectly plausible to assume that KBEmacs had cliches
for computing the mean and deviation. However, the goal of this part of the scenario is to illustrate how low
level cliches can be combined together in order to build up a more complex computation. As a result, the
scenario assumes that cliches for computing the mean and deviation are not available,

Direct Fditing

In order to begin the implementation of the program MEAN-AND-DEVIATION, the programmer begins by
simpiy typing in a functional hcader for the program (sec Screen 10). This is often easier than using the
knowlcdge-based command "Define”.

Botom-Up lmplementaion 43

direct editing

(DEFUN MEAN-AND-DEVIATION PE—

KBEmacs (LISP) «se.oemmnzus.ntsv - . | Screen0

44 Lisp Scenario

The Cliche Sum

In order to compute the mean, the program MEAN-AND-DEVIATION must compute the sum of the timings.
Since this is a stercotyped computation, the programmer asks KBEmacs to insert it into the program (sce
Screen 11). The programmer specifics the appropriate summation algorithm by combining two cliches:
list-cnumeration and sum. (Note that this is the same list-cnumeration cliche which was used in the
implementation of the program REPORT-TIMINGS. The most essential feature of any cliche is that it is a
chunk of knowledge which is used again and again in many different situations.)

"The cliche sum (shown below) specifies how to accumulite the sum of a serics of numbers.

{DEFINE-CLICHE SUM

(PRIMARY-ROLES (NUMBER)
DESCRIBED-ROLES {NUMBER)
COMMENT "accumulates the sum of {the number}")

(LET« ((SUM {0, the zero}))
(LOOP DO

(?%TQ SUM ({+, the accumulator} SUM {the input number})))

SUM

'The cliche sum is a member of a general class of cliches referred to as accumulators, all of which have
essentially the same roles. An input role (here the number) is a sequence of values which is to be combined
into some aggregate vatue. The accumulator (here +) is an operator which adds successive input values into
the aggregate. 'The zero (here 0) is the zero value corresponding to the accumulator. The return value of the
cliche is the sum as a whole. The cliche sum also specifies a name to use for the variable used to accumulate
the sum (i.c., SUM).

Bottom-Up Implementation

s-X Insert a sum of a list-enumeration of TIMINGS. <end>

45

(DEFUN MEAN-AND-DEVIATION (TIMINGS)
QuETe ((LIST TIMINGS)
(suM 0))

(Loor DO
(IF (NULL LIST) (RETURN))
(SETQ SUM (+ SUM {(CAR LIST), the output element}))
(SETQ LIST (CDR LIST)))

SUM))

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP

Sereen 11

46 1isp Scenario

Direct Fditing

‘The programmer continues the implementation of the program MEAN-AND-DEVIATION by moving the
editing cursor to the end of the program and starting to type an expression specifying what the program
should return (sce Screen 12) — i.c., a list the first element of which is the mean. The mean in turn is the sum
of the timings divided by the number of timings. (It is an idiosyncrasy of the Lisp Machine Lisp dialect used
in this scenario that the division function must be written as *//".)

Note that the programmer could have procceded to implement the program MEAN-AND-DEVIATION in a
more top-down fashion by specifying that the program computed a list of two values the first of which was a
division of a sum and a count. However, there would have been no point in doing this because the cliches list
(corresponding to the function LIST) and division (corresponding to the function //) are too trivial to be
uscful. As mentioned carlier, the goal of KBEmacs is to assist the programmer, not to pedantically force him
to do simple things in complex ways.

Bottom-Up Implementation o a1

direct editing

(DEFUN MEAN-AND-DEVIATION (TIMINGS)
(LETe ((LIST TIMINGS)
(Sum 0))

(LOOP DO
(IF (NULL LIST) (RETURN))
(SETQ SUM (+ SuM {(CAR LIST), the output ﬂmut}))
(SETQ LIST (COR LIST)))

(LIST (77 st ©)))

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP o | Screen 12

48 Lisp Scenario

Flexible Interaction

Screen 12 is frozen at the moment where the programmer wants to enter a computation of the number of
timings. Since counting the number of timings is a stereotyped operation, Screen 13 shows the programmer
using the knowledge-based command "Insert” in order to ask KBEmacs to insert the appropriate
computation into the program.

The use of the knowledge-based command "Insert” in Screen 13 is a good cxample of the kind of
flexible interaction between man and machine that KBEmacs is striving for. In the middie of typing an
expression, the programmer issues a request to K BEmacs which is casy to conceive of and even casier to state,
but which requires a significant number of changes scattered throughout the program — e.g., in addition to
adding computation into the main loop. two new variables are created. Because such commands are available,
the programmer can rapidly build up his program by combining together whole algorithms in the order in
which they naturally come to mind.

The cliche count determines the length of some enumerated serics of elements. Like the cliche sum, count
is an accumulation cliche. As will be discussed in detail in Appendix A, the cliche count is particularly
interesting in that it depends on a logical input (the elements to be counted), but docs not actually use any of
these values. As a result, the data flow in Screen 13 does not reveal this dependency.

An interesting feature of the knowledge-based command in Screen 13 is that the input role of the count
cliche is specified using the phrase "the element” rather than by using another cliche or a literal code
fragment. As indicated above, the purpose of output roles is so that they can be referred to in this fashion. It
should also be noted that the output role annotation is no longer displayed in Screen 13. Such annotation is
suppressed, in the interest of brevity, whenever an output role is directly assigned to a variable since the
programmer can usc the variable name if he wants to refer to the output value.

Using Common Sense

An important aspect of Screen 13 is that though the changes in the program clearly satisfy the
programmer’s intent, they do not correspond to the simplest interpretation of the knowledge-based command
given. In general, the knowledge-based command "Insert” inserts code at the place where the cditing
cursor is positioned. Given that this is the case, the most straightforward thing for KBEmacs to have done
would have been to create code of the following form.

(DEFUN MEAN-AND-DEVIATION (TIMINGS)
(LET* ((COUNT 0)
(LIST TIMINGS)
(sum 0))
(LooP DO
(IF (NULL LIST) (RETURN))
(SETQ SUM (+ SUM {(CAR LIST), the output element}))
(SETQ LIST (CDR LIST)))
(LIST (/7 sum [PROGN (LOOP DO (SETQ COUNT (+ COUNT 1))) COUNT)))))

There are situations where inserting a sub-loop would be the right thing to do. However, in this situation
it seeins patently unreasonable, (Among other things, an infinite loop is introduced.) KBEmacs reasons that
since the programmer’s command refers to a scrics of values computed in the main program loop, the count
cliche should be inserted in that loop with only the final value of the count inscrted at the cursor position.

This is an example of a deep problem that KBEmacs only solves in a few limited situations — the use of
common sense. As in any discourse, the programmer wants KBEmacs to exhibit common sense. The system
tries to do this by rejecting interpretations of knowledge-based commands which are obviously unrcasonable.
However, KBEmacs is quite limited in the level of its common sense because what may appear to the

programmer as only being common sense may in fact require an understanding of programming which is

Bottom-Up Implementation

s-X Insert a count of the element. <end>

49

(DEFUN MEAN-AND-DEVIATION (TIMINGS)
(LET+ ((COUNT 0)
(ELEMENT)
(LIST TIMINGS)
(SuM 0))
(LOOP DO
(IF (NULL LIST) (RETURN))
CQSETQ ELEMENT (CAR LIST))
(SETQ COUNT (+ COUNT 1))
(SETQ LIST (COR LIST))
(SETQ SUM (+ SUM ELEMENT)))
(LIST (/7 SUM COUNT))))

KBEmacs (LiSP) <KBE.DEMO>TIMINGS.LISP

Screen 13

50 Lisp Scenario

much more extensive than the knowledge possessed by KBlimacs.

The Quality of the Code Produced hy KBEmacs

As will be discussed in Chapter V, producing reasonably acsthetic program code is the most difficult task
K BEmacs has to perform. The code in Screen 13 is a good example of the fact that KBEmacs produces code
which is reasonably good, but far from optimal. The code is clearly readable but it has many smali problems.
For cxample, KBEmacs is confused by the count cliche into thinking that the output clement of the
enumerator is used in two places and therefore an unneccessary variable is introduced to hold this value.
Further, though the name for the variable created (i.c., ELEMENT) is plausible, it is not particularly meaningful
in the context of this program. As a final cxample, within the constraints of data flow, KBEmacs orders the
variables bound by the LET» alphabctically rather than by using some knowledge-bascd criterion.

One way to think about the code produced by KBEmacs is to realize that like any code, this code has an
identifiable style. From the point of view of the programmer using KBEmacs this is a disadvantage in the
sense that he would probably prefer to look at code that is written in his own style rather than in the system’s
style. However, this disadvantage is counterbalanced by several advantages. First, the programmer is relicved
of much of the task of writing the code. If you ask someone clse to write some code for you it is only
reasonable to expect it to come out largely in their style. Sccond, since KBEmacs completely recodes a
program after cach change, the program is always consistent in style rather than taking on a patchwork look
after a sequence of modifications. Third, if several programmers are working on a project, than the fact that
KBEmacs largely controls the style of the code, might lead to better inter-programmer communication by
rendering the code for the project as a whole more stylistically uniform.

Tidying Up the Code Produced by KBEmacs

In Screen 14, the programmer uscs the standard Emacs command m-% (query replace) to rename the
variable ELEMENT to TIMING. This illustrates the fact that if the programmer does not like the variables
chosen by KBEmacs, he can easily change them.

Embedding Cliche References in Program Code

In Screen 14, the programmer finishes the program MEAN-AND-DEVIATION by specifying how to compute
the deviation. He does this by using standard Emacs commands to directly modify the program code. The
expression the programmer inscrts illustrates another way in which KBEmacs can be used. Annotation which
describes a computation to be performed in terms of cliches can be inserted directly in a program. KBEmacs
will eventually replace this annotation with the appropriate code. This is cquivalent to using the
knowledge-based command "Insert”, but can be more readable.

The first picce of annotation specifics how to compute a sum of the squares of the individual timings. It
uses the cliches sum and squaring. The second picce of annotation is used to refer to the value of the mean.
'The phrase "a use of" makes it possible to refer to a quantity even when it is not stored in a variable.
Wiihout this capability, the programmer would have to introduce a variable himself. The phrase
"the first //"identifics the value as the output of the first (in execution order) division operation.

Bottom-Up linplementation 51

m-c-H c¢-U m-% replace some occurrences of: ELEMENT with: TIMING
direct editing

(DEFUN MEAN-AND-DEVIATION (TIMINGS)
(LET* ((COUNT 0)
(TIMING)
(LIST TIMINGS)
(SuM 0))
(LOOP DO
(IF (NULL LIST) (RETURN))
(SETQ TIMING (CAR LIST))
(SETQ COUNT (+ COUNT 1))
(SETQ LIST (CDR LIST))
(SETQ SUM (+ SUM TIMING)))
(LIST (/7 SUM COUNT)
(ISQRT (- (/7 {a sum of a squaring of TIMING} COUNT)
(» {a use of the first //} 2)))D)

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP Screen 14

52 Lisp Scenario

Replacing Fbedded Cliche References With Code

In Screen 15, the programmer tells K BEmacs that the program has been completed by using the command
s-<end>. ‘The major cffect this has is to cause KBEmacs to analyze the direct cditing done by the
programmer in the last screen and to replace the annotation introduced with ordinary program code. As part
of this, a sccond summation is inserted into the main loop. This summation computes the sum of the squares
of the timings. Due to the fact that the variable name SUM is alrcady used in the program, KBEmacs uses the
name SUM1 for the accumulation variable of this sccond summation. In addition, a variable is introduced so
that the value of the mean can be used twice. The name X is used for this variable because KBEmacs has no
basis for determining a better name to use. Finally, in order to maintain its stylistic constraints, KBEmacs
reorders the bound variables so that they are alphabetical. (They got out of order due the the variable
renaming in Screen 14,)

Bottom-Up Implementation 53

s-<end> Finish editing the function MEAN-AND-DEVIATION. <end>

(DEFUN MEAN-AND-DEVIATION (TIMINGS)
(LET* ({(COUNT 0)
(LIST TIMINGS)
(sum 0)
(Sum1 0)
(TIMING)
(x))
(LOOP DO
(IF (NULL LIST) (RETURN))
(SETQ TIMING {CAR LIST))
WOSETQ SuM1 (+ SUM1 (A TIMING 2)))
(SETQ COUNT (+ COUNT 1))
(SETQ LIST (CDR LIST))
(SETQ SUM (+ SUM TIMING)))
(SETQ X (/7 SUM COUNT))
(LIST X (ISQRT (- (/7 SUML COUNT) (» X 2))))N

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP Screen 15

54 Lisp Scenario

Tidying Up the Code Produced by KBEmacs

1.ooking at the result produced in Screen 15, the programmer decides to change the variable names chosen
by KBEmacs so that they are more mnemonic. He does this using standard cditing commands in Screen 16
and then compiles the program so that it can be tested.

Evaluating the Commands Used

The KBEmacs commands used in this part of the scenario can by nicely summarized by supposing that all
of the cliches were referred to with embedded annotation. (If embedded annotation had actually been used as
shown below, it would have resulted in a correctly running program. However, the program would have been
quite inefficient because there would have been four separate list-enumerations and two separate counts.
K BEmacs is not capable of automatically determine that these computations should be shared. Achicving this
sharing is an important reason why the scenario above took the form it did.)

(DEFUN MEAN-AND-DEVIATION {TIMINGS)
(LIST (/7 {a sum of a list-enumeration of TIMINGS}
{a count of a list-enumeration of TIMINGS})
(ISQRT (- (// {a sum of a squaring of a list-enumeration of TIMINGS}
{a count of a list-enumeration of TIMINGS})
(~ {a use of the first 7/} 2)))))

It can be seen that the knowledge-based commands used have much the same form as the set of directions
for a human assistant hypothcsized at the beginning of this section.

Define a program MEAN-AND-DEVIATION with one parameter, a list of timings.
Return a 1ist of the mean and deviation of these timings. The mean is the
sum of the timings divided by the number of timings. The standard deviation
is the square root of the difference between the second moment and the square
of the mean., The second moment is the sum of the squares of the timings
divided by the number of timings.

Bottom-Up Implementation

m-c-H c-U m-% replace some occurrences of: SUM1 with: SUM-SQUARES
m-c-H c-U m-% replace soms occurrences of: X with: MEAN

s-<end> Finish editing the function MEAN-AND-DEVIATION. <end>
c-shift-C Comp11ing MEAN-AND-DEVIATION

55

{DEFUN MEAN-AND-DEVIATION (TIMINGS)
(LET+ ({COUNT 0)
(LIST TIMINGS)
(MEAN)
(Sum 0)
(SUM-SQUARES 0)
(TIMING))
{LOOP DO
(IF (NULL LIST) (RETURN))
(SETQ TIMING (CAR LIST))
(SETQ SUM-SQUARES (+ SUM-SQUARES (M TIMING 2)))
(SETQ COUNT (+ COUNT 1))
(SETQ LIST (CDR LIST))
(SETQ SUM (+ SUM TIMING)))
(SETQ MEAN (// SUM COUNT))
(LIST MEAN (ISQRT (- (// SUM-SQUARES COUNT) (A MEAN 2))))))

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP

Screen 16

36 ’ Lisp Scenario

Testing : B . :
In Screen 17, the programmer uses the standard Lisp Machine context switching command <select) L in
order to temporarily switch to the Lisp exccution cnvironment. He then defines a test program
TEST-REPORT-TIMINGS and tests the program REPORT- TIMINGS. The program MSPLAY-EEPMI {see
Appendix B) displays the report produced. In order to save screen space the program DISPLAY-REPORT

 abbreviates groups of blank lines with a single line of the form "Cn blask Vines>". Page breaks are

represented by "<paged>”. Scmnl?myaanoﬂwrumkofmewmﬁmnmwmme
LnspMachxaeenwmnmemmmhawaythatﬁepmgmmmﬁd’menomuspuachme
~ facilities.

Bottom-Up limplementation

{select> L

57

(DEFUN TEST-REPORT-TIMINGS ()
(REPORT-TIMINGS '(10041 9315 10722 11473 10834 11076 10447 10658 9529
9041 10452 11137 10351 10384 10474 11706 9592 10685))
(DISPLAY-REPORT))
TEST-REPORT-TIMINGS
(TEST-REPORT-TIMINGS)
<5 blank lines>
Report of Reaction Timings (in msec.)

5/27/85 12:16:39
<page>
Page: 1 Report of Reaction Timings (in msec.) 5/27/85 12:16:39

10,041

9,315
10,722
11,473
10,834
11,076
10,447
10,658

9,529

9,041
10,452
11,137
10,351
10,384
10,474
11,706

9,592
10,685

mean: 10,439 (deviation:713)

Lisp Listener

Screen 17

58

Modification and Documentation

Although KBEmacs focuses primarily on the task of program construction, the basic capabilitics of the
system provide considerable leverage on other aspects of the programming process. In order to illustrate this
fact, KBEmacs supports a fcw commands which are directed explicitly toward the tasks of program
modification and documentation,

The Knowledge-Based Command "Replace”

Looking at the test output produced in Screen 17, the programmer decides that the report would look
better if the timings were printed out in a tabular form rather than onc to a line. In order to perform this
modification, the programmer first switches back into the editor and then uses the standard Emacs command
m-. (goto definition) in order to move the cditing cursor to the definition of the function REPORT-TIMINGS
(scc Screen 18).

Having located the function REPORT-TIMINGS the programmer uses the knowledge-based command
"Replace" in order to change the print-item from a print-out to a tabularized-print-out. The command
"Replace” removes the old code filling the specified role and replaces it with the new computation specified.
The essential underpinning of the command is the fact that KBEmacs remembers where the various roles in a
program are even after they have been filled in.

The Cliche Tabularized-Print-Out

The cliche tabularized-print-out (shown below) is similar to the cliche print-out in that it has two primary
roles, a format-string and an object to print. However, unlike the cliche print-out, the cliche
tabularized-print-out assumes that the format-string will not force a newline, and prints as many objects as
possible on each line. Before printing out an object the cliche tests to see whether there is enough room at the
end of the current line in order to print it. If there is not enough room, then a newline is inserted (and the line
number is incremented). The Lisp Machine Lisp function CHARPOS returns the output character position on
the current line. ‘T'he role maximum-charpos is derived by a constraint based on the assumption that only 75
characters can be printed on a linc. The function SIZE-IN-CHARACTERS is capable of analyzing simple
format control strings and determining the maximum number of characters that will be printed.

(DEFINE-CLICHE TABULARIZED-PRINT-QUT
(PRIMARY~ROLES (FORMAT-STRING ITEM)
DESCRIBED-ROLES (FORMAT-STRING ITEM NUMBER-OF-COLUMNS)
COMMENT "prints out {the item} in columns™
CONSTRAINTS
((DEFAULT {the format-string} "~15A")
(DERIVED {the maximum-charpos}
(- 75 (SIZE-IN-CHARACTERS {the format-string})))))
(WHEN (> (CHARPOS REPORT) {the maximum-charpos})
(FORMAT REPORT "~&")
(SETQ LINE (+ LINE 1)))
(FORMAT REPORT {the format-string} {the input item}))

In Screen 18, the format-string specified prints out 10 characters. As a resuit, the maximum-charpos is set
at 65. The linc-limit role of the simple-report remains fixed at 62 because the tabularized-print-out can print
at most one output line.

Madification and Documentation

{select> E

m-. Edit definition of REPORT-TIMINGS

s-X Replace the print-item with a tabularized-print-out of "~10:D". <end>
s-<end> Finish editing the function REPORT-TIMINGS. <end>

c-shift-C Compiling REPORT-TIMINGS

59

(DEFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" ':0UT)
(LET* ((DATE (TIME:PRINT-CURRENT-TIME NIL})

(LINE 66)

(LIST TIMINGS)

(PAGE 0)

(TITLE "Report of Reaction Timings (in msec.)"))
(FORMAT REPORT "~5%~66: (~A~>~2%~66: <{~A~>~%" TITLE DATE)
(LOOP DO

(IF (NULL LIST) (RETURN))

(WHEN (> LINE 62)
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~|~%Page:~3D~50: <~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3))

TWHEN (> (CHARPOS REPORT) 65)
(FORMAT REPORT "~&")
(SETQ LINE (+ LINE 1)))

(FORMAT REPORT "~10:D" (CAR LIST))

(SETQ LIST (CDR LIST)))

(FORMAT REPORT "~2&~{mean:~8:D {deviation: ~:D)~}"
(MEAN-AND-DEVIATION TIMINGS)))))

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP

Screen 18

Modification and Documentation

{select> L

61

(TEST-REPORT-TIMINGS)
<5 blank tines>
Report of Reaction Timings (in msec.)

5/27/85 12:17:07

<{page>

Page: 1 Report of Reaction Timings (in msec.) 5/27/85 12:17:07
10,041 9,315 10,722 11,473 10,834 11,076 10,447
10,658 9,529 9,041 10,452 11,137 10,351 10,384
10,474 11,706 9,592 10,685

mean: 10,439 (deviation: 713)

Lisp Listener

Screen 19

62 Lisp Scenario

‘The Knowledge-Based Command “"Comment”

In Screen 20, the programmer switches back to the editor and asks KBEmacs to generate a comment for
the function REPORT-TIMINGS. This is an example of one way in which KBEmacs can use the information it
maintains about the structure of a program in order to assist a programmer in understanding the program.
The knowledge-based command "Comment” (here triggered by the abbreviated command s-:) creates a
summary comment describing a program and inscrts this comment into the editor buffer.

The comment is in the form of an outline. The first linc specifics the top level cliche in the program. The
subsequent entrics describe how the major roles in this cliche have been filled. 'The comment is constructed
based on the cliches that were used to create the program. The DESCRIBED-ROLES declaration from the
definition of the top level cliche specifics which roles to describe and what order to describe them in.

Each role is described in one of four ways. 1f the role has been removed, then it is reported as missing
(c.g., the column-headings). If the role is filled by a cliche then this cliche is named (e.g., list-cnumeration).
Further, a brief one line description showing how the roles of this sub-cliche are filled in is included. (This
description is generated from the COMMENT declaration from the definition of the sub-cliche.) If a rolc is filled
with non-cliched computation which is short cnough to fit on a single linc then the corresponding code is
displayed (c.g., the title); otherwise, the computation is simply reported to be idiosyncratic (c.g., the
summary). The individual lines of the comment are written in the same style as the knowledge-based
commands. In particular, variable names and code fragments are rendered in upper case.

Evaluating the Comment Produced

"The comment generation capability currently supported by KBEmacs is only intended as an illustration of
the kind of comment that could be produced. There arc many other kinds of comments containing either
more or less information that could just as well have been produced. For example, KBEmacs could easily
include a description of the inputs and outputs of the program in the comment. The form of comment shown
was chosen becausc it contains a significant amount of high level information which is not explicit in the
program code. As a result, it should be of genuine assistance to a person who is trying to understand the
program.

A key feature of the comment is that, since it is gencrated from the knowledge underlying the program, it
is guarantced to be complete and correct. In contrast, much of the program documentation one typically
encounters has been rendered obsolete by subscquent program modifications. Although it is not currently
supported, it would be relatively casy for KBEmacs to generate a new program comment every time a
program was modificd. Using this approach it might be possible for such commentary to augment (or even
partially replace) program code as the means of communication between KBEmacs and the programimer.

The Knowledge-Based Command "High1ight"

Another way in which KBEmacs can assist a programmer in understanding a program is to point out
various parts of the program. In Screen 20, the programmer asks to sce the summary role. The
knowledge-based command "Highlight" uses standard editor highlighting (i.c, underlining) in order to
show the programmer a particular part of a program. In order to support this command, KBEmacs maintains
a mapping which shows what picces of the text for a program correspond to each role in the program.

Maodification and Documentation

{select> E
s-; Comment the function REPORT-TIMINGS. <end>
s-X Highlight the summary. <end>

63

1+ The function REPORT-TIMINGS 1s a simple-report.

= The file-name 1s "report.txt”.

i: The title 1s "Report of Reaction Timings (in msec.)".
A The enumerator 1s a list-enumeration.

i It enumerates the elements of TIMINGS.

HH There are no column-headings.

0 The print-item is a tabularized-print-out.

i It prints out (CAR LIST) 1in columns.

HR The summary 1s an idiosyncratic computation,

(DEFUN REPORT-TIMINGS (TIMINGS)
(WITH-OPEN-FILE (REPORT "report.txt" ':0UT)
(LET+ ((DATE (TIME:PRINT-CURRENT-TIME NIL))

(LINE 66)

(LIST TIMINGS)

(PAGE 0)

(TITLE "Report of Reaction Timings (in msec.)"))
(FORMAT REPORT "~5%~66: <~A~>~2%~66: <~A~>~%" TITLE DATE)
(LOOP DO

(IF (NULL LIST) (RETURN))

(WHEN (> LINE 62)
(SETQ PAGE (+ PAGE 1))
(FORMAT RFPORT "~|~%Page:~30~50: <(~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3))

(WHEN (> (CHARPOS REPORT) 65)
(FORMAT REPORT "~&")
(SETQ LINE {+ LINE 1)))

(FORMAT REPORT "~10:D" (CAR LIST))

(SETQ LIST (CDR LIST)))

fF ORMAT REPORT "~2&~{mean:~8:0 (deviation: ~:D)~}"
(MEAN-AND-DEVIATION TIMINGS)))))

KBEmacs (LISP) <KBE.DEMO>TIMINGS.LISP

Screen 20

64

Decfining a Cliche

In the remainder of the Lisp scenario, the programmer defines a new cliche. 'This part of the scenario
secks to demonstrate two main points. First, defining a new cliche is no more difficult than defining a
program. It is expected that programmers will define their own idiosyncratic cliches as readily as they define
new subroutines. As with subroutines, the key difficulty resides in deciding exactly what cliches should be
defined.

Sccond, this part of the scenario demonstrates a third style of program construction — the latcral
modification of almost-right cliches. In this style the programmer begins with a cliche which embodies much
of what he wants and then fixes it up in order to get exactly what he wants. Any real programming situation
involves a combination of the top-down, bottom-up, and lateral modification styles of implementation.

Directions for a Human Assistant

In the scenario below, the programmer defines a new cliche report-with-subheadings. This cliche is
similar to the cliche simple-report except that it assumes that the items to be reported are divided into groups
and makes it possible for the user to specify the printing of a subheading before cach group. The directions
shown below illustrate how an cxpert programmer might tell an assistant programmer what to do. These
directions are couched in terms of lateral modification. They rely on an understanding of the terms "simple
report” and "group detector” (sec the description of Screen 22 for a discussion of the latter term).

Define a cliche report-with-subheadings. This cliche should have all of the
features of a simple-report. In addition, the cliche should have two new
roles: the group-test and the subheading. The group-test should be the test

of a group detector. The subheading role should be used to print a
subheading each time the start of a new group is detected. -

The Knowledge-Based Command "Copy"

In order to define the cliche report-with-subhcadings, the programmer reads in the file of cliches and then
uses the knowledge-based conunand "Define” in order to create an initial empty definition. He then uses
the knowledge-based command "Copy” in order to create a copy of the definition of the cliche simple-report
(see Screen 21). ‘The difference between the knowledge-based commands "Copy™ and "Insert” is that while
"Insert"” creates an instance of a cliche, "Copy" copies over all of the commentary about a cliche, creating an
analogous cliche definition. The knowledge-based command "Copy™ is provided specifically in order to
facilitate the definition of cliches which are similar to predefined cliches.

Defining a Cliche

c-X c-F Find file <KBE.DEMO>CLICHE-LIBRARY.LISP
s-X Define a cliche REPORT-WITH-SUBHEADINGS. <end>

65

s-X Copy the cliche SIMPLE-REPORT to the cliche REPORT-WITH-SUBHEADINGS. <end>

cursor molion

(DEFINE-CLICHE REPORT-WITH-SUBHEADINGS
(PRIMARY-ROLES (ENUMERATOR PRINT-ITEM SUMMARY)
DESCRIBED-ROLES (FILE-NAME TITLE ENUMERATOR COLUMN-HEADINGS
PRINT-ITEM SUMMARY)
COMMENT "prints & report of {the input structure of the enumerator}”
CONSTRAINTS
((DEFAULT {the file-name} "report.txt")
(DERIVED fthe 1ine-11imit}
- 6§
(SIZE-IN-LINES {the print-item})
(SIZE-IN-LINES {the summary})))))
(WITH-OPEN-FILE (REPORT {the file-name} ':0UT)
(LETe ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(LINE 66)
(PAGE 0)
(TITLE {the titla})
(DATA {the input structure of the enumerator}))
(FORMAT REPORT "~5%~66: <(~A~>~2%~66: <~A~>~%" TITLE DATE)
(Loor Do
(IF ({the empty-test of the enumerator} DATA) (RETURN))
(WHEN (> LINE {the 1ine-~11imit})
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~|~%Page:~3D~50: (~A~>~17A~2%" PAGE TITLE DATE)
{SETQ LINE 3)
({the column-headings} {REPORT, modified} {LINE, modified}))
Qfthe print-item} {REPORT, modified}
{LINE, modified}
({the element-accessor of the enumerator} DATA))
(SETQ DATA ({the step of the enumerator} DATA)))
({the summary} {REPORT, modified}))))

KBEmacs (LISP) <KBE,DEMO>CLICHE-LIBRARY.LISP

Screen 21

66 Lisp Scenario

The Cliche Group-detector

Before continuing with the definition of the cliche report-with-subhcadings it is important to take a look at
the cliche group-detector (shown below). The purpose of this cliche is to identify groups in a series of items.
FFor example consider the scries of digits 2 2 8 6 68 6. This series is composed of groups of repeated digits
(i.c., two 25, onc 8, and three 6s). 'The cliche group-detector could be used to signal the start of cach group in
the series.

The cliche group-detector has three roles: the input item, the test, and the output flag. The input item is
the serics to be tested. The test is a function which determines when a new group is beginning. The cliche
assumes that the start of a new group can be detected by comparing the current item with its predecessor. The
test is intended to be a function of two arguments (the prior item and the current item) which returns T if and
only if the current item is the start of a new group. The output flag is a series of truth values specifying
whether or not the corresponding items start new groups. For example, if the input items were the series of
digits shown above and the test werc the function =, then the output flag would be the serics
T NIL T T NIL NIL,

(DEFINE-CLICHE GROUP-DETECTOR
(PRIMARY-ROLES (ITEM TEST)
DESCRIBED-ROLES (ITEM TEST)
COMMENT "locates the beginning of each group in {the item}")
(LET» ((DATUM)
(UNIQUE-VALUE (NCONS NIL))
(PREVIOUS UNIQUE-VALUE))
(LOOP DO
(SETQ DATUM {the input item})
{(OR (EQ PREVIOUS UNIQUE-VALUE) ({the test} PREVIOUS DATUM)),
the output flag}
{SETQ PREVIOUS DATUM))))

The main complexity in the cliche group-detector comes from handling the boundary conditions at the
first input item. The problem is that this item has no predecessor. It is however, guaranteed to begin a new
group — the first group. To deal with this, the cliche initializes the variable PREVIOUS with a unique value —
one which cannot be EQ to any other data item. By comparing the value of the variable with this unique
value, the cliche is able to insure that the test is only applicd to items after the first one. In Lisp, this is an
cfficient and compact algorithm.

One way to look at the cliche group-detector is as an abstraction shift which connects the simple idea of a
function which detects groups by comparing successive items in a serics into an algorithm which actually
works. The key virtue of the cliche is that it relicves the programmer from having to worry about the detailed
code — which is, in truth, rather obscure.

Note that it is tempting to simplify the code by initializing the variable PREVIOUS to NIL. However, this
would introduce a hidden bug which would appcar only when one of the data items was NIL. This is an
example of the fact that one has to be carcful when defining a cliche. However, this carcfulness pays off in
enhanced program reliability when the cliche is used.

Lateral Modification

The difference between the cliches simple-report and report-with-subheadings is that before printing out
cach item, the latter cliche must potentially print out a subhcading, In order to introduce this added
computation, the programmer first positions the editing cursor before the print-item role (see Screen 21), and
then inserts a group-detector (see Screen 22). 'The code produced is another example of how a simple
command to KBEmacs can cause a number of non-local modifications to a program. Note in particular that
the insertion of the cliche group-detector forces the introduction of a variable DATUM to hold the value of the

Defining a Cliche

s-X Insert a group-detector of the element-accessor. <end>

67

(DEFINE-CLICHE REPORT-WITH-SUBHEADINGS
(PRIMARY-ROLES (ENUMERATOR PRINT-ITEM SUMMARY)
DESCRIBED-ROLES (FILE-NAME TITLE ENUMERATOR COLUMN-HEADINGS
PRINT-ITEM SUMMARY)
COMMENT "prints a report of {the input structure of the enumeratorl}"
CONSTRAINTS
((DEFAULT {the file-name} "report.txt")
(DERIVED {the line-limit}
(- 65
(SIZE-IN-LINES {the print-item})
(SIZE-IN-LINES {the summary})))))
(WITH-OPEN-FILE (REPORT {the file-name} ':0UT)
(LET* ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(DATUM)
(LINE 66)
(PAGE 0)
(UNIQUE-VALUE (NCONS NIL))
(PREVIOUS UNIQUE-VALUE)
(TITLE {the title)})
(DATA {the input structure of the enumerator}))
(FORMAT REPORT "~5%~66: (~A~>~2%~66: (~A~>~%" TITLE DATE)
(LooP DO
(IF ({the empty-test of the enumerator} DATA} (RETURN))
ETQ DATUM ({the element-accessor of the enumerator} DATA))
WHEN (> LINE {the line-limit})
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~|~%Page:~3D~50: <~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3)
({the column-headings} {REPORT, modified} {LINE, modified}))
({the print-item} {REPORT, modified} {LINE, modified} DATUM)
{(OR (EQ PREVIOUS UNIQUE-VALUE) ({the test} PREVIOUS DATUM)),
the output flag}
(SETQ DATA ({the step of the enumerator} DATA))
(SETQ PREVIOUS DATUM))
({the summary} {REPORT, modified}))))

KBEmacs (LISP) <KBE.DEMO>CLICHE-LIBRARY,LISP

Screen 22

68 Lisp Scenario

current clement being cnumerated.

The cliche simple-report is being used in a completely different way in this part of the scenario than the
way it was used in the implementation of the program REPORT-TIMINGS. When implementing
REPORT-TIMINGS. the cliche was used because the desired program was an instance of this cliche. Here, the
cliche is used merely because it contains a lot of structure which is desired and therefore it is convenient to use
the cliche as a starting point. It should be noted. however, that once the group-detector has been introduced,
the code is no longer an instance of a simple-report and the programmer must accept full responsibility for
deciding what parts of the cliche are still appropiiate.

An interesting aspect of Screen 22 is that the group-detector does not end up before the print-item. This is
anotlicr example of the limitations of the ability of KBEmacs to generate acsthetic program code. KBEmacs
orders the statements in a program solely based on data flow and control flow constraints. In Screen 22, there
is no data flow or control flow rcason why the group-detector must be placed cither before or after the
print-item. In such situations, the statement order chosen by KBEmacs is cssentially arbitrary.
Unfortunately, KBEmacs is not able to recognize the cursor position in Screen 21 as, in effect, a comment
signaling the fact that the programmer intends the group-detector to appear in that position. Rather,
KBEmacs only uses the cursor position to determine the data flow and control flow environment of the
insertion.

inserting the Subhcading Role

In Screen 23, the programmer uses direct editing in order to specify the printing of subheadings. He
creates a role corresponding to the printing of subheadings by simply typing in {. ..} annotation describing
the role. Like the print-item, this role is expected to side-cffect the REPORT file, update the line number, and
use the current clement being enumerated.

In order to specify when the subheadings should be printed, the programmer uscs a conditional predicated
on the output of the group-detector. At first glance it may seem odd that the programmner can refer to the
group-detector even though the conditional precedes the group-detector. This is allowed in order to give the
programmer added flexibility. The programmer can refer to a following quantity unless the data flow
specifies that the quantity is required to follow.

Defining a Cliche

direct editing

69

{DEFINE-CLICHE REPORT-WITH-SUBHEADINGS
{PRIMARY-ROLES (ENUMERATOR PRINT-ITEM SUMMARY)
DESCRIBED-ROLES (FILE-NAME TITLE ENUMERATOR COLUMN-HEADINGS
PRINT-ITEM SUMMARY)
COMMENT "prints a report of {the input structure of the enumerator}"
CONSTRAINTS
((DEFAULT {the file-name} "report.txt")
(DERIVED {the line-limit}
(- 65
(SIZE-IN-LINES {the print-item})
(SIZE-IN-LINES {the summary})))))
(WITH-OPEN-FILE (REPORT {the file-name} ':0UT)
(LET* ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(DATUM)
(LINE 66)
(PAGE 0)
(UNIQUE-VALUE (NCONS NIL))
(PREVIOUS UNIQUE-VALUE)
(TITLE {the titlel})
(DATA {the input structure of the enumerator}))
(FORMAT REPORT "~5%~b66: <{~A~D>~2%~66: <~A~>~%" TITLE DATE)
(LooP DO
(IF ({the empty-test of the enumerator} DATA) (RETURN))
(SETQ DATUM ({the element-accessor of the enumerator} DATA))
(WHEN (> LINE {the Tine-Tlimit})
{SETQ PAGE (+ PAGE 1))
{ FORMAT REPORT "mj~%Page:~3D~60: {~A~>~1T7A~2%" PAGE TITLE DATE)
(SETQ LINE 3) :
({the column-headings} {REPORT, modified} {LINE, modified}))
(IF {a use of the flag}
({the subheading} {REPORT, modified} {LINE, modified} DATUM))D
({the print-item} {REPORT, modified} {LINE, modified} DATUM)
{(OR (FQ PREVIQUS UNIQUE- ~-VALUE) ({the test} PREVIOUS DATUM)),
the output flag}
(SETQ DATA ({the step of the enumerator} DATA))
(SETQ PREVIOUS DATUM))
({the summary} {REPORT, modified}))))

KBEmacs (LISP) <KBE.DEMO>CLICHE-LIBRARY.LISP

Screen 23

0 , ' Lisp Sccnario

The Knowledgc-Based Command "Analyze”

The knowledge-based command "Analyze” tells KBEmacs to analyze the effects of d:rect cditing done by
the programmer without initiating any other action. In Screen 24, this causcs the annotation referring to the
group-detector to be replaced by the corresponding code. ‘Note that the group-detector is now" positioned
before the print-item because it is required to be there by the data flow. (The control flow in the conditional
mmmmrwmmmmmmm&mmmmwmmm

"ﬁleforcesmesubheadmgtobebe&reﬂ!epﬁmm)

Defining a Cliche

s-A Analyze the cliche REPORT-WITH-SUBHEADINGS. <end>

71

{DEFINE-CLICHE REPORT-WITH-SUBHEADINGS
(PRIMARY-ROLES (ENUMERATOR PRINT-ITEM SUMMARY)
DESCRIBED-ROLES {FILE-NAME TITLE ENUMERATOR COLUMN-HEADINGS
PRINT-ITEM SUMMARY)
COMMENT "prints a report of {the input structure of the enumerator}"
CONSTRAINTS
((DEFAULT {the file-name} "report.txt")
(DERIVED Ethe line~-1imit}
- B5
(SIZE-IN-LINES {the print-item})
(SIZE-IN-LINES {the summary})))))
(WITH-OPEN-FILE (REPORT {the file-name} ':0UT)
(LET* ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(DATUM)
(LINE 66)
(PAGE 0)
(UNIQUE-VALUE (NCONS NIL))
(PREVIOUS UNIQUE-VALUE)
(TITLE {the title})
(DATA {the input structure of the enumerator}))
(FORMAT REPORT "~5%~66: <~A~>~2%~66: <{~A~>~%" TITLE DATE)
(LoOP DO
(IF ({the empty-test of the enumerator} DATA) (RETURN))
(SETQ DATUM ({the element-accessor of the enumerator} DATA))
(WHEN (> LINE {the line-1imit})
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~|~%Page:~3D~50: {(~A~>~17A~2%" PAGE TITLE DATE)
{SETQ LINE 3)
({the column-headings} {REPORT, modified} {LINE, modified}))
(1F BXOR (EQ PREVIOUS UNIQUE-VALUE) ({the test} PREVIOUS DATUM)),
the output flag}
({the subheading} {REPORT, modified} {LINE, modified} DATUM))
({the print-item} {REPORT, modified} {LINE, modified} DATUM)
(SETQ DATA ({the step of the enumerator} DATA))
(SETQ PREVIOUS DATUM))
({the summary} {REPORT, modified}))))

KBEmacs (LISP) <KBE.DEMO>CLICHE-LIBRARY.LISP

Screen 24

17 Lisp Scenario

Fditing the Cliche Declarations

In Screen 25, the programmer finishes the cliche report-with-subhcadings by appropriately updating the
declarations in the cliche definition. First. he renames the test of the group-detector to be the role group-test.
He then specifies that the subheading and group-test should be described roles. Next, he updates the
constraint deriving the line-limit so that it accounts for the subhcading as well as the print-item and the
summary. Finally, he deletes the commentary describing the flag output of the group-detector because he
does not want this to be a role of the cliche report-with-subheadings.

After finishing the cliche, the programmer uses the knowledge-based command "Finish™ in order to
signal this fact to KBEmacs. When operating on a cliche definition, the knowledge-based command
"Finish" does not complain about unfilled roles, or remove output role annotation because these things are
an cssential part of cliches.

Finally, the programmer uscs the standard Emacs command c-shift-C (compile definition) in order to
compile the cliche. 'The act of compiling a cliche makes it available to KBEmacs. From this point on, the
programmer can usc the cliche report-with-subhcadings just like any other cliche.

Fvaluating the Commands Used

A comparison of the commands which were used in order to implement the cliche
report-with-subhecadings i.e.:
Define a cliche REPORT-WITH-SUBHEADINGS.
Copy to the cliche REPORT-WITH-SUBHEADINGS the cliche SIMPLE-REPORT,

Insert a yroup-detector of the element-accessor.
direct editing

with the directions that might have been given to a human assistant i.e.:

Define a cliche report-with-subheadings. This cliche should have all of the
features of a simple-report. In addition, the cliche should have two new
roles: the group-test and the subheading. The group-test should be the test
of a group detector. The subheading role should be used to print a
subheading each time the start of a new group is detected.

shows that they have much of the same character. However, in this case, the knowledge-based commands
only support the top Ievel parts of the directions. The lower level changes are done by means of direct
cditing,

Defining a Cliche

direct editing
s-<end> Finish editing the cliche REPORT-WITH-SUBHEADINGS. <end>
c-shift-C Compiling REPORT-WITH-SUBHEADINGS

13

(DEFINE-CLICHE REPORT-WITH-SUBHEADINGS
(PRIMARY-ROLES (ENUMERATOR PRINT-ITEM SUMMARY)
DESCRIBED-ROLES (FILE-NAME TITLE ENUMERATOR COLUMN-HEADINGS
PRINT-ITEM SUBHEADING GROUP-TEST SUMMARY)
COMMENT “prints a report of {the input structure of the enumerator}"
CONSTRAINTS
((DEFAULT {the file-name} "report.txt")
(DERIVED gthe line-1imit}
- 65
(SIZE-IN-LINES {the print-item})
(STZE-IN-LINES {the summary})
(SIZE-IN-LINES {the subheading})))))
(WITH-OPEN-FILE (REPORT {the file-name} ':0UT)
(LET* ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(DATUM)
(LINE 66)
(PAGE 0)
(UNIQUE-VALUE (NCONS NIL))
(PREVIOUS UNIQUE-VALUE)
(TITLE {the title})
(DATA {the input structure of the enumerator}))
(FORMAT REPORT "~5%~66: <~A~>~2%~66: <~A~>~%" TITLE DATE)
(LOOP DO
(IF ({the empty-test of the enumerator} DATA) (RETURN))
(SETQ DATUM ({the element-accessor of the enumerator} DATA))
(WHEN (> LINE {the line-1limit})
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~|~%Page:~3D~50: <~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3)
({the column-headings} {REPORT, modified} {LINE, modified}))
(IF @R (EQ PREVIOUS UNIQUE-VALUE)
({the group-test} PREVIOUS DATUM))
({the subheading} {REPORT, modified} {LINE, modified} DATUM))
({the print-item} {REPORT, modified} {LINE, modified} DATUM)
(SETQ DATA {{the step of the enumerator} DATA))
(SETQ PREVIOUS DATUM))
({the summary} {REPORT, modified}))))

KBEmacs (LISP) <KBE.,DEMO>CLICHE-LIBRARY,LISP

Screen 25

75

I11- Ada Scenario

An important aspect of KBEmacs is that both the ideas behind the system and the actual implementation
of the system are substantially programming language independent. As will be discussed in Chapter V, to
extend KBEmacs so that it can be used to operate on a given programming language, one need only do two
things: give the system an understanding of the syntax and semantics of the language in question, and provide
a library of cliches which are appropriate for writing programs in that language. This chapter demonstrates
the language independence of KBEmacs by showing the system being used to construct several Ada
programs. Although this chapter does not assume that the reader knows the details of Ada, it docs assume a
familiarity with Algol-like languages in general. The reference manual [Ada 83] describes Ada in detail.

Another purpose of this chapter is to show that KBEmacs can be used to operate on programs of realistic
size and complexity. Earlier scenarios (whether proposed [Rich Shrobe 78] or real [Waters 82al) have focused
on simple programs only 10 to 20 lines long. Although this was done primarily in the interest of brevity, it
naturally brought up the question of whether the system could be applied to large programs. The last section
of this chapter shows the construction of a 110 line Ada program. It could be argued that programs should
not be larger than this,

The scenario in this chapter is also used to demonstrate a number of points which are brought out better
by the language Ada than by Lisp. For example, unlike Lisp, data declarations are an important part of any
Ada program. This can be a source of programmer frustration because, though much of the information in
data declarations is redundant with the rest of the program, it must all be independently specified. This is an
example of a task for which KBEmacs is ideally suited. KBEmacs can automatically generate most of the data
declarations in a typical program.

Ada Cliches

In the scenario below, as in the Lisp scenario in the last chapter, cliches are central to the communication
between the programmer and KBEmacs. This section presents several Ada cliches and contrasts them with
their Lisp counterparts. (Appendix A presents the complete Ada cliche library.)

Lisp cliches and Ada cliches differ in analogy with the way that the languages Lisp and Ada differ. The
primary difference is merely syntactic. Many corresponding cliches in the two languages are, apart from
syntax, identical. However, there are a number of semantic differcnces between the languages, and between
their run time environments, which can lead to significant differences between corresponding cliches.

76 Ada Scenario

A Simple Cliche
Consider the simple cliche squaring (reproduced below) which was used as an cxample in the last chapter.
(DEFINE-CLICHE SQUARING
(PRIMARY-ROLES (NUMBER)

DESCRIBED-ROLES (NUMBER)
COMMENT "computes the square of {the number}")

(A {the input number} 2))

This is an example of a cliche which is semantically identical in Ada. If expressed in Ada syntax, the cliche
would appcear as follows. (This report uses the standard Ada orthographic convention of rendering all, and
only, reserved words in lower case.)

cliche SQUARING is
primary roles NUMBER;

described roles NUMBER;
comment "computes the square of {the number}";

begin
return {the input number}ss2;
end SQUARING;

In order to support the definition of cliches, Ada syntax is cxtended in two ways. First, {. ..} annotation
is supported in analogy with the way it is supported in Lisp. This annotation can cither appear as a simple
quantity (c.g., {the input number})orin the form of a function call (¢.g., {the operation}(DATA)).

Sccond. a new defining form "c1iche" is introduced in analogy with an Ada procedure definition. As can
be seen in the example above, this new form is simply a translitcration of the Lisp form DEF INE-CLICHE into
an Ada-like syntax. The body is the same as the body of an Ada procedure definition.

The Cliche File_Enumeration

As a more interesting example, consider the cliche file_enumeration (shown on the next page). (In Ada,
identifiers cannot contain the character "-".) The cliche file_cnumcration reads the records in a file,
enumerating them sequentially. (The Annotation "{}" is used to represent things which must be present for
syntactic completeness, but which are not important cnough to be given naines as explicit roles — ¢.g., the
data types of the variables FILE and DATA_RECORD.)

Like the cliche list-cnumeration (discussed in the last chapter), the cliche file_enumeration is a member of
the general class of cliches known as enumerators. As such, it has the same basic structure and the same basic
roles. The input role is the file to be enumerated. The cmpty_test (END_OF_FILE) tests to sec whether all of
the records in the file have been read. The procedure READ corresponds to both the clement_accessor and the
step. (Stepping occurs as a side-effect of the procedure READ. In addition to reading a record from a file and
returning it in the variable which is its second argument (here DATA_RECORD), the proccdure READ moves
from one record to the next.) The output role data_record is the series of records enumerated. (The name
record cannot be used because it is a reserved word in Ada).

In addition to cnumerating the records in the file, the cliche file_enumeration takes care of opening and
closing the file. The exception handlers at the end of the begin block specify what to do if some interrupt
occurs during the execution of the block. They specify that no matter what happens, the file should be closed.
(This is cquivalent to the support provided by the Lisp function WITH-OPEN-FILE.) In addition, the
exception handlers specify that if the exception is caused accessing a file then an error message should be
printed and the exception suppressed: otherwise, the exception is passed on to be handled at a higher level.

As discussed in the last chapter, an important aspect of cliches is that they must be designed to fit together.
In this chapter it is assumed that a programming organization exists which is producing a number of programs

Ada Cliches 77

which interact with a data base represented as a group of files. 1t is further assumed that a set of conventions
has been established for how these programs should be written. Three of these conventions are evident in the
cliche file_cnumeration.

cliche FILE_ENUMERATION is
primary roles FILE;
described roles FILE;
comment "enumerates the records in {the file}":

constraints
RENAME ("DATA_RECORD", SINGULAR_FORM{{the file}));
DEFAULT({the file_name}, CORRESPONDING_FILE_NAME({the file}));

end constraints;

FILE: {}:
DATA_RECORD: {};
begin
FILE := {the input file};
OPEN(FILE, IN_FILE, {the file_name});
while not {END_OF_FILE, the empty_test}(FILE) loop
{{READ, the element_accessor}, the step}(FILE, DATA_RECORD);
{DATA_RECORD, the output data_record};
end loop;
CLOSE(FILE);
exception _
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLOSE(FILE); PUT("Data Base Inconsistent");
when others => CLOSE(FILE); raise;
end FILE_ENUMERATION;

'The strong typing in Ada requires that there be different 170 functions for each type of file. Here it is
assumed that overloading will be used so that these functions can always be referred to by their standard
names (¢.g. OPEN, CLOSE, READ, ctc.).

Another convention revolves around the handling of exceptions. It is assuined that cach program written
will be complete in that it will explicitly check for every kind of abnormal condition which could occur.
However, programs are allowed to assume that the data base files are in a consistent state. For example, while
the cliche file_enumeration explicitly checks for the end of the file being enumerated, it does not check that
the file actually exists before opening it. Rather, it is assumed that the cliche will only be used to operate on
files which arc known to cxist when the data base is consistent. In order to deal with the fact that in
extraordinary circumstances the data basc might not be in a consistent state, a single blanket exception
handler (shown above) is included as part of the outermost block of every program that accesscs any files.

The first constraint specified as part of the cliche file_cnumeration suggests a name to use for the variable
holding the records being enumerated. The name chosen reflects a convention governing the way files are
named. Suppose that a file contains addresses. It is assumed that the variable containing the file object will
be given the plural name ADDRESSES and that if a variable is nceded to hold a record from the file it will be
given the singular namc ADDRESS. (This convention is not a hard and fast one, but rather a stylistic
suggestion.)

The constraint RENAME is cssentially textual in nature. 1t replaces all instances of its first parameter with its
sccond paramecter. For example, if the file were specified to be the variable ADDRESSES then the identificr
DATA_RECORD would be changed to ADDRESS. In addition to whole ideatifiers, parts of identifiers are also
changed — if there were an identifier DATA_RECORD_KEY it would be changed to ADDRESS_KEY. It should be
noted that renaming is convenicnt, but not a fundamental issue. It merely makes it casier for KBEmacs to
generate acsthetic program code.

The second constraint specified as part of the cliche file_enumeration specifies a default value for the

78 Ada Scenario

file_name role. The function CORRESPONDING_FILE_NAME determines the appropriate external name to use
when opening the file. Tt will be discussed further below.

A Data Structure Cliche

The cliches exhibited so far have all been control structure cliches. However, cliched data structures are
just as important as cliched computations. The cliche chain_file_dcfinition captures the stercotyped aspects of
the definition of a chain file. As uscd here, the term "chain file” refers to a file which contains records that are
chained together in lists. The individual lists arc pointed to by records in some other file as shown in
Figurc 6. The figurc shows a filc of student records which point to chains of records corresponding to the
various classes cach student has taken. Note that the index valuc 0 is used to represent the end of a list.

main file chain file
STUDENT YEAR CLASSES 1DX COURSE DATE GRADE NEXT
H.B. Bonner 88 1 1 Physics 101 Fall 84 A 2
R.W. Hawk 89 0 2 English 204 Fall 84 C 0
T.E. Johnson 88 3 3 Physics 101 Fall 84 C 4
4 English 204 Fall 84 C 0

Figurc 6: An cxample of a chain file.

The cliche chain_file_definition (shown on the next page) has two roles, the external name of the file being
defined and the data ficlds in the chain record type. The body of the cliche has five parts. A variable is
defined which holds a string containing the external name. A type is defined for index values pointing to the
chain records. The type of the chain records themselves is then defined. The only predefined field in this
record type is the NEXT field which is used to point from one chain record in a list to the next. A package is
created which defines the 170 functions which can operate on the chain file being defined. Lastly, a variable
which can contain an instance of the chain file is defined. A renaming constraint is used to give acsthetic
names to the identificrs in the cliche. The function FILE_NAME_ROOT computes a reasonable name to use
based on the external name for the file,

A key feature of the cliche CHAIN_FILE_DEFINITION is that it relics on the gencric package CHAINED_IO.
(This generic package is defined as part of the package FUNCTIONS. The package FUNCTIONS contains the
definition of a number of supporting functions used in the scenario below. The package is presented in
Appendix B)

The use of the generic package CHAINED_IO is another example of the fact that KBEmacs tries to take
advantage of all preexisting mechanisms. [f it were possible, everything about the definition of a chain file
would have been relegated to the generic package. Unfortunately this is not possible because, in Ada, the
ficlds of a record are not allowed to be generic parameters.

Ada Cliches 79

with FUNCTIONS;
use FUNCTIONS;
ctiche CHAIN_FILE_DEFINITION is
primary roles FILE_NAME;
described roles FILE_NAME;
comment "defines a file named {the file_name} of chain records";
constraints
RENAME ("DATA_RECORD", FILE_NAME_ROOT({the file_name}));
end constraints;

DATA_RECORDS_NAME: constant STRING := {the file_name};
subtype DATA_RECORD_INDEX_TYPE is INDEX_TYPE;
type DATA_RECORD_TYPE is
record
{the data};
NEXT: DATA_RECORD_INDEX_TYPE;
end record;
package DATA_RECORD_IO is
new CHAINED_IO(DATA_RECORD_TYPE, DATA_RECORD_INDEX_TYPE);
DATA_RECORDS: DATA_RECORD_IO.FILE_TYPE;
end CHAIN_FILE_DEFINITION;

A Suite of Cliches Operating on Files

Cliches tend to be defined in tightly knit groups, or suites, which are intended to be used together. For
example, this was true of the cliches simple-report, print-out, and tabularized-print-out used in the scenario in
the last chapter. In this chapter, a number of cliches are used which revolve around the concept of a file of
data records. There arc cliches for defining a file (¢.g., chain_file_definition) and cliches for operating on a
file (c.g., filc_cnumeration).

An interesting aspect of the suite of cliches which operate on files is that, in addition to passively
embodying a number of shared conventions, the cliches have constraints which actively share information. In
particular, constraints in an Ada cliche which operates on a file often utilize information obtained from the
definition of the file. For example, a constraint in the cliche file_cnumeration uses the function
CORRESPONDING_FILE_NAME in order to determine how to refer to the cxternal name of the file being
enumerated. ‘This function works by locating and analyzing the definition of the file being enumerated. It
depends on the fact that the file was defined in accordance with one of the standard cliches for defining a file
(c.g., chain_filc_definition),

80 Ada Scenario

As a further example of how cliches which operate on files refer to the definition of those files, consider
the cliche chain_enumeration (shown below). This cliche specifies how to enumerate a chain of records in a
chain file starting from a record in a main file.

cliche CHAIN_ENUMERATION is
primary roles MAIN_FILE, CHAIN_FILE, MAIN_FILE_KEY:
described roles MAIN_FILE, CHAIN_FILE, MAIN_FILE_KEY;
comment "enumerates the chain records in {the chain_file} starting
from the header record indexed by {the main_file_key}";
constraints
RENAME ("MAIN_RECORD", SINGULAR_FORM({the main_file}));
RENAME ("CHAIN_RECORD", SINGULAR_FORM({the chain_filel}));
DEFAULT{{the main_file_name},
CORRESPONDING_FILE_NAME({the main_file})):
DEFAULT({the chain_file_name},
CORRESPONDING_FILE_NAME({the chain_file}));
DEFAULT({the main_file_chain_field},
CHAIN_FIELD({the main_fite}, {the chain_file})):
DEFAULT({the step}, CHAIN_FIELD({the chain_file}, {the chain_file}));
end constraints;

CHAIN_FILE: {};
CHAIN_RECORD: {};
CHAIN_RECORD_INDEX: {}:
MAIN_FILE: {}:
MAIN_RECORD: {};

procedure CLEAN_UP is
begin
CLOSE(CHAIN_FILE); CLOSE(MAIN_FILE);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
CHAIN_FILE := {the chain_file};
MAIN_FILE := {the main_file};
OPEM{CHAIN_FILE, IN_FILE, {the chain_file_name});
OPEN(MAIN_FILE, IN_FILE, {the main_file_name});
READ(MAIN_FILE, MAIN_RECORD, {the input main_fite_key}):
CHAIN_RECORD_INDEX := MAIN_RECORD.{the main_file_chain_field};
while not {NULL_INDEX, the empty_test}{(CHAIN_RECORD_INDEX) loop
{READ, the element_accessor}{CHAIN_FILE, CHAIN_RECORD, CHAIN_RECORD_INDEX);
{CHAIN_RECORD, the output chain_record};
CHAIN_RECORD_INDEX := CHAIN_RECORD.{the step};
end loop;
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP: PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end CHAIN_ENUMERATION;

Ada Cliches 81

The cliche chain_enumeration is similar to the cliche file_cnumeration. In particular, it sharcs the basic
structure of an cnumerator and the code associated with opening and closing files. (Note that since two files
have to be closed, a helping function (CLEAN_UP) is defined which closes both files. This function contains an
exception handler which deals with the situation where the files have not both been successfully opened.)

However, the cliche file_cnumeration embodics an entirely different method for reading records from a
file. Instead of reading records sequentially, the cliche uses explicit indices in order to read successive records
in a chain. ‘The input role is the key of a record in a main file which points to a chain of records in a chain file.
The empty_test (NULL_INDEX) tests whether the end of the chain has been reached. The step steps from one
record in the chain to the next by accessing the appropriate record ficld. The element_accessor (READ) reads
the appropriate records from the chain file. (When present, the third argument to the procedure READ
specifics the index/key of the record to read.) The output role chain_record is the serics of records in the
chain.

The most interesting aspect of the cliche chain_enumeration is the set of constraints. The first four
constraints are analogous to the constraints in the cliche file_enumeration. The first two constraints generate
mnemonic identifiers based on the names of the files to be operated on. The second two constraints look at
the definition of these files in order to determine the appropriate external file name to use when opening the
files.

The last two constraints specify how to go from onc record in the chain to the next. The function
CHAIN_FIELD looks at the definitions of two files, and determines what field of the record in the first file
contains an index into the second file. The next to last constraint specifies how to get the index of the first
record in the chain from the main file record. The last constraint specifies how to step from one chain record
to the next.

82 Ada Scenario

The Cliche Simple_Report

As a final example of an Ada cliche. consider the cliche simple_report (shown on the next page) in contrast
to the Lisp cliche simple-report (reproduced below). ‘These two cliches are a good example of the differences
as well as the similaritics between Ada cliches and Lisp cliches. The cliches have the same purposc and the
same roles. The primary differences between the cliches are purely syntactic.

(DEFINE-CLICHE SIMPLE-REPORT
(PRIMARY-ROLES (ENUMERATOR PRINT-ITEM SUMMARY)
DESCRIBED-ROLES (FILE-NAME TITLE ENUMERATOR
COLUMN-HEADINGS PRINT-ITEM SUMMARY)
COMMENT "prints a report of {the input structure of the enumerator}"
CONSTRAINTS
((DEFAULT {the file-name} "report.txt")
(DERIVED {the 1ine-limit}
(- 65
(SIZE-IN-LINES {the print-item})
(SIZE-IN-LINES {the summary})))))
(WITH-OPEN-FILE (REPORT {the file-name} ':0UT)
(LET* ((DATE {TIME:PRINT-CURRENT-TIME NIL))
(LINE 66)
(PAGE 0)
(TITLE {the titlel})
(DATA {the input structure of the enumerator}))
{(FORMAT REPORT "~5%~66: {(~A~>~2%~66: <{~A~>~%" TITLE DATE)
{LoOP DO
(1F ({the empty-test of the enumerator} DATA) (RETURN))
(WHEN (> LINE {the line-limit})
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~/|~%Page:~3D~50: {~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3)
({the column-headings} {REPORT, modified} {LINE, modified}))
({the print‘item} {REPORT, modified}
{LINE, modified}
({the element-accessor of the enumerator} DATA))
(SETQ DATA ({the step of the enumerator} DATA)))
({the summary} {REPORT, modified}))))

However, there are a a number of semantic differences between the cliches. At a relatively trivial level, the
textual [70 functions available in Ada are quite different then the ones in Lisp. In particular, there is no
construct corresponding to the Lisp function FORMAT. Instead, sets of more primitive functions
(c.g., NEW_LINE, SET_COL, PUT, ctc.) have to be used. At a similar level, the Lisp expression
(TIME:PRINT-CURRENT-TIME NIL) is replaced by the similar (but not identical) Ada expression
FORMAT_DATE(CLOCK). The function CLOCK which returns the current date and time is part of the standard
Ada package CALENDAR. (In Ada calls on zero argument functions arc identical in appearance to variable
references.) The function FORMAT_DATE (defined in the package FUNCTIONS) converts a time into a character
string. Other examples of minor semantic differences include the way exceptions are handled.

At a more fundamental level, the cliches differ because Ada automatically keeps track of the line number
and the page number in an output file. This leads to significant simplifications in the Ada cliche. However, it
also leads to a slight complication. In order to trigger a page break after the title is printed, the Ada cliche has
to actually print out 60 blank lines in order to force the line counter to be incremented sufficiently. (Note
that while the cliche simple-report follows the standard Lisp style of counting things starting with zcro, Ada
counts lines and pages starting with onc.)

A final difference between the two cliches is that the Ada cliche takes advantage of the strong typing
enforced by Ada to add two powerful constraints, The function CORRESPONDING_PRINTING determines what

Ada Cliches 83

should be used to fill in the print_item role based on the type of object which is being enumerated. The
function CORRESPONDING_HEADINGS determines what headings should be used based on how the print_item
is filled in. As a result, as soon as the type of object being cnumerated is known, the print_item and then the
column_hecadings can be automatically filled in.

with CALENDAR, FUNCTIONS, TEXT_I0;
use CALENDAR, FUNCTIONS, TEXT_IO;
cliche SIMPLE_REPORT is
primary roles ENUMERATOR, PRINT_ITEM, SUMMARY;
described roles FILE_NAME, TITLE, ENUMERATOR, COLUMN_HEADINGS,
PRINT_ITEM, SUMMARY;
comment “prints a report of {the input structure of the enumerator}";
constraints
DEFAULT({the file_name}, “"report.txt");
DERIVED({the Tine_limit},
66-SIZE_IN_LINES({the print_item})
-SIZE_IN_LINES({the summary}));
DEFAULT({the print_item}, CORRESPONDING_PRINTING({the enumerator}));
DEFAULT({the column_headings},
CORRESPONDING_HEADINGS({the print_item}));
end constraints;

use INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
pATA: {}:
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..{});
procedure CLEAN_UP is
begin
SET_OUTPUT(STANDARD_QUTPUT);
CLOSE(REPORT);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
CREATE(REPORT, OUT_FILE, {the file_namel});
DATA := {the input structure of the enumerator}:
SET_OUTPUT(REPORT) ;
TITLE := {the title};
NEW_LINE(4); SET_COL(20); PUT{CURRENT_DATE); NEW_LINE(2);
SET_COL(13); PUT(TITLE); NEW_LINE(60);
while not {the empty_test of the enumerator}(DATA) loop
if LINE > {the line_limit} then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3):
SET_COL(13); PUT(TITLE);
SET_COL(61): PUT{CURRENT_DATE): NEW_LINE(2);
{the column_headings}{{CURRENT_OUTPUT, modified});
end if;
{the print_item}({CURRENT_OUTPUT, modified},
{the etement_accessor of the enumerator}(DATA)):
DATA := {the step of the enumerator}(DATA);
end lcop;
{the summary};
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP: PUT("Data Base Inconsistent”);
when others => CLEAN_UP; raise;
end SIMPiE_REPORT;

‘The functions CORRESPONDING_PRINTING and CORRESPONDING_HEADINGS operate in onc of two modes.

84 Ada Scenario

In general, cliches will have been defined which specify how to print out a given type of object in a report,
and how to print the corresponding hcadings. If this is the case. then the functions
CORRESPONDING_PRINTING and CORRESPONDING_HEADINGS mercly retricve the appropriate cliches.
However, if there arc no such cliches, then the functions CORRESPONDING_PRINTING and
CORRESPONDING_HEADINGS usc a simple program gencrator in order to construct appropriate code based on
the definition of the type of object in question. Both of these modes will be illustrated in the scenario below.
Their differences not withstanding. the cliches simple-report and simple_report are most notable for their
similaritics. At a high cnough level of abstraction, these similaritics could be captured in a simple report
program cliche which was semantically identical in Lisp and Ada. The cliches simple-report and
simple_report are specializations of that abstract cliche. For example, the abstract cliche would require only
that some method be employed to keep track of linc numbers and page numbers. The cliches simple-report
and simple_report differ in the way this is achicved because Lisp and Ada differ in the support they provide.

Limits to the Power of Constraints e e

The power of a constraint follows dircctly from the power of the functions used in the constraining
expression. Constraining cxpressions can utilize any of the standard functions and operators in the target
language, and the programmer is free to write any additional function he desires. As a result, there is
essentially no theoretical limitation to the computation which can be performed by a constraint expression.

However, as a practical matter, the power of constraints is limited by the fact that writing new functions to
use in constraints is not particularly casy. A major problem is that instances of {.. . . } annotation in constraint
expressions evaluate to direct pointers into the internal knowledge representation used by KBEmacs. This
allows for great flexibility in what can be done by a constraint function, but requires that the writer of a
constraint function be conversant in this internal representation. In contrast, when defining the body of a
cliche the programmer need not understand anything other than the target language and {. . .} annotation.

It is expected that the typical programmer will not write new functions to use in constraints, but rather will
only write expressions which use predefined functions. As a result, the power of constraints is in cffect
limited by the constraint functions provided by the designer of the basic cliche fibrary.

Viewed from this perspective, the constraints in the cliches above fall into three categories. 1t is expected
that simple constraints such as the onc deriving the line_limit role in the cliche simple_report will be
common. They depend only on standard functions and a few general purpose constraint functions such as
SIZE_IN_LINES. There is no reason why such constraints could not be included as part of idiosyncratic
cliches defined by programmers.

The constraint functions CORRESPONDING_FILE_NAME and CHAIN_FIELD arc at an intermediate level of
complexity. 1t is plausible that such functions would be defined as part of defining a suite of cliches. Tt is
even plausible that a programmer might use these functions himself if hie defined a new cliche to add to the
suite. However, the constraint functions are of no use outside of the suite, and it is not plausible that the
typical programmer would define additional functions of this nature.

Finally, the inclusion of constraint functions such as CORRESPONDING_PRINTING and
CORRESPONDING_HEADINGS would seem to be an unusual event. Writing such a function not only requires a
knowledge of the internal knowledge representation used by KBEmacs, but is difficult in its own right. "They
are included in the cliches in this scenario in order to demonstrate the full power of constraints and to
illustrate the way constraints can be used as an interface between KBEmacs and other programming tools —
¢.g., in this casc a program gencrator.

85

Defining Data Structures

[n the first part of the scenario below, the programmer constructs an Ada package which defines a data
basc. In the second and third parts of the scenario, the programmer constructs two report programs which
operate on this data base. Before beginning the definition of the data base package, it is useful to set the scene
by describing the structurce of the data base.

The Data Base Used in the Scenario

The data base contains information about repairs performed on instruments sold by a imaginary
marketing company. ‘The company sclls and maintains these instruments but does not build them. As
illustrated in Figure 7, the data base is composed of four files: a file specifying the name and maker of cach
model of instrument the company sells, a file specifying the kinds of defects which can occur on cach model, a
file describing cach individual unit sold, and a file describing cach individual repair performed on any of
thesc units. In addition to illustrating the structure of the data base, Figure 7 shows an example of the kind of
data that might be placed in the data base.

defects file models file

KEY NAME MODEL KEY NAME MAKER
0S-03 Power supply thermistor blown 0S1 0S1 Opal Sorter Perth Mining
GA-11 Control board cold solder joint GA2 GA2 Gas Analyzer Benson Labs

GA-32 Clogaed gas injection port GA2
units file repairs file
KEY MODEL REPAIR IDX_ DATE DEFECT COMMENT NEXT
0S1-271 0S1 3 1 9/14/83 GA-32 Probably caused by humidity. 0
GA2-342 GA2? 4 2 1/23/85 GA-11 Took two days to find. 1
3_2/25/85 0S-03 Sorter arm got stuck., 0
4 3/19/85 GA-32 Port Diameter seems below specs, 2

Figure 7: The example data base.

In the interest of brevity, the data basc has been simplified to its barest cssentials. A real data base would
probably contain more files, and would certainly have many more fields in each record. However, these
simplifications do not alter the basic naturc of the scenario. Adding more files or fields would make the
programs constructed in the scenario bigger, but it would not make them fundamentally any more complex.

86 Ada Scenario

Directions for a Human Assistant

The Ada package to be constructed defines the four data base files discussed above. The following set of
dircctions might be used to tell a person how to implement the package.
Define a package MAINTENANCE_FILES which defines four files --
A keyed file "models.data" with a 3 character key and the fields:
NAME: STRING(1..16); MAKER: STRING(1..16).
A keyed file "defects.data" with a 5 character key and the fields:
NAME: STRING(1..32); MODEL: key to the fite of models.
A chain file "repairs.data” with the fields:
DATE: TIME; DEFECT: key to the file of defects; COMMENT: STRING(1..32).
Each chain should be ordered by date with the most recent record first.
A keyed file "units.data" with a 7 character key and the fields:
MODEL: key to the file of models; REPAIR: index into the file of repairs.
The above directions are somewhat different in tone from the directions in the last chapter. Although they
make use of high level terms such as "keyed file” and “chain file", they consist mostly of detailed
specifications for the records in the file. This level of detail would seem unavoidable, since this is a situation

where the details are important.

Switching to Ada Mode

The scenario in this chapter is illustrated with screen images of exactly the same form as the ones in the
last chapter. The first thing the programmer does in the scenario (see Screen 26) is to tell KBEmacs to use the
language Ada (as opposed to Lisp which is the default). He does this by using the knowledge-based
command "Use language".

The Lisp Machine editor was extended by adding an Ada mode. As will be seen below, this mode enables
several of the program oriented Emacs commands (c.g., m-. (goto definition) and c-shift-C (compile
definition)) to operate properly on Ada programs. 7

In order to shorten the scenario it is assumed that the programmer has already defined the files MODELS
and DEFECTS. In Screen 26, the programmer reads in a file containing the partially implemented package.

Defining Data Structures

s-X Use tanguage ADA. <end>
c-X c-F Find file <KBE.DEMO>MAINTENANCE_FILES.ADA
cursor motion

87

with FUNCTIONS;
use FUNCTIONS;
package MAINTENANCE_FILES is
MODELS_NAME: constant STRING := "models.data";
type MODEL_KEY_TYPE is STRING(1..3);
type MODEL_TYPE is
record
NAME: STRING(1..16);
MAKER: STRING(1..16);
end record;
package MODEL_IO is new KEYED_IO(MODEL_TYPE, MODEL_KEY_TYPE);
MODELS: MODEL_IO.FILE_TYPE;

DEFECTS_NAME: constant STRING := "defects.data";
type DEFECT_KEY_TYPE is STRING(1..5);
type DEFECT_TYPE is
record
NAME: STRING(1..32);
MODEL: MODEL_KEY_TYPE;
end record;
package DEFECT_IO is new KEYED_IO(DEFECT_TYPE, DEFECT_KFEY_TYPE);
DEFECTS: DEFECT_IO.FILE_TYPE;

end MAINTENANCE_FILES;

KBEmacs (ADA) <KBE.DEMO>MAINTENANCE_FILES.ADA

Screen 26

Defining Data Structures

s-X Insert a chain_file_definition of "repairs.data". <end>

89

with FUNCTIONS;
use FUNCTIONS;
package MAINTENANCE_FILES is
MODELS_NAME: constant STRING := "models.data":
type MODEL_KEY_TYPE is STRING(1..3);
type MODEL_TYPE is
record
NAME: STRING(1..16);
MAKER: STRING(1..16);
end record;
package MODEL_IO is new KEYED_IO(MODEL_TYPE, MODEL_KEY_TYPE);
MODELS: MODEL_IO.FILE_TYPE;

DEFECTS_NAME: constant STRING := "defects.data";
type DEFECT_KEY_TYPE is STRING(1..5);
type DEFECT_TYPE is
record
NAME: STRING(1..32);
MODEL: MODEL_KEY_TYPE;
end record;
package DEFECT_IO is new KEYED_IO{DEFECT_TYPE, DEFECT_KEY_TYPE);
DEFECTS: DEFECT_IO.FILE_TYPE;

BEPAIRS_NAME: constant STRING := "repairs.data”;
subtype REPAIR_INDEX_TYPE 1s INDEX_TYPE;
type REPAIR_TYPE 1s
record
{the data};
NEXT: REPAIR_INDEX_TYPE;
end record;
package REPAIR_IO is new CHAINED_IO(REPAIR_TYPE, REPAIR_INDEX_TYPE);
REPAIRS: REPAIR_IO.FILE_TYPE; '
end MAINTENANCE_FILES;

KBEmacs (ADA) <KBE.DEMO>MAINTENANCE_FILES.ADA

Secreen 27

ansist in. the eummn ofa ﬁn m Wi
ofap | A B

e

Defining Data Structures

s-N direct editing

91

with FUNCTIONS;
use FUNCTIONS;
package MAINTENANCE_FILES is
MODELS_NAME: constant STRING := "models.data";
type MODEL_KEY_TYPE is STRING(1..3);
type MODEL_TYPE is
record
NAME: STRING(1..16);
MAKER: STRING(1..16);
end record;
package MODEL_IO is new KEYED_IO(MODEL_TYPE, MODEL_KEY_TYPE);
MODELS: MODEL_IO.FILE_TYPE;

DEFECTS_NAME: constant STRING := "defects.data";
type DEFECT_KEY_TYPE is STRING(1..5);
type DEFECT_TYPE is
record
NAME: STRING(1..32);
MODEL: MODEL_KEY_TYPE;
end record;
package DEFECT_IO is new KEYED_IO(DEFECT_TYPE, DEFECT_KEY_TYPE);
DEFECTS: DEFECT_IO.FILE_TYPE;

REPAIRS_NAME: constant STRING := "repairs.data";
subtype REPAIR_INDEX_TYPE is INDEX_TYPE;
type REPAIR_TYPE is
record
DATE: TIME;
DEFECT: DEFECT_KEY_TYPE;
COMMENT: STRING(1..32);D
NEXT: REPAIR_INDEX_TYPE;
end record;

package REPAIR_IO is new CHAINED_IO(REPAIR_TYPE, REPAIR_INDEX_TYPE);

REPAIRS: REPAIR_IO.FILE_TYPE;
end MAINTENANCE_FILES;

KBEmacs (ADA) <KBE.DEMO>MAINTENANCE_FILES.ADA

Screen 28

92 Ada Scenario

Analyzing Direct Editing Done by the Programmer

Having finished the definition of the file REPAIRS, the programmer tells KBEmacs that, for the moment,
he is done with the package MAINTENANCE_FILES (sce Screen 29). KBEmacs then proceeds to analyze the
cditing done by the programmer.

Taking Care of Details

A fundamental underpinning of Ada is the notion of a package which represents a group of functions or
data structures or both. In general, related entities are defined together in a package. For example, here the
files in the date base are being defined in a package named MAINTENANCE_FILES.

The names of the objects defined in a package are local to that package. [n order to refer to these objects
from another package one must do two things. First, onc must specify that the sccond package is to be
compiled with the first package. (The first line of Screen 29 specifies that the package MAINTENANCE_FILES
is to be compiled with the packages CALENDAR and FUNCTIONS.) Sccond, one must use the correct name for
the object being referred to. The basic way to do this is to use a compound name of the form
package_name. object_name. For cxample, the sccond to last line of Screen 29 refers to the data type
FILE_TYPE defined in the package REPAIR_IO as REPAIR_IO.FILE_TYPE. Alternatively, one can specify
that the sccond package uses the first package (sce the sccond line of Screen 29) and then refer to the object
by its simple name if this name is not ambiguous. For example, the third to last line of Screen 29 refers to the
gencric package CHAINED_IO (which is defined in the package FUNCTIONS) directly.

The above digression into the details of Ada is necessary in order to be able to understand an crror made
by the programmer in Screen 28. The programmer specificd that the DATE ficld of a repair record had the
data type TIME. Assumedly, he intended to refer to the data type CALENDAR. TIME which is defined in the
standard Ada package CALENDAR. However, he did not use the proper name to refer to it. (This sloppy
reference is alrcady present in the directions hypothesized above.)

When KBEmacs analyzes the direct cditing in Screen 28, it notices that the unknown data type TIME is
being referred to. KBEmacs then reasons that since the only TIME data type defined anywhere is in the
CALENDAR package, this must be what the programmer is trying to refer to. In order to fix things up,
KBEmacs adds the package CALENDAR to the "with" and "use" clauses of the package MAINTENANCE_FILES.

This is a small example of an important ability K BEmacs attempts to demonstrate — taking care of details.
This is particularly useful when operating on Ada, because Ada code contains a significant amount of
redundancy which can be quite irritating to specify. (Note that this redundancy is intended primarily for the
benefit of readers and maintainers, not implementors.) KBFEmacs attempts to automatically derive redundant
information whenever possible so that programmers do not have to specify it explicitly.

Recognizing a File Definition

When analyzing the package in Screen 28, KBEmacs recognizes that a new data file (REPAIRS) is being
defined. This recognition is done by a special purpose module of KBEmacs which notes the existence of the
definition for later reference. In addition to noting the existence of the definition, KBEmacs automatically
defines cliches which specify how to print out the records in the file. In the sccond line of the command area
of Screen 29, KBEmacs informs the programmer that two cliches have been defined: print_repair which
prints out a repair record, and print_repair_hcadings which prints out the appropriate column headings. The
names of these cliches are stored as part of the information about the file so that they can be retricved by the
functions CORRESPONDING_PRINTING and CORRESPONDING_HEADINGS (uscd as constraints in the cliche
simple_rcport discussed above).

Defining Data Structures 93

s-<end> Finish editing the package MAINTENANCE_FILES. <end>
The cliches PRINT_REPAIR_HEADINGS and PRINT_REPAIR defined.

with [JALENDAR, FUNCTIONS;
use CALENDAR, FUNCTIONS;
package MAINTENANCE_FILES is
MODELS_NAME: constant STRING := "models.data";
type MODEL_KEY_TYPE is STRING(1..3):
type MODEL_TYPE is
record
NAME: STRING(1..16};
MAKER: STRING(1..16);
end record;
package MODEL_IO is new KEYED_IO(MODEL_TYPE, MODEL_KEY_TYPE);
MODELS: MODEL_IO.FILE_TYPE;

DEFECTS_NAME: constant STRING := "defects.data";
type DEFECT_KEY_TYPE is STRING(1..5);
type DEFECT_TYPE is
record
NAME: STRING(1..32);
MODEL: MODEL_KEY_TYPE;
end record;
package DEFECT_IO is new KEYED_IO(DEFECT_TYPE, DEFECT_KEY_TYPE);
DEFECTS: DEFECT_IO.FILE_TYPE;

REPAIRS_NAME: constant STRING := "repairs.data";
subtype REPAIR_INDEX_TYPE is INDEX_TYPE;
type REPAIR_TYPE is
record
DATE: TIME;
DEFECT: DEFECT_KEY_TYPE;
COMMENT: STRING(1..32);
NEXT: REPAIR_INDEX_TYPE;
end record;
package REPAIR_IO is new CHAINED_IO(REPAIR_TYPE, REPAIR_INDEX_TYPE);
REPAIRS: REPAIR_IO.FILE_TYPE;
end MAINTENANCE_FILES;

KBEmacs (ADA) <KBE,DEMO>MAINTENANCE_FILES.ADA Screen 29

94 Ada Scenario

Automatically Defined Cliches

In Screen 30, the programmer uses the standard cditing command m-. (move to definition) in order to
examine the cliches defined by KBEmacs. These cliches have been added to the file containing the library of
Ada cliches,

The cliches are created by the same special purpose program generator used by the functions
CORRESPONDING_PRINTING and CORRESPONDING_HEADINGS. In order to create code for printing a record,
the generator calls itself recursively on cach ficld of the record and combines the chunks of code produced.
Each field is printed in a standardized way based on its data type. For example, any ficld whosc data type is
CALENDAR. TIME is printed out using the function FORMAT_DATE.

Actual cliche definitions are created (as opposed to simply generating the corresponding code at the
moment the user desires to print a repair) in order to allow the programmer to modify the cliches. This would
be desirable even if the program generator were a great deal better than the one used, because people differ
widely in what they consider to be the acsthetic way to print something.

Defining Data Structures 95

m-. Edit definition of PRINT_REPAIR_HEADINGS

With TEXT_IO;
use TEXT_IO;
cliche PRINT_REPAIR_HEADINGS 1s
comment "prints headings for printing repalr records”;

begin
PUT(" Date Defect Comment");
NEW_LINE(2);

end PRINT_REPAIR_HEADINGS;

with FUNCTIONS, TEXT_IO;
use FUNCTIONS, TEXT_IO;
cliche PRINT_REPAIR 1s
primary roles REPAIR;
described roles REPAIR;
comment "prints out the fields of {the repair}";

REPAIR: REPAIR_TYPE;
begin
REPAIR := {the input repair};
PUT(FORMAT_DATE(REPAIR.DATE)); SET_coL(13); PUT(REPAIR.DEFECT);
SET_coL(20); PUT(REPAIR.COMMENT); NEW_LINE;
end PRINT_REPAIR;

KBFmacs (ADA) <KBE.DEMO>CLICHE-LIBRARY.ADA Screen 30

96 Ada Scenario

The Cliche Read

In Screen 31, the programmer modifics the cliche print_repair so that, in addition to. printing out the key
of the defect repaired, it reads the corresponding defect record and prints out the full name of the defect. The
cliche print_repair_hcadings is modificd analogously.

In order to specify how the cliche print_repair is to be modified, the programmer makes an inline
reference to the cliche read (see Appendix A). This cliche has two roles: the file to be read and the key of the
desired record. This is a particularly nice example of the use of an embedded cliche reference for two reasons.
First, notice that ".NAME" is used after the cliche annotation in order to sclect the NAME field of the record
read just as if the annotation were a variable reference. Second, the annotation makes it possible to specify a
read operation as if it were a function call even though the read operation is a procedure call. This cnables the
desired computation to be represented as a simple expression.

Defining Data Structures

direct editing

97

with TEXT_IO;
use TEXT_IO;
cliche PRINT_REPAIR_HEADINGS is
comment "prints headings for printing repair records";

begin
PUT(" Date Defect Description/Comment"); NEW_LINE(2);
end PRINT_REPAIR_HEADINGS;

with FUNCTIONS, TEXT_IO;
use FUNCTIONS, TEXT_IO;
cliche PRINT_REPAIR is
primary roles REPAIR;
described roles REPAIR;
comment “"prints out the fields of {the repair}";

REPAIR: REPAIR_TYPE;
begin
REPAIR := {the input repair};
PUT(FORMAT_DATE(REPAIR.DATE)); SET_COL(13); PUT(REPAIR.DEFECT);
SET_COL(20): PUT({a read of DEFECTS and (REPAIR.DEFECT)}.NAME);
NEW_LINE; SET_cOL(22);0PUT(REPAIR.COMMENT); NEW_LINE;
end PRINT_REPAIR;

KBEmacs (ADA) <KBE.DEMO>CLICHE-LIBRARY.ADA

Screen 31

98 Ada Scenario

Analyzing Direct ¥diting Done by the Programmer

Having finished the cliches print_repair and print_repair_hcadings. the programmer tells KBEmacs that
he is done with cach of them. In addition, he compiles the cliches so that they are available for use
{(scc Screen 32).

When it analyzes the editing done by the programmer in Screen 31, KBEmacs replaces the embedded
reference to the cliche read with the corresponding Ada code. As can be seen in Screen 32, this leads to a
surprisingly large number of changes to the cliche print_repair. First of all, the package MAINTENANCE _FILES
is added to the "with™ and "use" clauses in order to render the reference to the identifier DEFECTS
meaningful. In addition, a "use” clause for the package DEFECT_IO is added to the declarations in order to
make available the appropriate 1/0 procedures for the file DEFECTS. Next, KBEmacs adds a call on the
procedure READ, a variable DEFECT to hold the record read, code which opens and closes the file DEFECTS,
and code which handles any error conditions which might arise.

Defining Data Structures

s-<end> Finish editing the cliche PRINT_REPAIR. <end>
c-shift-C Compiling PRINT_REPAIR

cursor motion .
s-<end> Finish editing the cliche PRINT_REPAIR_HEADINGS. <end>
c-shift-C Compiling PRINT_REPAIR_HEADINGS

99

Bith TEXT_IO;
use TEXT_IO;
cliche PRINT_REPAIR_HEADINGS is
comment "prints headings for printing repair records";

begin
PUT(" Date Defect Description/Comment"); NEW_LINE(2);
end PRINT_REPAIR_HEADINGS;

with FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
use FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
cliche PRINT_REPAIR is
primary roles REPAIR;
described roles REPAIR;
comment "prints out the fields of {the repair}";

use DEFECT_IO;
DEFECT: DEFECT_TYPE;
REPAIR: REPAIR_TYPE;
begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME);
REPAIR := {the input repair};
READ(DEFECTS, DEFECT, REPAIR.DEFECT);
PUT(FORMAT_DATE(REPAIR.DATE)); SET_COL(13); PUT(REPAIR.DEFECT);
SET_COL(20): PUT(DEFECT.NAME); NEW_LINE;
SET_COL{22): PUT(REPAIR.COMMENT); NEW_LINE;
CLOSE(DEFECTS);
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLOSE(DEFECTS); PUT("Data Base Inconsistent");
when others => CLOSE(DEFECTS); raise:
end PRINT_REPAIR;

KBEmacs (ADA) <KBE.DEMO>CLICHE-LIBRARY.ADA

Screen 32

100 Ada Scenario

Defining the File UNITS

In Screen 33, the programmer finishes the definition of the package MAINTENANCE_FILES by defining the
file UNITS. 'This is done by using the cliche keyed_file_definition (sce Appendix A). 'This cliche is very
similar to the cliche chain_file_definition. In the interest of brevity, the process of defining the file UNITS is
compressed into a single screen since it is closely analogous to the process (discussed in detail above) of
defining the file REPAIRS. The only real difference is that the programmer must specify the length of the key
(here 7) as well as the ficlds in the file.

Evaluating the Commands Used
The following summary shows all of the KBEmacs commands which are necessary in order to define the
package MAINTENANCE_FILES.

Insert a keyed_file_definition of "models.data".

direct editing of MODELS file record type and key length.
Insert a keyed_file_definition of "defects.data".

direct editing of DEFECTS file record type and key length.
Insert a chain_file_definition of "repairs.data".

direct editing of REPAIRS file record type.

Insert a keyed_file_definition of "units.data".

direct editing of UNITS file record type and key length.

A comparison of this summary with the directions (reproduced below) hypothesized at the start of this
section shows two interesting things. First, since the dircct cditing corresponds to the detailed specification of
the record types and key lengths, it can be seen that the two sets of directions are almost identical.

Define a package MAINTENANCE_FILES which defines four files --
A keyed file "models.data" with a 3 character key and the fields:
NAME: STRING(1..168); MAKER: STRING(1..16).
A keyed file "defects.data" with a 5 character key and the fields:
NAME: STRING(1..32); MODEL: key to the file of models.

A chain file "repairs.data" with the fields:
DATE: TIME; DEFECT: key to the file of defects; COMMENT: STRING(1..32).

Each chain should be ordered by date with the most recent record first.
A keyed file "units.data" with a 7 character key and the fields:
MODEL: key to the file of models; REPAIR: index into the file of repairs.
Sccond, there is nothing in the KBEmacs commands which corresponds to the admonition that the repair

records in a chain should be ordered by DATE with the most recent first. It should be noted that there is
nothing in the package MAINTENANCE_FILES which corresponds to this cither (sce Screen 33). The fact that
there is no cffective way to state this restriction as part of the file definition could be looked at as a defect of
Ada. Itis certainly a defect of KBEmacs that the system currently has no way to represent such inforination.

Defining Data Structures

m-. Edit definition of MAINTENANCE_FILES .

s-X Insert a keyed_file_definition of "units.data". <end>

direct editing)

s-<end> Finish editing the package MAINTENANCE_FILES. <end>
The cliches PRINT_UNIT_HEADINGS and PRINT_UNIT defined.

101

Blith CALENDAR, FUNCTIONS;
use CALENDAR, FUNCTIONS;
package MAINTENANCE_FILES is
MODELS_NAME: constant STRING := "models.data"”;
type MODEL_KEY_TYPE is STRING(1..3);
type MODEL_TYPE is
record
NAME: STRING(1..16);
MAKER: STRING(1..16);
end record;
package MODEL_IO is new KEYED_IO(MODEL_TYPE, MODEL_KEY_TYPE);
MODELS: MODEL_IO.FILE_TYPE;

DEFECTS_NAME: constant STRING := "defects.data”;
type DEFECT_KEY_TYPE is STRING(1..5);
type DEFECT_TYPE is
record
NAME: STRING(1..32);
MODEL: MODEL_KEY_TYPE;
end record;
package DEFECT_IO is new KEYED_IO(DEFECT_TYPE, DEFECT_KEY_TYPE);
DEFECTS: DEFECT_IO.FILE_TYPE;

REPAIRS_NAME: constant STRING := "repairs.data";
subtype REPAIR_INDEX_TYPE is INDEX_TYPE;
type REPAIR_TYPE is
record
DATE: TIME;
DEFECT: DEFECT_KEY_TYPE;
COMMENT: STRING(1..32);
NEXT: REPAIR_INDEX_TYPE;
end record; '
package REPAIR_IO is new CHAINED_IO(REPAIR_TYPE, REPAIR_INDEX_TYPE);
REPAIRS: REPAIR_IO.FILE_TYPE;

UNITS_NAME: constant STRING := "units.data";
type UNIT_KEY_TYPE is STRING(1..7);:
type UNIT_TYPE is
record
MODEL: MODEL_KEY_TYPE;
REPAIR: REPAIR_INDEX_TYPE;
end record;
package UNIT_IO is new KEYED_IO(UNIT_TYPE, UNIT_KEY_TYPE);
UNITS: UNIT_IO.FILE_TYPE;
end MAINTENANCE_FILES;

KBEmacs (ADA) <KBE.DEMO>MAINTENANCE_FILE.ADA

Screen 33

102

Constraint Propagation

In this part of the scenario, the programmer constructs a program UNIT_REPAIR_REPORT which prints out
a report of all the repairs which have been performed on a given unit. The process of constructing this
program is quite similar to the process of constructing the program REPORT-TIMINGS shown in the last
chapter. The most significant difference (besides the fact that one program is written in Lisp and the other is
written in Ada) is that a large portion of the program UNIT_REPAIR_REPORT is filled in by mcans of various
constraints.

Directions for a Human Assistant

The following dircctions might be given to a person who was asked to write the program
UNIT_REPAIR_REPORT.
Define a simple report program UNIT_REPAIR_REPORT. Enumerate the chain of
repairs associated with a unit record, printing each one. Query the user for

the key (UNIT_KEY) of the unit record to start from. Print the title
("Report of Repairs on Unit " & UNIT_KEY). Do not print a summary,

These dircctions assume an understanding of the concepts "simple report”, "enumerate a chain”, and
"query the user for a key". They also assume an understanding of the structure of the data base of units and
repairs.

Constructing the Program

In Screen 34, the programmer begins the construction of the program UNIT_REPAIR_REPORT by creating a
file to hold the program. He then instantiates the cliche simple_report discussed above. This is done with a
syntactic variant of the knowledge-based command "Def ine™ which makes it possible to specify the top level
structure of the program at the same time that the initial definition is created.

Constraint Propagation 103

c-X ¢-F Find file <KBE.DEMO>UNIT_REPAIR_REPORT.ADA

(New File)
s-X Define a simple_report procedure UNIT_REPAIR_REPORT. <end>

idith CALENDAR, FUNCTIONS, TEXT_IO;
use CALENDAR, FUNCTIONS, TEXT_IO;
procedure UNIT_REPAIR_REPORT is
use INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK):
DATA: {};
REPORT: TEXT_IOQ.FILE_TYPE;
TITLE: STRING(1..{}):
procedure CLEAN_UP 1s
begin
SET_OUTPUT(STANDARD_OUTPUT) ;
CLOSE(REPORT) ;
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
CREATE(REPORT, OUT_FILE, "report.txt");
TITLE := {the title};
SET_OUTPUT(REPORT);
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE); NEW_LINE(2);
SET_COL(13); PUT(TITLE); NEW_LINE(60);
DATA := {the 1input structure of the enumerator};
while not {the empty_test of the enumerator}(DATA) loop
if LINE > 64 then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT(TITLE); SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
{the coiumn_headings}{{CURRENT_OUTPUT, modified});
end if;
{the print_1tem}({CURRENT_OUTPUT, modified},
{the element_accessor of the enumerator}(DATA));
DATA := {the step of the enumerator}(DATA);
end loop;
{the summary};
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>

CLEAN_UP; PUT("Data Base Inconsistent”);
when others => CLEAN_UP; raise;
end UNIT_REPAIR_REPORT;

KBEmacs (ADA) <KBE.DEMO>UNIT_REPAIR_REPORT.ADA Screen 34

104 Ada Scenario

The Propagation of Design Decisions

The central design decision in any report program is deciding what values are to be reported. When using
the cliche simple_report, this decision is specified by sclecting an appropriate enumerator. In Screen 35, the
programmer specifies that the enumerator should be a chain_cnumeration which enumerates a chain of
records in the file REPAIRS pointed to from a record in the file UNITS. Note that several parts of the code
produced arc specified by the constraints in the cliche chain_enumeration (described above). In particular,
the REPAIR ficld is used to get the initial index into the chain file, and the NEXT ficld is used to get the index
of cach successive repair record. (The cursor in Screen 35 is placed on the read of the file UNITS on the theory
that changes to the body of a procedure are more interesting than changes to the declarations or to the code
which opens files.)

Once the enumerator has been specified, the constraints in the cliche simple_report (described above) fill
in most of the rest of the program UNIT_REPAIR_REPORT. In particular, the cliche brint__rcpair is used to fill
the print_itcm role and the cliche print_repair_hcadings is used o fill in the column_hcadings role. The
line_limit is changed from 64 to 63 since the print_repair prints out two lincs of output. whercas the default
assumption used by the constraint function SIZE_IN_LINES in Screen 34 was that the print_out would
produce onc line of output.

Taking Care of Details

Another thing to note about the code in Screen 35 is that a number of variable declarations and the like
have been added to the program. This is another example of how KBEmacs takes care of programming
details. It is interesting to note that the data types in these declarations are not specified as part of the cliches
used. Rather, KBEmacs computes what data types should be used based on the definitions of the files used,
and the specifications for the procedures which operate on the variables.

Constraint Propagation

s-X Fi11 the enumerator with a chain_enumeration of UNITS and REPAIRS. <end>

105

with CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
procedure UNIT_REPAIR_REPORT is
use DEFECT_IO, REPAIR_IO, UNIT_IO, INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DEFECT: DEFECT_TYPE;
REPAIR: REPAIR_TYPE;
REPAIR_INDEX: REPAIR_INDEX_TYPE;
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..{}):
UNIT: UNIT_TYPE;
procedure CLEAN_UP is
begin
SET_OQUTPUT(STANDARD_OUTPUT);
CLOSE{DEFECTS); CLOSE(REPAIRS); CLOSE(UNITS); CLOSE(REPORT);
exception
when STATUS_ERRGOR => return;
end CLEAN_UP;
begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME): OPEN(REPAIRS, IN_FILE, REPAIRS_NAME);
OPEN(UNITS, IN_FILE, UNITS_NAME): CREATE(REPORT, OUT_FILE, "report.txt");
TITLE := {the title};
SET_OUTPUT(REPORT) ;
NEW_LINE(4); SET_COL(20): PUT(CURRENT_DATE); NEW_LINE(2);
SET_COL(13); PUT(TITLE): NEW_LINE(60);
BeAD(UNITS, UNIT, {the main_file_key});
REPAIR_INDEX := UNIT.REPAIR;
while not NULL_INDEX(REPAIR_INDEX) 1loop
READ(REPAIRS, REPAIR, REPAIR_INDEX);
if LINE > 63 then
NEW_PAGE; NEW_LINE: PUT(“Fage: "); PUT({INTEGER(PAGE-1), 3);
SET_COL{13); PUT(TITLE): SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" Date Defect Description/Comment”); NEW_LINE(2);
end if;
READ(DEFECTS, DEFECT, REPAIR.DEFECT);
PUT{ FORMAT_DATE(REPAIR.DATE)): SET_COL(13); PUT(REPAIR.DEFECT);
SET_COL(20); PUT(DEFECT.NAME); NEW_LINE;
SET_C0L(22); PUT(REPAIR.COMMENT); NEW_LINE;
REPAIR_INDEX := REPAIR.NEXT;
end Toop;
{the summary};
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP: PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end UNIT_REPAIR_REPORT;

KBEmacs (ADA) <KBE.DEMO>UNIT_REPAIR_REPORT.ADA Screen 35

106 Ada Scenario

The Cliche Query_User_For_Key

After specifying the enumerator in Screen 35, the only roles which are left unfilled are the title, the
main_file_key, and the summary. In Screen 36, the programmer specifies that the user of the program
UNIT_REPAIR_REPORT should be queried in order to determine what main file key to use. This is done with
the cliche query_usecr_for_key (shown below).

with TEXT_I0;
use TEXT_I0;
cliche QUERY_USER_FOR_KEY is
primary roles FILE;
described rotes FILE;
comment "queries the user for a key to a record in {the file}";
constraints
RENAME ("DATA_RECORD", SINGULAR_FORM({the file}));
DEFAULT({the file_name}, CORRESPONDING_FILE_NAME({the file})):
end constraints;

DATA_RECORD: {};
DATA_RECORD_KEY: {};
FILE: {};
begin
FILE := {the file};
OPEN(FILE, IN_FILE, {the file_name});
loop
begin
NEW_LINE; PUT("Enter DATA_RECORD Key: "); GET(DATA_RECORD_KEY);
READ(FILE, DATA_RECORD, DATA_RECORD_KEY);
exit;
exception
when END_ERROR => PUT{"Invalid DATA_RECORD Key"); NEW_LINE;
end;
end loop;
CLOSE(FILE);
return DATA_RECORD_KEY;

exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>

CLOSE(FILE); PUT("Data Base Inconsistent"):
when others => CLOSE(FILE); raise;
end QUERY_USER_FOR_KEY;
In addition to getting a key from the user. the cliche query_user_for_key checks the key to make sure that
it is valid. In order to check the key, the cliche attempts to read the corresponding record from the file. [fthe

read fails, ihen the user is asked for a different key.

Taking Care of Details

Both the code in Screen 35 and the cliche query_user_for_key specify that the file UNITS should be
opened and closed. If nothing more were said this would cause the file UNITS to be opened twice and closed
twice in Screen 36. In order to prevent this from happening, K BEmacs determines which files are required to
* be open and makes sure that cach file is opened only once. Special provision is made for the opening and
closing of files because this is an important cfficiency issuc in file oriented 1/0.

Constraint Propagation 107

s-F Fi11 the main_file_key with a query_user_for_key of UNITS. <{end>

with CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
procedure UNIT_REPAIR_REPORT is
use DEFECT_IO, REPAIR_IO, UNIT_IO, INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DEFECT: DEFECT_TYPE;
REPAIR: REPAIR_TYPE;
REPAIR_INDEX: REPAIR_INDEX_TYPE;
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING{(1..{});
UNIT: UNIT_TYPE;
UNIT_KEY: UNIT_KEY_TYPE;
procedure CLEAN_UP is
begin
SET_OUTPUT(STANDARD_OUTPUT);
CLOSE{DEFECTS); CLOSE(REPAIRS); CLOSE(UNITS); CLOSE{(REPORT);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME): OPEN(REPAIRS, IN_FILE, REPAIRS_NAME);
OPEN(UNITS, IN_FILE, UNITS_NAME): CREATE(REPORT, OUT_FILE, "report.txt");
TITLE := {the title};
SET_OUTPUT(REPORT);
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE); NEW_LINE(2);
SET_COL{13); PUT{TITLE); NEW_LINE(60);
Boop
begin
NEW_LINE; PUT("Enter UNIT Key: "); GET(UNIT_KEY);
READ(UNITS, UNIT, UNIT_KEY);
exit;
exception '
when END_ERROR => PUT("Invalid UNIT Key"); NEW_LINE;
end;
end loop;
READ(UNITS, UNIT, UNIT_KEY);
REPAIR_INDEX := UNIT.REPAIR;
while not NULL_INDEX(REPAIR_INDEX) 1loop
READ(REPAIRS, REPAIR, REPAIR_INDEX);
“4if LINE > 63 then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3):
SET_COL(13); PUT(TITLE); SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" Date Defect Description/Comment"); NEW_LINE(2);
end if;
READ(DEFECTS, DEFECT, REPAIR.DEFECT);
PUT(FORMAT_DATE(REPAIR.DATE)); SET_COL(13); PUT(REPAIR.DEFECT);
SET_COL(20); PUT(DEFECT.NAME); NEW_LINE;
SET_COL(22); PUT(REPAIR.COMMENT); NEW_LINE;
REPAIR_INDEX := REPAIR.NEXT;
end loop;
{the summary};
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERRCR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP: PUT("Data Base Inconsistent");

KBEmacs (ADA) <KBE.DEMO>UNIT_REPAIR_REPORT.ADA Screen 36

108 Ada Scenario

The Knowledge-Based Command "Share”

'The code in Screen 36 is incfficient in that it reads the same record in the file UNITS twice. The record is
read twice because it is read for two different reasons by two different cliches. The cliche query_user_for_key
reads the record in order to determine that the key is a valid key and the cliche chain_enumeration reads the
record in order to obtain the index of the first repair record.

The existence of this problem illustrates that, although KBEmacs is capable of automatically sharing
multiple opens and closes on a file, it is not capable of automatically sharing redundant code in general,
However, KBEmacs provides a knowledge-based command "Share” which can assist a programmer in
sharing code.

From the point of view of KBEmacs, the most difficult thing about sharing two computations is detecting
that sharing might be useful. On the other hand it is quite casy for KBEmacs to check that two computations
can be shared and to modify a program in order to cffect a given sharing.

From the point of view of the programmer, the most difficult thing about sharing two computations is
verifying that the two computations arc in fact identical and can therefore actually be shared. The problem is
that the existence of side-cffects and the like can prevent the sharing of computations which otherwise appear
identical,

The divergence in abilities between the programmer and KBEmacs with regard to sharing provides an
opportunity for a useful division of labor. In Screen 37, the programmer determines that the two calls on
READ of the file UNITS should be shared and asks KBEmacs to change the program so that they are shared.
KBEmacs checks that the two calls on READ are in fact reading the same record and that they can be shared.
It then modifies the program in order to achicve the sharing.

The sharing shown in Screen 37 is a relatively trivial example. KBEmacs is capable of handling much
morc complicated cases. There are two ways in which things can become more complex. First, if side-effects
are involved, it can be much harder to determine whether the two computations to be shared can indeed by
shared. KBEmacs is able to deal with sidc-effects because the system understands which functions have
side-cffects and the data flow in a plan takes side-cffects into account. Second, sharing two computations can
require more extensive changes in the program text. In particular, once one of the two computations has been
removed, a variable usually has to be introduced so that the value created by the remaining computation can
be used in two places. Here the changes are very simple because, in Screen 36, the procedure READ already
forces the use of a variable and KBEmacs used the same variable for both READs. (KBEmacs trics to reuse
variable names in logically rclated contexts in order to reduce the number of variables in a program.)

Constraint Propagation 109

s-X Share the first READ and the second READ. <end>

with CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
procedure UNIT_REPAIR_REPORT is
uyse DEFECT_IO, REPAIR_IO, UNIT_IO, INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DEFECT: DEFECT_TYPE;
REPAIR: REPAIR_TYPE;
REPATR_INDEX: REPAIR_INDEX_TYPE;
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..{});
UNIT: UNIT_TYPE;
UNIT_KEY: UNIT_KEY_TYPE;
procedure CLEAN_UP is
begin
SET_OUTPUT(STANDARD_OUTPUT};
CLOSE (DEFECTS); CLOSE(REPAIRS); CLOSE(UNITS); CLOSE (REPORT);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME); OPEN(REPAIRS, IN_FILE, REPAIRS_NAME);
OPEN(UNITS, IN_FILE, UNITS_NAME); CREATE(REPORT, OUT_FILE, "report.txt");
TITLE := {the title};
SET_OUTPUT(REPORT);
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE); NEW_LINE(2);
SET_COL(13): PUT(TITLE); NEW_LINE(60);
lo0p
begin
NEW_LINE: PUT("Enter UNIT Key: "); GET(UNIT_KEY):
READ(UNITS, UNIT, UNIT_KEY);
exit;
exception '
when END_ERROR => PUT("Invalid UNIT Key"): NEW_LINE;
end;
end loop;
P:PAIR_INDEX := UNIT.REPAIR;
while not NULL_INDEX(REPAIR_INDEX) loop
READ(REPAIRS, REPAIR, REPAIR_INDEX);
if LINE > 63 then
NEW_PAGE: NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT(TITLE); SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" Date Defect Description/Comment”); NEW_LINE(2);
end if;
READ(DEFECTS, DEFECT, REPAIR.DEFECT):
PUT(FORMAT_DATE(REPAIR.DATE)); SET_COL(13); PUT(REPAIR.DEFECT);
SET_COL(20): PUT{DEFECT.NAME); NEW_LINE;
SET_COL(22); PUT(REPAIR.COMMENT}; MEW_LINE;
REPAIR_INDEX := REPAIR.NEXT;
end loop;
{the summary};
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP: PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;

KBEmacs (ADA) <KBE.DEMO>UNIT_REPAIR_REPORT.ADA Screen 37

110 Ada Scenario

Specifying the Title

In Screen 38, the programmer uscs the knowledge-based command "Fi11" in order to specify the title to
be used in the report. ‘The title itself is expressed as a literal Ada expression in the command. A "F i1 1"
command specifying a literal picce of program code is equivalent to using direct editing to textually replace
the role with the program code. The cxpression is wrapped in parentheses so that the command language
parser will recognize it as a single expression.

Using Common Sense

An interesting aspect of Screen 37 is that the title role happens to precede the GET of the UNIT_KEY.
(These two computations arc not ordered by control flow or data flow and KBEmacs chose to put the title
first.) Asa result, the "Fi11" command in Screen 38 docs not completely make sense. 'The problem is that it
refers to the variable UNIT_KEY before it has been given a value.

KBEmacs tries to forestall problems in situations like this by not taking the exact order of program
statements too literally. When the programmer specifies an expression to be inserted into a program,
K BEmacs interprets cach variable reference in the expression as a request to reference the associated value. If
a variable docs not have a value at the exact place where the insertion is to be made, then KBEmacs
rearranges the program (within the limits of data flow and control flow constraints) in order to make an
appropriate value available. Here, the GET of the UNIT_KEY is moved before the title.

Taking Care of Details

Another interesting change in Screen 38 is that once the computation of the title has been specified
KBEmacs can compute the length of the string which stores the title. 'This is done based on the length of the
literal string supplied by the programmer and on the fact that KBEmacs knows how long a UNIT_KEY is (by
looking at the definition of the file UNITS in the package MAINTENANCE_FILES).

The fact that KBEmacs can determine the appropriate declaration for the variable TITLE shiclds the
programmer from an irritating detail of the fanguage Ada. Since there is no varying length string data type in
standard Ada, the declaration of a local string variable (e.g., TITLE) must include the cxact length of the string
unless it is a constant (c.g., CURRENT_DATE).

Constraint Propagation 111

s-X Fi11 the title with ("Report of Repairs on Unit " & UNIT_KEY). <end>

with CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
procedure UNIT_REPAIR_REPORT is
use DEFECT_IO, REPAIR_IO, UNIT_IO, INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK};
DEFECT: DEFECT_TYPE;
REPAIR: REPAIR_TYPE;
REPAIR_INDEX: REPAIR_INDEX_TYPE;
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..33):
UNIT: UNIT_TYPE;
UNIT_KEY: UNIT_KEY_TYPE;
procedure CLEAN_UP is
begin
SET_OUTPUT({STANDARD_OUTPUT) ;
CLOSE(DEFECTS): CLOSE(REPAIRS); CLOSE(UNITS); CLOSE(REPORT);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME); OPEN(REPAIRS, IN_FILE, REPAIRS_NAME);
OPEN(UNITS, IN_FILE, UNITS_NAME); CREATE(REPORT, OUT_FILE, "report.txt"):
Uoop
begin
NEW_LINE; PUT("Enter UNIT Key: "); GET(UNIT_KEY);
READ(UNITS, UNIT, UNIT_KEY);
exit;
exception
when END_ERROR => PUT("Invalid UNIT Key"): NEW_LINE;
end;
end Toop;
TITLE := "Report of Repairs on Unit " & UNIT_KEY;
SET_OUTPUT(REPORT) ;
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE); NEW_LINE(2);
SET_COL(13): PUT(TITLE); NEW_LINE(60);
REPAIR_INDEX := UNIT.REPAIR;
while not NULL_INDEX(REPAIR_INDEX) loop
READ(REPAIRS, REPAIR, REPAIR_INDEX);
if LINE > 63 then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT{TITLE); SET_COL(61); PUT(CURRENT_DATE)}:; NEW_LINE(2);
PUT(" Date Defect Description/Comment™); NEW_LINE(2);
end if;
READ(DEFECTS, DEFECT, REPAIR.DEFECT);
PUT(FORMAT_DATE(REPAIR.DATE)); SET_COL(13); PUT(REPAIR.DEFECT);
SET_COL{20); PUT(DEFECT.NAME): NEW_LINE;
SET_COL{22); PUT(REPAIR.COMMENT); NEW_LINE;
REPAIR_INDEX := REPAIR.NEXT;
end loop;
{the summary};
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT("Data Base Inconsistent”);
when others => CLEAN_UP; raise;

KBEmacs (ADA) <(KBE.DEMO>UNIT_REPAIR_REPORT.ADA Screen 38

112 Ada Scenario

Finishing the Program

In Screen 39, the programmer completes the program UNIT_REPAIR_REPORT by removing the summary
role. He doces this by using the abbreviated command "s-R" which offers to remove the first unfilled role
following the current position of the cursor. The line_limit is changed from 63 to 64 since zcro lincs are now
required for the summary whercas the default assumption used by the constraint function SIZE_IN_LINES in
the screens above was that the summary would produce one line of output. ‘The programmer then tells
K BEmacs that the program is complete and-compiles the program so that it can be tested.

Evaluating the Commands Used

Consider the sct of knowledge-based commands (shown below) which were used in order to implement
the program UNIT_REPAIR_REPORT,

Define a simple_report procedure UNIT_REPAIR_REPORT.

Fi11 the enumerator with a chain_enumeration of UNITS and REPAIRS.
Fi11 the main_file_key with a query_user_for_key of UNITS.

Share the first READ and the second READ.

Fil11 the title with ("Report of Repairs on Unit " & UNIT_KEY).
Remove the summary.

Comparing these commands with the hypothetical directions for a human assistant shows that they are
virtually identical. 'The only real difference is that KBEmacs was not smart cnough to automatically share the
two calls on READ.

Define a simpie report program UNIT_REPAIR_REPORT. Enumerate the chain of
repairs associated with a unit record, printing each one. Query the user for
the key (UNIT_KEY) of the unit record to start from. Print the title
("Report of Repairs on Unit " & UNIT_KEY). Do not print a summary.

It is also interesting to compare the KBEmacs commands used to construct the program
UNIT_REPAIR_REPORT with the directions (reproduced below) which were used to create the program
REPORT-TIMINGS in the Jast chapter.

Define a program REPORT-TIMINGS with a parameter TIMINGS.

Insert a simpie-report.

Fill the title with "Report of Reaction Timings (in msec.)".

Fi1l the enumerator with a Tist-enumeration of TIMINGS.

Remove the column-headings.

Fill the print-item with a print-out of "~&~5X~8:D".

Fi11 the summary with (FORMAT REPORT “"~2&~{mean:~8:D (deviation: ~:D)~}"
(MEAN-AND-DEVIATION TIMINGS)).

This comparison leads to two points. First, the commands for UNIT_REPAIR_REPORT arc significantly
simpler duc to the action of the constraints defined as part of the cliche simple_report and the existence of the
cliches print_repair and print_repair_hcadings. Sccond, the language independence of KBEmacs is illustrated
by the fact that the two sets of commands are really very similar. 1£it were not for the inclusion of a few literal
picces of program code, there would be no way to know that the programs produced by the two scts of
commands were coded in two different programming languages.

Constraint Propagation 113

s-R Remove the summary. <end> .
s-<end> Finish editing the procedure UNIT_REPAIR_REPORT. <end>
c-shift-C Compiling UNIT_REPAIR_REPORT

Ehth CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
procedure UNIT_REPAIR_REPORT is
use DEFECT_IO, REPAIR_IO, UNIT_IO, INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DEFECT: DEFECT_TYPE;
REPAIR: REPAIR_TYPE;
REPAIR_INDEX: REPAIR_INDEX_TYPE;
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..33);
UNIT: UNIT_TYPE;
UNIT_KEY: UNIT_KEY_TYPE;
procedure CLEAN_UP is
begin
SET_OUTPUT(STANDARD_QUTPUT) ;
CLOSE(DEFECTS); CLOSE(REPAIRS); CLOSE(UNITS); CLOSE(REPORT);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME); OPEN(REPAIRS, IN_FILE, REPAIRS_NAME);
OPEN{UNITS, IN_FILE, UNITS_NAME); CREATE(REPORT, OUT_FILE, "report.txt");

loop
begin
NEW_LINE; PUT("Enter UNIT Key: "); GET(UNIT_KEY):
READ(UNITS, UNIT, UNIT_KEY);
exit;
exception
when END_ERROR => PUT("Invalid UNIT Key"): NEW_LINE;
end;
end loop;
TITLE := "Report of Repairs on Unit " & UNIT_KEY;

SET_QUTPUT(REPORT);
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE); NEW_LINE(2);
SET_COL(13): PUT(TITLE); NEW_LINE(60);
REPAIR_INDEX := UNIT.REPAIR;
while not NULL_INDEX{REPAIR_INDEX) loop
READ{REPAIRS, REPAIR, REPAIR_INDEX):
if LINE > 64 then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT(TITLE); SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" Date Defect Description/Comment™); NEW_LINE(2);
end if;
READ(DEFECTS, DEFECT, REPAIR.DEFECT);
PUT(FORMAT_DATE(REPAIR.DATE)); SET_COL(13); PUT(REPAIR.DEFECT);
SET_COL(20); PUT(DEFECT.NAME); NEW_LINE;
SET_COL(22): PUT(REPAIR.COMMENT); NEW_LINE;
REPAIR_INDEX := REPAIR.NEXT;
end loop;
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT{("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end UNIT_REPAIR_REPORT;

KBEmacs (ADA) <KBE.DEMO>UNIT_REPAIR_REPORT.ADA Screen 39

ln&mnﬂmepmmmmcrahxm _m4 :
: r-‘:mmwmmwn*mka[3
md&mhwﬁ.aﬁmm&w »ﬁ

Constraint Propagation 115

s-; Comment the procedure UNIT_REPAIR_REPORT. <end>

-~ The procedure UNIT_REPAIR_REPORT i1s & simple_report:

-- The file_name is "report.txt".

-- The title 1s ("Report of Repairs on Unit " & UNIT_KEY).
-- The enumerator 1s a chain_enumeration.

- It enumerates the chain records in REPAIRS starting from the
-- the header record indexed by UNIT_KEY.

-- The column_headings are a print_repair_headings.

-~ It prints headings for printing repair records.

-- The print_item i1s a print_repair.

-- It prints out the fields of REPAIR.

-- There is no summary.

with CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
procedure UNIT_REPAIR_REPORT is
use DEFECT_IO, REPAIR_IO, UNIT_IO, INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DEFECT: DEFECT_TYPE;
REPAIR: REPAIR_TYPE:
REPAIR_INDEX: REPAIR_INDEX_TYPE;
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..33);
UNIT: UNIT_TYPE;
UNIT_KEY: UNIT_KEY_TYPE;
procedure CLEAN_UP is
begin
SET_OUTPUT({STANDARD_OUTPUT);
CLOSE(DEFECTS); CLOSE(REPAIRS); CLOSE(UNITS); CLOSE(REPORT);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME); OPEN(REPAIRS, IN_FILE, REPAIRS_NAME);
OPEN(UNITS, IN_FILE, UNITS_NAME); CREATE(REPORT, OUT_FILE, "report.txt");

loop
begin
NEW_LINE; PUT("Enter UNIT Key: "); GET(UNIT_KEY);
READ(UNITS, UNIT, UNIT_KEY);
exit;
exception
when END_ERROR => PUT("Invalid UNIT Key"); NEW_LINE;
end;
end loop;
TITLE := "Report of Repairs on Unit " & UNIT_KEY;

SET_QUTPUT(REPORT);
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE); NEW_LINE(2);
SET_COL(13); PUT(TITLE); NEW_LINE(60);
REPAIR_INDEX := UNIT.REPAIR:
while not NULL_INDEX(REPAIR_INDEX) loop
READ(REPAIRS, REPAIR, REPAIR_INDEX);
if LINE > 64 then
NEW_PAGE; NEW_LINE; PUT("Page: "): PUT(INTEGER(PAGE-1), 3);
SET_COL(13): PUT(TITLE): SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" Date Defect Description/Comment"); NEW_LINE(2);
end if;

KBEmacs (ADA) <KBE.DEMO>UNIT_REPAIR_REPORT.ADA Screen 40

nw - Ada Scenario

‘Testing o i v
Asan adjunct to KBEmacs, a minimal interpreter for a subset of Ada has been implemented so that Ada

"+~ programs can be tested. In Screcndl, the programmer tests the program UNET_REPAIR_REPORT. The
~ programmer first uses the procedure CREATE_TEST_RECORDS {sce Appendix B) to creale a test data base

~ containing the records shown in Figure 7. He then runs the program UNIT_REFAZR_REPORT. In addition to
cmaungammnhemwhahmwhenmeusermummmnmﬁkuns Finally, the
progmmmerusesmeprogrammm&v.kﬁmr(mm&wmwmmmerq)onpmwd.

’

Constraint Propagation

(select> A

117

CREATE_TEST_RECORDS;
UNIT_REPAIR_REPORT;
Enter Unit Key: GA2-341
Invalid Unit Key

Enter Unit Key: GA2-342
DISPLAY_REPORT;
< 4 blank lines>

5/27/1985

Report of Repairs on Unit GAZ2-342
<59 blank lines>
{page>
Page: 1 Report of Repairs on Unit GA2-342

Date Defect Description/Comment

3/19/1985 GA-32 Clogged gas injection port

Port Diameter seems below specs.

172371985 GA-11 Control board cold solder joint
Took two days to find,
9/14/1983 GA-32 C(logged gas injection port
[] Probably caused by humidity.

5/27/1985

Ada Listener

Screen 41

118

A Large Program

In the last part of the scenario, the programmer constructs a complex report program named
MODEL_DEFECTS_REPORT. This program produces a summary report of the defects which have occurred on
units of a given model since a given date. The following directions might be used to tell a person how to write
the program.

Define a simple report program MODEL_DEFECTS_REPORT. Query the user for a
key of a record in the file MODELS and for a starting date. Enumerate all of
the repairs performed on all of the units and select the repairs which have
been performed on units of the specified model since the start date. Print a
summarized report showing how many times each kind of defect occurs in these
repairs. Print a title showing the specified model and the starting date.

Do not print a summary.

There are six key concepts which underlic the directions above: how to print a simple report, how to query
the user for a key, how to query the user for a date, how to enumerate all of the repairs, how to sclect a subset
of them, and how to summarize them showing the frequency of cach defect. They first two of these concepts
were used in the program UNIT_REPAIR_REPORT. The remaining four will be discussed in detail below.

The Cliche File_Selection

The cliche file_sclection (shown on the next page) creates a file of sclected keys to records in another file.
The cliche is a combination of threc more basic cliches: enumeration, selection, and file_accumulation (all
shown in Appendix A). The cliche cnumerates some series of values, selects some subseries of these values,
and writes a file of keys corresponding to these values.

The cliche has four principal roles. The source_file is the file to which keys are being sclected. The
enumerator enumerates some scries of records. 1t is expected that these records will either be the records in
the source_file, or other records which contain keys to the source_file. The selection_test selects the
enumerated records which are of interest. The record_key_accessor determines what source_file key
corresponds to each sclected record.

The cliche includes a declaration for the file SELECTIONS which is used to contain the selected keys. The
170 functions for this file are an instantiation of the standard Ada generic package DIRECT_IO. An output
role is used to specify that the file SELECTIONS is the logical output of the cliche.

'The constraint in the cliche is used to rename the role record_key_accessor so that it will have a more
mnemonic name when the cliche is instantiated. For example, if the source_file is specified to be the file
DEFECTS then the record_key_accessor role will be renamed the defect_key_accessor.

A Large Program 119

with DIRECT_IO;
¢liche FILE_SELECTION is
primary roles SOURCE_FILE;
described roles SOURCE_FILE, SELECTION_TEST, RECORD_KEY_ACCESSOR;
comment "creates a file containing selected record keys for
{the source_file}";
constraints
RENAME ("RECORD_KEY", RECORD_KEY_ROOT({the source_file}));
end constraints;

package SELECTION_IO is new DIRECT_IO(RECORD_KEY_TYPE);
use SELECTION_IO;
SELECTIONS: SELECTION_IO.FILE_TYPE;

DATA: {};
pATUM: {};
begin

DATA := {the source_file};
CREATE(SELECTIONS, INOUT_FILE);
while not {the empty_test of the enumerator}(DATA) loop
DATUM := {the element_accessor of the enumerator}(DATA);
if {the selection_test}(DATUM) then
WRITE(SELECTIONS, {the record_key_accessor}{DATUM));

end if;
DATA := {the step of the enumerator}{DATA);
end loop;
{SELECTIONS, the output selection_file};
CLOSE(SELECTIONS);
exception

when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLOSE(SELECTIONS); PUT("Data Base Inconsistent");
when others => CLOSE(SELECTIONS); raise;
end FILE_SELECTION;

120 Ada Scenario

The Cliche File_Summarization

with DIRECT_I0;
cliche FILE_SUMMARIZATION is
primary roles SOURCE_FILE;
described roles SOURCE_FILE;
comment "creates a file summarizing the frequency of occurrence of
the record keys stored in {the source file}";
constraints
RENAME ("SOURCE_RECORD", SINGULAR_FORM({the source_file}));
RENAME ("RECORD_KEY", RECORD_KEY_ROOT({the source_file}));
DEFAULT({the source_file_name},
CORRESPONDING_FILE_NAME({the source_file}));
end constraints;

type SUMMARY_TYPE is
record
COUNT: INTEGER;
KEY: RECORD_KEY_TYPE;
end record;
package SUMMARY_IO is new DIRECT_IO(SUMMARY_TYPE);
use SUMMARY_IO:
SUMMARIES: SUMMARY_IO.FILE_TYPE;

SOURCE_FILE: {};

function BUILD_SUMMARY(COUNT: INTEGER; KEY: RECORD_KEY_TYPE)
return SUMMARY_TYPE is
begin return SUMMARY_TYPE ' (COUNT, KEY); end BUILD_SUMMARY;
function SUMMARY_GREATER_THAN(X: SUMMARY_TYPE; Y: SUMMARY_TYPE)
return BOOLEAN is
begin return X,COUNT > Y.COUNT; end SUMMARY_GREATER_THAN;
procedure SORT_SOURCE_RECORDS is
new SORT_FILE(RECORD_KEY_TYPE, SOURCE_RECORD_IO.FILE_TYPE,
SOURCE_RECORD_IQ.POSITIVE_COUNT);
procedure SORT_SUMMARIES is
new SORT_FILE(SUMMARY_TYPE, SUMMARY_IOQ.FILE_TYPE,
SUMMARY_IO.POSITIVE_COUNT, SUMMARY_GREATER_THAN);
procedure SUMMARIZE_SOURCE_RECORDS is
new SUMMARIZE_FILE(RECORD_KEY_TYPE, SOURCE_RECORD_IO.FILE_TYPE,
SUMMARY_TYPE, SUMMARY_IO.FILE_TYPE, BUILD_SUMMARY);
procedure CLEAN_UP is
begin
CLOSE(SOURCE_FILE); CLOSE(SUMMARIES):
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
SOURCE_FILE := {the source_file};
OPEN(SOURCE_FILE, INOUT_FILE, {the source_file_name});
CREATE(SUMMARIES, INOUT_FILE):
SORT_SOURCE_RECORDS(SOURCE_FILE):
SUMMARIZE_SOURCE_RECORDS(SOURCE_FILE, SUMMARIES);
SORT_SUMMARIES(SUMMARIES) ;
{SUMMARIES, the output summaries};
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end FILE_SUMMARIZATION;

A Large Program 121

T'he cliche file_summarization (shown on the previous page) takes in a source file of values and creates a
summary file which shows how many times cach value occurs in the source file. Each record in the summary
file contains one of the values from the source file and a count of how many times that value occurs in the
source file. ‘The records in the summary file are sorted with the most frequent values first. As an example of
what the cliche does, suppose that the source file contained the values "A A B A € A C". The summary file
would then contain the records (4 A) (2 €) (1 B)".

The cliche has only one principal role: the source_file. The summary file is the logical output of the cliche.
The cliche works by sorting the source file so that identical items become adjacent, creating the summary file
by counting how many times cach value exists in the source file, and then sorting the summary file.

The cliche depends heavily on the gencric procedures SORT_FILE and SUMMARIZE_FILE which are
defined in the package FUNCTIONS (sce Appendix B). Most of the code for the cliche consists of declarations
which are required in order to instantiate these procedures. The body of the code is a serics of calls on these
instantiations,

The cliche file_summarization is another cxample of the fact that KBEmacs uses existing mechanisms
whenever possible. Since generic procedures are fully adequate to represent the actions of sorting a file and
performing the actual summarization, there is not reason to open code these operations in the cliche. This
simplifies both the cliche and the programs which use the cliche. The aspects of file summarization which
cannot be represented as a generic (i.c., the declaration of the summary file records and the functions which
operate on them) are retained in the cliche.

Coustructing the Program

In Screen 42, the programmer begins the construction of the program MODEL_DEFECTS_REPORT by
creating a file to hold the program, and then creating an empty definition for the program. He then specifies
the basic structure of the program by combining the four cliches simple_report, filc_cnumcration,
file_sclection, and filc_summarization, '

The code which results from combining these cliches is too large to show in one screen. The declarations
in the program arc shown in Screen42a. Although some of the declarations come from the cliches
file_sclection and simple_report, most of the declarations come from the cliche file_summarization.

The body of the program is shown in Screen 42b. The body is divided into three logical parts. The first
loop coines from the cliche file_sclection. The next three lines come from the cliche file_summarization. The
rest of the body is a simple_report whose enumcrator is a file_enumeration. The print_item and
column_headings have been automatically filled in by the functions CORRESPONDING_PRINTING and
CORRESPONDING_HEADINGS. Since no cliche is defined for the printing of a summary, these functions
gencrated the appropriate code based on the declaration of the file SUMMARIES.

122 Ada Scenario

¢c-X ¢-F Find f1le <KBE.DEMO>MODEL_DEFECTS_REPORT.ADA

(New File)

s-X Define a procedure MODEL_DEFECTS_REPORT. <end>

s-X Insert a simple_report of a file_enumeration of a file_ summar1zat1on of
a file _selection of DEFECTS. <end>

@7th CALENDAR, FUNCTIONS, DIRECT_IO, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
procedure MODEL_DEFECTS_REPORT is

use DEFECT_IO, INT_IO;

package SELECTION_IO is new DIRECT_IO(DEFECT_KEY_TYPE);
use SELECTION_IO;
SELECTIONS: SELECTION_IO.FILE_TYPE;

type SUMMARY_TYPE is
record
COUNT: INTEGER;
KEY: DEFECT_KEY_TYPE;
end record;
package SUMMARY_IO is new DIRECT_IO(SUMMARY_TYPE);
use SUMMARY_IO;
SUMMARIES: SUMMARY_IO.FILE_TYPE;

CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DATA: {};

DATUM: {};

DEFECT: DEFECT_TYPE;

REPORT: TEXT_IO.FILE_TYPE;

SUMMARY: SUMMARY_TYPE;

TITLE: STRING(1..{});

function BUILD_SUMMARY(COUNT: INTEGER; KEY: DEFECT_KEY_TYPE)
return SUMMARY_TYPE is
begin return SUMMARY_TYPE'(COUNT, KEY); end BUILD_SUMMARY;
function SUMMARY_GREATER_THAN(X: SUMMARY_TYPE; Y: SUMMARY_TYPE)
return BOOLEAN 1s
begin return X.COUNT > Y.COUNT; end SUMMARY_GREATER_THAN;
procodure SORT_SELECTIONS 1is
new SORT_FILE(DEFECT_KEY_TYPE, SELECTION_IO.FILE_TYPE,
SELECTION_IOQ.POSITIVE_COUNT);
procedure SORT_SUMMARIES 1is
new SORT_FILE(SUMMARY_TYPE, SUMMARY_IO.FILE_TYPE,
SUMMARY_I0. POSITIVE_COUNT, SUMMARY_GREATER_THAN) ;
procedure SUMMARIZE_SELECTIONS 1s
new SUMMARIZE_FILE(DEFECT_KEY_TYPE, SELECTION_IO.FILE_TYPE, SUMMARY_TYPE,
SUMMARY_IO.FILE_TYPE, BUILD_SUMMARY);
procedure CLEAN_UP 1is
begin
SET_OUTPUT(STANDARD_OUTPUT) ;
CLOSE(DEFECTS); CLOSE(REPORT); CLOSE(SELECTIONS); CLOSE(SUMMARIES);
exception
whon STATUS_ERROR => return;
end CLEAN_UP;

KBEimacs (ADA) <KBE.DEMO>MODEL_DEFECTS_REPORT.ADA Screen 42a

A Large Program 123

begin
gOPEN(DEFECTS, IN_FILE, DEFECTS_NAME): CREATE(REPORT, OUT_FILE, "report.txt");
CREATE(SELECTIONS, INOUT_FILE); CREATE(SUMMARIES, INOUT_FILE);
DATA := DEFECTS;
while not {the empty_test of the enumerator}(DATA) loop
DATUM := {the element_accessor of the enumerator}(DATA);
it {the selection_test}(DATUM) then
WRITE(SELECTIONS, {the defect_key_accessor}{DATUM)):
end if;
DATA := {the step of the enumerator}{DATA);
end loop;
SORT_SELECTIONS(SELECTIONS);
SUMMARIZE_SELECTIONS(SELECTIONS, SUMMARIES);
SORT_SUMMARIES(SUMMARIES) ;
SET_OUTPUT(REPORT);
TITLE := {the title};
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE); NEW_LINE(2);
SET_coL(13); PUT(TITLE); NEW_LINE(60);
while not END_OF_FILE(SUMMARIES) loop
READ(SUMMARIES, SUMMARY);
1f LINE > 54 then
NEW_PAGE; NEW_LINE; PUT("Page: "): PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT(TITLE); SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" # Key Name"); NEW_LINE(2);
end 1f;
READ(DEFECTS, DEFECT, SUMMARY.KEY);
PUT{SUMMARY.COUNT, 3): SET_COL{5); PUT(SUMMARY.KEY);
SET_coL{12); PUT(DEFECT.NAME); NEW_LINE;
end loop;
{the summary};
CLEAN_UP;
exception ‘
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>

CLEAN_UP: PUT("Data Base Inconsistent"):
when others => CLEAN_UP; raise;
ond MODEL_DEFECTS_REPORT;

KBEmacs (ADA) <KBE.DEMO>MODEL_DEFECTS_REPORT.ADA Screen 420

124 Ada Scenario

The Cliche AN_Chains_Fnumeration

In Screen 43, the programmer fills in the enumerator of the file_sclection. He doces this using the cliche
all_chains_cnumeration (sce Appendix A). This cliche has two primary roles: the main_file and the chain_file.
It enumerates alt of the records in the chain_file which are in chains that start from any of the records in the
main_file. 1t does this by enumecrating all of the records in the main_file and enumecrating the chain of
records starting with cach of the main_file records. In as much as this is the case, the cliche is a combination
of the cliches file_cnumeration and chain_cnumeration,

The highlighting in Screen 43 indicates the code which comes from the cliche all_chains_enumeration. (In
the interest of brevity, the declarations in the program MODEL_DEFECTS_REPORT will not be shown in the next
few screens. ‘They will be discussed again at the end of the scenario.)

'The primary arca of complexity in the cliche all_chains_enumeration is that it is, in a scnsc, turned
inside-out. One might expect that the most natural way to write the cliche would be as a nested loop with the
outer loop enumerating main_file records and the inner loop enumerating chain_file records. However, the
cliche is actually written so that the inner loop enumerates main_file records and the outer loop enumecrates
chain_file records. It is important that it be done this way so that the cliche will fit into all of the places where
a simple lincar cnumerator is expected.

A Large Program 125

s-F F111 the enumerator with an all_chains_enumeration of UNITS and REPAIRS. <end>

begin
gOPEN(DEFECTS. IN_FILE, DEFECTS_NAME): OPEN(REPAIRS, IN_FILE, REPAIRS_NAME);
OPEN(UNITS, IN_FILE, UNITS_NAME): CREATE(REPORT, OUT_FILE, "report.txt");
CREATE(SELECTIONS, INOUT_FILE); CREATE(SUMMARIES, INOUT_FILE);
BEPAIR_INDEX := NULL_INDEX;
loop
while NULL_INDEX(REPAIR_INDEX) and not END_OF_FILE(UNITS) loop
READ(UNITS. UNIT);
REPAIR_INDEX := UNIT.REPAIR;
end loop;
exit when NULL_INDEX(REPAIR_INDEX);
READ(REPAIRS, REPAIR, REPAIR_INDEX);
it {the selection_test}(REPAIR) then
WRITE(SELECTIONS, {the defect_key_accessor}(REPAIR));
end if;
REPAIR_INDEX := REPAIR.NEXT:
end loop;
SORT_SELECTIONS({SELECTIONS);
SUMMARIZE_SELECTIONS(SELECTIONS, SUMMARIES);
SORT_SUMMARIES(SUMMARIES);
SET_OUTPUT(REPORT);
TITLE := {the title};
NEW_LINE(4): SET_COL{20); PUT(CURRENT_DATE); NEW_LINE(2);
SET_COL(13); PUT(TITLE); NEW_LINE(60);
while not END_OF_FILE(SUMMARIES) Tloop
READ(SUMMARIES, SUMMARY);
if LINE > 54 then
NEW_PAGE; NEW_LINE: PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT(TITLE); SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" # Key Name"); NEW_LINE(2);
end if;
READ{DEFECTS, DEFECT, SUMMARY.KEY);
PUT (SUMMARY.COUNT, 3); SET_COL{5); PUT(SUMMARY.KEY);
SET_COL(12)}; PUT(DEFECT.NAME); NEW_LINE;
end loop;
{the summary};
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end MODEL_DEFECTS_REPORT;

KBEmacs (ADA) <KBE.DEMO>MODUL_DEFECTS_REPORT.ADA Screen 43

126 Ada Scenario

Specifying the Selection_Test

In Screen 44, the programmer uses direct editing to fill in the selection_test. In order to specify the
selection_test, he makes use of several inline cliche references. The cliche query_user_for_key has been
discussed above,

‘The function QUERY_USER_FOR_DATE (defined in the package FUNCTIONS) takes a prompt string as its
argument and reads in a valuc of type TIME. This computation is implemented as a function rather than a
cliche because it can be casily and cfficiently represented that way. As always, cliches are only used when
other mechanisms are inadequate.

The cliche pre_loop_computation (shown below) is needed in order to specify that the user is to be
quericd only once before the loop starts instcad of on cach cycle of the loop. The cliche
pre_loop_computation is has one principal role: the item. It makes this value available as an output on cach
cycle of a loop. The cliche is convenient because it allows the embedded cliche references in Screen 44 to be
written as simple expressions. Without this cliche, the programmer would have to insert the code for
querying the user before the beginning of the loop and explicitly introduce variables to carry the values into
the loop.

cliche PRE_LOOP_COMPUTATION is
primary roles ITEM;
described roles ITEM;
comment "makes the value {the item} available inside of a loop";
constraints

RENAME ("DATA_VALUE", SUGGEST_VARIABLE_NAME({the item}));
end constraints;

DATA_VALUE: {};

begin
DATA_VALUE := {the item};
toop
{DATA_VALUE, the output data_value};
end loop;

end PRE_LOOP_COMPUTATION;

In Screen 44, the programmer also specifies that the defect_key_accessor should access the DEFECT field of
the sclected repair records.

A Large Program 127

s-N direct editing

begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME); OPEN(REPAIRS, IN_FILE, REPAIRS_NAME);
OPEN(UNITS, IN_FILE, UNITS_NAME):; CREATE(REPORT, OUT_FILE, "report.txt”);
CREATE(SELECTIONS, INOUT_FILE); CREATE(SUMMARIES, INOUT_FILE);
REPAIR_INDEX := NULL_INDEX;
loop
while NULL_INDEX(REPAIR_INDEX) and not END_OF_FILE(UNITS) loop
READ(UNITS, UNIT);
REPAIR_INDEX := UNIT.REPAIR;
end loop;
exit when NULL_INDEX(REPAIR_INDEX);
READ(REPAIRS, REPAIR, REPAIR_INDEX);
if UNIT.MODEL = {a pre_loop_computation of a query_user_for_key of MODELS}
and REPAIR.DATE »>=
{a pre_loop_computation of
QUERY_USER_FOR_DATE("Start of Reporting Perijod")} then
WRITE(SELECTIONS, REPAIR.DEFECHD,
end if;
REPAIR_INDEX := REPAIR.NEXT;
end loop;
SORT_SELECTIONS{SELECTIONS);
SUMMARIZE_SELECTIONS(SELECTIONS, SUMMARIES);
SORT_SUMMARIES(SUMMARIES):
SET_OUTPUT(REPORT) ;
TITLE := {the title};
NEW_LINE(4): SET_COL(20); PUT{CURRENT_DATE); NEW_LINE(2);
SET_COL(13); PUT(TITLE); NEW_LINE(60);
while not END_OF_FILE(SUMMARIES) loop
READ(SUMMARIES, SUMMARY);
if LINE > 54 then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT(TITLE); SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" # Key Name"); NLW_LINE(2);
end if;
READ(DEFECTS, DEFECT, SUMMARY.KEY);
PUT(SUMMARY.COUNT, 3); SET_COL(5); PUT{SUMMARY.KEY);
SET_COL(12); PUT(DEFECT.NAME); NEW_LINE;
end loop;
{the summary};
CLEAN_UP;

exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>

CLEAN_UP: PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end MODEL_DEFECTS_REPORT;

KBEmacs (ADA) <KBE.DEMOD>MODEL_DEFECTS_REPORT.ADA Screen 44

7, S AdaSemm

B A-mummmumnuhw

~ In Scroen 45, mmmmm h "‘mtm mmwmﬂn

A Large Program | 129

s-A Analyze the procedure MODEL_DEFECTS_REPORT. <end>

begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME); OPEN(MODELS, IN_FILE, MODELS_NAME);
OPEN(REPAIRS, IN_FILE, REPAIRS_NAME): OPEN(UNITS, IN_FILE, UNITS_NAME);
CREATE(REPORT, OUT_FILE, "report.txt"); CREATE(SELECTIONS, INOUT_FILE);
CREATE(SUMMARIES, INOUT_FILE);
Moop

begin
NEW_LINE; PUT("Enter Model Key: ");

GET(MODEL_KEY);

READ(MODELS, MODEL, MODEL_KEY);

exit;
exception

when END_ERROR => PUT("Invalid MODEL Key"); NEW_LINE;
end;

end loop;
DATE := QUERY_USER_FOR_DATE("Start of Reporting Period");

REPAIR_INDEX := NULL_INDEX;

loop
while NULL_INDEX(REPAIR_INDEX) and not END_OF_FILE(UNITS) loop

READ(UNITS, UNIT);
REPAIR_INDEX := UNIT.REPAIR;
end loop;
exit when NULL_INDEX(REPAIR_INDEX);
READ{REPAIRS, REPAIR, REPAIR_INDEX):
if UNIT.MODEL = MODEL_KEY and REPAIR.DATE >= DATE then
WRITE(SELECTIONS, REPAIR.DEFECT);
end if;
REPAIR_INDEX := REPAIR.NEXT;
end loop;
SORT_SELECTIONS(SELECTIONS);
SUMMARIZE_SELECTIONS(SELECTIONS, SUMMARIES);
SORT_SUMMARIES(SUMMARIES);
SET_QUTPUT(REPORT) ;
TITLE := {the title};
NEW_LINE(4); SET_COL(20); PUT{CURRENT_DATE); NEW_LINE(2);
SET_COL(13): PUT{TITLE): NEW_LINE(60);
while not END_OF_FILE(SUMMARIES) loop
READ(SUMMARIES, SUMMARY);
if LINE > 54 then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER{PAGE-1), 3);
SET_COL(13); PUT(TITLE): SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" # Key Name")}; NEW_LINE(2);
end if;
READ(DEFECTS, DEFECT, SUMMARY.KEY);
PUT (SUMMARY .COUNT, 3): SET_COL(5); PUT(SUMMARY.KEY);
SET_COL(12); PUT{DEFECT.NAME); NEW_LINE;
end loop;
{the summary};
CLEAN_UP;

exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>

CLEAN_UP; PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end MODEL_DEFECTS_REPORT;

KBEmacs (ADA) <KBE.DEMOD>MODEL_DEFECTS_REPORT.ADA Screen 45

130 Ada Scenario

An Efficiency Modification

In Screen 46 the programmer makes an interesting efficiency modification. In doing this he takes
advantage of two properties of a chain of repair records. First, since all of the repairs in a chain apply to the
same unit, they must all apply to the same model. Second. the repairs in a chain are sorted in order of their
dates, with the most recent repair first. Given these two properties it can be seen that if the selection_test fails
on a given repair record, then it must fail for all of the rest of the records in the chain since these records
apply to the same model and arc older. In order to take advantage of this fact, the programmer changes the
program so that the enumeration of the repairs in a chain is cut short as soon as the sclection_test fails. Under
the assumption that the average repair chain is relatively long, and that relatively few repairs will actually be
sclected, this change leads to a dramatic improvement in efficiency.

It would be nice if KBEmacs had been able to perform the above cfficiency transformation itsclf.
However given that this is not the case, it is an important feature of the system that it does not prevent the
programmer from making the transformation. In fact. KBEmacs continually displays program code to the
programmer precisely so that he can make such changes.

Finishing the Program

In Screen 47, the programmer finishes the program MODEL_DEFECTS_REPORT by filling in the title and
removing the summary. The full code which results is shown in two parts. Screen 47a shows the declarations
in the program. Highlighting is used to show all of the changes since Screen 42a. Screen 47b shows the body
of the program. The linc_limit is changed from 64 to 65 since zero lines are required for the summary
whereas the default assumption used by the constraint function STZE_IN_LINES in the screens above was that
the summary would produce one line of output.

A Large Program 131

direct editing

begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME); OPEN(MODELS, IN_FILE, MODELS_NAME);
OPEN{REPAIRS, IN_FILE, REPAIRS_NAME); OPEN(UNITS, IN_FILE, UNITS_NAME);
CREATE(REPORT, OUT_FILE, "report.txt"); CREATE(SELECTIONS, INOUT_FILE);
CREATE(SUMMARIES, INOUT_FILE);
loop
begin
NEW_LINE; PUT("Enter Model Key: "):
GET(MODEL_KEY};
READ(MODELS, MODEL, MODEL_KEY);
exit;
exception
when END_ERROR => PUT("Invalid MODEL Key"): NEW_LINE;
end;
end loop;
DATE := QUERY_USER_FOR_DATE("Start of Reporting Period");
REPAIR_INDEX := NULL_INDEX;
loop
while NULL_INDEX(REPAIR_INDEX) and not END_OF_FILE(UNITS) loop
READ(UNITS, UNIT);
REPAIR_INDEX := UNIT.REPAIR;
end loop;
exit when NULL_INDEX(REPAIR_INDEX);
READ{REPAIRS, REPAIR, REPAIR_INDEX);
if UNIT.MODEL = MODEL_KEY and REPAIR.DATE >= DATE then
WRITE(SELECTIONS, REPAIR.DEFECT);
REPAIR_INDEX := REPAIR.NEXT:
else :
REPAIR_INDEX := NULL_INDEX;Q}
end if;
end loop;
SORT_SELFCTIONS(SELECTIONS);
SUMMARIZE_SELECTIONS(SELECTIONS, SUMMARIES);
SORT_SUMMARIES{SUMMARIES);
SET_OUTPUT{REPORT);
TITLE := {the title};
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE); NEW_LINE(2):
SET_COL(13); PUT(TITLE): NEW_LINE(60);
while not END_OF_FILE{SUMMARIES) loop
READ{SUMMARIES, SUMMARY);
if LINE > 54 then
NEW_PAGE: NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT(TITLE): SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2):
PUT(" # Key Name"); NEW_LINE(2);
end if;
READ(DEFECTS, DEFECT, SUMMARY.KEY);
PUT(SUMMARY ,COUNT, 3); SET_COL(5); PUT(SUMMARY.KEY);
SET_COL(12); PUT(DEFECT.NAME); NEW_LINE;
end loop;
{the summary};
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP: PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;

KBEmacs (ADA) <KBE.DEMO>MODEL_DEFECTS_REPORT,ADA Screen 46

132 Ada Scenario

s-F Fi11 the title with (MODEL.NAME & " Defects since " & FORMAT_DATE(DATE)). <end>
s-R Remove the summary. <end>

s-<end> Finish editing the procedure MODEL_DEFECTS_REPORT. <end>

c-shift-C Compiling MODEL_DEFECTS_REPORT

@ith CALENDAR, FUNCTIONS, DIRECT_I0, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
procedure MODEL_DEFECTS_REPORT is

use DEFECT_IO, MODEL_IO, REPAIR_IO, UNIT_IO, INT_IO;

package SELECTION_IO is new DIRECT_IO(DEFECT_KEY_TYPE);
use SELECTION_IO;
SELECTIONS: SELECTION_IO.FILE_TYPE;

type SUMMARY_TYPE is
record
COUNT: INTEGER;
KEY: DEFECT_KEY_TYPE;
end record;
package SUMMARY_IO is new DIRECT_IO(SUMMARY_TYPE);
use SUMMARY_I0;
SUMMARIES: SUMMARY_IO.FILE_TYPE;

CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DEFECT: DEFECT_TYPE;

DATE: TIME;

MODEL: MODEL_TYPE;

MODEL_KEY: MODEL_KEY_TYPE;
REPAIR: REPAIR_TYPE;
REPAIR_INDEX: REPAIR_INDEX_TYPE;
REPORT: TEXT_IO.FILE_TYPE;
SUMMARY: SUMMARY_TYPE;

TITLE: STRING(1..41});

UNIT: UNIT_TYPE;

function BUILD_SUMMARY(COUNT: INTEGER; KEY: DEFECT_KEY_TYPE)
return SUMMARY_TYPE is
begin return SUMMARY_TYPE'(COUNT, KEY); end BUILD_SUMMARY;
function SUMMARY_GREATER_THAN(X: SUMMARY_TYPE; Y: SUMMARY_TYPE)
return BOOLEAN is
begin return X.COUNT > Y.COUNT; end SUMMARY_GREATER_THAN;
procedure SORT_SELECTIONS is
new SORT_FILE(DEFECT_KEY_TYPE, SELECTION_IO.FILE_TYPE,
SELECTION_IO.POSITIVE_COUNT);
procedure SORT_SUMMARIES is
new SORT_FILE(SUMMARY_TYPE, SUMMARY_IO.FILE_TYPE,
SUMMARY_T0.POSITIVE_COUNT ,SUMMARY_GREATER_THAN) ;
procedure SUMMARIZE_SELECTIONS is
new SUMMARIZE_FILE{DEFECT_KEY_TYPE, SELECTION_IO.FILE_TYPE, SUMMARY_TYPE,
SUMMARY_IO0.FILE_TYPE, BUILD_SUMMARY);
procedure CLEAN_UP is
begin
SET_OUTPUT(STANDARD_QUTPUT);
CLOSE(DEFECTS); CLOSE(MODELS); CLOSE(REPAIRS): CLOSE(UNITS);
CLOSE(REPORT); CLOSE(SELECTIONS); CLOSE (SUMMARIES);
exception
when STATUS_ERROR => return;
end CLEAN_UP;

KBEmacs (ADA) <KBE.DEMO>MODEL_DEFECTS_REPORT.ADA Screen 47a

A Large Program 133

begin
gOPEN(DEFECTS, IN_FILE, DEFECTS_NAME); OPEN(MODELS, IN_FILE, MODELS_NAME);
OPEN(REPAIRS, IN_FILE, REPATRS_NAME); OPEN(UNITS, IN_FILE, UNITS_NAME);
CREATE(REPORT, OUT_FILE, "report.txt"); CREATE(SELECTIONS, INOUT_FILE);
CREATE{SUMMARIES, INOUT_FILE);
loop
begin
NEW_LINE; PUT("Enter Model Key: "):
GET(MODEL_KEY);
READ(MODELS, MODEL, MODEL_KEY);
exit;
exception
when END_ERROR => PUT{"Invalid MODEL Key"); NEW_LINE;
end;
end loop;
DATE := QUERY_USER_FOR_DATE("Start of Reporting Period");
REPAIR_INDEX := NULL_INDEX:
loop
while NULL_INDEX(REPAIR_INDEX) and not END_OF_FILE(UNITS) loop
READ(UNITS, UNIT);
REPAIR_INDEX := UNIT.REPAIR;
end loop:
exit when NULL_INDEX(REPAIR_INDEX);
READ(REPAIRS, REPAIR, REPAIR_INDEX);
if UNIT.MODEL = MODEL_KEY and REPAIR.DATE >= DATE then
WRITE(SELECTIONS, REPAIR.DEFECT);
REPAIR_INDEX := REPAIR.NEXT;
else
REPAIR_INDEX := NULL_INDEX;
end if;
end loop;
SORT_SELECTIONS(SELECTIONS);
SUMMARIZE_SELECTIONS(SELECTIONS, SUMMARIES);
SORT_SUMMARIES (SUMMARIES);
SET_OUTPUT(REPORT);
TITLE := MODEL.NAME & " Defects since " & FORMAT_DATE(DATE);
NEW_LINE(4): SET_COL(20); PUT{CURRENT_DATE); NEW_LINE(2);
SET_COL{13); PUT(TITLE); NEW_LINE(60);
while not END_OF_FILE(SUMMARIES) loop
READ(SUMMARIES, SUMMARY):
if LINE > 65 then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13): PUT(TITLE); SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" # Key Name"); NEW_LINE(2);
end if;
READ{DEFECTS, DEFECT, SUMMARY.KEY);
PUT(SUMMARY . COUNT, 3); SET_COL(5); PUT(SUMMARY.KEY);
SET_COL(12); PUT{DEFECT.NAME); NEW_LINE;
end loop;
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT("Data Base Inconsistent");
when others => CLEAN_UP; raisse;
end MODEL_DEFECTS_REPORT;

KBEmacs (ADA) <KBE.DEMO>MODEL_DEFECTS_REPORT.ADA Screen 47b

134 Ada Scenario

Testing
In Screen 48, the programmer tests the program MODEL_DEFECTS_REPORT.

Evaluating the Commands Used

The following summarizes the commands used to construct the program MODEL_DEFECTS_REPORT,
replacing most of the dircct editing with equivalent "F 11" commands.

Define a procedure MODEL_DEFECTS_REPORT.
Insert a simple_report of a file_enumeration of a file_summarization of
a file_selection of DEFECTS.
Fi11 the enumerator with an all_chains_enumeration of UNITS and REPAIRS.
Fi11 the selection_test with
UNIT.MODEL = {a pre_loop_computation of a query_user_for_key of MODELS}
and REPAIR.DATE >= {a pre_loop_computation of
QUERY_USER_FOR_DATE("Start of Reporting Period")}
Fil11 the defect_key_accessor with REPAIR.DEFECT.
direct editing -- efficiency transformation.
Fi1l the title with (MODEL.NAME & " Defects since " & FORMAT_DATE(DATE)).
Remove the summary.

Comparison of these commands with the hypothetical directions for a human assistant reproduced below
shows that they are qualitatively similar.
Define a simple report program MODEL_DEFECTS_REPORT. Query the user for a
key of a record in the file MODELS and for a starting date. Enumerate all of
the repairs performed on all of the units and select the repairs which have
been performed on units of the specified model since the start date. Print a
summarized report showing how many times each kind of defect occurs in these
repairs. Print a title showing the specified model and the starting date.
Do not print a summary.

The key thing to notice about this example is that the program MODEL_DEFECTS_REPORT is quite large. By
dint of packing calls on simple 1/0 procedures several to a linc and making usc of generic procedures, it is just
possible to fit the program in 110 lines. In contrast, the programmer only had to type 11 lines — 7
knowledge-based commands {onc of which includes several lines of program text), and the direct editing
needed in order to support the efficiency transformation.

A large Program

{select> A

135

MODEL_DEFECTS_REPORT;
Enter Model Key: GA2

Enter Date of Start of Reporting Period
Month: 1

Day: 1

Year: 1980

DISPLAY_REPORT;
< 4 newlines>

5/27/1985
Gas Analyzer Defects since
<59 newlines>
<{page>
Page: 1 Gas Analyzer Defects since

Key Name

2 GA-32 Clogged gas injection port
1 GA-11 Control board cold solder joint

a

1/ 1/1980

1/ 1/1980

5/27/1985

Ada Listener

Screen 48

137

IV - Evaluation

This chapter cvaluates KBEmacs in three different ways. It cvaluates the pragmatic uscfulness of
K BEmacs as a program construction tool. It summarizes the principal capabilitics of the system and discusses
the ways in which KBEmacs is a step in the direction of the PA. It compares KBEmacs with other, similar
kinds of programming tools.

KBEmacs as a Program Construction Tool

During program construction, KBEmacs can provide very significant productivity gains. However, as is,
K BEmacs is neither fast enough, robust cnough, nor complete enough to be a practical tool. In order to fix
these problems, the system would have to be reimplemented.

Productivity Gains

The most obvious benefit derived by using KBEmacs is that it makes it possible to construct a program
more quickly. The exact increase in speed is difficult to assess. However, one way to make an estimate is to
compare the number of commands the programmer has to type in order to construct a program using
K BEmacs with the number of lines of code in the program produced. Figure 8 makes this comparison for the
various programs and cliches constructed in the scenarios in Chapters I1 & 111, (The cliches PRINT_REPAIR
and PRINT_REPAIR_HEADINGS are omitted because they show an anomalously high productivity gain due
the fact that they are largely automatically gencrated.)

For cach program, Figurc 8 shows the total number of lines of editing done by the programmer. This is
computed as the number of knowledge-based commands which were used plus the number of lines of code
which were dircctly inserted by the programmer. (The total does not include incidental knowledge-based
commands such as telling KBEmacs that the program is finished or cosmetic editing requests such as
renaming variables.) The total number of lines of editing is then divided into the number of lincs of code in
the resulting program in order to show the productivity gain.

program KBEmacs direct total lines of productivity
commands editing editing code gain
REPORT-TIMINGS 5 3 8 19 2
MEAN-AND-DEVIATION 2 4 6 16 3
REPORT-WITH-SUBHEADINGS 3 5 9 37 5
MAINTENANCE_FILES 5 9 14 45 3
UNIT_REPATR_REPORT 6 0 5 55 9
MODEL_DEFECTS_REPORT 6 5 11 110 10

Figure 8: Productivity gains duc to using KBEmacs.

The productivity gains vary from a factor of 2 to a factor of 10. There are four reasons for this variance.

First, programs vary in the cxtent to which they contain idiosyncratic computation as opposed to
computation corresponding to cliches. FFor example, the program UNIT_REPAIR_REPORT is composcd almost
exclusively of cliches while the package MAINTENANCE_FILES is composed primarily of idiosyncratic record
declarations.

Sccond, the cliches used in the scenarios differ significantly in how well they take advantage of constraints.
For example, when constructing the programs UNIT_REPAIR_REPORT and MODEL_DEFECTS_REPORT
constraints automatically specify a suhstantial number of the cliches used in the programs.

Third, programming languages differ in how many lines of code are required to express a given cliche. In
gencral, Lisp cliches are less than half the size of their Ada counterparts. ‘The difference stems primarily from
the fact that Lisp has very concise 1/0 facilitics (¢.g.. the function FORMAT and the form WITH-OPEN-FILE)

138 Lvaluation

and no data declarations.

Fourth, programs and programming languages differ in how many details they have that KBFEmacs can
take care of automatically. “The productivity gain from taking care of details is most evident in Ada programs
where KBEmacs is able to take care of the variable declarations.

At onc extreme, productivity gains from using KBEmacs can be very low when constructing a Lisp
program such as REPORT-TIMINGS which has a fair amount of idiosyncratic structure, does not make
particularly good usc of constraints, and has only a few details which KBEmacs can take care of automatically.
At the other extreme, the productivity gains can be very high when constructing an Ada program such as
MODEL_DEFECTS_REPORT which has little idiosyncratic structure, makes good use of constraints, and has a lot
of details which KBEmacs can take care of automatically.

Although rapid implementation is the most obvious benefit KBEmacs, the increased reliability of the
programs produced is at least as important. Both constraints and the use of predefined cliches reduce the
number of errors in the programs produced. This reduction of errors is an important (though difficult to
quantify) productivity gain in its own right because it saves time in later testing and dcbugging of the
program,

In order to get the full benefit of cliches, the programmer has to make a few compromiscs. In particular,
the programmer has to try to think as much as possible in terms of the cliches available so that cliches can be
used as often as possible. Similar kinds of accommodations have to be made in order to fully benefit from a
human assistant.

It is important to note that while using cliches is advisable, it is not required. Rather, the benefits of the
system gracefully degrade as cliches arc used less and less. For example, consider the issuc of cfficiency.
Using cliches seldom leads to a program of optimal cfficiency. However, the cfficiency of the program can be
improved by tailoring the code produced via cliches so that it takes advantage of various special features of
the situation. ‘The programmer can get any level of efficiency in the final program he desires depending on
how hard he wants to work for it. At any level of cfficiency, the program can be constructed faster with
KBEmacs than with other methods.

Problems

KBEmacs is a rescarch experiment. Rapid prototyping and rapid evolution have been the only goals of
the current implementation. As a result, it is hardly surprising that KBEmacs is ncither fast enough, robust
cnough, nor complete enough to be used as a practical tool.

The most obvious problem with the current implementation of KBEmacs is that it is much too slow.
Knowledge-based operations on large programs can take longer than § minutes. Even simplc operations on
small programs take 5-10 seconds. Tn contrast, experience with interactive systems in general suggests that in
order for a system to be judged highly responsive, operations must be performed in at most 1-2 seconds. In
order to approach this goal, KBEmacs would have to be speeded up by a factor of 100.

In genceral. such large speed increases are not casy to obtain. However, in the case of KBIimacs, the
required increase scems plausible. There is a lot of room for improvement because, up to now, cfficicncy has
not been a goal of the KBEmacs implementation. As a result, most of the parts of the system are startlingly
incfficient. (For example, the Ada parser used by K BFEmacs was written in only a few days and is so primitive
that it parses only about one linc per second.) ‘The last section of Chapter V discusses an experiment which
shows how the central operations of KBEmacs can be straightforwardly speeded up by a factor of thirty.

Onc might comment that it is not sufficient merely to make KBEmacs run acceptably fast on a Lisp
Machine, because machines of this power are too expensive to use as programmer work stations. However, if
the reduced cost of such computers coupled with the increased cost of programmers has not yct made such
computers cconomical, it soon will. A basic goal of the PA project is to look forward into the futurc when

KBEmacs as a Program Construction Tool 139

computers 10, or even 100, times as powerful as the Lisp Machine will be economical and investigate how this
power can be harnessed to assist a programmer. A

Another severe problem with the current implementation is that it is fraught with bugs. KBEmacs
operates correctly on the scenario shown above. However that scenario amounts to more than half of the
testing the system has ever received. In addition, during this testing there has been no visible diminution in
the rate at which bugs have been discovered. This suggests that only a small percentage of the bugs to be
found have been detected so far.

It appears that it is not practical to attempt to fix the bugs in the system without rewriting it completely.
The problem is that, in its role as a continuing rescarch experiment, the system has evolved so extensively and
haphazardly beyond the scope of its original design that it is now very difficult to fix a bug without creating
another one. The only solution to this is to start again with a new design which is compatible with what the
system is now doing.

Another problem with KBEmacs is that it doesn’t handle full Ada or even full Lisp. The system handles
perhaps 90 percent of Lisp, but no more than 50 percent of Ada. (The specific deficiencies of KBEmacs in
this regard arc summarized in the next section and discussed in detail in Chapter V.) In order to be a practical
tool, KBEmacs would have to be extended to deal with the complete target language in at Icast a minimal
way.

Another problem with KBEmacs as it stands is that the cliche library contains only a few dozen cliches (see
Appendix A). Several lines of research (see [Barstow 77; Rich 80; Rich & Waters 81]) suggest that hundreds
of cliches are required for an understanding of even a small part of programming and that thousands of
cliches would be required for a comprehensive understanding of programming. To a considerable extent
there is no barrier to adding the additional cliches which are required. However, designing the exact cliches
to use would be a lengthy task. Also, if a large number of cliches were defined, some sort of indexing facility
would probably be required in order to help the programmer retiieve cliches.

Fortunatcly, although the problems above are quite scrious, it appears that they could be overcome by
reimplementing KBEmacs from scratch with efficiency, robustness, and completeness as primary goals.
Unfortunately, since KBEmacs is quite large (some 40,000 lines of Lisp code) reimplementation would be an
arduous task. As a result, it would probably be most practical to reimplement the system initially for a small
language such as Pascal or basic Lisp rather than for a large language such as Ada.

KBEmacs as a Step Toward the PA

This scction compares the capabilitics supported by KBEmacs with the capabilities the PA is intended to
support. It begins by discussing the depth of understanding of programs exhibited by KBEmacs and then
summarizes the capabilities supported by KBEmacs. The next scction outlines the additional capabilitics
which will be supported by the next demonstration system,

The Depth of Understanding of KBEmacs

One of the most fundamental ways to evaluate KBEmacs is to consider what aspects of programming it
understands and what aspects it does not understand. To a considerable extent, this boils down to a
consideration of what can be represented by the plan formalism. ‘The expressiveness of the plan formalism is
summarized below and discussed further in Chapter V.

Via the plan formalism, KBEmacs' understands a varicty of programming concepts — in particular data
flow, control flow, inputs, outputs, loops, recursion, and subroutine calling. This is enough to form the basis
for an understanding of what could be termed computational algorithims. Howcever, it is not enough to be a
complete understanding of programming. In particular, as will be discussed shortly, it docs not include an
understanding of cither data structures or specifications.

140 Evaluation

An important part of KBEmacs' understanding of computational algorithms is an understanding of the
way in which programming languages represent computational algorithms. 'This knowledge is procedurally
embedded in modules which translate back and forth between the plan formalism and various programming
languages (see Chapter V). In particular, KBEmacs has a relatively comprehensive understanding of the
language Lisp and an illustrative understanding of the language Ada.

It should be noted that, although KBEmacs’ understanding of computational algorithms is fairly extensive,
there are several arcas where its understanding is cither weak or nonexistent. For example, it has no
understanding of non-local flow of control such as interrupts. As another cxample, although KBEmacs has a
comprehensive understanding of single-entry loops and simple recursion, it has only a very weak
understanding of multiple-entry loops, and multiple and mutual recursion.

A primary limitation of KBEmacs steins from the fact that the plan formalism docs not represent any
information about data structures. As a result, the small amount of understanding of data structures
incorporated into K BEmacs is supported by special purpose procedures. For example, KBEmacs’ support for
Ada data declarations is wholly procedurally based.

Another key limitation of KBEmacs stems from the fact that the plan formalism does not represent any
information about specifications. This makes it very difficult for KBEmacs to reason about whether or not a
given algorithm is being used appropriately. (l'o a certain extent KBEmacs' support for constraints can be
used to make up for a lack of understanding of specifications — e.g., by cxplicitly specifying something that
should follow generally from some specification.)

The most important leverage provided by K BEmacs comes from an understanding of cliches. Via the plan
formalism and constraints, a wide variety of cliches can be represented. However, the cliches which can be
represented are limited in the same ways in which the algorithins which can be represented are limited. In
particular, KBEmacs has no understanding of the specifications for various cliches or of ciiched data
structures.

An important aspect of KBEmacs’ understanding of cliches is an understanding of how to perform a
variety of operations on them. For example, KBEmacs knows how to instantiate a cliche and integrate it into
a program. An additional aspect of KBEmacs' understanding of cliches is that the plan formalism can
represent how a program was built up out of cliches. This supports operations such as creating
documentation.

Strongly Demonstrated Capabilities

Several of the capabilities which the PA is intended to support arc strongly demonstrated by KBEmacs.
Saying that a capability is strongly demonstrated is intended to imply two things. First, restricted to the
domain of program construction, cssentially the full capability that the PA is intended to possess is supported.
Sccond, the capability is supported in a general way which demonstrates the cfficacy of the key ideas
underlying the PA (i.e., the assistant approach, cliches, and plans).

Rapid program construction in terms of cliches — The dominant activity in the scenarios in the last two
chapters is the building up of programs by combining algorithmic cliches. The programmer can use an
instance of a cliche to fill in a role of another cliche, or insert it at an arbitrary place in a program. In cither
case, KBEmacs takes care of ensuring that the instance of the cliche is appropriately integrated with the
preexisting parts of the program.

User definition of cliches — Simple syntactic extensions to Lisp and Ada are provided so that the
programmer can define new cliches as casily as he can define new subroutines. (Defining cliches is also as
hard as defining subroutines — i.c., there is nothing at all casy about deciding exactly what cliches should be
defined))

The fact that it is casy for the programmer to define new cliches has two important benefits. First, it

K BEmacs as a Step Toward the PA 141

makes it possible to readily extend K BEmacs into new domains of programming. Second, it makes it possible
for the programmer to tailor the system so that it fits in better with his particular style of programming.

Fditing in terms of algorithmic structure — The knowledge-based commands make it possible for the
programmer to operate directly on the algorithmic structure of a program. ‘The essence of this is the ability to
refer to the roles of the various cliches used to construct the program cven after these roles have been filied in.
Commands arc provided for filling, removing, and replacing these roles.

Fditing in terms of algorithmic structure clevates the level of interaction between the programmer and
K BEmacs to a fundamentally higher plane than text-based or syntax-bascd cditing. Such editing makes it
possible to state simple algorithmic changes to a program as simple commands even when the algorithmic
changes require widespread textual changes in the program. For example, the command "Insert a count
of the element." in Screen 13 causes changes to four separate parts of the program MEAN-AND-DEVIATION.

As will be discussed in detail in Chapter V, an unfortunate limitation of K BEmacs is that it does not have a
full understanding of the algorithmic structure of a program unless the program has been built up from
cliches using KBEmacs. If the program was created by ordinary text editing, or if the structurc of the
program in terms of cliches has been modified by ordinary text editing, then KBEmacs does not have any
understanding of the structure of the program in terms of cliches. When this is the case, the programmer can
only refer to roles which have not yet been filled in.,

Fscape to the surrounding environment — At any moment, the programmer can operate on the program
being cdited with any of the standard Lisp Machine programming tools. In particular, he can freely intermix
text-based editing and syntax-based cditing with knowledge-based editing. (The high degree to which these
modes can be intermixed is illustrated by the fact that, in addition to pausing in the middle of
knowledge-based cditing to perform text-based cditing, onc can use the notation "{a ...}" to cffectively
pause in the middle of text-based editing and issuc a delayed request for knowledge-based cditing.)

Iiscape to the surrounding cnvironment is of particular importance because it gives the KBEmacs system
the property of additivity. New capabilitics arc added to the programming environment without removing
any of the standard capabilitics.

When using KBEmacs. the only limitation on escape to the surrounding environment is that, as mentioned
above, KBEmacs is not capable of determining the structurc of a program in terms of cliches once the
program has been modified by text-based or syntax-based editing. Note however, that this leads only to a
partial degradation in the ability of KBEmacs to operate on the program — some knowledge-based
commands (e.g., replacing a filled role with something new) are no longer supported, but most
knowledge-based editing can still continue.

Substantial programming language independence — As will be discussed in detail in Chapter V, the
internal operation of KBEmacs is to a large extent language independent. The scenarios above show that the
operations supported by KBEmacs arc as appropriate for the language Ada as for Lisp.

The phrase "language independent” is only intended to mean that the system can be used in one language
as well as in another. 1t is not intended to mean that the system can translate programs from onc language to
another. ‘Translation cannot be trivially supported because, as discussed in the beginning of Chapter III,
cliches in different programming languages differ semantically as well as syntactically. However, as will be
discussed in Chapter VI, cliches and the plan formalism do have a significant amount of leverage on the task
of program translation.

Weakly Demonstrated Capabilitics
KBlmacs demonstrates a number of capabilitics which the PA is intended to support in addition to the

ones discussed above. However, these additional capabilities are only weakly demonstrated. Saying that a
capability is weakly demonstrated is intended to imply two things. First, even restricted to the domain of

142 Evaluation

program construction, only parts of the capability are supported. Second, the capability is not supported in a
general way. However, the weakly demonstrated capabilities are better than mere mockups because, like the
strongly demonstrated capabilities, they arc based on the key ideas underlying the PA and their
implementation illustrates the leverage of these ideas.

A library of cliches — KBEmacs contains a plan library containing several dozen predefined cliches. This
example cliche library is weak in two ways. First, as mentioned above, thousands of cliches would be required
in order to represent a comprehensive understanding of programming. Sccond, the library does not support
any kind of indexing scheme. The only way that cliches can be referred to is explicitly by name.

Reasoning by means of constraints — KBEmacs uses simple constraint propagation in order to determine
some of the consequences of the programmer’s design decisions. When defining a cliche the programmer can
specify various constraints between the roles. When the cliche is instantiated, these constraints are checked
whenever any of the roles are filled or changed. 'This makes it possible to propagate information from one
role to another. As shown in the scenarios above, constraints can be used both to reduce the number of roles
which have to be specified by the programmer and enhance the reliability of the programs produced.

As discussed in the beginning of Chapter 1, there is a significant weakness in the way constraints are
implemented in KBEmacs. Constraints are specified in terms of functions which opcrate directly on the
internal implementation of the plan formalism. In principle, this allows arbitrarily complex constraints to be
stated. However, in practice, this significantly limits the constraints which can be stated. The problem is that
users are not cxpected to have any knowledge of the internal implementation of the plan formalism and, in
any event, this internal implementation is very cumbersome to deal with.

Taking care of details — The earticst PA proposals [Rich & Shrobe 76,78; Waters 76] suggested that taking
carc of details was an arca where the PA approach had great promise. However, little support for this was
provided until quite recently, when KBEmacs was extended to support Ada. The cxpéricncc with Ada has
clearly shown the utility and importance of taking carc of details. Consider for example, the way KBEmacs
can generate most of the variable declarations and package references in an Ada program and the special
purpose support K BEmacs provides for making sure that each data file in the reporting programs created in
Chapter 111 is opened and closed exactly once.

The weakness of KBEmacs® support for taking carc of details is two fold. First, this capability is not
supported in any kind of uniform way. Rather, several relatively unrelated examples are supported. Second,
only a few examples arc supported and these examples are not robustly supported.

All of the capabilitics mentioned so far pertain primarily to program construction. KBEmacs provides
limited support for two additional capabilitics which illustrate how the system could be extended into other
parts of the programming process.

Program modification -— K BEmacs supports two commands ("Share" and "Replace”) which support
program modification. In addition, constraints and cditing in terms of algorithmic structure facilitate
modification. The scenarios above show the utility of cach of these features during program modification.
The way the features arc supported shows the leverage the plan formalism has on the program modification
task. However, KBEmacs' support for program modification can really only be said to have scratched the
surface. All that has been done is to support a few simple things which follow straightforwardly from the
other operations supported by KBEmacs.

Program documentation — KBEmacs is able to create a simple comment describing a program and it can
use highlighting to indicate how various roles are filled in. In a related capability, KBEmacs keeps track of
what roles have not yet been filled in and can report this to the programmer. Again, this capability only
scratches the surface of what could be done. The goal is to illustrate the fact that the plan formalism
represents a sigaificant amount of information which could be useful in producing documentation.

143

The Next Demonstration System as a Further Step Toward the PA

The next demonstration system will differ from KBEmacs in two crucial ways. First it will be bascd on
the plan calculus developed by Rich [Rich 80.81] rather than on the simple plan formalism used by KBEmacs.
This will give the new system a deeper understanding of programming. Second, the new sysicm will
incorporate a fourth key Al idea— general purpose automated deduction. "This will make it possible for the
new system to support several new kinds of capabilitics.

The Depth of Understanding of the Next Demonstration System

As discussed above, there are a number of fundamental aspects of programming of which KBEmacs has
essentially no understanding. In fact, it is perhaps surprising that KBEmacs can do what it does when it
understands so little. KBEmacs has been developed in a more or less conscious attempt to see how much
functionality can be wrung out of the limited understanding the system possesses. The development has been
successful both in showing that a great deal can be done and that there are fundamental limits to what is
practical given this level of understanding.

A fundamental goal of the next demonstration system is to show that moving to a higher level of
understanding will allow for significantly more functionality. The new system will support this higher level of
understanding by using the plan calculus. The plan calculus extends the plan formalism by adding in
mechanisms for representing four kinds of information which are not represented by the plan formalism.

First, the plan calculus represents data structures and data structurc cliches as easily as computational
algorithms. This will make it possible to apply all of the basic capabilitics of the system (e.g., rapid
construction in terms of cliches) to data structures as well as to computational algorithms. {(As can be secn in
the construction of the package MAINTENANCE_FILES in Chapter [T, KBEmacs has some abilitics in this
regard. However, these abilities are essentially simulated by representing data structure operations internally
as computational operations.)

Second, the plan calculus makes it possible to represent specifications for data structures, programs, and
cliches. This will enable the new system to reason about which cliches are appropriate in a given situation and
detect bugs when a cliche is used improperly.

Third, the plan calculus supports several different mechanisms for representing interrelationships between
cliches and between cliches and design concepts. One benefit of this is that it will allow design concepts to act
as an index into the cliche library — cliches will be referred to by the relevant design concepts rather than by
specific names. The value of this stems from the fact that, while there are several thousand important cliches,
there arc probably only a few hundred important design concepts — large numbers of cliches correspond to
the cross products of various scts of design concepts (for example, there is an enumerator for every Kind of
aggregate data structure). Itis the design concepts which form the key vocabulary which the programmer and
the system must have a mutual understanding of.

Fourth, in the plan calculus, constraints are represented as predicate calculus expressions. (In KBEmacs,
constraints arc represented by procedures which are outside of the plan formalism.) Representing constraints
as predicate calculus expressions has several advantages. Most importantly, since the constraints arc simply
predicate calculus expressions, a user can specify a new constraint without having to have any knowledge of
the internal implementation of the plan calculus. In addition, the new system will be able to reason about the
consiraints themselves — K BEmacs is limited to merely running them.,

The discussion above presents a number of aspects of programming which KBEmacs doces not understand
but which the next system will understand. It should be noted that there arc numcrous aspects of
programming which the new system will not understand cither. For example, the plan calculus docs not
remedy the defects in the plan formalism with regard to understanding non-local control flow, multiple-cntry

144 Evaluation

loops, or multiple and mutual recursion.

Generalized Automated Deduction

General purpose automated deduction is best understood in contrast to reasoning performed by special
purpose procedures. In a general purpose automated deduction system, not only the facts being rcasoned
about but also various thecorems and other reasoning methods are represented as data objects. Only a few
very basic reasoning methods (c.g., reasoning about equality) are built into the system. 'This makes it possible
for a general purpose automated deduction system to reason about a wide range of problems and to flexibly
use a wide range of knowledge when doing so. In addition, such a system can be straightforwardly extended
by adding new theorems and new kinds of knowledge. In contrast, special purpose reasoning systems
typically embed theorems in procedures. Such procedures are fundamentally restricted in that cach one
solves a narrowly defined problem using a limited amount of knowledge. In order to attack a new problem or
usc additional knowledge, a new procedure has to be written.

In the new system, general purpose automated deduction will be supported by a reasoning
module [Rich 82,85] specially designed to work in conjunction with the plan calculus. The reasoning module
will make it possible to significantly improve the support for many of the capabilitics of KBEmacs. For
example, the reasoning module will give a much firmer foundation for constraint propagation and
modification capabilitics. It should also make it casicr for the system to take carce of a wider variety of details
for the programmer,

Capabilitics To Be Demonstrated By the Next System

The new demonstration system will support all of the capabilitics supported by KBEmacs. In addition, the
combination of general purpose automated deduction and the plan calculus will make it possible for the new
system to demonstrate three key capabilities which are not demonstrated by KBEmacs.

Contradiction detection — The most important use of the reasoning module will be contradiction
detection. In contrast to automatic verification (which sceks to prove that a program satisfics a complete set of
specifications), contradiction detection starts with whatever partial specifications are available for a program
and locates bugs in the program by discovering any obvious contradictions.

Data type checking (c.g., as performed by an Ada compiler) is a simple example of contradiction detection.
A data type checker locates contradictions based on specifications for the data types of various quantities.
The new system will be much more powerful than a type checker because it will be able to utilize a much
wider varicty of specifications. The system will also be more flexible than current type checkers because it
will not require that every contradiction detected be immediately fixed. It is often important to be able to
temporarily ignore minor probiems so that more serious problems can be investigated (e.g., through testing).

As an cxample of the utility of contradiction detection, consider the following. Since KBEmacs does not
support any contradiction detection, the system has no way to determine whether a st of commands is
reasonable. Rather, it just docs whatever the programmer says. For example, if the programmer had told
KBEmacs to implement the enumerator in the program UNIT_REPAIR_REPORT as a vector-cnumeration of
REPAIRS, KBEmacs would have gone right ahcad and done it. In contrast, the next demonstration system
will be able to complain that such a command doces not make any sense.

The major benefit of contradiction detection is that it is largely orthogonal to program testing. The bugs
which are casy to find by contradiction detection arc often quite different from the bugs which are easy to
find by testing. As a result, applying contradiction detection in addition to program testing can significantly
increase oncs confidence in a program.

The Next Demonstration System as a Further Step ‘Toward the PA 145

Recognition of the cliches which could have been used to construct a program — The PA will be able to
recognize what cliches could have been used to construct a program no matter how the program was created.
This will make it possible to fully support cditing in terms of algorithmic structure at all times. As will be
discussed in Chapter VI this also provides a basis for attacking the task of program translation.

Interaction in terms of design decisions — The fundamental level of interaction between a programmer
and KBEmacs is in terms of specific algorithms (cliches). An important goal of the next demonstration
system is to go beyond this level of interaction and support interaction in terms of design decisions. For
example, when constructing the program UNIT_REPAIR_REPORT, the programmer had to specify the use of ‘
the cliche chain_cnumeration. In the new system the programmer will instead merely have to say that the
repair records are in a chain file. The system will be able to conclude that in order to print a simple_report of
repairs, the cliche chain_cnumeration must be used.

Graduating to the level of interaction in terms of design decisions will have a pervasive cffect on the
capabilitics of the system. For example, the programmer will be able to go beyond editing in terms of
algorithmic structure and edit in terms of design decisions. As another example, the focus will shift from
defining small suites of cliches, to defining large classes of cliches which define the cffects of design decisions.
In addition, reasoning by propagation of design decisions will be used both as a primary basis for
contradiction detection and in order to relicve the programmer from the need to specify things which are
implied by other design choices.

The PA

Moving from KBEmacs to the next demonstration system, the emphasis will be on increasing the depth of
understanding and thercfore the capabilitics of the system. In contrast, when moving from the next
demonstration system to the PA the emphasis will be on widening the range of applicability of the system
beyond program construction.

The next demonstration systemn will support most of the capabilities which the PA is intended to support.
The PA will attempt to apply these capabilitics to all of the phases of the programming process. In particular,
the PA will focus on the tasks of requirements analysis and modification because these arc inherently more
important parts of the program life cycle than program construction.

146

Related Work

This section compares KBEmacs with other approaches to improving programmer productivity. The
comparison focuses on tools and projects which are cither similar in their capabilities or based on closely
related ideas. Projects which share ideas with KBEmacs in that they have intentionally used idcas from
KBEmacs (or the PA project as a whole) are discussed in Chapter V1.

KBE

As discussed in Chapter 1. KBEmacs is the second in a series of demonstration systems which are heading
in the direction of the PA. The first demonstration system was the Knowledge-Based Editor (KBE).
KBEmacs is implemented as an extension of KBE, and for the most part, the capabilitics of KBE
(sce [Waters 82a)) are a subset of the capabilitics of KBEmacs.

Rapid program construction in terms of cliches and editing in terms of algorithmic structure were the main
focus of KBE. In thesc arcas, KBE supported cssentially the same capabilities as KBEmacs in essentially the
same way. In addition, KBE provided the same weak support for program modification that KBEmacs
provides.

The most obvious difference between KBE and KBEmacs is that while KBE was a stand-alone system,
K BEmacs is embedded in the standard Lisp Machine Emacs-style program editor. As part of this change,
KBEmacs provides much better support for cscape to the surrounding environment. (As an additional
feature in this direction, KBEmacs introduced the ability to use the notation "{a ...}" when text editing.)
Although a programmer could apply text-bascd cditing to a program constructed using KBE this could not be
done until after all of the roles had been filled in.

KBEmacs supports a number of capabilitics which were not supported by KBE at all. For example,
K BEmacs supports a syntactic representation for cliches which allows a programmer to casily define new
cliches. The most important part of this is the ability to use {. . .} annotation for input from the programmer
as well as output to the programmer. In addition, KBEmacs introduces support for constraints and program
documentation, v

Another advance of KBEmacs is that it introduces support for Ada. (KBE only supported Lisp.) As part
of this, KBEmacs provides greatly increased support for taking care of details. The speed and robustness of
the system was also increased in order to make it possible to operate on Ada programs of realistic size.
(Whereas the largest program ever constructed using KBE was only about 15 lines long, KBEmacs has been
used to construct programs more than 100 lines long.)

It is interesting to note that KBE supported a few features which are no longer supported by KBEmacs.
For cxample, KBE was able to draw a diagram showing the plan which corresponded to the program being
constructed. It turned out that these diagrams were not very helpful because they were hard for people to
read and understand. The basic problem is that while simple diagrams are very casy to understand (perhaps
casier than the corresponding program), complicated diagrams arce almost impossible to understand (much
harder than the corresponding program). As an cxample of this problem, consider data flow. Explicit data
flow arcs have very nice semantics and are very casy to comprehend in isolation. However, if a diagram
contains a large number of data flow arcs, then the diagram has to be drawn with extraordinary carc in order
for the reader to be able to identify and follow the individual arcs (particularly when they cross). In order to
render the various arcs legibly, the typical plan diagram requires from 100 to 1000 times the space of the
corresponding program text. All in all, experience revealed that program text was a much more uscful user
interface than plan diagrams,

The argument above should not be taken to imply that graphical output is never useful. People scem to
have a great affinity for structurc diagrams and the like. However, note that these diagrams achicve siniplicity

Related Work 147

because an enormous amount of information is left out. In the realm of documentation it would probably be
very useful for KBEmacs to be able to create simple diagrams which represeat various subsets of the
information in a plan.

A subtle, but pervasive. difference between KBEmacs and KBE is that, while both systcms arc based on
the plan formalism, only KBE advertised this fact to the user.

During the design of KBE, the assumption was made that, like the system, the user was thinking in terms
of plans. It was considered incidental that program text as opposed to plans was being displayed to the user.
This led o the design of a language for knowledge-based commands which was couched in terms of plan
concepts.

However, experimentation with KBE revealed that programmers considered it far from incidental that
program text was being displayed and that, in most situations, they preferred to talk in terms of the text rather
than in terms of the underlying plan. As a result, KBEmacs attempts wherever possible to project the image
that it is operating in a primarily textual manner. This has progressed to the point where it is possible to tell
someone how to usec K BEmacs without mentioning the plan formalism at all.

As an cxample of the way the interface to KBE evolved, consider the following. When the
knowledge-based command language for KBE was first designed, one had to refer to an output port in a
program in plan terms — onc could not refer to it via the name of a variable carrying the value. For example,
if a program contained the form "(SETQ X (CAR L))", one was forced to refer to the value in the variable X
as "the output of the CAR". It rapidly became clear that programmers fclt that it was very important to
be able to refer to ports via variable names and this capability was added into the command language.
Simultancously the ability to refer to ports (other than output roles) in plan terms atrophicd away because no
one used it.

Programming Environments

KBEmacs is not intended to be a complete programming environment. Rather, it is intended that
KBEmacs cocxist with a varicty of other tools in a standard programming environment. Most programming
tools (e.g., version control systems, high level design aids, flowchart drawers, systems for managing the
programming process) are orthogonal to KBEmacs in that they provide capabilitics which arc outside of the
scope of the system. KBEmacs neither renders these tools obsolete nor is rendered obsolete by them.

However, rescarch on the PA is relevant to programming environments in gencral. It is part of a general
rescarch trend toward having a central repository containing a large amount of information about an evolving
program and having a varicty of tools which interact with this information.

Current programming cnvironments (see for cxample [Dolotta 76; Lisp 84]) allow various programming
tools to be flexibly used together. However, the tools only interact loosely — little information other than
program code is passed from one tool to another.

In contrast, many rescarchers (sce for example the work on PSL/PSA [Teichroew 77], KBPA [Harandi 83],
and KBSA [Green & Rich 83]) are beginning to focus on cnvironments of tightly interacting tools. The PA
can be looked at as such an environment where a number of tools interact with a central knowledge base of
plans.

148 Evaluation

Program Fditors

K BEmacs is cssentially a program cditor and cvery cffort has been taken to ensure that programmers can
think of it as an additive extension to a state-of-the-art program editor. However, this cxtension is a very
powerful one. As a result, KBEmacs is quite different from other program editors.

A key dimension on which to compare program cditors is their level of understanding of the programs
being edited (sce Figure 9). The level of understanding is important because it determines the kinds of
operations an cditor can perform.

The simplest program cditors are merely ordinary text editors which are used for editing programs. These
editors have no understanding of programs at all. The operations supported by these editors arc limited to
operations on characters — ¢.g., inserting, deleting, and locating character strings.

PROGRAM EDITOR | LEVEL of UNDERSTANDING
I
Text Editor | Character Strings
I
Syntax Editor | Parse Trees
I
KBEmacs | Algorithmic Structure
I
Next Demonstration System | Design Decisions
|
: I

Figure 9: Levels of understanding cxhibited by program editors.

Some program cditors incorporate an understanding of the syntactic structure of the program being edited
(see for example [Stallman 81; Donzeau-Gouge 75; Medina-Mora 81; Teitelbaum §11). This makes it possible
to support operations based on the parse tree of a program — c¢.g., inserting, deleting, and moving between
nodes in the parse tree.

A important aspect of syntax-based editors is that they can ensure that the program being cdited is always
syntactically correct. 1t has been shown [Reps 83] that syntax-based cditors can succeed in utilizing cssentially
all of the information which has traditionally been expressed in terms of syntax (e.g., data type constraints).

KBEmacs goes beyond existing program editors by incorporating an understanding of the algorithmic
structure of the program being cdited. By means of the plan formalism, KBEmacs understands what cliches
were used to construct the program as well as the basic operations, data flow, and control flow in the program.
This understanding makes it possible for KBFmacs to support operations based on algorithmic
structure — e.g., instantiating cliches and filling roles. In addition, via constraints, KBEmacs can ensure
certain aspects of the semantic correctness of the program being edited.

The next demonstration system will take a step further by incorporating an understanding of the design
decisions which underly the choice of algorithms in a program. ‘This will make it pessible for the programmer
to converse with the system in terms of these decisions instcad of in terms of specific algorithms. Levels of
understanding much higher than those shown in Figure 9 are possible — e.g., understanding the trade-offs
which underly design decisions. Reaching these higher ievels is a long term goal of the PA project.

Syntax Editors

An unfortunate aspect of syntax-based editors is that (with the notable exception of Emacs [Stallman 81])
carly syntax-based editors significantly (if not totally) restricted the programmer’s ability to use text-based
editing commands. As discussed in detail in [Waters 82b), such restrictions are frustrating in many ways.
Syntax-based commands are more convenient than text-based commands in many situations; however, there

Related Work 149

is no reason why programuners should be forced to use syntax-based commands when they are not more
convenient,

Although most syntax-based editors still do not support text-based commands, at least one recent
syntax-based cditor (SRE [Budinsky 85Iy fully supports them. In keeping with the assistant approach,
K BEmacs pays scrupulous attention to fully supporting text-based and syntax-based commands in addition to
knowledge-based commands.

An interesting aspect of syntax-based cditors is the extent to which they support cliches. Almost every
syntax-based editor provides cliches corresponding to the various syntactic constructs in the programming
language being used. However, almost no syntax-based editor supports any other kind of cliche. To a certain
extent this scems to be a missed opportunity (see the discussion of the Tempest cditor [Sterpe 85] in
Chapter VI). However, one cannot support more complex cliches in the same way that simple cliches
corresponding to syntactic constructs are supported. In particular, in order to be able to flexibly combine
complex cliches, an editor must have an understanding of the semantic structure of the cliches. For example,
if two cliches use the same variable, then one of the uses of this variable will, more than likely, have to be
renamed before the cliches can be combined. The primary advantage of KBEmacs over syntax-based cditors
is that, duc to its understanding of semantic structure, KBEmacs can support the manipulation of complex
cliches.

Program Generators

Program generators have the same overall goal as KBEmacs — dramatically reducing the effort required
to implement a program. Further, they are in essence similar to KBEmacs in the way in which they reduce
programmer cffort — they embody knowledge of the cliched aspects of a class of programs. Where program
generators are applicable, they are significantly more powerful than KBEmacs. However, program gencrators
arc only applicable in certain narrow domains.

In its purest form, a program gencrator obviates the need to have any programmer at all. An end user
describes the desired results in a special problem-oriented language (or through some interactive dialog with
the generator) and a program is produced automatically. A key aspect of this is that no one ever looks at the
program produced — all maintenance is carried out at the level of the problem-oricnted language.

There is ample evidence that a program generator can be created for any sufficiently restricted domain.
An arca where program generators have been particularly successful is data base management systems.
Dozens of program generators in this arca exist, perhaps the most successful of which is Focus [Focus 851.

The problem with program gencrators is their narrowness of scope. Even a tiny bit outside of its scope, a
given program generator is ncarly useless. In order to get the flexibility they need, programmers sometimes
resort to using a program generator to make an approximately correct program and then manually modifying
the code produced in order to get the program desired. Unfortunately, there are two major problems with
this. First, even the smallest manual change forces further maintenance to be carried out at the level of the
code instead of at the level of the problem-oriented language. Sccond, since the code created by a program
generator is usually not intended for human consumption, it is typically quite difficult to understand and
thercfore modify.

The principal advantage of K BEmacs over program generators is that it has a wide range of applicability.
The prime domain of applicability of K BEmacs is defincd by the contents of the cliche library. Within this
prime domain, KBEmacs is somewhat similar to a program generator though its interface is very
different — the key information which has to be specificd to KBEmacs in order to create a program is similar
to what must be specified to a program generator. Beyond the edge of its prime domain of applicability,
K BEmacs is very different from a program generator — it continues to be uscful because the programmer can
frecly intermix cliched and non-cliched computation. Instcad of an abrupt reduction in utility, the utility of

150 Evaluation

KBEmacs is reduced gradually as one moves farther and farther from its prime domain. In addition, the
prime domain can be extended by defining new cliches. _

The rescarch on program generators is pursuing the goal of increasing the size and the complexity of the
domains which can be handled. The PHI-nix system [Barstow 82] is an interesting example of a program
generator in a complex domain. Given a description which is primarily composed of mathematical equations,
PHI-nix is capable of generating complex mathematical modcling programs in the context of petroleum
geology. In order to do this, the system combines a varicty of techniques including symbolic manipulation of
mathematical expressions.

The CAP system [Bassett 84] uses a few of the same ideas as K BEmacs in order to increasc the size of the
domain of applicability. In particular. CAP makes usc of what is cffectively a library of cliches rather than
being solely procedurally based. Using CAP, a programmer can build a program by combining frames
(ctiches) which have breakpoints (roles) that can contain custom code which becomes part of the generated
program. The key weakness of CAP is that it does not have any semantic understanding of its frames and
therefore is limited in its ability to manipulate and combine them.

It should be noted that KBEmacs is not really in competition with the program generator approach.
Although KBEmacs has some fundamental advantages over program generators, it does not render them
obsolete. Similarly, anything short of an all encompassing program gencrator would not render KBEmacs
obsolete. Rather, program generators and KBEmacs can be synergistically combined. Program gencrators
incorporated into KBEmacs can be used to generate special purpose sections of code and KBEmacs can
integrate this code into the program being constructed. This makes it possible for the programmer to get the
benefit of the program generator without being unduly limited by its narrow focus. (This is illustrated by the
constraint function CORRESPONDING_PRINTING discussed in Chapter 111.)

Transformations

Program transformations have important similaritics to the cliches supported by KBEmacs. A program
transformation takes a part of a program and replaces it with a new (transformed) part. Typically, a program
transformation is correciness preserving in that the new part of the program computes the same thing as the
old part. The purposc of a transformation is to make the part beiter on some scale (c.g., more cfficient or less
abstract). For example, a transformation might be used to replace "X« «2" with "X« X",

As usually implemented, transformations have three parts. 'They have a pattern which matches against a
section of a program in order to determine where to apply the transformation. They have a set of applicability
conditions which further restrict the places where the transformation can be applicd. Finally, they have a
(usually procedural) action which creates the new program section basced on the old section.

There are two principal kinds of transformations: vertical and lateral. Vertical transformations define an
expression at onc level of abstraction in terms of an expression at a lower level of abstraction — for example
defining how to cnumcrate the clements of a vector using a loop. Lateral transformations specify an
cquivalence between two expressions at a similar level of abstraction — for example specifying the
commutativity of addition, Lateral transformations arc uscd principally to promote cfficicncy and to set
things up properly so that vertical transformations can be applied,

The most common use of transformations is as the basis for transformational implementation systems.
Such systems are typically used to convert programs cxpressed in a high level non-cxecutable form into a low
level executable form. In many ways, a transformational implementation system can be looked at as a special
kind of a program generator. The principal difference between transformational implementation systems and
program generators is that the knowledge of hew to implement programs is represented in a data base of
transformations rather than in a procedure, 'this makes it casier to extend and modify a transformational
implementation system: however, it brings up a new problem: controlling the application of transformations.

Related Work 151

The difficulty is that, in a typical situation, many different transformations are applicable and different
results will be obtained depending on which transformation is chosen. With regard to vertical
transformations. the problem is not oo severe because usually only a few transformations will be applicable to
a given abstract expression. However, the sclection of lateral transformations typically has to rely on manual
control.

Existing transformational implementation systems can be divided into two classes: those that are relatively
limited in power but require no user guidance and those which are capable of very complex implementations
but only under user guidance. 'TAMPR [Boyle 84] and PDS [Cheatham 84] use simple control strategies and
restrictions on the kinds of transformations which can be defined in order to obviate the need for user
guidance. PDS is particularly interesting duc to its cmphasis on having the user define new abstract terms and
transformations as part of the programming process.

PSI was one of the first systemns to use a transformational implementation module for complex
implementation. PSI's transformational module [Barstow 77] operated without guidance, gencrating all
possible low level programs. 1t was assumed that another component [Kant 79] would provide guidance as to
which transformations to use. Work on complex transformational implementation systems is proceeding both
at the USC Information Sciences Institute [Balzer 81; Wile 82] and the Kestrel Institute [Green 81). A key
focus of both these efforts has been attempting to automate the transformation sclection process [Fickas 83.

An interesting system which bridges the gap between transformational implementation systems and more
traditional program generators is Draco [Neighbors 84]. Draco is a transformational framework in which it is
casy to define special purpose program generators. When using Draco to define a program generator for a
domain, a "domain designer” follows the classic program generator approach of designing a problem-oriented
language which can be used to conveniently describe programs in the domain and then specifying how to
generate programs based on the problem-oriented language. The contribution of Draco is that it provides a
set of facilitics which make it possible to specily the program gencration process in a way which is primarily
declarative as opposed to procedural. BNF is uscd to define the syntax of the problem-oricnted language
while lateral and vertical transformations are used to definc its semantics. Procedurcs are used only as a last
resort. When a program is being implemented by a Draco-based program gencrator, the user is expected to
provide guidance as to which transformations to use.

In their cssential knowledge content, KBEmacs’ cliches are quite similar to vertical transformations.
However. cliches arc used differently. Instcad of applying correctness prescrving transformations to a
complete high level description of a program, the user of KBEmacs builds a program essentially from thin air
by applying non-correctness preserving transformations. This supports an cvolutionary model of
programming wherein key decisions about what a program is going to do can be deferred to a later time as
opposed to a model where only lower level implementation decisions can be deferred.

A more important difference between cliches and transformations is that cliches operate in the domain of
plans rather than program text or parse trees. This raises the level at which knowledge is specified from the
syntactic to the semantic. In addition, cliches are completely declarative whereas the action of a
transformation is typically procedurally specified. Although KBEmacs does not make much use of this
feature, the next demonstration system will. In particular, the new system will be able to reason about the
action performed by a cliche in order to reduce the need for user guidance.

Very High Level Languages

The greatest increase in programmer productivity to date has been brought about by the introduction of
high level languages. The advantage of high level languages is that they significantly reduce the size of the
code which is required to express a given algorithm by allowing a number of low level details (c.g., register
allocation) to go unstated. ‘The key to this is the existence of a compiler which takes carc of the low level

152 Evaluation

details. :
A logical next step would be the introduction of a very high level Tanguage which would provide a further
significant reduction in the size of program code by allowing a number of middle level details (c.g., data
structure selection) to go unstated. The key to this in turn would be the existence of a very powerful compiler
which could take care of these middle Ievel details.

‘The most persistent problem encountered by developers of very high level languages is that the more
general purpose the language is, the harder it is to create a compiler which gencrates acceptably cfficient low
level code. This problem exists for high level languages as well. However, the incfficiencics have been
reduced to a relatively low level and programmers have, for the most part, learned to live with them.

Program gencrators can be looked at as compilers which support special purpose very high level
languages. Several lines of rescarch are directed toward developing more general purpose very high level
languages. For example, Hibol [Ruth 81] and Model [Cheng 84] arc very high level languages which are
useful in business data processing applications. SETL. [Schwartz 75] achicves wide applicability while
supporting several very high level operations. Significant progress has recently been made toward compiling
SETL efficiently (see [Freudenberger 83)).

Much of the current rescarch on transformations is directed toward the support of very high level
languages — in the case of the USC Information Sciences Institute the language Gist [Balzer 811 and in the
case of the Kestrel Institute the language V [Green 81]. Neither of these systems is compiete. However, they
hold the promise of cventually supporting truly general purpose very high level languages.

"The most important thing to say about the relationship between KBEmacs and genceral purpose very high
level languages is that there is no competition between the approaches. Rather, they are mutually reinforcing,
As soon as a general purpose very high level language is developed, it can be used as the target language of
KBEmacs. The net productivity gain will be the product of the gains duc to the language and due to
KBEmacs. The basic claim here is that no matter how high level a language is, there will be cliches in the way
it is used and therefore KBEmacs can be uscfully applied to it.

Intclligent Design Aids

The basic approach taken by KBEmacs transcends the domain of programming. KBEmacs is an cxample
of a general class of Al systcms which could be termed intelligent design aids. These programs are expert
systems in the sense that they attempt to duplicate cxpert behavior. However, they are quite different from
the more familiar kinds of expert systems which perform diagnostic tasks.

A diagnostic expert system typically takes a relatively small set of input data and derives a relatively simple
answer. For example, it might take a sct of symptoms and derive the name of a discase. In order to derive the
answer. the system performs relatively complex deductions utilizing a knowledge base of rules. The emphasis
in such a system is on how to control the operation of the rules so that the required deductions can be reliably
and efficiently performed without human intervention.

In an intelligent design aid the various components are the same but the emphasis is quite different. In
particular, instead of gencrating a simple answer, a design aid generates a very complex answer — a complete
design for the desired artifact. Just representing this design is, of necessity, an important focus of the system.
The knowledge base of rules contains various picces of knowledge about how to design things. However, due
both to gaps in this knowledge and lack of adequate control strategics, design aids arc not capable of very
much automatic design. As a result, the major emphasis of a design aid is on how the user can control the
sclection of rules and provide specific aspects of the design when the rules are inadequate.

A good cxample of intelligent design aids outside of the domain of programming arc VL.SI design systems.
Comparison of [Sussman 79] and [Rich & Waters 79] shows that the key ideas of the assistant approach,
cliches. and plans can be used to support VLSI design in basically the same way that they can be used to

Related Work 153

support programming, For example, the Vexed VLSI design system [Mitchell 851 is startlingly similar to
K BEmacs. The interface is different and the domain is of course very different, however the basic capabilitics
arc very much the same. The dominant activity is building up a circuit by means of implementation rules
(cliches) chosen from an extendable library. While this is going on, Vexed automatically takes care of a
number of details centering around combining the rules correctly. In addition, the user is always free to
modify the circuit directly.

Reusable Components

The reuse of components is a common theme which underlies KBEmacs and almost every approach to
increasing programmer productivity [Reuse 84]. There are many different ways in which components can be
represented — e.g., cliches, subroutines, transformations, and procedurally in compilers and program
gencrators. However, in all these cases, the goal is the same. Essentially the only way to significantly reduce
the time it takes to design something is to take advantage of predesigned components.

As discussed in detail in [Rich & Waters 831, KBEmacs benefits from the fact that the cliches expressed in
the plan formalism are a particularly good representation for components. Plan cliches are capable of
representing a very wide range of components. Their expressiveness is particularly cnhanced by the flexibility
introduced by roles and constraints. (Only the procedural representation of components is more expressive.)
Plan cliches have very convenicnt combination properties. They can be combined together as casily (and
understandably) as subroutine calls. Plan cliches are represented in a declarative way. This makes it easy for
an automatic system to manipulate them and reason about them. Finally, plan cliches are inherently
programming language independent. This facilitates the construction of programming tools which are
programming language independent.

155

V - Implementation

Figure 10 shows the architecture of the K BEmacs system. KBEmacs maintains two representations for the
program being worked on: program text and a plan. At any moment, the programmer can cither modify the
text or the plan. If the text is modified, the analyzer module is used to create a new plan. If the plan is
modified, the coder module is used to create new program text.

In order to modify the program text, the programmer can use the standard Emacs-style Lisp Machine
editor. In order to modify the plan, the programmer can usc the knowledge-based editor implemented as part
of KBEmacs. An interface unifies ordinary program cditing and knowledge-based editing so that they can
both be conveniently accessed through Emacs.

PROGRAM TEXT

ANALYZER

CLICHE
LIBRARY

PROGRAM Nt KNOWLEDGE-
EDITOR ERFACE BASED EDITOR

Figure 10: Architecture of KBEmacs.

The sections below begin by discussing cliches and the plan formalism. They then describe how cach of
the components in Figure 10 is implemented. The discussion focuses on requirements and high level design,
attempting to avoid implementation details whenever possible. The discussion also presents some of the ways
the components could be improved. In particular, the last section of the chapter presents an experiment
which shows how the basic operations of KBBEmacs could be specded up by at at least an order of magnitude.

156

Cliches

There are five aspects to the way K BEmacs implements cliches. Syntactic extensions of the languages Lisp
and Ada provide a textual representation for roles. Additional syntactic extensions cnable cliches to be
defined in much the same way that subroutines are defined. A simple library mechanism is provided along
with a sct of example cliches. The plan formalism has a number of features which are provided in order to
represent cliches and the way a program is built up out of cliches. Finally, the knowledge-based editor
supports a number of commands which make it possible for a programmer to use cliches when cditing a
program.

The first three aspects of K BEmacs™ implementation of cliches are discussed in this section. Appendix A
presents all of the cliches currently defined. The plan formalism and the knowledge-based cditor are
discussed in separate scctions below.

Roles And Other Machine Understandable Annotation Of Lisp Programs

As discussed in the beginning of Chapter 11, the notation {...} is used to represent roles and other
machinc understandable annotation of Lisp programs. Figure 11 presents the various features of this notation
in terms of a simple set of grammar rules. (These rules arc expressed in a more or less standard version of
BNF which is summarized in a key at the bottom of the figure.)

function-call ::= (name {argument}) | role-form | embedded-instance

= anonymous-role

| empty-role

| (empty-role {argument})

| *{"form, role’}’

| (‘Cname, role’}” {argument})
anonymous-role ::= ‘{}’

empty-role ::= ‘("role'}’

role ::= the [input | output] name {of the name}
name ::= a non-NIL Lisp symbol

argument ::= form | ‘{'form, modified}’ | ‘{(’form, depending on role’}
form ::= function-call | any other Lisp form

embedded-instance ::= ‘{'a-or-an cliche-name [of instances]’}’
| ‘("a use of function-reference’}

role-form ::

bold-1talic-names are non-terminal grammar symbols
1= specifies a grammar rule

.. | ... signifies alternation of possibilities

[...] signifies optionality

{...} signifies repetition zero or more limes

‘s’ significs the terminal grammar string s

all other symbols are terminal grammar symbols

Figure 11: Machine understandable Lisp annotation.
In Lisp code, a role form signifying a role can appear anywhere a function call can appear — i.c., any place

where a form will be evaluated (c.g., not as a bound variable or as an entirc COND clause or inside of a quoted
list). As illustrated below there are five kinds of role-forms.

an anonymous role {}

an empty role {input x}

an empty role with arguments ({operation} A (CAR L))

a filied role {(LIST A (CAR L)), operation}

alternate syntax for a filled role ({LIST, operation} A (CAR L))

Cliches 157

An anonymous role is used as a place holder for something which must be present but which is not
important enough to be given a name. Typically it stands in place of something which will be automatically
generated by K BEmacs.

An empty role specifies the location of a named role. It can be specified with or without a list of
arguments. 1f a list of arguments is specified then it is expected that the computation which eventually fills
the role will use these arguments. The arguments are specified both as a form of documentation for the user
and so that KBEmacs can correctly analyze the data flow in the program when the role is not yet filled in.

Usually, roles are not displaved when they arc filled in. However, if a filled role is displayed, then the
contents of the role precedes the name of the role and is separated from the name by a comma. If a role is
filled with a function call (as opposed to some other form such as a constant) then the filled role can be
displayed in an alternate way which is sometimes more readable. As illustrated above, the function name is
shown as filling the role and the role is shown as having arguments. Note that although the last two examples
above are syntactically different they are semantically identical, specifving exactly the same role and its
contents,

The name of a role specifics three different things. It specifies the name of the role itsclf. It specifies
whether the role is to be considered to be logically an input or an output of the containing cliche. In addition,
it specifies whether the role is part of a larger compound role.

Input and output roles are illustrated in the definition of the cliche list-enumeration shown below. The
role list is an input. The role clement is an output. The other roles correspond to internal computations and
are neither inputs nor outputs. The definition of the cliche list-enumeration also illustrates various kinds of
filled and empty role forms. Note that the roles clement-accessor and clement are fitled with the same
computation,

(DEFINE-CLICHE LIST-ENUMERATION
(PRIMARY-ROLES (LIST)
DESCRIBED-ROLES (LIST)
COMMENT "enumerates the elements of {the list}")
(LET* ((LIST {the input list}))
{Loor DO .
(1F ({NULL, the empty-test} LIST) (RETURN))

{({CAR, the element-accessor} LIST), the output element}
(SETQ LIST ({CDR, the step} LIST)))))

Compound roles are illustrated in the following excerpt from the cliche simple-report. The empty-test,
clement-accessor, and step are all part of a compound role, the enumerator.

(LOOP DO
(1F ({the empty-test of the enumerator} DATA) (RETURN))
(WHEN (> LINE {the lipe-limit})
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~/|~%Page:~30~50: (mA~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3)
({the column-headings} {REPORT, modified} {LINE, modified}))
({the print-item} {REPORT, modified}
{LINE, modified}
({the element-accessor of the enumerator} DATA))
(SETQ DATA ({the step of the enumerator} DATA)))

Referring back to Figure 11, annotation on the arguments of a function call is a second kind of machine
understandable Lisp annotation. There are two types of argument annotation. The first type specifics that
the argument is modified (side-cftected) by the function it is an argument to. This is illustrated in the excerpt
from the cliche simple-report shown above. The column-headings and print-item roles both side-cffect their
REPORT and LINE arguments. Annotation about side-cffects is important so that KBEmacs can correctly

158 Implementation

analyze the data flow in a program when a role is not yet fitled in.

The second kind of argument annotation has a very specialized meaning. 1t specifics the logical existence
of a role whose value is not actually used for anything. ‘This is illustrated in the cliche count shown below.
The cliche count takes in a series of values (c.g., created by enumerating a list) and counts them. The cliche is
peculiar in that it depends on the existence of the elements in this series however, it does not actually usc any
of these clements in its computation. The ramifications of this arc discussed in more detail as part of the
discussion of the cliche count in Appendix A.

(DEFINE-CLICHE COUNT
(PRIMARY-ROLES (ITEM)
DESCRIBED-ROLES (ITEM)
COMMENT "accumulates a count of {the item}")

(LET+ ((COUNT 0))
(LOOP DO
(SETQ COUNT (+ COUNT {1, depending on the input item})))

COUNT))

Figure 11 defines a third kind of machine understandable Lisp annotation — an ecmbedded instance. This
kind of annotation makes it possible to dircctly specify a part of a program as an instance of a cliche
(e.g.. (+ Y {a squaring of Y})) or a reference to the return value of a function
(c.g.. (+ Y {a use of the CAR})). Several examples of these are shown in Chapter II as part of the
construction of the program MEAN-AND-DEVIATION.

When they are used, cmbedded instances are converted into equivalent program code by the
knowledge-based editor module. The exact syntax and meaning of the two forms of an embedded instance is
discussed in the section on the knowledge-based editor below.,

Defining Lisp Cliches

K BEmacs provides a Lisp macro DEF INE-CLICHE for defining cliches. Figure 12 specifics the form such a
definition must take. (Note that several of the non-terminals in this figure are defined in Figure 11.)

cliche-dafinition ::= (DEFINE~CLICHE name
({c11che-declaration})
{form})

cliche~-declaration ::= PRIMARY-ROLES ({name})

| DESCRIBED-ROLES ({name})

| COMMENT description-string
| CONSTRAINTS ({constraint})

description-string ::= "{name | empty-role}"

constraint ::= (DEFAULT empty-role form)
| (DERIVED empty-role form)
| (RENAME string form)
string ::= a string literal

Figure 12: Defining a Lisp cliche.

As an example of a cliche definition, consider the cliche equality-within-epsilon shown below.

(DEFINE-CLICHE EQUALITY-WITHIN-EPSILON
{PRIMARY-ROLES (X Y)
DESCRIBED-ROLES (X Y)
COMMENT "determines whether {the x} and {the y}
differ by less than {the epsilon}"
CONSTRAINTS ((DEFAULT {the epsilon} 0.00001)))
(¢ (ABS (- {the input x} {the input y})) {the epsilon}))

Cliches 159

The body of a cliche definition is ordinary lisp code typically containing role annotation. Additional
information about the cliche is provided by four kinds of declarations. The PRIMARY-ROLES declaration
specifies which roles can be directly specified when creating an instance of the cliche. For example, here the
programmer can say "an equality-within-epsilon of A and B" but he cannot say "an
equality-within-epsilonof A, B, and 0.01".

‘I'he DESCRIBED-ROLES and COMMENT declarations specify how to create long and short comments
describing instances of the cliche. Note that the description string typically contains cmpty role forms.
Although these forms are syntactically identical to empty role forms in the body of a cliche they have a
different meaning. When the description string is used, all of the empty role forms in it are replaced by
descriptions of the forms which fill the corresponding roles in the body of the instance of the cliche. The use
of the DESCRIBED-ROLES and COMMENT declarations will be discussed when comments are discussed in the
section on the knowledge-based editor below.

Constraints

The CONSTRAINTS declaration specifics constraints which are placed on the roles. There are three kinds of
constraints: default, derived, and rename. The cliche cquality-within-epsilon includes a simpie example of a
default constraint. All three kinds of constraints arc illustrated below.

(CONSTRAINTS
((DEFAULT {the report-file-name} "report.txt")
(DERIVED {the Vline-1limit} (- 65 (SIZE-IN-LINES {the print-item})))
(RENAME "RECORD" (CORRESPONDING-RECORD-NAME {the data-file-name}))))

Default and derived constraints are very similar. They both take as arguments a role and an expression.
The expression is evaluated and uscd to fill the indicated role. The only difference between the two is that
default constraints can be overridden by replacing the contents of the coustrained role with some other value.
In contrast, if the contents of a derived role are changed, the constraint will act to restore the contents to their
original value.

Rename constraints are textual in nature. They take a target string, and an expression which should
evaluate to a replacement string. Everywhere in the body of the cliche the target string is replaced by the
replacement string. This causes renaming of variable names and function names. It also changes the values of
string literals and other literal values. As shown below, the renaming applies not only to the cxact target
string, but also to compound forms of the target string. In particular. the plural form of the target string is
replaced by the plural form of the replacement string and renaming is applied to hyphenated words
containing the target string. However, renaming is not applicd to names which merely contain the target
string as a substring.

If "RECORD" is renamed to "UNIT" then

RECORD becomes UNIT

RECORDS becomes UNITS
RECORD-TYPE becomes UNIT-TYPE

"The RECORD key" becomes "The UNIT key"
RECORDING remains RECORDING

There are two key aspects to the way constraints arc implemented by KBEmacs. First, a constraint
checking module which is part of the knowledge-based cditor reevaluates the constraints associated with a
cliche whenever the contents of any of the roles in an instance of that cliche are modified. This guarantces
that the constraints are checked whenever their effects could be altered.

Second, constraint expressions are composed of ordinary Lisp functions. They are able to affect the roles
in an instance of a cliche because they can refer to them by means of cmpty role forms. The empty role forms

160 Implementation

in a constraint expression are syntactically identical to empty role forms in the body of a cliche, however, they
have a different meaning. When a constraint expression is evaluated, cach empty role form in it evaluates into
adirect pointer to whatever fills the corresponding role in the plan for the instance of the cliche the constraint
is being applied to. Using this pointer, the constraint expression can inspect or alter the contents (if any) of
the role in the plan.

In principle, there is no limit to what can be specified in a constraint expression since the full power of
Lisp can be used in these expressions. For example, the constraint function CORRESPONDING_PRINTING
discussed in Chapter 1 contains an entire program generator. In practice, constraints are severely limited by
the fact that no ordinary user is expected to write a function which can do anything uscful with a direct
pointer into a plan. As a result, constraints arc typically composed of predefined constraint functions. Only a
very few constraint functions arc defined at the current time,

It should be noted that there are a number of problems with the way the rename constraint is currently
supported. In particular, rename constraints are only cvaluated once, at the moment the cliche is first
instantiated. As a result, any roles which the rename constraint refers to (e.g., the role data-file-name in the
cxample above) must have values specified for them in the knowledge-based command which causes the
instantiation of the cliche. 'T'his is an unreasonable restriction which could and should be climinated.

Expressiveness

It is important to consider exactly which algorithms can be expressed as a cliche and which cannot be.
Unfortunately, this topic has not been investigated in very much detail (sce [Rich & Waters 83] for a brief
discussion). However, several points are clear. First, the cliches used in the scenarios in Chapters I & 11
show that a wide range of cliches can be defined. In particular, many algorithms can be defined which are too
fragmentary to be represented as subroutines (¢.g., the cliche list-enumeration). Sccond, both constraints and
compound rolcs greatly extend the expressivencss of cliches.

As an example of the limits to the cxpressivencss of cliches consider the following. As defined in
Chapter 1. it is the intention of a cliche that the matrix be non-varying — all of the variability is confined to
what fills the roles. (The only exception to this at the current time is the rename constraint) To a
considerable extent this is not a limit because any part'of the matrix can be converted into a role. However,
no matter how many roles there are, the number of roles and the way they interact is fixed. This is analogous
to the situation in many programming languages where the number of arguments to a subroutine is fixed.

Unfortunately, there are algorithms which do not have a fixed number of roles. For example, in
KBEmacs, it is casy to define a cliche which computes the average of two numbers or a different cliche which
computes the average of three numbers. However, it is not possible to define the cliche which is the
generalization of these two cliches (i.e., a clichc which computes the average of any number of numbers)
because this cliche has a variable (in fact, unbounded) nuimber of input roles.

Another limitation on cliches in KBEmacs is that since plans cannot represent information about data
structures, it is not possible to define cliches which correspond to gencralized data types. In Lisp, this
restriction is not too obtrusive since the typical Lisp program does not contain any code which describes data
types. (As discussed in Chapter 1V data cliches will be supported by the next demonstration system.)

Cliches 161

The Cliche Library

In KBEmacs, the cliche library is implemented very simply. Property lists arc used to associate the plan
for a cliche with the name of the cliche. ‘This allows cliches to be rapidly referenced by their names. No other
kind of rcference is supported.

The analyzer module is used to convert a cliche definition form into a plan for the cliche. The way this is
donc will be discussed in the section on the analyzer below.

Ada Cliches

Ada cliches are semantically identical to Lisp cliches. Syntactically, they differ in the same way that Ada
syntax differs from Lisp syntax. The syntax of machine understandable annotation in Ada is shown in
Figure 13. Comparison of this figure with Figure 11 (which defines several of the non-terminal symbols used
in Figure 13) shows that there are only two basic differences between Ada annotation and Lisp annotation.

ada-function-call ::= name[(ada-argument {, ada-argument})]
| ada-role-form | embsdded-instance

ada-role-form ::= anonymous-role
empty-role[(ada-argument {, ada-argument})]
‘("ada-expression, role’}

‘U’name, role'}'[(ada-argument {, ada-argument})]

ada-argument ::= ada-expression
| ‘{"ada-expression, modified}’
| ‘("ada-expression, depending on role'}’

ada-field-selection ::= name-or-role.name-or-role{.name-or-role}
name-or-role ::= name | ada-role-form
ada-expression ::= ada-function-call | ada-field-selection

| any other Ada expression
ada-statement ::= ada-role-form | an Ada statement
ada-declaration ::= ada-role-form | an Ada declaration
ada-type ::= ada-role-form | an Ada type

Figure 13: Machinc understandable Ada annotation.
The first difference is that Ada role forms are changed so that they have the same syntax as Ada function

calls. For cxample, as shown below, an empty role with arguments in Ada has the form
{operation}(A, CAR(L)) whilcin Lisp it has the form ({operation} A, CAR(L)).

an anonymous role {}

an empty role {dinput x}

an empty role with arguments {operation}{A, CAR(L))

a filled role {LIST(A, CAR(L)), operation}

alternate syntax for a filled role {LIST, operation}(A, CAR(L))

The sccond difference is that a number of grammar rules have to be modified in order to show all the
places where a role form can be used. For example, Ada uscs a special syntax for statements (as opposed to
expressions) and for selecting the ficid of a record, where iLisp uses function calls for everything,.

It should be noted that Figure 13 shows that roles can appear inside data declarations and types. In Ada,
KBEmacs provides simulated support for data cliches {(¢.g., chain_file_definition) by converting Ada type
declarations into an internal form which appears to the system to be cxecutable computation. This is a
scrviceable but ad hoc approach.

162 Implementation

Figure 14 shows the syntax of Ada cliche definitions. Comparison of this figure with Figure 12 reveals
that Ada cliche definitions arc identical to Lisp cliche definitions except for syntax.

ada-cliche-definition ::= cliche name is
{ada-cliche-declaration;}
{ada-declaration;}
begin
{ada-statement;}
end name;

= primary roles name {, name}

| described roles name {, name}

| comment description-string

| constraints {ada-constraint;} end constraints

ada-cliche-declaration ::

ada-constraint . := DEFAULT(empty-role, ada-expression)
| DERIVED(empty-role, ada-expression)
| RENAME(string, ada-expression)

Figure 14: Defining an Ada cliche.

As illustrated in the example below, the syntax of the cliche defining form is changed so that it is
analogous to the way Ada subroutines are defined. (Note that the name of cliche is changed to conform to
Ada restrictions on what is a syntactically valid name.)

cliche EQUALITY_WITHIN_EPSILON is
primary roles X, Y;
described roles X, Y, EPSILON;
comment "determines whether {the x} and {the y}
differ by less than {the epsilon}";
constraints

DEFAULT({the epsilon}, 0.00001);
end constraints;

begin
return abs({the input x} - {the input y}) < {the epsilon};
end EQUALITY_WITHIN_EPSILON;
The various cliche declarations are rendered as keywords in analogy with other Ada declarations.
Constraints arc rendered as Ada function calls. They are implemented by calling the corresponding Lisp
constraint functions.

Language Independence

Comparison of the way Lisp and Ada cliches are defined shows the language independence of the ideas
involved. It is casy to extend the syntax of almost any language in order to support cliches. Role annotation is
supported using the notation {...} in analogy with the way function calls are rendered in the language’s
syntax. Similarly, cliche definition is rendered in analogy with subroutine definition.

In order to support a new language, onc also has to provide a library of cliches which are appropriate for
writing progiams in that language. A scparate library of cliches is required because, as discussed in the
beginning of Chapter HI, programining languages differ semantically as well as syntactically. (Some cliches,
particularly very abstract oncs, are semantically language independent and therefore could be represented in a
language independent cliche library.)

Plan Formalism
The plan formalism is the "mental language™ of KBEmacs. As such. it is the most important part of the
wﬁmn.1hcﬁwmmmn1ww(wmhmnydm@kmcdbyRmhandShnmcHUdl&Shnmc7dandancmmukd
by the author [Waters 76.78]. 'The subscctions below describe the information content of the plan formalism
in detail,

Surface Plans

A plan is a set of facts. The facts describe the operations in a program and the data flow and control flow
which conncet them. Figure 15 shows the types of facts which comprise a surface plan. A surface plan
describes the basic features of an algorithm without imposing any structure on the algorithm. Figure 16
shows a diagram of a simple surface plan. (This figure is a subset of Figure 3 in Chapter | and uses the same
diagrammatic conventions — solid lines represent data flow, and dashed lines represent control flow.)
Figure 17 shows the set of facts which correspond to the plan diagram in Figure 16.

plan ::= ({fact})
fact ::- seg-description | port | port-description | connection

seg-description ::= (segcase SEG segkind name-or-constant ({form}))
| (segcase SEGTYPE segtype)
| (segcase WHEN form)

segcase ::= (segment [casol)

segment ::= name

case ::= jame

name-or-constant ::= NIL | name | Lisp constant

segkind ::= FUNCALL | CONSTANT | LAMBDA-EXP | OPENCODE | RECURSION | JOIN
segtype ::= SIMPLE | SPLIT | JOIN

port ::= (segcase INPUT port-kind obj 1d)
| (segcase OUTPUT port-kind obj 1d)

obj ::= name

id ::= NIL | obj

port-kind ::= NIL | ID | PART

port-description ::= (port 10 fo-kind name-or-nil argno)
| (port CREATEVAR name)
jo-kind ::= LAMBDA-ARG | ACTUAL-ARG | FREE-VAR | RETURNVAL | SIDE-EFFECT
name-or-nil ::= name | NIL
argno ::= NIL | an integer

(segcase SUBSEG subseg)

| (segcase RECURSIVE subseg)

| (segcase DFLOW dflow-from dflow-to)
| (segcase CFLOW cflow-from cflow-to)

connection ::

subseg ::= segcase

dflow-from ::= port
dflow-to ::= port
cflow~-from ::= segcase

cflow-to ::= segcase

Figure 15: The information in a surface plan.

Fach fact is a tuple. The sccond clement of the tuple is a keyword which identifics the relationship
specified by the fact. "The other clements of the tuple are the arguments of the relationship.

164 Implementation

ABS

MINUSP

RESULT

Figure 16: Plan diagram for (COND {{MINUSP X) (- X)) (T X)).

The most basic object in a plan is a segment. Scgments correspond to a unit of computation. Segments are
identified by their names. Each segment in a plan must have a unique name. In facts, segments are referred
to by segcases. A segcase is a pair of a segment name and an optional case name. As will be discussed below,
cases arc used to identify various control environments associated with a scgment. 1fa fact applics to only one
case, then the case is identificd. [f the fact applics to every case then no casc is specified.

There arc four different classes of facts in a surface plan, 'The first class counsists of three different facts
which describe the basic features of a segment.

A SEG fact specifies three picces of information about a segment. First it says what kind of segment it is.
FUNCALL specifics that the segment is a call on a function. CONSTANT spccifies that the segment is a constant
such as a number or a string litcral. LAMBDA-EXP specifics that the segment corresponds to the definition of a
function. OPENCODE specifics that the scgment contains a group of other segments, but does not correspond
to an entirc function definition. RECURSION specifics that the segment is a recursive instance of a containing
segment. JOIN specifies that the segment is a join. The last two concepts will be discussed in more detail
below.

If a segiment is a FUNCALL then the SEG fact specifies the name of the function called. If the segment is a
CONSTANT then the SEG fact specifics the value of the constant. If the segment is a LAMBDA-EXP then the SEG
fact specifics the name of the function defined.

Finally, if possible, a SEG fact specifics what program code corresponds to the segment. The code is
specified by using direct pointers into the code for the program so that KBEmacs can keep track of what parts
of a plan correspond to what parts of a program.,

Plan Formalism 165

(((MINUSP) SEG FUNCALL MINUSP ((MINUSP X}))
(MINUSP) SEGTYPE SPLIT)

(MINUSP YES) WHEN (< X 0))

(MINUSP NO) WHEN (NOT (< X 0)))

(MINUSP) INPUT NIL X NIL)

((MINUSP) INPUT NIL X NIL) IO ACTUAL-ARG X 1)

(-) SEG FUNCALL - ((- X)))

-) SEGTYPE SIMPLE)

-} INPUT NIL X NIL)

-) QUTPUT NIL RESULT NIL)

(-) INPUT NIL X NIL) 10 ACTUAL-ARG X 1)

(-) OUTPUT NIL RESULT NIL) IO RETURNVAL NIL NIL)

(

(

(

(

(

(JOIN) SEG JOIN NIL NIL)

(JOIN) SEGTYPE JOIN)

(JOIN YES) INPUT ID X1 RESULT)

(JOIN NO) INPUT ID X2 RESULT)

{JOIN) OUTPUT NIL RESULT NIL)

((JOIN YES) INPUT ID X1 RESULT) IO FREE-VAR X NIL)
((JOIN NO) INPUT ID X2 RESULT) IO FREE-VAR X NIL)
((JOIN) OUTPUT NIL RESULT NIL) IO RETURNVAL NIL NIL)

(ABS) SEG OPENCODE NIL ((COND ((MINUSP X) (- X)) (T X))))
(ABS) SEGTYPE SIMPLE)

(ABS) INPUT NIL X NIL)

(ABS) OUTPUT NIL RESULT NIL) !

(((ABS) INPUT NIL X NIL) IO FREE-VAR X NIL)

({(ABS) OQUTPUT NIL RESULT NIL) IO RETURNVAL NIL NIL)

((ABS) SUBSEG (MINUSP))

((ABS) SUBSEG (-))

((ABS) SUBSEG (JOIN))

((ABS) DFLOW ({ABS) INPUT NIL X NIL) ((MINUSP) INPUT NIL X NIL))

((ABS) DFLOW ((ABS) INPUT NIL X NIL) ((-) INPUT NIL X NIL))

((ABS) DFLOW ((-) OUTPUT NIL RESULT NIL) ((JOIN YES) INPUT ID X1 RESULT))
({ABS) DFLOW ((ABS) INPUT NIL X NIL) ((JOIN NO) INPUT ID X2 RESULT))
g(ABS) DFLOW ((JOIN) OUTPUT NIL RESULT NIL) ((ABS) OUTPUT NIL RESULT NIL))
(

(

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(ABS) CFLOW (MINUSP YES) (-))
(ABS) CFLOW (MINUSP NO) (JOIN NO))
(ABS) CFLOW (-) (JOIN YES)))

Figure 17: Plan facts corresponding to Figure 16.

A SEGTYPE fact specifies how a segment interacts with control flow. A SIMPLE segment receives control
flow from one place and sends control flow to one place. A SPLIT scgment makes a choice. It receives
control flow from onc place and sends it to one of two or more places. A split has two or more cascs which
correspond to the different control environments initiated by the segment. A JOIN scgment receives control
flow from onec of two or more other places and sends it to one place. Like splits, joins have cases which
correspond to the different control environments which preceded the segment. (The utility of joins will be
discussed below.)

A WHEN fact specifies the circumstances under which ihe various cases of a split arc activated. The fact
contains a logical expression which refers to the inputs of the split. The case is activated when the expression
is true.

166 Implementation

As an example of the facts which describe the basic features of a segment consider the following facts
describing the segment MINUSP in Figure 17. The segment is a function call which calls the standard Lisp
function MINUSP. The segment is a split with two cascs. ‘The YES case is activated when the input X is less
than zero. Otherwise, the NO case is activated.

(MINUSP) SEG FUNCALL MINUSP ((MINUSP X)))
(MINUSP) SEGTYPE SPLIT)

(MINUSP YES) WHEN (< X 0))
(MINUSP NO) WHEN (NOT (< X 0)))

The second class of facts in a surface plan consists of two different facts which identify the ports of a
segment. INPUT and QUTPUT facts specify the input ports and output ports respectively of a segment. (On a
given scgment, all of the port names must be unique.)

In addition, port facts specify some additional information about the port. In particular they specify
whether the port is identical to or a subpart of some other port on the same segment. If the port is related to
another port then the 1D ficld of the fact specifics the name of the other port.

As a simple example of port facts, consider the ports of the segment "-" in Figure 17. These are both
simple ports which arc unrelated to other ports. The use of relationships can be seen in the description of the
scgment JOIN and will be discussed below.

((-) INPUT NIL X NIL)
((-) OUTPUT NIL RESULT NIL)

The third class of facts in a surface plan consists of two different facts which describe additional features of
ports. An I0 fact specifies three picces of information about a port. First, it says what kind of port it is.
LAMBDA-ARG specifics that the port is an input argument to a function definition. ACTUAL-ARG specifics that
the port is an input argument to a function call. FREE-VAR specifics that the port is implemented as a free
variable. RETURNVAL specifics that the port is the return value of the segment. SIDE-EFFECT specifies that
the port is not directly referenced by the segment, but is modified due to side-cffects performed by the
scgmient.

If a port is a LAMBDA-ARG then the 10 fact specifics the name of the argument. If a port is a FREE-VAR
then the 10 fact specifics the name of the variable. If a port is an ACTUAL-ARG (or SIDE-EFFECT) then the 10
fact specifies the name of the variable (if any) which carrics the value to (or from) the port in the program
code. If a port is a LAMBDA-ARG or an ACTUAL-ARG then the 10 fact specifies the argument number
corresponding to the port.

A CREATEVAR fact is used to indicate that the return value of a scgment has been assigned to a variable by
an assignment operation. The names of variables are recorded in port description facts in order to help the
coder module choose useful variable names when creating code corresponding to a plan.

As a simple example of port description facts, consider the facts describing the ports of the segment "-" in
Figure 17. X is the first argument to the function being called. RESULT is the return value. Note that these
facts have the port facts above embedded in them. 'Fhere is no example of a CREATEVAR fact in Figure 17.

(({-) INPUT NIL X NIL) IO ACTUAL-ARG X 1)
(((-) OUTPUT NIL RESULT NIL) IO RETURNVAL NIL NIL)

Plan Formalism 167

The fourth class of facts in a surface plan consists of four different facts which describe the
interrelationships between segments in a plan. A SUBSEG fact specifics that onc segment is contained in
another. For example, the segment MINUSP is inside the segment ABS.

A RECURSIVE fact specifies that a segment is a recursive instance of a containing scgment. For example
the plan for a recursive implementation of factorial would have an inner segment corresponding to the
recursive call on the function. There is no example of a recursive fact in Figure 17.

A DFLOW fact specifics data flow from one port to another. It points dircctly to the source and destination
ports.

A CFLOW fact specifics the control flow connecting segments in a plan. Note that control flow is only used
where necessary in order to specify the effects of splits and joins. In other situations the ordering constraints
specificd by data flow links are sufficient.

As an example of data flow and control flow, consider the links (reproduced below) impinging on the join
in Figure 17. First of all notice that the inputs of the join are located in different cases of the join. This
reflects the fact that in a given cxecution of the program only onc of the inputs will be supplied. ID
relationships between the ports specify that the input values are propagated directly to the output of the join.

((JOIN) SEG JOIN NIL NIL)
((JOIN) SEGTYPE JOIN)

((JOIN YES) INPUT ID X1 RESULT)
((JOIN NO) INPUT ID X2 RESULT)
((JOIN) OUTPUT NIL RESULT NIL)

((ABS) CFLOW (MINUSP NO) (JOIN NO))
((ABS) CFLOW (-} (JOIN YES))

((ABS) DFLOW ((-) OUTPUT NIL RESULT NIL) ((JOIN YES) INPUT ID X1 RESULT))
((ABS) DFLOW ((ABS) INPUT NIL X NIL) ((JOIN NO) INPUT ID X2 RESULT))
((ABS) DFLOW {(JOIN) OUTPUT NIL RESULT NIL) ((ABS) OQUTPUT NIL RESULT NIL))

The control flow facts impinging on the join specify that when control flow comes from the segment -7,
the YES case of the join is activated, and when control flow comes from the NO case of the split MINUSP, then
the NO case of the join is activated. The data flow specifics where the data flow comes from in these two
situations and that the output of the join becomes the output of the segment ABS.

168 Implementation

MINUSP

RESULT
Figure 18: Looping plan for (LOOP D0 {(IF (MINUSP X) (RETURN)) (SETQ X (1-X))).

An interesting issue involving surface plans is the way loops arc rendered. As shown in Figure 18 and
Figure 19, this can be done in two ways. Both of these figures show plans for the trivial loop
(Loop DO {IF (MINUSP X) (RETURN)) (SETQ X (1- Xx))). The two figures differ in that the first
represents the loop by using a loop in control flow and the sccond represents the loop by means of recursion.

"The recursive plan is an abbreviated form of an infinite representation. The recursive link (represented by
using a looping line) between the segments BODY and REC indicates that the computation performed by the
segment REC can be described by exactly the same plan which describes the segment BODY. This corresponds
to a recursive call of a procedure. The intermediate scgment BODY is introduced (rather than making REC be a
recursive instance of the segment LOOP) in order to provide a control environment where loop initializations
can be placed (i.c., inside the segment LOOP, but before the segment BODY).

The fact that both figures represent the same computation reflects the fact that any loop can be
represented as a tail recursion and vice versa. As will be seen below, KBEmacs usually chooses to represent
loops in terms of recursion. However, this is not a requirement of the plan formalism per se.

Plan Formalism 169

LooP
BODY
MINUSP
YES

[}

|

|

|

|

|

]

]

|

|

|

e :
|

JOIN
'RESULT

Figure 19: Recursive plan for (LOOP DO (IF (MINUSP X) (RETURN)) (SETQ X (1- X))).

A final issue involving surface plans is their expressiveness. In a surface plan one can already sec most of
the roots of the limits to the expressiveness of the plan formalism. In particular, there are no facts which say
anything about data structures or specifications. There is also no way to describe non-local flow of control
such as interrupts or the Lisp operations CATCH and THROW. It is however, possible to represent multiple entry
loops and multiple and mutual recursion. The ability to represent such complex patterns of control is lost
when additional features are added into the plan formalism.

Grouped Plans

Typically, surface plans are flat in that they have no hierarchical structure. Rather, they are composed of
an outermost segment containing tens (or even hundreds) of terminal subsegments connected by a network of
data flow and control flow.

In a grouped plan, intermediate segments are used in order to break the plan up into a hicrarchy of plans
within plans. Thc overall goal of this grouping is to divide the plan into chunks which can, to a considerable
extent, be manipulated separately. To this end the grouping is guided by the following principles. Scgments

170 Implementation

which arc closcly related (by control flow or data flow) are grouped together. Perhaps even more importantly,
unrclated segments are kept as far apart as possible. _

When experimenting with various ways to group up a plan, it was discovered that there arc only a very few
basic hierarchical organizations which arc used in programs. These organizations are referred to in the plan
formalism as plan building methods [Waters 78,79]. Each plan building method corresponds to a stercotyped
way of combining subscgments together. The individual subscgments are identificd by the roles they play in
the combination,

Plan building methods are an important underpinning of KBEmacs. In particular, both the analyzer and
coder modules contain a significant amount of procedurally embedded knowledge about how to deal with
cach different plan building method. Further these modules are not capable of dealing with plans which do
not fall inte these categorics. .

The basic grouping of a plan (i.c., the hicrarchy of segments within segments) is represented using the
SUBSEG fact discussed in the last subsection. Figure 20 shows the facts which are used to specify information
about the plan building methods for the segments in a plan,

fact ::= ... | pbm-fact

= (segcase PLANTYPE plantyps)

| (segcase PBM-ROLE roleseg pbm-role)

plantype ::= JOIN | CONSTANT | BUILTIN | EXPR | AND | XOR | PRED | SSR | SSR-BODY
roleseg ::= segcase

pbm-role ::= ACTION | PRED | JOIN | INIT | REC | OP | BODY

pbm-fact ::

Figure 20: The information in a grouped plan.

A PLANTYPE fact specifics the plan building method corresponding to a segment. A PBM-ROLE fact
specifies the role cach subsegment plays in the plan building method for the segment which contains it. As
shown below, each plan building mcthod has a particular sct of roles associated with it.

plan building method roles
JOIN, CONSTANT, & BUILTIN no subsegments
EXPR & AND ACTIONs
XOR PRED, ACTIONs, & JOIN
PRED INIT, PREDs, & JOINs
SSR INIT, PRED, OP, REC, JOIN, & BODY (an SSR-BODY)

JOIN, CONSTANT, and BUILTIN arc degencrate plan building methods for terminal segments. They
correspond to joins, constants and function calls respectively. They are included so that cvery segment will
have a plan building method.

The plan building method EXPR contains an arbitrary number of subsegments referred to as ACTIONs. An
EXPR cannot contain any splits or joins, and the actions must be connected by an acyclic net of data flow. The
plan building method EXPR corresponds to what is commonly thought of as an expression in a programming
language.

The plan building method AND (which has nothing to do with the Lisp function AND) is a special case of the
plan building method EXPR. It has the further requirement that there most be no data flow between the
actions. It embodics the key idea that there are no ordering constraints between the actions.

The plan building method XOR corresponds to a conditional. It has a predicate which decides which of
several actions to perform. A JOIN combines together the control flow which is split apart by the predicate.
The segment ABS in Figure 16 is an example of an XOR. Figure 21 shows the facts which would be used to
cncode the plan building method information associated with Figure 16.

Plan Formalism 171

MINUSP) PLANTYPE BUILTIN)
-) PLANTYPE BUILTIN)
JOIN) PLANTYPE JOIN)

(((
((
((
((ABS) PLANTYPE XOR)
((
((
((

ABS) PBM-ROLE (MINUSP) PRED)
ABS) PBM-ROLE (-) ACTION)
ABS) PBM-ROLE (JOIN) JOIN))

Figure 21: Grouping facts corresponding to Figure 16.

The plan building method PRED corresponds to a compound predicate. It combines simple predicates
with joins and initialization computation in order to create more complex predicates.

The plan building method SSR (Single Sclf Recursion) corresponds to a single sclf recursive program such
as the standard implementation of factorial. 'The plan building method SSR is also used to represent loops
which (as discussed above) are expressible as tail recursive computations. Figure 19 is an example of an SSR.
Figure 22 shows the facts which would be used to encode the plan building method information associated
with Figure 19.

(((MINUSP) PLANTYPE BUILTIN)
((1-) PLANTYPE BUILTIN)
((JOIN) PLANTYPE JOIN)
((REC) PLANTYPE SSR-BODY)

((BODY) PLANTYPE SSR-BODY)
((LOOP) PLANTYPE SSR)

((LOOP) PBM-ROLE (MINUSP) PRED)
((LOOP) PBM-ROLE (1-) oOP)
((LOOP) PBM-ROLE (REC) REC)
((LOOP) PBM-ROLE (JOIN) JOIN)
{(LOOP) PBM-ROLE (BODY) BODY))

Figure 22: Grouping facts corresponding to Figure 19.

An SSR has several different kinds of roles. In particular, it has a BODY (which has the special plan
building method SSR-BODY) and a REC (which is a rccursive instance of the BODY and therefore also has the
plan building method SSR-BODY). It can have an INIT which performs initialization computation before the
BODY is entered. It typically has an OP which is the basic computation performed by the SSR. 1f an SSR is
capable of terminating then it will have a PRED which specifies when the termination will occur.

A wide range of programs can be analyzed in terms of the nine plan building methods above. However,
there are other ways in which a program can be organized. This causes grouped plans to be less expressive
than surface plans. In order to recover the full expressiveness of surface plans, plan building methods
corresponding to these other organizations would have to be added into the plan formalism. (Unfortunately,
this is relatively hard to do because it requires a considerable amount of procedural support in the analyzer
and coder.)

As examples of program organizations not covered by the plan building methods presented above
consider the following. 'Therc are no plan building methods which correspond directly to loops like the one in
Figurc 18. In general, this is not a problem because most loops can be transformed to cquivalent recursive
programs as shown in Figure 19. However, this transformation cannot be applied to multiple entry loops. In
addition, occasionally the control flow in a program is so complex that it is not possible to sensibly analyze it
in terms of conditionals and loops at all, In this situation it would often be uscful if there were a plan building
method which could view the program as a finite state automaton with state transitions implemented as
control flow. Finally. the plan formalism does not have plan building methods corresponding to multiple or
mutual recursion. (However, for many purposes, these can be satisfactorily modeled in the plan formalism by

172 Implementation

merely representing the recursive function calls in the same way as non-recursive function calls.)

The discussion of plan building methods above is intentionally brief. The discussion in [Waters 78] is
much more detailed. In addition, the latter discussion shows a number of examples of hicrarchical plans
which are significantly more complicated than the ones above,

In closing, it should be noted that, at a logical level, plan building methods are clearly cliches. Each one
specifies how a set of roles is to be embedded in a matrix connecting them. Unfortunately, the restrictions
embodiced in a plan building method are not specific enough for them to be represented as a cliche in the plan
formalism. There arc two main problems. First, the number of roles is not fixed — an EXPR can have
arbitrarily many ACTIONs. Sccond. the matrix is not fixed, rather it is only constrained — an EXPR can have
any pattern of data flow as long as it is acyclic.

It is unfortunate that plan building methods cannot simply be represented as cliches in the plan formalism,
because this forces them to be procedurally handled as a special case. It should be noted that the plan
calculus is also incapable of representing plan building methods as cliches because, in genceral, it too requires
the number of roles and the matrix to be fixed. However, this may not be a problem because the next
demonstration system may not need to use plan building methods. ‘The possibility of eliminating the plan
building methods will be discussed in the last section of this chapter,

Temporal Plans

As discussed in Chapter [, a particularly intcresting aspect of the plan formalism is the way it represents
loops. As shown above, loops can be represented either using loops in control flow or recursively. In
addition, a special mechanism called temporal decomposition is provided which makes it possible to represent
a loop as a composition of temporal fragments which communicate by means of series of values. A scries of
values is a sequence (strecam) of values gencrated over a period of time. Temporal fragments produce and
consumec scrics of valucs.

As an cxample of temporal fragments, Figure 23 shows a plan diagram for a program SUM-TO-N which
adds up the first N integers. This program (shown below) computes the sum by counting down from N to zero
and adding up the integers enumerated.

(DEFUN SUM-TO-N (N)
(LET ((I N)
(RESULT 0))
(Loop Do
(IF (MINUSP I) (RETURN RESULT))
(SETQ RESULT (+ RESULT I))
(SETQ I (1- 1)))))

The plan in Figurc 23 contains two temporal fragments ENUMERATE-FROM-N and SUM. Each of these
fragments is a simple recursive plan. Note that the plan for the scgment ENUMERATE-FROM-N is identical to
the plan for the seginent LOOP in Figure 19 except that it does not return a value.

The series which are produced and consumed by a temporal fragment are represented by a special kind of
input/output port called a temporal port. 'The ports T and J in Figure 23 arc temporal ports. The temporal
output I corresponds to the series of integers that is created by counting down from N. The dashed line
between the NO case of the segment MINUSP and the port I indicates that the temporal port only corresponds
to the series of integers which are greater than or equal to zero. The temporal input J corresponds to the
scrics of values which is sumimed up.

Plan Formalism 173

SUM-TO-N
PEE—————
ENUMERATE-FROM-N

SUM

R
_}L'_N;I EC2

Y
*
A4

RESULT

Figure 23: Temporal plan for summing the integers from 1 to N.

Figure 24 presents the plan facts which are used to represent temporal fragments. First, two new kinds of
porits arc defined — temporal inputs (TINPUT facts) and temporal outputs (TOUTPUT facts). These facts have
an object name ficld like any other port. In addition they have two other fields which describe the series of
values corresponding to the port. The lower-1o ficld specifies a port inside of the temporal fragment. The
series of values corresponding to the temporal port is the serics of values over time of the Tower-1o port. (In
a plan diagram a temporal post is linked to its Tower=-1io port by a solid line with no arrowhead.)

The Tower-env ficid specifics a segease inside of the temporal fragment. Usually it is the segease of the
Tower-1o port. However, whea it is not, it specifics that the serics of values is only the subsct of values of the
lower-1o which is visible in the Tower-env control environment. (In a plan diagram a temporal port is
linked to its Tower-gnv port by a dashed line with no arrowhead.)

Figure 24 also shows that a new kind of plan building mcthod TEMPCOMP (temporal composition) is
provided. "fhis plan building method is used for segments which contain temporal fragments. (The temporal
fragments themselves are instances of the plan building method SSR.) A TEMPCOMP is essentially the same as
an EXPR except that it contains temporal fragments.

Several new plan building method roles are defined in order to specify the roles of temporal fragments in a
TEMPCOMP. An ENUM cntnnerates a series of vatues. terminating the Joop when the serics is exhausted. A GEN
generates a serics of valucs, but does not contain any termination condition. An ACC takes in a series of values

174 Implementation

and accumulates some result. A TRN is a transducer which takes in a series of values and creates a new serics
of values based on the input serics. A TERM contains a termination condition which can causce carly
termination of a loop. It can be used to create multiple exit loops. A FILTER takes in a series of values and
filters out some of these values, creating a new series which contains only some of the values in the input
serics. Finally the role BSSR is used for any kind of complex fragmient which is too complex to fit in one of
the categorics above.,

port ::= ... | (segcase TINPUT lower-env obj lower-10)
| (segcase TOUTPUT lower-env obj lower-1o)

lower-env ::= segcase

lower-1o ::= port

plantype ::= ... | TEMPCOMP
pbm-role ::= | ENUM | GEN | ACC | TRN | TERM | FILTER | BSSR
fo-kind ::= ... | DUMMY

Figure 24; The information in a temporal plan.

The facts 10 and CREATEVAR arc used to describe features of temporal ports just as they arc used to
describe ordinary ports. In addition, Figure 24 shows that there is a special kind of port descriptor (DUMMY)
which only applies to temporal ports. This is used for temporal ports which have to be present in order to
correctly represent the interrelationships between temporal fragments but for which no data is actually
required. These correspond exactly to the places where the notation {..., depending on ...} has to be
uscd (e.g.. in the cliche count discussed above).

As an example of facts describing the interaction of temporal fragments, consider the facts in Figure 25.
This figure shows the facts which deal with the temporal aspects of the plan in Figure 23. The segment
SUM-TO-N is a temporal composition in which ENUMERATE-FROM-N is an enumcrator and SUM is an
accumulator. I and J arc temporal ports as described above. Note that ordinary data flow is used to connect
temporal ports.

(((SUM-TO-N) PLANTYPE TEMPCOMP)

((SUM-TO-N) PBM-ROLE (ENUMERATE-FROM-N) ENUM)
((SUM-TO-N) PBM-ROLE (SUM) ACC)

{((ENUMERATE-FROM~N) TOUTPUT (BODY1) I ((BGDY1) INPUT NIL I NIL))
((SuM) TINPUT (+) J ((+) INPUT NIL X NIL))

(((ENUMERATE-FROM-N) TOUTPUT (BODY1) I ((BODY1) INPUT NIL I NIL))
10 FREE-VAR I NIL)

(((suM) TINPUT (+) J ((+) INPUT NIL X NIL)) IO FREE-VAR I NIL)

((SUM-TO-N) DFLOW
((ENUMERATE-FROM-N) TOUTPUT (BODY1) I ((BODY1) INPUT NIL I NIL))
((SUM) TINPUT (+) J ((+) INPUT NIL X NIL)))

Figure 25: The temporal facts corresponding to Figure 23.
The discussion above gives only a brief overview of temporal fragments. They arce discussed in much

greater detail in [Waters 78,79]. The section ¢n the analyzer module below discusses how KBLmacs decides
to break a loop up into temporal fragments.

Plan Formalism 175

Cliches

There are three kinds of facts in the plan formalism which are used to represent information about roles
and cliches (see Figure 26). A CLICHE-ROLE fact is used to specify that a segment is a role. It specifies the
name and the type of the role. A CLICHE-DEF fact specifics that a segment is the definition of a cliche. In
addition. it records the declaration information associated with the definition. A CLICHE fact specifics that a
segment is an instance of a cliche. (Note that the non-terminal symbol ¢11che-declaration is defined in
Figure 12.)

fact ::= ... | cliche-fact

cliche-fact ::= (segcase CLICHE-ROLE roleseg nams cliche-role-type)
| (segcase CLICHE-DEF name ({cliche-declaration}))
I (segcase CLICHE name)

cliche-role-type ::= INPUT | OUTPUT | INTERNAL

Figure 26: The information in a cliche plan.

As cxamples of the first two kinds of facts above, consider the cliche absolute-value shown below.

(DEFINE-CLICHE ABSOLUTE-VALUE
(PRIMARY-ROLES NUMBER
DESCRIBED-ROLES NUMBER
COMMENT "computes the absolute value of {number}")
(LET ((x {input numberl}))
(COND ((MINUSP X) (- x)) (T X))))

Figure 29 shows a plan diagram for this cliche. Figure 27 shows the cliche definition facts corresponding
to the cliche.
(((ABSOLUTE-VALUE) CLICHE-DEF ABSOLUTE-VALU
(PRIMARY-ROLES NUMBER
DESCRIBED-ROLES NUMBER

COMMENT “"computes the absolute value of {nunber}"))
((ABSOLUTE-VALUE) CLICHE-ROLE (NUMBER) NUMBER INPUT))

Figure 27: Cliche definition facts corresponding to Figure 29.

As an example of facts describing the instance of a cliche consider the following. Suppose that the
segment ABS in Iigure 29 were an instance of the cliche SIMPLE-CONDITIONAL shown below.

(DEFINE-CLICHE SIMPLE-CONDITIONAL
(PRIMARY~ROLES TEST ACTION
DESCRIBED-ROLES TEST ACTION
COMMENT "computes {action} if {test} is true")
(IF {test} {action}))

If this were the case then the plan for the segment ABS would contain the facts shown in Figure 28. Note
that the fact CLICHE-ROLE is used to represent both roles in cliche definitions and roles in cliche instances.

(((ABS) CLICHE SIMPLE-CONDITIONAL)
((ABS) CLICHE-ROLE (MINUSP) TEST INTERNAL)
((

ABS) CLICHE-ROLE (~-) ACTION INTERNAL))

Figure 28: Cliche instance facts corresponding to Figure 29.

176 Implementation

ABSOLUTE~VALUE

INPUT ROLE
NUMBER

ABS

MINUSP

JOIN

RESULT
Figure 29: A plan for the cliche absolute-value.

As can be scen from the discussion above, it is in gencral very straightforward to represent information
about cliches in the plan formalism. However, there is one area of complexity — compound roles.
Compound roles arc represented by CLICHE-ROLE facts just like non-compound roles. For example suppose
that a top level segment T contains a segment S which is the role {the step of the enumerator}, and
that the intermediate segment E is {the enumerator}. In this case, two CLICHE-ROLE facts are used onc
specifving that £ is the enumerator of T and one specifying that S is the step of E.

In order for the approach above to work, the plan formalism has to require that there always be a scgment
which can be identified to correspond (o a given compound role. This requirement is problematical due to
the fact that it cannot always be satisfied. Some sets of roles are logically grouped inside segments and some
are not, (This is not a severe problem in K BEmacs at the current time because there are actually very few
cascs of compound roles.)

Requiring that there be a segment corresponding to cach comnpound role is not merely a convenience — it
solves an important problem. In addition o knowing what roles are inside of a compound role, KBEmacs
needs to know what part of the matrix of the cliche is inside of the compound role. However, there is not any

Plan Formalism 177

kind of annotation which directly specifies this information. As a heuristic, K BEmacs assumes that all of the
matrix inside of the lowest level segment which contains all of the sub-roles in the compound role is also
inside of the compound role. ‘The importance of this will be discussed further below when the issue of filling

roles is discussed.

Implementation

'The plan formalism is supported by a simple relational data base. Individual facts can be asserted, deleted,
and retricved with patterns. For example, the following form asserts a fact describing an input.

(>& '(ABS) INPUT NIL 'X NIL)

'The next form retrieves a list of all the input facts for the segment ABS. 'The symbol * is used as a wild
card matching symbol. In order to access the ficlds of the facts which are retricved by a pattern, various field

accessing functions arc used.
(?7& '(ABS) INPUT » » &)

Finally, the next form finds and deletes any and all input facts describing the input object X of the segment
ABS.

(--& '(ABS) INPUT » 'X »)

The above data base is very flexible. For example, the use of patterns allows for great varicty in the way
information can be retrieved. In addition, it is trivial to define new kinds of facts. This flexibility is an
important virtue in as much as the focus of the KBEmacs implementation has been rapid prototyping and
experimentation,

Unfortunately, the flexibility in the implementation of the plan data base is bought at the cost of
horrendous incfficiency in both time and space. The last scction of this chapter discusses how
reimplementing the data base in a much more rigid way could speed up information access by orders of
magnitude.

Language Independence

An important virtue of the plan formalism is that it is inherently programming language independent.
This provides the basis for the language independence of KBEmacs as a whole.

Analyzer

The analyzer is used in two situations, First, whenever the programmer textually modifics the program
being worked on, the analyzer creates a new plan for the program so that knowledge-based cditing can
continue. Second, the analyzer is used to process cliche definitions in order to create plans which are stored in
the cliche library. An important feature of the analyzer in both situations is the ability to understand role
annotation,

The analyzer operates in a sequence of stages which arc described below. Many of these stages arc similar
to the operations of an optimizing compiler, and will only be sketched out bricfly. [Waters 78] provides much
more detail.

Parsing

The first stage of the analyzer parses the program text to be analyzed. For Lisp, this parsing is performed
by the Lisp rcader. The only direct support which has to be supplicd by the analyzer is the parsing of role
annotation. ‘This is done by defining a special reader macro for the character "{". For other languages, a
parser has to be implemented aleng traditional lings.

178 Implementation

Semantic Processing

The sccond stage of the analyzer translates the parse tree created by the first stage into an cquivalent
program in a simple intermediate language. ‘The purpose of this translation is to convert all complex control
constructs and data constructs in the the source language into simple operations. All of the control constructs
arc converted to simple conditional and unconditional branches. All of the data constructs are converted into
binding and assighments of simplc atomic variables.

The translation is done through a process of macro expansion. This process expands any macro calls in the
source program. In addition, it uses a sct of additional macro-like definitions which cxpand cach complex
construct in the source into simpler forms. The set of macro-like definitions for the complex forms act as a
semantic definition for these constructs.

Creating a Surface Plan

The third stage of the analyzer takes the intermediate representation created by the semantic stage and
creates a surface plan corresponding to it. ‘The surface plan stage is implemented as a symbolic cvaluator
which follows every control path in the program, creating segments, data flow, and control flow as it goes.

Each time a function call or role is encountered, an appropriate segment is created. In addition, data flow
is created which links this scgment with the appropriate arguments, if any. Each time a conditional branch is
encountered, a split segment is created, and the symbolic evaluator proceeds along both paths indicated by
the conditional branch. Each time a branch steers the symbolic evaluator onto a path which has alrcady been
processed, then a join is created and the symbolic evaluator is prevented from reprocessing the path.

Grouping

The fourth stage of the analyzer takes the surface plan gencrated by the third stage and creates a grouped
plan by inserting appropriate intermediate scgments. As the first step of this process, the grouping stage
locates each loop in the surface plan and converts it into an equivalent recursive representation. As part of
this, the grouping stage has to determine which data flow arcs are associated with the loop and therefore must
be represented as arguments in the recursive representation. The existence of explicit join scgments greatly
facilitates this task. '

Once the loops have been located, the grouping stage creates a grouped plan by parsing the surface plan in
terms of the plan building methods. Each time a group of scgments is located in the surface plan which
interact in accordance with onc of the plan building methods, these segments are gathered together into a
single intermediate segment. As part of this, appropriatc PLANTYPE and PBM-ROLE facts are created.

A priori. onc might think that parsing in terms of plan building methods would be a difficult task
requiring significant backtracking, However, it turns out that this is not the case. In fact, parsing is rclatively
straightforward and no backtracking is ever required. The key to this is the fact that there arc only a very
small number of plan building methods and they are so different from each other that it is very difficult to
make a mistake about which one is applicable where.

‘The parsing process is driven primarily by the control flow in the surface plan. After the parsing is
cempleted, the grouped plan is adjusted based on the data flow in the plan. In particular, each segment which
creaics a value is moved as close as possible (within the constraints of control flow) to the place where this
value is used. ‘This adjustment is donc in order to further the goal of keeping closely related segments close
together and unrclated segments far apart.

Temporal Decomposition

The fifth stage of the analyzer performs temporal decomposition. Each loep in the grouped plan is broken
apart into temporal fragments. As discussed in [Waters 791, this decomposition is done based on the data flow

Anaiyzer 179

in the loop. The main goal is to locate fragments of the loop which can be understood in isolation. The key
requirement is that all feedback of information from the fragment to the fragment must be contained within
the fragment.

A significant weakness of the the temporal decomposition stage is that it only works for tail recursive
programs (i.c., loops). The discussion in [Waters 78] indicates how temporal decomposition could be
generalized to singly recursive programs which arc not tail recursive. Generalizing temporal decomposition to
multiply recursive programs is a topic of current rescarch.

Locating Compound Roles

The final stage of analysis identifies which intermediate scgments correspond to compound roles. This
cannot be done until after the other stages of analysis have identificd what grouping is appropriate.

Possible Improvements

'The analyzer is the oldest and most robust module of KBEmacs. It is well tested and relatively bug free.
Nevertheless, there are many ways in which it could be improved.

To start with, therc are many limitations on the kinds of programs which the analyzer can analyze. Most
of these limitations stem from limitations of the plan formalism (e.g., the fact that the plan formalism cannot
represent non-local control flow and the fact that grouped plans cannot represent multiple entry loops).
Other limitations stem from weaknesses of the analyzer itself. For example, the fact that temporal
decomposition can only be applied to loops.

Finally, littlc attempt has been made to make the analyzer efficient. It should be possible to speed it up
considerably by using some of the cfficient graph algorithms which are employed by optimizing comnpilers.

Recognition

From the point of view of the PA project as a whole, the most glaring defect of the analyzer module is the
fact that it is not able to recognize which cliches could have been used to construct a program.

When a program is constructed by means of knowledge-based editing using cliches, then the plan contains
a record of the cliches which were used. Several of the capabilities of KBEmacs depend on the presence of
this information (c.g., the "Replace" and "Comment" commands). Unfortunately, since analysis is not able to
recover this information, these commands cannot be used after a program has been modified textuaily.

There is one situation where KBEmacs is able to avoid the problem above. If KBEmacs is able to
recognize that the only effect of a textual modification is to fill in a role, then KBEmacs converts the textual
modification into an cquivalent "Fi11" command and is able to maintain its knowledge of how the program
was built up out of cliches.

In principle, one would expect that it should be possible to parse a plan in order to determine the cliches
which could have been used to create it just as a plan can be parsed in order to determine which plan building
methods could have been used to create it. Brotsky [Brotsky 84] has developed an cfficient graph parsing
algorithm which should make this possible. Work (by Linda Zelinka) is currently under way on an analysis
module for the next demonstration system which will support cliche recognition. This module is based on the
work of Brotsky and will operate in terms of the plan calculus.

‘The primary reason that plan building methods were included as part of KBEmacs was to make it possible
to create a grouped plan even though cliche recognition is not supported. This was done because it was
assumed that having a grouped plan was essential for performing knowledge-based editing. However,
cxperience has suggested that this is probably not the case. As will be discussed in the last section of this
chapter, it would probably be possible to do without the concept of plan building methods if KBEmacs were
reimplemented from scratch. In any event, the next demonstration system will certainly not need to use plan

180 Implementation

building methods to create grouping since it will support cliche recognition.
Ada

The analyzer module supports the language Ada in addition to Lisp. However, its support for Ada is
much less exiensive than the support for Lisp. Basically, it supports all of those features of Ada which are
semantically cquivalent to Lisp, and not very much clse.

In particular, data declarations arc treated in a very minimal way. They are cssentially processed as
literals. "The analyzer docs nothing with them except save them. Note however, that even this very minimal
support allows KBEmacs o have cliches for data declarations by simply having cliches which contain the
appropriate declaration literals.

The only parts of KBEmacs which can be said to understand Ada declarations in any way arc special
purpose procedures in the coder module and in constraints. In order to provide better support for
declarations, the plan formalism would have to be extended so that it could represent information about data
structures.

A good example of the limits to KBEmacs understanding of declarations is demonstrated by its support
for gencric packages. On one hand. it understands almost nothing about them. On the other hand, it
succeeds in making use of them in the scenario in Chapter I1I. KBEmacs contains an Ada interpreter which
correctly interprets generic packages. In addition, there arc several generic packages (shown in Appendix B)
which are assumed to have been written before the scenario begins. All of this is basically outside of the
understanding of KBEmacs. Within the understanding of KBEmacs there are several cliches which refer to
generic packages (c.g., CHAIN_FILE_DEFINITION and FILE_SUMMARIZATION). These cliches make it
possible for KBEmacs to create programs which use generic packages.

Another problematical aspect of the analyzer's support for Ada is the support for exception handlers. In
Lisp, the analyzer docs not handle interrupt processing code at all, since it cannot be represeated in the plan
formalism. In Lisp, this weakness is casy to avoid since relatively few Lisp programs usc interrupts. However,
interrupts cannot be so casily ignored in Ada programs. ‘The analyzer provides minimal support for Ada
exception handlers by converting them into special conditionals which are semantically incorrect, but
representable in the plan formalism. A reverse conversion is then performed by the coder module.

A final difficulty with Ada is inherent in the language itsclf. Ada is extraordinarily difficult to parse. The
biggest problem stems from difficultics in discriminating between various syntactic features (for example,
array references are indistinguishable from fanction calls, zero argument function calls are indistinguishable
from variable references, and qualified names are indistinguishable from record field references). Due to
these and other confusions, it is impossible to fully parsc a program unless a package declaration has been
defined for every package which the program refers to. (Roles present a special problem since they are, of
course, not defined in any package.) In addition to being a problem for KBEmacs, this parsing problem is a
problem for the incremental construction of Ada programs in general.

The analyzer's support for Ada should really only be looked at as illustrative. There is however, no
fundamental reason why more complete support could not be provided.

Language Independence

An important aspect of the analyzer is that it is largely programming language independent. Only the first
two stages are language dependent. In order to support a new language one has to provide a parser for it and
a sct of macros which define the semantics of the constructs in the language in terms of the intermediate
language used by the analyzer. In addition to Lisp and Ada, this has been done, at lcast to some extent, for
the languages Fortran, Cobol, and PL/1.

181

Coder

The coder module is used to create new program text whenever the plan for the program being cdited is
changed. Like the analyzer. the coder operates in a sequence of stages most of which are relatively language
indcpendent.

Temporal Composition

"The first stage of the coder reverses the process of temporal decomposition. Al of the fragments inside of
a TEMPCOMP arc combined together into a single fragment which is then rendered as a simple recursive plan.
This process is relatively straightforward and is described in detail in [Waters 78).

Grouping

‘The second stage of the coding process analyzes a plan in order to determine the basic control flow
structures in the plan — i.c.. the conditionals and loops. The plan is grouped up hicrarchically based on this
analysis. This grouping is important in order to determine which control constructs should be used when
coding the program. As part of this, any segment which produces a value is moved as close as possible to the
place where this value is used. This is important in order to be able to maximize the extent to which nesting
of expressions can be used to implement data flow.

This grouping process is discussed here because it is logically part of the coding process. However, this
grouping is actually performed by the analyzer. Instcad of grouping a plan when it is going to be coded,
K BEmacs makes sure that plans are always appropriately grouped. Whenever the analyzer makes a plan for a
program or for a cliche it groups it. Whenever the knowledge-based editor combines plans together it makes
surc that the result is appropriately grouped. In addition, the temporal composition stage calls parts of the
analyzer in order to group up the loops it creatcs.

Implementing Data Flow

The third stage of the coder is in many ways the most difficult and the most important. It analyzes the
grouped plan and determines how the data flow in the plan should be implemented. The stage first identifies
all of the places where nesting of expressions can be used. 1t then sclects variables to use for the other data
flow.

Selecting variable names turns out to be very important and quite difficult. It is important because the
readability of a program depends to a very large extent on how well the variable names are chosen. It is
difficult because a large number of competing requirements have to be balanced against cach other.

The data flow stage of the coder proceeds in several steps. First, it divides the data flow in the plan into
sections such that alf of the data flow in cach individual section can be implemented in the same way.

Sccond, the data flow stage identifies which sections can be implemented using nesting of expressions. A
significant complication to this is that deciding to use nesting of expressions in a given place often introduces
ordering constraints in the plan. These have to be recorded so that they will not be contradicted later.

Third, the data flow stage trics to discover a reasonable variable name to use for the scctions which cannot
be implemented using nesting. In order to do this it consults the variable name suggestions in I0 and
CREATEVAR facts in the plan. These suggestions arc made part of the plan preciscly because they are essential
for this purpose. Note that these suggestions come initially cither from a cliche or from something typed by
the programmer,

Often, several conflicting variable name suggestions will exist for a given section. When this is the case, a
variety of heuristics are applicd in order to pick the best name to use. In particular, informative names such
as UNIT and SUM are preferred over uninformative names such as DATA and RESULT. Another key criterion is
that names must be chosen so that the data flow in neighboring data flow scctions will not interfere — if the

182 Implementation

variable UNIT is used for a given section then it cannot be used for any other section which overlaps the given
section in execution order. .

Often, there are no suggestions of what variable name to use for a section. When this is the casc the data
flow stage attempts to use the same name as a preceding or following section which appears to correspond to
the same logical object. 1f all else fails, a variable name is generated based on the name of the function that
creates the value being transmitted or based on a list of acceptable uninformative variable names such as X, Y,
and 2.

At the current time, the conflicting requirements and heuristics above are supported by an ad hoc
procedure which makes the necessary choices serially without backtracking. This is relatively fast. However,
it does not create markedly good results. In particular, this approach is unfortunately quite sensitive to the
exact order in which the data flow sections come up for consideration. It would probably be preferable to use
some kind of constraint propagation approach to come to a simultancous conscnsus on all of the choices
which have to be made.

Basic Coding

Once decisions have been made about how to implement the data flow in a plan the fourth stage of the
coder creates code for the program. This is done recursively one scgment at a time. For each terminal
segment, code representing the appropriate function call, constant, or role is gencrated. For each
intermediate segmeit, code is created for the control construct which corresponds to the segment’s plan
building method (c.g., a conditional is created for an XOR). The decisions of the third stage are followed in
order to create data flow.

The result of the basic coding stage is a more or less language independent parse tree for the program. Itis
language independent in that it only relics on a few basic constructs (such as variable binding, conditionals,
simple loops. variable assignments, and function calls) which most languages support. In this parse tree, rolcs
are expressed as a special kind of function call,

Final Transformations

The fifth stage of the coder takes the language independent parse tree and performs a number of language
dependent transformations on it. The goal of these transformations is to increase the aesthetics of the
program produced. For example, in Lisp, these transformations introduce uses of the the special forms IF,
WHEN, LET«*, and LOOP.

In Ada, much more extensive transformations are supported. In particular, transformations reverse the
processing which the analyzer uscs to encode Ada declarations and exception handlers. Going beyond this, a
special procedure inspects the program and creates variable declarations for any variables which do not have
explicitly specified declarations. Processing to ensure that cach data file is opened and closed appropriately in
a program is also performed in this stage. (It would probably be more logical if both of these things were
done as part of knowledge-bascd cditing.)

A significant complexity in the transformation stage is that it must be careful to maintain the links between
the plan and the parse tree so that KBEmacs will know what paits of the plan correspond to what parts of the
corresponding program — c¢.g., in order to support the "Highlight" command.

Pretty printing

The sixth and final stage of the coder creates program text corresponding to the transformed parse tree.
This is done using a pretty printer [Waters 83b,84bl. "T'he flexibility of this pretty printer makes it possible to
handle a wide varicty of acsthetic issucs at this final stage. In particular, the pretty printer is specifically
designed to make it casy to define how a parse tree is to be unparsed. ‘This is done by defining a set of

Coder 183

formatting functions corresponding to the various kinds of nodes in the parse tree.

Possible Improvements

As can be seen in the scenarios above, the coder module produces reasonable results. It works for
completed programs, partial programs containing unfilled roles, and cliches. However, experimentation has
shown that the coder is creaking on the edge of collapse. Several problems are particularly severe.

The biggest problem stems from the defects of the data flow stage. This stage docs a good job of creating
correct programs. However, it has a tendency to produce programs which, though correct, are unrcadable.
The fundamental problem is that the coder does not really have any understanding of what makes data flow
acsthetic. It would probably be a considerable improvement to reimplement this stage using some kind of
constraint propagation as discussed above. However, it is not clear that that would be a complete solution to
the problem, ‘

Another problem is that the transformational stage is not supported in a general way. Each transformation
has to be implemented as a procedure which operates directly on parse trees. It would be better to write a
general transformational support system which made it easier to state individual transformations. In addition,
there might have to be some kind of support for deciding which transformation to apply when scveral are
applicable.

An interesting problem with the coder is that it is not able to make good use of macros in the Lisp code it
produces. A few macros are introduced by transformations which are specifically designed to introduce them,
however, there is no general mechanism for ensuring that user defined macros will be used. It is probably not
possible to use macros effectively in the absence of a general recognition mechanism which can reliable detect
where computation which corresponds to a macro exists in the plan for a program.

A final problem is that of stability. When a programmer makes a small change in a program he wants to
scc only a small change in the code. In particular, he docs not want to sce any changes at all in the parts of the
code which are not effected by the change. This important property is only provided indirectly by the coder.
In the examples tested so far, stability is achieved because the coder processes similar programs in similar
ways. However, there is not any part of the coder which explicitly checks to scc that stability is achieved. As a
result, it is not clear that it really is achieved in any robust way.

A problem related to the above is that the programmer cannot, in gencral, control the style of the code
produced. If the programiner makes some purely stylistic (as opposed to semantic) change in the program
text, then the coder will simply restore the text to its old form the next time it codes the plan. The only
exception to this is variable names which are the only place where the coder explicitly takes advice from the
programmer.

Language Independence

An important aspect of the coder is that it is largely programming language independent. To a
considerable extent, only the last two stages arce language dependent. In order to support a new language, one
has to define an appropriate set of transformations which introduce language specific forms into the language
independent parse tree created by the first four stages of the coder. In addition, onc has to provide an
unparser for the language. This latter task is facilitated by the existence of the powerful pretty printer
discussed above.

In addition to Lisp. the coder supports all of the aspects of Ada which the analyzer supports. However, if
the analyzer were extended then the coder would have to be extended too. In addition, the coder provides
basic suppoit for the language PL/I.

184

Knowledge-Based Editor

The knowledge-based editor module supports 14 commands which operate on plans. These commands
arc specified using a simple Fnglish-like command language. Figure 30 shows a grammar for this command
language. Numerous cxamples of commands are shown in the scenarios in Chapters H & HI.

Define a [cliche-name] definition [with parameter-1ist].
Add a parameter variable-name [to definition].
Fi11 role-reference with instance.

Replace reference with instance.

Insert instance.

Copy definition [to definition].

Remove reference.

Share reference and reference.

Highlight reference.

Comment [definition].

What needs to be done [in definition]?
Analyze [definition].

Finish editing [definition].

Use language SYMBOL.

definition ::- definition-typs SYMBOL
definition-type ::= program | function | procedure | package | cliche

command ::

parameter-1ist ::= a parameter SYMBOL | parameters SYMBOLS
SYMBOL ::= a name rendered in upper case
SYMBOLS ::= SYMBOL and SYMBOL | SYMBOL, {SYMBOL.} and SYMBOL

reference ::= role-reference | function-refarence

role-reference ::= the [ordinal] role-name {of the role-name} [in definition]
function-reference ::= the [ordinal] SYMBOL [in definition]

role-name ::= the name of a role rendered in lower case

ordinal ::= first | second | third | fourth | fifth | sixth | ... | last

= CODE

| a-or-an cliche-name [of instances]
| role-resference

| a use of function-refsrence

instance ::

CODE ::= an expression in the current lunguage rendered in upper case
a-or-an ::= a | an
cliche~name ::= the name of a cliche rendered in lower case

= instance
| instance and instance
| instance, {instance,} and instance

instances ::

Figure 30: The knowledge-based command language.

References

The most basic part of the command language is the ability to refer to roles in a program. This is done by
using the same kind of phrase which is used to define a role. For example, one might say "the step of the
enumerator”,

The cursor position in the Emacs buffer is an implicit part of cach command. [t is used to disambiguate
references. ‘The phrase “the step of the enumerator” is interpreted to mean the step of the cnumerator in
the program containing the cursor.

Alternately, the definition the role is in can be stated explicitly in a reference phrase. For example, one
might say "the enumerator in the program REPORT-TIMINGS".

If there is more than one role of the same name in a given program, then a role reference can be
disambiguated with reference to the execution order of the forms in the program. For example, one might say
"the second enumerator” in order to refer the ihe second cnumerator (in exccution order) in the program

Knowledge-Based Editor 185

currently being worked on.

One can refer to both empty roles and filled roles. However, the ability to refer to a filled role depends on
the fact that the filled role is represented in the plan — i.c., that the program has not been reanalyzed since
the role was filled.

In addition to the roles in a program, one can refer directly to the various function calls in a program. This
is done by using the name of the function being called. As with roles, one can use ordinal numbers to
disambiguate a function reference, and explicitly specify the program which contains the function call. For
example once might say "the Tast FORMAT in the program SIMPLE-REPORT".

Instances

Another basic part of the command language is the ability to create plans corresponding to instances of
cliches and picces of code. There are four kinds of instances. An instance can specify a literal picce of code.
In this case, the indicated code is analyzed in order to create an equivalent plan.,

An instance can also be a role reference or a use of a function reference. In cither of these cases, the
instance is converted into a trivial plan which represents data flow from the indicated segment in the plan for
the program being worked on,

An instance phrase can be an instance of a cliche. In addition to the name of the cliche, a cliche instance
can specify sub-instances to be used to fill roles of the cliche. 'The correspondence between sub-instances and
the roles of the cliche is specified by the PRIMARY-ROLES declaration of the cliche definition.

When an instance phrase is an instance of a cliche, the plan for the cliche is copied out of the library and
the constraints for the cliche are run. These constraints can access any sub-instances which arc specified as
part of the instance phrase. (Note that this is the only time that RENAME constraints are run.) If there arc any
sub-instances specified for roles of the instantiated cliche then the "F111" command is then called in order to
fill the appropriate roles in the instance,

For the most part, the grammar in Figurc 30 is an 110 language and therefore trivial to parse. However,
there are two arcas of complexity involving instances. First, an instance of a cliche can contain an instance of
a cliche as one of its sub-instances. [f this cliche instance in turn contains sub-instances, then it may be
ambiguous as to which cliche a particular sub-instance belongs to. This problem can be scen in the phrase "a
list of X, a 1ist of Y, Z, and W" which could be cquivalent to cither (LIST X (LIST Y Z W)) or
(LIST X (LIST Y) z w). This problem is arbitrarily resolved by making the lowest level cliche instance
contain as much of the command as possible (e.g., choosing the first alternative above).

Sccond, Parsing the non-terminal CODE can be very difficult because it requires the ability to parse
whatever language KBEmacs is currently operating on. In order to decouple the command parser from the
program text parser, restrictions are placed on what code can be typed in a command. Such code is required
to be cither a string literal, a number, a symbol, an expression surrounded by parenthescs or a quoted instance
of any of the above. This restriction makes it possible for the command parser to delimit a picce of code
without having to actually parsc it. (Fortunately, although the restriction above is not as natural for Ada as it
is for Lisp, it is still palatable.)

Knowledge-Based Commands

The subscctions below describe how cach of the commands in Figure 30 is implemented. Each of the
commands is implemented as a special purpose procedure which operates directly on the plan formalism.
Most of these procedures are straightforward — the plan formalism docs most of the work.

Before any command is run, the knowledge-based editor checks to see whether text cditing has been
applied to the program containing the cditing cursor. If it has, then the program text is analyzed in order to
create an up to date plan.

186 Implementation

Typically, running a command will modify the plan for the program being worked on. When this is the
case, the plan is recoded, and the cursor is positioned before the first interesting change in the program (ext.
This position is determined by comparing the program text before and after the command under the
assumption that changes to the body of a program arc more interesting than changes to declarations.

The Knowledge-Based Command "Def 1na”

The basic action of the "Define” command is to create a plan corresponding to an empty program
definition. The command specifics the name of the dcfinition and the type of the definition — i.c., whether it
is a function, cliche, procedure, ctc. ‘This information is entered into the plan. The command checks that
there is not already a program defined with the same name and complains if there is.

Optionally, a "Def ine" command can specify a list of parameter names. If these are specified then they
arc cntered as LAMBDA-ARG inputs of the top level segment in the plan.

A "Define" command can also specify the name of a cliche which is to be instantiated as the body of the
program being defined. This form of the "Define" command is mercly an abbreviation for a simple
"Define” command followed by an "Insert" command.

‘The Knowledge-Based Command "Add a parameter”

This command makes it possible to add additional parameters to a program definition. This is done by
adding more LAMBDA-ARG inputs to the top level segment of the plan. If no destination definition is specified
then it defaults to the program containing the editing cursor.

The Knowledge-Based Command "F111"

The "Fi11" command is the central knowledge-based command. It fills a role with an instance. The
command first checks to see that the role has not alrcady been filled. If the role has been filled, an error
message is generated.

In order to fill the specified role with the specificd instance, the role segment is physically replaced by the
plan for the instance. The locality and additivity of the plan formalism guarantees that this is all that nceds to
be donc. 1f a compound role is being filled, then the matrix and sub-roles inside of the compound role are
removed before inserting the instance. Thus, the matrix of the instance replaces the matrix of the compound
role.

The only real complexity in this is that the "F 11" command works hard to link the instance plan into the
data flow of the larger plan. This is done using several heuristics. If the instance plan has a return vatue, then
this value is routed to wherever the value of the cmpty role was used. Similarly, arguments to the instance
plan are connecied up to the data fiow in the larger plan by looking at what the inputs of the empty role were
connccted up to. |

If there are any references to frec variables in the instance plan then the "Fi11" command trics to
determine what data flows correspond to these variable names, and link them to the free variable references.
Lastly, if there are empty input roles in the instance plan then the "Fi11" command trics to fill them with
data flow by looking at what the inputs of the empty role were connected up to.

Once the instance plan is connected into the larger plan, any constraints specified for the cliche which
contains the role which has just been filled are rerun. Note that constraints may be run many times when the
"Fi11" command is called recursively cither by the "Fi11" command or by constraints themsclves. (Both
DEFAULT and DERIVED constraints call the "Fi11" command in order to perform their actions.)

Knowledge-Based Editor 187

The Knowledge-Based Command "Replace”

The "Replace” command is used to replace a filled role or function call with an instance. 1t first checks to
see that the reference to be replaced is not an empty role. 1t then removes the contents of the role or function
call segment and uscs the fill command in order (o insert the plan for the instance into the plan.

The Knowledge-Based Command "Insert”

‘The "Insert” command inscrts an instance into a plan at a place corresponding to the position of the
editor cursor. o do this. it inserts a special role at the position of the cursor and then analyzes the program in
order to get a plan containing that role. It then calls the "Fi11" command in order to fill this special role with
the specified instance.

Embedded instances of {a ...} annotation are handled exactly the same way. ‘They are converted into
"Insert” commands at the time when the program text is analyzed.

The Knowledge-Based Command "Copy”

The "Copy" command is similar to an "Insert" command except that, instcad of instantiating the cliche
specified as its first argument, it copies the whole cliche verbatim including the cliche declarations. All of this
is then inserted into the plan without running any constraints. 1f no destination definition is specified, then it
defaults to the program containing the cditing cursor.

The Knowledge-Based Command "Remove"

The "Remove" command deletes the indicated role or function call from the plan. When doing this it also
dcletes any other segment which cxists solely to provide data to the deleted segment. This is done on the
theory that all such segments have become useless.

The Knowledge-Based Command "Share”

The "Share” command takes two references and shares them together. The refercinces are first resolved to
scgments in the plan. Then the plan is checked to sce that the two segments compute the same thing. This is
relatively straightforward to do by simply comparing the scgments and the sources of the data flow to them.
The locality of information in the plan formalism greatly facilitates this comparison.

If the two scgments do compute the same thing, then whichever segment comes later in the plan is
removed and data flow is routed from the first segment to all of the places where the value of the second
segment was used.

The Knowledge-Based Command "Highlight"

The "High1ight" command uscs the standard editor highlighting mechanism (underlining) to highlight a
role or a function call. This command depends on the fact that the plan formalism maintains a
correspondence between segments and the code which implements them.

There are two basic limitations to this command. First, there are many situations where the plan
formalism fails to be able to record what program text corresponds to a role. Sccond, the standard editor
highlighting mechanism is not capable of highlighting discontiguous scctions of the program text. Thus, if a
role corresponds to discontiguous picces of program text (¢.g.. an enumerator) it cannot be fully highlighted.
The latter difficulty would be casy to overcome. The former difficulty might not be.

‘The Knowledge-Based Command "Comment”

The "Comment” command creates a comment for a program in the form of an outline as shown below. 1f
no particular definition is specified as part of the command, then a comment is constructed for the program
containing the cursor. ‘The comment is created by following the CLICHE and CLICHE-ROLE facts in a plan and

188 Implementation

the DESCRIBED-ROLES and COMMENT declarations for the cliches in the plan.

;3: The function REPORT-TIMINGS is a simple-report.

HE The file-name is "report.txt".

;33 The title is "Report of Reaction Timings (in msec.)".
N The enumerator is a Tist-enumeration.

HHE It enumerates the elements of TIMINGS.

;+: There are no column-headings.

K The print-item is a tabularized-print-out.

i It prints out (CAR LIST) in columns.

The summary is an idiosyncratic computation.

The first line of the comment specifies the name of the function/procedure being described and the top
level cliche in its plan. The subsequent lines in the comment describe the DESCRIBED-ROLES of the top level
cliche in order. Each role is described in one of four ways. If the role is missing this fact is reported. 1If the
role is filled with a cliche then the name of this cliche is given and a one line description of the filling cliche is
created based on the COMMENT declaration for the filling cliche. If the role is filled with a simple non-cliched
picce of code then this picce of code is exhibited. Finally, if the role is filled with a complex piece of
non-cliched computation then the phrase "idiosyncratic computation” is used to describe the role.

The above approach to constructing a comment is based on the earlier work of Cyphers [Cyphers 82]
which in turn descends from the work of Frank [Frank 801 Both of these efforts investigated the basic issue
of generating an English language description of a program based on the information in the plan formalism.
Frank focused on describing the basic properties of programs which werc not constructed using cliches.
Cyphers switched the focus to generating an explanation of a program based on the cliches used to construct
it. He attempted to create free flowing English paragraphs describing a program in full detail.

The current system uses Cyphers™ basic method modified in two ways. First, most of the problems
associated with generating free form English are side stepped by outputting the comment in an outline form.
Sccond, the complexity of the comment is limited by truncating the description at a nesting depth of two.

The Knowledge-Based Command "What needs to be done”

"This command looks at the plan for the specified definition and determines what roles still need to be
filled in and what output roles still need to be used. A report of this information is displayed to the
programmer in a temporary window at the top of the screen. If no definition is specified as part of the
command, then a report is displayed of what needs to be done for every program for which a plan exists.

The Knowledge-Based Command "Analyze”

The "Analyze" command triggers the analysis of the named definition if it has been textually modified
since it was last analyzed. 1f no definition is specificd, then the definition containing the editing cursor is
analyzed.

The Knowledge-Based Command "Finish editing”

This command is identical to the "Analyze” command except that it calls the "What needs to be done"
command in order to check that the program is indeed finished and then removes any output role annotation
from the program text so that it can be processed by a standard interpreter or compiler.,

There is also a procedural hook which is part of the "Finish editing” command that checks to sce
whether any additional actions should be performed based on the program just completed. This is how the
creation of special cliches after the definition of the package MAINTENANCE_FILES in Chapter 1 is triggered.

Knowledge-Based Editor 189

'The Knowledge-Based Command "Use 1anguage”

This command sets an internal variable which controls what language is being used for output to the
programmer. It is assumed that the programmer will use this same language when typing literal picces of
code in commands.

The commands s-N and s-P

The commands s-N (move to the next empty role) and s-P (move to the previous empty role) are not
actually supported by the knowledge-based cditor. Rather they are implemented as user-defined commands
in Emacs. ‘They operate in a purcly textual manner simply scarching for the next (previous) occurrence of an
empty picce of role annotation. ‘They arc described here because they fit in logically with the
knowledge-based command language since they are based on the concept of roles.

Possible Improvements

The knowledge-based cditor is one of the most experimental parts of KBEmacs and is still undergoing
rapid cvolution. 1t is expected that numerous improvements will be made as experimentation continues.
However, as demonstrated by the scenarios in Chapters 1T & 111, the current commands seem to be quite
useful.

Language Independence

The knowledge-based cditor commands are almost completely programming language independent since
they operate almost exclusively in the domain of plans. The only exceptions to this arc the "Comment” and
"Highlight" commands which have to intcract with the actual language being used. Even these commands
arc largely programming language independent, They both depend on the fact that the coder has alrcady
created program text in the appropriate language.

Interface

An interface (implemented by Pitman [Pitman 83}) unifies ordinary program editing and knowledge-based
editing so that they can both be conveniently accessed through the standard Emacs-style Lisp Machine editor.

The Style of the Interface

There are two major aspects to the style of the interface: the way the programmer types knowledge-based
commands and the way the results of commands are communicated to the user. The command interface is
strongly integrated with Emacs in both operation and style. The knowledge-based commands are supported
as an cxtension of the Emacs command set. More than this, as discussed below, the s-X window which is
used for typing knowledge-based commands operates in very close analogy with the m-X window which is
used for typing extended Emacs commands. In addition, a number of single character commands such as s-N
and s-; are provided because it is in the style of Emacs to do so.

The results of knowledge-based commands are communicated to the programmer by altering the program
text in the Emacs buffer. “The intention is that the programmer should interact with KBEmacs much in the
same way that he might interact with another programmer typing at the same keyboard. 'There are four basic
virtues to this approach. First, program code provides a detailed unambiguous description of the net effect of
the set of knowledge-based commands used so far, expressed in a language which is familiar to the
programmer, Sccond, using program text facilitates the intermixing of direct editing with knowledge-based
editing. 'Third, using program text submerges plans into the background allowing the programmer to think
textuatly much of the time. Fourth, since the developing program is always represented in the Emacs buffer,
the programmer can apply any of the standard Lisp Machine tools to it at any time,

190 Implementation

‘The above not withstanding, it is possible that there are other things which- might be better than program
text as a vehicle for communication between KBEmacs and the programmer. Program text has the problem
that it can be quite large. A 100 line program is still hard to understand even if it was created using only 10
knowledge-based commands. 1t would be desirable to have some more compact representation,

One thing which has been considered but not yet explored in detail is using a stylized comment like the
one created by the "Comment™ command as a continually updated summary of the program. The goal would
be to allow the programmer as well as KBEmacs to cdit this comment. Given that the analyzer cannot
currently recognize what cliches could have been used to create a program, it would not currently be possible
to create such comments after direct editing had been applied. Nevertheless, such an interface might be a
very uscful extension to KBEmacs.

Typing Knowledge-Based Commands

As mentioned above, the s-X window which is used for typing knowledge-based commands operates in
very much the same way as the m-X window which is used for typing cxtended Emacs commands. The
interaction occurs in a small window below the editor buffer. Once one or more commands are typed, they
are exccuted by typing the Lisp Machine Key <end>. (In the screens in scenarios in Chapters 11 & I the
commands are shown above the editor buffer because this improves the visual flow of the scenarios.)

An interesting feature of the s-X window is that it supports word completion. This significantly reduces
the number of characters which actually have to be typed in order to type a command. In the example below,
bold face italics is used to indicate the characters which are introduced via word completion as opposed to the
characters typed by the user.

s-X F111 the enumerator with a list-enumeration of TIMINGS. <end>

Another aspect of the s-X window is that the full sct of Fmacs commands can be applied to it. As a result,
the user can casily coriect and modify the command he is typing.

The typing of knowledge-based commands is further facilitated by the cxistence of a number of
abbreviated commands such as s-F. These commands (summarized in Figure 31) operate by initializing the
s-X window with a partially typed command. For example, if the cditing cursor happened to be positioned
before the enumerator, then the command above could be typed as shown below, further reducing what the
uscer has to type.

s-F Fi11 the enumerator with a list-enumeration of TIMINGS. <end>

Some abbreviated commands (c.g., s- ;) automatically generate everything which has to be typed for a
command.

command s-X buffer initialization

s-F <==> Fill the next empty role with

s-R {==> Remove the next emply role

s-; {==> Comment the currenl definition. <end>

s-W <{==> What needs to be done? <end>

s-A <==> Analyze the current definition. <end>
s-<end> <==> Finish editing the current definition. <end>

Figure 31: Summary of abbreviated commands.

There are two key potential problems with any English-like command language. First, such command
languages are often wordy and cumbersome to type. Here, that does not seem to be very much of a problem
because various mechanisms reduce what needs o be typed to the point where it is not clear that any
command interface could reduce it much further.

Interface 191

Sccond, with an English-like interface there is always the danger that a user will make the mistake of
assuming that the interface language actually is English and start typing all kinds of sentences the system
cannot understand. Here, this problem is ameliorated by the fact that the command language is so restricted
that it is casy for the user to get a good grasp of what he can type and what he cannot.

Asynchronous Processing of Knowledge-Based Commands

An interesting aspect of the interface not shown in the scenarios is that it contains a mechanism for dealing
with the slowness of KBEmacs. The command s-X described above forces the programmer to wait and do
nothing until the specified knowledge-based commands have been processed. An additional command h-X
(typed by holding down the Lisp Machine keyboard shift key HYPER and typing an X) is identical to the s-X
command in every way, except that it causes the specified knowledge-based commands to be processed
asynchronously in a background process.

While this asynchronous processing is going on, the programmer may continue to work on other things.
(Problems will of course arise if the programmer attempts to work on the same program the knowledge-based
cditor is working on.) Although it takes a little getting used to, it turns out that asynchronous processing docs
go a long way towards making the slowness of KBEmacs more palatable.

The programmer is given a signal when the asynchronous processing is completed. However, the results of
the commands are not immediately inscrted into the editor buffer. Rather, the knowledge-based editor waits
until the programmer requests that the changes be inserted by typing a h-<resume> command. (It was
discovered through experimentation that inserting the changes immediately can be very disconcerting.)

The asynchronous processing above is supported by a message passing mechanism which controls the
interaction of a number of independent processes. This message passing mechanism (which was a major
focus of Pitman’s work) was generalized to the point where several Lisp Machines could be used at once in
order to increase the throughput of KBEmacs.

Implementation

For the most part, the implementation of the interface is straightforward. However, it is complicated by
the fact that it has to interact directly with the undocumented internal functions of the standard Lisp Machine
editor. Nevertheless the interface is a relatively well tested and robust part of K BEmacs.

Language Independence

The interface itself is totally language independent. However, it relics on the fact that the standard editor
has a basic understanding of the language being edited. If this is not the case, then the standard editor has to
be extended.

For example, version 4 of the Lisp Machine editor does not support Ada. In order to make the interface
work for Ada, a few basic extensions had to be made in order to provide minimal support for Ada. In
particular, the editor was given the ability to locate Ada programs in a buffer. (This also provided support for
the standard Emacs commands m-. (goto definition) and c-shift-C (compile definition).) However,
support was not provided for highlighting parts of an Ada program. As a result, the "high1ight" command
does not work for Ada even though the knowledge-based cditor knows what should be highlighted.

Syntax-based cditing of programs is not supported dircctly by KBEmacs but rather by the standard editor.
As a result, syntax-based cditing will be supported only if the standard editor supports it. It is in principle
possible to extend the standard cditor to support syntax-based cditing of a new language, but it is not
particularly casy.

The Lisp Machine editor has not yet been extended to support syntax-based cditing of Ada programs. As
aresult, only text-based cditing can be applied.

192 Implementation
Like syntax-based cditing, interpretation and/or compilation of programs is not supported dircctly by
K BEmacs but rather by the standard Lisp Machine software. If interpretation and/or compilation is desired
for a new language, then an interpreter and/or a compiler will have to be implemented.

A simple Ada interpreter has been implemented so that the programmer can test Ada programs. This
interpreter is capable of running the programs in Chapter 11 However, it only supports part of the language
and is only intended as an illustration.

Going From a Demonstration To a Prototype

As discussed in Chapter 1V, in order to convert KBEmacs from a demonstration system into a prototype,
the system nceds to be reimplemented with special attention to speed, robustness, and completeness. This
section suggests several changes which should be made were the system to be reimplemented. [t also
describes an experiment which suggests that the system can be straightforwardly speeded up by more than an
order of magnitude.

A More Efficient Representation For Plans

Figure 32 shows an experimental plan implementation which is more efficient than the current
implementation of the plan formalism.

now-seg ::= (name: name
supseg: [new-seg] subsegs: ({new-seg})
pbm-role-name: [ACTION | PRED | JOIN | OP | REC | INIT]
plan-type: LAMBDA | EXPR | XOR | PRED | SSR | TEMPCOMP |

JOIN | CONSTANT | FUNCALL | RECURSION

plan-type-info: name-or-constant

role-supseg: [new-seg] role-subsegs: ({new-seg})
role-name: [name]
role-type: INPUT | OUTPUT | INTERNAL
cliche-name: [name]
rec-supseg: [new-seg] rec-subsegs: ({nsw-seg})
code: ({form})
def-type: [FUNCTION | PROCEDURE | PACKAGE | CLICHE]
def-name: [nams]
deciarations: ({cliche-dsclaration})
cases: {{new-case}))
new-case ::= (name: name
seq: new-seg
side: INPUT | ouTPUT
when: [form]
cfiow-from: ({new-case}) cflow-to: ({new-case})
is-lower-eav: ({new-port})
ports: ({new-port}))
new-port ::= (name: name
case: new-case
dflow-from: ({new-port}) dflow-to: ({new-port})
kind: ARG | FREE-VAR | RETURNVAL | SIDE-EFFECT | DUMMY
kind-info: [argno | name]
var-name: [name]
Jower-env: [new-case]
part-of: ({new-port}) has-parts: ({new-port})
rec-superior: [new-port] rec-inferiors: ({new-port})

side~effect-outs:

({new-port}) side-effect-in: [new-port])

Figure 32; A More Efficient Representation For Plans.

‘The experimental implementation encodes basically the same information as the implementation

Going From a Demonstration To a Prototype 193

discussed in the beginning of this chznptcr. However, it represents this information much more compactly.
The experimental implementation represents plans in terms of record structures which point directly to cach
other, instcad of as a sct of facts in a data basc. 'There are three Kinds of record structures: one for cach
segment, one for cach case of a segment, and onc for cach port in a case.

In the experimental data basc, retrieval is done by directly following pointers instead of by means of
patterns and indexing. (Note that all of the pointer ficlds are doubly linked. For example, each segment
points to its super-segment and to cach of its subscgments.) Following pointers directly speeds up retrieval by
many orders of magnitude. In addition, since all of the information about a segment or port is contained in a
single structure, only onc retrieval has to be performed in order to get all of this information. In the current
data base, several retricvals have to be performed to get all of the information about a scgment or port.

In addition to representing information more compactly, the cxperimental plan representation in
Figure 32 streamlines and improves the plan formalism in several ways.

In the plan formalism, segeases (as opposed to scgments) appear in all of the facts even though they are
scldom neceded. In the experimental plans, cases are only used to fix the position of ports, and as the end
points for control flow. Another difficulty with cascs in the plan formalism is that, in isolation, it is not
possible to determine whether a case is attached to the input or the output side of a segment. 1t turns out that
this makes a number of operations on plans needlessly complex. Therefore, the side of a case is made explicit
in the experimental plans.

The segkind, segtype, and plantype ficlds are largely redundant in the plan formalism. They arc combined
into a single ficld in the cxperimental plans. Similarly, the distinction between lambda-args and actual-args is
not important and is eliminated.

In the plan formalism, there arce several situations where connections between ports which are closely
analogous to data flow are not represented by data flow. In particular, both the connections between ports on
a join and the conncction between a temporal port and its lower-env are represented by special purpose facts.
This makes it ncedlessly complex to trace data flow through a plan. In the experimental plans, data flow is
uscd to represent all data connections.

In the experimental plans, temporal ports are the same as non-temporal ports except that they have a
lower-cnv specified. Whether a port is an input or an output is determined by looking at the side of the case it
is in. The experimental plans have a special ficld for specifying the correspondence between the ports of a
segment and the ports of any recursive instances of that secgment. In the plan formalism this information is
awkwardly encoded by requiring that corresponding ports must have the same name.

In the cxperimental plans, the plan building methods are simplified. In particular, SSRs are simplified by
no longer allowing them to have an initialization. (The cffect of an initialization can be achieved by having a
TEMPCOMP which groups the initialization and SSR together.) Removing initializations from SSRs makes it
possible to get rid of the special body segment as well. This converts SSRs into one level structures instead of
two level structures. With this change, all plan building methods become one level structures and plan
building methods can simply be understood as specifying how the subscgments of a scgment interact. As an
additional simplification, all of the subscgments of a TEMPCOMP are referred to as ACTIONs getting rid of the
fancy names ENUM, FILTER, ctc.

Gregory Faust and the author performed an cxperiment to demonstrate the advantages of the
experimental plan representation shown in Figure 32. The representation was implemented and parts of the
knowledge-based editor were reimplemented in terms of the cxperimental representation. The
reimplemented knowledge-based cditor was then tested on the task of instantiating a relatively complex cliche
and inserting it into a plan. ‘This resulted in an increase of speed by a factor of 30 when compared with the
current implementation of KBEmacs. There is reason to believe that the experimental plan representation

194 Implementation

would lead to at least an order of magnitude increase in speed in the other parts of K BEmacs as well.

Eliminating Temporal Decomposition

The introduction of the improved plan representation presented above would speed up K BEmacs without
fundamentally changing the way the system operates. There are several ways in which it might be possible to
significantly simplify and thereby speed up the system by changing the way it operates.

One thing which could be done would be to remove temporal decomposition from the analyzer and
temporal composition from the coder. As will be discussed below there are two ways in which this could be
done without reducing the capabilitics of the system. If this were donc, it might speed up the system by as
much as a factor of 2. It would also significantly reduce the complexity of the analyzer and coder.

Perhaps the best way to remove the idea of temporal composition/decomposition from KBEmacs would
be to incorporate it into the target language. This could be done by using a notation and compiler extension
(such as the one presented in [Waters 83a,84a] and discussed in the next chapter) which directly supports
computations in terms of scrics of values. KBEmacs could manipulate these computations as simple
expressions, while the compiler extension handled the problem of temporal composition.

Another approach would be to simply represent all loops as loops and embed knowledge about temporal
composition in the knowledge-based editor. This would increcase the complexity of the knowledge-based
editor, but only when it was actually cngaged in inserting a cliche into a loop. In any case, the analyzer and
coder would always be able to operate on temporally composed plans.

Eliminating Plan Building Methods

Another way in which KBEmacs could be fundamentally simplified would be to climinate the idea of plan
building methods. As has been discussed in various places above, plan building methods are used for three
things in the current system. First, they make it possible to crcate a grouped plan even though cliche
recognition is not supported. Sccond, the grouped plan makes it possible for KBEmacs to make an intelligent
guess about what part of the matrix of a cliche is associated with a compound role, Third, the grouped plan is
used by the coder as a guide for what control constructs to use in the code produced.

As discussed in the scction on plans above, although it was originally thought that grouped plans were
cssential as a basis for interaction with the pregrammer, this has not turned out to be the case. In addition, it
would probably be rclatively straightforward to determine what part of the matrix of a cliche is associated
with a compound role without using grouping. 'This could be done by ecither creating a new kind of
annotation or by taking advantage of the fact that only a very few special kinds of compound roles are actually
used in the current cliche library. (It should be noted that if computation in terms of scrics were supported in
the target language then there would not be any compound roles at all in the current cliche library.)

As a result, the only essential use of plan building methods is in the coder. First of all, this suggests that
the process of grouping should be moved to the coder. This would significantly simplify the rest of the
system. Unfortunately, confining grouping to the coder might not speed things up since the plan would have
to be regrouped every time it was coded. However, it might be possible to simplify the grouping process if it
were aimed only at satisfying the needs of the coder. In paiticular, there would be not need to actually encode
the grouping in the plan. 1t could be recorded in temporary structures used only by the coder.

Kunowledge About Data Structures

In order to become a true prototype, KBEmacs would have to be cxtended so that it had a better
understanding of data types. ‘There are two aspects to this. First. the plan formalism would have to be
extended so that it was capable of representing the fzct that most data types can be determined by static
analysis. This is even true in Lisp. ‘The current lack of information about data types in a plan reflects the

Going From a Demonstration To a Prototype 195

pessimistic [isp assumption that nothing can be determined about data types by static analysis.

Sccond, in order to really support a language like Ada which allows extensive user definition of new data
structures the plan formalism would have to be further extended so that it could represent how complex data
structures are built out of simple ones. The work on the plan calculus suggests how this could be done.

Defining a Realistic Cliche Library

A final step in converting KBEmacs into a true prototype would be the construction of a much more
complete cliche library. This might require the definition of as many as a thousand cliches. Although this
would not be an casy task, there is no theoretical reason why it could not be done. (It should be noted that,
the speed of KBEmacs is independent of the size of the cliche library.) If a large body of cliches were defined,
then it would be beneficial to add some kind of indexing facility into the library in order to facilitate the
retricval of cliches.

197

VI - Future Directions

Work in the PA project is continuing in several arcas. The largest amount of cffort is going into the
construction of the next demonstration system. As discussed extensively in Chapter [V, this new system will
2o beyond KBEmacs primarily by supporting contradiction detection and interaction in terms of design
decisions rather than specific algorithms.

Applications of the Current Techonology

Another arca of activity centers around applications of some of the idcas behind KBEmacs. In particular,
several systems have been built which are much more modest in their goals than KBEmacs, but which have
the advantage of being fully practical prototypes. This work includes both efforts within the PA project and
work by other groups.

Tempest

A particularly interesting application of the idcas behind KBEmacs is the Tempest editor implemented by
Sterpe [Sterpe 851, At the highest level of abstraction, Tempest is very much the same as KBEmacs. It has a
user extendable library of cliches referred to as templates which contain roles referred to as blocks. Users can
instantiate templates and fill in blocks. Simple constraints can be uscd to control the way blocks are filled in.
Tempest maintains a record of the structure of the text being edited in terms of templates and blocks. Several
commands make use of this structure — c.g., an instance of a template can be replaced by an instance of
another template. Tempest is built on top of a standard Emacs-style text editor., Text-based editing -
commands can be frecly intermixed with template-based editing commands at any time.

The primary difference between Tempest and KBEmacs is that, instecad of using a plan-like
represeniation, Tempest operates almost entirely in terms of text. For example, the process of instantiating a
template boils down to merely inserting a file containing the text of the template into the cditor buffer. The
only non-textual effect of instantiating a template is that it causes ‘Tempest to update its record of the structure
of the text being cdited.

The textual orientation of Tempest makes the system vastly simpler than KBEmacs. For example, there is
no analyzer module and no coder module. In consequence, Tempest is three te four orders of magnitude
faster than KBEmacs. This enables Tempest to run with acceptable speed on an IBM PC.

On the negative side, the textual orientation of Tempest fundamentally limits the power of the system.
The problem is that Tempest has no understanding of the text it is operating on. One result of this is that the
system is very limited in what it can do with a template — it can insert a template textually into the editor
buffer, but it cannot modify it so that it will fit in better with the surrounding text.

In principle, Tempest has a very broad range of applicability — it can be used to cdit anything which can
be represented as text. However, in practice, it is only really uscful in situations where templates can be
combined textually without having to be modificd. For example, Tempest is not particularly useful for the
construction of programs. On the other hand, Tempest can be very useful for document preparation.

The scenario in [Sterpe 85] shows Tempest being used o construct a document file which is to be
processed by a text formatting program. This is an application which fits together particularly well with
Tempest’s strengths and weaknesses. In the scenario, Tempest is used to build a document file out of
templates and other chunks of text. The text formatter takes care of fitting the chunks of text together
acsthetically,

An interesting feature of Tempest is that it goes bevond KBEmacs in several ways. In particular, it
provides improved facilitics for dealing with textwual editing, specifying structure, and flexible viewing of the
text being edited.

198 Future Dircctions

Unlike KBEmacs, Tempest is able to maintain its record of the structure of the text being edited even after
arbitrary text-based cditing by the user. This is donce by incrementally updating the representation of
structure as part of every text-based cditing request.

‘Tempest provides a sct of commands which cnable the user to imposc arbitrary structure on preexisting
text. In particular, blocks can be gathered together into a hicrarchy of groups. A block can be included in
several different groups. This enables several different viewpoints on the structure of the text to be
represented at once.

KBEmacs provides two commands which support flexible viewing of the text being edited. The first
command displays an outline showing the structure of the text being edited. (This is in many ways similar to
the KBEmacs command “"Comment".) The second command constructs a special buffer which displays a
single group from the text. Typically, this group will be a non-contiguous collcction of blocks in the text. An
interesting aspect of this command is that any cditing done in the special display buffer carries over to the
main text.

Efficient Computation With Scries

An interesting application of one of the ideas behind KBEmacs is the programming language extension
described in [Waters 83a] in terms of Lisp and in [Waters 84a] in terms of Ada. This extension is inspired by
the way loops are represented in the plan formalism. The extension makes it possible to express computations
as compositions of functions on series of values and uses some of the same algorithms which are used by the
coder module of KBEmacs in order to compile the computations into cfficient iterative loops.

An improved version of this language extension is currently under development. The improved version is
supported by a special binding macro S:LET«. The code below shows how S:LETs could be used to
implement the program MEAN-AND-DEVIATION which was used as an example in Chapter I1.

(DEFUN MEAN-AND-DEVIATION (TIMINGS)
(S:LET* ({TIMING (ENUM-LIST TIMINGS))
(COUNT (ACC-COUNT TIMING))
(MEAN (// (ACC-SUM TIMING) COUNT)))
(LIST MEAN (- (/7 (ACC-SUM (A TIMING 2)) COUNT) (A MEAN 2))))

Serics functions such as ENUM-LIST, ACC-COUNT, and ACC-SUM gencerate and consume scrics of values.
ENUM-LIST cnumerates a list, gencrating a serics of the elements in the list. ACC-COUNT accumulates a count
of the number of values in a series. ACC-SUM accumulates a sum of the numbers in a series. A library of
standard series functions is provided along with mechanisms for defining additional ones.

The macro S:LET* is exactly the same as the macro LET» except that it supports the binding of variables
to series of values. For example, the variable TIMING contains the series of elements in the list TIMINGS.

When a non-series function is applicd to a serics of values, then it is automatically applied to cach element
in the serics creating a new serics. For example, the expression (A TIMING 2) creates a series of the squarces
of the numbers in the scrics TIMING.

The macro S:LET» makes it possible to state a varicty of algorithms in a compact functional style.
However, these algorithms could be represented in essentially the saine way by using functions which operate
on lists of values. The key contribution of S: LET» is that it makes it possible to state a varicty of algorithms in
a compact functional style without suffering a reduction in efficiency in comparison with iterative loops.

Psychological Validation
Several rescarchers outside of the PA project have been able to make usc of some of the ideas in

KBEmacs. One example of this is the work done by Soloway. In a number of experiments Soloway has
investigated how progranuncrs think about programs.

Applications of the Current Techonology 199

Soloway has been able to show that, in many situations, the kinds of cliches used by KBEmacs do in fact
correspond to the way programmers think. For example, one set of experiments [Soloway 84] shows that
programmers usc algorithmic fragments similar to the loop cliches used by KBEmacs when thinking about
loops.

An interesting application of this rescarch is that it makes recommendations about what language features
are helpful to programmers. In particular, it suggests that language features are helpful when they can casily
cxpress the cliches used by programmers and unhelpful when they make it difficult to express these cliches.
For cxample, [Soloway 84] presents experiments which show that languages which require all loops to be
written in terms of DO WHILE arc unsatisfactory because they make it difficult to statc many common cliches
and therefore lead to unnccessary bugs,

Assisting Novice Programmers

Both Soloway [Soloway 83] and Eiscnstadt [LLaubsch 81] have used the concepts of plans and cliches in
order to implement systems which can assist novice programmers. Their systems inspect programs written by
novice programmers, attempting to determine what bugs cxist in the programs and give advice on how these
bugs might be fixed.

Both systems arc designed to be used in a tutorial setting where the exact program to be written is known
in advance. The systems depend on having a detailed description of exactly how the correct program is
supposed to work and descriptions of errors which novice programmers commonly make. These descriptions
are created manually.,

Student programs are matched against the description of the ideal program and any differences detected
are reported as bugs. Aspects of the plan formalism and symbolic cvaluation are used to create
quasi-canonical summarics of both the ideal program and the student programs in order to reduce the
incidencc of false mismatches.

The Intelligent Program Editor

Another application of PA idcas outside of the PA project is the Intelligent Program Editor (IPE) currently
being developed by Shapiro [Shapiro 831, A ‘primary motivation behind IPE is the observation that
comprehending what a given program does is the hardest part of program modification. The parts of IPE
which have been implemented so far address this problem by assisting a programmer to locate relevant
portions of a program.

In addition to program text, IPE maintains a data basc of information about the program called the
extended program model. Among other things, this data basc contains plan-iike information about the logical
structure of the program and about the cliches which are used in the program. This and other information is
derived by various program analysis tools.

As of [Shapiro 83], the principal component of IPE is a navigation tool which helps a programmer locate
portions of a program based on semantic criteria. Using this tool a programmer can interactively zero in on
the portion of a program he wishcs to sce. When doing this he can refer beth to semantic information in the
extended programn model and to syntactic features of the program. For exaiple, the programimer might ask
to see any summation loops involving the variable TEST-SCORES. IPE would then highlight any loops which
semantically corresponded to sumimation and syntactically referenced the variable TEST-SCORES.

200

Attacking Other Parts of the Programming Process

A final arca of activity in the PA project centers around expanding the scope of the PA beyond program
implementation. Scveral pilot studies have already been done investigating how the ideas behind the PA can
be applied to other phascs of the programming process.

Testing

Chapman [Chapman 82] built a tool (the Testing Assistant) which assists with program testing. This tool
keeps track of the test cases which are used in conjunction with a collection of programs and automatically
reruns an appropriate subset of these tests whenever any of the programs is modified.

Preparatory to using the ‘Testing Assistant, the programmer divides the collection of programs up into
groups. He then specifies which features of the collection of programs are supported by cach group.

Once the groups have been specified the programmer proceeds to test the programs by interactively
running various test cases. Each time the programmer runs a test case, he specifies which features of the
collection of programs are being tested. The Testing Assistant stores the test case in a data base indexed by
the features it tests.

Whenever the programmer modifics a program (c.g., in order to fix a bug which is discovered) the Testing
Assistant automatically reruns all relevant test cases. A test case is deemed relevant if it tests any of the
features which are supported by the group which contains the modified program. (By greatly reducing the
number of test cases which have to be run, the relevance test significantly increases the speed of the Testing
Assistant.)

Aun interesting problem arises when a program is modified in such a way that the test cases which directly
call it can no longer be run — for example when the number of arguments to the program are changed. The
Testing Assistant is able to partly overcome this problem by applying a number of heuristics which specify
how to change a test case when a procedure is changed.

As currently constituted, the Testing Assistant is designed to fit in with the kind of highly interactive
testing which is typically done in an environment like the Lisp Machine. However, the basic concept could
cqually well be applicd in a less interactive situation. For example, suppose that a set of test cases were
developed by a separate testing organization rather than by the programmer. It would still be beneficial to
enter them in a data base like the one supported by the Testing Assistant in order to facilitate continued
testing when programs are modified.

Debugging

Shapiro [Shapiro 81} demonstrated a tool (called Sniffer) which helps a programmer to debug a program.
This tool supports two basic capabilitics. First, the Lisp evaluator is modified so that Sniffer can keep track of
all of the side-effects which are performed by a program which is being exccuted. This makes it possible for
Sniffer to reverse the execution of a program and return to any previous cxecution state, no matter what
operations the program has performed. Sccond, Sniffer has a knowledge base of descriptions of particular
kinds of bugs which are likely to occur. When an crror is detected, Sniffer uses this knowledge in order to try
to identify the bug which caused the error.

The most interesting part of Sniffer is the way it identifies bugs. The process begins when an error is
detected. An error is detected cither when the Lisp interpreter goes into an crror staic (¢.g., when division by
zero is attempted) or when the programmer notices that an incorrect output has been produced. The error
detection step cutminates in the production of a simple description of the manifestation of the crror.

Each bug description in Sniffer’s knowledge base contains information about threc things: the error
manifestations associated with the bug, the sequence of execution steps which occur when the bug happens,
and a plan for the specific buggy algoritim, Snifter uses the analyzer module of KBE n order to create plans

Attacking Other Parts of the Programming Process 201

for the program being exccuted and then begins to look for bugs. [t is guided in its search by looking at how
the crror was manifested. and at what evaluation steps actually occurred.

If Sniffer succeeds in finding a part of the program which matches one of the bugs it knows about and
which could have led to the error which was detected, then it prints out a bug report. This report describes
the bug and suggests how it might be fixed.

Sniffer is merely a demonstration system. In particular, it only knows about a couple of bugs. However, it
shows the potential leverage which a knowledge-based approach has on the debugging task.

Documentation

Zclinka [Zclinka 83] proposed a tool which can assist with the task of maintaining documentation. The
focus of this tool is understanding how changes in a program are related to changes in documentation.

There arc two major underpinnings of the tool. First, cach part of the documentation is linked to the parts
of the program which are relevant to it. Sccond, there is a taxonomy of various types of ways in which
programs can be modificd. This taxonomy is important because particular types of program modifications
suggest particular ways in which the documentation has to be modified. For cxample, if a modification
merely fixes a bug, then the documentation should not have to be modificd at all.

Every time the program is modificd, the tool looks at the links between the modified parts of the program
and the documentation and. based on the type of modification, directs the programmer’s attention to the parts
of the documentation which should be changed. The goal is to reduce the probability that the programmer
will overlook parts of the documentation which are relevant to his modification.

The tool is not capable of modifying the documentation itself because it has no understanding of cither the
documentation or the program. The obvious next step would be to give the tool some understanding of the
documentation. However, in order to avoid having to understand free form English, this would require
rccasting the documentation into a simplificd pscudo-English form.

Rapid Prototyping

[Rich & Waters 82] speculate on how the PA could assist with rapid prototyping. The basic idca here is to
build up a program very quickly by using cliches which omit a lot of details (such as error checking) and then
substitute more complete cliches when it becomes time to construct a full program.

In order to support this kind of rapid prototyping, the cliches in the cliche library are arranged into
clusters. Each cluster is centered around a simplified cliche which performs a given algorithm but which
makes lots of assumptions and does no error checking. Various combinations of efficiency, robustness,
generality, and error checking featurcs are supported by other cliches in the cluster.

A program is initially constructed by using only the simplified cliches. 'This yiclds a simplified program
which can be tested in simple situations. Once experimentation at the simplified level has been completed,
the prototype program is converted into a full implementation,

Conversion is performed semi-automatically. The programmer selects what features he wants the full
program to have. ‘The PA then replaces each simplified cliche with another cliche from the same cluster
which has the required features. Often, using one of the replacement cliches forces the programmer to supply
additional information, because it brings up design issucs which did not have to be faced in the simplified
program. This is why the conversion process is only semi-automatic.

202 Future Directions

Translation

A particularly interesting pilot study involved program translation. Faust [Faust 81] built a demonstration
system which is able to translate Cobol programs into Hibot [Ruth 81] programs.

‘The translation task performed by this system is particularly difficult for two reasons. First, the system
takes great pains to produce output which is not merely correct, but aesthetic. Second, the translation task is
rendered inherently difficult by the fact that Hibol is a much higher level language than Cobol. Hibol is a
very high level business data processing language. It is a non-procedural single assignment language which
uses direct operations on series of values (called flows) in licu of loops.

The Cobol to Hibol translator operates as follows. A source Cobol program is converted into a plan by the
analyzer module of the KBE. As the first step of this, the program is parsed by a Cobol parser which was
implemented by Glen Burke.,

The plan is then analyzed in order to obtain summary information describing what computation the
program is performing. ‘Fhis analysis is done in two ways. Recognition is applied in order to identify what
kinds of looping fragments are present in the program. A symbolic evaluation process is used in order to
construct algebraic equations which describe the net effect of the Cobol program.

The body of a Hibol program is then produced based on the algebraic equations constructed from the
plan. As part of this, an algebraic simplification module is used to improve the rcadability of the Hibol
program. The data declaration part of the Hibol program is constructed from the data declaration part of the
Cobol program by mcans of a more or less scparate process. This process is relatively straightforward since
data declarations in the two languages are relatively similar in form.

As implemented, the Cobol to Hibol translator demonstrates quite satisfactory results. However, the class
of programs which can be successfully translated is severely limited by the fact that the translator does not
contain a generalized recognition facility which can support plan analysis. Rather, specific procedures must
be written to support analysis.

Once a general cliche recognizer (such as the one being constructed as part of the next demonstration
system) is available, a more general purpose and powerful translation method will be possible. As shown in
Figure 33, this method proceeds in four steps.

abstract cliche plan

A \
ABSTRACTION / \ SPECIALIZATION
/ d
Cobol cliche plan Hibol cliche plan
A \
ANALYSIS/RECOGNITION / \ CODING
/ Y
Cobol text Hibol text

Figurc 33: Translation bascd on cliches.

First, an analyzer is used to convert a Cobol program into a plan and recognition is used to determine what
Cobol cliches could have been used to build the program. Second, abstraction is applied to restate these
Cobol cliches in terms of abstract cliches which are neutral between the languages Cobol and Hibol. Third,
specialization sciccts Hibol cliches which correspond to the absiract cliches derived from the Cobol program.
Both of the last two steps are relatively straightforward because they arc driven by specialization links
between cliches recorded in a cliche library. Fourth, a coder module is used to create acsthetic Hibol code
based on the Hibol cliche plan.

Attacking Other Parts of the Programming Process 203

Compilation

Translation based on cliches as described above could be used to translate between any two languages.
Duffey [Duffey 80] proposed a compiler (called Cobbler) which uses this basic method in order to compile
Pascal programs into PDP-11 machine code.

At first glance, the problems associated with compiling Pascal do not scem to be very similar to the
problems associated with translating Cobol to Hibol. After all, the goal of the former is cfficiency of low level
output while the goal of the latter is readability of high level output.

However, the two problems really have a great deal in common. Stated gencrally, the problem is that the
criteria which govern the source are very different from the criteria which govern the output. In order to have
the frecdom to do a good job of satisfying the output criteria, the input must be restated in a way which frees
it from the constraints of the input criteria.

For example, Pascal is heavily biased toward loops which count up. (The special forms of the looping
constructs do not support counting down.) In contrast, the most cfficient PIDP-11 looping instructions only
support counting down. As a result of this mismatch, typical Pascal compilers essentially never use the most
efficient PDP-11 looping instructions in the code they produce.

The first thing Cobbler does when presented with a Pascal loop is attempt to determine whether the loop
counts up because the algorithm requires it to or merely because the algorithm docs not require that the loop
count down. Cobbler actually goes way beyond this. It abstracts away from the Pascal program and
determines the net effect of the loops in the program on various vectors and arrays. It does this so that code
generation will not be be constrained by the exact placement of loops in the source program any more than by
whether the loops count up or down,

Once an abstract statement of the algorithm being performed is determined, Cobbler proceeds to
respecialize the algorithm, making heavy use of the efficiency features of the PDP-11 instruction sct. Cobbler
produces better code than other compilers becausc it is able to take a very global view of the algorithm being
compiled.

Requirements Analysis

Currently, work has begun on the design of a Requirements Analyst’s Apprentice (RAAP). This research
(by Howard Reubenstein) is only in its early formative stages. However, the basic outline of the system seems
clear.

RAAP will have a data basc which describes the requirement being worked on. The requirement will be
represented cither by a plan-like representation or by a more semantic network-like representation.,

RAAP will be able to assist a requirements analyst in several ways, It wiil be able to receive information in
a relatively unordered way and asscmble it into a requirement. 1t will be able to detect some kinds of
inconsistencics and incompleteness in the evolving requirement. It will be able to create a document
describing the requirement as a whole, and various summaries of parts of the requircment,

The heart of RAAP will be a library of cliches in the domain of requirements. These cliches will be the
medium of communication between RAAP and a requirements analyst. It is cxpected that a typical
requirement constructed using RAAP will be composed 90 percent of cliches and 10 percent of new concepts
which have to be described to RAAP in detail. The great importance of cliches can be seen from the fact that,
if constructing requirements is anything like constructing programs, the largest part of the time required to
construct a requirement will be taken up describing the 10 percent of the requirement which is not cliched.

04 Future Directions

The Programmer’s Appreatice
TbelongtermgoalofmePApro;ectxsmpmduccauuermmsAmme~asystemwhchm
assist a programmer in all phases of the programming task in much the same way that a human programmer
can. All of the modules described above would be required by such a system, and many more besides. In
particular, after requirements, the next problem which needs to be tackled is design. This is needed in order
o bridge the gap between requirements and implementation. Once support for requiresnents and design is

~ available, n:mmmmhmmmmammmmmwa
-a whole. '

205

Appendices

A - Cliche Library

‘This appendix presents the complete contents of the Lisp and Ada cliche libraries currently defined as part
of KBEmacs. As discussed in Chapter 1V, these libraries are much too small to be usable as true prototypes.
However, they give a flavor for the kinds of cliches which can be defined.

In the interest of brevity, the discussion below assumes that the reader has read the section of Chapter V
which discusses cliche definitions. For the most part, cliches are presented without comment. Only
particularly intcresting aspects of the cliches are discussed.

Lisp Cliches

Around a third of the cliches in the Lisp cliche library arc used in the scenario in Chapter 1. These cliches
are discussed in detail in that chapter and are only briefly described below. The remaining Lisp cliches are
presented here for the first time. "T'he scenartio in [Waters 82a) shows many of these latter cliches being used.

The cliches squaring, absolute-value, simple-conditional, and equality-within-cpsilon are used as simple
examples of cliches in Chapters Il & V. They are all straightforward non-looping cliches.

(DEFINE-CLICHE SQUARING
(PRIMARY-ROLES (NUMBER)
DESCRIBED-ROLES (NUMBER)
COMMENT "computes the square of {the number}")
(A~ {the input number} 2))

(DEFINE-CLICHE ABSOLUTE-VALUE
(PRIMARY-ROLES NUMBER
DESCRIBED-ROLES NUMBER
COMMENT "computes the absclute value of {number}")
(LET ((X {input number}))
(COND ((MINUSP X) (- x)) (T X))))

(DEFINE-CLICHE SIMPLE-CONDITIONAL
(PRIMARY~ROLES TEST ACTION
DESCRIBED-ROLES TEST ACTION
COMMENT "computes {action} if {test} is true")
(1F {test} {action}))

(DEFINE-CLICHE EQUALITY-WITHIN-EPSILON
(PRIMARY-ROLES (X Y)
DESCRIBED-ROLES (X Y)
COMMENT "determines whether {the x} and {the y}
differ by less than {the epsilon}"
CONSTRAINTS ((DEFAULT {the epsilon} 0.00001)))
(¢ (ABS (- {the input x} {the input y})) {the epsiion}))

The Lisp cliche library contains three additional simple straight-line cliches. The cliche average computes
the average of two input numbers,

(DEFINE-CLICHE AVERAGE
(PRIMARY-ROLES (X Y)
DESCRIBED-ROLES (X Y)
COMMENT "computes the average of {the x} and {the y}")
(77 (+ {the input x} {the input y}) 2.0))

206 Appendices

The cliche splice-in splices an clement into a list by side-cffect. The cliche splice-out performs the reverse
operation, splicing an clement out of a list by side-cffect. Note that both cliches require as an input a pointer
to the list cell before the point where an element is to be inserted.

(DEFINE-CLICHE SPLICE-IN
(PRIMARY-ROLES (POSITION NEW-ELEMENT)
DESCRIBED-ROLES (POSITION NEW-ELEMENT)
COMMENT "splices {the new-element} into a list after {the position}")
(LET+ ((PREVIOUS-SUBLIST {the input position}))
(RPLACD PREVIOUS-SUBLIST
. (CONS {the input new-element} (CDR PREVIOUS-SUBLIST)))
NIL

(DEFINE-CLICHE SPLICE-OUT
(PRIMARY-ROLES (POSITION)
DESCRIBED-ROLES (POSITION)
COMMENT "splices an element out of a 1ist after {the position}")
(LET* ((PREVIOUS-SUBLIST {the input position}))
(RP;?CD PREVIOUS-SUBLIST (CDDR PREVIQUS-SUBLIST))
NIL

Most of the cliches in the Lisp cliche library are loop fragments. There are three basic kinds of loop
fragments enumerators, maps, and accumulators. Enumerators create series of values. Maps compute one
serics of values from another. Accumulators consume serics of values.

The cliche enumecration is a generalized enumerator. It has as empty roles the four roles expected of any
enumerator — the input structure, the ecmpty-test, the clement-accessor, and the step. (These roles are
discussed in the beginning of Chapter1l.) The cliche enumeration specifics the way the roles of an
enumerator interact without specifying any particular kind of enumeration.

(DEFINE-CLICHE ENUMERATION
(PRIMARY-ROLES (STRUCTURE)
DESCRIBED-ROLES (STRUCTURE ELEMENT-ACCESSOR EMPTY-TEST STEP)
COMMENT "enumerates the elements of {the structure}")
(LET* ((DATA {the input structure}))
(Loor DO
(IF ({the empty-test} DATA) (RETURN))
{({the element-accessor} DATA), the output element}
(SETQ DATA ({the step} DATA)))))

The next three cliches are cxamples of particular enumerators. They are each instances of the cliche
cnumcration. As discussed in the beginning of Chapter II, the cliche list-cnumeration enumerates the
clements of a list.

(DEFINE~CLICHE LIST-ENUMERATION

(PRIMARY-ROLES (LIST)

DESCRIBED~ROLES {LIST)

COMMENT "enumerates the elements of {the 1ist}")

(LET* ((LIST {the input list}))

(LOOP DO
(IF ({NULL, the empty-test} LIST) (RETURN))
{({CAR, the element-accessor} LIST), the output element}
(SETQ LIST ({CDR, the step} LIST)))))

Cliche Library 207

The cliche sublist-cnumeration enumerates the successive sublists of a list. It is almost identical to the
cliche list-cnumeration. Only the clement-accessor is different. In the cliche list-enumeration the
clement-accessor is the function CAR, whereas in the cliche sublist-cnumeration it is the identity function.

(DEFINE-CLICHE SUBLIST-ENUMERATION

(PRIMARY-ROLES (LIST)

DESCRIBED-ROLES (LIST)

COMMENT "enumerates the sublists of {the 1ist}")

(LET* ((LIST {the input 1ist}))

(LooP DO
(IF ({NULL, the empty-test} LIST) (RETURN))
{{LIST, the element-accessor}, the output sublist}
(SETQ LIST ({CDR, the step} LIST)))))

The cliche vector-enumeration cnumerates the elements of a vector. This cliche is interesting in that it
requires two variables, VECTOR and I, in order to represent the state of the enumecrator.

(DEFINE-CLICHE VECTOR-ENUMERATION
(PRIMARY-ROLES (VECTOR)
DESCRIBED-ROLES (VECTOR)
COMMENT "enumerates the elements of {the vector}")
(LET* ((1 0)
(VECTOR {the input vector})
(SIZE (ARRAY-ACTIVE-LENGTH VECTOR)))
(LooP DO
(IF {(NOT (< T SIZE)), the empty-test} (RETURN))
{({AREF, the element-accessor} VECTOR I), the output element}
(SETQ I ({1+, the step} I)))))

The genceralized cliche generation is identical to the cliche enumeration except that it does not have an
empty test. It describes a kind of loop fragment, a generator, which is a special form of coumerator. A
generator generates an unbounded serics of values, and is not capable of causing a loop to términate.
Typically, generators are combined with enumerators which control their termination,

(DEFINE-CLICHE GENERATION

(PRIMARY-ROLES (STRUCTURE)

DESCRIBED-ROLES (STRUCTURE ELEMENT-ACCESSOR STEP)

COMMENT "generates the elements of {the structure}")

{LET» ((DATA {the input structure}))

(Loop DO
{({the element-accessor} DATA), the output element}
(SETQ DATA ({the step} DATA)))))

The cliche list-generation is identical to the cliche list-cnumeration except that it does not have an
empty-test.

(DEFINE-CLICHE LIST-GENERATION

(PRIMARY-ROLES (LIST)

DESCRIBED~ROLES (LIST)

COMMENT "generates the elements of {the 1ist}")

(LET* ((LIST {the input 1ist}))

(LoOP DO
{({CAR, the element-accessor} LIST), the output element}
(SETQ LIST ({CDR, the step} LIST)))))

208 Appendices

The second basic kind of foop fragment is a map. The basic structure of these fragments is captured in the
cliche map. A map applies some function to cach clement of an input scries of values in order to create an
output serics. '

(DEFINE-CLICHE MAP
(PRIMARY-ROLES (ITEM FUNCTION)
DESCRIBED-ROLES (ITEM FUNCTION)
COMMENT "maps {the function} over {the item}")
(LOOP DO
{({the function} {the input item}), the output result}))

The cliche previous-value is an example of specific map fragment. It takes in a serics of valucs and returns
a serics which contains the same values delayed by one time unit. ‘The cliche takes a special input which
specifics what value to use as the first value of the output series. 1t is interesting to note that the function of
the cliche previous-value does not actually perform any computation. It is composed solely of data flow
which provides the dclay.

(DEFINE-CLICHE PREVIOUS-VALUE
(PRIMARY-ROLES (ITEM ITEM-BEFQRE-FIRST-ITEM)
DESCRIBED-ROLES (ITEM ITEM-BEFORE-FIRST-ITEM)
COMMENT "keeps track of the previous value of {the item}")
(LET» ((PREVIOUS {the item-before-first-item}))
(LooP DO
{PREVIOUS, the output previous}
{(SETQ PREVIOUS {the input item}), the function})))

The cliche trailing-pointer-list-cnumeration is a specialized enumerator which is a combination of the
cliches list-cnumeration and previous-value. It is included in the library because it is a relatively common
operation when splicing things in and out of lists. An cxample of this will be shown below.

(DEFINE-CLICHE TRAILING-POINTER-LIST-ENUMERATION
(PRIMARY-ROLES (LIST)
DESCRIBED-ROLES (LIST)
COMMENT "enumerates the elements of the tail of {the list}
maintaining a trailing pointer")
(LET* {(PREVIOUS-SUBLIST {the input 1list})
(LIST (CDR PREVIOUS-SUBLIST)))
(LOOP DO
(IF (NULL LIST) (RETURN PREVIQUS-SUBLIST))
{(CAR LIST), the output element}
(SETQ PREVIOQUS-SUBLIST LIST)
(SETQ LIST (CDR LIST)))))

Cliche Library 209

The cliche group-detector (discussed in Chapter I1) is a more complex example of a map. It detects where
groups begin in a serics of values. Note that the cliche uses the cliche previous-value in order to keep track of
the previous value of the input series of values.

(DEFINE-CLICHE GROUP-DETECTOR
(PRIMARY-ROLES (ITEM TEST)
DESCRIBED-ROLES (ITEM TEST)
COMMENT "locates the beginning of each group in {the item}")
(LET+ ((DATUM)
(UNIQUE-VALUE (NCONS NIL))
(PREVIOUS UNIQUE-VALUE))
(LooP DO
{(PROGN
(SETQ DATUM {the input item})
{(OR (EQ PREVIOUS UNIQUE-VALUE) ({the test} PREVIOUS DATUM)},
the output flag}
(SETQ PREVIOUS DATUM)), the function})))

The cliche selection is a special kind of map fragment. [t takes in a series of valucs and applies a
selection-test to cach one. It creates an output scries which contains only the valucs for which the
sclection-test returns non-NIL. The cliche sclection is different from the other maps above in that the output
scries is in gencral shorter than the input series. An example of the use of the cliche selection will be given
below.

(DEFINE-CLICHE SELECTION
(PRIMARY-ROLES (ITEM SELECTION-TEST)
DESCRIBED~ROLES (ITEM SELECTION-TEST)
COMMENT "selects a subseries of {the item}")
(LET#» (DATUM)

(LooP DO

(SETQ DATUM {the input item})

(IF ({the selection-test} DATUM)

{DATUM, the output selected-item})})))

The third and final kind of loop fragment is an accumulator. The basic features of all accumulators are
specified in the generalized cliche accumulation. An accumulator takes the valucs in a scrics and combines
thein together into a single value. This is done by using a function (the accumulator) to combine cach
successive value into an accumulating result.

The result is initialized to the zero of the accumulator function. This viclds two nice features. First, if
there is only one value in the input series then this value is returned as the accumulated result. Second, if
there are no values in the input scries then the zero value itself is returned as the result.

(DEFINE-CLICHE ACCUMULATION
(PRIMARY-ROLES (ITEM)
DESCRIBED-ROLES (ITEM ACCUMULATOR ZERO)
COMMENT "accumulates {the item}")
(LET* ({RESULT {the zero}))
(LooP no
(SETQ RESULT ({the accumulator} RESULT {the input item})))
RESULT))

210 Appendices

The cliche sum discussed in Chapter 11 is an example of a specific accumulator. It adds up the values in a
scrics.

(DEFINE-CLICHE SUM
(PRIMARY-ROLES (NUMBER)
DESCRIBED-ROLES (NUMBER)

COMMENT "accumulates the sum of {the number}")
(LET* ((SuMm {0, the zero}))
(LooP DO

(SETQ SUM ({+, the accumulator} SUM {the input number})))
SUM))

The cliche product is very similar to the cliche sum. It multiplics all of the values in a scries together.
Note that the number 1 is the zero element of the function .

(DEFINE-CLICHE PRODUCT
(PRIMARY-ROLES (NUMBER)
DESCRIBED-ROLES (NUMBER)

COMMENT "accumulates the product of {the number}")
(LET* ({(PRODUCT {1, the zero})})
(LooP DO

(SETQ PRODUCT ({», the accumulator} PRODUCT {the input number})))
PRODUCT))

The cliche count counts the number of values in a serics. The most interesting feature of the cliche count

is that, although it depends on the existence of the input values, it does not actually usc them in its
computation.

(DEFINE-CLICHE COUNT
(PRIMARY-ROLES (ITEM)
ESCRIBED-ROLES (ITEM)
COMMENT "accumulates a count of {the item}")
(LET+ ((COUNT {0, the zero}))
(LOOP DO

(SETQ COUNT ({+, the accumulator} COUNT {1, depending on the input item})))
COUNT))

As discussed in Chapter V there are a number of features of the plan formalism which are specifically
included solely in order to support cliches which depend on values without actually using them. The

importance of this can be scen in the following program fragment which is "a count of a selection of a
list-enumerationof X".

(LET» ((COUNT 0)
ELEMENT
(LIST {the input list}))
(LOOP DO
(IF (NULL LIST) (RETURN))
(SETQ ELEMENT (CAR LIST))

(1F ({the selection-test} ELEMENT) (SETQ COUNT (+ COUNT 1))})
(SETQ LIST (CDR LIST)))
COUNT)

In the example above, the counting is nested inside of the sclection conditional because KBEmacs
understands that the count depends on the output of the selection. If it were not for this special knowledge,

the counting would be placed outside of the selection conditional because there is no data flow from the
sclection to the count.

Cliche Library 211

The next cliche, sequential-scarch, is a common algorithm used in many programs. It is used as an
example in Chapter 1. Rather than being a loop fragment, the cliche sequential-scarch specifies an entire
loop. The cliche has three roles. ‘The emumerator enumerates the clements of a structure. ‘The search-test
tests cach clement in order to sce if it is the clement desired. I an clement which passes the scarch-test is
found then an action is performed on it

(DEFINE-CLICHE SEQUENTIAL-SEARCH
(PRIMARY-ROLES (ENUMERATOR)
DESCRIBED-ROLES (ENUMERATOR SEARCH-TEST ACTION)
COMMENT "sequentially searches {the input structure}
looking for an element satisfying {the search-test}")
(LET+ ((DATA {the input structure of the enumerator}))
(LoOP DO
(IF ({the empty-test of the enumerator} DATA) (RETURN NIL))
(IF ({the search-test} DATA)} (RETURN {the action}))
(SETQ DATA ({the step of the enumerator} DATA)))))

As an example of using the cliche sequential-scarch, consider the following set of commands. The
commands also usc the cliches trailing-pointer-list-cnumeration and splice-out. (This set of commands is very
similar to an example discussed in [Waters 82a).)

Define a sequential-search program DELETE-SYMBOL with a parameter SYMBOL.
Fi11 the enumerator with

a trailing-pointer-list-enumeration of (HASH-SYMBOL SYMBOL).

Fil1 the search-test with (EQ {a use of the element} SYMBOL).

Fil1 the action with a splice-out of PREVIOUS-SUBLIST.

The code which results from the commands is shown below. The program DELETE-SYMBOL deletes a
symbol from a hash table by side-cffect. This is done by hashing the symbol in order to determine the bucket
which contains it and then scarching this bucket in order to find an instance of the symbol if any. The cliche
trailing-pointer-list enumeration is used so that a pointer to the previous list cell will be available for use by
the cliche splice-out.

(DEFUN DELETE-SYMBOL (SYMBOL)
(LET* ({PREVIOUS-SUBLIST (HASH-SYMBOL SYMBOL))
(LIST (CDR PREVIOUS-SUBLIST)))
(LoOP DO

(IF (NULL LIST) (RETURN NIL))

(WHEN (EQ (CAR LIST) SYMBOL)
(RPLACD PREVIOUS-SUBLIST (CDDR PREVIOUS-SUBLIST))
(RETURN NIL))

(SETQ PREVIOQUS-SUBLIST LIST)

(SETQ LIST (CDR LIST)))))

212 Appendices

The cliche successive-approximation specifies a particular method of mathematical computation. It uses
an improvement-step in order to iteratively improve an approximation until a criterion is satisfied. 'The process
begins with the choice of an initial-approximation.

(DEFINE-CLICHE SUCCESSIVE-APPROXIMATION
(PRIMARY-ROLES (INITIAL-APPROXIMATION)
DESCRIBED-ROLES (INITIAL-APPROXIMATION CRITERION IMPROVEMENT-STEP)
COMMENT "iteratively improves an approximation until {the criterion} is
satisfied”)
(LET+ ((APPROXIMATION {the input initial-approximation}))
(Loor DO
(IF ({the criterion} APPROXIMATION) (RETURN APPROXIMATION))
(SETQ APPROXIMATION ({the improvement-step} APPROXIMATION)))))

As an example of using the cliche successive-approximation, consider the following set of commands. The
commands also usc the cliches average and equality-within-cpsilon. (This sct of commands is very similar to
an example discussed in [Waters 82a).)

Define a successive-approximation program SQUARE-ROOT with a parameter NUM,
Fill the initial-approximation with 1.
Fi11 the improvement-step with
an average of APPROXIMATION and {(// NUM APPROXIMATION).
Fil1l the criterion with
an equality-within-epsilon of (» APPROXIMATION APPROXIMATION) and NUM.

The code which results from the commands is shown below. The program SQUARE-ROOT computes the
square root of a number by using what is essentially a binary search.

(DEFUN SQUARE-ROOT (NUM)
(LET* ((APPROXIMATION 1))
(LOOP DO
(1F (< (ABS (- (» APPROXIMATION APPROXIMATION) NUM)) 0.00001)
(RETURN APPROXIMATION))
(SETQ APPROXIMATION (// (+ APPROXIMATION (// NUM APPROXIMATION)) 2.0)))))

Cliche L.ibrary 213

‘The final three cliches in the Lisp cliche library are the cliches simple-report. print-out, and
tabularized-print-out. "This suite of cliches is discussed in detail in Chapter Il and used to construct the
programn REPORT-TIMINGS.

(DEFINE-CLICHE SIMPLE-REPORT
{PRIMARY-ROLES (ENUMERATOR PRINT-ITEM SUMMARY)
DESCRIBED-ROLES (FILE-NAME TITLE ENUMERATOR
COLUMN-HEADINGS PRINT-ITEM SUMMARY)
COMMENT "prints a report of {the input structure of the enumerator}"
CONSTRAINTS
((DEFAULT {the file-name} "report.txt")
(DERIVED {the line-limit}
(- 65
(SIZE-IN-LINES {the print-item})
(SIZE-IN-LINES {the summary})))))
(WITH-OPEN-FILE (REPORT {the file-name} ':0UT)
(LET*» ((DATE (TIME:PRINT-CURRENT-TIME NIL))
(LINE 66)
(PAGE 0)
(TITLE {the title})
(DATA {the input structure of the enumerator}))
(FORMAT REPORT "~5%~66: <~A~>~2%~66: <(~A~>~%" TITLE DATE)
(LOOP DO
(IF ({the empty-test of the enumerator} DATA) (RETURN))
(WHEN (> LINE {the line-1limit})
(SETQ PAGE (+ PAGE 1))
(FORMAT REPORT "~/|~%Page:~3D~50: <~A~>~17A~2%" PAGE TITLE DATE)
(SETQ LINE 3)
({the column-headings} {REPORT, modified} {LINE, modified}))
({the print-item} {REPORT, modified}
{LINE, modified}
({the element-accessor of the enumerator} DATA))
(SETQ DATA ({the step of the enumerator} DATA}))
({the summary} {REPORT, modified}))))

(DEFINE-CLICHE PRINT-OUT
{PRIMARY-ROLES (FORMAT-STRING ITEM)
DESCRIBED-ROLES (FORMAT-STRING ITEM)
COMMENT “prints out {the item}"
CONSTRAINTS
((DEFAULT {the format-string} "~%~A")
(DERIVED {the size-in-lines} (SIZE-IN-LINES {the format-string}))))
(FORMAT REPORT {the format-string} {the input item})
{SETQ LINE (+ LINE {the size-in-lines})))

(DEFINE-CLICHE TABULARIZED-PRINT-QUT
(PRIMARY-RCLES (FORMAT-STRING ITEM)
DESCRIBED-RCOLES (FORMAT-STRING ITEM NUMBER-OF-COLUMNS)
COMMENT "prints out {the item} in columns"
CONSTRAINTS
((DEFAULT {the format-string} "~15A")
(DERIVED {the maximum-charpos}
(- 75 (SIZE-IN-CHARACTERS {the format-string})))))
(WHEN (> (CHARPOS REPORT) {the maximum-charpos})
(FORMAT REPORT "~&")
(SETQ LINE (+ LINE 1}))
(FORMAT REPORT {the format-string} {the input item}))

214 Aphcndiccs

Ada Cliches
Except for the cliche equality_within_cpsilon which is used as an example in Chapter V, all of the cliches
in the Ada cliche library are used in the scenario in Chapter HI and, for the most part, arc discussed in detail

there.
The cliche equality_within_cpsilon is identical to the cliche cquality-within-cpsilon except for the fact that

it is rendered in Ada syntax.

cliche EQUALITY_WITHIN_EPSILON is
primary roles X, Y;
described roles X, Y, EPSILON;
comment "determines whether {the x} and {the y}
differ by less than {the epsilon}";
constraints
DEFAULT({the epsilon}, 0.00001);
end constraints;

begin
return abs{{the input x} - {the input y}) < {the epsilon};
end EQUALITY_WITHIN_EPSILON;

The cliche read reads a record from a file. Like all of the Ada cliches which access files, the cliche read
depends on the existence of a set of conventions (described in the beginning of Chapter 111) governing file
170. The cliche is surprisingly complex due both to the verbose nature of Ada 170 procedures and the need
to properly handle interrupts which can occur during 1/0.

cliche READ is
primary roles FILE, KEY;
described roltes FILE, KEY;
comment "reads the record indexed by {the key} from {the file}";
constraints
RENAME ("DATA_RECORD", SINGULAR_FORM({the file}));
DEFAULT({the file_name}, CORRESPONDING_FILE_NAME({the file}));
end constraints;

DATA_RECORD: {};
FILE: {};

begin
FILE := {the file};
OPEN(FILE, IN_FILE, {the file_name});
READ(FILE, DATA_RECORD, {the key});
{DATA_RECORD, the output data_record};
CLOSE(FILE):

exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>

CLOSE(FILE); PUT("Data Base Inconsistent");

when others => CLOSE(FILE); raise;

end READ;

Cliche l.ibrary 215

As discussed in Chapter 111, the cliche pre_loop_computation exists in order to allow a programmer to
conveniently specify an initialization computation for a loop inside of an expression nested inside the loop.

cliche PRE_LOOP_COMPUTATION is
primary roles ITEM;
described roles ITEM;
comment "makes the value {the item} available inside of a loop":

constraints
RENAME ("DATA_VALUE", SUGGEST_VARIABLE_NAME({the item})):

end constraints;

DATA_VALUE: {};

begin
DATA_VALUE := {the item};
loop
{DATA_VALUE, the output data_value};
end loop;

end PRE_LOOP_COMPUTATION;

The cliche query_uscr_for_key asks the user of a program to supply the key for a record. In addition, it
checks the key in order to ensure that it is a valid key. This cliche is used both in the program
UNIT_REPAIR_REPORT and the program MODEL_DEFECTS_REPORT in Chapter 11

with TEXT_IO;
use TEXT_IO;
cliche QUERY_USER_FOR_KEY is
primary roles FILE;
described roles FILE:
comment "queries the user for a key to a record in {the file}";
constraints '
RENAME ("DATA_RECORD", SINGULAR_FORM({the file})):
DEFAULT({the file_name}, CORRESPONDING_FILE_NAME({the file}));
end constraints;

DATA_RECORD: {}:
DATA_RECORD_KEY: {};
FILE: {};
begin
FILE := {the file};
OPEN(FILE, IN_FILE, {the file_name});
loop
begin
NEW_LINE; PUT("Enter DATA_RECORD Key: "); GET(DATA_RECORD_KEY);
READ(FILE, DATA_RECORD, DATA_RECORD_KEY);
exit;
exception
when END_ERROR => PUT("Invalid DATA_RECORD Key"); NEW_LINE:
end;
end loop;
CLOSE(FILE):
return DATA_RECORD_KEY;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLOSE(FILE); PUT("Data Base Inconsistent");
when others => CLOSE(FILE)}; raise;
end QUERY_USER_FOR_KEY;

216 Appendices

The cliches chain_file_definition and keyed_file_dcefinition are both data cliches which specify how to
define a file of records. The cliche chain_file_definition is discussed in detail in Chapter Il The cliche
keyed_file_definition is very similar, Both cliches rely heavily on genceric packages defined in the package
FUNCTIONS (scc Appendix B).

with FUNCTIONS;
use FUNCTIONS;
cliche CHAIN_FILE_DEFINITION is
primary roles FILE_NAME;
described roles FILE_NAME:
comment "defines a file named {the Tile_name} of chain records";
constraints
RENAME("DATA_RECORD", FILE_NAME_ROOT({the file_name}));
end constraints;

DATA_RECORDS_NAME: constant STRING := {the file_name};
subtype DATA_RECORD_INDEX_TYPE is INDEX_TYPE;
type DATA_RECORD_TYPE is
record
{the data}:
NEXT: DATA_RECORD_INDEX_TYPE;
end record;
package DATA_RECORD_IO is
new CHAINED_IO(DATA_RECORD_TYPE, DATA_RECORD_INDEX_TYPE);
DATA_RECORDS: DATA_RECORD_IO.FILE_TYPE;
end CHAIN_FILE_DEFINITION:

with FUNCTIONS;
use FUNCTIONS;
cliche KEYED_FILE_DEFINITION is
primary roles FILE_NAME;
described roles FILE_NAME;
comment “defines a keyed file named {the file_name} of records";
constraints
RENAME ("DATA_RECORD", FILE_NAME_ROOT({the file_name}));
end constraints;

DATA_RECORDS_NAME: constant STRING := {the file_name};
subtype DATA_RECORD_KEY_TYPE is STRING(1..{the key_length});
type DATA_RECORD_TYPE is

record

{the data};

end record;
package DATA_RECORD_IO is

new KEYED_TO(DATA_RECORD_TYPE, DATA_RECORD_KEY_TYPE);
DATA_RECORDS: DATA_RECORD_IOQ.FILE_TYPE;

end KEYED_FILE_DEFINITION;

Cliche Library 217

‘The cliche file_enumeration is an enumerator which reads a file sequentially, enumerating the records in
it. As discussed in Chapter 11 it has the same basic structure as any other enumerator.

cliche FILE_ENUMERATION is
primary roles FILE;
described roles FILE;
comment "enumerates the records in {the file}";
constraints
RENAME ("DATA_RECORD", SINGULAR_FORM({the file}));
DEFAULT({the file_name}, CORRESPONDING_FILE_NAME({the file}));
end constraints;

FILE: {};
DATA_RECORD: {};
begin
FILE := {the input file};
OPEN(FILE, IN_FILE, {the fite_name});
while not {END_OF_FILE, the empty_test}(FILE) loop
{{READ, the element_accessor}, the step}(FILE, DATA_RECORD);
{DATA_RECORD, the output data_record};
end loop;
CLOSE(FILE);
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLOSE(FILE}); PUT("Data Base Inconsistent");
when others => CLOSE(FILE); raise;
end FILE_ENUMERATION;

The cliche file_accumulation is an accumulator. It is very similar the the cliche file_cnumeration except
that it essentially performs the inverse operation. It takes in a serics of records and writes them scquentially
into a file.

with DIRECT_IO;
cliche FILE_ACCUMULATION is
primary roles FILE;
described roles FILE, DATA_RECORD;:
comment “"creates a file containing {the data_record}";
constraints
RENAME("DATA_RECORD", SINGULAR_FORM({the file}));
DEFAULT({the file_name}, CORRESPONDING_FILE_NAME({the file})):
end constraints;

FILE: {};
DATA_RECORD: {};
begin
FILE := {the file};
{OPEN, the zero}(FILE, OUT_FILE, {the file_name});
Toop
{WRITE, the accumulator}(FILE, {the data_record});
end loop;
{FILE, the output resulting_file}:
CLOSE(FILE);
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLOSE(FILE); PUT("Data Base Inconsistent"):
when others => CLOSE{FILE); raise;
end FILE_ACCUMULATION;

218 Appendices

‘The cliche chain_cnumeration (which is discussed in detail in the beginning of Chapter H1) enumcrates
the records in a chain. An interesting aspect of the cliche is that it makes use of a number of constraints in
order to fill in roles of the cliche based on the definitions for the files referenced.

cliche CHAIN_ENUMERATION is
primary roles MAIN_FILE, CHAIN_FILE, MAIN_FILE_KEY;
described roles MAIN_FILE, CHAIN_FILE, MAIN_FILE_KEY;
comment "enumerates the chain records in {the chain_file} starting
from the header record indexed by {the main_file_key}":
constraints
RENAME ("MAIN_RECORD", SINGULAR_FORM({the main_file}));
RENAME ("CHAIN_RECORD", SINGULAR_FORM({the chain_file}));
DEFAULT({the main_file_name},
CORRESPONDING_FILE_NAME({the main_file}));
DEFAULT({the chain_file_name},
CORRESPONDING_FILE_NAME({the chain_file})):
DEFAULT({the main_file_chain_field},
CHAIN_FIELD({the main_file}, {the chain_file}));
DEFAULT({the step}, CHAIN_FIELD({the chain_file}, {the chain_file}));
end constraints;

CHAIN_FILE: {};
CHAIN_RECORD: {3};
CHAIN_RECORD_INDEX: {};
MAIN_FILE: {};
MAIN_RECORD: {};

procedure CLEAN_UP is
begin
CLOSE(CHAIN_FILE); CLOSE(MAIN_FILE);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
CHAIN_FILE := {the chain_file};
MAIN_FILE := {the main_file};
OPEN(CHAIN_FILE, IN_FILE, {the chain_file_name});
OPEN(MAIN_FILE, IN_FILE, {the main_file_namel});
READ(MAIN_FILE, MAIN_RECORD, {the input main_file_key}):
CHAIN_RECORD_INDEX := MAIN_RECORD.{the main_file_chain_field};
while not {NULL_INDEX, the empty_test}(CHAIN_RECORD_INDEX) loop
{READ, the element_accessor}(CHAIN_FILE, CHAIN_RECORD, CHAIN_RECORD_INDEX);
{CHAIN_RECORD, the output chain_record};
CHAIN_RECORD_INDEX := CHAIN_RECORD.{the step}:
end loop;
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP: PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end CHAIN_ENUMERATION;

Cliche Library 219

The cliche all_chains_cnumeration is similar to the cliche chain_cnumeration except that it enumerates all
of the records in a chain file. 1t contains a carcfully crafted inner loop which creates a one dimensional serics
of the chain records based on the inherently two dimensional structure of chains hanging off of main file
records.

with FUNCTIONS;
use FUNCTIONS;
cliche ALL_CHAINS_ENUMERATION is
primary roles MAIN_FILE, CHAIN_FILE;
described roles MAIN_FILE, CHAIN_FILE;
comment "enumerates the header records in {the main_file} and
enumerates the chain records in {the chain_file} starting
from each header record";
constraints
RENAME ("MAIN_RECORD", SINGULAR_FORM({the main_file}));
RENAME("CHAIN_RECORD", SINGULAR_FORM({the chain_file}))};
DEFAULT({the main_file_name},
CORRESPONDING_FILE_NAME({the main_file}));
DEFAULT{{the chain_file_name},
CORRESPONDING_FILE_NAME({the chain_file}));
DEFAULT({the main_file_chain_field},
CHAIN_FIELD({the main_file}, {the chain_file}));
DEFAULT({the chain_file_chain_field},
CHAIN_FIELD({the chain_file}, {the chain_file}));
end constraints;

CHAIN_FILE: {};
CHAIN_RECORD: {};
CHAIN_RECORD_INDEX: {};
MAIN_FILE: {}:
MAIN_RECORD: {};

procedure CLEAN_UP is
begin
CLOSE(CHAIN_FILE): CLOSE(MAIN_FILE);
exception
when STATUS_ERRGR => return;
end CLEAN_UP;
begin
CHAIN_FILE := {the chain_file};
MAIN_FILE := {the main_file};
OPEN(CHAIN_FILE, IN_FILE, {the chain_file_name});
OPEN(MAIN_FILE, IN_FILE, {the main_file_name});
CHAIN_RECORD_INDEX := NULL_INDEX;
loop
while NULL_INDEX{CHAIN_RECORD_INDEX) and not END_OF_FILE(MAIN_FILE) loop
READ(MAIN_FILE, MAIN_RECORD);
CHAIN_RECORD_INDEX := MAIN_RECORD.{the main_file_chain_field};
end loop;
exit when NULL_INDEX(CHAIN_RECORD_INDEX):
READ(CHAIN_FILE, CHAIN_RECORD, CHAIN_RECORD_INDEX):
{CHAIN_RECORD, the output chain_record};
CHAIN_RECORD_INDEX := CHAIN_RECORD.{the chain_file_chain_field};
end loop;
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP: PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise:
end ALL_CHAINS_ENUMERATION;

220 Appendices

As discussed at fength in Chapter HI, the cliche simple_report is very similar to the cliche simple-report.

with CALENDAR, FUNCTIQNS, TEXT_IO;
use CALENDAR, FUNCTIONS, TEXT_IO;
cliche SIMPLE_REPORT is
primary roles ENUMERATOR, PRINT_ITEM, SUMMARY;
described roles FILE_NAME, TITLE, ENUMERATOR, COLUMN_HEADINGS,
PRINT_ITEM, SUMMARY;
comment "prints a report of {the input structure of the enumerator}";
constraints
DEFAULT({the file_name}, "report.txt");
DERIVED({the line_limit},
66-SIZE_IN_LINES({the print_item})
-STZE_IN_LINES({the summary})):
DEFAULT({the print_item}, CORRESPONDING_PRINTING({the enumerator}));
DEFAULT({the column_headings},
CORRESPONDING_HEADINGS({the print_item}));
end constraints;

use INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DATA: {};
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..{}):
procedure CLEAN_UP is
begin
SET_OUTPUT(STANDARD_OUTPUT);
CLOSE(REPORT);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
CREATE(REPORT, OUT_FILE, {the file_name});
DATA := {the input structure of the enumerator};
SET_OUTPUT{REPORT);
TITLE := {the title};
NEW_LINE(4); SET_COL(20): PUT(CURRENT_DATE); NEW_LINE(2);
SET_COL(13); PUT(TITLE); NEW_LINE(60);
while not {the empty_test of the enumerator}(DATA) loop
if LINE > {the line_limit} then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(23); PUT(TITLE);
SET_COL(61); PUT(CURRENT_DATE)}; NEW_LINE(2);
{the column_headings}({CURRENT_OUTPUT, modified});
end if;
{the print_item}({CURRENT_OUTPUT, modified},
{the element_accessor of the enumerator}(DATA));
DATA := {the step of the enumerator}{DATA);
end loop;
{the summary};
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end SIMPLE_REPORT;

Cliche Library 221

The next two cliches (file_selection and file_summarization) are specialized cliches used during the
construction of the program MODEL_DEFECTS_REPORT in Chapter Il They arc discussed in detail in that
chapter.

with DIRECT_IO;
cliche FILE_SELECTION is
primary roles SOURCE_FILE;
described roles SOURCE_FILE, SELECTION_TEST, RECORD_KEY_ACCESSOR;
comment "creates a file containing selected record keys for
{the source_file}";
constraints
RENAME ("RECORD_KEY", RECORD_KEY_ROOT({the source_file}));
end constraints;

package SELECTION_IO is new DIRECT_IO(RECORD_KEY_TYPE);
use SELECTION_IO;
SELECTIONS: SELECTION_IO.FILE_TYPE;

DATA: {};
DATUM: {};
begin

DATA := {the source_file};
CREATE(SELECTIONS, INOUT_FILE);
while not {the empty_test of the enumerator}(DATA) loop
DATUM := {the element_accessor of the enumerator}(DATA);
if {the selection_test}(DATUM) then
WRITE(SELECTIONS, {the record_key_accessor}{(DATUM));

end if;
DATA := {the step of the enumerator}(DATA);
end loop;
{SELECTIONS, the output selection_file};
CLOSE(SELECTIONS);
exception

when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLOSE(SELECTIONS); PUT("Data Base Inconsistent");
when others => CLOSE(SELECTIONS); raise;
end FILE_SELECTION;

222 Appendices

with DIRECT_IO;
cliche FILE_SUMMARIZATION is
primary roles SOURCE_FILE;
described roles SOURCE_FILE;
comment "creates a file summarizing the frequency of occurrence of
the record keys stored in {the source file}";
constraints
RENAME ("SOURCE_RECORD", SINGULAR_FORM({the source_file}));
RENAME ("RECORD_KEY", RECORD_KEY_ROOT({the source_file}));
DEFAULT({the source_file_name},
CORRESPONDING_FILE_NAME({the source_file}));
end constraints;

type SUMMARY_TYPE is
record
COUNT: INTEGER;
KEY: RECORD_KEY_TYPE;
end record;
package SUMMARY_IQ is new DIRECT_IO{SUMMARY_TYPE);
use SUMMARY_IO;
SUMMARIES: SUMMARY_IO.FILE_TYPE;

SOURCE_FILE: {};

function BUILD_SUMMARY(COUNT: INTEGER; KEY: RECORD_KEY_TYPE)
return SUMMARY_TYPE is
begin return SUMMARY_TYPE'(COUNT, KEY); end BUILD_SUMMARY;
function SUMMARY_GREATER_THAN(X: SUMMARY_TYPE; Y: SUMMARY_TYPE)
return BOOLEAN is
begin return X.COUNT > Y.COUNT; end SUMMARY_GREATER_THAN;
procedure SORT_SOURCE_RECORDS is
new SORT_FILE(RECORD_KEY_TYPE, SOURCE_RECORD_IO.FILE_TYPE,
SOURCE_RECORD_IO.POSITIVE_COUNT);
procedure SORT_SUMMARIES is
new SORT_FILE(SUMMARY_TYPE, SUMMARY_IO.FILE_TYPE,
SUMMARY_IQ.POSITIVE_COUNT, SUMMARY_GREATER_THAN);
procedure SUMMARIZE_SOURCE_RECORDS is
new SUMMARIZE_FILE(RECORD_KEY_TYPE, SOURCE_RECORD_IO.FILE_TYPE,
SUMMARY_TYPE, SUMMARY_IO.FILE_TYPE, BUILD_SUMMARY);
procedure CLEAN_UP is
begin
CLOSE(SOURCE_FILE); CLOSE(SUMMARIES);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
SOURCE_FILE := {the source_file};
OPEN(SOURCE_FILE, INOUT_FILE, {the source_file_name});
CREATE (SUMMARIES, INOGUT_FILE);
SORT_SOURCE_RECORDS (SOURCE_FILE);
SUMMARIZE_SOURCE_RECORDS(SOURCE_FILE, SUMMARIES);
SORT_SUMMARIES{SUMMARIES);
{SUMMARIES, the output summaries};
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end FILE_SUMMARIZATION;

B - Supporting Functions

This appendix shows the supporting functions which are required in order to make the example programs
in the scenarios in Chapters 1 & 111 run. Particularly for Ada, understanding these functions is a prerequisite
for gaining a complete understanding of the programs in the scenarios.

Lisp Functions

The Lisp programs in Chapter 1l arc built almost entirely out of standard Lisp Machine functions. Only
two non-standard functions are used.

The function DISPLAY-REPORT reads in the file "report. txt" and prints it out on the screen. It is useful
for debugging report programs. The only complicated thing about the program is that it abbreviates groups
of consecutive blank lines.

(DEFUN DISPLAY-REPORT ()
(WITH-OPEN-FILE (FILE “"report.txt" ':IN)
(DO ((CHAR (TYI FILE NIL) (TYI FILE NIL))
(NEWLINES 1))
(NIL)
(D0 () ((NOT (EQ CHAR #EWLINE)})
(INCF NEWLINES)
(SETQ CHAR (TYI FILE NIL}))
(COND ({= NEWLINES 1) (TERPRI))
((= NEWLINES 2) (TERPRI) (TERPRI))
((> NEWLINES 2)
(FORMAT T "~%<~D blank lines>~%" (1- NEWLINES))))
(SETQ NEWLINES 0)
(If (NULL CHAR) (RETURN))
(TYO CHAR)))
(VALUES))

The function CHARPOS querics an output file in order to determine the line position where the next
character will go. 1t can be looked at as merely an abbreviation for the standard Lisp Machine message
shown. (The name of this function is carried over from MacLisp.)

(DEFUN CHARPQS (STREAM)
(SEND STREAM ':READ-CURSORPOS ':CHARACTER))

224 Appendices

Ada Functions

Several non-standard Ada functions and packages are uscd in the scenario in Chapter Ll The procedure
CREATE_TEST_RECORDS creates a sct of test of records (shown in Figure 7) in the files DEFECTS, MODELS,
REPAIRS, and UNITS. These records are used to test the programs UNIT_REPAIR_REPORT and
MODEL_DEFECTS_REPORT in the scenario in Chapter [11.

with CALENDAR, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, MAINTENANCE_FILES, TEXT_IO;
procedure CREATE_TEST_RECORDS is

use DEFECT_IO, MODEL_IO, REPAIR_IO, UNIT_IO;

procedure CLEAN_UP is
begin
CLOSE(DEFECTS); CLOSE(MODELS); CLOSE(REPAIRS); CLOSE(UNITS);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
CREATE(DEFECTS, OUT_FILE, DEFECTS_NAME);
CREATE(MODELS, OUT_FILE, MODELS_NAME):
CREATE(REPAIRS, OUT_FILE, REPAIRS_NAME);
CREATE(UNITS, OUT_FILE, UNITS_NAME);

WRITE(MODELS, MODEL_TYPE'("Opal Sorter ", "Perth Mining "}, "0S1");
WRITE (MODELS, MODEL_TYPE'("Gas Analyzer ", "Benson Labs "), "GA2");
WRITE(DEFECTS, DEFECT_TYPE'("Power supply thermistor blown ", "0S1"),
"05’03"):
WRITE(DEFECTS, DEFECT_TYPE'("Control board cold solder joint ", "GA2"},
"GA‘ll"):
WRITE{DEFECTS, DEFECT_TYPE'("Clogged gas injection port ", "GA2"),
_"GA'BZ");
WRITE(REPAIRS,
REPAIR_TYPE'(TIME_OF(1983, 9, 14), "GA-32",
"Probably caused by humidity. ", 0),
1);
WRITE(REPAIRS,
REPAIR_TYPE'(TIME_OF(1985, 1, 23), "GA-11",
"Took two days to find. ",o1),
2);
WRITE(REPAIRS,
REPAIR_TYPE' (TIME_OF(1985, 2, 25), "0S-03",
"Sorter arm got stuck. v, 0),
3);
WRITE(REPAIRS,
REPAIR_TYPE'(TIME_OF(1985, 3, 19), "GA-32",
"Port Diameter seems below specs.", 2),
4);

WRITE(UNITS, UNIT_TYPE'("0S1", 3), "0S1-271");
WRITE(UNITS, UNIT_TYPE'("GA2", 4), "GA2-342");
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP: PUT("Data Base Inconsistent");
when others => CLEAN_UP; raise;
end CREATE_TEST_RECORDS;

Supporting Functions 225

"The procedure DISPLAY_REPORT is essentially identical to the function DISPLAY-REPORT cxcept that it is
rendered in Ada syntax.

with TEXT_IO;
use TEXT_IO;
procedure DISPLAY_REPORT is
package INT_IO is new INTEGER_IO(INTEGER);
use INT_IO;
CHAR: CHARACTER;
LINE_TERMINATORS: COUNT;
REPORT: TEXT_IO.FILE_TYPE;
begin
OPEN(REPORT, IN_FILE, "report.txt");
LOOP
LINE_TERMINATORS := 0;
while not END_OF_FILE(REPORT) and then END_OF_LINE(REPORT) loop
SKIP_LINE(REPORT);
LINE_TERMINATORS := LINE_TERMINATORS+1;
end loop;
if LINE_TERMINATORS > 2 then
NEW_LINE; PUT("<"); PUT(INTEGER(LINE_TERMINATORS-1), 2);
PUT(" blank tines>"); NEW_LINE;
elsif LINE_TERMINATORS > 0 then
NEW_LINE(LINE_TERMINATORS);
end if;
exit when END_OF_FILE(REPORT);
GET(REPORT, CHAR):
PUT(CHAR);
end loop;
CLOSE (REPORT);
end DISPLAY_REPORT;

The package FUNCTIONS is an integral part of the scenario in Chapter [Il. It defines a number of
non-standard functions and packages which arc used in the programs created. The package declaration for
the package FUNCTIONS is shown on the next two pages.

In order to support 170 for integers, the package FUNCTIONS creates a package INT_IO which is an
instantiation of the standard Ada package INTEGER_IO. The package FUNCTIONS then defines a type
INDEX_TYPE which is used when instantiating chain files. (Sec the definition of the package
MAINTENANCE_FILES in Chapter II1.)

The function FORMAT_DATE converts times into strings of the form "mm/dd/yyyy". The type
DATE_STRING is uscd to declare variables containing strings of this form.

226 Appendices

‘The function QUERY_USER_FOR_DATE prints out a prompt string and reads in a date. 'This operation is
represented as a function instead of as a cliche for two reasons. First, in contrast to query_uscr_for_key,
QUERY_USER_FOR_DATE docs not require any file 170 and therefore can be cfficiently realized as a
subroutince. Sccond, QUERY_USER_FOR_DATE is a very simple operation which is unlikely to be modified by a
programmer. As a result, there is no advantage to having it expand in-line.

‘The generic procedures SORT_FILE and SUMMARIZE_FILE arc uscd by the cliche FILE_SUMMARIZATION.
‘These operations are represented as generic procedures rather than as cliches because the generic mechanism
is fully adequate for representing them. 'The use of cliches is reserved for situations where other Ada

mechanisms are not sufficient.

The generic procedure SORT_FILE sorts the records in a file. It takes a functional parameter (">") which
specifies how to order the records. The generic procedure SUMMARIZE_FILE creates a summary file. (The
operation of summarization is discussed in Chapter I11.)

The generic packages CHAINED_T0 and KEYED_IO define the operations which are required to operate on
chain filc and keyed files respectively. These packages are instantiated when defining the files in the package
MAINTENANCE_FILES.

with CALENDAR, IO_EXCEPTIONS, TEXT_IO;

use CALENDAR, TEXT_IO;

package FUNCTIONS is
package INT_IO is new INTEGER_IO(INTEGER);
subtype INDEX_TYPE is INTEGER range 1..INTEGER'LAST;
subtype DATE_STRING_TYPE is STRING(1..10);
function FORMAT_DATE(DATE: TIME) return DATE_STRING_TYPE;
function QUERY_USER_FOR_DATE(PROMPT: STRING) return TIME;

generic
type ITEM_TYPE is private;
type FILE_TYPE is limited private;
type INDEX_TYPE is range <>;
with function ">"(X: ITEM_TYPE; Y: ITEM_TYPE) return BOOLEAN is <>;
with procedure READ{FILE: FILE_TYPE; ITEM: out ITEM_TYPE) is <>;
with procedure WRITE(FILE: FILE_TYPE; ITEM: ITEM_TYPE;
TO: INDEX_TYPE) is <>
with procedure SET_INDEX(FILE: FILE_TYPE; TO: INDEX_TYPE) is <>;
with function INDEX(FILE: FILE_TYPE) RETURN INDEX_TYPE is <>;
with function END_OF_FILE(FILE: FILE_TYPE) return BOOLEAN is <;
procedure SORT_FILE(FILE: FILE_TYPE);

generic
type FROM_ITEM_TYPE is private;
type FROM_FILE_TYPE is limited private;
type TO_ITEM_TYPE is limited private;
type TO_FILE_TYPE is limited private;
with function BUILD{COUNT: INTEGER; ITEM: FROM_ITEM_TYPE)
return TO_ITEM_TYPE;
with procedure READ(FILE: FROM_FILE_TYPE; ITEM: out FROM_ITEM_TYPE) is <;
with procedure WRITE(FILE: TO_FILE_TYPE; ITEM: TO_ITEM_TYPE) is <;
with function END_OF_FILE(FILE: FROM_FILE_TYPE) return BOOLEAN is <>
with procedure RESET(FILE: TO_FILE_TYPE) is <>;
procedure SUMMARIZE_FILE(FROM_FILE: FROM_FILE_TYPE; TO_FILE: TO_FILE_TYPE);

Supporting Functions 227

generic
type ELEMENT_TYPE is private;
type INDEX_TYPE is range <>;
package CHAINED_IO is
package UNDERLYING_IO is new DIRECT_IO(ELEMENT_TYPE);
type FILE_TYPE is new UNDERLYING_IO.FILE_TYPE;
type FILE_MODE is new UNDERLYING_IO.FILE_MODE;

procedure CREATE(FILE: in out FILE_TYPE; MODE: FILE_MODE; NAME: STRING);
procedure OPEN(FILE: in out FILE_TYPE; MODE: FILE_MODE; NAME: STRING);
procedure CLOSE(FILE: in out FILE_TYPE);

procedure READ(FILE: FILE_TYPE; ITEM: out ELEMENT_TYPE; FROM: INDEX_TYPE);
procedure WRITE(FILE: FILE_TYPE; ITEM: ELEMENT_TYPE; TO: INDEX_TYPE);
function END_OF_FILE(FILE: FILE_TYPE) return BOOLEAN;

function FREE_INDEX(FILE: FILE_TYPE) return INDEX_TYPE;

function NULL_INDEX(INDEX: INDEX_TYPE) return BOOLEAN;

function NULL_INDEX return INDEX_TYPE;

STATUS_ERROR: exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR: exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR: exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR: exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR: exception renames IQ_EXCEPTIONS.DEVICE_ERROR;
END_ERROR: exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR: exception renames IO_EXCEPTIONS.DATA_ERROR;
end CHAINED_IO;

generic
type ELEMENT_TYPE is private;
type KEY_TYPE 1is private;
package KEYED_IOQ is
type COMBINED_TYPE is
record
KEY: KEY_TYPE;
ELEMENT: ELEMENT_TYPE;
end record;
package UNDERLYING_IO is new DIRECT_IO(COMBINED_TYPE);
type FILE_TYPE 1is new UNDERLYING_IO.FILE_TYPE;
type FILE_MODE 1is new UNDERLYING_IO.FILE_MODE;

procedure CREATE(FILE: in out FILE_TYPE; MODE: FILE_MODE; NAME: STRING);
procedure OPEN(FILE: in out FILE_TYPE; MODE: FILE_MODE; NAME: STRING);
procedure CLOSE(FILE: in out FILE_TYPE);

procedure READ(FILE: FILE_TYPE: ITEM: out ELEMENT_TYPE; FROM: KEY_TYPE);
procedure READ(FILE: FILE_TYPE; ITEM: out ELEMENT_TYPE);

procedure WRITE(FILE: FILE_TYPE; ITEM: ELEMENT_TYPE; TO: KEY_TYPE);
procedure SET_KEY{FILE: FILE_TYPE; KEY: KEY_TYPE);

function END_OF_FILE(FILE: FILE_TYPE) return BOOLEAN;

STATUS_ERROR: exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR: exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR: exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR: exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR: exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR: exception renames IO_EXCEPTIONS.END_ERROR:
DATA_ERROR: exception renames IO_EXCEPTIONS.DATA_ERROR;
end KEYED_IO;
end FUNCTIONS;

228 Appendices

‘The next four pages show the body of the package FUNCTIONS. ‘The functions FORMAT_DATE and
QUERY_USER_FOR_DATE arc straightforward. 'The genceric function SORT_FILE uscs an extremely simple but
incfficient selection sort. The generic function summarize_file is based on a modified form of the cliche
group detector. 1t counts up the number of clements in cach group. The generic packages CHAINED_IO and
KEYED_IO arc large because they have to define all of the 1/0 functions to be used on these types of files.
However, each of the 1/0 functions is by itself trivial. All of the functions in the package FUNCTIONS arc
intended merely to be minimal support functions, and not examples of good style.

package body FUNCTIONS is
function FORMAT_DATE(DATE: TIME) return DATE_STRING_TYPE is
use INT_IO;
MONTH_STRING: STRING(1..2);
DAY_STRING: STRING(1..2);
YEAR_STRING: STRING(1..4);
begin
PUT(MONTH_STRING, MONTH{DATE)); PUT(DAY_STRING, DAY(DATE));
PUT(YEAR_STRING, YEAR(DATE));
return MONTH_STRING & "/" & DAY_STRING & "/" & YEAR_STRING;
end FORMAT_DATE;

function QUERY_USER_FOR_DATE(PROMPT: STRING) return TIME is
use INT_I0;
MONTH: MONTH_NUMBER;
DAY: DAY_NUMBER;
YEAR: YEAR_NUMBER;
DATE: TIME;
begin
loop
begin
NEW_LINE;
PUT("Enter Date of " & PROMPT); NEW_LINE;
PUT("Month: "); GET(MONTH);
PUT("Day: "); GET{DAY);
PUT("Year: "); GET(YEAR);
DATE := TIME_OF(YEAR, MONTH, DAY);
exit;
exception
when DATA_ERROR | CONSTRAINT_ERROR | TIME_ERROR =>
PUT{"Invalid DATE"); NEW_LINE;
end;
end loop;
return DATE;
end QUERY_USER_FOR_DATE;

Supporting IFunctions 229

procedure SORT_FILE(FILE: FILE_TYPE) is
EDGE: INDEX_TYPE := 1;
MAX: INDEX_TYPE:
EDGE_ITEM; ITEM_TYPE;
MAX_ITEM: ITEM_TYPE;
CURRENT_ITEM: ITEM_TYPE;

begin
Toop

SET_INDEX(FILE, EDGE);

exit when END_OF_FILE{FILE);

READ(FILE, EDGE_ITEM);

MAX := EDGE;

MAX_ITEM := EDGE_ITEM;

while not END_OF_FILE(FILE) loop
READ(FILE, CURRENT_ITEM);
if CURRENT_ITEM > MAX_ITEM then

MAX := INDEX(FILE)-1;
MAX_ITEM := CURRENT_ITEM;

end if;

end loop;

if MAX /= EDGE then
WRITE(FILE, MAX_ITEM, EDGE);
WRITE(FILE, EDGE_ITEM, MAX);

end if;

EDGE := EDGE+1;

end loop;

SET_INDEX(FILE, 1);
end SORT_FILE:

procedure SUMMARIZE_FILE(FROM_FILE: FROM_FILE_TYPE; TO_FILE: TO_FILE_TYPE) is
COUNT: INTEGER := 1;
CURRENT: FROM_ITEM_TYPE;
PRIOR: FROM_ITEM_TYPE:
begin
if not END_OF_FILE(FROM_FILE) then
READ(FROM_FILE, PRIOR);
while not END_OF_FILE{FROM_FILE) loop
READ(FROM_FILE, CURRENT);:
if CURRENT /= PRIOR then
WRITE(TO_FILE, BUILD(COUNT, PRIOR));

COUNT := 1;
PRIOR := CURRENT;
else
COUNT := COUNT+1;
end if;
end loop;

WRITE(TO_FILE, BUILD{COUNT, CURRENT));
RESET(TO_FILE);
end if;
end SUMMARIZE_FILE;

230 Appendices

package body CHAINED_IO is
procedure CREATE(FILE: in out FILE_TYPE; MODE: FILE_MODE; NAME: STRING) is
begin .
UNDERLYING_IO.CREATE(FILE, MODE, NAME);
end CREATE;
procedure OPEN(FILE: in out FILE_TYPE; MODE: FILE_MODE; NAME: STRING) is
begin UNDERLYING_IO.OPEN(FILE, MODE, NAME); end OPEN;
procedure CLOSE(FILE: in out FILE_TYPE) is
begin UNDERLYING_IO.CLOSE(FILE); end CLOSE;
procedure READ{FILE: FILE_TYPE; ITEM: out ELEMENT_TYPE;
FROM: INDEX_TYPE) is
begin
UNDERLYING_IO.READ(FILE, ITEM, UNDERLYING_I0.POSITIVE_COUNT(FROM));
end READ;
procedure WRITE(FILE: FILE_TYPE; ITEM: ELEMENT_TYPE; TO: INDEX_TYPE) is
begin
UNDERLYING_IO.WRITE(FILE, ITEM, UNDERLYING_IO.POSITIVE_COUNT(TO));
end WRITE;
function END_OF_FILE(FILE: FILE_TYPE) return BOOLEAN is
begin return UNDERLYING_IO.END_OF_FILE(FILE); end END_OF_FILE;
function FREE_INDEX(FILE: FILE_TYPE) return INDEX_TYPE is
begin return 1 + UNDERLYING_IO.SIZE(FILE); end FREE_INDEX;
function NULL_INDEX(INDEX: INDEX_TYPE) return BOOLEAN is
begin return INDEX = 0; end NULL_INDEX;
function NULL_INDEX return INDEX_TYPE is
begin return 0; end NULL_INDEX;
end CHAINED_IO;

Supporting Functions 231

package body KEYED_IO is
procedure CREATE(FILE: in out FILE_TYPE; MODE: FILE_MODE; NAME: STRING) is
begin
UNDERLYING_IO.CREATE(FILE, MODE, NAME);
end CREATE;
procedure OPEN(FILE: in out FILE_TYPE; MODE: FILE_MODE; NAME: STRING) is
begin UNDERLYING_IO.OPEN{FILE, MODE, NAME); end OPEN;
procedure CLOSE(FILE: in out FILE_TYPE) is
begin UNDERLYING_IO.CLOSE(FILE); end CLOSE;
procedure SET_KEY(FILE: FILE_TYPE; KEY: KEY_TYPE) is
COMBINED: COMBINED_TYPE;
I: UNDERLYING_IO.POSITIVE_COUNT;
begin
UNDERLYING_IO.RESET(FILE);
while not UNDERLYING_IO.END_OF_FILE(FILE) loop
UNDERLYING_IO.READ(FILE, COMBINED);
if COMBINED.KEY = KEY then
I := UNDERLYING_IO.INDEX(FILE)-1;:
UNDERLYING_IO.SET_INDEX(FILE, I);
exit;
end if;
end loop;
end SET_KEY;
procedure READ(FILE: FILE_TYPE; ITEM: out ELEMENT_TYPE; FROM: KEY_TYPE) is
COMBINED: COMBINED_TYPE;
begin
SET_KEY(FILE, FROM);
UNDERLYING_IO.READ(FILE, COMBINED);
ITEM := COMBINED.ELEMENT;
end READ;
procedure READ(FILE: FILE_TYPE; ITEM: out ELEMENT_TYPE) is
COMBINED: COMBINED_TYPE;
begin
UNDERLYING_IO.READ(FILE, COMBINED);
ITEM := COMBINED.DATA;
end READ;
procedure WRITE(FILE: FILE_TYPE; ITEM: ELEMENT_TYPE; TO: KEY_TYPE) is
begin
SET_KEY(FILE, T0);
UNDERLYING_IO.WRITE(FILE, COMBINED_TYPE'(TO, ITEM));
end WRITE;
function END_OF_FILE(FILE: FILE_TYPE) return BOOLEAN is
begin return UNDERLYING_IO.END_OF_FILE(FILE); end END_OF_FILE;
end KEYED_IO;
end FUNCTIONS;

233

References

[Ada 83] "Military Standard Ada Programming l.anguage”,
U.S. Department of Defense, ANSI/MIL-STD-1815A, January 1983.

[Balzer 81] R. Balzer, "T'ransformational Implementation: An Example”,
IEEETSE V7 #1, January 1981.
[Barstow 77] D.R. Barstow, "Automatic Construction of Algorithms and Data Structures
Using A Knowledge Base of Programming Rules”, (PhID Thesis)
Stanford AIM-308, November 1977,
[Barstow 82] D.R. Barstow, R.DD. Duffey, S. Smoliar and S. Vestal,
"An Automatic Programming System to Support an Experimental Science”,
Sixth International Conference on Software Engineering, September 1982,
[Bassctt 84] P. Bassett, "esign Principles for Software Manufacturing Tools”,
Proccedings ACM-84, October 1984,
[Boylc 84] J.M. Boyle, "Program Reusability through Program Transformation™,
IEEETSE V10 #5. September 1984,
[Brotsky 84] ID. Brotsky, "An Algorithm for Parsing Flow Graphs",
(MS Thesis) MIT/Al/TR-704, March 1984,
[Budinsky 85] F. Budinsky, R. Holt and S. Zoky, "SRE - A Syntax Recognizing Editor",
Software Practice and Experience, 1985.
[Chapman 82] D. Chapman, "A Program Testing Assistant",
CACM V25 #9, Scptember 1982,
[Cheatham 84] T.E. Cheatham, "Reusability Through Program Transformations”,
IEEETSE V10 #5, September 1984.
[Cheng 84] 1.T. Cheng, E.D. Lock and N.S. Prywes, "Use of Very High Level Languages
and Program Gencration by Management Profcssionals”,
IEEETSE V10 #5, September 1984,
[Cyphers 82] D.S. Cyphers, " Automated Program Explanation”,
MIT/Al/WP-237, August 1982.
[Dolotta 76] T.A. Dolotta and J.R. Mashey, "An Introduction to the Programmer’s Workbench”,
Second International Conference on Software Engincering, October 1976.
[Donzeau-Gouge 751 V. Donzeau-Gouge et. al., "A Structure-Oricnted Program Editor;
A First Step Towards Computer Assisted Programming”,
Proceedings International Computing Symposium, Antibes France, 1975.
[Duffey 80] R.D. Duffey iI, "Formalizing the Expertise of the Assembler Language Programmer”,
MIT/AI/WP-203, September 1980.
[Faust 81] G.G. Faust, "Semiautomatic Translation of Cobol into Hibol",
{MS Thesis) MIT/1.CS/TR-256, March 1981,
[Fickas 831 S.F. Fickas, " Automating the Transformational Development of Software”,
(PhDD Thesis) USC Information Sciences Institute, 1SI/RR-83-108,
March 1983.
[Focus $4] Focus General Information Guide,
Information Builders Inc., New York, 1985,

[Frank 80] C. Irank, "A Step Towards Automatic Documentation”,
MIT/AL/WP-213, December 1980.

234 References

[Freudenberger 831 S.M. Freudenberger, J.T. Schwartz and M. Sharir, "Expericnce with the SETL
Optimizer”, ACM TOPLAS VI #1, January 1983.
[Green 811 C. Green er. al., "Rescarch on Knowledge-Based Programming and Algorithm
Design -- 19817, Kestret Institute, Palo Aito CA, 1981.
[Green & Rich 83] C. Green. D. Luckam, R. Balzer, T. Cheatham and C. Rich,
"Report on a Knowledge-Based Software Assistant”,
Rome Air Development Center, RADC-TR-83-195, August 1983.
[Harandi 83] M. Harandi, "A Knowledge-Based Programming Support Tool”,
Proccedings IEEE Trends and Applications Conference, May 1983.
[Kant 79] E. Kant, "Efficiency Considerations in Program Synthesis: A Knowledge-Based
Approach”, (PhD) Thesis) Stanford AIM-331, September 1979,
[Laubsch 81] 1. Laubsch and M. Eiscnstadt, "Domain Specific Debugging Aids for
Novice Programmers”, proceedings 1JCAI-81, August 1981.
[Lisp 84] Lisp Machinc documentation (release 4),
Symbuolics, Cambridge MA, 1984.

[Medina-Mora 81] R. Mcdina-Mora and P. Feiler, "An Incremental Programming Environment”,
IEEETSE V7 #5, September 1981.

[Mitchell 85] T.M. Mitchell, L.1. Steinberg and J.S. Shulman, "A Knowledge-Based Approach to
Design”, Rutgers 1.CSR-TR-65, January 1985.
[Neighbors 84] J.M. Neighbors, "The Draco Approach to Constructing Software from Reusable
Components”, [EEE TSE V10 #5, September 1984.
[Pitman 83] K.M. Pitman, "Interfacing to the Pregrammer’s Apprentice”,
MIT/AI/WP-244, February 1983,
[Reps 831 T. Reps, T. Teitelbaum and A. Demers, "Incremental Context-Dependent
Analysis for Language-Based Editors”, ACM TOPLAS VS5 # 3, July 1983,
[Recuse 84] Special Issue on Software Reusability,
' IEEE TSE V10 #35, September 1984.
[Rich 80] C. Rich, "Inspection Methods in Programming”,
(PhD thesis)y MI'T/AT/TR-604, Junc 1981.
[Rich 811 C. Rich, "A FFormal Representation for Plans in the Programmer’s Apprentice”,
proceedings IJCAL-81, August 1981.
[Rich 82] C. Rich, "Knowledge Representation Languages and Predicate Calculus:
How to Have Your Cake and Eat It Too", proceedings AAAL-82, August 1982,
[Rich 85] C. Rich, "The Iayered Architecture of a System for Reasoning about Programs”,
proccedings 1JCAL-85, August 1985.
[Rich & Shrobe 76] C. Rich and HLE. Shrobe, "Initial Report On A Lisp Programmer’s Apprentice”,
(MS ‘Thesis) MI'T/A1/TR-354, December 1976.
[Rich & Shrobe 78] C. Rich and H.L%. Shrobe, "Initial Report on A Lisp Programmer’s Apprentice”,
IEEE'ISE V4 #5, November 1978.
[Rich & Watcers 79] C. Rich, H.E. Shrobe and R.C. Watcers, "Computer Aided Evolutionary Design for
Software Engincering”, MIT/AIM-506, January 1979.
[Rich & Waters 81] C. Rich and R.C. Waters, "Abstraction, Inspection and Debugging in Programming”,
MIT/AIM-634, Junc 1981.
[Rich & Waters 82] C. Rich and R.C. Waters, "The Disciplined Use of Simplifying Assumptions”,
Proceedings of ACM SIGSOI-T Sccond Software kngincering Symposium: Workshop on
Rapid Prototyping, ACM SIGSO#-T Software Engineering Notes V7 #5, December 1982,

235

[Rich & Waters 83] C. Rich and R.C. Waters, "Formalizing Reusable Software Components™,
Proceedings I'l'I" Workshop on Reusability in Programming, September 1983.
[Ruth 81} G. Ruth, S. Alter and W. Martin, "A Very High Level Language for
Business Data Processing”, MI'T/1.CS/TR-254, 1981.
[Schwartz. 75] J.T. Schwartz, "On Programming”, An Interim Report on the SETL. Project,
Courant Institute of Mathematical Sciences, New York University, June 1975.
[Shapiro 81] . Shapiro, "Sniffer; a System that Understands Bugs”,
(MS Thesis) MIT/AIM-638, Junc 1981,
[Shapiro 83] . Shapiro and B. McCune. "The Intelligent Program Editor”,
Proceedings IEEE Trends and Applications Conference, May 1983.
[Shrobe 79] H.E. Shrobe, "Dependency Dirccted Reasoning for Complex Program
Understanding™, (PhD Thesis) MET/A1/TR-503, April 1979,
[Soloway 83] E. Soloway er. al., "MENO-1I: An Intelligent Programming Tutor"”,
Journat of Computer-Based Instruction V10 # 1, Summer 1983.
[Soloway 84] E. Soloway and K. Ehrlich, "Empirical Studies of Programming Knowledge",
IEEE TSE V10 #35, Scptember 1984,
[Stallman 81] R. Stallman, "Emacs the Extensible, Customizable, Self-Documenting Display
Editor”, Procecdings of ACM SIGPLAN-SIGOA Symposium on Text Manipulation,
ACM SIGPLAN Notices V16 #6, June 1981.
[Sterpe 851 P.J. Sterpe, "TEMPEST -- A Template Editor for Structured Text”,
(MS Thesis) MIT/AL/TR-843, May 1985,
[Sussman 79] G.J. Sussman, J. Holloway and T. Knight, "Computer Aided Evolutionary Design
for Digital Integrated Systems”, MIT/AIM-526, May 1979.
[Teiteibaum 81] 1. Teitelbaum and T. Reps, “The Cornel! Pregram Synthesizer: A Syntax-Directed
Prograinming Environment”™, CACM V24 #9, Scptember 1981,
[Teichroew 771 D.E. Teichroew and E.A. Hershey I11. "PSL/PSA: A Computer-Aided Technique for
Structured Documentation and Analysis of Information Processing Sysiems”,
TEEETSEE V3 #1, January 1977.
[Waters 76] R.C. Waters, "A System for Understanding Mathematical FORTRAN Programs”,
MIT/AIM-368, May 1976.
[Waters 78] R.C. Waters, "Automatic Analysis of the Logical Structure of Programs”,
(PhD Thesis) MI'T/AI/TR-492, December 1978.
[Waters 79] R.C. Waters, "A Method for Analyzing Loop Programs”,
IEEE TSE VS #3, May 1979.
[Waters 82a) R.C. Waters, "The Programmer’s Apprentice: Knowledge Based Program Editing",
IEEE TSE V8 #1, January 1982.
[Waters 82b] R.C. Waters, "Program Editors Should Not Abandon Text Oriented Commands”,
ACM SIGPLAN Notices V17 #7, July 1982.
[Waters 83al R.C. Waters, "LetS: An Expressional Loop Notation”,
MIT/AIM-680a, February 1983,
[Waters 83b] R.C. Waters, "User iFormat Conirol in a Lisp Prettyprinter”,
ACM TOPLAS V5§ #4, October 1983.
[Waters 84al R.C. Waters, "Expressional Loops™, Proceedings ACM SIGACT-SIGPLAN
Symposium on the Principles of Programming Languages, January 1984.

o~ . [Waters84blR.C. wws,*wx
\' L | Mrmmmnmmm
[wueale& Wi!c,"Pm Develk i Expla
lumnsslmm‘mw%
Mrmlmm coruary 1983

i s

CS-TR Scanning Project
Document Control Form Date: &~/ & /4¢

Report # AT-TIX -5)

Each of the following should be identified by a checkmark:
Originating Department:

A Artificial Intellegence Laboratory (Al)
[0 Laboratory for Computer Science (LCS)

Document Type:

/Z[_ Technical Report (TR) O Technical Memo (TM)

O Other:
Document Information Number of pages%ﬂaj
" Not to include DOD forms, printer in jons, etc... original pages only.
Originals are: Intended to be printed as :
¥ Single-sided or [J Single-sided or
O Double-sided X Double-sided
Print type:

[0 Typewriter [0 offsetPress [] Laser Print
] InkJetPrinter [T] Unknown ﬁ Other:
Check each if included with document:

\ﬂi DoD Form(&~) [0 Funding Agent Form O cover Page
O ~Spine [0 Printers Notes O Photo negatives
O Other:

Page Data:

Blank Pages vy sae nmsed:_1 '] \'\39,\ 154, 196 332

Photographs/Tonal Material ey sage numbed:

Other (ote descriptiopage number).
Description : , Page Number:
@ Tmacs M L-248) untb’xo TiT1L BLANK OKDIAT 0,
A<ie Ve WEESTE]\ ConTENTE, DLk, PAGHS)
| [~ 236
(#3‘1({8))?;»« NeouTigt, 006D (3\) \TRC;TJS (3)
Beove EATTe FIEs 00 PACH 2, 7,10,13:13, IS, ;w,’;eg) 11, n}/n(,
Scanning Agent Signoff:
Date Received: o/ & /96 Date Scanned: N /96 Date Returned: /13, 1 1€

Scanning Agent Signature: Q"/Uj&g\i\k)? c]'\) Crﬁ’g\u
’ \ - Rev %94 DSLCS Document Control Form cstrform.ved

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE rwhen Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BRI R NG FORM
. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
AI-TR-753
4. TITLE (and Subtitle) §. TYPE OF REPORY & PERIOD COVERED
KBEmacs: A Step Toward the Programmer's Technical Report
Apprentice S. PERFORMING ORG. AEPORT NUMBER
7. AUTHOR(e) %, CONTRACT OR GRANT NUMBER(s)
N00014-80-C-0505
Richard C. Waters MCS-7912179
MCS-8117633
9. PERFORMING ORGANIZATION NAME AND ADORESS 0. PROGRAM ELEMENT PROJECT, TASK

o 2 AREA & WORK UNIT NUMBERS
Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

T CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projécts Agency May, 1985
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 , 236
T4, MONITORING AGENCY NAME & ADORESS(I! difterent from Controlling Oftice) 18. SECURITY CLASS. (of this reaport)
Office of Naval Research Unclassified
Information Systems
Arlington, VA 22217 Se. soct&éﬁ&m_:nnow OOWNGRADING

16. DISTRIBUTION STATEMENT (of thie Report)

Distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 30, I dilterent from Report)

'8. SUPPLEMENTARY NOTES

None

13. KEY WORDS (Continue on reverse side i necessary and identily by dlock number) »
Computer Aided Design Programming Apprentice
Program Editing

Programming Enviornment

Reuseable Software Components

20. ABSTRACT (Contitnue on reverse side § y and identify by sleck number)

The Knowledge-Based Editor in Emacs (KBEmacs) is the current demonstration
system as part of the Programmers Apprentice project. KBEmacs is capable of
acting as a semi-expert assistant to a persom who is writing a program--
taking over some parts of the programming task. Using KBEmacs,it is possible
to construct a program issuing a series of high level commands. This series of

commands can be as much as an order of magnitude shorter than the program it
describes.

DD ,"%%, 1473 €oiTion OF 1 OV 651 OBSOLETE UNCLASSIFIED
S/N 0:02-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Ente

csphi:- :
Axm WBdAd v Heithes chawtrel Ry '
.bath of these problcna could be overcome 1i :be -ym mm

‘$nd

Feui! mm

WhG s, B TROY

Teabeategd Bewms N T4k

wakin

(R B Ry i T o

e i T S 575 ST

RATGE Fih A) mw e Yoe -]

vrotrtadsd seasgtilsinl Isisitiza
. SIBL ﬂf vsa4aaﬁJJl F&E

R PP ; - ELIZD AaM ¢ SR :

Y

' TEIAGYR DA THK N zgntw DAeY HORTAC i
: aznelony w*ﬁ&% ws

M50 e i P .
-) LTI RY

LPeavignt a8% iy BRSO WTiA,

ol Aaxssssd Laved e 2217130
vl » S eme3eve polismzoial
s L ?E L8L AV .pongnilaa

s Aﬁ?-ﬂw@?“ vf‘.fe

; ; LTSt s i uﬁ&m ¥ Mir ym& 5;&% W&’ﬁ 5T

' ‘imamt& ¥ m?i ETASTEIES STy

DE3tatioy BY fnitudiviaid

e R L R U e i e IS MBS GG XY THIGETARE waity &M;;;E " Y
EBTOR YRATLOME Santy A1
BEEL
w2 HE g Ao e Yhe amane 1 wodn sanein o el CORGW TAR BT
wLk i 2 ngieal habla Tsiugonl
& ’ ,giﬁzi?ib“z W ng»f
sasantelved gobmustnord
2IBSROGITD srEwdiol sid ngusé

i NS o At s bt e b Wb aemeer me SETeTT T IARTER TR

HES X E S H a:syﬁ 12 103lbd bussid-sghslvond s
L oBLLNae o gh ansigerd edy 3o Fupg an msseve
MGRTEG 2 i é} IRI68E Ii8gUe~kmee B 28 guliug
LR LT i sl 3o BiTeg emor Isvo golssy
] piiloesl Ss31507y 8 I0u1dencs
: s ne #d and sbasseo

. .asditsesh

R
£x
i‘w

BYY N0 B 88 A - wet sk »ﬁ’ﬁ gx;a:s ﬁ’%

T PIOELE -3 RROTR MR

coplexity .
prctotype 2

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

