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ABSTRACT

High-quality Interferometric Synthetic Aperture Radar (InSAR) surface
deformation data for field sites around the world has become widely
available over the past decade. Geomechanical models based on InSAR
data occur frequently in the literature but few methods of systematically
optimizing or comparing them are presented. This work discusses
parameterization errors for simplified models of strike-slip, normal, thrust
and reservoir-style faulting with the aim of identifying tests or
characteristics that can differentiate between error types uniquely. Fault
dip errors, slip errors and depth errors are modelled using a simple
homogeneous elastic half-space earth model. Simple difference maps prove
to be a powerful tool for identifying error types and parameter sensitivity,
with gradient maps and gradient difference maps useful for distinguishing
between similar cases. The fault dip proves to be more indicative of error
resolving capability than the faulting regime; errors on intermediately
dipping faults are very difficult to differentiate. More detailed modelling of
compound errors, complex geomechanical properties and noisy data is
proposed. The use of the tests as the starting point for an artificially
intelligent modelling package is briefly discussed.
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Chapter 1

Introduction

In recent years there has been an explosion of high-precision geodetic
surface deformation monitoring data from Global Positioning System (GPS)
stations and Synthetic Aperture Radar (SAR) satellites. The increasing
ease of access to the data and its increasingly broad coverage of sites of
diverse geological and geophysical interest has provoked a concordant boom
in geodetic modelling of surface deformation. Indeed, certain sites are the
subject of multiple competing models from different research groups using
completely different methodologies (eg. the In-Salah CO, sequestration
project in Algeria; Rutqvist, 2009 [13], Vasco, 2010 [23], Morris, 2011 [7]).
Despite the monotonically increasing number of competing models,
few concerted attempts have been made to compare and evaluate them
objectively against the ground-truth observed deformation. Optimizing a

single model is a difficult process subject to many discretionary judgements



including the choice of parameter space, the computational techniques
employed and the modeller’s biases regarding the site’s deformation history.
The diversity of models is both expected and vital because the problem is
inherently non-unique and remains relatively poorly constrained despite the
new data.

The goal of this research is to break the geodetic modelling problem
into its smallest component units and establish a set of criteria for
distinguishing different types of parameter errors. A suite of simple models
is presented covering four major fault types: strike-slip, normal, thrust and
reservoir-style faulting. The effect of known errors in the fault depth, dip
and slip distance on the resulting surface deformation is tested for each fault
type. The goal of these tests is to identify ways that parameter variations
in models of the same site can be precisely compared. However, this study
stops short of formulating any formal ranking or optimization criteria.

A simple homogeneous elastic half-space earth model is used so that
the Okada (1985 [8]) analytical solutions for deformation apply. The initial
models were generated using the Coulomb 3.2 software package of the
United States Geological Survey (USGS) (Toda, 2010 [22]). Difference
maps, deformation histograms and gradient maps are used to distinguish
between the error types based solely on their computed deformation
patterns.

The methodology for the models and the comparison tests are

described in detail in Chapter 2. The resulting tests, discussed in Chapter 3
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could be used for optimization of existing models, to compare rival models
of the same site or as the basis for an artificially intelligent modelling
package. These prospective applications and some of the difficulties that
will be faced using the tests with real data and more complex models are
discussed in Chapter 4. The MatLab code used to process the Coulomb 3.2

results and generate all of the figures is included in an appendix.
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Chapter 2

Methodology

The work presented here has two purposes: to develop a suite of surface
displacement models for different parameterization errors and geological
scenarios and to investigate simple tests that can identify different types of
errors in the model parameter space. This discussion of the methodology is
divided into two parts covering the geodetic models and the statistical

testing techniques.

2.1 Geodetic Modelling

The results presented in Section 3 are simple geomechanical models of the
surface deformation that results from earthquakes. A simple homogeneous
elastic half-space earth model has been used in combination with the

analytic Okada (1985 [8]) solutions for surface deformation and the

12



Coulomb 3.2 software package (Toda, 2010 [22]) to test the impact of
different types of parameterization errors as compared to the reference
model. In a case with real data, the reference model would be replaced by
the InSAR interferogram of the field site. The following sections discuss the

geodetic models in more detail.

2.1.1 Coulomb 3.2 Modelling Software

Coulomb 3.2 is a MatLab software package created at the USGS and
Woods Hole Oceanographic Institute (Lin and Stein, 2004, [6]; Toda et. al,
2005, [20]). Coulomb 3.2 has a well-developed graphical user interface, but
all of the source code is accessible to the user. Its primary purpose is to
calculate static stress transfers due to large earthquakes according to an
implementation of the Coulomb Failure Criterion utilizing source and
receiver faults. Coulomb 3.2 is very strong graphically and the majority of
the figures in the results section were created either in Coulomb 3.2, by
modifying the Coulomb 3.2 source code, or by reprocessing the raw
Coulomb 3.2 output.

Coulomb 3.2 can calculate "static displacements, strains, and stresses
at any depth caused by fault slip, magmatic intrusion or dike
expansion/contraction”, as well as, ”static displacements (on a surface or at
GPS stations), strains, and stresses caused by fault slip, magmatic intrusion
or dike expansion.” (Toda, 2010 [22]). The USGS makes Coulomb 3.2 freely

available for non-commercial research and it remains under active
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development. This project does not use the stress transfer modelling
capabilities of Coulomb 3.2, but makes extensive use of its 3-D
implementation of the Okada 1985 solutions [8] for displacements in a
half-space.

The package and method’s weakness, its inability to process
heterogeneous earth models, is minimized for this project because Coulomb
3.2 is used to generate model suites to compare to each other rather than in
an attempt to make the most accurate possible model of a given reservoir or
earthquake. Self-consistency in the model suite is more important because
the models are theoretical cases only. The goal of the work presented in this
document is not to produce the best model possible but instead to develop
methods for ranking and optimizing different models of the same site.

Coulomb 3.2 calculates three dimensional surface deformations for all
models. Since processed InSAR data is usually only one dimensional, the
post-processing routines in this study simply ignore the X and Y
displacement information. When using real InSAR data the picture is more
complicated since the one dimensional line-of-sight InSAR. deformation
observed includes vertical and lateral, predominantly easterly, components
(see Section 2.1.3). Coulomb 3.2 can also calculate three dimensional GPS
deformation vectors. This capability has not been used in this study but
could be a useful extension for future modelling.

Surface deformation models produced in Coulomb 3.2 are particularly

oversimplified in a reservoir scenario, where fluid flow is more important

14



and the heterogeneous coupled hydromechanical capabilities of Finite
Element Methods (FEM) packages excel. However, the limitations of the
Coulomb models for reservoirs is perhaps a blessing in disguise for this
project because it minimizes the risks posed by overly aggressive

parameterization and discretization.

2.1.2 The Okada Solutions for Surface Displacement

Dislocation theory, a technique for calculating the stresses due to internal
displacements in a medium, was introduced to seismology by Steketee
(1958, [19]) and Rongved and Frasier (1958, [12]). The theory was first
formulated by the crystallographer Volterra (1905) to explain the stresses
resulting from the termination of a plane of atoms in the middle of a crystal
structure or from a helical crystallographic disruption. Frank and Read
coined the term dislocation theory in 1950 [2] while proposing a model for
dislocations under shear stress.

Many contributions to the calculation of surface deformations using
dislocations for special cases and source types followed over the next 25
years, but gaps and computational challenges were plentiful. Okada (1985
18]) published a seminal paper which corrected errors, eliminated
singularities and reformulated all of the prior work for point sources and
compressive faulting into closed form analytical solutions for displacement,
strain and tilt. At the time, accurate measurements of surface displacement

were very limited so the homogeneous earth assumption made by Okada
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was not troubling because the models were still more precise than the
geodetic data.

Further to correcting and expanding prior work on point sources,
Okada developed new solutions for tensile faulting and finite rectangular
sources. These solutions and a subsequent analytic formulation for internal
deformation (Okada, 1992 [9]) are two of the most widely-cited works in
geophysics. The equations Okada presents in these two papers form the
basis of the Coulomb 3.2 software; in fact, Okada’s own MatLab code forms
the core of Coulomb 3.2. The work presented here uses only a small part of

the power of Okada’s solutions to solve for the vertical surface displacement.

2.1.3 Interferometric Synthetic Aperture Radar
(InSAR)

Interferometric Synthetic Aperture Radar (InSAR) is a satellite-based
technology for measuring surface deformation. A low Earth-orbiting
Synthetic Aperture Radar (SAR) satellite in a polar orbit bounces radar
waves off of the surface and records the amplitude, phase and time of the
reflected signal. Since the satellites utilize near-polar orbits they have much
lower sensitivity to deformation in their direction of travel (north-south)
than to vertical or east-west trending deformation. The line-of-sight
deformation that interferograms show is a combination of vertical and

lateral (primarily east-west) deformation. The line-of-sight deformation can

16



only be decomposed into vector components if measurements over the site
have been obtained from two or more look angles.

Calculating surface displacement from SAR data requires
high-accuracy repeated orbits over the same location to measure phase
shifts to determine the displacement by interferometry. Interferograms are
constructed from two SAR images by subtracting the phase of the images
pixel-by-pixel. Combining SAR images from different platforms into
interferograms is not possible because of the orbital differences between the
satellites, but processed interferograms from different platforms can be
compared. Most existing monitoring or tectonics projects focus on data
from a single platform (Rodriguez, 1992, [11]).

There are a number of deployed and functional space-borne radar
platforms including the Canadian Space Agency’s RADARSAT-1 and
RADARSAT-2, the European Space Agency’s Envisat and the Japanese
Space Agency’s JERS-1 satellites. These platforms employ C-Band sensors
with wavelengths from 40-80mm), except for the L-band (150-300mm)
JERS-1 mission. Future missions are planned to expand the InSAR data
suite into the X (25-40mm) and L (150-300mm) bands to expand the
sensitivity and resolution available from the SAR satellite suite.

Compared to GPS data, InNSAR deformation measurements are less
accurate, centimetre-scale rather than millimetre-scale, and are discrete in
time. The lowest repeat time possible for InNSAR data from a single

platform at present is approximately one month, so coseismic observations
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are impossible. The two technologies work well in tandem to establish a
deformation data set that is continuous and well-resolved in both space and
time(Segall 2010, [15]).

A major advantage of GPS data is that it is three dimensional, with
higher accuracy laterally than vertically. Deriving three-dimensional
deformation from interferograms is an active area of research (eg. Gray,
2011 [5]). The model evaluation techniques discussed later will scale easily
to the three dimensional case but are presented only in terms of vertical (z)
deformation for simplicity, ignoring that real InNSAR data measures
line-of-sight deformation instead of vertical. To compare models and real
InSAR data the modelled vector deformation fields must be converted into
line-of-sight changes using the basic orbital parameters of the SAR satellite

in question (eg. Vasco, 2010 [23], Rutqvist, 2009 [13]).

2.2 Statistical Tests

A primary goal of this project is to identify simple statistical checks that
assess the relative value of different geologic or geophysical models of the
same InSAR-measured surface deformation. Model comparisons in most
published literature are very qualitative and the geodetic modelling
community stands to benefit from a coherent way to rank its results given
the inherent non-uniqueness of solutions at each site.

The ensemble of tests proposed could also serve as the basis for an

18



automated model optimizer at a later date. The increasing availability of
InSAR data and rise of CO, sequestration projects that require verification
combine to make model evaluation a particularly timely topic. The tests
discussed here and the unique deformation patterns identified in Chapter 3
should also apply to much more complicated models. This discussion’s
intent is to identify baseline parameter changes in geodetic response

through a broadly adaptable reductionist approach.

2.2.1 Difference Maps

Difference maps are the simplest first order error evaluation tool. Difference
maps are generated by subtracting the modelled deformation from the
interferogram, i.e.

Diff =InSAR — Model

Difference maps are only occasionally published (eg. Wicks, 1998 [24]), but
are a very useful tool for identifying errors. The difference maps presented

later on are calculated using element-wise subtraction in MatLab.

2.2.2 Gradient Maps

Gradient maps show the first spatial derivative of a model’s surface
deformation. The plots presented in Chapter 3 use arrows to indicate the
gradient direction at a point, underlain by contours of the gradient

magnitude. The gradient is calculated created using MatLab’s gradient()
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function, which returns the numerical gradients dF/dx and dF/dy in
separate matrices of the same size as the input matrix. The gradient maps
reveal greater detail in the deformation structure and are very useful for
distinguishing between parameter errors with similar surface expressions.
Gradient difference plots are generated by subtracting the dF/dx and
dF/dy matrices of the two models being compared prior to calculating the

directions and magnitudes for the plot.
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Chapter 3

Results and Interpretation

Four important types of faulting are considered in this section: Strike-slip,
Normal, Thrust and Reservoir-type (compound). There are six model
parameters potentially subject to error and optimization for each category:
strike, dip, fault depth, fault location, fault dimension and slip. The
following four sections first introduce the surface deformation caused by a
reference model of known geologic provenance. The reference model is
treated as a black box ”interferogram”, and the effect of systematically
varying one of the modelling parameters is presented in each sub-section.
The models are tested to identify characteristics indicative of specific error
types as uniquely as possible.

The following sections assume that the type of faulting and fault
dimensions will always be known a priori by a modeller, whether human or

artificial intelligence-driven, since earthquake moment tensors and basic

21



geologic observations are normally available for faults that are subject to
scrutiny by InSAR. For simplicity the models use constant slip over the
fault area, but real earthquakes and most detailed fault models have
variable slip. This simplification should only change the deformation
patterns that a modelled earthquake generates and should not affect the
comparison between models or to the ”interferogram” reference models. All
of the models are constructed on square grids at reservoir scale with a 100m
grid cell size unless otherwise noted for simplicity and comparison purposes.
However, the Okada solutions are non-dimensional and the solutions scale
arbitrarily.

Images of the same type in the same section use the colour bar of the
reference image of that type, eg. all raw z-displacement plots use the
"interferogram” colour bar, but all gradient plots use the colour bar for the
gradient of the interferogram. The models are relatively simple, but the
error identification techniques described should be effective on complex
models because Okada-based deformation models are relatively
superposable. Complex models are made by adding many simple
components and can be decomposed into end-member faulting components

for calculation and evaluation.
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3.1 Strike-Slip Faulting

Strike-slip faulting is very common in tectonic settings, particularly at
transverse plate boundaries. The best-known examples of strike-slip faults
are the San Andreas Fault in California (eg. Segall, 1985, [14]) and the
Anatolian Fault in Turkey (eg. Stein et al., 1997, [18], Delouis, 2002, [1]).
The ground deformation patterns seen after strike-slip earthquakes were
thoroughly discussed by Stein et al., 1994 [17]. This paper also introduced
the Coulomb 1.0 software package whose latest version (3.2) was used to
generate all of the models presented in this chapter.

Characteristic surface deformation for strike-slip faults is upwards
beyond the end of the fault in the direction of slip on both sides, and
downwards in the direction that the observer’s side has moved away from.
For example, in a North-South striking, right-lateral fault, lobes of positive
surface deformation would be seen in the Northwest and Southeast. Strike
slip faulting is often complex and multi-segmented, with local fault
conditions influencing the extent of rupture and surface deformation.

The reference model consists of a two-segment, vertical strike-slip
fault, with the southern segment trending due North-South and the
northern segment striking at N20E. Cases 1 and 2 show the deformation
due to faults shallower and deeper than the reference model. Cases 3 and
3a see the faults dipping slightly from the vertical while Cases 4 and 5 see

too much and too little slip. The effects of displacing the fault in the X and
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Y directions are considered in cases 6 and 7.

The fault parameters for all of the cases are summarized in Table 3.1.
Coulomb 3.2 has a singularity for faults dipping at 90 degrees (Toda, 2010,
[22]) so dips of 89.9 degrees are used to approximate vertical faults. The
fault model for the reference case and the calculation grid (100m spacing)
are shown in Figure 3.1. All subsequent models in this section were created
by modifying single parameters in the reference model, which is treated as
if it were an interferogram collected over a field site. The basic model

statistics for each case are summarized in Table 3.2.

24



Table 3.1: Strike-slip Fault Model Parameters

Case X Y X end Y end Right-lat Reverse Dip Fault Fault
start start (km) (km) Slip (m) Slip (deg) Top  Bottom
(km)  (km) (m) (km)  (km)
ref 7.5 5.5 7.5 7.5 0.05 0 89.9 1.5 3.0
ref 7.5 7.5 8.25 9.5 0.03 0.01 89.9 1.5 3.0
1 7.5 5.9 7.5 7.5 0.05 0 89.9 0.5 2.0
1 7.5 7.5 8.25 9.5 0.03 0.01 89.9 0.5 2.0
2 7.5 5.5 7.5 7.5 0.05 0 89.9 2.5 4.0
2 7.5 7.5 8.25 9.5 0.03 0.01 89.9 2.5 4.0
3 7.5 5.5 7.5 7.5 0.05 0 80 1.5 3.0
3 7.5 7.5 8.25 9.5 0.03 0.01 80 1.5 3.0
4 7.5 5.5 7.5 7.5 0.05 0 70 1.5 3.0
4 7.5 7.5 8.25 9.5 0.03 0.01 70 1.5 3.0
5 7.5 5.5 7.5 7.5 0.075 0 89.9 1.5 3.0
5 7.5 7.5 8.25 9.5 0.05 0.01 89.9 1.5 3.0
6 7.5 9.5 7.5 7.5 0.035 0 89.9 1.5 3.0
6 7.5 7.5 8.25 9.5 0.02 0.01 89.9 1.5 3.0
7 7.0 5.5 7.0 7.5 0.056 0 89.9 1.5 3.0
7 7.0 7.5 7.25 9.5 0.03 0.01 89.9 1.5 3.0
8 7.5 6.0 7.5 8.0 0.05 0 89.9 1.5 3.0
8 7.5 8.0 8.25 10.0 0.03 0.01 89.9 1.5 3.0




11

10

Y (km)

3 4 5 6 7 8 ] 10 1 12
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Figure 3.1: Strike slip reference faults and calculation grid



Table 3.2: Strike-slip Fault Model Statistics

Case Average Dis- Standard Maximum Minimum
placement Deviation (mm) (mm)
(mm) (mm)
Ref 0.10 0.51 1.39 -1.02
1 0.17 0.60 2.79 -2.27
2 0.06 0.38 0.80 -0.64
0.11 0.58 1.94 -1.31
3a 0.13 0.74 2.61 -1.63
4 0.10 0.78 2.09 -1.66
5 0.10 0.37 0.99 -0.70
6 0.10 0.51 1.27 -1.07
7 0.10 0.51 1.39 -1.02




3.1.1 Errors in Fault Depth

Fault depth model errors are both common and easy to identify. For equal
faults with equal slip, the surface deformation due to a deep fault will have
lower amplitude and broader lateral extent than the reference model. A
shallow fault model will exhibit higher deformation and more sharply
defined edges than the reference model. Figure 3.2 shows the deformation
plots for the reference model, Case 1 (shallow) and Case 2 (deep).

Figure 3.3 shows the differences between the reference model and Cases 1

and 2.
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Figure 3.2: Strike-slip: Vertical Displacements (mm)



Errors in fault depth are relatively easy to see from difference maps,
either systematically too high or too low, or from the simple image
statistics. Case 3 is 1 km shallower and Case 4 is 1 km deeper than the
reference fault. Histogram plots of the data show the differences nicely
(Figure 3.4).

The shallow fault shows broader tails and lower shoulders in the
histogram, and the deeper fault is tightly peaked about zero deformation.
The locations of the peak deformation do not change and the changes in
the distribution are reasonably symmetric. The shallow fault has more
instances of zero deformation than the reference model and the deep model
has fewer, reflecting the change in lateral extent. Fault depth is also
frequently subject to useful constraint by seismic data, although less so
than many other parameters. Geodetic modelling alone can uniquely
identify fault depth errors.

An error in slip dimension is most likely to be confused for a depth
error. This is particularly plausible for strike-slip faults since deformation
symmetry is maintained with slip errors. For dipping faults, in contrast, a
change in slip results in a significant change in the symmetry of the lateral
distribution of deformation and the location of deformation peaks. This

will be discussed further in section 3.1.3.
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Figure 3.3: Strike-slip Depth Error: Difference from Reference Model (mm)
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3.1.2 Errors in Fault Dip

Fault dip errors are more difficult to constrain than depth or X-Y location
errors. Seismic information is a potentially powerful additional tool, but
there are some systematic changes in deformation symmetry with varying
dip that can identify dip errors. Dip errors are particularly easy to detect
for strike-slip faults because they are sub-vertical, so small dip changes
result in large asymmetries in the deformation pattern. The gradient map
is particularly useful in this case to identify the direction of the dip error.
Figure 3.5 shows the deformation due to the vertical reference fault and

faults oriented at 10 and 20 degrees from vertical towards the east.
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Figure 3.5: Strike-slip Dip Error: Vertical Displacements (mm)



The difference maps in Figure 3.6 show a divide between the northern
and southern halves reflecting the additive effect of the asymmetry. The
reference model is relatively higher in both the northwest and northeast
quadrants due to increased deformation (subsidence) in the northeast
quadrant and decreased uplift in the northwest quadrant in Case 3. The
lower half of the model shows a positive difference because the uplift in the
southeast quadrant is increased and the subsidence in the southwest
quadrant is diminished. The asymmetric deformation pattern and
difference map result are accentuated in Case 4, which dips a further 10

degrees from vertical towards the east.
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Figure 3.6: Strike-slip Dip Error: Difference from Reference Model (mm)
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Although the difference maps are useful and characteristic of a dip
error in a strike-slip faulting regime, the difference map pattern is not
unique. Spatial gradient maps tell a much clearer tale of the asymmetry.
Figures 3.7 and 3.8 show gradient and gradient difference maps for Cases 3
and 3a. The arrows on the plots indicate the direction while the contours
indicate the magnitude of the gradient at a specific point. Plotting the
gradients in this way makes the plot and comparison independent of fault
strike.

The reference model’s gradient is symmetric since the fault is vertical.
As the dip increases, first to 10 and then to 20 degrees to the east, the
deformation becomes increasingly asymmetric and concentrated in the
eastern half of the model. The gradient difference plots between the two
models and the reference reinforce the conclusion from the simple difference
maps that increasing deformation asymmetry is indicative of a dip error on
a strike-slip fault. The sensitivity of the asymmetric deformation pattern to
dip errors could point to an interesting alternative interpretation of
asymmetric InNSAR observations from Tibet (Peltzer et. al, [10], 1999)

attributed to a variable elastic modulus.
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3.1.3 Errors in Slip Distance

The slip distance can be constrained seismically for a well-observed
earthquake since earthquake magnitude is a linear function of slip distance
and the rupture area. Geodetically, changing the slip without changing the
size of the fault results in an increase or decrease in deformation. Figure 3.9
shows the reference model and the impact of increasing and decreasing the

slip by approximately 50% in Cases 4 and 5 respectively.
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Figure 3.9: Strike-slip Slip Error: Vertical Displacements (mm) (cont.)



The difference maps for Cases 4 and 5 (Figure 3.10) show that the
mismatch is concentrated at the deformation peaks instead of broadly
across the entire model as in a depth error. The peak deformation areas in
the vertical strike slip fault are symmetric so the increase or decrease in
deformation is also symmetric for this type of error.

Slip errors of this simplified type look superficially similar to depth
errors in the basic image statistics, but the increases or decreases in
deformation are concentrated in the peak areas instead of spread across the
model. This is clearly shown in Figure 3.11 by the narrowing of the
deformation histogram under low slip and its broadening under high slip.

Figure 3.12 shows gradient plots, where gradient magnitude contours
are overlain by arrows indicating the vector direction, for the reference
model and Cases 4 and 5 (more slip and less slip respectively). The quiver
plots show very clearly that changing the slip doesn’t change the areal
extent of deformation, only its magnitude. In contrast, changing the fault
depth changes the lateral extent of deformation. A smaller area is affected
more dramatically by a shallower fault and a larger area more gently
deformed by a deep fault. The gradient difference plots (Figures 3.13)
confirm the symmetric errors introduced by slip errors on a vertical

strike-slip fault.
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Figure 3.10: Strike-slip Slip Error: Difference from Reference Model (mm)



600 T T
I vsst-ret
- vssf-moreslip-6

Frequency
g

-2 -1.5 -1 05 0 a5 1 1.5 2 25
Deformation (mm)

(a) Case 4 (more slip)

T
- vssi-ref

450+ - vssl-lessslip-7 4

g

Frequency
[\
)
>
.

g

_O

5 -1 0.5 0 0.5 1 1.5
Deformation (mm)

(b) Case 5 (less slip)

Figure 3.11: Strike-slip Slip Error: Histogram of Case vs. Reference Model



¥ (km)

0186

Y (km)

¥ (km)

(c) Case 5 (less slip)

Figure 3.12: Strike-slip Slip Error: Gradient Direction Arrows and Magni-
tude Contours



Taken together, the test suite is able to uniquely identify slip errors
for strike-slip faults since they result in increases in the peak deformation
without significant changes in the location or extent of the deformation.
The cases in this section do not preserve seismic moment, potentially a

useful constraint available for medium and large earthquakes.
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3.1.4 Errors in Fault Location: Displacement in X or

Y direction

Errors in the X-Y placement of a fault are particularly obvious in strike-slip
faulting and are also among the most easily corroborated by non-InSAR
data, eg. earthquake locations, exploration seismic data or geologic surface
expression of the fault. Figure 3.14 shows the vertical displacements
measured due to the reference model, Case 6 (offset 500m in X) and Case 7
(offset 500m in Y). In this case the only difference between the three models
is the fault’s position in X-Y space. Figure 3.15 shows difference maps

between Cases 6 and 7 and the reference model, which illustrate the offset.
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Figure 3.14: Strike-slip Location Error: Vertical Displacements (mm)



To identify X-Y errors algorithmically a modelling program could
make a series of models with increasing offsets in both directions, calculate
the difference maps and then make profiles of Error vs. Offset at specific
points. The X and Y profiles will have minima at the correct locations
provided that the modelled fault’s strike is correct.

Fault X-Y location is a parameter that benefits from a lot of external
information. Faults important enough to have InSAR images taken at
regular intervals are frequently instrumented for seismic data collection
(tectonic faults), visible on exploration seismic data (reservoir faults) and
are frequently instrumented with GPS stations. In addition, tectonic
strike-slip faults are often visible at the surface. The X-Y location and fault
length are very important parameters whose precision should be improved
with all available types of data. These errors are sufficiently unique and

easily resolved that they will not be presented separately for the other fault

types.
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3.1.5 Summary of Strike-slip Faulting Errors

Fault depth and slip distance errors both result in systematically high or
low displacements visible in the difference maps and average statistics. The
differentiating factor between the two is that the deformation changes due
to slip distance errors presents as an exaggeration or diminution of the
peaks of existing deformation pattern but a depth error significantly
changes the areal extent of the deformation. External information,
particularly seismic data, could be a useful additional constraint on this
error type. Dip errors on strike-slip faults result in easily identifiable
asymmetric deformation patterns, which are particularly visible on gradient
maps. Location errors in X and Y are easily identified in isolation and can

be constrained by many other types of geophysical and geological data.

3.2 Normal Faulting

Normal faults are common in extensional tectonic settings where one side of
a fault moves downwards past the other as the compressive stress is
reduced. Pure dip-slip motion is considered in this section, i.e. the
displacement is vertical in the plane of the fault. Earthquakes on normal
faults are generally smaller than on other types of faults because
extensional strain can be relieved in smaller increments than strain caused
by crustal shortening.

Cases 1 and 2 show the deformation due to faults that are shallower
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and deeper than the reference model. Cases 3 and 4 see the faults dipping
at 10 degrees shallower and deeper, respectively, than the reference model.
Cases 5 and 6 see less and more slip than the reference model. The X and
Y offset cases are not presented because their identification and processing
is not notably different than the methods developed for strike-slip faulting.
The fault parameters for all of the cases in this section are

summarized in Table 3.3. The faults for the reference case and grid (100m
spacing) are shown in Figure 3.16. Basic image statistics for each of the
cases are summarized in Table 3.4. All subsequent models in this section
were created by modifying single parameters in the reference model, which

is treated as a fully processed interferogram collected over a field site.
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Table 3.3: Normal Fault Model Parameters

Case X Y X end Y end Right-lat Reverse Dip Fault Fault
start start (km) (km) Slip (m) Slip (deg) Top  Bottom
(km)  (km) (m) (km)  (km)
ref 7.5 5.5 7.5 7.5 0 -0.05 60 1.5 3.0
ref 7.5 7.5 8.25 9.5 0 -0.05 55 1.25 3.25
1 7.5 5.5 7.5 7.5 0 -0.05 60 1 2.5
1 7.5 7.5 8.25 9.5 0 -0.05 55 0.75 2.75
2 7.5 5.5 7.5 7.5 0 -0.05 60 2 3.5
2 7.5 7.5 8.25 9.5 0 -0.05 55 1.75 3.75
3 7.5 5.5 7.5 7.5 0 -0.05 50 1.5 3.0
3 7.5 7.5 8.25 9.5 0 -0.05 45 1.25 3.25
3 7.5 5.5 7.5 7.5 0 -0.05 30 1.5 3.0
3 7.5 7.5 8.25 9.5 0 -0.05 25 1.25 3.25
4 7.5 5.5 7.5 7.5 0 -0.05 70 1.5 3.0
4 7.5 7.5 8.25 9.5 0 -0.05 65 1.25 3.25
5 7.5 5.5 7.5 7.5 0 -0.03 60 1.5 3.0
5 7.5 7.5 8.25 9.5 0 -0.03 55 1.25 3.25
6 7.5 5.5 7.5 7.5 0 -0.08 60 1.5 3.0
6 7.5 7.5 8.25 9.5 0 -0.08 55 1.25  3.25
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Figure 3.16: Normal fault reference model and calculation grid



Table 3.4: Normal Fault Model Statistics

Case Average Dis- Standard Maximum Minimum
placement Deviation (mm) (mm)
(mm) (mm)
Ref -1.7 2.8 1.3 -14.6
1 -1.8 3.5 1.8 -20.3
2 -1.5 2.3 0.9 -10.8
3 -2.2 3.9 0.9 -19.9
3a -4.5 7.4 0.3 -34.6
4 -1.3 2.0 1.6 -10.4
5 -1.0 1.7 0.8 -8.8
6 -2.7 4.5 2.0 -23.4




3.2.1 Errors in Fault Depth

Steeply-dipping normal faults result primarily in surface subsidence. For
faults with intermediate or shallow dip X-Y deformation becomes
increasingly important, but is not considered for these models since InSAR
data cannot yet be separated into vector components. Cases 1 and 2,
translations of the same fault shallower and deeper respectively, are shown
with the reference model in Figure 3.17. The shallower fault results in a
smaller area of more intense deformation (average: -1.8mm, peak:
-20.3mm). The deeper fault sees its deformation diminished (average:

-1.5mm, peak:-10.8mm) but spread over a larger area.

57



X {km)
(a) Reference Model
12
10
8
£

6
.

2

4 6
X (km)
(b) Case 1 (shallow)

12:
10
8
g
a:

4

2

4 6

X (km)

(c) Case 2 (deep)

Figure 3.17: Normal Fault Depth Error: Vertical Displacements (mm)



Errors in fault depth are relatively easy to see from difference maps
(Figure 3.18) or from the basic image statistics. For example, an average
deformation that is too high in the presence of a similar distribution and
standard deviation indicates a shallow fault. Histogram plots (Figure 3.19)
of the data show the differences nicely, particularly in the highly deformed
tails. Case 1 is 500m shallower and Case 2 is 500m deeper than the
reference fault.

The shallow fault shows broader tails and lower shoulders in the
histogram, and the deeper fault is tightly peaked about zero deformation.
Fault depth is also frequently subject to useful constraint by seismic data,
but geodetic modelling alone can constrain it given that the other fault

geometry parameters are constrained.
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3.2.2 Errors in Fault Dip

Dip errors are difficult to constrain, particularly for faults with shallow or
intermediate dip. Seismic information is a potentially powerful additional
tool, but there are some systematic changes in deformation symmetry with
varying dip that can identify dip errors. Dip errors are harder to identify on
dipping faults than vertical faults because the asymmetry generated by the
error is more subtle and easily confused with fault depth errors. Figure 3.20
shows the surface deformation for the reference model and Cases 3, 3a, 4a:
10 degrees shallower, 30 degrees shallower and 10 degrees steeper
respectively. The difference maps are shown in Figure 3.21 and histograms
of the deformation are shown in Figure 3.22. Gradient and Gradient

difference plots are shown for the three models in Figures 3.23 and 3.24.
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Figure 3.20: Normal Fault Dip Error: Vertical Displacements (mm)
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Figure 3.21: Normal Fault Dip Error: Difference from Reference Model (mm)
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Figure 3.24: Normal Fault Dip Error: Vector Gradient Difference Plots



Although superficially similar to depth errors, the deformation
changes caused by dip errors remain localized at the peak deformation; the
areal extent of deformation does not change significantly. The histograms
for dip errors illustrate their subtlety very well: dip errors are much more
similar to the reference histogram than any other error type, particularly in
the deformation tails.

Unlike strike-slip faulting, asymmetry in the deformation pattern is
difficult to identify for the smaller 10 degree errors. The 30 degree dip error
shows substantial asymmetry, but this level of error is probably unrealistic
since fault dips can usually be constrained much better than 30 degrees
from seismic and other data.

The gradient maps are useful for identifying the direction of the dip
error (shallower vs. steeper), since the errors are mirror images on the
gradient difference maps. It appears that there is a limit to the sensitivity
of dip errors that can be uniquely identified using geodetic models alone
since the 10 degrees errors are poorly resolved. Accordingly, external
constrains on fault dip estimates appear to be particularly important for

faults of intermediate dip.
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3.2.3 Errors in Slip Distance

The geodetic response of to a change in slip without a change in fault
dimension is a net increase or decrease in deformation, but the magnitude
of the earthquake also increases or decreases. Slip errors of this simplified
type are the least realistic of the reductionist cases presented. However,
identifying slip errors in this simplified static fault area case is an important
first step towards developing more robust tests for magnitude-preserving
slip/fault area models. Figures 3.25 and 3.26 show the deformation and

difference maps for the reference model and Cases 5 and 6.
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Figure 3.25: Normal Fault Slip Error: Vertical Displacements (mm) (cont.)



Slip errors of this type look superficially similar to both depth errors
and fault dip errors. The main differentiating factor from depth errors is
thé concentration of changes in deformation at the peak areas instead of
spread evenly across the model. The main differentiating factor from the
dip errors is that the histogram tails for slip errors are much more different
from the reference model. This is clearly shown in Figure 3.27 by the slight
narrowing of the deformation histogram under low slip, its broadening
under high slip and the respectively suppressed and accentuated tails. The
gradient and gradient difference maps (Figures 3.28 and 3.29) for all three
error types are quite similar but the differences in the slip error gradients

are somewhat larger than those of dip errors.
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3.2.4 Summary of Normal Fault Errors

The three error types considered for normal faults, fault depth, fault dip
and slip distance are difficult to distinguish. Fault depth errors change the
lateral extent of deformation significantly and symmetrically; they are
primarily a sharp accentuation or broad diminution of the reference model’s
deformation pattern. Fault dip errors concentrate their deformation
changes in the peaks, but moderate errors are very difficult to distinguish in
intermediately dipping faults. External data constraints appear to have
particular utility for dip errors.

Slip errors are differentiable from depth errors primarily because they
influence the deformation peaks rather than the lateral extents of
deformation. The somewhat artificial slip errors modeled here are difficult
to distinguish from small fault dip errors. More realistic
magnitude-preserving fault models that varied slip and fault area together
could potentially resolve this ambiguity. Very large errors in fault dip are
uniquely identifiable from geodetic models but this constraint is likely a
moot point due to the availability of geometric constraints from seismic
data. The difficulty of distinguishing between these errors appears to be
more related to the intermediate dip of the reference model than the

normal faulting regime.
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3.3 Thrust Faulting

Thrust faults are low-angle reverse faults that frequently develop within
lithologic units when continental plates meet at a convergent boundary.
The type example of thrust faulting is the Himalayan orogenic complex.
GPS data is currently a more useful geodetic technique than InSAR in
these environments because thrust fault movement is predominantly in the
X-Y plane.

However, because there is still observable vertical and line-of-sight
deformation on thrust faults and 3-D InSAR vector deformation processing
techniques are being actively developed, it is appropriate to explore a
thrust faulting model suite. Cases 1 and 2 present depth errors, 3 and 4
present small dip errors, while 5 and 6 present slip distance errors.

The fault parameters for all of the cases are summarized in Table 3.5.
The faults for the reference case and grid (200m spacing) are shown in
Figure 3.30. Table 3.6 summarizes the image statistics for each of the cases.
All subsequent models in this section were created by modifying single
parameters in the reference model, which is treated as if it were an

interferogram collected over a field site.
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Table 3.5: Thrust Fault Model Parameters

Case X Y X end Y end Right-lat Reverse Dip Fault Fault
start start (km) (km) Slip (m) Slip (deg) Top  Bottom
(km)  (km) (m) (km)  (km)
ref 7.5 5.5 7.5 7.5 0 0.05 20 1.5 3.0
ref 7.5 7.5 8.25 9.5 0 0.04 25 1.5 3.5
1 7.5 5.5 7.5 7.5 0 0.05 20 1 2.5
1 7.5 7.5 8.25 9.5 0 0.04 25 1 3.0
2 7.5 5.5 7.5 7.5 0 0.05 20 2 3.5
2 7.5 7.5 8.25 9.5 0 0.04 25 2 4.0
3 7.5 5.5 7.5 7.5 0 0.05 15 1.5 3.0
3 7.5 7.5 8.25 9.5 0 0.04 20 1.5 3.5
4 7.5 5.5 7.5 7.5 0 0.05 25 1.5 3.0
4 7.5 7.5 8.25 9.5 0 0.04 30 1.5 35
5 7.5 5.5 7.5 7.5 0 0.08 20 1.5 3.0
5 7.5 7.5 8.25 9.5 0 0.05 25 1.5 3.5
6 7.5 5.5 7.5 7.5 0 0.03 20 1.5 3.0
6 7.5 7.5 8.25 9.5 0 0.02 25 1.5 35
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Figure 3.30: Thrust fault reference model and calculation grid

Table 3.6: Thrust Fault Model Statistics

Case Average  Dis- Standard Devia- Maximum (mm) Minimum (mm)
placement tion (mm)
(mm)

Ref 4.7 8.0 35.0 -0.2

1 4.9 9.2 42.5 -0.4

2 4.6 7.0 20.2 -0.2

3 6.1 9.8 39.8 -0.1

4 3.8 6.7 30.5 -0.4

5 7.1 11.9 51.1 -0.3

6 2.7 4.5 19.6 -0.1




3.3.1 Errors in Fault Depth

Errors in fault depth are relatively easy to see from difference maps or from
the basic image statistics. Since thrust faults result in uplift, difference
maps showing negative values (Case 1) indicate more surface deformation.
Histogram plots of the data show the differences nicely, particularly in the
extended tail of the shallower fault. Case 1 is 500m shallower and Case 2 is
500m deeper than the reference fault. Figures 3.31 and 3.32 show the
deformation and difference maps for the reference model, Case 1 (shallow

fault) and Case 2 (deep fault).
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Figure 3.31: Thrust Fault Depth Error: Vertical Displacements (mm)
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Fault depth is frequently subject to useful constraint by seismic data,
but geodetic modelling alone can constrain it given that the other fault
geometry parameters are constrained. The low dip angle of the faults in
this model moderates the change in lateral extent of vertical surface
deformation, but this is still a useful differentiating factor. The three
dimensional deformation would be more interesting than vertical
deformation for thrust faults. The X and Y difference maps would show

much more deformation than the vertical deformation map presented here.

83



3500

2500 -

1 1eyuel vy

1000

500

2000

1500

0 5 10 15 20 25
Deformation (mm)

(a) Case 1 (shallow

)

I I
- tf-ref
I 1 -shaiow-1

35 40 45

3000

2500

2000

1 1oyuoiLy
&
=1
=]

1000

500

-5 0 5 10 15

Deformation (mm)

(b) Case 2 (deep)

20

25

v o
I 1i-deep-2

Figure 3.33: Thrust Fault Depth Error: Histogram of Case vs. Reference

Model



3.3.2 Errors in Fault Dip

Fault dip errors are more difficult to constrain than depth or X-Y location
errors. Seismic information is a potentially powerful additional tool, but
there are some systematic changes in deformation symmetry with varying
dip that can identify dip errors. Since thrust faults dip so shallowly, the
deformation pattern changes rapidly in both areal extent and magnitude if
the dip is in error. Less surface area is deformed by a steeper fault and a

broader area is deformed by a shallower fault.
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Figure 3.34: Thrust Fault Dip Error: Vertical Displacements (mm)
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Figure 3.35: Thrust Fault Dip Error: Difference from Reference Model (mm)
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Figure 3.36: Thrust Fault Dip Error: Gradient Direction Arrows and Mag-

nitude Contours



The gradient and gradient difference maps, Figures 3.36 and 3.37
allow us to identify the direction of the dip error and are very useful for
distinguishing dip errors from slip errors. The deformation gradients are
reduced in the steeper model and increased in the shallower model.
Sensitivity to dip errors appears to be more strongly a function of the
reference fault dip than the magnitude of the error. At extreme dips, such
as the vertical strike slip fault and the thrust fault models, sensitivity is
high to relatively small dip errors of 5-10 degrees. In contrast, the
intermediately-dipping normal fault model showed little sensitivity to errors
less than 30 degrees. Horizontal deformation data such as might be

available from GPS stations would show dip errors even more clearly.
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3.3.3 Errors in Slip Distance

The models in this section are somewhat artificial because they do not
preserve earthquake magnitude. They still provide a useful indicator of the
effects of slip distance on surface displacement, especially with respect to
the lateral extents of deformation. Figure 3.38 shows the surface
displacements for the reference model, Case 5 (more slip) and Case 6 (less
slip).

Slip errors of this type look superficially similar to depth errors
statistically but the increases or decreases in deformation are concentrated
in the peak areas instead of spread across the model. The deformation
histograms (Figure 3.40) have accordingly longer and shorter tails for more

and less slip.
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Figure 3.41: Thrust Fault Slip Error: Gradient Vector Arrows with Magni-
tude Contours



The gradient and gradient difference maps (Figures 3.41 and 3.42 are
useful for distinguishing between the dip and slip errors. The gradients in
the dip error case indicate that the lateral extent of surface deformation has
changed significantly. In contrast, the lateral extent of deformation for the
slip errors is nearly the same. The magnitude of the two errors is more
reflective of the larger parameter changes applied to the slip than of a
distinguishing characteristic. The average, standard deviation and
maximum values increase for both error types, so the basic image statistics
are of little distinguishing value. The three dimensional deformation picture
for thrust faults is much more informative and would offer new ways to

distinguish between depth and slip errors in particular.
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3.3.4 Summary of Thrust Faulting Errors

Depth and slip errors are difficult to distinguish for thrust faults. Slip
errors as modelled here do not preserve earthquake moment and because
the faults dip so shallowly they are difficult to distinguish from depth
errors. In contrast, the very low dip of thrust faults makes the surface
deformation much more sensitive to dip errors than for intermediately
dipping faults, so variation in the lateral extent of deformation can
distinguish even small dip errors.

Slip errors modelled in a magnitude-preserving way by varying the
fault rupture area and the slip distance simultaneously might be more
readily distinguished because the shape and extent of the surface
deformation would vary much more. However, varying multiple parameters
simultaneously raises a different set of challenges. The average and
maximum values move together for all three error types, but useful clues
can be extracted from the shapes and lengths of the histogram tails as
compared to the reference histogram. Lateral surface deformation data
would be especially useful in distinguishing between depth and slip errors

for thrust faults.
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3.4 Reservoir-type faulting: Intersecting
Normal Faults and an Inflationary Point
Source

Coulomb 3.2 can create models of nearly arbitrary structural complexity,
within the bounds of a homogeneous half-space earth model. A
reservoir-type reference model located in an extensional tectonic
environment is examined a simple normal fault pair and a moderate amount
of isotropic point source inflation, such as might be observed at an injection
well. Reservoirs can also have reverse or strike-slip faulting regimes. Normal
fault activation will be most common in extensional tectonic environments
or when high-pressure injection results in tensile crack opening.

The fault parameters for all of the cases are summarized in Table 3.7.
The ”slip” for the point source is listed under the reverse slip column but is
a dilatation in m3. The fault and point source geometry is shown with the
100m cell calculation grid in Figure 3.43. The image statistics are
summarized in Table 3.8. Case 1 shows the effect of removing the point
source completely, while Case 2 has a far-too-large point source. Cases 3
and 4 present depth errors for shallow and deep faults respectively. Cases 5
and 6 have too little and too much slip on faults geometrically identical to
the reference model. Cases 7 and 8 have dip errors where the faults dip at

10 degrees shallower and steeper than the reference model. All subsequent
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models in this section were created by modifying single parameters in the
reference model, which is treated as if it were an interferogram collected

over a field site.

16

4 5 8 10 12 14 16
X (km)

Figure 3.43: Reservoir-type model with faults (1,2), point source (3) and
calculation grid
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Table 3.7: Reservoir Faulting Model Parameters

Case X Y X end Y end Right-lat Reverse Dip Fault Fault
start  start (km) (km)  Slip (m) Slip (deg) Top  Bottom
(km)  (km) (m) (km)  (km)
ref 9.0 8.5 10.5 11.1 0 -0.05 75 1.5 3.0
ref 9.25 10.7 10.25 8.9 0 -0.03 80 1.0 2.5
ref-pt  9.49 8.29 9.51 8.31 0 1x108 89.9 1.99 2.01
1 9.0 8.5 10.5 11.1 0 -0.05 75 1.5 3.0
1 9.25 10.7 10.25 8.9 0 -0.03 80 1.0 2.5
2 9.0 8.5 10.5 11.1 0 -0.05 75 1.5 3.0
2 9.25 10.7 10.25 8.9 0 -0.03 80 1.0 2.5
2-pt 9.49 8.29 9.51 8.31 0 5x108 89.9 1.99  2.10
3 9.0 8.5 10.5 11.1 0 -0.05 75 1.0 3.0
3 9.25 10.7 10.25 89 0 -0.03 80 0.5 2.0
3-pt 9.49 8.29 9.51 8.31 0 1x108 89.9 1.49 1.51
4 9.0 8.5 10.5 11.1 0 -0.05 75 2.0 4.0
4 9.25 10.7 10.25 8.9 0 -0.03 80 1.5 3.0
4-pt 9.49 8.29 9.51 8.31 0 1x108 89.9 249 251
5 9.0 8.5 10.5 111 0 -0.03 75 1.5 3.0
5 9.25 10.7 10.25 8.9 0 -0.02 80 1.0 2.5
5-pt 9.49 8.29 9.51 8.31 0 1x108 89.9 1.99 2.01
6 9.0 8.5 10.5 11.1 0 -0.08 75 1.5 3.0
6 9.25 10.7 10.25 8.9 0 -0.05 80 1.0 2.5
6-pt 9.49 8.29 9.51 8.31 0 1x108 89.9 1.99 2.01
7 9.0 8.5 10.5 11.1 0 -0.05 65 1.5 3.0
7 9.25 10.7 10.25 8.9 0 -0.03 70 1.0 2.5
7-pt 9.49 8.29 9.51 8.31 0 1x108 89.9 199 201
8 9.0 8.5 10.5 11.1 0 -0.05 85 1.5 3.0
8 9.25 10.7 10.25 8.9 0 -0.03 90 1.0 2.5
8-pt 9.49 8.29 9.51 8.31 0 1x108 89.9 1.99 2.01




Table 3.8: Reservoir Faulting Model Statistics

Case Average  Dis- Standard Devia- Maximum (mm) Minimum (mm)
placement tion (mm)
(mm)
Ref -0.57 0.75 2.95 -4.54
1 -0.76 0.87 2.20 -5.15
2 0.17 1.23 7.42 -2.68
3 -0.82 1.17 4.62 -7.99
4 -0.60 0.72 2.25 -3.61
5 -0.29 0.44 2.13 -2.56
6 -1.04 1.26 4.33 -7.67
7 -0.71 1.04 2.28 -6.25
8 -0.51 0.64 3.38 -3.51




3.4.1 Point Source Errors

The first two cases present errors in the homogeneous point source. The
point source inflation modelled here is somewhat unrealistic because it does
not account for heterogeneous fluid migration as a coupled hydromechanical
Finite Element solver could, but it serves as a useful first order
simplification. Figure 3.44 shows the deformation at the surface for Cases 1
and 2, while Figure 3.45 shows their differences from the reference model.
Point source errors of this simplified type are very easy to identify
because they yield perfect error circles on the difference maps. The X-Y
location of a point source should be known from well data, as should a
reasonable approximation of the injected volume. The hydrogeology of the
subsurface is always difficult to parameterize. Half-space earth models are
clearly not the correct avenue to address questions about how the fluid will
migrate and the effects that might have on surface deformation. In a
real-world modelling situation point source errors would likely be harder to
identify because they could be hidden by other less geometrically evident

errors.
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Figure 3.44: Reservoir Faulting Point Source Error: Vertical Displacements
(mm)
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Figure 3.45: Reservoir Faulting Point Source Error: Difference from Refer-
ence Model (mm)



3.4.2 Errors in Fault Depth

The images in Figures 3.46 and 3.47 show the deformation and difference
maps for Cases 3 and 4, shallower and deeper than the reference model
respectively. Errors in fault and point source depth are relatively obvious
on difference maps or from the basic image statistics. The shallower fault
has greater peak deformation and a smaller lateral extent of deformation
compared to the broader, muted deformation of the deep faults.
Histogram plots of the data (Figure 3.48 show the differences nicely,
with Case 3 having a longer deformation tail and Case 4 more more cells
with low levels of deformation but a shorter tail. Case 3 is 500m shallower
and Case 4 is 500m deeper than the reference faults and point source. Fault
depth and geometry are frequently subject to accurate seismic constraints
in reservoir settings, which can be of great use for distinguishing between

error types in geomechanical models.
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Figure 3.46: Reservoir Faulting Point Source Error: Vertical Displacements
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Figure 3.47: Reservoir Faulting Point Source Error: Difference from Refer-
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3.4.3 Errors in Slip Distance

Slip errors look superficially similar to depth errors statistically and on the
plots. However, the increases or decreases in deformation are concentrated
at the peak areas instead of spread across the entire model. The difference
maps (Figure 3.50) look very similar to the original deformation map,
compared with the broad lateral changes evident in the depth error cases.
The gradient and gradient difference maps (Figures 3.52 and 3.53
confirm these conclusions: changing the slip distance on steeply dipping
faults accentuates or diminishes the pattern symmetrically with respect to
the reference model. A more detailed magnitude-preserving treatment of
slip errors would yield different results because the fault area would change
as well as the slip. The maximum and minimum changes from the reference
model would be diminished and the area affected would broaden or tighten

with larger or smaller faults, similar to depth errors.
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Figure 3.53: Reservoir Faulting Slip Error: Vector Gradient Difference Plots



3.4.4 Errors in Fault Dip

Fault dip errors are more difficult to constrain than depth or X-Y location
errors, especially for movement on faults with shallow or intermediate dip.
Seismic information is a potentially powerful additional tool in a reservoir
setting, but there are some systematic changes in surface deformation
symmetry with varying dip that can identify dip errors. Dip errors are
challenging to detect for intermediately-dipping faults because the
asyminetries generated are somewhat more subtle and easily confused for
depth errors.

The faults in the reference model for this model suite dip quite steeply
(75 and 80 degrees), so the increasing deformation asymmetry is observable
with the 10 degree errors in Cases 7 and 8 (Figure 3.54). The difference
maps are shown in Figure 3.55. For intermediately- or shallowly-dipping
faults the difference maps are less clear and gradient maps are needed as in

the normal fault model suite (Section 3.2).
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Figure 3.54: Reservoir Faulting Dip Error: Vertical Displacements (mm)
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3.4.5 Summary of Reservoir-type Fault Errors

The potential geodetic modelling errors in a reservoir environment with
steeply dipping faults are reasonably easy to distinguish. Depth errors
change the lateral extent of the deformation and sharpen or blur the
features of the deformation depending on the direction of the error. Point
source errors are easy to distinguish if the often-suspect assumption of
radially symmetric fluid flow from an injection point is satisfied because
they are perfect circles on difference maps.

Changing the fault slip distance on steeply dipping faults results in
symmetric deformation, accentuating or diminishing the reference model’s
deformation pattern rather homogeneously. Changing the fault dip results
in asymmetric deformation, which is easily observed because the faults in
this particular model are very steep. The deformation asymmetry due to

dip errors is much less obvious in faults of intermediate or shallow dip.
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Chapter 4

Future Work

This study’s intent is to lay the foundation for a system to evaluate
geomechanical models against geodetic data quickly, repeatably and
quantitatively. Many issues remain before an automated model optimizer
could be devised, or even before competing models of the same field site
could be evaluated and ranked. Some of the most compelling issues are
discussed briefly in this chapter, including compound modelling errors and

the impacts of noisy interferograms.

4.1 Compound Modelling Errors and
Integrating External Data

Modelling errors are rarely of the idealized single-parameter variety

explored here. Parameterizing a fault that has both depth and dip errors,
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for example, will be significantly more difficult than distinguishing between
single error types. A basic amount of a priori geologic information is
required to make geomechanical models of surface deformation, but there is
potentially much more data available than is routinely used. One approach
could be to use the data available from external data sources, particularly
seismic data including moment tensors, for fault geometry and GPS for 3D
surface deformation, to identify the most uncertain parameters and to focus
model refinement efforts on them.

Fault slip and fault size are coupled and often directly mapped from
seismic data for large earthquakes. Using this data routinely could
eliminate a major oversimplification in the model suite presented here, the
non-preservation of earthquake magnitude with slip errors. Fault size and
slip are so non-unique geodetically that using seismic data is preferable to
modelling them. Slip errors are difficult to distinguish from depth or dip
errors, so adopting external measurements where available permits an
important reduction of the parameter space. Untangling multiple
parameter errors in more complicated models is a difficult task which

should be eased by using the tests outlined in Chapter 3.

4.2 Impacts of Interferogram Noise

The "interferograms” used in this study are unnaturally smooth since they

are really just models themselves. Real interferograms have noise which
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cannot necessarily be distinguished from geodetic signal and removed.
There is a risk that the tests proposed could falter when comparing noisy
images, particularly between subtly differentiated errors like depth and dip
errors on intermediately dipping faults. When the noise is purely random
the key features should still be visible, but any spatially correlated-noise
could obscure the signal beyond simple recovery.

Figures 4.56 shows a reference model interferogram and an
interferogram with Gaussian noise with a standard deviation of 20 percent
of the reference model’s standard deviation to the normal faulting reference
model. The third interferogram has twice the Gaussian noise, weighted by
Y co-ordinate to be more intense in the north. The error identification
picture with noise is more ambiguous than that presented in Chapter 3 and
could pose an obstacle when attempting to make models to match real
data. One mitigating factor is that all of the parameter optimizations for a
given interferogram are subject to the same noise, so the errors might

negate themselves in the aggregate.
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With purely Gaussian noise, the long wavelength features are still
quite visible. Any type of spatially correlated noise, for example, orbital
errors, topography or atmospheric distortions would be much more difficult
to assess. Figures 4.57 and 4.58 show the effects of a simulated error where
the noise level increases from south to north for strike slip fault cases 3 (dip
10 degrees too shallow) and 6 (more slip than the reference model). The
long wavelength features are substantially obscured by the
spatially-correlated noise. Pre-processing or filtering would be needed

before the tests presented here could be useful.
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Figure 4.57: Strike-slip Case 5 (dip 10 degrees shallow): Noisy Difference
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4.3 Moving Towards Artificial Intelligence

The tests outlined here are intended to serve as part of the basis for an
automated inverse model program able to integrate geodetic and seismic
observations cohesively. A learning algorithm could be trained to use the
tests presented here with the results from large land-based earthquakes that
occurred in areas of dense GPS stations and regular InSAR imaging, for
example, California or the Himalayas. Earthquakes whose fault dimensions
and rupture patterns are well constrained will be particularly useful test
cases.

Eventually an artificially intelligent modelling program could accept
seismic, geologic and geodetic information simultaneously and optimize a
combined slip and fluids solution. A coupled hydromechanical model has a
much larger parameter space than the simple Coulomb models considered
in this work. Additional reductionist modelling work will be needed before
a simple decision framework can be devised. More advanced statistical tests
on the deformation histograms to see whether models belong to the same
statistical population as the interferogrém, such as the Wilcoxon or q-q
tests, might eventually be useful for an intelligent optimization engine.

This type of wholesale intelligent automation is a distant prospect,
but there are also some useful near-term applications. Much of the current
geomechanical modelling presented in the literature is somewhat ad hoc or

unclear in its optimization. Most papers present a single ”best” model
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without clearly defining best, and this work can be used to quantify or at
least question that statement. Establishing a set of formal, quantitative
ranking or optimization criteria using the tests presented earlier is the first
important step towards automated optimization.

A potentially exciting application is the comparison of models from
different research groups. When .jpeg images of the model results and
interferograms are available, MatLab can process them and the tests
presented here could potentially be applied. This prospect is particularly
enticing when competing models are produced of the same site or
phenomenon, for example at the In-Salah CO, sequestration project (eg.
Rutqvist, 2009 [13], Vasco, 2010 [23], Rutqvist, Morris 2011 [7]). The
ability to make these types of comparisons will become more important and
interesting as InSAR data becomes more easily a,ccessible and

geomechanical models are more widely produced to match it.
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Chapter 5

Conclusions

This document investigates the surface deformation effects of different
types of geomechanical fault modelling errors. The study’s goal, to
establish a suite of very simple tests and statistics that can distinguish
between common types of errors for different fault types, has been largely
accomplished using simplified examples of strike-slip, normal, thrust and
reservoir faulting regimes. The models were constructed with Coulomb 3.2,
which uses the Okada solutions (1985, [8]) to calculate surface deformation
due to dislocations in a homogeneous elastic half-space Earth.

The tests can serve as optimization aids for human modellers and
potentially as the basis of a future artificially intelligent modelling program.
The tests can also be used to compare and evaluate competing models of
the same phenomena, something that will become more important as both

geomechanical modelling and high-precision InSAR data are more widely
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adopted. To simulate comparison with InSAR data, the suite of erroneous
models was tested against their common parent reference model, which
acted as an interferogram. For simplicity, all deformation was assumed to
be one dimensionally vertical instead of line-of-sight.

Three types of parameterization errors, dip, slip and depth, were
explored in detail for the four different faulting regimes. The reservoir
model is a compound fault model including a point source inflationary
component to approximate an injection well. An initial reference model was
generated for each regime and then errors were introduced systematically to
single model parameters. Simple difference maps proved to be very useful
in coarsely distinguishing the errors, with data histograms and gradient
maps, as well as gradient difference maps, helping to distinguish between
similar errors.

Fault depth errors are relatively easy to identify in all of the faulting
regimes because the maximum deformation and the lateral extent of
deformation increase or decrease inversely. For example, in the reservoir
faulting model the shallow faults have increased peak deformation and
decreased lateral extent of deformation. The deep faults have reduced peak
deformation and broader areal extent with respect to the reference model.
The simple difference maps identify this basic pattern neatly and the
gradient maps can be useful for distinguishing between depth and other
error types. Data histograms show shorter deformation tails and lower peak

bin totals for the deep model compared to the shallow model and the
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reference model.

In many cases, the challenge of distinguishing fault error types seems
to depend less on the type of faulting than on the fault dip. Error
sensitivity is lost intermediately dipping faults, approximately 25-65
degrees. As discussed in Section 3.2 on Normal faulting, gradient maps can
be useful. Dip errors on faults with extreme dips, either near-vertical or
near-horizontal such as the strike-slip and thrust fault models, produce
rapid changes in peak deformation and areal extent of deformation and are
easily identified.

Slip errors as modelled here are reasonably simple to identify. In
isolation, they produce an amplification of the existing deformation pattern
with the change in surface deformation concentrated exclusively at the
existing peaks or minima instead of spread laterally like a depth error. Slip
is often subject to external constraint from seismic data, which could be
very useful in an integrated modelling framework. The slip errors modelled
here are extremely simplified and do not preserve earthquake magnitude. A
more detailed study of slip errors in a magnitude-preserving way would
require changing the fault area with each model, which would cause large
and potentially identifiable changes in the areal extent of deformation.
Removing the constant slip simplification in favour of variable slip along
faults would change the deformation patterns significantly but with a much
smaller impact on comparisons between different models.

On the balance, the suite of models and simple tests presented are
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capable of identifying most of the simplest parameter errors uniquely.
Disentangling multiple errors in the same model, more complicated
geometric configurations and media properties, integrating other data types
and addressing the impact uneven spatial sensitivity of InNSAR data are
important outstanding questions. The models and tests presented here are
the simplest possible case studies and should form a foundation for
comparing multiple models of the same site to each other and the ground

truth data.
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MatLab Source Code

The post-processing of the Coulomb 3.2 output was done using MatLab.
The commented code is included below, beginning with the looping
function NdLpLoop, which iterates through different models which are
based on the same reference model. NdLpLoop calls the main processing
function, NdLpMaster, which contains the bulk of the processing code and
calls all of the subsequent functions.

NdLpLoop.m:

%This is the top level file that iterates through different models
%by running NdLpMaster (where all the calcs take place) in a loop

clc; clf; close all; clear all;
global FirstTime

QIREAD MODELS AND PLOT SIMPLE DEFORMATION
%models. dat is a text file listing the .cou output files from Coulomb 3.2

%Terminate the input with a blank line. The reference model must be listed
%first.

tmp = fopen(’ 'models.dat’, 'r’);

ModelList = textscan (tmp, %s’, ’'delimiter’, ’\n’});

fclose (tmp);
ModList = ModelList {1};

TrueModel = ModList {1}

k=1
%
while stremp(ModList{k+1},”’) = 0
if k=1
FirstTime = 1 %used to process the reference model
end

TestModel = ModList{k+1}
NdLpMaster ( TrueModel, TestModel)
clf; close all;

138



k = k+1

FirstTime = 0
end
fprintf(’All_done!’)

NdLpMaster.m:

function NdLpMaster (TrueModel, TestModell)

%%This file loads the Displacement.cou file from a run and performs the
Z%statistical tests as functions. It is called by NdLpLoop.

%Arguments : ,
%TrueModel — the reference model’s displacement.cou file name as string
%TestModell — the test model’s displacement.cou file name as string

%Dependent function list:

— OpenAndFormat.m: requires the model name, opens it and returns the data
from the .cou frile

— loc_plot.m: requires the matriz to be plotted and the colour map maz,
makes a 2D plot of the ”interferogram?”

— loc_plot_2.m: same thing but two plots in a window for comparison

— ImageStats_2.m: requires the model name and data matriz, calculates
all the stats I can toss in there and plots histograms automatically.
— GradPlot.m: makes a gradient plot with a quiver plot overlaid AND

X, Y gradient plots of the interferogram for later comparison;

— GradPlot_Mod.m: plots the gradient difference maps

NN NN RN K

global xTrue yTrue FirstTime
%xTrue, yTrue are the x,y coords of the reference model.
%FirstTime tells the code that you’re processing the reference model.

% convert displacements to matrices and plot the result

[uuzTrue, ccmax, xTrue, yTrue] = OpenAndFormat(TrueModel);

CMapMax = ccmax

ToPlot = uuzTrue;

loc_plot (ToPlot ,CMapMax); hold on

TrueModel = strrep (TrueModel, ’.cou’,’’) %remove the .cou extension for

%latex /.png file name purposes

%title ([’ Vertical Displacement of 7, TrueModel])
print ('—dpng’, [TrueModel ’.png’])

%HMPORT THE COULOMB 3.2 RESULTS
%Assumes all models are the same size as lhe reference, wuses zTrue, yTrue
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%as global coordinates

[uuzTM1, ccmax, xModl, yModl] = OpenAndFormat(TestModell );

TestModell = strrep(TestModell, ’.cou’,’’)

FirstTime

[TrueStat , TestStat] = ImageStats_2 (uuzTrue, uuzlIM1l, TrueModel, TestModell);
TrueAvg = TrueStat (3); TrueStd = TrueStat (4)

ToPlot = uuzIM1;

loc_plot (ToPlot ,CMapMax) ;

%title ([ Vertical Displacement of ', TestModell]);
print ('—dpng’, [TestModell ’.png’])

SIS RSO N N SR RN R R R I R R S R NS N R SRS S R N R R S

%For TrueModel only, add some Gaussian noise to make it look more like
%a real interferogram (ezperimental)

NoisePct = 0.2; Z%How much noise to add as fract of avg def
NoiseToAdd = NoisePctx TrueStd.xrandn(length (zTrue),length (yTrue));
TrueModNoise = uuzTrue + NoiseToAdd;

ToPlot = TrueModNoise;

loc_plot (ToPlot,CMapMaz); hold on
%title ([’ Vertical Displacement of 7, TrueModel,
% ‘with noise: stdev =’, NoisePctxTMstd])
print(’—dpng’, [TrueModel '—Noise.png’/)

%For TrueModel only, add some spatially—correlated Gaussian mnoise
%to mimic a real interferogram (experimental)
NoisePct = 1.0; %How much noise to add as fract of avg def
NoiseToAdd = NoisePctx TrueStd.xrandn(length (zTrue), length (yTrue));
NoiseWt = ones(length (xTrue), length(yTrue));
for i = 1:length(yTrue)
NoiseWt(:,i) = zTrue./mazx(zTrue);
end
TrueModNoise Wt = uuzTrue + NoiseToAdd.x NoiseWt + 2« NoiseWt;

ToPlot = NoiseWt;

loc_plot (ToPlot,CMapMaz); hold on
%title ([’ Vertical Displacement of ’, TrueModel,
% ‘with noise: stdev =’, NoisePctxTMstd])
print ('—dpng’, [TrueModel '—NoiseWtNoise.png’[)

ToPlot = TrueModNoiseWt;

loc_plot (ToPlot,CMapMaz); hold on

%title ([’ Vertical Displacement of 7, TrueModel,
% "with noise: stdev =’, NoisePctxTMstd])
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% print(’—dpng’, [TrueModel '—NoiseWt.png’])

FEDIFFERENCE PLOTS

diffTM1 = uuzTrue — uuzTM1;

% diffTMIN = TrueModNoise — uuzTM1;

% diff TMINWt = TrueModNoiseWt — wuzTM1;

% %Plot it up, plotty. xxxxCHANGE ToPlot VARIABLE AS NEEDEDx %% x
% ToPlot = diff TM1;

% loc_plot(ToPlot,CMapMaz); hold on;

% %title ([’ Difference plot between’, TrueModel, ’ and ', TestModell])
% print(’—dpng’, [TestModell '— Diff.png’])

% ToPlot = diffTMIN;

% loc_plot (ToPlot,CMapMaz); hold on;

% %title ([’ Difference plot between’, TrueModel, ’(noise) and ’, TestModell])
% print(’—dpng’, [TestModell '—DiffNoise.png’])

% ToPlot = diff TMINWt;

% loc_plot (ToPlot,CMapMaz); hold on;

% %title ([ 'Difference plot between’, TrueModel, ’(noise) and ’, TestModell])
% print(’—dpng’, [TestModell ’'—DiffNoiseWt.png’])

PGRADIENT PLOTS — X gradient, Y gradient and quiver over contour

[pxTrue, pyTrue, xGCmax, contIncrement] = GradPlot(xTrue, yTrue,...
uuzTrue, TrueModel);

% [lapTrue,lapGCmaz] = LapPlot(z1lrue, yTrue, uuzlrue, TrueModel);

% print(’—dpng’, [TrueModel '—Lap.png’])

[pxMod1l, pyModl] = GradPlot-Mod (xModl, yModl, uuzTMI1, TestModell,...
xGCmax, contlncrement);

% [lapMod1] = LapPlot-mod(zModl, yModl, wuzlTM1, TestModell, lapGCmaz);

% print(’—dpng’, [TestModell '—Lap.png’])

%Gradient difference plots

pxDiff = pxTrue — pxModl;
pyDiff = pyTrue — pyModl;
ToPlotl = pxDiff; ToPlot2 = pyDiff;
pxDmax = max(max(abs(pxDiff))); pyDmax = max(max(abs(pyDiff)));
pDiffCMax = max(pxDmax, pyDmax);
Titlel = [TestModell '-XGradDiff’];
Title2 = [TestModell '—YGradDiff’];
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loc_plot_2 (ToPlotl, ToPlot2, xGCmax/2, Titlel, Title2);
hold on;

%quiver plot instead of separate z—y plots

DecVal = 4; %Decimate the plot so it ’s not as dense
numX = length (pxDiff (:,1));

numY = length (pxDiff (1,:));

pxDiffDec = pxDiff (1:DecVal:numX,1:DecVal:numY);

pyDiffDec = pyDiff(1:DecVal:numX,1:DecVal:numY);

pxDiff_2 = pxDiff.xpxDiff;
pyDiff_.2 = pyDiff.x pyDiff;
pMagDiff = sqrt(pxDiff_.2 + pyDiff_2);

figure

NumConts = 10 %number of contour levels

contour (xTrue,yTrue,pMagDiff ,NumConts), hold on; grid off; hold on;
quiver (xTrue (1:DecVal:numX) ,yTrue (1:DecVal:numY) , pxDiffDec , pyDiffDec)
%hold on; title ([’ Quiver plot of 2D Gradient: ’, ModName])

hold on; xlabel(’X.(km)’); ylabel(’Y.(km)’);

load ’ANATOLIA. dat’

colormap (ANATOLIA); colorbar

hold off , axis image

print ('—dpng’, [TestModell ’—QuivDiff.png’])

clear all; clc;
%9 UTURE WORK/ half—baked ideas

Z%Numerical Laplacian ... not that useful

% lapDiff = lapTrue—lapModl;

% ToPlot = lapDiff;

% loc_plot (lapDiff ,lapGCmazx/2)

% print('—dpng’, [TestModell —LapDiff.png’])

% %%SQUARED ERROR PLOTS %% converted to mm — not used in thesis

% sqdiff TM1 = (diffTM1x1000."2);

% ToPlot = sqdiffTM1;

% tmpCMaz = maz(maz(abs (ToPlot)))

% loc_plot (ToPlot,tmpCMaz); hold on;

% %title ([’Squared Error plot between’, TrueModel, ' and ’, TestModell])
% print(’—dpng’, [TestModell —SqError.png’])

% diffTM1Stats = ImageStats (diffTM1, °’Diff TM1’)
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%
%
%
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% %2D cross correlation — file this under "Future Work”
zcTruelrue = zcorr? (uuzlrue, wuzlrue);
zeNormVal = maz(maz(zcTruelrue));

zeTrueTrueN = zcTruelrue./zcNormVal; %Normalize the zcorr matriz

zcCMapMaz = 1;

ToPlot = zcTrueTrueN;

loc_plot_s(ToPlot,zcCMapMaz); hold on;

%title ([ ’Norm. 2D Auto Correlation of’, TrueModel])
print(’—dpng’, [TrueModel '—ACorr.png’])

zcTrueTM1 = zcorr2 (uuzTrue, wuzl'M1);

zeTrueTMIN = zeTrueTMI1./xzcNormVal;

ToPlot = zcTrueTMIN;

loc_plot_s (ToPlot,zcCMapMazx); hold on;

%title ([ 'Norm. 2D Cross Correlation of’, TrueModel, ’ and
print(’—dpng’, [TestModell '—XCorr.png’])

diffACT_-TTM1 = zcTrueTrueN — xcTrueTMIN;

ToPlot = diffACT_-TTM1;

loc_plot_s(ToPlot,zcCMapMaz); hold on;
%title ([’ Difference zcorr plot between’, TrueModel, ' and
print (’—dpng’, [TestModell '—XCorrDiff.png’])

%Rotating to see asymmetry; not needed yet

R T NV X T NV X R N N ¥

testROT = imrotate (vuzTrue,45);
ToPlot = testROT;
loc_plot_rot (ToPlot,CMapMaz);

invtestROT = fliplr (testROT);
ToPlot = invtestROT;
loc_plot_rot (ToPlot,CMapMaz);

diffTestROT = testROT — invtestROT;
ToPlot = diffTestROT;
loc_plot_rot (ToPlot,CMapMaz);

OpenAndFormat.m:

function [uuz, ccmax, xTrue, yTrue] = OpenAndFormat(FileName)

7, TestModell])

', TestModell])

%Processes the raw Coulomb 3.2 output into a format that can be used by
%colormap and other matlab functions

ZARGS:
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%FileName — a string of the output text file (usually *.cou) to open

J%RETURNS:

%uuz — the displacement matriz formatted for processing

%cemax — the colorbar maz for the matriz (only kept for the ref model)

%xTrue, yTrue — the actual X and Y coords (only kept for the ref model);
%becomes a global variable.

FileName

fid = fopen(FileName, 'r’);

coul = textscan (fid , '%f _%f %f _%f %f %f’, delimiter’,’\t’, headerlines’ ,3);
fclose (fid);

x = [coul {1}];
y = [coul{2}];
z = [coul{3}];

ux = [coul{4}]%x1000;
uy = [coul {5}]%1000;
uz = [coul {6}]x1000;

cxmin = x(1);

cxmax = x(length(x));

cymin = y(1);

cymax = y(length(y));

grdspac = y(2)—y(1) ; %ONLY WORKS FOR X and Y SPACINGS EQUAL

m = round ( (cxmax—cxmin)/grdspac) + 1;
n = round ((cymax—cymin)/grdspac) + 1;
uuz = reshape(uz,m,n);

cmin = min(uuz); c¢cmin = min(cmin)
cmax = max(uuz);

ccmaxt = max(cmax)

ccmax = max([abs(ccmaxt) abs(ccmin)])

xTrue = [cxmin:grdspac:cxmax];
yTrue = [cymin:grdspac:cymax];

locplot.m:

function loc_plot (uuz, ccmax)
%The basic plotting function for outputting figures; doesn’t go
%straight to .png here, that’s in NdLpMaster.

%uuz — the displacement field to be plotted (in pcolor format)
%ccmax — the colorbar max from the reference model

global xTrue yTrue
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figure

pause
load ’ANATOLIA.dat’  %Anatolia is a nice colour scheme I stole from
colormap (ANATOLIA) %the internals of Coulomb 8.2

pcolor (xTrue, yTrue, uuz); hold on;
shading flat

caxis ([—ccmax ccmax]) %make the colormap symmelric
colorbar(’location’, ’EastOutside ')

xlabel ('X_.(km)’); ylabel(’Y.(km)’);

grid on

locplot2.m:

function loc_plot_2(uuzl, uuz2, ccmax, T1, T2)

N R

%Can plot both in the same window by uncommenting the subplots and
%commenting the second ”figure”. Better that way for while—modelling
%assessment, better as two separate plots for export to thesis.

%Arguments :

%uuzl — the first displacement field to be plotted (in pcolor format)
%uuz2 — the second displacement field to be plotted (in pcolor format)
%ccmaz — the colorbar max from the reference model

%11 — the name of the first model (for output file name)

%T2 — the name of the second model (for output file name)

global xTrue yTrue

scrsz = get (0, ScreenSize ’);
figure (’Position ’,[1 scrsz(4)/2 scrsz(3) scrsz(4)/2])

load ’ANATOLIA.dat’

figure

%subplot (1,2,1)

pcolor (xTrue, yTrue,uuzl); hold on;

colormap (ANATOLIA)

shading flat

tmp = [—ccmax ccmax]|;

caxis (tmp); %make the colormap symmetric
%title (T1);

hold on; xlabel(’X.(km)’); ylabel(’Y_(km)’);
grid on

colorbar(’location’, ’EastOutside’)
print(’'—dpng’, [T1 ’.png’])
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figure

%subplot(1,2,2)

pcolor (xTrue,yTrue,uuz2); hold on;

colormap (ANATOLIA)

shading flat

tmp = [—ccmax ccmax|;

caxis (tmp); %make the colormap symmetric
%title (T2);

hold on; xlabel(’X.(km)’); ylabel(’Y.(km)’);
grid on

colorbar(’location’, ' EastOutside’)

print ('—dpng’, [T2 ’.png’])

colorbar(’location’, EastOutside ’)
ImageStats2.m:
function [RefResult, TestResult] = ImageStats(ImgData, TestData, RefName, ModelName)

%Calculates some basic image statistics

Z%ARGS :

%ImgData — the first model’s data matriz (usually reference model)
%TestData — the comparison model’s data

%RefNAme — the reference model’s name (for output)

%ModelName — the comparison model ’s name (for output)

%RETRUNS :

%Arrays of the max, min, avg and std for the ref and test models
%Also, a text file in LaTeX format to make a results table
global FirstTime

tmpl = size (ImgData);
NumElem = tmpl(1)*tmpl(2);

ImgVec = reshape(ImgData,1,[]);

ImgMax = max(ImgVec); %Ref MAz

ImgMin = min(ImgVec); %Ref Min

ImgAvg = sum(ImgVec)/NumElem; %Ref Average
ImgStdev = std(ImgVec); %Ref Std dev

tmp2 = size(TestData);
NumElem = tmp2(1)*tmp2(2);

146



TestVec = reshape(TestData,1 ,[]);

TestMax = max(TestVec); %test Maz

TestMin = min(TestVec); %test Min

TestAvg = sum(TestVec)/NumElem; %test average
TestStdev = std(TestVec); Ztest std dev

HistMat = [ImgVec’, TestVec’];

figure

hist (HistMat, 50); %Makes a histogram with 50 bins

%set (h,{ FaceColor’},{’r’, ’k’},{ "EdgeColor ’} ,{’r’, ’k’})
%set (h,  FaceColor’, ’k’, ’EdgeColor’, 'k’)

colormap(’lines )

legend (RefName, ModelName)

xlabel (’Deformation.(mm)’); ylabel(’Frequency’);

print (’—dpng’, [ModelName ’—Hist.png’])

J%MORE TESTS GO HERE AS DESIRED

%Make the StatResults vector passing things back to the main program:

RefResult = [ImgMax, ImgMin, ImgAvg, ImgStdev]
TestResult = [TestMax, TestMin, TestAvg, TestStdev|

tmpl = [RefName,’ &.’ ,num2str(ImgAvg, '%8.2f’), ’.&.’ ,num2str(ImgStdev ,...
"%8.217) &, , num2str(ImgMax, '%8.2f’), ’.&.’, num2str(ImgMin,...
"%8.2£7) ,]

tmp2 = [ModelName, ’.&. " ,num2str(TestAvg, '%8.2f’), ’'.&.’ ,num2str(TestStdev ,...

"%8.217) '.&.’, num2str(TestMax, '%8.2f’), ’&.’, num2str(TestMin ,...
%8.2f") ]

if FirstTime = 1
asdf = fopen(’'ImgStatTable.dat’, 'w’)
fprintf(asdf, %s\n’, tmpl)
FirstTime = 1
fclose (asdf)
end

asdf = fopen(’'ImgStatTable.dat’, ’at+’)
fprintf(asdf, %s\n’, tmp2)
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fclose (asdf)
GradPlot.m:
function [px, py, xGCmax, contIncrement] = GradPlot(ux, uy, uuzCurrMod, ModName)

%Takes the 2D gradient of a matriz and plots z, y gradients and a quiver
Zplot

Z%RETURNS :

%px, the z gradient matriz

%py, the y gradient matriz

Y%xGCmaz, the colorbar maz for the reference model

JARGS :

%uzr, uy: the z and y coord vectors for the data
JuuzCurrMod: the matriz of deformation values

%ModName: the string for the model name (for naming output)

global xTrue yTrue

%Gradient Calcuation and Plot
[px, py] = gradient (uuzCurrMod );
pxMax = max(max(px)); pxMin = min(min(px));
xGCmax = max(abs (pxMin) ,abs(pxMax)); %colour bar maz
pyMax = max(max(py)); pyMin = min(min(py));
yGCmax = max(abs(pyMin) ,abs(pyMax));

ToPlotl = px;

ToPlot2 = py;

Titlel = [ModName ’—XGrad’];

Title2 = [ModName ’'~YGrad’];

loc.plot_2 (ToPlotl, ToPlot2, xGCmax, Titlel , Title2);
caxis (| —xGCmax xGCmax])

hold on;

%quiver plot

DecVal = 3; %Decimate the plot so it ’s not as dense
numX = length (px(:,1));

numY = length(px(1,:));

pxDec = px(1:DecVal:numX,1:DecVal:numY);

pyDec = py(1:DecVal:numX,1:DecVal:numY);

px-2
py-2

pX . * PX;
Py -*py;

pMag = sqrt(px-2 + py-2);
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pMagMin = min(min(pMag) );
pMagMax = max(max{pMag) );

figure

NumConts = 10

contIncrement = pMagMin: ( (pMagMax—pMagMin)/10):pMagMax;
contour (xTrue,yTrue ,pMag, contIncrement ), hold on; grid off; hold on;
quiver (ux (1:DecVal:numX) ,uy (1: DecVal:numY) ,pxDec,pyDec, ’k’)
%hold on; title ([’ Quiver plot of 2D Gradient: ’, ModName])
hold on; xlabel(’X.(km)’); ylabel(’Y.(km)’};

load ’ANATOLIA. dat’

colormap (ANATOLIA); colorbar

hold off, axis image

print ('—dpng’, [ModName ’—Quiver.png’])

GradPlotMod.m:

function [px, py| = GradPlot_-Mod(ux, uy, uuzCurrMod, ModName, ...
xGCmax, contIncrement)

%Takes the 2D gradient of a matriz and plots z, y gradients and a quiver
Zplot

JFRETURNS :

%px, the z gradient matriz
%py, the y gradient matrix
%Also saves plots to .png

ZARGS :

%ux, uy: the z and y coord vectors for the data
YuuzCurrMod: the matriz of deformation values

%ModName: the string for the model name (for naming output)
%xGCmazx, the colorbar max for the reference model

global xTrue yTrue

%Gradient Calcuation and Plot
[px, py| = gradient (uuzCurrMod );

ToPlotl = px;

ToPlot2 = py;

Titlel = [ModName '—XGrad’];

Title2 = [ModName ’—YGrad’];

loc_plot_2(ToPlotl, ToPlot2, xGCmax, Titlel, Title2);
caxis ([ -xGCmax xGCmax]) ;

hold on;
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%quiver plot

DecVal = 3; %Decimate the plot so the arrows aren’t as dense

nmX = length(px(:,1));
numY = length(px(1,:));
pxDec = px(1:DecVal:numX,1: DecVal:numY);
pyDec = py(1:DecVal:numX,1:DecVal:numY);

PX-2 = pPX.*pX;
Py-2 = py.*py;

pMag = sqrt{px_-2 + py-2)
pMagMin = min(min(pMag))
pMagMax = max(max(pMag));

pMagAbsMax = max(abs(pMagMin), abs(pMagMax))

contIncrement

figure

pcolor (ux,uy,pMag), hold on; grid off; hold on;

load ’ANATOLIApos.dat’

colormap (ANATOLIApos); colorbar

%caxis ([—pMagAbsMaz pMagAbsMaz])

shading flat

quiver (ux (1:DecVal:numX) ,uy (1:DecVal:numY) ,pxDec,pyDec, 2, ’k’)
%hold on; title ([’ Quiver plot of 2D Gradient: ’, ModName])
hold on; xlabel(’X.(km)’); ylabel(’Y.(km)’);

hold off , axis image

pause

print ('—dpng’, [ModName '—Quiver.png’])

?
bl
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