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ABSTRACT

High-quality Interferometric Synthetic Aperture Radar (InSAR) surface
deformation data for field sites around the world has become widely
available over the past decade. Geomechanical models based on InSAR
data occur frequently in the literature but few methods of systematically
optimizing or comparing them are presented. This work discusses
parameterization errors for simplified models of strike-slip, normal, thrust
and reservoir-style faulting with the aim of identifying tests or
characteristics that can differentiate between error types uniquely. Fault
dip errors, slip errors and depth errors are modelled using a simple
homogeneous elastic half-space earth model. Simple difference maps prove
to be a powerful tool for identifying error types and parameter sensitivity,
with gradient maps and gradient difference maps useful for distinguishing
between similar cases. The fault dip proves to be more indicative of error
resolving capability than the faulting regime; errors on intermediately
dipping faults are very difficult to differentiate. More detailed modelling of
compound errors, complex geomechanical properties and noisy data is
proposed. The use of the tests as the starting point for an artificially
intelligent modelling package is briefly discussed.
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Chapter 1

Introduction

In recent years there has been an explosion of high-precision geodetic

surface deformation monitoring data from Global Positioning System (GPS)

stations and Synthetic Aperture Radar (SAR) satellites. The increasing

ease of access to the data and its increasingly broad coverage of sites of

diverse geological and geophysical interest has provoked a concordant boom

in geodetic modelling of surface deformation. Indeed, certain sites are the

subject of multiple competing models from different research groups using

completely different methodologies (eg. the In-Salah CO 2 sequestration

project in Algeria; Rutqvist, 2009 [13], Vasco, 2010 [23], Morris, 2011 [7]).

Despite the monotonically increasing number of competing models,

few concerted attempts have been made to compare and evaluate them

objectively against the ground-truth observed deformation. Optimizing a

single model is a difficult process subject to many discretionary judgements



including the choice of parameter space, the computational techniques

employed and the modeller's biases regarding the site's deformation history.

The diversity of models is both expected and vital because the problem is

inherently non-unique and remains relatively poorly constrained despite the

new data.

The goal of this research is to break the geodetic modelling problem

into its smallest component units and establish a set of criteria for

distinguishing different types of parameter errors. A suite of simple models

is presented covering four major fault types: strike-slip, normal, thrust and

reservoir-style faulting. The effect of known errors in the fault depth, dip

and slip distance on the resulting surface deformation is tested for each fault

type. The goal of these tests is to identify ways that parameter variations

in models of the same site can be precisely compared. However, this study

stops short of formulating any formal ranking or optimization criteria.

A simple homogeneous elastic half-space earth model is used so that

the Okada (1985 [8]) analytical solutions for deformation apply. The initial

models were generated using the Coulomb 3.2 software package of the

United States Geological Survey (USGS) (Toda, 2010 [22]). Difference

maps, deformation histograms and gradient maps are used to distinguish

between the error types based solely on their computed deformation

patterns.

The methodology for the models and the comparison tests are

described in detail in Chapter 2. The resulting tests, discussed in Chapter 3



could be used for optimization of existing models, to compare rival models

of the same site or as the basis for an artificially intelligent modelling

package. These prospective applications and some of the difficulties that

will be faced using the tests with real data and more complex models are

discussed in Chapter 4. The MatLab code used to process the Coulomb 3.2

results and generate all of the figures is included in an appendix.



Chapter 2

Methodology

The work presented here has two purposes: to develop a suite of surface

displacement models for different parameterization errors and geological

scenarios and to investigate simple tests that can identify different types of

errors in the model parameter space. This discussion of the methodology is

divided into two parts covering the geodetic models and the statistical

testing techniques.

2.1 Geodetic Modelling

The results presented in Section 3 are simple geomechanical models of the

surface deformation that results from earthquakes. A simple homogeneous

elastic half-space earth model has been used in combination with the

analytic Okada (1985 [8]) solutions for surface deformation and the



Coulomb 3.2 software package (Toda, 2010 [22]) to test the impact of

different types of parameterization errors as compared to the reference

model. In a case with real data, the reference model would be replaced by

the InSAR interferogram of the field site. The following sections discuss the

geodetic models in more detail.

2.1.1 Coulomb 3.2 Modelling Software

Coulomb 3.2 is a MatLab software package created at the USGS and

Woods Hole Oceanographic Institute (Lin and Stein, 2004, [6]; Toda et. al,

2005, [20]). Coulomb 3.2 has a well-developed graphical user interface, but

all of the source code is accessible to the user. Its primary purpose is to

calculate static stress transfers due to large earthquakes according to an

implementation of the Coulomb Failure Criterion utilizing source and

receiver faults. Coulomb 3.2 is very strong graphically and the majority of

the figures in the results section were created either in Coulomb 3.2, by

modifying the Coulomb 3.2 source code, or by reprocessing the raw

Coulomb 3.2 output.

Coulomb 3.2 can calculate "static displacements, strains, and stresses

at any depth caused by fault slip, magmatic intrusion or dike

expansion/contraction", as well as, "static displacements (on a surface or at

GPS stations), strains, and stresses caused by fault slip, magmatic intrusion

or dike expansion." (Toda, 2010 [22]). The USGS makes Coulomb 3.2 freely

available for non-commercial research and it remains under active



development. This project does not use the stress transfer modelling

capabilities of Coulomb 3.2, but makes extensive use of its 3-D

implementation of the Okada 1985 solutions [8] for displacements in a

half-space.

The package and method's weakness, its inability to process

heterogeneous earth models, is minimized for this project because Coulomb

3.2 is used to generate model suites to compare to each other rather than in

an attempt to make the most accurate possible model of a given reservoir or

earthquake. Self-consistency in the model suite is more important because

the models are theoretical cases only. The goal of the work presented in this

document is not to produce the best model possible but instead to develop

methods for ranking and optimizing different models of the same site.

Coulomb 3.2 calculates three dimensional surface deformations for all

models. Since processed InSAR data is usually only one dimensional, the

post-processing routines in this study simply ignore the X and Y

displacement information. When using real InSAR data the picture is more

complicated since the one dimensional line-of-sight InSAR deformation

observed includes vertical and lateral, predominantly easterly, components

(see Section 2.1.3). Coulomb 3.2 can also calculate three dimensional GPS

deformation vectors. This capability has not been used in this study but

could be a useful extension for future modelling.

Surface deformation models produced in Coulomb 3.2 are particularly

oversimplified in a reservoir scenario, where fluid flow is more important



and the heterogeneous coupled hydromechanical capabilities of Finite

Element Methods (FEM) packages excel. However, the limitations of the

Coulomb models for reservoirs is perhaps a blessing in disguise for this

project because it minimizes the risks posed by overly aggressive

parameterization and discretization.

2.1.2 The Okada Solutions for Surface Displacement

Dislocation theory, a technique for calculating the stresses due to internal

displacements in a medium, was introduced to seismology by Steketee

(1958, [19]) and Rongved and Frasier (1958, [12]). The theory was first

formulated by the crystallographer Volterra (1905) to explain the stresses

resulting from the termination of a plane of atoms in the middle of a crystal

structure or from a helical crystallographic disruption. Frank and Read

coined the term dislocation theory in 1950 [2] while proposing a model for

dislocations under shear stress.

Many contributions to the calculation of surface deformations using

dislocations for special cases and source types followed over the next 25

years, but gaps and computational challenges were plentiful. Okada (1985

[8]) published a seminal paper which corrected errors, eliminated

singularities and reformulated all of the prior work for point sources and

compressive faulting into closed form analytical solutions for displacement,

strain and tilt. At the time, accurate measurements of surface displacement

were very limited so the homogeneous earth assumption made by Okada



was not troubling because the models were still more precise than the

geodetic data.

Further to correcting and expanding prior work on point sources,

Okada developed new solutions for tensile faulting and finite rectangular

sources. These solutions and a subsequent analytic formulation for internal

deformation (Okada, 1992 [9]) are two of the most widely-cited works in

geophysics. The equations Okada presents in these two papers form the

basis of the Coulomb 3.2 software; in fact, Okada's own MatLab code forms

the core of Coulomb 3.2. The work presented here uses only a small part of

the power of Okada's solutions to solve for the vertical surface displacement.

2.1.3 Interferometric Synthetic Aperture Radar

(InSAR)

Interferometric Synthetic Aperture Radar (InSAR) is a satellite-based

technology for measuring surface deformation. A low Earth-orbiting

Synthetic Aperture Radar (SAR) satellite in a polar orbit bounces radar

waves off of the surface and records the amplitude, phase and time of the

reflected signal. Since the satellites utilize near-polar orbits they have much

lower sensitivity to deformation in their direction of travel (north-south)

than to vertical or east-west trending deformation. The line-of-sight

deformation that interferograms show is a combination of vertical and

lateral (primarily east-west) deformation. The line-of-sight deformation can



only be decomposed into vector components if measurements over the site

have been obtained from two or more look angles.

Calculating surface displacement from SAR data requires

high-accuracy repeated orbits over the same location to measure phase

shifts to determine the displacement by interferometry. Interferograms are

constructed from two SAR images by subtracting the phase of the images

pixel-by-pixel. Combining SAR images from different platforms into

interferograms is not possible because of the orbital differences between the

satellites, but processed interferograms from different platforms can be

compared. Most existing monitoring or tectonics projects focus on data

from a single platform (Rodriguez, 1992, [11]).

There are a number of deployed and functional space-borne radar

platforms including the Canadian Space Agency's RADARSAT-1 and

RADARSAT-2, the European Space Agency's Envisat and the Japanese

Space Agency's JERS-1 satellites. These platforms employ C-Band sensors

with wavelengths from 40-80mm, except for the L-band (150-300mm)

JERS-1 mission. Future missions are planned to expand the InSAR data

suite into the X (25-40mm) and L (150-300mm) bands to expand the

sensitivity and resolution available from the SAR satellite suite.

Compared to GPS data, InSAR deformation measurements are less

accurate, centimetre-scale rather than millimetre-scale, and are discrete in

time. The lowest repeat time possible for InSAR data from a single

platform at present is approximately one month, so coseismic observations



are impossible. The two technologies work well in tandem to establish a

deformation data set that is continuous and well-resolved in both space and

time(Segall 2010, [15]).

A major advantage of GPS data is that it is three dimensional, with

higher accuracy laterally than vertically. Deriving three-dimensional

deformation from interferograms is an active area of research (eg. Gray,

2011 [5]). The model evaluation techniques discussed later will scale easily

to the three dimensional case but are presented only in terms of vertical (z)

deformation for simplicity, ignoring that real InSAR data measures

line-of-sight deformation instead of vertical. To compare models and real

InSAR data the modelled vector deformation fields must be converted into

line-of-sight changes using the basic orbital parameters of the SAR satellite

in question (eg. Vasco, 2010 [23], Rutqvist, 2009 [13]).

2.2 Statistical Tests

A primary goal of this project is to identify simple statistical checks that

assess the relative value of different geologic or geophysical models of the

same InSAR-measured surface deformation. Model comparisons in most

published literature are very qualitative and the geodetic modelling

community stands to benefit from a coherent way to rank its results given

the inherent non-uniqueness of solutions at each site.

The ensemble of tests proposed could also serve as the basis for an



automated model optimizer at a later date. The increasing availability of

InSAR data and rise of CO 2 sequestration projects that require verification

combine to make model evaluation a particularly timely topic. The tests

discussed here and the unique deformation patterns identified in Chapter 3

should also apply to much more complicated models. This discussion's

intent is to identify baseline parameter changes in geodetic response

through a broadly adaptable reductionist approach.

2.2.1 Difference Maps

Difference maps are the simplest first order error evaluation tool. Difference

maps are generated by subtracting the modelled deformation from the

interferogram, i.e.

Dif f = InSAR - Model

Difference maps are only occasionally published (eg. Wicks, 1998 [24]), but

are a very useful tool for identifying errors. The difference maps presented

later on are calculated using element-wise subtraction in MatLab.

2.2.2 Gradient Maps

Gradient maps show the first spatial derivative of a model's surface

deformation. The plots presented in Chapter 3 use arrows to indicate the

gradient direction at a point, underlain by contours of the gradient

magnitude. The gradient is calculated created using MatLab's gradient()



function, which returns the numerical gradients dF/dx and dF/dy in

separate matrices of the same size as the input matrix. The gradient maps

reveal greater detail in the deformation structure and are very useful for

distinguishing between parameter errors with similar surface expressions.

Gradient difference plots are generated by subtracting the dF/dx and

dF/dy matrices of the two models being compared prior to calculating the

directions and magnitudes for the plot.



Chapter 3

Results and Interpretation

Four important types of faulting are considered in this section: Strike-slip,

Normal, Thrust and Reservoir-type (compound). There are six model

parameters potentially subject to error and optimization for each category:

strike, dip, fault depth, fault location, fault dimension and slip. The

following four sections first introduce the surface deformation caused by a

reference model of known geologic provenance. The reference model is

treated as a black box "interferogram", and the effect of systematically

varying one of the modelling parameters is presented in each sub-section.

The models are tested to identify characteristics indicative of specific error

types as uniquely as possible.

The following sections assume that the type of faulting and fault

dimensions will always be known a priori by a modeller, whether human or

artificial intelligence-driven, since earthquake moment tensors and basic



geologic observations are normally available for faults that are subject to

scrutiny by InSAR. For simplicity the models use constant slip over the

fault area, but real earthquakes and most detailed fault models have

variable slip. This simplification should only change the deformation

patterns that a modelled earthquake generates and should not affect the

comparison between models or to the "interferogram" reference models. All

of the models are constructed on square grids at reservoir scale with a 100m

grid cell size unless otherwise noted for simplicity and comparison purposes.

However, the Okada solutions are non-dimensional and the solutions scale

arbitrarily.

Images of the same type in the same section use the colour bar of the

reference image of that type, eg. all raw z-displacement plots use the

"interferogram" colour bar, but all gradient plots use the colour bar for the

gradient of the interferogram. The models are relatively simple, but the

error identification techniques described should be effective on complex

models because Okada-based deformation models are relatively

superposable. Complex models are made by adding many simple

components and can be decomposed into end-member faulting components

for calculation and evaluation.



3.1 Strike-Slip Faulting

Strike-slip faulting is very common in tectonic settings, particularly at

transverse plate boundaries. The best-known examples of strike-slip faults

are the San Andreas Fault in California (eg. Segall, 1985, [14]) and the

Anatolian Fault in Turkey (eg. Stein et al., 1997, [18), Delouis, 2002, [1]).

The ground deformation patterns seen after strike-slip earthquakes were

thoroughly discussed by Stein et al., 1994 [17]. This paper also introduced

the Coulomb 1.0 software package whose latest version (3.2) was used to

generate all of the models presented in this chapter.

Characteristic surface deformation for strike-slip faults is upwards

beyond the end of the fault in the direction of slip on both sides, and

downwards in the direction that the observer's side has moved away from.

For example, in a North-South striking, right-lateral fault, lobes of positive

surface deformation would be seen in the Northwest and Southeast. Strike

slip faulting is often complex and multi-segmented, with local fault

conditions influencing the extent of rupture and surface deformation.

The reference model consists of a two-segment, vertical strike-slip

fault, with the southern segment trending due North-South and the

northern segment striking at N20E. Cases 1 and 2 show the deformation

due to faults shallower and deeper than the reference model. Cases 3 and

3a see the faults dipping slightly from the vertical while Cases 4 and 5 see

too much and too little slip. The effects of displacing the fault in the X and



Y directions are considered in cases 6 and 7.

The fault parameters for all of the cases are summarized in Table 3.1.

Coulomb 3.2 has a singularity for faults dipping at 90 degrees (Toda, 2010,

[22]) so dips of 89.9 degrees are used to approximate vertical faults. The

fault model for the reference case and the calculation grid (100m spacing)

are shown in Figure 3.1. All subsequent models in this section were created

by modifying single parameters in the reference model, which is treated as

if it were an interferogram collected over a field site. The basic model

statistics for each case are summarized in Table 3.2.



Table 3.1: Strike-slip Fault Model Parameters

Case X Y X end Y end Right-lat Reverse Dip Fault Fault

start start (km) (km) Slip (m) Slip (deg) Top Bottom

(km) (km) (m) (km) (km)

ref 7.5 5.5 7.5 7.5 0.05 0 89.9 1.5 3.0

ref 7.5 7.5 8.25 9.5 0.03 0.01 89.9 1.5 3.0

1 7.5 5.5 7.5 7.5 0.05 0 89.9 0.5 2.0

1 7.5 7.5 8.25 9.5 0.03 0.01 89.9 0.5 2.0

2 7.5 5.5 7.5 7.5 0.05 0 89.9 2.5 4.0

2 7.5 7.5 8.25 9.5 0.03 0.01 89.9 2.5 4.0

3 7.5 5.5 7.5 7.5 0.05 0 80 1.5 3.0

3 7.5 7.5 8.25 9.5 0.03 0.01 80 1.5 3.0

4 7.5 5.5 7.5 7.5 0.05 0 70 1.5 3.0

4 7.5 7.5 8.25 9.5 0.03 0.01 70 1.5 3.0

5 7.5 5.5 7.5 7.5 0.075 0 89.9 1.5 3.0

5 7.5 7.5 8.25 9.5 0.05 0.01 89.9 1.5 3.0

6 7.5 5.5 7.5 7.5 0.035 0 89.9 1.5 3.0

6 7.5 7.5 8.25 9.5 0.02 0.01 89.9 1.5 3.0

7 7.0 5.5 7.0 7.5 0.05 0 89.9 1.5 3.0

7 7.0 7.5 7.25 9.5 0.03 0.01 89.9 1.5 3.0

8 7.5 6.0 7.5 8.0 0.05 0 89.9 1.5 3.0

8 7.5 8.0 8.25 10.0 0.03 0.01 89.9 1.5 3.0
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Figure 3.1: Strike slip reference faults and calculation grid



Table 3.2: Strike-slip Fault Model Statistics

Case Average Dis- Standard Maximum Minimum

placement Deviation (mm) (mm)

(mm) (mm)

Ref 0.10 0.51 1.39 -1.02

1 0.17 0.60 2.79 -2.27

2 0.06 0.38 0.80 -0.64

3 0.11 0.58 1.94 -1.31

3a 0.13 0.74 2.61 -1.63

4 0.10 0.78 2.09 -1.66

5 0.10 0.37 0.99 -0.70

6 0.10 0.51 1.27 -1.07

7 0.10 0.51 1.39 -1.02



3.1.1 Errors in Fault Depth

Fault depth model errors are both common and easy to identify. For equal

faults with equal slip, the surface deformation due to a deep fault will have

lower amplitude and broader lateral extent than the reference model. A

shallow fault model will exhibit higher deformation and more sharply

defined edges than the reference model. Figure 3.2 shows the deformation

plots for the reference model, Case 1 (shallow) and Case 2 (deep).

Figure 3.3 shows the differences between the reference model and Cases 1

and 2.
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Errors in fault depth are relatively easy to see from difference maps,

either systematically too high or too low, or from the simple image

statistics. Case 3 is 1 km shallower and Case 4 is 1 km deeper than the

reference fault. Histogram plots of the data show the differences nicely

(Figure 3.4).

The shallow fault shows broader tails and lower shoulders in the

histogram, and the deeper fault is tightly peaked about zero deformation.

The locations of the peak deformation do not change and the changes in

the distribution are reasonably symmetric. The shallow fault has more

instances of zero deformation than the reference model and the deep model

has fewer, reflecting the change in lateral extent. Fault depth is also

frequently subject to useful constraint by seismic data, although less so

than many other parameters. Geodetic modelling alone can uniquely

identify fault depth errors.

An error in slip dimension is most likely to be confused for a depth

error. This is particularly plausible for strike-slip faults since deformation

symmetry is maintained with slip errors. For dipping faults, in contrast, a

change in slip results in a significant change in the symmetry of the lateral

distribution of deformation and the location of deformation peaks. This

will be discussed further in section 3.1.3.
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3.1.2 Errors in Fault Dip

Fault dip errors are more difficult to constrain than depth or X-Y location

errors. Seismic information is a potentially powerful additional tool, but

there are some systematic changes in deformation symmetry with varying

dip that can identify dip errors. Dip errors are particularly easy to detect

for strike-slip faults because they are sub-vertical, so small dip changes

result in large asymmetries in the deformation pattern. The gradient map

is particularly useful in this case to identify the direction of the dip error.

Figure 3.5 shows the deformation due to the vertical reference fault and

faults oriented at 10 and 20 degrees from vertical towards the east.
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The difference maps in Figure 3.6 show a divide between the northern

and southern halves reflecting the additive effect of the asymmetry. The

reference model is relatively higher in both the northwest and northeast

quadrants due to increased deformation (subsidence) in the northeast

quadrant and decreased uplift in the northwest quadrant in Case 3. The

lower half of the model shows a positive difference because the uplift in the

southeast quadrant is increased and the subsidence in the southwest

quadrant is diminished. The asymmetric deformation pattern and

difference map result are accentuated in Case 4, which dips a further 10

degrees from vertical towards the east.
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Although the difference maps are useful and characteristic of a dip

error in a strike-slip faulting regime, the difference map pattern is not

unique. Spatial gradient maps tell a much clearer tale of the asymmetry.

Figures 3.7 and 3.8 show gradient and gradient difference maps for Cases 3

and 3a. The arrows on the plots indicate the direction while the contours

indicate the magnitude of the gradient at a specific point. Plotting the

gradients in this way makes the plot and comparison independent of fault

strike.

The reference model's gradient is symmetric since the fault is vertical.

As the dip increases, first to 10 and then to 20 degrees to the east, the

deformation becomes increasingly asymmetric and concentrated in the

eastern half of the model. The gradient difference plots between the two

models and the reference reinforce the conclusion from the simple difference

maps that increasing deformation asymmetry is indicative of a dip error on

a strike-slip fault. The sensitivity of the asymmetric deformation pattern to

dip errors could point to an interesting alternative interpretation of

asymmetric InSAR observations from Tibet (Peltzer et. al, [10], 1999)

attributed to a variable elastic modulus.
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3.1.3 Errors in Slip Distance

The slip distance can be constrained seismically for a well-observed

earthquake since earthquake magnitude is a linear function of slip distance

and the rupture area. Geodetically, changing the slip without changing the

size of the fault results in an increase or decrease in deformation. Figure 3.9

shows the reference model and the impact of increasing and decreasing the

slip by approximately 50% in Cases 4 and 5 respectively.
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The difference maps for Cases 4 and 5 (Figure 3.10) show that the

mismatch is concentrated at the deformation peaks instead of broadly

across the entire model as in a depth error. The peak deformation areas in

the vertical strike slip fault are symmetric so the increase or decrease in

deformation is also symmetric for this type of error.

Slip errors of this simplified type look superficially similar to depth

errors in the basic image statistics, but the increases or decreases in

deformation are concentrated in the peak areas instead of spread across the

model. This is clearly shown in Figure 3.11 by the narrowing of the

deformation histogram under low slip and its broadening under high slip.

Figure 3.12 shows gradient plots, where gradient magnitude contours

are overlain by arrows indicating the vector direction, for the reference

model and Cases 4 and 5 (more slip and less slip respectively). The quiver

plots show very clearly that changing the slip doesn't change the areal

extent of deformation, only its magnitude. In contrast, changing the fault

depth changes the lateral extent of deformation. A smaller area is affected

more dramatically by a shallower fault and a larger area more gently

deformed by a deep fault. The gradient difference plots (Figures 3.13)

confirm the symmetric errors introduced by slip errors on a vertical

strike-slip fault.
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Taken together, the test suite is able to uniquely identify slip errors

for strike-slip faults since they result in increases in the peak deformation

without significant changes in the location or extent of the deformation.

The cases in this section do not preserve seismic moment, potentially a

useful constraint available for medium and large earthquakes.
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3.1.4 Errors in Fault Location: Displacement in X or

Y direction

Errors in the X-Y placement of a fault are particularly obvious in strike-slip

faulting and are also among the most easily corroborated by non-InSAR

data, eg. earthquake locations, exploration seismic data or geologic surface

expression of the fault. Figure 3.14 shows the vertical displacements

measured due to the reference model, Case 6 (offset 500m in X) and Case 7

(offset 500m in Y). In this case the only difference between the three models

is the fault's position in X-Y space. Figure 3.15 shows difference maps

between Cases 6 and 7 and the reference model, which illustrate the offset.
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To identify X-Y errors algorithmically a modelling program could

make a series of models with increasing offsets in both directions, calculate

the difference maps and then make profiles of Error vs. Offset at specific

points. The X and Y profiles will have minima at the correct locations

provided that the modelled fault's strike is correct.

Fault X-Y location is a parameter that benefits from a lot of external

information. Faults important enough to have InSAR images taken at

regular intervals are frequently instrumented for seismic data collection

(tectonic faults), visible on exploration seismic data (reservoir faults) and

are frequently instrumented with GPS stations. In addition, tectonic

strike-slip faults are often visible at the surface. The X-Y location and fault

length are very important parameters whose precision should be improved

with all available types of data. These errors are sufficiently unique and

easily resolved that they will not be presented separately for the other fault

types.
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3.1.5 Summary of Strike-slip Faulting Errors

Fault depth and slip distance errors both result in systematically high or

low displacements visible in the difference maps and average statistics. The

differentiating factor between the two is that the deformation changes due

to slip distance errors presents as an exaggeration or diminution of the

peaks of existing deformation pattern but a depth error significantly

changes the areal extent of the deformation. External information,

particularly seismic data, could be a useful additional constraint on this

error type. Dip errors on strike-slip faults result in easily identifiable

asymmetric deformation patterns, which are particularly visible on gradient

maps. Location errors in X and Y are easily identified in isolation and can

be constrained by many other types of geophysical and geological data.

3.2 Normal Faulting

Normal faults are common in extensional tectonic settings where one side of

a fault moves downwards past the other as the compressive stress is

reduced. Pure dip-slip motion is considered in this section, i.e. the

displacement is vertical in the plane of the fault. Earthquakes on normal

faults are generally smaller than on other types of faults because

extensional strain can be relieved in smaller increments than strain caused

by crustal shortening.

Cases 1 and 2 show the deformation due to faults that are shallower



and deeper than the reference model. Cases 3 and 4 see the faults dipping

at 10 degrees shallower and deeper, respectively, than the reference model.

Cases 5 and 6 see less and more slip than the reference model. The X and

Y offset cases are not presented because their identification and processing

is not notably different than the methods developed for strike-slip faulting.

The fault parameters for all of the cases in this section are

summarized in Table 3.3. The faults for the reference case and grid (100m

spacing) are shown in Figure 3.16. Basic image statistics for each of the

cases are summarized in Table 3.4. All subsequent models in this section

were created by modifying single parameters in the reference model, which

is treated as a fully processed interferogram collected over a field site.



Table 3.3: Normal Fault Model Parameters

Case X

start

(km)

ref 7.5

ref 7.5

1 7.5

1 7.5

2 7.5

2 7.5

3 7.5

3 7.5

3 7.5

3 7.5

4 7.5

4 7.5

5 7.5

5 7.5

6 7.5

6 7.5

Y

start

(km)

5.5

7.5

5.5

7.5

5.5

7.5

5.5

7.5

5.5

7.5

5.5

7.5

5.5

7.5

5.5

7.5

X end

(km)

Y end

(km)

Right-lat

Slip (m)

7.5 7.5 0

8.25 9.5 0

7.5 7.5 0

8.25 9.5 0

7.5 7.5 0

8.25 9.5 0

7.5 7.5 0

8.25 9.5 0

7.5 7.5 0

8.25 9.5 0

7.5 7.5 0

8.25 9.5 0

7.5 7.5 0

8.25 9.5 0

7.5 7.5 0

8.25 9.5 0

Reverse

Slip

(m)W

-0.05

-0.05

-0.05

-0.05

-0.05

-0.05

-0.05

-0.05

-0.05

-0.05

-0.05

-0.05

-0.03

-0.03

-0.08

-0.08

Dip Fault Fault

(deg) Top Bottom

(km) (km)

60 1.5 3.0

55 1.25 3.25

60 1 2.5

55 0.75 2.75

60 2 3.5

55 1.75 3.75

50 1.5 3.0

45 1.25 3.25

30 1.5 3.0

25 1.25 3.25

70 1.5 3.0

65 1.25 3.25

60 1.5 3.0

55 1.25 3.25

60 1.5 3.0

55 1.25 3.25
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Table 3.4: Normal Fault Model Statistics

Case Average Dis- Standard Maximum Minimum

placement Deviation (mm) (mm)

(mm) (mm)

Ref -1.7 2.8 1.3 -14.6

1 -1.8 3.5 1.8 -20.3

2 -1.5 2.3 0.9 -10.8

3 -2.2 3.9 0.9 -19.9

3a -4.5 7.4 0.3 -34.6

4 -1.3 2.0 1.6 -10.4

5 -1.0 1.7 0.8 -8.8

6 -2.7 4.5 2.0 -23.4



3.2.1 Errors in Fault Depth

Steeply-dipping normal faults result primarily in surface subsidence. For

faults with intermediate or shallow dip X-Y deformation becomes

increasingly important, but is not considered for these models since InSAR

data cannot yet be separated into vector components. Cases 1 and 2,

translations of the same fault shallower and deeper respectively, are shown

with the reference model in Figure 3.17. The shallower fault results in a

smaller area of more intense deformation (average: -1.8mm, peak:

-20.3mm). The deeper fault sees its deformation diminished (average:

-1.5mm, peak:-10.8mm) but spread over a larger area.
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Errors in fault depth are relatively easy to see from difference maps

(Figure 3.18) or from the basic image statistics. For example, an average

deformation that is too high in the presence of a similar distribution and

standard deviation indicates a shallow fault. Histogram plots (Figure 3.19)

of the data show the differences nicely, particularly in the highly deformed

tails. Case 1 is 500m shallower and Case 2 is 500m deeper than the

reference fault.

The shallow fault shows broader tails and lower shoulders in the

histogram, and the deeper fault is tightly peaked about zero deformation.

Fault depth is also frequently subject to useful constraint by seismic data,

but geodetic modelling alone can constrain it given that the other fault

geometry parameters are constrained.
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3.2.2 Errors in Fault Dip

Dip errors are difficult to constrain, particularly for faults with shallow or

intermediate dip. Seismic information is a potentially powerful additional

tool, but there are some systematic changes in deformation symmetry with

varying dip that can identify dip errors. Dip errors are harder to identify on

dipping faults than vertical faults because the asymmetry generated by the

error is more subtle and easily confused with fault depth errors. Figure 3.20

shows the surface deformation for the reference model and Cases 3, 3a, 4a:

10 degrees shallower, 30 degrees shallower and 10 degrees steeper

respectively. The difference maps are shown in Figure 3.21 and histograms

of the deformation are shown in Figure 3.22. Gradient and Gradient

difference plots are shown for the three models in Figures 3.23 and 3.24.
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Although superficially similar to depth errors, the deformation

changes caused by dip errors remain localized at the peak deformation; the

areal extent of deformation does not change significantly. The histograms

for dip errors illustrate their subtlety very well: dip errors are much more

similar to the reference histogram than any other error type, particularly in

the deformation tails.

Unlike strike-slip faulting, asymmetry in the deformation pattern is

difficult to identify for the smaller 10 degree errors. The 30 degree dip error

shows substantial asymmetry, but this level of error is probably unrealistic

since fault dips can usually be constrained much better than 30 degrees

from seismic and other data.

The gradient maps are useful for identifying the direction of the dip

error (shallower vs. steeper), since the errors are mirror images on the

gradient difference maps. It appears that there is a limit to the sensitivity

of dip errors that can be uniquely identified using geodetic models alone

since the 10 degrees errors are poorly resolved. Accordingly, external

constrains on fault dip estimates appear to be particularly important for

faults of intermediate dip.



3.2.3 Errors in Slip Distance

The geodetic response of to a change in slip without a change in fault

dimension is a net increase or decrease in deformation, but the magnitude

of the earthquake also increases or decreases. Slip errors of this simplified

type are the least realistic of the reductionist cases presented. However,

identifying slip errors in this simplified static fault area case is an important

first step towards developing more robust tests for magnitude-preserving

slip/fault area models. Figures 3.25 and 3.26 show the deformation and

difference maps for the reference model and Cases 5 and 6.
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Figure 3.25: Normal Fault Slip Error: Vertical Displacements (mm) (cont.)



Slip errors of this type look superficially similar to both depth errors

and fault dip errors. The main differentiating factor from depth errors is

the concentration of changes in deformation at the peak areas instead of

spread evenly across the model. The main differentiating factor from the

dip errors is that the histogram tails for slip errors are much more different

from the reference model. This is clearly shown in Figure 3.27 by the slight

narrowing of the deformation histogram under low slip, its broadening

under high slip and the respectively suppressed and accentuated tails. The

gradient and gradient difference maps (Figures 3.28 and 3.29) for all three

error types are quite similar but the differences in the slip error gradients

are somewhat larger than those of dip errors.
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3.2.4 Summary of Normal Fault Errors

The three error types considered for normal faults, fault depth, fault dip

and slip distance are difficult to distinguish. Fault depth errors change the

lateral extent of deformation significantly and symmetrically; they are

primarily a sharp accentuation or broad diminution of the reference model's

deformation pattern. Fault dip errors concentrate their deformation

changes in the peaks, but moderate errors are very difficult to distinguish in

intermediately dipping faults. External data constraints appear to have

particular utility for dip errors.

Slip errors are differentiable from depth errors primarily because they

influence the deformation peaks rather than the lateral extents of

deformation. The somewhat artificial slip errors modeled here are difficult

to distinguish from small fault dip errors. More realistic

magnitude-preserving fault models that varied slip and fault area together

could potentially resolve this ambiguity. Very large errors in fault dip are

uniquely identifiable from geodetic models but this constraint is likely a

moot point due to the availability of geometric constraints from seismic

data. The difficulty of distinguishing between these errors appears to be

more related to the intermediate dip of the reference model than the

normal faulting regime.



3.3 Thrust Faulting

Thrust faults are low-angle reverse faults that frequently develop within

lithologic units when continental plates meet at a convergent boundary.

The type example of thrust faulting is the Himalayan orogenic complex.

GPS data is currently a more useful geodetic technique than InSAR in

these environments because thrust fault movement is predominantly in the

X-Y plane.

However, because there is still observable vertical and line-of-sight

deformation on thrust faults and 3-D InSAR vector deformation processing

techniques are being actively developed, it is appropriate to explore a

thrust faulting model suite. Cases 1 and 2 present depth errors, 3 and 4

present small dip errors, while 5 and 6 present slip distance errors.

The fault parameters for all of the cases are summarized in Table 3.5.

The faults for the reference case and grid (200m spacing) are shown in

Figure 3.30. Table 3.6 summarizes the image statistics for each of the cases.

All subsequent models in this section were created by modifying single

parameters in the reference model, which is treated as if it were an

interferogram collected over a field site.



Table 3.5: Thrust Fault Model Parameters

Case X Y X end Y end Right-lat Reverse Dip Fault Fault

start start (km) (km) Slip (m) Slip (deg) Top Bottom

(km) (km) (m) (km) (km)

ref 7.5 5.5 7.5 7.5 0 0.05 20 1.5 3.0

ref 7.5 7.5 8.25 9.5 0 0.04 25 1.5 3.5

1 7.5 5.5 7.5 7.5 0 0.05 20 1 2.5

1 7.5 7.5 8.25 9.5 0 0.04 25 1 3.0

2 7.5 5.5 7.5 7.5 0 0.05 20 2 3.5

2 7.5 7.5 8.25 9.5 0 0.04 25 2 4.0

3 7.5 5.5 7.5 7.5 0 0.05 15 1.5 3.0

3 7.5 7.5 8.25 9.5 0 0.04 20 1.5 3.5

4 7.5 5.5 7.5 7.5 0 0.05 25 1.5 3.0

4 7.5 7.5 8.25 9.5 0 0.04 30 1.5 3.5

5 7.5 5.5 7.5 7.5 0 0.08 20 1.5 3.0

5 7.5 7.5 8.25 9.5 0 0.05 25 1.5 3.5

6 7.5 5.5 7.5 7.5 0 0.03 20 1.5 3.0

6 7.5 7.5 8.25 9.5 0 0.02 25 1.5 3.5



Figure

0 5 10 15

X (km)

3.30: Thrust fault reference model and calculation grid

Table 3.6: Thrust Fault Model Statistics

Case Average Dis- Standard Devia- Maximum (mm) Minimum (mm)

placement tion (mm)

(mm)

Ref 4.7 8.0 35.0 -0.2

1 4.9 9.2 42.5 -0.4

2 4.6 7.0 29.2 -0.2

3 6.1 9.8 39.8 -0.1

4 3.8 6.7 30.5 -0.4

5 7.1 11.9 51.1 -0.3

6 2.7 4.5 19.6 -0.1



3.3.1 Errors in Fault Depth

Errors in fault depth are relatively easy to see from difference maps or from

the basic image statistics. Since thrust faults result in uplift, difference

maps showing negative values (Case 1) indicate more surface deformation.

Histogram plots of the data show the differences nicely, particularly in the

extended tail of the shallower fault. Case 1 is 500m shallower and Case 2 is

500m deeper than the reference fault. Figures 3.31 and 3.32 show the

deformation and difference maps for the reference model, Case 1 (shallow

fault) and Case 2 (deep fault).
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Fault depth is frequently subject to useful constraint by seismic data,

but geodetic modelling alone can constrain it given that the other fault

geometry parameters are constrained. The low dip angle of the faults in

this model moderates the change in lateral extent of vertical surface

deformation, but this is still a useful differentiating factor. The three

dimensional deformation would be more interesting than vertical

deformation for thrust faults. The X and Y difference maps would show

much more deformation than the vertical deformation map presented here.
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3.3.2 Errors in Fault Dip

Fault dip errors are more difficult to constrain than depth or X-Y location

errors. Seismic information is a potentially powerful additional tool, but

there are some systematic changes in deformation symmetry with varying

dip that can identify dip errors. Since thrust faults dip so shallowly, the

deformation pattern changes rapidly in both areal extent and magnitude if

the dip is in error. Less surface area is deformed by a steeper fault and a

broader area is deformed by a shallower fault.
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The gradient and gradient difference maps, Figures 3.36 and 3.37

allow us to identify the direction of the dip error and are very useful for

distinguishing dip errors from slip errors. The deformation gradients are

reduced in the steeper model and increased in the shallower model.

Sensitivity to dip errors appears to be more strongly a function of the

reference fault dip than the magnitude of the error. At extreme dips, such

as the vertical strike slip fault and the thrust fault models, sensitivity is

high to relatively small dip errors of 5-10 degrees. In contrast, the

intermediately-dipping normal fault model showed little sensitivity to errors

less than 30 degrees. Horizontal deformation data such as might be

available from GPS stations would show dip errors even more clearly.
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3.3.3 Errors in Slip Distance

The models in this section are somewhat artificial because they do not

preserve earthquake magnitude. They still provide a useful indicator of the

effects of slip distance on surface displacement, especially with respect to

the lateral extents of deformation. Figure 3.38 shows the surface

displacements for the reference model, Case 5 (more slip) and Case 6 (less

slip).

Slip errors of this type look superficially similar to depth errors

statistically but the increases or decreases in deformation are concentrated

in the peak areas instead of spread across the model. The deformation

histograms (Figure 3.40) have accordingly longer and shorter tails for more

and less slip.



5 10
X (km)

(a) Reference Model

5 10
X (km)

(b) Case 5 (more slip)

X (km)

(c) Case 6 (less slip)

Figure 3.38: Thrust Fault Slip Error: Vertical Displacements (mm) (cont.)



5 10
X (km)

(a) Case 5 (more slip)

0 5 10 15
X (km)

(b) Case 6 (less slip)

Figure 3.39: Thrust Fault Slip Error: Difference from Reference Model (mm)

I ft I



-10 0 10 20 30
Deformation (mm)

(a) Case 5 (more slip)

3000-

2500-

2000-

1500-

1000-

500-

0 5 10 15
Deformation (mm)

20 25 30

(b) Case 6 (less slip)

Figure 3.40: Thrust Fault Slip Error: Histogram of Case vs. Reference Model

40 50 60

tf-ref

- i-

liii ......-- --- .- .= .



,#1

0 5 10
X (km)

(a) Reference Model

15

10

0
0 5 10 1!

X (km)

(b) Case 5 (more slip)

15

1 -

0

(c) Case 6 (less slip)

Figure 3.41: Thrust Fault Slip Error: Gradient Vector Arrows with Magni-
tude Contours



The gradient and gradient difference maps (Figures 3.41 and 3.42 are

useful for distinguishing between the dip and slip errors. The gradients in

the dip error case indicate that the lateral extent of surface deformation has

changed significantly. In contrast, the lateral extent of deformation for the

slip errors is nearly the same. The magnitude of the two errors is more

reflective of the larger parameter changes applied to the slip than of a

distinguishing characteristic. The average, standard deviation and

maximum values increase for both error types, so the basic image statistics

are of little distinguishing value. The three dimensional deformation picture

for thrust faults is much more informative and would offer new ways to

distinguish between depth and slip errors in particular.
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3.3.4 Summary of Thrust Faulting Errors

Depth and slip errors are difficult to distinguish for thrust faults. Slip

errors as modelled here do not preserve earthquake moment and because

the faults dip so shallowly they are difficult to distinguish from depth

errors. In contrast, the very low dip of thrust faults makes the surface

deformation much more sensitive to dip errors than for intermediately

dipping faults, so variation in the lateral extent of deformation can

distinguish even small dip errors.

Slip errors modelled in a magnitude-preserving way by varying the

fault rupture area and the slip distance simultaneously might be more

readily distinguished because the shape and extent of the surface

deformation would vary much more. However, varying multiple parameters

simultaneously raises a different set of challenges. The average and

maximum values move together for all three error types, but useful clues

can be extracted from the shapes and lengths of the histogram tails as

compared to the reference histogram. Lateral surface deformation data

would be especially useful in distinguishing between depth and slip errors

for thrust faults.



3.4 Reservoir-type faulting: Intersecting

Normal Faults and an Inflationary Point

Source

Coulomb 3.2 can create models of nearly arbitrary structural complexity,

within the bounds of a homogeneous half-space earth model. A

reservoir-type reference model located in an extensional tectonic

environment is examined a simple normal fault pair and a moderate amount

of isotropic point source inflation, such as might be observed at an injection

well. Reservoirs can also have reverse or strike-slip faulting regimes. Normal

fault activation will be most common in extensional tectonic environments

or when high-pressure injection results in tensile crack opening.

The fault parameters for all of the cases are summarized in Table 3.7.

The "slip" for the point source is listed under the reverse slip column but is

a dilatation in m3 . The fault and point source geometry is shown with the

100m cell calculation grid in Figure 3.43. The image statistics are

summarized in Table 3.8. Case 1 shows the effect of removing the point

source completely, while Case 2 has a far-too-large point source. Cases 3

and 4 present depth errors for shallow and deep faults respectively. Cases 5

and 6 have too little and too much slip on faults geometrically identical to

the reference model. Cases 7 and 8 have dip errors where the faults dip at

10 degrees shallower and steeper than the reference model. All subsequent



models in this section were created by modifying single parameters in the

reference model, which is treated as if it were an interferogram collected

over a field site.
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Table 3.7: Reservoir Faulting Model Parameters

Case X Y X end Y end Right-lat Reverse Dip Fault Fault

start start (km) (km) Slip (m) Slip (deg) Top Bottom

(km) (km) (m) (km) (km)

ref 9.0 8.5 10.5 11.1 0 -0.05 75

ref 9.25 10.7 10.25 8.9 0 -0.03 80

ref-pt 9.49 8.29 9.51 8.31 0 1x10 8  89.9

1 9.0 8.5 10.5 11.1 0 -0.05 75

1 9.25 10.7 10.25 8.9 0 -0.03 80

2 9.0 8.5 10.5 11.1 0 -0.05 75

2 9.25 10.7 10.25 8.9 0 -0.03 80

2-pt 9.49 8.29 9.51 8.31 0 5x10 8  89.9

3 9.0 8.5 10.5 11.1 0 -0.05 75

3 9.25 10.7 10.25 8.9 0 -0.03 80

3-pt 9.49 8.29 9.51 8.31 0 1x108 89.9

4 9.0 8.5 10.5 11.1 0 -0.05 75

4 9.25 10.7 10.25 8.9 0 -0.03 80

4-pt 9.49 8.29 9.51 8.31 0 1x10 8  89.9

5 9.0 8.5 10.5 11.1 0 -0.03 75

5 9.25 10.7 10.25 8.9 0 -0.02 80

5-pt 9.49 8.29 9.51 8.31 0 1x10 8  89.9

6 9.0 8.5 10.5 11.1 0 -0.08 75

6 9.25 10.7 10.25 8.9 0 -0.05 80

6-pt 9.49 8.29 9.51 8.31 0 1x10 8  89.9

7 9.0 8.5 10.5 11.1 0 -0.05 65

7 9.25 10.7 10.25 8.9 0 -0.03 70

7-pt 9.49 8.29 9.51 8.31 0 1x10 8  89.9

8 9.0 8.5 10.5 11.1 0 -0.05 85

8 9.25 10.7 10.25 8.9 0 -0.03 90

8-pt 9.49 8.29 9.51 8.31 0 1x108 89.9
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Table 3.8: Reservoir Faulting Model Statistics

Case Average Dis- Standard Devia- Maximum (mm) Minimum (mm)

placement tion (mm)

(mm)

Ref

1

2

3

4

5

6

7

8

-0.57

-0.76

0.17

-0.82

-0.60

-0.29

-1.04

-0.71

-0.51

0.75

0.87

1.23

1.17

0.72

0.44

1.26

1.04

0.64

2.95

2.20

7.42

4.62

2.25

2.13

4.33

2.28

3.38

-4.54

-5.15

-2.68

-7.99

-3.61

-2.56

-7.67

-6.25

-3.51



3.4.1 Point Source Errors

The first two cases present errors in the homogeneous point source. The

point source inflation modelled here is somewhat unrealistic because it does

not account for heterogeneous fluid migration as a coupled hydromechanical

Finite Element solver could, but it serves as a useful first order

simplification. Figure 3.44 shows the deformation at the surface for Cases 1

and 2, while Figure 3.45 shows their differences from the reference model.

Point source errors of this simplified type are very easy to identify

because they yield perfect error circles on the difference maps. The X-Y

location of a point source should be known from well data, as should a

reasonable approximation of the injected volume. The hydrogeology of the

subsurface is always difficult to parameterize. Half-space earth models are

clearly not the correct avenue to address questions about how the fluid will

migrate and the effects that might have on surface deformation. In a

real-world modelling situation point source errors would likely be harder to

identify because they could be hidden by other less geometrically evident

errors.
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3.4.2 Errors in Fault Depth

The images in Figures 3.46 and 3.47 show the deformation and difference

maps for Cases 3 and 4, shallower and deeper than the reference model

respectively. Errors in fault and point source depth are relatively obvious

on difference maps or from the basic image statistics. The shallower fault

has greater peak deformation and a smaller lateral extent of deformation

compared to the broader, muted deformation of the deep faults.

Histogram plots of the data (Figure 3.48 show the differences nicely,

with Case 3 having a longer deformation tail and Case 4 more more cells

with low levels of deformation but a shorter tail. Case 3 is 500m shallower

and Case 4 is 500m deeper than the reference faults and point source. Fault

depth and geometry are frequently subject to accurate seismic constraints

in reservoir settings, which can be of great use for distinguishing between

error types in geomechanical models.
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3.4.3 Errors in Slip Distance

Slip errors look superficially similar to depth errors statistically and on the

plots. However, the increases or decreases in deformation are concentrated

at the peak areas instead of spread across the entire model. The difference

maps (Figure 3.50) look very similar to the original deformation map,

compared with the broad lateral changes evident in the depth error cases.

The gradient and gradient difference maps (Figures 3.52 and 3.53

confirm these conclusions: changing the slip distance on steeply dipping

faults accentuates or diminishes the pattern symmetrically with respect to

the reference model. A more detailed magnitude-preserving treatment of

slip errors would yield different results because the fault area would change

as well as the slip. The maximum and minimum changes from the reference

model would be diminished and the area affected would broaden or tighten

with larger or smaller faults, similar to depth errors.
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3.4.4 Errors in Fault Dip

Fault dip errors are more difficult to constrain than depth or X-Y location

errors, especially for movement on faults with shallow or intermediate dip.

Seismic information is a potentially powerful additional tool in a reservoir

setting, but there are some systematic changes in surface deformation

symmetry with varying dip that can identify dip errors. Dip errors are

challenging to detect for intermediately-dipping faults because the

asymmetries generated are somewhat more subtle and easily confused for

depth errors.

The faults in the reference model for this model suite dip quite steeply

(75 and 80 degrees), so the increasing deformation asymmetry is observable

with the 10 degree errors in Cases 7 and 8 (Figure 3.54). The difference

maps are shown in Figure 3.55. For intermediately- or shallowly-dipping

faults the difference maps are less clear and gradient maps are needed as in

the normal fault model suite (Section 3.2).
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3.4.5 Summary of Reservoir-type Fault Errors

The potential geodetic modelling errors in a reservoir environment with

steeply dipping faults are reasonably easy to distinguish. Depth errors

change the lateral extent of the deformation and sharpen or blur the

features of the deformation depending on the direction of the error. Point

source errors are easy to distinguish if the often-suspect assumption of

radially symmetric fluid flow from an injection point is satisfied because

they are perfect circles on difference maps.

Changing the fault slip distance on steeply dipping faults results in

symmetric deformation, accentuating or diminishing the reference model's

deformation pattern rather homogeneously. Changing the fault dip results

in asymmetric deformation, which is easily observed because the faults in

this particular model are very steep. The deformation asymmetry due to

dip errors is much less obvious in faults of intermediate or shallow dip.
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Chapter 4

Future Work

This study's intent is to lay the foundation for a system to evaluate

geomechanical models against geodetic data quickly, repeatably and

quantitatively. Many issues remain before an automated model optimizer

could be devised, or even before competing models of the same field site

could be evaluated and ranked. Some of the most compelling issues are

discussed briefly in this chapter, including compound modelling errors and

the impacts of noisy interferograms.

4.1 Compound Modelling Errors and

Integrating External Data

Modelling errors are rarely of the idealized single-parameter variety

explored here. Parameterizing a fault that has both depth and dip errors,
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for example, will be significantly more difficult than distinguishing between

single error types. A basic amount of a priori geologic information is

required to make geomechanical models of surface deformation, but there is

potentially much more data available than is routinely used. One approach

could be to use the data available from external data sources, particularly

seismic data including moment tensors, for fault geometry and GPS for 3D

surface deformation, to identify the most uncertain parameters and to focus

model refinement efforts on them.

Fault slip and fault size are coupled and often directly mapped from

seismic data for large earthquakes. Using this data routinely could

eliminate a major oversimplification in the model suite presented here, the

non-preservation of earthquake magnitude with slip errors. Fault size and

slip are so non-unique geodetically that using seismic data is preferable to

modelling them. Slip errors are difficult to distinguish from depth or dip

errors, so adopting external measurements where available permits an

important reduction of the parameter space. Untangling multiple

parameter errors in more complicated models is a difficult task which

should be eased by using the tests outlined in Chapter 3.

4.2 Impacts of Interferogram Noise

The "interferograms" used in this study are unnaturally smooth since they

are really just models themselves. Real interferograms have noise which
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cannot necessarily be distinguished from geodetic signal and removed.

There is a risk that the tests proposed could falter when comparing noisy

images, particularly between subtly differentiated errors like depth and dip

errors on intermediately dipping faults. When the noise is purely random

the key features should still be visible, but any spatially correlated-noise

could obscure the signal beyond simple recovery.

Figures 4.56 shows a reference model interferogram and an

interferogram with Gaussian noise with a standard deviation of 20 percent

of the reference model's standard deviation to the normal faulting reference

model. The third interferogram has twice the Gaussian noise, weighted by

Y co-ordinate to be more intense in the north. The error identification

picture with noise is more ambiguous than that presented in Chapter 3 and

could pose an obstacle when attempting to make models to match real

data. One mitigating factor is that all of the parameter optimizations for a

given interferogram are subject to the same noise, so the errors might

negate themselves in the aggregate.
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With purely Gaussian noise, the long wavelength features are still

quite visible. Any type of spatially correlated noise, for example, orbital

errors, topography or atmospheric distortions would be much more difficult

to assess. Figures 4.57 and 4.58 show the effects of a simulated error where

the noise level increases from south to north for strike slip fault cases 3 (dip

10 degrees too shallow) and 6 (more slip than the reference model). The

long wavelength features are substantially obscured by the

spatially-correlated noise. Pre-processing or filtering would be needed

before the tests presented here could be useful.
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4.3 Moving Towards Artificial Intelligence

The tests outlined here are intended to serve as part of the basis for an

automated inverse model program able to integrate geodetic and seismic

observations cohesively. A learning algorithm could be trained to use the

tests presented here with the results from large land-based earthquakes that

occurred in areas of dense GPS stations and regular InSAR imaging, for

example, California or the Himalayas. Earthquakes whose fault dimensions

and rupture patterns are well constrained will be particularly useful test

cases.

Eventually an artificially intelligent modelling program could accept

seismic, geologic and geodetic information simultaneously and optimize a

combined slip and fluids solution. A coupled hydromechanical model has a

much larger parameter space than the simple Coulomb models considered

in this work. Additional reductionist modelling work will be needed before

a simple decision framework can be devised. More advanced statistical tests

on the deformation histograms to see whether models belong to the same

statistical population as the interferogram, such as the Wilcoxon or q-q

tests, might eventually be useful for an intelligent optimization engine.

This type of wholesale intelligent automation is a distant prospect,

but there are also some useful near-term applications. Much of the current

geomechanical modelling presented in the literature is somewhat ad hoc or

unclear in its optimization. Most papers present a single "best" model
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without clearly defining best, and this work can be used to quantify or at

least question that statement. Establishing a set of formal, quantitative

ranking or optimization criteria using the tests presented earlier is the first

important step towards automated optimization.

A potentially exciting application is the comparison of models from

different research groups. When .jpeg images of the model results and

interferograms are available, MatLab can process them and the tests

presented here could potentially be applied. This prospect is particularly

enticing when competing models are produced of the same site or

phenomenon, for example at the In-Salah CO 2 sequestration project (eg.

Rutqvist, 2009 [13], Vasco, 2010 [23], Rutqvist, Morris 2011 [7]). The

ability to make these types of comparisons will become more important and

interesting as InSAR data becomes more easily accessible and

geomechanical models are more widely produced to match it.
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Chapter 5

Conclusions

This document investigates the surface deformation effects of different

types of geomechanical fault modelling errors. The study's goal, to

establish a suite of very simple tests and statistics that can distinguish

between common types of errors for different fault types, has been largely

accomplished using simplified examples of strike-slip, normal, thrust and

reservoir faulting regimes. The models were constructed with Coulomb 3.2,

which uses the Okada solutions (1985, [8]) to calculate surface deformation

due to dislocations in a homogeneous elastic half-space Earth.

The tests can serve as optimization aids for human modellers and

potentially as the basis of a future artificially intelligent modelling program.

The tests can also be used to compare and evaluate competing models of

the same phenomena, something that will become more important as both

geomechanical modelling and high-precision InSAR data are more widely
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adopted. To simulate comparison with InSAR data, the suite of erroneous

models was tested against their common parent reference model, which

acted as an interferogram. For simplicity, all deformation was assumed to

be one dimensionally vertical instead of line-of-sight.

Three types of parameterization errors, dip, slip and depth, were

explored in detail for the four different faulting regimes. The reservoir

model is a compound fault model including a point source inflationary

component to approximate an injection well. An initial reference model was

generated for each regime and then errors were introduced systematically to

single model parameters. Simple difference maps proved to be very useful

in coarsely distinguishing the errors, with data histograms and gradient

maps, as well as gradient difference maps, helping to distinguish between

similar errors.

Fault depth errors are relatively easy to identify in all of the faulting

regimes because the maximum deformation and the lateral extent of

deformation increase or decrease inversely. For example, in the reservoir

faulting model the shallow faults have increased peak deformation and

decreased lateral extent of deformation. The deep faults have reduced peak

deformation and broader areal extent with respect to the reference model.

The simple difference maps identify this basic pattern neatly and the

gradient maps can be useful for distinguishing between depth and other

error types. Data histograms show shorter deformation tails and lower peak

bin totals for the deep model compared to the shallow model and the
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reference model.

In many cases, the challenge of distinguishing fault error types seems

to depend less on the type of faulting than on the fault dip. Error

sensitivity is lost intermediately dipping faults, approximately 25-65

degrees. As discussed in Section 3.2 on Normal faulting, gradient maps can

be useful. Dip errors on faults with extreme dips, either near-vertical or

near-horizontal such as the strike-slip and thrust fault models, produce

rapid changes in peak deformation and areal extent of deformation and are

easily identified.

Slip errors as modelled here are reasonably simple to identify. In

isolation, they produce an amplification of the existing deformation pattern

with the change in surface deformation concentrated exclusively at the

existing peaks or minima instead of spread laterally like a depth error. Slip

is often subject to external constraint from seismic data, which could be

very useful in an integrated modelling framework. The slip errors modelled

here are extremely simplified and do not preserve earthquake magnitude. A

more detailed study of slip errors in a magnitude-preserving way would

require changing the fault area with each model, which would cause large

and potentially identifiable changes in the areal extent of deformation.

Removing the constant slip simplification in favour of variable slip along

faults would change the deformation patterns significantly but with a much

smaller impact on comparisons between different models.

On the balance, the suite of models and simple tests presented are
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capable of identifying most of the simplest parameter errors uniquely.

Disentangling multiple errors in the same model, more complicated

geometric configurations and media properties, integrating other data types

and addressing the impact uneven spatial sensitivity of InSAR data are

important outstanding questions. The models and tests presented here are

the simplest possible case studies and should form a foundation for

comparing multiple models of the same site to each other and the ground

truth data.
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MatLab Source Code

The post-processing of the Coulomb 3.2 output was done using MatLab.

The commented code is included below, beginning with the looping

function NdLpLoop, which iterates through different models which are

based on the same reference model. NdLpLoop calls the main processing

function, NdLpMaster, which contains the bulk of the processing code and

calls all of the subsequent functions.

NdLpLoop.m:

%This is the top level file that iterates through different models
%by running NdLpMaster (where all the calcs take place) in a loop

cle; clf; close all; clear all;

global FirstTime

%%READ MODELS AND PLOT SIMPLE DEFORMATION
%models. dat is a text file listing the . cou output files from Coulomb 3.2
%Terminate the input with a blank line. The reference model must be listed
%first .
tmp = fopen('models. dat', 'r');
ModelList = textscan (tmp, '%s', 'delimiter ', '\n');

fclose (tmp);

ModList = ModelList {1};

TrueModel = ModList{1}

k = 1

while strcmp(ModList{k+1},' ') 0
if k =

FirstTime = 1 %used to process the reference model
end
TestModel = ModList{k+1}
NdLpMaster (TrueModel, TestModel)
clf; close all;
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k = k+1
FirstTime = 0

end
fprintf( 'All-done!')

NdLpMaster.m:

function NdLpMaster( TrueModel, TestModell)

%%This file loads the Displacement.cou file from a run and performs the
%statistical tests as functions. It is called by NdLpLoop.

%Arguments:
%TrueModel - the reference model's displacement.cou file name as string
%TestModell - the test model 's displacement. cou file name as string

%Dependent function list :
% - OpenAndFormat.m: requires the model name, opens it and returns the data
% from the .cou frile
% - loc-plot .m: requires the matrix to be plotted and the colour map max,
% makes a 2D plot of the "interferogram"
%o - loc-plot_2.m: same thing but two plots in a window for comparison
%o - ImageStats_2.m: requires the model name and data matrix, calculates
% all the stats I can toss in there and plots histograms automatically.
% - GradPlot.m: makes a gradient plot with a quiver plot overlaid AAD
% X, Y gradient plots of the interferogram for later comparison;
% - GradPlotMod.m: plots the gradient difference maps

global xTrue yTrue FirstTime
%xTrue, yTrue are the x,y coords of the reference model.
%FirstTime tells the code that you 're processing the reference model.

% convert displacements to matrices and plot the result

[uuzTrue, ccmax, xTrue, yTrue] -= OpenAndFormat(TrueModel);
CMapMax = ccmax
ToPlot = uuzTrue;
locplot (ToPlot,CMapMax); hold on
TrueModel = strrep (TrueModel, ' . cou ' , ' ') %remove the . cou extension for

%latex/.png file name purposes

%title (/ ' Vertical Displacement of ', TrueModel])
print ( '-dpng' , [TrueModel '.png' ])

%%MPORT THE COULOMB 3.2 RESULTS
%Assumes all models are the same size as the reference , uses xTrue, yTrue
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%as global coordinates

[uuzTM1, ccmax, xModl, yModl] = OpenAndFormat(TestModell);
TestModell = strrep (TestModell , '. cou ' , ')

FirstTime
[TrueStat , TestStat] = ImageStats_2(uuzTrue, uuzTM1, TrueModel, TestModell);
TrueAvg TrueStat(3); TrueStd = TrueStat (4)

ToPlot uuzTM1;
loc plot (ToPlot,CMapMax);
%title (f ' Vertical Displacement of ', TestModell]);
print( '-dpng' , [ TestModell '. png'])

% oFor TrueModel only, add some Gaussian noise to make it look more like
% %a real interferogram (experimental)
% NoisePct = 0.2; %How much noise to add as fract of avg def
% NoiseToAdd = NoisePct* TrueStd.* randn(length (xTrue), length (yTrue));
% TrueModNoise = uuzTrue + NoiseToAdd;

%0 ToPlot = TrueModNoise;
% loc_pot(ToPlot,CMapMax); hold on
% %title (['Vertical Displacement of ',TrueModel,
% % 'with noise: stdev =', NoisePct*TMstd])
% print('-dpng ', [TrueModel '-Noise.png '])

% oFor TrueModel only, add some spatially -correlated Gaussian noise
% %to mimic a real interferogram (experimental)
% NoisePct = 1.0; %How much noise to add as fract of avg def
% NoiseToAdd = NoisePct* TrueStd.* randn(length (xTrue), length (yTrue));
% NoiseWt = ones(length(xTrue), length(yTrue));
% for i = 1:length(yTrue)
% NoiseWt(:,i) = xTrue./max(xTrue);
% end
% TrueModNoiseWt = uuzTrue + NoiseToAdd.* NoiseWt + 2*NoiseWt;

% ToPlot = NoiseWt;
% locplot(ToPlot,CMapMax); hold on
% %title (['Vertical Displacement of ',TrueModel,
% % 'with noise: stdev =', NoisePct* TMstd])
% print('- dpng ', [TrueModel '-Noise WtNoise. png ')

%0 ToPlot = TrueModNoiseWt;
% loc._plot(ToPlot,CMapMax); hold on
% %title (/'Vertical Displacement of ',TrueModel, .
% % 'with noise: stdev =', NoisePct*TMstd])
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print('-dpng ', [TrueModel '-NoiseWt.png'])

%%DIFFERENCE PLOTS
diffTM1 = uuzTrue - uuzTM1;
% diffTM1N = TrueModNoise - uuzTM1;
% diffTM1NWt = TrueModNoiseWt - uuzTM1;

% %Plot it up, plotty. ****CHANGE ToPlot VARIABLE AS NEEDED******
% ToPlot = diffTM1;
% locplot(ToPlot,CMapMax); hold on;
% %title (['Difference plot between ', TrueModel, ' and ', TestModell])
% print('-dpng ', [TestModell '-Diff.png '])

% ToPlot = diffTMlN;
% oc _plot (ToPlot,CMapMax); hold on;
% %title (['Difference plot between ', TrueModel, '(noise) and ',TestModell])

% print ('-dpng ', [TestModell '- DiffNoise. png '])

% ToPlot = diffTM1NWt;
% loc-plot (ToPlot,CMapMax); hold on;
% %title ([ 'Difference plot between ', TrueModel, '(noise) and ', TestModeli])
% print('-dpng ', [TestModell '-DiffNoiseWt.png '])

%GRADIENT PLOTS - X gradient , Y gradient and quiver over contour

[pxTrue, pyTrue, xGCmax, contIncrement] = GradPlot (xTrue, yTrue ...
uuzTrue, TrueModel) ;

% [lapTrue,lapGCmax] = LapPlot(xTrue, yTrue, uuzTrue, TrueModel);
% print('-dpng ', [TrueModel '-Lap.png '])

[pxModl, pyMod1] = GradPlot Mod(xModl, yModl, uuzTM1, TestModell ...
xGCmax, contIncrement );

% [lapModl] = LapPlot-mod(xModl, yModl, uuzTM1, TestModeli, lapGCmax);
% print('-dpng ', [TestModell '-Lap.png '])

%Gradient difference plots

pxDiff = pxTrue - pxModl;

pyDiff = pyTrue - pyModl;
ToPlot1 = pxDiff; ToPlot2 = pyDiff;
pxDmax = max(max(abs(pxDiff))); pyDmax = max(max(abs(pyDiff)));
pDiffCMax = max(pxDmax, pyDmax);
Titlel = [TestModell '-XGradDiff'];
Title2 [TestModell '-YGradDiff'];
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loc-plot2 (ToPlot1 , ToPlot2, xGCmax/2, Titlel , Title2);
hold on;

%quiver plot instead of separate x-y plots
DecVal = 4; %Decimate the plot so it 's
numX = length(pxDiff (: ,1));
numY = length(pxDiff (1 ,:));
pxDiffDec = pxDiff (1: DecVal:numX, 1: DecVal:numY);
pyDiffDec = pyDiff(1:DecVal:numX,1:DecVal:numY);

pxDiff_2 =
pyDiff_2 =
pMagDiff =

pxDiff.*pxDiff;
pyDiff.*pyDiff;
sqrt(pxDiff_2 + pyDiff_2);

figure
NumConts = 10 %number of contour levels
contour (xTrue , yTrue , pMagDiff , NumConts) , hold on;
quiver (xTrue (1: DecVal:numX) , yTrue (1: DecVal:numY)
%hold on; title (/ 'Quiver plot of 2D Gradient:
hold on; xlabel( 'X_(km)'); ylabel( 'Y-(km)');
load 'ANATOLIA. dat'
colormap(ANAIOLIA); colorbar
hold off , axis image
print ( '-dpng' , [ TestModell '-QuivDiff. png '])

clear all ; clc;

%%FUTURE WORK/half -baked ideas

%Numerical Laplacian ... not that
% lapDiff = lapTrue-lapModl;
% ToPlot = lapDiff ;
% locplot (lapDiff,lapGCmax/2)
% print ('-dpng ', [TestModell

grid off;
pxDiffDec
ModName])

hold on;
,pyDiffDec)

useful

'-LapDiff.png '])

% %%S'QUARED ERROR PLOTS ****converted to mm- not used in thesis

% sqdiffTM1 = (diffTM1*1000.^2);
% ToPlot = sqdiffTMl;

% tmpCMax = max(max(abs(ToPlot)))
% loc_plot(ToPlot,tmpCMax); hold on;
% %title (['Squared Error plot between', TrueModel,
% print('-dpng', [TestModell '-SqError.png '])

% diffTM1Stats = ImageStats(diffTM1, 'Diff TM1')

' and ', TestModell])
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% % %2D cross correlation - file this under "Future Work"
% xcTrueTrue = xcorr2(uuzTrue, uuzTrue);
% xcNormVal = max(max(xc True True));
% xcTrueTrueN = xcTrueTrue./xcNormVal; %Normalize the xcorr matrix
% xcCMapMax = 1;
% ToPlot = xcTrueTrueN;
% loc-plot-s (ToPlot,xcCMapMax); hold on;
% %title (['Norm. 2D Auto Correlation of', TrueModel])
% p ri nt ('-dpng ', [TrueModel '- A Corr. png '])

% xcTrueTM1 = xcorr2(uuzTrue, uuzTM1);
% xcTrueTMlN = xcTrueTM1./xcNormVal;
% ToPlot = xcTrueTM1N;
% loc-plot-s(ToPlotxcCMapMax); hold on;
% %title (['Norm. 2D Cross Correlation of', TrueModel, and TestModell
% print('-dpng ', [TestModell '-XCorr.png '])

% diffACTTTM1 xcTrueTrueN - xcTrueTM1N;
% ToPlot = diffACT-TTM1;
% loc-plot-s(ToPlot,xcCMapMax); hold on;
% %title (['Difference xcorr plot between ', TrueModel, and TestModell])
% print('-dpng ', [TestModell '-XCorrDiff.png '])

%Rotating to see asymmetry; not needed yet
% testROT imrotate(uuzTrue,45);
% ToPlot testROT;
% loc-plot-rot(ToPlot,CMapMax);

% invtestROT = fliplr(testROT);
% ToPlot = invtestROT;
% loc-plot-rot(ToPlot,CMapMax);

% diffTestROT = testROT - invtestROT;
% ToPlot = diffTestROT;
% loc-plot-rot(ToPlot,CMapMax);

OpenAndFormat.m:

function [uuz, ccmax, xTrue, yTrue] = OpenAndFormat(FileName)

%Processes the raw Coulomb 3.2 output into a format that can be used by
%colormap and other matlab functions

%ARGS:
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%FileName - a string of the output text file (usually *.cou) to open

%RETURNS:
%uuz - the displacement matrix formatted for processing
%ccmax - the colorbar max for the matrix (only kept for the
%xTrue, yTrue - the actual X and Y coords (only kept for the

%becomes a global variable.

FileName
fid fopen(FileName, 'r '

coul textscan ( fid , '%f -%f -%f -%f -%f -%f
fclose ( fid );

ref model)
ref model);

' , ' delimiter ' , '\t ' , 'headerlines ' 3);

coul {1}];
coul {2}];
coul {3}];

[ coul {4}]*1000;
[coul {5}]*1000;

[ coul {6}]*1000;

cxmin = x(1);
cxmax = x(length(x));
cymin =y (1);
cymax = y(length(y));
grdspac = y(2)-y(l) ; %NLY
m = round ((cxmax-cxmin) /grdspac) +
n = round((cymax-cymin)/grdspac) +
uuz reshape (uz,m, n);
cmin min(uuz); ccmin = min(cmin)
cmax niax(uuz);
ccmaxt = max(cmax)
ccmax = max( [abs(ccmaxt) abs(ccmin)

WORKS FOR X and Y SPACINGS EQUAL
1;
1;

xTrue = [cxmin:grdspac:cxmax];
yTrue = [cymin: grdspac:cymax];

locplot.m:

function loc-plot (uuz, ccmax)
%The basic plotting function for outputting figures ; doesn 't go
%straight to .png here, that 's in NdLpMaster.

%uuz - the displacement field to be plotted (in pcolor format)
%ccmax - the colorbar max from the reference model

global xTrue yTrue
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figure
pause
load 'ANATOLIA.dat' %Anatolia is a nice colour scheme I stole from
colormap(ANATOLIA) %the internals of Coulomb 3.2
pcolor(xTrue, yTrue, uuz); hold on;
shading flat
caxis([-ccmax ccmax]) %make the colormap symmetric
colorbar( 'location ' , 'EastOutside')

xlabel ( 'X-(km) ' ); ylabel ( 'Y- (kn)
grid on

locplot2.m:

function loc-plot.2(uuzl, uuz2, ccmax, Ti, T2)

%Can plot both in the same window by uncommenting the subplots and
%commenting the second "figure". Better that way for while-modelling
%assessment, better as two separate plots for export to thesis.

%Arguments:
%uuzl - the first displacement field to be plotted (in pcolor format)
%uuz2 - the second displacement field to be plotted (in pcolor format)
%ccmax - the colorbar max from the reference model
%T1 - the name of the first model (for output file name)
%T2 - the name of the second model (for output file name)

global xTrue yTrue

% scrsz = get (0, 'ScreenSize ');
% figure ('Position ',/1 scrsz(4)72 scrsz (3) scrsz (4)2])

load 'ANATOLIA. dat'

figure
%subplot (1,2,1)
pcolor(xTrue, yTrue,uuz1); hold on;
colormap (ANATOLIA)
shading flat
tmp = [-ccmax ccmax];
caxis (tmp); %make the colormap symmetric
%title (T1) ;
hold on; xlabel ( 'X- (km) '); ylabel ( 'Y- (km) '

grid on
colorbar ( 'location ' , 'EastOutside ')
print('-dpng', [TI '.png'])
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figure
%subplot (1,2,2)
pcolor (xTrue , yTrue , uuz2); hold on;
colormap (ANATOLIA)
shading flat
tmp = [-ccmax ccmax];
caxis (tmp); %make the colormap symmetric
%title (T2);
hold on; xlabel( 'X-(km) '); ylabel( 'Y-(km)');
grid on
colorbar( 'location ', 'EastOutside')
print('-dpng', [T2 '.png'])

colorbar ( 'location ' , 'EastOutside ')

ImageStats2.m:

function [RefResult , TestResult] = ImageStats(ImgData, TestData, RefName, ModelName)

%Calculates some basic image statistics

%ARGS:
%ImgData -
%TestData -
%RefNAme -
%ModelName

the first model's data matrix (usually reference model)
- the comparison model's data
the reference model 's name (for output)
- the comparison model 's name (for output)

%RETRUNS:
%Arrays of the max, min, avg and std for the
%Also, a text file in LaTeX format to make a

global FirstTime

tmpl = size(ImgData);
NumElem = tmp1(1)*tmp1(2);

ImgVec = reshape (ImgData ,1, []);

ImgMax = max(ImgVec); %Ref MAx

ImgMin = min(ImgVec); %Ref Min
ImgAvg = sum(ImgVec)/NumElem; %Ref Average
ImgStdev = std(ImgVec); %Ref Std dev

tmp2 = size(TestData);
NumElem = tmp2(1)*tmp2(2);
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TestVec = reshape (TestData , 1 , [] ) ;

TestMax = max(TestVec); %t est Max

TestMin = min(TestVec); %test Min
TestAvg = sum(TestVec)/NumElem; %tes t average
TestStdev = std(TestVec); %test std dev

HistMat = [ImgVec' , TestVec ']
figure
hist (HistMat , 50); %Makes a histogram with 50 bins
%set (h,{ 'FaceColor '} ,{ 'r ', 'k '} ,{ 'EdgeColor '} ,{ 'r ', 'k '})
%set (h, 'FaceColor ', 'k ', 'EdgeColor ', 'k ')
colormap( 'lines ')
legend (RefName, ModelName)
xlabel( 'Deformation -(mm) '); ylabel( 'Frequency');

print ( '-dpng' , [ ModelName '-H ist . png'[)

%MORE TESTS GO HERE AS DESIRED

%Make the StatResults vector passing things back to the main program:

RefResult [ImgMax, ImgMin, ImgAvg, ImgStdev]
TestResult [TestMax, TestMin, TestAvg, TestStdev]

tmp1 = [RefName, '&-' ,num2str(ImgAvg, '%8.2f'), '&-' ,num2str(ImgStdev ...
'%8.2f') ' & ' , num2str(ImgMax, '%8.2f') , ' A' , num2str(lmgMin ...
'%8.2f') ,]

tmp2 = [ModelName, '&' ,num2str(TestAvg, '%8.2f'), '&-' ,num2str(TestStdev
'%8.2f') '&J', num2str(TestMax, '%8.2f'), '', num2str(TestMin,...
'%8.2f'),]

if FirstTime 1
asdf = fopen( 'ImgStatTable.dat , 'w')
fprintf(asdf , '%s\n' , tmpl)
FirstTime = 1
fclose (asdf)

end

asdf = fopen('ImgStatTable.dat', 'a+')
fprintf(asdf , '%s\n' , tmp2)
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fclose(asdf)

GradPlot.m:

function [px, py, xGCmax, contIncrement] GradPlot(ux, uy, uuzCurrMod, ModName)

%Takes the 2D gradient of a matrix and plots x, y gradients and a quiver
%plot

%RETURNS:

%px, the x gradient matrix
%py, the y gradient matrix
%xGCmax, the colorbar max for the reference model

%ARGS:
%ux, ny: the x and y coord vectors for the data
%uuzCurrMod: the matrix of deformation values
%ModName: the string for the model name (for naming output)

global xTrue yTrue

%Gradient Calcuation and Plot
[px, py] = gradient (uuzCurrMod);
pxMax = max(niax(px)); pxMin = min(min(px));
xGCmax = max(abs(pxMin) ,abs(pxMax));
pyMax =nax(max(py)); pyMin = min(min(py));
yGCmax =max(abs(pyMin) ,abs(pyMax));

ToPlotl = px;
ToPlot2 = py;
Titlel = [ModName '-XGrad'];
Title2 = [ModName '-YGrad'];
loc-plot2 (ToPlot1 , ToPlot2, xGCmax, Titlel
caxis ([ -xGCmax xGCmax])
hold on;

%quiver plot
DecVal = 3; %Decimate the plot so
numX = length(px(: ,1));
numY = length(px(1 ,:));
pxDec = px(1:DecVal:numX,1:DecVal:numY);
pyDec = py(1:DecVal:numX, 1: DecVal:numY);

%colour bar max

Title2 );

it 's not as dense

px_2 = px.*px;
py-2 = py.*py;

pMag = sqrt (px_2 + py2);
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pMagMin = min(min(pMag));
pMagMax = max(max(pMag));

figure
NumConts = 10
contIncrement = pMagMin:((pMagMax-pMagMin)/10):pMagMax;
contour(xTrue, yTrue,pMag, contIncrement), hold on; grid off; hold on;
quiver (ux (1: DecVal:numX) ,uy (1: DecVal:numY) ,pxDec , pyDec, 'k')
%hold on; title (['Quiver plot of 2D Gradient: ', ModName])
hold on; xlabel ( 'X- (km) '); ylabel ( 'Y_ (kn) ');
load 'ANATOLIA. dat'
colormap(ANATOLIA); colorbar
hold off , axis image
print ( '-dpng' , [ModName '-Quiver. png'])

GradPlotMod.m:

function [px, py] = GradPlotMod(ux, uy, uuzCurrMod, ModName,...
xGCmax, contlncrement)

%Takes the 2D gradient of a matrix and plots x, y gradients and a quiver
%plot

%RETURNS:

%px, the x gradient matrix
%py, the y gradient matrix
%Also saves plots to .png

%4RGS:
%ux, uy: the x and y coord vectors for the data
%uuzCurrMod: the matrix of deformation values
%ModName: the string for the model name (for naming output)
%GCmax, the colorbar max for the reference model

global xTrue yTrue

%Gradient Calcuation and Plot
[px, py] gradient(uuzCurrMod);

ToPlot1 px;
ToPlot2 = py;
Titlel = [ModName '-XGrad'];
Title2 = [ModName '-YGrad'];
loc-plot2 (ToPlot1 , ToPlot2, xGCmax, Title1 , Title2);
caxis ([-xGCmax xGCmax]);
hold on;
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%quiver plot
DecVal = 3; %Decimate the plot so the arrows aren 't as dense
numX = length(px(: ,1));
numY = length(px(1 ,:));
pxDec = px(1:DecVal:numX,1:DecVal:numY);
pyDec = py(1:DecVal:numX,1: DecVal:numY);

px_2 = px.*px;
py_2 = py.*py;

pMag = sqrt(px_2 + py_2);
pMagMin = min(min(pMag));
pMagMax = max(max(pMag));
pMagAbsMax = max(abs (pMagMin), abs(pMagMax))
contIncrement
figure
pcolor(ux,uy,pMag), hold on; grid off; hold on;
load 'ANATOLIApos. dat'
colormap (ANATOLIApos); colorbar
%caxis ([-pMagAbsMax pMagAbsMax])
shading flat
quiver (ux (1: DecVal:numX) , uy (1: DecVal:numY) ,pxDec , pyDec, 2, 'k')
%hold on; title (/'Quiver plot of 2D Gradient: ', ModName])
hold on; xlabel ( 'X- (km) '); ylabel ( 'Y-(km) ');
hold off , axis image
pause
print( '-dpng' , [ModName '-Quiver. png'])
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