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Salt transport in bulk electrolytes is limited by diffusion and advection, but in microstructures with charged
surfaces (e.g., microfluidic devices, porous media, soils, or biological tissues) surface conduction and electro-
osmotic flow also contribute to ionic fluxes. For small applied voltages, these effects lead to well known linear
electrokinetic phenomena. In this paper, we predict some surprising nonlinear dynamics that can result from the
competition between bulk and interfacial transport at higher voltages. When counterions are selectively removed
by a membrane or electrode, a “deionization shock” can propagate through the microstructure, leaving in its
wake an ultrapure solution, nearly devoid of coions and colloidal impurities. We elucidate the basic physics of
deionization shocks and develop a mathematical theory of their existence, structure, and stability, allowing for
slow variations in surface charge or channel geometry. Via asymptotic approximations and similarity solutions,
we show that deionization shocks accelerate and sharpen in narrowing channels, while they decelerate and
weaken, and sometimes disappear, in widening channels. These phenomena may find applications in separations
(deionization, decontamination, biological assays) and energy storage (batteries, supercapacitors) involving
electrolytes in microstructures.
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I. INTRODUCTION

All electrochemical processes lead to ionic concentration
gradients in electrolytes [1,2]. In water deionization, the
removal of ions is the desired outcome, but in most other
situations, such as energy storage by batteries or energy
conversion by fuel cells, salt depletion is undesirable because
it increases the solution resistance and slows electrochemical
reactions, thereby increasing the over-potential required to
maintain a desired current. Salinity variations also commonly
arise in biological systems due to the action of membranes or
external stimuli, and their dynamics can significantly affect
living cells and tissues. In all of these situations it is important
to understand the dynamics of ions in complex geometries.

It is generally assumed that salt transport in bulk electrolytes
occurs only by diffusion and advection. This hypothesis un-
derlies important industrial processes, such as electrodialysis
[3,4], electrodeposition [5], and experimental techniques, such
as impedance spectroscopy [6] and cyclic voltammetry [7]. In
a concentrated electrolyte, ionic diffusion is nonlinear (with
a concentration-dependent diffusivity [2]), but the familiar
square-root of time scaling of linear diffusion usually remains
[8]. This conclusion also holds for macroscopic transport in
porous media, as long as linear diffusion occurs within the
pores [9].

Recent experiments have shown that more complicated,
nonlinear dynamics are possible if strong salt depletion
(“concentration polarization”) occurs in microstructures. A
growing body of work has focused on Dukhin’s second-kind
electro-osmotic flows [10,11] and the Rubinstein-Zaltzman
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instability [12,13] near electrodialysis membranes [4,14] and
microchannel-nanochannel junctions [15,16] and in packed
beds of particles [17,18]. In all of these cases, the transport of
ions across a selective surface depletes the salt concentration
and causes nonlinear electrokinetic phenomena in electric
double layers (EDLs) sustaining normal current.

In contrast, our focus here is on the effect of tangential cur-
rent in the EDL [19–21], also known as “surface conduction,”
which has a long history, prior to microfluidics [22–26]. In
linear electrokinetics, the importance of surface conduction is
controlled by the Dukhin number [19,27],

Du = κ ′
s

κbh
, (1)

where κb is the conductivity of the neutral bulk solution, κ ′
s

is the additional “surface conductivity” due to excess ions in
the EDLs [20,23,24,26], and h is a geometrical length scale,
such as the channel width or particle size. The competition of
surface and bulk conduction in a microchannel is now well
understood for linear response to a small voltage or current
[19,28,29], but recently a surprising nonlinear phenomenon
was discovered.

Mani et al. showed that, under certain conditions, surface
conduction can produce a localized salt concentration gradient
propagating through a microchannel, away from a nanochannel
junction [30,31]. By deriving a one-dimensional equation for
thin EDLs (the “simple model”) and applying the method
of characteristics, they explained this phenomenon mathe-
matically as shock propagation in the concentration profile,
analogous to pressure shocks in gases [30]. The theory was
able to predict, for the first time, the propagation of enrichment
and depletion shocks in etched glass microchannels on either
side of a nanochannel [31]. It is possible that this phenomenon
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plays a role in earlier observations of sharp concentration
gradients in more complicated microchannel or nanochannel
geometries [15,32–35].

In this paper we focus on the new surface-conduction dom-
inated regime and develop a general theory of “deionization
shocks” in complex microstructures. We begin by describing
the basic physics of deionization shock propagation in mi-
crochannels or porous media. We then develop general macro-
scopic transport equations for ions in charged microstructures,
which lead to a nonlinear wave equation at constant current.
After making the equations dimensionless and identifying
the key governing parameters, we study deionization shock
propagation in two types of heterogeneous microstructures.
First, we analyze slowly varying surface charge and/or channel
geometry using perturbation methods, and then we derive
intermediate-asymptotic similarity solutions for power-law
variations in the channel area. The latter clarify the transition
from diffusive scaling (x ∼ √

t) without shocks in a wedge
to constant-velocity shock propagation in a straight channel
(x ∼ t). Finally, we show that thin deionization shocks are
nonlinearly stable in the absence of fluid flow by reducing the
dynamics to a Laplacian dissolution model. We conclude by
discussing possible applications of our results to microfluidic
separations, water deionization, soil decontamination, and
energy storage by porous electrodes.

II. BASIC PHYSICS OF DEIONIZATION SHOCKS

Consider the passage of current through a microchannel
with negatively charged side walls, as shown in Fig. 1. Suppose
that the EDLs are thin and initially play no role in the dynamics.
An applied voltage drives current from a reservoir on the
left to a cation-selective boundary on the right, which only
allows cations to pass. This boundary, shown in Fig. 2, could
represent either a cation-selective electrodialysis membrane,
an electrode where cations are reduced to a neutral species,
a negative porous electrode charging capacitively, or one or
more nanochannels with overlapping EDLs.

In order to maintain electroneutrality as coions are expelled,
the salt concentration is reduced near the boundary. The
ensuing depleted region initially spreads to the left by diffusion
(see [37], for example). As the bulk conductivity is reduced,
however, the axial electric field is amplified (in order to sustain
the current) and acts on the counterions screening the wall
charge to drive surface conduction. Regardless of the initial
Dukhin number, surface conduction eventually dominates
bulk diffusion in carrying the current through the depleted
region. Meanwhile, coions are driven to the left by the large
electric field, thus further enhancing bulk depletion. This
nonlinear feedback causes sharpening and propagation of the
salt concentration gradient similar to standard shock waves.
As shown in Fig. 1(a), current lines are diverted from the bulk
solution into the double layers, as they pass through the shock.

In Fig. 1 we show the results of Brownian dynamics
simulations [36], which clearly illustrate the physics of shock
propagation. Counterions move from the bulk solution into
the double layers in order to carry current around the depleted
region behind the shock [Fig. 1(b)]. Meanwhile, coions
electromigrate ahead of the shock, and they become fully
depleted behind it [Fig. 1(c)]. Although molecular simulations

(a)

(b)

(c)

FIG. 1. Basic physics of deionization shock propagation.
(a) Sketch of ion fluxes in a microchannel or pore with negatively
charged walls, as current flows from left to right through a decrease in
salt concentration (caused by an electrode or membrane, not shown).
In order to avoid low-conductivity region in the center of the channel,
the current flows into the electric double layers, where it is carried
by positive counterions that remain to screen the wall charge. Such
surface conduction is driven by the amplified axial electric field in
the depleted region, which also pushes the negative coions to the left,
thereby sharpening the concentration gradient, leading to a steady
shock. These effects are illustrated by snapshots of (b) counterions
and (c) coions in a Brownian dynamics simulation [36].

allow us to visualize the trajectories of discrete ions, our goal is
to elucidate the macroscopic behavior of deionization shocks,
so we now turn to continuum models.

III. MACROSCOPIC ION TRANSPORT
IN MICROSTRUCTURES

The physical arguments above are very general and can
be extended to microstructures with other geometries. As
shown in Fig. 2, there is an analogy between macroscopic ion
transport in a homogeneous porous medium [Fig. 2(b)] and
in a microchannel [Fig. 2(a)] of suitable thickness, defined
below. We begin by considering uniform microstructures,
such as constant-height channels and homogeneous porous
media (Fig. 2), and derive general macroscopic transport equa-
tions to describe concentration polarization and deionization
shocks. We will then extend this model to systems involving
geometrical variations, such as variations in porosity or
channel cross section. We simply require that the geometrical
and electrochemical properties of the microstructure vary
sufficiently slowly to justify a volume averaged model. The
same assumption underlies formal homogenization analyses
of ion transport in porous media [38–40], but here we will

061504-2



DEIONIZATION SHOCKS IN MICROSTRUCTURES PHYSICAL REVIEW E 84, 061504 (2011)

(a)

(b)

(c)

FIG. 2. Propagation of deionization shock in a straight mi-
crochannel (a) and a homogeneous microporous medium (b). A
selective element (membrane) is used at the right end to trigger
an initial depletion (concentration polarization effect), which then
propagates in the form of shock through the microstructure. The plot
shows the axial profile of the shock uniformly sampled in time (c). For
a system at constant current I and flow rate Q the shock propagates
at a constant speed.

rely on physical arguments to arrive at our macroscopic
equations without deriving any explicit dependence on the
microstructural geometry.

A. Fluxes and flows

For simplicity we use dilute solution theory to model
ionic fluxes, but it is straightforward to extend our results by
replacing concentrations with activities [2]. Let ci be the mean
volume-averaged concentration of ion species i of charge qi

in the pores (number/pore volume), and Di be the effective
diffusivity within the porous matrix [2,9]. Conservation of
species at the macroscopic continuum level is expressed by
the Nernst-Planck equations:

∂ci

∂t
+ u · ∇ci = ∇ ·

[
Di

(
∇ci + qici

kT
∇φ

)]
, (2)

where we have used the Einstein relation to express the
mobility of species i as νi = Di/kT (k = Boltzmann’s
constant, T = absolute temperature) and u is a mean fluid
velocity in the pores. As a first approximation, we have
neglected dispersion (velocity-dependent effective diffusivity)
due to nonuniform advection within the pores [41,42], which
is reasonable for thin pores [43]. In addition, we enforce
macroscopic incompressibility,

∇ · u = 0,

and postulate linear response to gradients of pressure, poten-
tial, and concentration at the macroscopic continuum scale,

u = −KH ∇p − KE({ci},φ)∇φ −
∑

i

KD,i({ci},φ)∇ ln ci .

The first term is Darcy’s law, the second electro-osmotic
flow, and the third diffusio-osmotic flow, each of which in
principle have tensorial coefficients in an anisotropic medium
[44]. The coefficients KE and KDi

depend on the ionic
concentrations, potential, and surface charge via a microscopic

model of intrapore transport [38–40] or approximations for
straight channels with thin double layers. In our analysis of
deionization shocks below, we neglect nonlinearities due to
advection to focus on the effects of surface conduction, so
we leave the derivation and nonlinear analysis of the full
macroscopic transport equations in three dimensions for future
work.

B. Electrostatics

The key source of nonlinearity in our system is the elec-
trostatic coupling between ions and the surface charge of the
microstructure. The electrolyte fills a solid matrix of porosity
εp (pore volume/total volume) and area density ap (pore
area/total volume). The walls of the pores have a fixed charge
density σs (charge/pore area). At the macroscopic continuum
scale, the surface charge appears as a fixed background charge
density (charge/pore volume) ρs given by

ρs = σs

hp

= σsap

εp

, (3)

where hp = εp/ap is an effective pore size. In the first step
of our derivation, we simply enforce electroneutrality at the
macroscopic continuum scale,

εpρ + apσs = 0 ⇒ ρ =
∑

i

qici = −ρs, (4)

where ρ is the mean ionic charge density, which is equal and
opposite to the surface charge density ρs . The macroscopic,
volume-averaged electroneutrality condition Eq. (4) implicitly
determines the mean electrostatic potential in Eq. (2). This
approach has also been employed recently to model charge
transport in nanochannels [45] and carbon nanotubes [46].

Let c = ∑
i |qi |ci be the total ionic charge (regardless of

sign). For |ρs | � c, we recover the standard model for a
quasineutral bulk electrolyte, which leads to the (ambipolar)
diffusion equation for the neutral salt concentration [2]. In the
opposite limit |ρs | ≈ c, we recover the standard model for a
bulk ion-exchange membrane or solid electrolytes [47–50].
In contrast, our focus is on the new, intermediate regime,
where |ρs | < c, which generally introduces nonlinearity due to
electromigration of the diffuse ionic charge, which screens the
fixed background charge. This regime is typically associated
with micron scale pore size.

C. Binary electrolyte

We consider the canonical unsupported electrolyte: a dilute,
asymmetric binary solution (i = +,−) with arbitrary ionic
charges q± = ±z±e. In this case, macroscopic transport
equations take the form

∂c±
∂t

+ u · ∇c± = D±[∇2c± ± z±∇ · (c±∇φ̃)], (5)

0 = z+ec+ − z−ec− + ρs, (6)

where e is the charge of proton and φ̃ = eφ/kT is the
dimensionless potential, scaled to the thermal voltage. Without
loss of generality, let us assume that the surface charge
is negative, ρs < 0, and use Eq. (6) to replace the ion
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concentrations c+ and c− with the neutral portion of the salt
concentration in the bulk (excluding wall shielding charge)

cb = z+c+ + z−c− + ρs

e
= 2z−c−. (7)

In the limit of zero surface charge, this reduces to the
total concentration of charges (cb → z+c+ + z−c−) in a
neutral electrolyte. In the opposite limit of a fully depleted
bulk electrolyte with nonzero surface charge, this quantity
vanishes, since only counterions remain within the EDLs of
the microstructure (z+ec+ → −ρs). Therefore, the variable
cb measures the amount of “free conductivity” that can
be removed from the microstructure (i.e., contributing to
deionization), without disturbing the screening of the fixed
surface charge by counterions. In terms of these variables,
the partial differential equations (PDEs) can be written in the
following form:

∂cb

∂t
+ u · ∇cb = D

[
∇2cb − z̄

e
∇ · (ρs∇φ̃)

]
, (8)

0 = ∇ · j, (9)

where j is the volume averaged current density (A/m2) given
below. D is the ambipolar diffusivity of a binary electrolyte [2]
(see Appendix A for the general form of D and z̄).

It is clear that in this model any nonlinear response
is entirely due to the fixed surface charge since a linear
advection-diffusion equation for cb is recovered from Eq. (8)
if and only if ρs = 0. If any such charge exists in the
microstructure, then the second term in Eq. (8) survives, and
the dynamics of the ionic transport will be coupled to that of the
potential φ̃, which generally satisfies a PDE [Eq. (9)] enforcing
the conservation of charge. The nonlinearity becomes apparent
from the volume-averaged current density in Eq. (9), which
takes the form

e

kT
(j + ρsu) = −β∇κb −

(
κb + κs

hp

)
∇φ̃, (10)

where the second term on the left is the advection of charge due
to the flow; the first term on the right is the diffusion current,
controlled by the parameter

β = D+ − D−
z+D+ + z−D−

,

which measures the asymmetry of the electrolyte; the second
term on the right-hand side of Eq. (10) is Ohm’s law, where the
total conductivity is broken into two parts: neutral portion of
the bulk, and surface (excess counterion) contributions. These
are, respectively,

κb = (z+ν+ + z−ν−)e2cb

2
, (11)

κs = z+ν+e|σs |. (12)

It is important to stress that what we call κs , which is related
to the difference between coion and counterion concentrations
(screening the surface charge), is not the same as κ ′

s , the surface
conductivity. The latter is defined as the excess conductivity
due to sum of coion and counterion concentrations in the EDLs
relative to the quasineutral bulk solution [20,23,24,26].

IV. CONDUCTIVITY WAVES AT CONSTANT CURRENT

To illustrate the nonlinear dynamics contained in these
equations, we consider a one-dimensional case by passing
a uniform current density j = j (t)x̂ and a uniform flow
u = u(t)x̂ through the porous medium. We solve Eq. (10)
for the electric field and substitute back into Eq. (8) to obtain
a single, nonlinear PDE for bulk conductivity κb(x,t):

∂κb

∂t
+ ∂

∂x

[
uκb + z−ν−e(κs/hp)(j + ρsu)

κb + κs/hp

]

= ∂

∂x

[
D(κb)

∂κb

∂x

]
, (13)

where

D(κb) = D

[
1 − z̄(D+ − D−)

2z+D+

κs/hp

κb + κs/hp

]
. (14)

This one-dimensional PDE for uniform current is similar to
that obtained by Mani et al. [30] in their simple model for
a flat microchannel with thin double layers. Here we have
generalized the model to porous microstructures, while adding
the convective contribution of diffuse charge to the current
(ρsu) as well as the conductivity dependence of the effective
diffusivity D for an asymmetric electrolyte interacting with
the surface charge.

If the surface effects (the terms with κs) can be ne-
glected, Eq. (13) reduces to the classical linear advection-
diffusion equation for bulk conductivity. The nonlinear flux
z−ν−eκs(j + ρsu)/(hpκb + κs) can be physically interpreted
as the electromigration of the surface charge due to the axial
electric field [as seen in Eq. (8)]. Gradients of this flux term
are responsible for exchanges between EDL (surface) and the
bulk, which are schematically depicted in Fig. 1.

Equation (13) has the same form as the equations of
gas dynamics and shallow water waves [51], and describes
similar nonlinear wave phenomena. In the long time limit
in a large system, advection dominates diffusion and yields
a kinematic wave equation of the form ct + [F (c)]x = 0,
with F representing the concentration dependent flux. This
equation can be solved by the method of characteristics.
The basic idea is that initial concentration values propagate
with velocity vc = F ′(c) along characteristic lines in space-
time. In order to avoid a multivalued concentration profile,
whenever characteristics cross, a discontinuity (or shock) in
concentration [c] is introduced, which moves at the velocity
vs = [F (c)]/[c], where [F ] is the jump in flux across the
shock. The concentration profile across the shock is a traveling
wave solution c(x,t) = f (x − vst) to the full equation with
diffusion. We now apply this kind of analysis to our problem.

V. DIMENSIONLESS FORMULATION

The first step is to define dimensionless variables:

κ̃ = κb

κb∞
, x̃ = x

D

z−ν−ej

κb∞
, t̃ = t

D

(
z−ν−ej

κb∞

)2

,

where κb∞ is the reference bulk conductivity (typically in
a reservoir connecting to the microstructure). Space and
time coordinates are nondimensionalized using diffusive
scaling together with characteristic electrodiffusion velocity
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z−ν−ej/κb∞. With these definitions, Eq. (13) takes the
following dimensionless form:

∂κ̃

∂t̃
+ ∂

∂x̃

(
ũκ̃ + ρ̃s

κ̃ + ρ̃s

)
= ∂2κ̃

∂x̃2
, (15)

where, for simplicity, we have neglected asymmetric diffusion
(D = D) and the flow advection of diffuse charge (|ρsu| �
|j |). In this equation, two fundamental dimensionless groups
appear. The first parameter

ũ = uκb∞
z−ν−ej

(16)

is the ratio of the mean fluid velocity u to the electrodiffu-
sion velocity z−ν−ej/κb∞. This parameter affects the shock
propagation velocity (essentially a Galilean transformation),
but not its dynamics. The second, more important, parameter
in Eq. (15) is a dimensionless surface charge

ρ̃s = κs

hpκb∞
= |σs |

hp

(
1 + z−ν−

z+ν+

)
z−ec∞−

, (17)

where c∞− is the reference concentration of coions. With our
notation the dimensionless parameter ρ̃s in Eq. (17) resembles
the Dukhin number Du in Eq. (1), but, as discussed above,
they are not the same (κs �= κ ′

s).
For typical concentrations (>1 mM) in aqueous solutions,

ρ̃s is very small for microstructures (hp ∼ 1 μm), suggesting
that the nonlinear term in Eq. (15) can be neglected. One
mechanism that can activate the nonlinear term (and produce
shocks) is to locally decrease κ̃ to very small values of order
ρ̃s . This is the crucial role that the selective boundary [e.g., the
membrane in Fig. 2(a)] plays in these systems.

As the shock propagates, it leaves behind a region with
orders of magnitude lower salt concentration. In other words,
propagation of the shock acts to deionize the bulk electrolyte.
In the next two sections we analyze the dynamics of deioniza-
tion shocks in systems with nonuniform geometries.

VI. WEAKLY VARYING MICROSTRUCTURES

Figures 3 and 4 show examples of structures involving
variation of porosity, pore size, and macroscopic geometry.
The analysis presented in the previous section can be easily
extended to these structures. Our analysis only requires that
the microstructure properties vary slowly enough to allow a
local volume averaged theory. While the general derivation
is presented in Appendix A, here we continue to focus on
the simplified quasi-one-dimensional systems and study the
response of deionization shocks to structural inhomogeneities.
Under such conditions the modified form of Eq. (13) can be
obtained by simply scaling all the flux and rate terms with
appropriate local volume and/or area measures (see below).

A. Structures with constant pore size

We first consider weakly variable microstructures with
constant pore size. In other words, in these structures, porosity
and area density vary proportionally. With a constant surface
charge, these structures have a uniform background charge
density ρs [see Eq. (3)]. Figure 3 shows examples of such
structures in which the net local volume changes as a function

(a)

(b)

(c)

(d)

FIG. 3. Weakly varying microstructures with constant pore size
hp . Schematics include a microstructure with variable porosity εp

and area density ap , but fixed hp = εp/ap (a), a homogeneous
microstructure with variation in the macroscopic geometry (b), and
a fabricated microchannel with variable width (c). Propagation of a
depletion shock through the converging-diverging channel under the
constant current and flow rate condition is shown (d). The plots are
sampled uniformly in time.

of axial coordinate. In Fig. 3(a) the net cross-sectional area
(different from area density) is proportional to local porosity
εp; in Fig. 3(b) it is proportional to local macroscopic area;
and in Fig. 3(c) it is proportional to microchannel width w.
These parameters essentially play the same role in modifying
the dynamics of deionization shocks by scaling the fluxes
in the conservation laws. For example, for the case of the
variable-width microchannel, Eq. (13) (again, setting ρsu = 0
and D = D) will be modified to

∂

∂t
(wκb) + ∂

∂x

(
uwκb + z−ν−ejwκs/hp

κb + κs/hp

)

= ∂

∂x

(
wD

∂κb

∂x

)
, (18)

where the “volume averaged” quantities κb, u, and j are
effectively the height-averaged quantities, and the equivalent
pore-size hp is half the channel height. To be able to neglect
the transverse fluxes and reduce the system to one-dimensional
PDE we need the macroscopic geometry to vary with small
slope (dw/dx � 1), which is a standard assumption of lubri-
cation theory. The gradually varying assumption imposes an
additional condition which physically means that macroscopic
properties do not change much over the axial thickness
of the shock. We use u0 and j0 evaluated at x0 (shock
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a(x)
p(x)

(b)

p/a

(x-x )/a~ ~ ~
s

~

(x-x )/a~ ~ ~
s

(c) (d)

-8 -4 0
0

K
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0.4

0.6

0.8

1.0

-8 -4 0

(a)

FIG. 4. Microstructures with varying pore size hp . The figure
shows example of a porous medium (a) and a microtube (b). Plots
show the bulk conductivity vs axial length across a deionization shock
(c) for κ̃d = ρ̃s = 0.025. Minimum p̃/ã is 0.25 and is doubled for
each subsequent plot up to p̃/ã = 8. (d) shows the plot for p̃/ã = 1
with the dashed lines representing the left and right asymptotic curves.

location at t0 = 0) to nondimensionalize Eq. (18). w can be
nondimensionalized using w0. Noting that uw and jw are
constant in x due to conservation of mass and current, Eq. (18)
can be nondimensionalized to

∂

∂t̃
(w̃κ̃) + ∂

∂x̃

(
ũκ̃ + ρ̃s

κ̃ + ρ̃s

)
= ∂

∂x̃

(
w̃

∂κ̃

∂x̃

)
. (19)

One can verify that Eq. (19) is also applicable to the case of
porous media. In that case w̃ would be the nondimensional
net cross-sectional area. In this formulation ũ and ρ̃s are
the nondimensional constant parameters, and w̃ = w̃(x̃) is
a known function. Equation (19) has the trivial boundary
condition of κ̃|x=−∞ = 1. We also use a Dirichlet boundary
condition of κ̃(x̃ = 0) = κ̃d = O(ρ̃s), which represents a
depletion boundary, initiated by a selective element next to
the channel. We seek a solution of the form

κ̃(x̃,t̃) = f (η) = f

[
x̃ − x̃s(t̃)

l̃s(t̃)

]
, (20)

where x̃s represents the shock location and l̃s is the shock
length or axial thickness. The profile of f̃ satisfies an ODE,
yet to be obtained. Since this profile should look like a shock,
we have f (η � −1) � 1 and f (η  1) � κ̃d . We propose a
solution for x̃s(t̃) and l̃s(t̃) by speculating that the local shock
length is proportional to the local channel width and its speed
is inversely proportional to the width [see Fig. 3(d)]:

dx̃s

dt̃
= ṽ

w̃(x̃s(t̃))
l̃s(t̃) = w̃(x̃s(t̃)), (21)

where ṽ is the dimensionless shock speed at x = x0. By
substituting Eq. (21) into Eq. (20), then into the governing

equation (19), and ignoring variations of w̃ over the shock
thickness we obtain the following ODE for f :

[
(ũ − ṽ)f + ρ̃s

f + ρ̃s

]′
= f ′′. (22)

To compute the constant ṽ, we can integrate Eq. (22) from
−∞ to +∞ and use the boundary conditions. Since f ′ = 0 in
the limits, we obtain

ṽ = ũ − ρ̃s

κ̃d + ρ̃s

+ O(ρ̃s). (23)

Note that shock propagation would be possible only for
negative ṽ. This can be typically accommodated only if
sufficient depletion is introduced at the boundary by κ̃d =
O(ρ̃s) (also needs ũ < 1).

Substituting Eq. (23) into Eq. (21) and rewriting in the
dimensional form reveals that for strong shocks (i.e. κ̃d ∼
ρ̃s � 1) the local shock velocity relative to the local flow is

dxs

dt
− u(x) = −

[
z−ν−ej (x)

κb∞

]
1

1 + hpκd/κs

. (24)

The right-hand side of Eq. (24) is the electrodiffusion velocity
in the enriched side of the shock scaled by a rational function
of the surface to bulk conduction in the depleted side. As
physically expected, in the limit of perfect deionization κ̃d =
0, the relative shock velocity will be identical to the coion
electromigration velocity.

Integrating Eq. (21) yields
∫

w̃(x̃s)dx̃s = ṽt̃ , (25)

which indicates that the rate of sweeping the volume of
the channel by the shock is constant. This also makes
sense from the global conservation law point of view: Very
far from the shock, at the channel boundaries, the flux
term ũκ̃ + (ρ̃s)/(κ̃ + ρ̃s) [see Eq. (19)] does not change
with time and the diffusion flux is negligible. From global
conservation, the depletion of ions inside should balance
the difference of the fluxes at the boundaries. There-
fore, the depletion rate should be constant, implying the
rate of sweeping the volume by the shock should be
constant.

B. Microstructures with variable pore size

This powerful observation can be generalized to more
complicated microstructures such as the ones shown in Fig. 4.
In this case, as shown in Fig. 4(a), we deal with a microstructure
with gradually varying porosity εp and surface density ap,
independent of each other. Equivalently we also can consider
microtubal structures [see Fig. 4(b)] with gradual variation in
cross-sectional area a(x) and cross-sectional perimeter p(x).
Under our simplifying assumption of quasi-one-dimensional
systems, εp in the microporous media plays the equivalent
role of a(x) in microtubal structures; they both scale the
bulk quantities. In addition, the role of ap in porous media
is analogous to the role of p(x) in microtubes; they both scale
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the surface quantities. For the case of microtubes, the modified
governing equation is

∂

∂t
(aκb) + ∂

∂x

(
uaκb + z−ν−ejaκs/hp

κb + κs/hp

)

= ∂

∂x

(
aD

∂κb

∂x

)
, (26)

where the volume averaged quantities κb, u, and j are effec-
tively the cross-sectional averaged quantities for the case of a
microtube. The equivalent pore-size hp is a/p. Equation (26)
is very similar to Eq. (18) with the exception that now hp is
not a constant and is equal to a(x)/p(x). Again, as a shock
propagates, it sweeps the net available volume of the structure
at a constant rate independent of complexities of a(x) and
p(x).

For the case of constant hp we showed that the shock axial
extent would be proportional to local area of the channel. For
general a and p however, the evolution of shock length is
not as simple. It turns out that even a solution with the form
presented by Eq. (20) is not valid any more. In this general
case, different regions of the shock can scale differently. Here
we only report the analytical solution to the shock profile and
refer the reader to Appendix B for details of the derivation.
One can show that κ̃ changes as a function of axial coordinate
according to the following relation [see Fig. 4(c)]:

(
ρ̃s

κ̃d + ρ̃s

)
x̃ − x̃s

ã

= ln(1 − κ̃) − (κ̃d + ρ̃s)
p̃

ã
ln

(
κ̃ − κ̃d

p̃

ã

)
, (27)

where κ̃d and ρ̃s are constants, κ̃d is the dimensionless
bulk conductivity at the depletion boundary, and ρ̃s is
κs/hp(x0)κb∞. ã and p̃ are gradually varying local area and
perimeter nondimensionalized by their reference values at x0.

With ã in the denominator of the left-hand side, this format
indicates that the shock axial thickness scales with local ã (as
seen previously), but its shape depends on parameter p̃/ã. The
right-hand side of Eq. (27) involves two terms: The first term
ln(1 − κ̃) is dominant in high concentration region (κ̃  ρ̃s);
the second term, which involves p̃/ã as a parameter, is of
order O(ρ̃s) and is dominant in low concentration zone of the
shock. A plot of the shock profile together with these two
asymptotic profiles are presented in Fig. 4(c). As mentioned
before, one can observe that the shock profile is independent
of the parameter ũ.

From the physical standpoint it is worth noting that the
asymptotic profile of the shock on the high-concentration side

κ̃ ∼ 1 − exp

[(
ρ̃s

κ̃d + ρ̃s

)
x̃ − x̃s

ã

]
(28)

is governed by axial diffusion and a low-concentration bound-
ary condition, moving relative to the bulk flow. The nonlinear
transport associated with surface conductivity is negligible
through this high-conductivity zone, although it plays a role in
determining the velocity. The same propagating exponential
concentration profile of Eq. (28) also arises in other situations,
such as dendritic electrodeposition [52,53], where counterions

(a)

(b)

(d)

(c)

FIG. 5. Schematics of deionization shock propagation in a con-
tracting microchannel (γ = −1) is shown in (a). Profiles of the shock
at different stages indicate that as the shock reaches the narrower
regions of the microchannel it gains speed and adopts a sharper axial
profile (b). Schematics of propagation in a linearly expanding channel
is shown in (c). Time series of the axial profiles indicate that the shock
slows down and becomes diffuse toward the end of the channel (d).

are removed by advection-diffusion-reaction processes at the
dendrite tips [54], rather than by surface conduction.

VII. SIMILARITY SOLUTIONS FOR POWER-LAW
GROWTH OF AREA

A. Intermediate asymptotics

In this section we consider the constant-pore-size structures
again, but with power-law growth of their area w̃ = (−x̃)γ , as
shown in Fig. 5. Note that in our notation w̃ represents a
nondimensional cross-sectional area (or equivalently channel
width or porosity) for a microstructure with constant pore size.
In this section, variation of w̃ is not necessarily negligible
over the shock axial extent. We are interested in solutions to
Eq. (19) at large enough times to approach a self-similar form.
Such “intermediate asymptotic” solutions [55] with power-law
monomial scalings are expected based on dimensional analysis
[56], due to the lack of any natural length scale in the problem.
We seek asymptotic solutions of the form

κ̃ = f (η) = f

(
x̃ + Ct̃α

t̃β

)
, (29)

which describe features that advect with the scaling t̃ α as they
enlarge (thicken) with the scaling t̃ β . Our objective is to find
α and β as functions of γ . Note that α > β would indicate
a shock-like solution where propagation is faster than growth
of the structure; α < β indicates a diffusion-like spreading, in
which advection is not observable due to the fast growth of
the structure itself. Substituting this solution into Eq. (19) and
simplifying results in

[
1

t̃
(Ct̃α − ηt̃β)

γ
(Cαt̃α − βηt̃β) + γ (Ct̃α − ηt̃β)

γ−1
]

f ′

+
(

ũf + ρ̃s

f + ρ̃s

)′
= (Ct̃α − ηt̃β)γ

t̃β
f ′′. (30)

061504-7



ALI MANI AND MARTIN Z. BAZANT PHYSICAL REVIEW E 84, 061504 (2011)

TABLE I. Scaling of deionization shock advancement and thick-
ening with time for a microchannel with power-law growth of width. γ
is power of growth of channel width with axial coordinate w = (−x)γ ;
the shock location is assumed to advance as xs ∼ tα; and the shock
axial thickness grows or shrinks as ls ∼ tβ .

γ −1 (−1,1) 1 (1,∞)
α exponential 1

γ+1
1
2 –

β exponential γ

γ+1
1
2

1
2

description shock shock shock or diffuse diffuse

In the large t̃ limit appropriately selected α and β would reduce
this equation to an ODE for f . Table I summarizes the resulting
α and β for different γ scenarios. Following Bazant and Stone
[57], one can systematically check that these are the only
scalings that satisfy the boundary conditions, but we omit
such mathematical details here. Note that for the case γ < −1,
the total volume of the medium is finite, and an intermediate
asymptotic limit does not exist.

B. Exponential shock propagation

In the singular case of γ = −1 the formal values of α and β

are infinite. Under this condition the correct solution would be
shock propagation with exponential acceleration in time and
the correct similarity variable is η = (x̃ + eα′ t̃ )/e−α′ t̃ . In the
limit of large t̃ the PDE can be transformed to the following
ODE: [

(ũ + α′)f + ρ̃s

f + ρ̃s

]′
= f ′′. (31)

Similar to what observed in Eq. (22), the value of α′ can be
obtained by integrating the above equation from −∞ to +∞
and using the boundary conditions

α′ = 1

1 + κ̃d/ρ̃s

− ũ + O(ρ̃s). (32)

The parameter α′ can be interpreted as the inverse of the
time scale for exponential propagation and spreading of the
concentration profile.

C. Power-law shock propagation

For −1 < γ < 1 the problem has a power-law similarity
solution with α = 1/(γ + 1) and β = γ /(γ + 1). Note that
for this range α > β and thus the solution indicates shock
propagation. In the limit of large t̃ Eq. (30) reduces to the
following ODE:

[(
ũ + Cγ+1

γ + 1

)
f + ρ̃s

f + ρ̃s

]′
= Cγ f ′′. (33)

Interestingly, in the limit of γ = 1 this solution leads to α =
β = 1/2, which represents the onset of transition toward a
diffusive propagation.

D. Diffusive shock propagation in a wedge (critical case)

The case of γ = 1 represents a structure with linear growth
of area. A practical example is a wedge-like channel whose
width grows with constant slope as shown in Fig. 5(c). After

the case of a straight channel (γ = 0), this case maybe the most
relevant for laboratory-on-a-chip systems. Note that for γ = 1
equations can be represented in cylindrical coordinates (with
x̃ interpreted as radius); the lubrication theory assumption
(dw/dx � 1) is not necessary to enable reduction of the
system to one-dimensional PDE. Therefore, the wedge angle
can be any number from 0 to 2π .

For γ = 1 the similarity variable reduces to η = x̃/
√

t̃ ,
which shows diffusive scaling in time. Equation (30) reduces
to

−
(

η

2
+ 1 + ũ

η

)
f ′ − 1

η

(
ρ̃s

f + ρ̃s

)′
= f ′′, (34)

but there is still some effect of surface conduction, measured
by ρ̃s .

E. Linear diffusion (no shocks)

For all values of γ > 1 the similarity variable will also be
η = x̃/

√
t̃ and Eq. (30) reduces to the following ODE, which

corresponds to linear diffusion:

−
(

η

2
+ γ

η

)
f ′ = f ′′. (35)

This ODE is valid for large t̃ , when the advective flux term
in Eq. (30) becomes negligible compared to other terms. Note
that there is no longer any effect of surface conduction (ρ̃s) on
the intermediate asymptotic similarity solution.

In the case that variation of w̃ is due to change in the
macroscopic geometry, such as in microchannels, for very
large t̃ the diffusive front may reach locations of the channel
with large dw/dx and the lubrication theory assumption may
not be valid any more. As a result Eq. (35) will be valid for
these structures only for a range in time described by

1 � t̃
γ−1

2 � Dκb∞
γw0z−ν−ej0

. (36)

For durations much larger than the upper bound, the channel
span would have a fast growth, dw/dx  1. In this range,
the channel maybe approximated by a 180-deg wedge and
propagation can be modeled by the axisymmetric case (γ = 1).

F. Transients to similarity solutions

Figure 6 shows a comparison of numerical solutions of
the full model Eq. (19) with our similarity solutions for an
expanding channel with γ = 0.5 and a converging channel
with γ = −0.25. The spatiotemporal plots in Figs. 6(a) and
6(b) show that the shock decelerates and becomes smeared by
diffusion in the expanding case; conversely in the converging
channel, the shock sharpens and accelerates. Representation
of these plots in terms of the similarity variable η shows
that after a short (dimensionless) transient time the contours
collapse into a single self-similar profile, as in other problems
of intermediate asymptotics [55]. Comparison with the con-
centration profile obtained from the full model demonstrates
the satisfactory accuracy of the similarity solutions.
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. (Color online) Spatiotemporal evolution of the deioniza-
tion shock for an expanding microchannel with γ = 0.5 (a) and a
contracting microchannel with γ = −0.25 (b). For both channels
ũ = 0.5 and ρ̃s = 0.1. The black line represents x̃ = −ct̃1/(γ+1),
where c is 0.72 in (a) and 0.21 in (b). When the data are plotted
against η = (x̃ + ct̃1/(γ+1))/t̃γ /(γ+1), the temporal evolution collapses
to a single profile after sufficient time [(c) and (d)]. Concentration
profile at the last time instant (symbol) is compared to the asymptotic
profile from solution of Eq. (33) [(e) and (f)].

VIII. NONLINEAR STABILITY
OF DEIONIZATION SHOCKS

So far we have focused on one-dimensional shock profiles,
but these are not special cases of the macroscopic (volume
averaged) nonlinear dynamics. Instead, we expect these
solutions to be stable attractors, in the sense of intermediate
asymptotics [55], at least in the absence of flow or sudden
property changes (σs and hp). To make this case we consider
a “thin shock” whose thickness is much smaller than its
local radius of curvature, under conditions of strong depletion
(κ̃d = 0). In this limit, the deionized side contains only surface
conductivity, thus the Ohm’s law in this region would be of the
form j = −(κs/hp)∇φ. Conservation of charge then implies
that the potential is harmonic, away from the shock:

∇2φ = 0 for x ∈ �(t), (37)

where �(t) represents the deionized domain. The region ahead
of the shock has much larger conductivity than the deionized
region, so most of the voltage drop is sustained in the deionized
region. In this limit, the variation of potential outside of �

can be neglected compared to the scale of potential variation
inside �:

φ = 0 for x ∈ ∂�(t), (38)

FIG. 7. Stability and nonlinear evolution of thin deionization
shocks in higher dimensions in the absence of flow. The potential
is approximately harmonic in the deionized region behind the shock
and constant in the high-conductivity region ahead of the shock,
and the shock moves in proportion to the local electric field, which
drives coion removal. This problem is mathematically equivalent to
Laplacian dissolution [62], a well known stable process that leads to
smooth interfaces from arbitrary initial conditions.

where ∂�(t) is the boundary specified by the shock location
x = xs .

Next, we obtain an equation for boundary movement in
terms of potential. As described by Eq. (24), in the limit of
perfect deionization (κd = 0), the shock velocity is same as
local electrodiffusion velocity of the coion species:

vs = −z−ν−e

κb∞
j.

Since j is continuous across the shock, it can be written using
the Ohm’s law evaluated at the deionized side of the boundary:

vs = +
(

z−ν−eκs

hpκb∞

)
∇φ. (39)

As shown in Fig. 7, the resulting model is mathematically
equivalent to the well-known problem of Laplacian growth,
where an equipotential boundary climbs the normal gradient
of a harmonic function, only here it is time reversed, that is,
the boundary propagates away from the harmonic domain.
In two dimensions, Laplacian growth can be solved using
time-dependent conformal maps, and it is known to be unstable
when the boundary advances into the harmonic domain,
leading to cusp-like singularities in finite time [58]. Physically,
this situation is like dendritic electrodeposition or viscous
fingering, where air displaces water in a Hele-Shaw cell
(without surface tension) [59]. In contrast, thin deionization
shocks evolve by the time-reversed process, which is extremely
stable and tends to smooth, symmetric shapes. Physically,
deionization shock dynamics resemble water displacing air
in a Hele-Shaw cell or porous medium, or (quasisteady)
diffusion-limited dissolution of a porous solid. Dissolution
fronts are often so stable that they can maintain a macroscopic
planar shape, even when passing through a highly disordered
medium [60,61]. For several classes of analytical solutions of
the time-reversed Laplacian growth see Ref. [62].

This insight justifies a posteriori a key assumption in our
similarity solutions above. It also shows that they represent
universally long-time limits for broad classes of initial condi-
tions. We leave for future work questions of how fluid flow and
shock structure might affect this picture. Besides microscopic
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hydrodynamic instabilities within the microchannels noted
above, we cannot rule out the possibility of macroscopic insta-
bilities of deionization shocks, for example, with misaligned
fluid flow and electrical current.

IX. CONCLUSION AND OUTLOOK

In summary, we have developed a theory of ion trans-
port in microchannels and porous media, focusing on the
new nonlinear regime where surface conduction dominates
convection in competing with bulk diffusion. For slowly
varying microstructures, the equations support propagating
shocks, as well as similarity solutions with power-law scal-
ings. Even in the presence of microscopic inhomogeneities,
we expect that these solutions are stable attractors of the
nonlinear dynamics. The multidimensional problem is more
complicated, especially in situations where the current is
misaligned with the fluid velocity. We believe this system
provides many promising directions for research in applied
mathematics.

As suggested by our choice of nomenclature, a natural
application of our theory would be to water purification and
deionization using porous media and membranes. The basic
idea is to extract fresh water continuously from the region
behind a steady deionization shock. Our group is currently
investigating this concept [63], and the results will be reported
elsewhere.

Deionization shocks could also be used to enhance the
electrokinetic decontamination of microfluidic devices and
porous rocks, clays, or soils [64,65]. The propagation of a
deionization shock would push coionic impurities ahead of the
shock, while counterionic impurities would be swept behind
the shock by the large electric field. This effect, driven by
surface conduction, promotes the sharpening of the particle
profile by electromigration [66], which can also lead to shocks
when the particles significantly alter the conductivity [67].

Our theoretical results could also be applied to DC electro-
osmotic pumps, which employ electro-osmotic flow in porous
glass frits [68–70]. Strickland et al. [71] and Suss et al. [72]
have recently found that concentration polarization can be a
key factor in the pump performance, but current theories do
not account for the formation of concentration gradients or
surface conduction.

Our results may also find applications in micro- or nanoflu-
idic systems. We have shown that varying the cross-sectional
area, perimeter and/or surface charge of a microchannel
provides robust means to control the nonlinear dynamics of
transport. In parameter regimes where surface conduction is
important, this capability may be useful in microfluidic devices
for biological sample preconcentration [34] and seawater
desalination [35] consisting of microchannel or nanochannel
junctions. During normal operation, complex electrokinetic
instabilities have been observed [15] and, together with
fast pressure-driven flows [35], electrohydrodynamic phe-
nomena may dominate any effects of surface conduction.
Geometrical optimization of microchannel interfaces may also
lead to more robust designs for nanofluidic systems [73],
for example, for DNA or protein sequencing or molecular
sorting, in this case to inhibit the formation of shocks,

which interfere with external control of dynamics within the
nanochannel.

Another interesting direction would be to relax the as-
sumption of fixed surface charge and allow for capacitive
charging [74], Faradaic reactions [75,76], or induced-charge
electro-osmotic flows [77] in microfluidic devices or porous
electrodes. Leinweber et al. [78] have observed that metal
micropost arrays in thin (1 μm) channels can produce strong
concentration polarization and continuous desalination. The
effect is driven by surface conduction on ideally polarizable
metal cylinders [79]. It is likely that deionization shock phe-
nomena, due to surface conduction on the microchannel walls,
also play a role in shaping the salt concentration profile in these
devices.

In the case of porous electrodes, our volume-averaged
equations for porous media can be applied to capture effects of
surface conduction, but they must be augmented by a charge-
voltage relation for the double layer, for example, using the
Gouy-Chapman-Stern model of capacitive charging [74,80] or
the Frumkin-Butler-Volmer-Stern model of Faradaic reactions
[50,76]. Porous electrodes are widely used in electrochemical
energy storage devices (batteries, supercapacitors, fuel cells,
etc.) [2,75], but we are not aware of any prior work considering
surface conduction. Designing the porous microstructure to ex-
ploit the nonlinear effects of surface conduction could provide
a new means to enhance the power density of portable power
sources.
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APPENDIX A: POROUS MEDIA
WITH NONUNIFORM PROPERTIES

In this Appendix we present a more general form of
Eqs. (8)–(10), applicable to porous media with nonuniform
properties such as porosity, diffusivity, and area density. Here
we allow for variable diffusivities, independent of mobility
(no Einstein relation). Variable diffusivity can be due to
variable geometrical properties of the microstructure or due to
nonlinear flow dispersion effects which enhances the effective
diffusivity in the flow direction [1]. The effect of Taylor
dispersion due to electro-osmotic flow has been analyzed
for thin capillaries [81] and flat microchannels [82], and
accurate volume-averaged equations are available for these
situations. Yaroschuk and Zholkovskiy [42] have recently
predicted that this effect can also produce sharp fronts in
the salt concentration in a microchannel, near a nanochannel
junction, although mainly in thicker microchannels (around
100 μm) [42]. While the following model would accommodate
such effects, we here briefly note that a simple scaling
argument suggests that Taylor dispersion can be neglected in
very thin (hp < ∼1 μm) microstructures due to their relatively
low Péclet number, Pe = uhp/D [43].

061504-10



DEIONIZATION SHOCKS IN MICROSTRUCTURES PHYSICAL REVIEW E 84, 061504 (2011)

To derive the model we start with the general form of Eq. (5),

∂εpc±
∂t

+ ∇ · (εpuc±)

= ∇ · (εpD±∇c± ± εpz±ν±c±kT ∇φ̃), (A1)

where we remind that εp is the porosity of the porous
medium. Higher porosity indicates higher effective volume
to accommodate the transport and thus all fluxes scale
proportionally with porosity. In this case the conservation laws
need to be weighted by the local porosity factors. For example,
the continuity equation would be ∇ · (εpu) = 0 instead of
∇ · u = 0, etc. Rewriting Eq. (A1) in terms of cb, defined
by Eq. (7), and using net neutrality [see Eq. (6)] results in

∂εpcb

∂t
+ ∇ · (εpucb) = ∇ ·

[
εpD

(
∇cb − z̄

e
ρs∇φ̃

)
+ fs

]
,

(A2)

0 = ∇ · (εpj), (A3)

where

D = z−ν−D+ + z+ν+D−
z−ν− + z+ν+

,

(A4)

z = 2z+z−ν+ν−kT

z−D+ν− + z+D−ν+
.

The fs flux appears as a consequence of nonuniform surface
charge ρs and is equal to

fs = εp

e

2z−ν−
z+ν+ + z−ν−

(ρsu − D+∇ρs). (A5)

To close the system of Eqs. (A2) and (A3) we introduce the
relation between current and potential gradient by updating
Eq. (10),

e

kT
(j + ρsu − D+∇ρs) = −β∇κb − (κb + κs/hp)∇φ̃,

(A6)

which only has a slight modification relative to Eq. (10) due
to nonuniformity of ρs with β, κb, and κs defined the same as
in the main text.

APPENDIX B: DEIONIZTION SHOCK PROFILE
IN GENERAL MICROSTRUCTURES

Here we analyze shock structure in a microtubal structure
whose area a(x) and perimeter p(x) vary independently with
position. Due to the mathematical equivalence of microtubes
and porous structures in our model, the same analysis also
holds for porous medium with variable porosity εp(x) and
surface area density ap(x), which respectively play analogous
roles as a and p here. We start with the nondimensional
version of Eq. (26), where we use a0 and p0, respectively,
the channel cross-sectional area and perimeter evaluated at x0,
to nondimensionalize a and p.

Using the other dimensionless variables from the main text,
we arrive at the following dimensionless equation describing
evolution of bulk conductivity in a channel with gradually
varying a(x) and p(x):

∂

∂t̃
(ãκ̃) + ∂

∂x̃

(
ũκ̃ + p̃ρ̃s

ãκ̃ + p̃ρ̃s

)
= ∂

∂x̃

(
ã
∂κ̃

∂x̃

)
, (B1)

where κ̃ = κb/κb∞, x̃ = (x/D)(z−ν−ej0/κb∞), t̃ =
(t/D)(z−ν−ej0/κb∞)2, and ũ = u0κb∞/z−ν−ej0. To
include a more general case with gradual variation of surface
conductivity, we define ρ̃s = p0κs0/a0κb∞; in this case p̃

represents variation of both surface charge and perimeter and
is defined as p̃ = pκs/p0κs0.

We assume that the changes in ã and p̃ are slow enough, so
that their variation over the shock can be neglected. We use κ̃1

and κ̃2 to denote, respectively, the left and right conductivities
outside the shock, but close enough so that the cross section
is the same as that at the shock. Therefore κ̃1 and κ̃2 may vary
as the shock sweeps through the channel, which later will be
obtained from quasisteady solutions.

If the shock structure moves with local velocity ṽ, following
the transformation ỹ = x̃ − ṽt̃ we obtain the following ODE
governing structure of the shock:

d

dỹ

[
κ̃(ũ − ãṽ) + p̃ρ̃s

ãκ̃ + p̃ρ̃s

]
= d

dỹ

(
ã
dκ̃

dỹ

)
. (B2)

Integration yields

κ̃(ũ − ãṽ) + p̃ρ̃s

ãκ̃ + p̃ρ̃s

= ã
dκ̃

dỹ
+ C. (B3)

We use κ̃1 and κ̃2 as the boundary condition at infinity.
Evaluating Eq. (B3) at ±∞ and ignoring the diffusion term
yields the values of C and ṽ:

(ũ − ãṼ ) = ãp̃ρ̃s

(ãκ̃2 + p̃ρ̃s)(ãκ̃1 + p̃ρ̃s)
, (B4)

C = p̃ρ̃s(ãκ̃2 + ãκ̃1 + p̃ρ̃s)

(ãκ̃2 + p̃ρ̃s)(ãκ̃1 + p̃ρ̃s)
. (B5)

Substituting into Eq. (B3) yields

ãp̃ρ̃s

(ãκ̃2 + p̃ρ̃s)(ãκ̃1 + p̃ρ̃s)

(κ̃ − κ̃2)(κ̃ − κ̃1)

ãκ̃ + p̃ρ̃s

= dκ̃

dỹ
. (B6)

Rearranging terms yields

ãp̃ρ̃sdỹ

(ãκ̃2 + p̃ρ̃s)(ãκ̃1 + p̃ρ̃s)

= − ãκ̃1 + p̃ρ̃s

κ̃1 − κ̃2

dκ̃

κ̃1 − κ̃
− ãκ̃2 + p̃ρ̃s

κ̃1 − κ̃2

dκ̃

κ̃ − κ̃2
. (B7)

Integration results in

ãp̃ρ̃s(ỹ − ỹ0)

(ãκ̃2 + p̃ρ̃s)(ãκ̃1 + p̃ρ̃s)

= ãκ̃1 + p̃ρ̃s

κ̃1 − κ̃2
ln(κ̃1 − κ̃) − ãκ̃2 + p̃ρ̃s

κ̃1 − κ̃2
ln(κ̃ − κ̃2). (B8)

Now we need to substitute values of κ̃1 and κ̃2 in terms κ̃d

and local p̃ and ã. κ̃2 satisfies the steady state condition for
Eq. (B1) in the depletion region. Since we are far from the
shock the diffusive flux can be neglected in this region; hence
the net convective flux should be constant in order to satisfy
the steady state condition. Therefore,

κ̃2 + p̃ρ̃s

ãκ̃2 + p̃ρ̃s

= κ̃d + ρ̃s

κ̃d + ρ̃s

. (B9)
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Note that p̃ and ã are one at x̃ = x̃0. Considering the fact that
κ̃2 ∼ κ̃d ∼ O(ρ̃s) � 1, we can simplify this expression and
arrive at

κ̃2 = κ̃d p̃

ã
+ O

(
ρ̃2

s

)
. (B10)

Similarly, one can show that

κ̃1 = 1 + O(ρ̃s). (B11)

Substituting these expressions for κ̃1 and κ̃2 into Eq. (B8)
results in

(
ρ̃s

κ̃d + ρ̃s

)
ỹ − ỹs

ã

= ln(1 − κ̃) − (κ̃d + ρ̃s)(p̃/ã)ln[κ̃ − κ̃d (p̃/ã)], (B12)

which is a direct relation between the bulk conductivity and
axial coordinate across a shock. Having x̃s = ỹ0 + ṽt̃ this
equation can be transformed to Eq. (27).

Figure 4(c) shows the shock profiles obtained from
Eq. (B12). One can see that different regions of the shock
scale differently as parameters ã and p̃ vary. While the
high-concentration region of the shock scales with local ã, the
low-concentration region is dependent on both parameters ã

and p̃. This also makes sense from the form of Eq. (B12) since
the high- and low-concentration regions can be approximated
respectively by the first and second term in the right-hand side
of Eq. (B12). A plot of the shock profile together with these
two asymptotic profiles are shown in Fig. 4.

In practical scenarios the conductivity drop across the
shock is orders of magnitude [O(ρ̃s) � 1]. Under such
conditions most of the drop, from κ̃ = 1 to ρ̃s � κ̃ � 1,
can be approximated by only the first term on the right-hand
side of Eq. (B12). Therefore, as a rule of thumb, one can say
that the shock thickness approximately scales with local area.
Note that this simple criterion assumes that variations in p̃/ã

are finite and bounded with an upper bound much smaller
than 1/ρ̃s .
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