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Abstract: Ontic is an interactive system for developing and verifying math-
ematics. Ontic’s verification mechanism is capable of automatically finding
and applying information from a library containing hundreds of mathemati-
cal facts. Starting with only the axioms of Zermelo-Fraenkel set theory, the
Ontic system has been used to build a data base of definitions and lemmas
leading to a proof of the Stone representation theorem for Boolean lattices.
The Ontic system has been used to explore issues in knowledge representa-
tion, automated deduction, and the automatic use of large data bases.
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Chapter 1

Ontic in Brief

Ontic is a computer system for verifying mathematical arguments. Starting
with the axioms of Zermelo-Fraenkel set theory, including Zorn’s lemma as
a version of the axiom of choice, the Ontic system has been used to to define
concepts involving partial orders and lattices and to verify a proof of the
Stone representation theorem for Boolean lattices. This theorem involves an
ultrafilter construction and is similar in complexity to the Tychonoff theorem
in topology which states that an arbitrary product of compact spaces is
compact. The individual steps in the proof were verified with an automated
theorem prover. The Ontic theorem prover automatically accesses a lemma
library containing hundreds of mathematical facts; as more facts are added
to the system’s lemma library the system becomes capable of verifying larger
inference steps.

The Ontic theorem prover is based on what I call object-oriented in-
ference. Object-oriented inference is a forward chaining inference process
applied to a large lemma library and guided by a set of focus objects. The
focus objects are terms in the sense of first order predicate calculus; they
are expressions which denote objects. It is well known that unrestricted for-
ward chaining starting with a large lemma library leads to an immediate
combinatorial explosion. However, the Ontic theorem prover is guided by
the focus objects; the inference process is restricted to statements that are,
in a technical sense, about the focus objects. Thus the inference process
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is “object-oriented”. In verifying an argument the user specifies the set of
focus objects. For example the user may tell the system to consider an ar-
bitrary lattice L, an arbitrary subset S of L, and an arbitrary member z
of S. Ontic’s inference mechanisms are restricted to a finite set of formulas
that are about the given focus objects. Certain forward chaining constraint
propagation techniques can be effectively applied to this finite set of formu-
las. Natural language mathematical arguments, like those found in textbooks
and journals, appear to be object-oriented in the sense that they instruct the
reader to focus on certain objects. Thus Ontic’s object-oriented inference
mechanisms seem well suited for verifying natural arguments.

There are two motivations for building a system for verifying natural
arguments. First there is an engineering motive: a sufficiently powerful me-
chanical verifier could have a variety of important practical applications,
such as ensuring the correctness of mathematical arguments, the correctness
of software systems, and the correctness of engineered devices in general. Sec-
ond, the construction of a verification system for natural arguments can be
motivated in terms of cognitive psychology. A verification system for natural
arguments provides a computational model of the human cognitive processes
involved in verifying arguments. The plausibility of such a cognitive model
can be judged by comparing the length and structure of the arguments ac-
ceptable to people with the length and structure of arguments acceptable to
the cognitive model.

The engineering motive and the cognitive model motive for building ver-
ification systems are not independent; a verification system that is a good
cognitive model is likely to be pragmatically useful. More specifically, a
verification system is a good cognitive model to the extent that arguments
acceptable to the model are similar to the arguments acceptable to people.
Thus if a verification system is a good cognitive model then it should be easy
to convert arguments that are acceptable to people to arguments that can
be verified by the system; a system that is a good cognitive model provides
a good “impedance match” between the human user and the verification
system.

On the other hand the two motivations for verifications system, the en-
gineering motive and the cognitive model motive, are different motivations




with different criteria for success. A verification system that exhibits clearly
superhuman performance in its ability to verify statements is a bad cogni-
tive model but a good verifier from an engineering point of view. It turns
out that Ontic’s mechanism for reasoning about equality, congruence closure,
leads to some clear examples of superhuman performance on the part of the
Ontic system. Thus congruence closure is not a good cognitive model for the
way people reason about equality—there are equality reasoning mechanisms
which are weaker than congruence closure which provide better cognitive
models. However, from an engineering point of view congruence closure is
better than the weaker mechanism (at least on serial machines). The anal-
ysis of congruence closure as a bad cognitive model is presented in detail in
chapter 3.

The Ontic system was designed with both motivations in mind—an at-
tempt was made to make the system a pragmatically effective verification
system and the same time to make the system a rough model of human math-
ematical cognition. The Ontic system should be judged on two independent
grounds relative to these two goals. First, one can evaluate the system as
an engineered device for verifying proofs by attempting to use the system
for that purpose. Second, one can attempt to evaluate the system as a cog-
nitive model by judging the similarity between natural language arguments
acceptable to people and formal arguments acceptable to the system.

The remainder of this chapter is divided into four sections. The first
section briefly discusses the nature of natural language mathematical argu-
ments. The second section of the chapter discusses the formal language used
in the Ontic system. The third section describes the user-level interface to the
system and gives several examples of arguments verified by the system. The
fourth section describes the object-oriented inference mechanisms in more
detail.

The relationship between Ontic and previous work in reasoning, knowl-
edge representation, and theorem proving is discussed in detail in chapter 2.
Chapter 3 presents an analysis of the Ontic system as a cognitive model giv-
ing examples of both superhuman and subhuman performance on the part of
the Ontic system. Chapters 4 and 5 give a mathematically precise account of
the inference mechanisms as marker propagation algorithms on certain kinds
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of graph structure. Chapter 6 gives a mathematically precise definition of the
Ontic formal language and chapter 7 gives a mathematically precise account
of the compilation process by which expressions in the formal language are
converted into graph structure. Chapter 8 lists some potential applications
of automated inference systems such as Ontic and chapter 9 summarizes the
main features of the Ontic system.

1.1 The Nature of Natural Arguments

By a “natural mathematical argument” I mean a proof written in a natural
language, such as English, that would be acceptable as a fully worked out
proof in a textbook or journal article. A natural mathematical argument
consists of a sequence of natural language statements and the human reader
is expected to use his or her knowledge and intelligence to see that each step
clearly and necessarily follows from the previous steps. As an example of a
natural argument consider the following proof that the square root of 2 is
irrational.

Suppose that the square root of two were rational, i.e.

2
=2

le"d

The squares p? and ¢? must each have an even number of prime
factors. Thus, if p?/q¢? is an integer then this integer must also
have an even number of prime factors. But 2 has only a single
prime factor so p?/q? cannot equal 2.

This argument is perfectly rigorous; every step clearly follows from the
previous steps and the conclusion is clearly established; v/2 must be irra-
tional. However, understanding this argument requires knowing certain facts
about arithmetic and multisets. More specifically the above argument im-
plicitly rests on the following facts:
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1. The fundamental theorem of arithmetic — every natural number has
a unique multiset of prime factors.

2. The multiset of factors of p? is the multiset union of the prime factors
of p with itself.

3. The multiset union of a multiset with itself has an even number of
members (an even multiset cardinality).

4. If p/q is an integer then the multiset of prime factors of ¢ must be a
subset of the multiset of prime factors of p.

5. If p/q is an integer then the multiset of prime factors of p/q is the
multiset difference of the prime factors of p and the prime factors of q.

6. If the multisets m; and mq both have an even number of members and
my 1s a subset of m; then the multiset difference of m; and m, has an
even number of members.

The fundamental theorem of arithmetic is a deep theorem involving sev-
eral induction proofs. It seems quite likely that people have simply memo-
rized this fact and use it freely. The other facts in the above list have simpler
proofs (given the fundamental theorem of arithmetic). However, an explicit
proof of any one of the above facts would be at least as long as the above
proof that the square root of 2 is irrational. Furthermore, each of the above
facts seems to be generally useful and thus it seems likely, or at least plau-
sible, that people have memorized each of the above facts in addition to the
fundamental theorem of arithmetic. People seem capable of using facts, such
as the fundamental theorem, unconsciously; when reading the above natural
argument one is not consciously aware of using the fundamental theorem of
arithmetic. The above example suggests that people verify mathematical ar-
guments by using knowledge they already have about the concepts involved
and by applying that knowledge unconsciously in verifying the steps of the
argument.
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1.2 Ontic as a Formal Language

The Ontic system cannot read natural language—before an argument can
be verified it must be translated into a machine readable form. The Ontic
system manipulates formulas in the formal language called Ontic. The Ontic
language is a syntactic sugar for first order set theory. The design of this
syntactic sugar was driven by two motivations. First, the language is designed
to be as similar as possible to natural language while still being simple and
mathematically precise. Most atomic formulas in the Ontic language consists
of a subject “noun phrase” and a predicate “verb phrase”. In addition to
being similar to natural language, the syntactic structure of the Ontic formal
language facilitates the object-oriented inference mechanisms used in the
system. Object-oriented inference is guided by a set of focus objects. The
inference mechanisms “type” the focus objects—the system assigns a set of
types to each focus object. In the Ontic system a type is any predicate of one
argument; the types assigned to a focus object are predicates that are known
to be true of that object. The syntax of the Ontic language is designed to
facilitate this typing process; most atomic formulas state that a particular
type applies to a particular object.

In the Ontic language there is no distinction between types, classes, sorts,
and predicates of one argument. For an object z and type 7 the phrases “r
contains z”, “z is an instance of 7”7 and “r is true of z” all mean the same
thing. The word type is used, as opposed to the word class or predicate,
because Ontic types are used in much the same way that types are used
in computer programming languages; functions in the formal language can
only be applied to arguments of the appropriate type and thus there is a
distinction between “well-typed” and “ill-formed” expressions. For example,
consider a function TOPOLOGICAL-CLOSURE such that if X is a topological
space and A is a subset of X then

(TOPOLOGICAL-CLOSURE A X)

denotes the topological closure of A as a subset of X. An application of the
operator TOPOLOGICAL-CLOSUREis well typed just in case its second argument
denotes a topological space and its first argument denotes a subset of that
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space. The above expression is well typed but the expression
(TOPOLOGICAL-CLOSURE X A)

that results from reversing the arguments is not well typed because A is not
a topological space and X need not be a subset of A.

Rather than give a rigorous syntax and semantics for the Ontic language,
this section discusses the language informally and largely by example. A more
rigorous treatment is presented in chapter 6. Every expression of the Ontic
language belongs to exactly one of five syntactic categories; an expression
is either a term, a formula, a function expression, a type expression, or a
type generator expression. Terms are expressions that denote objects.! A
formula is an expression which denotes one of the Boolean truth values true
or false.> A function expression denotes a mapping from objects to objects.
Each function expression takes a fixed number of arguments and returns an
object.? Type expressions are predicates of one argument.? A type generator
expression denotes a mapping from objects to types. Each type generator
expression takes a fixed number of arguments and returns a type.?

1.2.1 Types

Figure 1.1 lists some type expressions. The first five type expressions in figure
1.1 are type symbols. The types THING and SET are primitive type symbols
in the Ontic system. The Ontic system allows for the possibility that there
are instances of the universal type THING, such as symbols, which are not in-
stances of the type SET. Each of the types GROUP, TOPOLOGICAL-SPACE, and
RIEMANNIAN-MANIFOLD can be defined in terms of more primitive concepts.

1A term is an expression of kind OBJECT. It is consistent with axioms of the logic to
assume that all objects are actually sets in a standard model of ZFC set theory. However,
it is more natural, and equally consistent, to assume that there exist objects which are
not sets.

2A formula is an expression of kind BOOLEAN.

3Function expressions have kind OBJECT x OBJECT X --- x OBJECT — OBJECT.

4Type expressions have kind OBJECT — BOOLEAN.

SType generator expressions have kind OBJECT x OBJECT X --- x OBJECT — TYPE.
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THING, SET, GROUP, TOPOLOGICAL-SPACE, RIEMANNIAN-MANIFOLD
(MEMBER-OF s), (LOWER-BOUND-OF s p)

(LAMBDA ((z 7)) ®(z))

(EITHER z y)

(AND-TYPE 7y 73)

(OR-TYPE 7y 7)

Figure 1.1: Ontic Type Expressions

The next two type expressions are types that result from applying type gen-
erators to arguments. If a term s denotes a set then (MEMBER-OF s) is a type
expression such that an object is an instance of the type (MEMBER-OF s) just
in case it is a member of the set s.° Instances of the type

(LOWER-BOUND-OF s p)

are members of the partially ordered set p which are lower bounds of the
subset s of p. One place lambda predicates are also type expressions. The
instances of the type

(LAMBDA ((z 7)) ®(z))

consist of exactly those instances z of the type 7 which satisfy the formula
®(z). The type (EITHER X Y) contains only the instances X and Y. The type
(AND-TYPE 71 7) contains exactly those ob jects which are instances of both
the types 7, and 5. The type (OR-TYPE 7; 7) contains exactly those things
which are instances of either of the types 7, or 7.

1.2.2 Terms

Figure 1.2 gives some Ontic terms. There are several ways of constructing
terms in Ontic. The application of a function to arguments is a term. If 7

5The term s denotes an object while the expression (MEMBER-OF s) denotes a type; no
expression is allowed to be both a term and a type.
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(fun 2y 29 ...)
(THE-SET-OF-ALL 1)
(THE-RULE fun)
(THE 7)

» symbol

Figure 1.2: Ontic Terms

is a “small” type expression then the expression (THE-SET-OF-ALL 7) is a
term which denotes the set of all instances of 7. The process of converting a
type to a set is called reification and sets of the form

(THE-SET-OF-ALL 7)

are often called reified types. It is important to remember that there is a
syntactic distinction between terms (which denote objects) and type expres-
sions (which denote predicates). There are types, such as the type THING,
which can not be converted to sets—there is no set of all things. Most of the
axioms of Zermelo-Fraenkel set theory state that certain sets exist. One can
view these axioms as saying that certain types can be converted to sets. In
the Ontic system these axioms of set theory are incorporated into the notion
of a syntactically small type expression; the operator THE-SET-0F-ALL can
only be applied to syntactically small type expressions. The notion of a syn-
tactically small type expression, and the relation between this notion and the
axioms of set theory, are discussed in more detail in chapter 6, section 6.1.

If fun is a function of one argument then the term (THE-RULE fun) de-
notes the “rule” that corresponds to the function. The relationship between
functions and rules is analogous to the relationship between types and sets—
the expression (THE-RULE fun) is a term and denotes an object while fun
is a function expression. Expressions of the form (THE-RULE fun) are often
referred to as reified functions. There exist functions which can not be reified
as rules, e.g any function defined on all sets, such as the function that maps
an arbitrary set to its power set, is too big to be reified as a rule.
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If 7 is a type with exactly one instance then the expression (THE 7) is a
term which denotes the single object contained in the type. For example, if

(PRIME-NUMBER-BETWEEN n m)
is a type whose instances are the prime numbers between n and m then
(THE (PRIME-NUMBER-BETWEEN 20 25))

denotes the number 23.

Expressions of the form ’symbol are also terms. For example the expres-
sion ’F00 denotes the symbol FOO. Quoted symbols denote objects which are
instances of the type SYMBOL. The Ontic system allows for the possibility
that all objects are sets, i.e. that every object is an element of a model of
Zermelo-Fraenkel set theory. However, the Ontic system also allows for a
more natural interpretation under which rules and symbols are not sets—the
types SET, RULE, and SYMBOL can be assumed to be disjoint.

1.2.3 Formulas

Figure 1.3 gives some Ontic formulas. The formula (IS z 7) is true just in
case = denotes an instance of the type 7. Formulas of this form are intuitively
pleasing because they seem to reflect natural language syntax—z is a subject
“noun phrase” and the type 7 is a predicate that applies to the subject. The
formula (EXISTS-SOME 7) is true just in case there exists an instance of 7.
The formula

(EXISTS ((.171 Tl) (1132 ’7'2) ) @(231, T2, ))

is true just in case there exists instances a1, as...a, of the types 7, 7,...73
respectively such that such that ® is true when the variables zy, 24, ...z, are
interpreted as ay,a,...a, respectively. The formula

(FDRALL ((.’171 T1) (.132 7'2) ) @(.’131, T2, ))

has the obvious analogous meaning. The formula (EXACTLY-ONE 7) is true
just in case there is exactly one instance of the type 7. The formula

(IS-EVERY 7 73)
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(IS z 1)

(EXISTS-SOME 1)

(EXISTS ((z1 7)) (z2 7o) ...) ®(z1, z2, ...))
(FORALL ((zy m) (z2 7o) ...) ®(z1, 22, ...))
(EXACTLY-ONE 7)

(IS-EVERY 71 72)

(NOT @)

(AND &, ®;)

Figure 1.3: Ontic Formulas

is true just in case every instance of 71 is an instance of 7. Of course Boolean
combinations of formulas are also formulas.

1.2.4 Definitions

Figure 1.4 gives some examples of definitions of functions and type gener-
ators. Functions are defined with the DEFTERM construct as shown in the
first example. In the first example the function POWER-SET is defined to be
equivalent to the lambda function

(LAMBDA ((S SET)) (THE-SET-OF-ALL (SUBSET-OF S)))

Thus the function POWER-SET takes one argument which must be a set and
returns the set of all subsets of that set. Types and type generators are
defined with the DEFTYPE construct. The second definition in figure 1.4 de-
fines LOWER-BOUND-OF to be a type generator which takes two arguments: a
set s and a poset p where the set s is required to be a subset of the set of
elements of p. The type generator LOWER-BOUND-OF takes these arguments
and returns a type: a predicate of one argument. An object z is an element
of the type (LOWER-BOUND-OF s p) just in case z is an element of the un-
derlying set of the poset p and every member of the set s is greater than or
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(DEFTERM (POWER-SET (S SET))
(THE-SET-0F-ALL (SUBSET-OF S)))

(DEFTYPE (LOWER-BOUND-OF
(S (SUBSET-OF (U-SET P)))
(P POSET))
(LAMBDA ((X (MEMBER-OF (U-SET P))))
(IS-EVERY (MEMBER-OF S)
(GREATER-OR-EQUAL-TO X P))))

(DEFTYPE (GREATEST-LOWER-BOUND-OF
(S (SUBSET-OF (U-SET P)))
(P POSET))
(LAMBDA ((X (LOWER-BOUND-OF S P)))
(IS-EVERY (LOWER-BOUND-OF S P)
(LESS-0R-EQUAL-TO X P))))

(DEFTYPE COMPLETE-LATTICE
(LAMBDA ((P POSET))
(FORALL ((S (SUBSET-OF (U-SET P))))
(EXISTS-SOME (GREATEST-LOWER-BOUND-OF S P)))))

Figure 1.4: Some Ontic Definitions
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equal to z under the ordering imposed by the poset p. The type generator
GREATEST-LOWER-BOUND-OF is similar to LOWER-BOUND: it takes a set s and a
poset p where s is a subset of the underlying set of p and yields a type. An
object x is an element of the type (GREATEST-LOWER-BOUND-OF s p) just in
case z is a lower bound of s in the poset p and every lower bound of s in p
is greater or equal to z. The type COMPLETE-LATTICE is defined so that an
object p is of type COMPLETE-LATTICE just in case p is a poset such that for
every subset s of the underlying set of p there exists a greatest lower bound
of s under the ordering imposed by p.

The type restrictions on the formal parameters of functions and type
generators determine a distinction between well-typed and ill-formed expres-
sions. The Ontic system will not invoke the definition of a function or type
generator unless the arguments to the function or type generator have been
proven to be of the correct type; the Ontic system effectively type-checks
expressions before it expands definitions. Given the expressive power of the
Ontic type system, however, one can easily show that there are well-typed
expressions which fail to type check. In the Ontic system type checking in-
volves theorem proving based on a lemma library. Many of the lemmas of the
lemma library state that certain objects have certain types; not surprisingly,
such lemmas play an important role in determining if an expression is well
typed. It is often the case that a given expression fails to type check using
one lemma library but succeeds in type checking given a stronger lemma
library.

1.2.5 Summary

In addition to providing a distinction between well-typed and ill-formed ex-
pressions, the Ontic type vocabulary seems to allow for concise and natural
formal statements. For example the IS-EVERY phrase constructor allows the
concise expression of statements that would normally require explicit quan-
tification. Similarly, the EXISTS-SOME phrase constructor uses the type vo-
cabulary to make concise existential statements. Types are also used directly
by the phrase constructors THE-SET-0F-ALL, THE, and EXACTLY-ONE.

The definitions in figure 1.4 should provide an indication of the con-
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ciseness and expressive power of the Ontic language. Jonathan Rees spent
about a month defining various mathematical concepts in Ontic. Starting
with only the fundamental notions described above, he used the Ontic lan-
guage to formally define groups, rings, ideals in a ring, fields, the natural
numbers, the real numbers (defined both as a totally ordered complete field
and as Dedekind cuts), topological spaces, continuous functions, homotopy
of maps between topological spaces, the fundamental group of a topological
space, differentiable functions on the reals, the derivative of a function, the
notion of a category and products and limits in arbitrary categories. The ease
with which Rees expressed these concepts suggests that any mathematical
concept can be readily expressed in Ontic.

1.3 Examples of Verification

Object-oriented inference operates in a context. A context consists of three
things: a lemma library, a set of focus objects and set of suppositions about
the focus objects. Figure 1.5 gives a block diagram of the object-oriented
inference mechanisms used in the Ontic system. The inference process is
forward chaining; it draws conclusions from the lemma library without being
given any goal formula. It is well known that unrestricted forward chaining
from a large lemma library leads to an immediate combinatorial explosion
— vast numbers of formulas are generated where each formula can be de-
rived from the given lemmas in only a few steps. The forward chaining
inference mechanisms used in the Ontic system, however, are guided by the
focus objects. The focus objects are Ontic terms, expressions that denote ob-
jects. The system restricts its inference process to formulas that are in some
sense “about” the focus objects. There are four basic inference mechanisms:
Boolean constraint propagation, congruence closure, focused binding (also
called semantic modulation), and automatic universal generalization. The
first two inference mechanisms are well known inference procedures for the
quantifier-free predicate calculus with equality. The last two inference mech-
anisms are unique to the Ontic system. These four inference mechanisms are
discussed in section 1.4 and again in more detail in chapters 4 and 5. In a
given context the four forward chaining inference mechanisms generate a set
of formulas about the focus objects called “obvious truths”.
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Lemma Library

Boolean Constraint Propagation

Focus Objects

Congruence Closure

Suppositions

Focused Binding

Automatic Universal Generalization

Obvious Truths

Figure 1.5: A Block Diagram of Object-Oriented Inference
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JClet-be F family-of-sets)
(let-be S set)

(suppose (is-every (member-of F) (superset-of S)))

Ontic Listensr

Ontic Stack o L ‘
3 (SUPPOSE (IS-EVERY (MEMBER-OF F) (SUPERSET-OF $)))
2 (LET-BE S SET) - - |
1 (LET-BE F FAMILY-OF-SETS)

Figure 1.6: The Ontic Interpreter Display
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The Ontic interpreter is an interactive system for verifying proofs. Each
step in an argument is associated with a context, i.e. a set of focus objects,
a set of suppositions about the focus objects and the current lemma library.
The user tells the system when to enter new contexts, when to leave old
contexts, and when to “note” a fact that has been established in a given
context. Figure 1.6 shows the display of the Ontic interpreter as seen by a
user who is about to verify a fact concerning families of sets. The top half of
the display is a Lisp listener: a window for interacting with a Lisp interpreter.
The bottom half of the display shows the context stack which displays the
set of suppositions and focus objects for the current context. In the example
shown in figure 1.6 the user first instructs the system to let F be a family of
sets. This caused the system to enter a context in which it is focusing on an
arbitrary family of sets denoted by F. The user then instructs the system to
let S be any set. This causes the system to enter a context where it is focusing
on an arbitrary set S. Finally the user instructs the system to suppose that
every set in the family F is a superset (i.e. contains) the set S. Each time
a new context is entered, the instruction for entering that context is pushed
onto the context stack shown in the bottom half of the display. By looking
at the context stack display one can determine the set of focus objects and
suppositions that are currently active.

Figures 1.7 through 1.13 show successive stages in the verification of a
simple fact concerning families of sets. Let F be a family of sets, let S be
a set and suppose that every member of the family F contains the set S.
Figures 1.7 through 1.13 present an argument showing that the set S must
be a subset of the intersection of the members of the family F. Figure 1.7
shows the definition of the function FAMILY-INTERSECTION which takes a
family of sets and returns the intersection of all its members. In Figure 1.7
the user asks the system to abbreviate the term (FAMILY-INTERSECTION F)
with the symbol INT. This causes the intersection INT to become a focus
object. The user then asks the system if the set S is a subset of INT and
the system says it doesn’t know. The user then states that the formula
(IS S (SUBSET-OF INT)) is a goal to be proven. This last instruction has
no effect on the context; the system is not goal directed and ignores goals
which appear on the context stack. Goals act as comments which improve
the readability of proofs (the written form of proofs will be discussed later).




18 CHAPTER 1. ONTIC IN BRIEF

(defterm (family-intersection (F family-of-saets))
(the-set-of-all
(lambda ((x (member-of-member F)))
(is-every (member-of F) (set-containing x)))))
DEFINING FAMILY-INTERSECTION
[ONTIC:DEFINED-FUNCTION-SYMBOL FAMILY-INTERSECTION]

(let-be INT (family-intersection F))

(is? § (subset-of INT))
I-DONT-KNOW

(push-goal (is S (subset-of INT)))

Ontic Listener

Ontic Stack , .
S (PUSH-GOAL (IS S (SUBSET-0F INT)))

4 (LET-BE INT (FARILY-INTERSECTION F)) |
3 (SUPPOSE (IS-EVERY (MEMBER-OF F) (SUPERSET-OF §)))

2 (LET-BE S SET)
1 (LET-BE F FAMILY-OF-SETS)

Figure 1.7: Statement of a New Lemma to be Proved
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(let-be X (member-of o))
>>Error: You have not established (EXISTS-SONE (MEMBER-OF S))

(:PROPERTY LET-BE ONTIC:CONSTRUCTOR-FUNCTION):

Arg 8 (ONTIC:ABBREV): X

Arg 1 (ONTIC:TYPE): (MEMBER-OF §)

Rest arg (FORMULA): NIL

) @D Back to frame § read-eval-print

Return to Lisp Top Level in Ontic Listener

-A
-B
-C Restart process Lisp Pane 1

oo oo

YO uuon

Ontic Listener

Ontic Stack

(LET-BE X (MEMBER-OF §))

(PUSH-GOAL (IS § (SUBSET-0F INT)))

(LET-BE INT (FANILY-INTERSECTION F))

(SUPPOSE (IS-EVERV (HEMBER-OF F) (SUPERSET-O0F §))7

N Wl &) ]

(LET-BE § SED) ‘

L (LET-BE F FANILY-O0F-SETS)

Figure 1.8: A Failed Instruction to the Interpreter
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(suppose (exists-some (member-of S)))

(let-be X (membaer-of S))

(is? X (member-of INT))
I-DONT-KNOUW

Ontic Listener

Ontic Stack .
7 (LET-BE X (NEMBER-OF $))
6 (SUPPOSE (EXISTS-SONME (MEMBER-OF $)))
5 (PUSH-GOAL (IS § (SUBSET-OF INT))) — l
4 (LET-BE INT (FANILY-INTERSECTION F))
3 (SUPPOSE (IS-EVERY (MEMBER-OF F) (SUPERSET-OF $)))

|2 (CET-BE § SED)
1 (LET-BE F _FAMILY-OF-SETS)

Figure 1.9: Supposing the Existence of Objects of Certain Kind
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(defterm (family-intersection (F family-of-sets))
(the-set-of-all
(lambda ((x (member-of-member F)))
(is-every (member-of F) (set-containing x)))))

e Ve Ve wve

(let-be S2 (member-of F))

(is? X (member-of S$2))
YES

(is? X (member-of INT))
YES

(is? S (SUBSET-OF INT))
YES

(note-goal)

Ontic Listener

Ontic Stack
(LET-BE S2 (MEMBER-OF F))

8
7 (LET-BE X (MEMBER-OF §))

6 (SUPPOSE (EXISTS-SOME (MEMBER-OF $)))
5

4

(PUSH-GOAL (IS S (SUBSET-O0F INT)))
(LET-BE INT (FANILY-INTERSECTION F))
3 (SUPPOSE (IS-EVERY (NMEMBER-OF F) (SUPERSET-OF $)))

2 (LET-BE S SET) )
1 (LET-BE F FAMILY-0F-SETS)

Figure 1.10: Establishing the Goal in a Certain Context

S . G R SRR S-S
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[Rbortl
NIL

(is? S (subset-of INT))
YES

Ontic Listener

Ontic Stack o
6 (SUPPOSE (EXISTS-SOME (MEMBER-OF $)))
S (PUSH-GOAL (IS § (SUBSET-OF INT)))
4 (LET-BE INT (FANILY-INTERSECTION F))
Is (SUPPOSE (IS-EVERY (REMBER-OF F) (SUPERSET-OF $)))
2 (LET-BE § SET)

1 (LET-BE F FANILY-0F-SETS)

Figure 1.11: Bringing the Result Back to an Earlier Context
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[Abortl
NIL

(is? S (subset-of INT))
I-DONT-KNOW

Ontic Listener

Ontic Stack

I W &

(PUSH-GOAL (IS S (SUBSET-OF INT)))

(LET-BE INT (FARILY-INTERSECTION F))

(SUPPOSE (IS-EVERY (HEHBERfOF_?) (SUPERSET-0F $)))
(LET-BE S SET)
1 (LET-BE F FAMILY-OF-SETS)

Figure 1.12: The Result Does Not Move Past Relevant Suppositions
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(note-goal)
T

(is? S (subset-of INT))
YES

Ontic Listener

Ontic Stack )
S (PUSH-GOAL (IS S (SUBSET-OF INT))) I

(LET-BE INT (FAMILY-INTERSECTION F))
(SUPPOSE (IS-EVERY (MEMBER-OF F) (SUPERSET-OF $)))

2 (LET-BE S SET)
1 (LET-BE F FAMILY-OF-SETS)

Figure 1.13: A Simple Automatic Refutation Finishes the Proof
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To show that the set S is a subset of INT we must show that every member
of S is a member of INT. To do this we can consider some arbitrary member
X of the set S. In figure 1.8 the user tells the system to do so. However,
the system complains that we have not yet established that such members
exist; the set S might be empty. In general the system ensures that every
object being considered is known to exist. In order to consider an arbitrary
member of the set S we must first assume that such members exist. In figure
1.9 the user first instructs the system to suppose that there are members
of the set S and then he instructs the system to consider a particular (but
arbitrary) member X. The user then asks the system if X is a member of INT
and the system doesn’t know. At this point the user may be mystified as to
why the system does not “see” the obvious fact that X is indeed a member
of the family intersection INT. Before proceeding further, the user reviews
the definition of the function FAMILY-INTERSECTION as shown in figure 1.10.
This definition states that X is a member of the family intersection just in
case X is a member of every set in the family F. In figure 1.10 the user
shows that X is a member of the intersection INT by showing that X is a
member of an arbitrary set S2 in the family F. This is done by considering an
arbitrary member S2 of the family F. In this scenario, instances of the type
FAMILY-OF-SETS are by definition non-empty and thus we do not need the
additional assumption that F is non-empty. When the system focuses on the
member S2 of the family F it “sees” that because X is a member of S, and
S is a subset of 52, X is a member of S2. At this point the system performs
an automatic universal generalization. Since S2 is an arbitrary member of
F, and since X has been shown to be a member of S2, it follows that X is a
member of every member of F. Furthermore since X is an arbitrary member
of S the system can perform yet another automatic universal generalization
and conclude that all members of S must be members of INT and thus S is a
subset of INT. Asking the system a question has no effect on the state of the
system; the questions shown in figure 1.10 serve only to indicate the line of
reasoning used by the system. The problem was actually solved by forward
chaining as soon as the last context was entered.

The forward chaining inference mechanisms establish the goal in the con-
text shown in figure 1.10. In order to remember that the goal has been
proven, the system must update the underlying lemma library. More specif-
ically, if the lemma library were not updated, then when the user returned
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to a previous context, nothing would have been learned; the set of “obvious
truths” in a context is determined by the lemma library, the focus objects
and the suppositions. In the scenario shown in figure 1.10 the user explicitly
updates the lemma library by calling the function NOTE-GOAL. In this case
the system adds the following lemma:

(FORALL ((F FAMILY-OF-SETS)
(S SET))

(=> (AND (IS-EVERY (MEMBER-OF F) (SUPERSET-OF S))
(EXISTS-SOME (MEMBER-OF S)))
(IS S (SUBSET-OF (FAMILY-INTERSECTION F)))))

In any context, the user can instruct the system to note any formula that
is obviously true in that context. The function NOTE-GOAL is just an abbre-
viation for noting the latest goal which has been pushed onto the context
stack; the same effect would have been achieved if the user had typed

(NOTE (IS S (SUBSET-OF INT)))

When a formula is noted the system constructs the implication which
states that suppositions active in the current context imply the noted for-
mula. The system then adds the universal closure of that implication to the
permanent lemma library. Note that in this case we have not really proven
the desired lemma; we have only proven it for the case where the set S is
non-empty.

Figure 1.11 shows that with the updated lemma library, the desired result
is “obvious” in the context associated with stack frame 6. However, the result
must still be proven for the case where S is empty; figure 1.12 shows that
the result has not yet been established at stack frame 5. But the case for
the empty set is trivial, and in figure 1.13 the user simply asks the system
to note the goal. Since the goal is not known directly at frame 5, the system
does a refutation proof; it enters a context where the goal is assumed to be
false. Given the new lemma shown above, the forward chaining inference
mechanisms are able to derive a contradiction from the negation of the goal,
and thus the goal is established by refutation. Thus the note-goal in figure
1.13 has the effect of adding the following lemma to the lemma, library.
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(FORALL ((F FAMILY-OF-SETS)
(S SET))

(=> (IS-EVERY (MEMBER-OF F)
(SUPERSET-OF S))
(IS S (SUBSET-OF (FAMILY-INTERSECTION F)))))

The “proof” shown in figures 1.7 through 1.13 is automatically recorded
by the system; Figure 1.14 shows an automatically generated textual repre-
sentation of the complete proof. Evaluating the form shown in figure 1.14
with the Lisp interpreter causes the above two lemmas to be proved and
added to the lemma library. (The second lemma makes the first one obsolete
and the user can, if he wishes, explicitly delete the first lemma after the proof
has been done.)

The textual representation of proofs involves IN-CONTEXT expressions. In
general an IN-CONTEXT expression is composed of two parts: a “context def-
inition” and a body; the context definition specifies the construction of a
new context by giving a list of context-constructing instructions. The body
is a list of instructions to be executed in the specified context. The body of
an IN-CONTEXT expression may contain embedded IN-CONTEXT expressions.
Embedded contexts inherit the focus objects and suppositions of outer con-
texts.

The two note-goal expressions in figure 1.14 correspond to the case anal-
ysis performed in the interactive proof. The first note-goal notes that if there
exists a member of S then the theorem is true. The second note-goal invokes
a refutation proof which effectively handles the case where S is empty. In
general multiple note-goals for the same goal correspond to a case analysis.
Often, as in this example, the context for the last case does not need to be
explicitly constructed because an automatic refutation process initiated by
the last note-goal effectively constructs the context for the last case.

The Ontic interpreter is able to use a large lemma library without human
assistance; the system automatically applies facts from the lemma library
whenever it enters a new context. Figure 1.15 shows the lemma established
by the proof in figure 1.14 together with two other facts: for every family
of sets F, every member of F contains (as a subset) the family intersection
of F; and, for two sets, if each is a subset of the other, then the two sets
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(IN-CONTEXT ((LET-BE F FAMILY-OF-SETS)
(LET-BE S SET)
(SUPPOSE (IS-EVERY (MEMBER-OF F)
(SUPERSET-0F S)))
(LET-BE INT (FAMILY-INTERSECTION F))
(PUSH-GOAL (IS S (SUBSET-OF INT))))

(IN-CONTEXT ((SUPPOSE (EXISTS (MEMBER-OF S)))
(LET-BE X (MEMBER-OF S))
(LET-BE S2 (MEMBER-OF F)))
(NOTE-GOAL))

(NOTE-GOAL))

Figure 1.14: The History

(FORALL ((F FAMILY-OF-SETS)
(S SET))
(=> (IS-EVERY (MEMBER-OF F)
(SUPERSET-OF S))
(IS S (SUBSET-OF (FAMILY-INTERSECTION F)))))

(FORALL ((F FAMILY-OF-SETS)
(S (MEMBER-OF F)))
(IS (FAMILY-INTERSECTION F)
(SUBSET-OF S)))

(FORALL ((S1 SET)
(S2 SET))
(=> (AND (IS S1 (SUBSET-OF $2))
(IS S2 (SUBSET-OF S1)))
(= 81 52)))

Figure 1.15: Some Simple Facts
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(IN-CONTEXT ((LET-BE S SET)
(LET-BE S2 (SUBSET-OF S))
(LET-BE F (THE-SET-OF-ALL
(AND-TYPE (SUBSET-OF S)
(SUPERSET-0F $2)))))
(IN-CONTEXT ((PUSH-GOAL (= S2 (FAMILY-INTERSECTION F))))
(IN-CONTEXT ((LET-BE INT (FAMILY-INTERSECTION F))
(LET-BE S3 (MEMBER-OF F)))
(NOTE-GOAL))))

Figure 1.16: A Proof Using Lemmas

are equal. Figure 1.16 is a proof which makes use of the facts in figure 1.15.
We assume that the lemmas in figure 1.15 have been placed in the lemma
library and are therefore available to the Ontic interpreter. The proof in
figure 1.16 goes as follows: Let S be any set and let S2 be any subset of
S. Let F be the set of all subsets of S which contain the set S2. We wish
to show that the family intersection of F equals the set S2. First the user
focuses on the family intersection of F by abbreviating this intersection with
the symbol INT. Next the user focuses on an arbitrary member of the family
F. Focusing on arbitrary member of F causes the system to “realize” various
facts about F. For example every member of F is a set and thus F is a family
of sets. By proving that F is a family of sets the system establishes that
the term (FAMILY-INTERSECTION F) is well typed and thus the definition of
FAMILY-INTERSECTION can be invoked. Furthermore S3 is a superset of $2
so 52 is a subset of S3 and by universal generalization S2 is a subset of every
member of F. Once the system deduces that F is a family of sets and every
member of F is a set which contains S2 the system automatically applies the
first lemma in figure 1.16 and realizes that S2 is a subset of the intersection
INT. The system also realizes that the set S2 is a member of the family F and
applies the the second lemma in figure 14 thus realizing that the intersection
INT is a subset of S2. Finally the system applies the the third fact in figure
1.15 and realizes that INT equals S2.

Actually the Ontic interpreter makes no distinction between definitions
and lemmas; definitions are just universally quantified equations which are
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accessed in the same manner as lemmas. The proof shown in figure 1.16
relies on definitions as well as the lemmas shown in figure 1.15. The proof
shown in figure 1.14 does not involve any previously proven lemmas but it
does involve the definition of the intersection of a family of sets.

In general, the user need not make explicit references to definitions and
lemmas. The user relies on the system to use definitions and lemmas when-
ever they are appropriate. For example, consider an arbitrary lemma of
following form:

(FORALL ((z ) (y 7)) ®(z, y))

This “lemma” might actually be a definition in which case ® is an equation
or logical equivalence. The Ontic system will automatically use this lemma
in any context where there are two focus objects A and B such that A is an
instance of 7; and B is an instance of 7. In general, a universally quantified
lemma such as the one shown above will be instantiated with all combina-
tions of focus objects that match the type restrictions of the lemma. Once
the lemmas have been instantiated with the focus objects, the system applies
the forward chaining inference techniques of Boolean constraint propagation,
congruence closure, and automatic universal generalization. The instantia-
tion process that invokes facts from the lemma library is a graph-theoretic
marker-propagation inheritance mechanism called focused binding or seman-
tic modulation. The focused binding mechanism achieves the effect of instan-
tiation but avoids constructing the formulas that result from the syntactic
substitutions done by normal instantiation.

One way of measuring the performance of a verification system is to com-
pare the length of a natural argument with the length of a corresponding
machine readable proof. The ratio of the length of a machine readable proof
to the length of the corresponding natural argument is called the ezpansion
factor for that proof. Figure 1.17 shows both an English natural argument
(taken from a textbook on lattice theory, [Gratzer 78] page 24) and a corre-
sponding Ontic proof. The natural argument contains 75 words and mathe-
matical symbols, while the Ontic proof contains 73 symbols, yielding a word
count expansion factor of about one. For the most part the “clear and nec-
essary” steps of this particular natural argument correspond to statements
that the Ontic interpreter can verify in a single step.
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Proof. Let P be a poset in which VS exists for all S C P. For
H C P, let K be the set of all lower bounds of H. By hypothesis
V K exists; set a = VK. If h € H, then h > k for all k£ € K
therefore h > a and a € K. Thus a is the greatest member of K,
that isa = A H.

(IN-CONTEXT ((LET-BE P POSET)
(SUPPOSE (FORALL ((S (SUBSET-OF (U-SET P))))
(EXISTS (LEAST-UPPER-BOUND-OF S P))))
(LET-BE H (SUBSET-OF (U-SET P)))
(PUSH-GOAL
(EXISTS (GREATEST-LOWER-BOUND-OF H P)))); #1

(IN-CONTEXT
((LET-BE K (THE-SET-OF-ALL (LOWER-BOUND-OF H P)))
(LET-BE a (THE (LEAST-UPPER-BOUND-OF K P))))

(IN-CONTEXT ((PUSH-GOAL (IS a (LOWER-BOUND-OF H P)))); #2
(IN-CONTEXT ((SUPPOSE (EXISTS (MEMBER-OF H)))
(LET-BE hO (MEMBER-OF H)))

(IN-CONTEXT
((PUSH-GOAL (IS h0 (UPPER-BOUND-OF K P)))); #3
(IN-CONTEXT
((SUPPOSE (EXISTS (MEMBER-OF K)))
(LET-BE k0 (MEMBER-OF K)))
(NOTE-GOAL)); #3
(NOTE-GOAL))); #3

(NOTE-GOAL)); #2
(NOTE-GOAL))); #1

Figure 1.17: Least upper bounds yield greatest lower bounds.

31
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The natural argument shown in figure 1.17 concerns complete lattices.
A complete lattice is a partially ordered set P such that every subset of P
has both a least upper bound and a greatest lower bound. The arguments
in figure 1.17 show that if every subset of a partially ordered set P has a
least upper bound, then every subset of P must also have a greatest lower
bound. In the argument from Gratzer’s book, shown in figure 1.17, the least
upper bound of a set H is denoted \V H and the greatest lower bound of H
is denoted A H. In the Ontic proof the goals are numbered so that one can
more easily see the association between the statement of the goal and the
achievement of the goal.

A different measure of the length of an argument or proof is obtained by
counting the number of type expressions rather than words. The number of
type expressions used in an argument provides a rough measure of the number
of “statements” involved. A direct translation of the natural argument in
figure 1.17 into Ontic would contain 14 type expressions while the actual
Ontic proof contains only 13 type expressions yielding an expansion factor
of about one. Thus the basic result that the Ontic proof is about the same
length as the English proof does not depend on the particular way in which
one measures length.

In checking the proof in figure 1.17 the Ontic interpreter makes use of a
large lemma library. The system uses some basic facts about partial orders
together with the following facts:

1. The definitions of the concepts involved, e.g. the definition of partial
orders, lower bound, least member and greatest lower bound.

2. The fact that if s is a subset of a partially ordered set p then the set
of all lower bounds of s is a subset of p.

3. The fact that for any subset s of a partially ordered set p, there is at
most one least upper bound of s.

One can argue that the expansion factor measured for the proof of figure
1.17 is too low because the Ontic interpreter was allowed to use preproven
lemmas that are not shown in the formal proof. But all of the lemmas used
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Lemma Predicate Count Word Count
Expansion Factor Expansion Factor

If arbitrary least up- .9 1.0
per bounds exist then arbi-
trary greatest lower bounds

also exist.

Every filter is contained in 1.3 1.2
an ultrafilter.

If F is an ultrafilter and 2.1 2.7
xVy € F then z € F or

yEF.

Every Boolean algebra is iso- 2.0 1.7

morphic to a field of sets.

Table 1.1: Various Measurements of the Expansion Factor

by the Ontic interpreter in proving this theorem are of general interest and
have in fact been used in several different contexts. Furthermore the last two
lemmas listed above have simple one or two line proofs in the Ontic system
and thus if those lemmas had not been in the lemma library the proof shown
in figure 1.17 would not be much longer.

It seems likely that human mathematicians unconsciously invoke a large
data base of general facts when they think about mathematical objects. Fur-
thermore, it seems likely that in familiarizing oneself with a new domain one
must verify a large body of “trivial” facts and incorporate these facts into
the way one thinks about the domain.

Bell and Machover’s text on mathematical logic gives a more concise proof
of the lemma of figure 1.17 ([Bell & Machover 77] page 127). In the proof a
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least upper bound is called a supremum and a greatest lower bound is called
an infimum.

Let L be a partially ordered set in which each subset has a
supremum. Let X be a subset of L, and let Y be the set of lower
bounds of X in L. Then Y has a supremum z and it is not hard
to see that z is the infimum of X.

A direct translation of the statements in Bell and Machover’s into the
language Ontic would contain 7 type expressions while the machine verifiable
Ontic proof has 13 type expressions yielding a predicate count expansion
factor of about two. While Bell and Machover’s proof is clearly shorter than
Gratzer’s proof, Bell and Machover’s proof includes the phrase “and it is not
hard to see that”. This phrase seems to be an admission that the given proof
is not complete. Gratzer’s proof, on the other hand, contains no such phrase
and we must take Gratzer’s proof as a fully expanded (complete) proof.

The appendix contains a complete listing of a mathematical development
that ends with a proof of the Stone representation theorem for Boolean lat-
tices. This appendix provides a large number of examples of Ontic proofs
and these proofs can be used to evaluate the Ontic verifier. Table 1.1 shows
four expansion factor measurements taken from four of the larger proofs done
in the Ontic system. The table lists both a predicate count expansion factor
and a word count expansion factor for each test case. Both the natural ar-
gument and the corresponding Ontic proofs for each test case can be found
in the appropriate sections of the appendix.

The machine readable proofs underlying table 1.1 relied on an extensive
lemma library and the expansion factor measurements are thus open to the
criticism that parts of the machine readable proof have been hidden in the
lemma library. However, once a sufficiently large lemma library has been
constructed, it should be possible to prove new theorems without extending
the basic lemma library. I believe that the numbers listed in table 1.1 are
accurate in that, with a mature lemma library, new theorems can be verified
with small expansion factors even if the expansion factor takes into account
all lemmas added during the verification.
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1.4 The Inference Mechanisms

All of the inference mechanisms used in the Ontic system manipulate label-
ings of a graph structure. More specifically, the Ontic system compiles the
lemma library into a graph structure where the nodes in the graph struc-
ture correspond to unique expressions in the formal language. There are
nodes that correspond to terms, formulas, type expressions, function expres-
sions and type generator expressions. The graph structure has nine different
kinds of “links” where each link expresses a certain way that nodes are re-
lated. For example if n is the node corresponding to the type expression
(LOWER-BOUND-OF s p) then there is a subexpression link that relates n to
the three nodes that correspond to the expressions LOWER-BOUND-OF, s and p.
There are also links that express Boolean constraints among formula nodes,
links that relate a lambda function to the node representing the bound vari-
able and the body of that expression, and six other kinds of links.

A labeling of the graph structure consists of two parts: a partial truth
labeling on formula nodes, and a color labeling on all nodes. For each formula
node p the partial truth labeling either assigns p the label ¢rue, assigns p the
label false, or leaves p unlabeled. The color nodes represent an equivalence
relation on nodes: two nodes with the same color label are considered to be
equivalent, i.e. proven equal in the current context. Whenever an inference
is made the system updates the labeling: either a formula is assigned a truth
label or two equivalence classes are merged by recoloring one class to be the
same color as the other class. Any such inference process for updating labels
on a fixed graph structure must terminate because there are only finitely
many formula nodes which can be assigned truth labels and every merger of
equivalence classes reduces the number of equivalence classes remaining and
the number of equivalence classes can not drop below one.

The same underlying graph structure can be used in many different con-
texts. Graph structure is never thrown away: each time new graph structure
is created it is saved for use in other contexts. Truth and color labels, on
the other hand, are temporary; they are thrown away, for example, when the
system stops considering a particular supposition or focus object.

This section presents an informal description of the inference mechanisms
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which operate on the graph structure and the way in which the graph struc-
ture is constructed from the lemma library. A precise description of the
inference mechanisms and graph structure is presented in chapters 4 and 5.
Chapter 6 contains a precise description of the Ontic language and chapter 7
contains a precise description of the way the lemma library is compiled into
graph structure.

1.4.1 Inference Mechanisms for Quantifier-Free Logic

Boolean constraint propagation and congruence closure were originally de-
signed as inference techniques for quantifier-free logic. Boolean constraint
propagation adds truth labels in response to Boolean constraints and pre-
vious truth labels. For example, if the node for the implication (=> & ¥)
is labeled true, and the node for ® is labeled true, then Boolean constraint
propagation will ensure that the node for ¥ is labeled true. Similarly, if the
node for (=> ® W¥) is labeled true, and the node ¥ is labeled false, then
Boolean constraint propagation will ensure that the node for ® is labeled
false.

Boolean constraint propagation is also responsible for ensuring a certain
relationship between color labels and the truth labels of nodes representing
equalities. To ensure this relationship the system may merge equivalence
classes in response to the addition of a truth label or, alternatively, add a
truth label in response to the merger of equivalence classes. More specifi-
cally, let p be a node which represents an equation between the expressions
represented by nodes ny and n,. If the equality node p is assigned the label
true then the system ensures that nodes n; and n, have the same color label,
i.e. are in the same equivalence class. On the other hand if the nodes n4
and ny are in the same equivalence class then the system ensures that p is
assigned the label true.”

Congruence closure is responsible for ensuring that the equivalence rela-
tion represented by the color labels respects the substitution of equals for
equals. For example consider terms (POWER-SET s;) and (POWER-SET s3).

If ny and ny are in the same equivalence class and the equality node p has been labeled
false by some other inference process then the system signals a contradiction.
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Congruence closure ensures that if the nodes representing the terms s; and s»
have the same color label (are in the same equivalence class) then the nodes
representing the expressions (POWER-SET s;) and (POWER-SET s;3) also have
the same color label. When two equivalence classes are merged congruence
closure may merge additional equivalence classes in order to ensure that the
equivalence relation respects the substitution of equals for equals.

1.4.2 Generic Individuals, Classification, and Focused
Binding

Recall that a context consists of a lemma library, a set of focus objects and
a set of suppositions about the focus objects. Focused binding is a way of
applying the universally quantified formulas in the lemma library to the focus
objects in a context. This is done using an inheritance mechanism similar
in spirit to Fahlman’s virtual copy mechanism based on marker propagation
[Fahlman 79]. More specifically, each type 7 which has been compiled into
a node in the graph structure is associated with a set of (typically two or
three) generic individuals of that type. Information that is known to hold for
a given type is explicitly stated about the generic individuals of that type. A
focus object which is known to be an instance of type 7 becomes a “virtual
copy” of one of the generic individuals of type 7 and thus inherits information
from that individual.

Each generic individual is a term node in the graph structure. Information
which is known to hold for the type 7 is explicitly stated about each generic
individual of type 7. More specifically, if the system compiles into graph
structure a universal formula of the form

(FORALL ((z 7)) ®(=))

then for each generic individual g of type 7 which is added to the graph struc-
ture, the system constructs a Boolean constraint equivalent to the following
implication.
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(=> (AND (FORALL ((z 7)) ®(z))
(EXISTS-SOME 7))

®(g))

Given the above constraint, if the universally quantified formula is true in a
context, and instances of type 7 are known to exist in that context, then the
body of the universal formula is known to be true for each generic individual
of type 7. In this way everything that is known about the type in general is
explicitly stated about the generic individuals of that type.

Classification assigns types to focus objects. Classification is needed in
order for focus objects to inherit information from generic individuals. The
system classifies a focus object r by collecting a set, types(r), of types known
to hold for r according to the following rules:

1. If the node for the formula (IS r 7) is labeled true then 7 is included
in types(r).

2. If s is a term that is in the same equivalence class as the focus object
r, and if the formula (IS s o) is labeled true, then ¢ is included in

types(r).

3. If 7 is a member of types(r), and the formula (IS-EVERY 7 o) is labeled
true, then o is included in types(r).

4. If 7 is a member of types(r) and o is a type in the same equivalence
class (with the same color as) 7 then ¢ is included in types(r).

Focused binding causes a given focus object to inherit information from
a given generic individual. More specifically, for each focus object r and
each type 7 in the set types(r) the system chooses a generic individual g of
type 7 and constructs the binding g — r. The generic individual g can be
thought of as a typed variable and the binding g — r can be thought of
as a variable binding. In the Ontic system the variable binding g + r is
implemented via the color labels: when the system constructs the binding
g — 7 it assigns g and r the same color label, thereby making ¢ equivalent
to r. When ¢ is made equivalent to r, the congruence closure mechanism is
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used to “unify” or “match” the expressions involving the generic individual
g with the expressions involving the focus object r. In this way the focus
object r becomes a virtual copy of the generic individual g. Since general
knowledge about the type 7 is explicitly stated about the generic individual
g, general knowledge about the type 7 becomes effectively stated about the
focus object r. In this way general facts in the lemma library are effectively
applied to focus objects of the correct type.

The focused binding process is sometimes called semantic modulation
because it involves modulating (changing) the interpretation of a fixed generic
individual. The same generic individual can be bound to different focus
objects in different contexts. In this way the system modulates the semantic
denotation of the generic individual, hence the term semantic modulation.

There are several subtleties involved in focused binding. First, the system
must not bind the same generic individual to two different focus objects
simultaneously. For example, consider a generic number g and two numbers
7 and k which are focus objects such that 7 is an even number and k is an
odd number. If the system bound the generic number g to both j and &
simultaneously then it could prove that g was both even and odd and thus
that there exists a number which is both even and odd.

A second subtlety involves the possibility of circular bindings. Before
generating a binding of the form g +— r the system must be sure that r
does not depend on g. Any term can be given as a focus object. Generic
individuals themselves correspond to terms in the Ontic language (they are
Ontic variables) and thus a focus object may be a generic individual or a term
that contains a generic individual.® For example, if g is a generic individual
ranging over numbers then the term 1 4 g might be a focus object. In this
case one should prevent the binding ¢ — 1 + ¢; no number is equal to the
next number. The dependency test for avoiding circular bindings is similar
to the occurs-check done in unification. Given a focus object r of type 7
the system chooses a generic individual g such that g does not “occur in” r.
Unfortunately the occurs-check performed by the Ontic system is somewhat

8By abuse of notation I will identify a generic individual with the corrosponding Ontic
variable. Technically, a generic individual is a node in the graph structure while an Ontic
variable is a term of the Ontic language.
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complicated. Consider a generic individual y which ranges over numbers
which are greater than z, where z is a generic individual ranging over all
numbers (y is a generic individual of type (GREATER-THAN z)). The binding
z — 1 4+ y is illegal because it forces z to be greater than itself. However, =
is not a free variable of the expression 1 + y. Rather, z is a free variable of
the type of y where y is a free variable of 1 + y. We say that an expression
u depends on a variable z if either z appears free in u or there is some
free variable y of u such that the type of y depends on z. Unfortunately
this notion of dependence still does not provide a sound occurs-check in the
Ontic system: if z and y both range over arbitrary numbers the system
must prevent the two simultaneous bindings ¢ +— 1 4+ y and y — 1 + z.
To prevent such circularities the system must take previous bindings into
account when computing occurs-checks. It turns out that there is a subtle
interaction between previous bindings and the dependencies introduced by
types. More specifically, if the system has already constructed the binding
y — u then the type of y can be ignored in the occurs-check procedure. The
resulting occurs-check procedure runs quickly but the proof that the occurs-
check procedure leads to sound inference is somewhat complex (see sections

5.2 and 5.3).

1.4.3 Automatic Universal Generalization

The fourth inference mechanism used by the Ontic system is automatic uni-
versal generalization. Universal generalization can be applied when the sys-
tem has deduced a fact about an arbitrary individual and no assumptions
have been made about that individual. More specifically, a universal gener-
alization inference can be made if:

e ¢ is a generic individual of type 7.
e The system has labeled the node for a formula ®(g) true.

e No assumptions have been made about the individual g other than the
assumption that it is an instance of type 7.
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e No free variable of ®(¢g) has a type that depends on g. The notion of
dependence used here is the same as that defined above: T depends on
x just in case x appears free in 7 or some free variable of 7 has a type
which depends on z.

When the above conditions are met the system can infer the universal closure

(FORALL ((z 7)) ®(z))

There are several things to note about automatic universal generalization.
First, this inference mechanism does not construct new formulas or new graph
structure; automatic universal generalization is only applied when the graph
already contains nodes for the formulas ®(g) and the universal closure

(FORALL ((z 7)) ®(z))

Second, types play a central role in the automatic universal generalization
mechanism. When the system proves the formula ®(g) it is allowed to use the
fact that g is an instance of the type 7, and the resulting universal statement
applies to all instances of 7. Third, without the last restriction universal
generalization is unsound. For example, consider a generic individual y that
ranges over numbers greater than the generic number z. Without making
any assumptions about z and y other than that they are both instances of
their respective types, the system can deduce that z is less than y. It does not
follow, however, that all numbers are less than y; there is no largest number.
The fact that z is less than y does not imply that all numbers are less then
y because the & “occurs in” y; z is a free variable in the type of y. The same
proof that shows that the Ontic occurs-check procedure is sound for focused
binding can be used to show that the Ontic occurs-check procedure leads to
sound universal generalization.

The above notion of universal generalization can be made more powerful
by relaxing the restriction that no assumptions have been made about the
arbitrary individual being generalized over. More specifically one can perform
universal generalization under the following conditions:

e g is a generic individual of type 7.
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The system has labeled the node for a formula ®(g) true.

The system has bound ¢ via the binding g — h.

e h is a generic individual of type o where o has the same color label as
7 in the current context.

e No assumptions have been made about A.

e h does not “occur in” any free variable of ®(g) other than g.

When the above conditions are met the system can infer the universal closure

(FORALL ((z 7)) ®(z))

Again, note that this inference mechanism does not construct new for-
mulas or add new graph structure. In order for this inference mechanism to
be applied, all of the formulas involved must already be compiled into nodes
in the graph structure.

To see the importance of the more general automatic universal general-
ization mechanism, consider a subset s of a partially ordered set p and the
set u of all lower bounds of s as a subset of p. Now consider a member z of
s. By definition u is the set of lower bounds of s so x is an upper bound of
u. It turns out that in the Ontic system proving this last statement requires
universal generalization. More specifically the Ontic system must focus on
an arbitrary member y of v and note that z is greater than or equal to y.
Since y is an arbitrary member of u, z is greater than or equal to all members
of u. In this situation the system will construct the following bindings:

s u
Zl—')y

Here s’ is a generic individual ranging over arbitrary subsets of p and z is a
generic individual ranging over members of s’. Now y is a generic individual
ranging over members of u and z is a generic individual ranging over members
of s’, so z and y are different generic individuals whose types happen to be
equal in the current context. Furthermore z is bound to y. In this situation
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the system generalizes over the variable z rather than the variable y. The
system must generalize over z rather than y because the definition of upper
bound is stated about the generic subset s’ rather than the particular subset
u and thus the quantified formula in question quantifies over members of s’
rather than members of w.

All of the inference mechanisms used in the Ontic system run concurrently
and interact with each other. Inferences can lead to more knowledge about
the types of focus objects; this can lead to more bindings, which can lead
in turn to more inference. The time required to finish the overall inference
process is bounded by the size of the graph structure. This is because the
inference processes can only add as many truth labels as there are formula
nodes and can only merge as many equivalence classes as there are nodes
in total. The factors that contribute to the size of the graph structure are
discussed below.

1.4.4 The Size of the Graph Structure

When a new focus object r of type 7 is introduced, it is possible that all
generic individuals of type 7 have either already been bound to other objects
or occur in the focus object r and thus can not be bound to r. In this case
the system creates a new generic individual of type 7 and copies all of the in-
formation known about type 7 as explicit statements about that new generic
individual. Once the generic individual has been constructed, however, it
is saved and can be used in other contexts. For most arguments there are
already enough generic individuals in the graph structure to accommodate
the focus objects and no new graph structure is created. However, if there
are not enough generic individuals to accommodate the focus objects, then
generic individuals are created on demand as focus objects are introduced.
As generic individuals are created the underlying graph structure expands.

The size of the graph structure created by the Ontic compiler is deter-
mined by the library of mathematical facts and by the number of generic
individuals that have been created for each type. Fortunately, for any given
bound on the level of quantifier nesting, the size of the graph structure is
linear in the size of the lemma library; the amount of graph structure is the
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sum over all lemmas of the amount of structure created by each lemma. This
fact allows the Ontic system to be used with large libraries of mathematical
facts. However, the cost of an individual lemma can be quite high. Consider
a lemma of the following form:

(FORALL ((z 1) (y =) (z 73)) ®(=,y,2))

The body of this lemma will be copied for each triple ¢1, g2, g3 where
91, g2 and g3 are generic individuals of type 7, 72 and 73 respectively. In
general every quantified formula which is compiled into graph structure gets
instantiated with every generic individual of the appropriate type. Let |r],
|72] and |73| be the number of generic individuals for 71, 75, and 75 respectively.
The number of copies of the body of the above lemma is:

7] - |72| - |73

Generic individuals are created on demand as new focus objects are intro-
duced. If no more than n focus objects have been introduced in any one
context then there will be at most n generic individuals of each type. If the
maximum number of quantifiers used in any lemma is d then there can be no
more than n? copies of the body of each lemma. Lemmas rarely involve more
than three quantifiers and most sessions with the Ontic interpreter involve at
most five simultaneous focus objects. Thus a typical lemma in a typical ses-
sion generates no more than 5 or 125 instantiations. In practice this number
is smaller because most lemmas quantify over highly specialized types and
there are typically only a small number of generic individuals of specialized
types. Again note that the size of the graph structure is linear in the size of
the lemma library; the total amount of graph structure is just the sum over
all lemmas of the amount of structure generated by each lemma. However,
the size of graph structure is very sensitive to the maximum number of focus
objects introduced in a given context. A good rule of thumb seems to be
that the size of the graph structure is proportional to n®|X| where n is the
maximum number of focus objects introduced in any one context and |X| is
the size of the lemma library.




Chapter 2

Comparison with Other Work

The Ontic system represents a synthesis of ideas from artificial intelligence
and automated theorem proving. Constraint propagation is a forward chain-
ing inference technique that terminates quickly because it monotonically fills
a finite set of “slots”; the Ontic system monotonically generates truth and
color labels for nodes in a finite graph structure. Congruence closure is a pow-
erful theorem proving technique for reasoning about equality. Congruence
closure is usually viewed as an inference procedure reasoning about equalities
involving ground (variable-free) expressions. In the Ontic system, however,
congruence closure is used as an integral part of general first order theorem
proving. Focused binding, also known as semantic modulation, is closely re-
lated to inheritance mechanisms which have been developed for knowledge
representation languages and object oriented computer programming lan-
guages. Focused binding integrates inheritance with other theorem proving
mechanisms. Congruence closure is used to implement a strong virtual copy
mechanism that allows focus objects to inherit from generic individuals. Au-
tomatic universal generalization is perhaps the simplest and yet the most
original feature of the Ontic system. Ontic brings all these ideas together in
a single integrated inference process.

The first section of this chapter relates each of the four basic inference
mechanisms used in Ontic with previous work in knowledge representation
and automated theorem proving. The second section of the chapter relates
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Ontic’s focused binding mechanism to unification. Focused binding and uni-
fication provide alternative ways of selecting and applying facts from a fact
library. The third section of the chapter lists various theorem proving mech-
anisms other than those used in the Ontic system and attempts to show how
they are related to Ontic. The final section of the chapter lists some of the
general issues to be considered in constructing a proof verification system and
discusses how Oxx set term Ontic and various other systems have addressed
those issues.

2.1 Inference Mechanisms Similar to Ontic’s

The following four sections discuss each of Ontic’s four inference mechanisms
in turn. The first three inference mechanisms are related to well known
inference techniques. Ontic, however, brings these mechanisms together in
an integrated, object oriented theorem proving process.

2.1.1 Constraint Propagation

There are many mechanisms in the artificial intelligence literature which
could be described as constraint propagators. By “constraint propagation”
I mean an inference process whose running time, or number of processing
steps, is directly bounded by the size of a finite constraint network. On-
tic is a constraint propagation system in two ways. First of all, one of the
fundamental inference mechanisms is Boolean constraint propagation which
is a special case of the arc-consistency constraint propagation technique for
general constraint satisfaction problems [Mackworth 77]. Second, all of On-
tic’s inference mechanisms operate by labeling a graph structure. The graph
structure is analogous to a constraint network in that the total number of
labeling operations is directly bounded by the size of that graph structure.

Many artificial intelligence researchers have used constraint propagation.
Waltz used constraint propagation to filter the possible interpretations of
lines in a line drawings of polygonal physical objects [Waltz 75]. A line in a
drawing of a scene can be interpreted as a convex edge on single object, a
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concave edge on a single object or an edge between two objects. A particular
interpretation of an edge is called a “label” for that edge. Vertices between
edges provide constraints on the possible interpretations of edges. In Waltz
line labeling a forward chaining inference process systematically eliminates
possible labelings of individual edges. The running time of the process is
directly bounded by the number of edges and the number of labels that can
be eliminated.

The Waltz line labeling procedure can be used in the more general setting
of an arbitrary constraint satisfaction problem [Mackworth 77]. A constraint
satisfaction problem consists of a set of variables each of which can be as-
signed one of a finite set of possible values and a set of constraints where each
constraint restricts the simultaneous assignments for a given subset of the
variables. The arc-consistency procedure, which is a straightforward general-
ization of Waltz labeling, systematically eliminates possible interpretations of
variables based on local constraints. The running time of the arc-consistency
procedure is directly bounded by the number of variables and the number
of possible assignments for each variable. Boolean constraint propagation
is a special case of the arc-consistency procedure where the variables are
Boolean, i.e. they can be assigned the labels true or false, and the constraints
are disjunctive clauses involving the Boolean variables. Boolean constraint
propagation is described in more detail in chapter 4.

Sussman and Steele have proposed a language for expressing constraints
on real valued variables and constraint propagation techniques for dealing
with such constraints [Sussman & Steele 80]. The number of propagation
operations performed by Sussman and Steele’s system was directly bounded
by the number of variables involved.

Nevins constructed a forward chaining geometry theorem prover which
restricted the forward chaining inference process to an a priori fixed set of
formulas [Nevins 74]. Nevins’ program used a diagram to focus the system’s
attention on certain lines. If a geometry problem has n points then there
are (g) possible line segments between these points. A diagram, however,

specifies a subset of the (”)

») lines, those actually drawn in the diagram.
By limiting forward chaining to statements about these focused lines, the

forward chaining process does not generate large numbers of irrelevant facts.




48 CHAPTER 2. COMPARISON WITH OTHER WORK

With Nevins’ focused forward chaining mechanism there is no need for the
diagrammatic filter used by Gelernter [Gelernter 59].

Ontic’s inference processes operate on a finite graph structure; the number
of labeling operations is directly bounded by the size of that graph structure.
The Ontic system can use the same graph structure in different contexts to
reason about different focus objects. When a generic individual g is bound to
a focus object r, a formula involving g can be viewed as a formula involving r;
in the presence of bindings the formula nodes in the graph structure represent
formulas about focus objects. Different bindings cause the nodes in the graph
structure to represent statements about different objects.

2.1.2 Congruence Closure

Congruence closure is the process of “closing” an equivalence relation on ex-
pressions under the inference rule of substitution of equals for equals. Con-
gruence closure was first discussed by Kozen for reasoning about finitely
presented algebras [Kozen 77]. Congruence closure has also been used by
Nelson and Oppen in constructing fast decision procedures for a variety of
problems that arise in automatic program verification [Nelson and Oppen 80].
The congruence closure procedure used in the Ontic system, and discussed in
some detail in chapter 4, is based on the procedure given by Downey, Sethi
and Tarjan [Downey, Sethi & Tarjan 80].

Ontic uses congruence closure both as a mechanism for reasoning about
equality and as a replacement for unification. The relationship between On-

tic’s use of congruence closure and traditional unification is discussed in sec-
tion 2.2.

2.1.3 Focused Binding as Inheritance

Focused binding can be viewed as an inheritance mechanism: information
about a type is inherited by instances of that type. Type hierarchies and
inheritance also play an important role in object oriented programming lan-
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guages such as Smalltalk [Ingalls 76]. In object-oriented programming, data
types are organized into a hierarchy where one data type can be a subtype of
another. Data objects are usually records with data fields. A given data ob-
ject inherits both data fields and functional behavior from all the supertypes
of its immediate type. A fairly rigorous, though not very general, treatment
of some basic ideas in object-oriented programming is given in [Cardelli 84].

Type hierarchies and inheritance also play a central role in many knowl-
edge representation systems and object oriented programming languages.
Frame-based knowledge representation languages typically allow the user to
define “concepts” which he or she organizes into an “is-a” hierarchy (e.g.
[Brachman & Schmolze 85]). A concept represents a class of structured ob-
jects; the concept is associated with a set of “slots”; an instance of that
concept is an object with specific “fillers” or “values” for the slots of the
concept. For example the concept room might have slots ceiling, floor, walls,
and furniture. Any particular room will have a particular ceiling, a particular
floor, and a particular set of pieces of furniture. Furthermore, a concept can
place certain constraints on the slot fillers. For example the concept room
might specify that the furniture slot is always filled with a set of physical
objects. The user could introduce the concept auditorium as a specialization
of the concept room and the concept auditorium would then automatically
“inherit” the slots and constraints of the concept room.

Ontic’s focused binding mechanism is very similar to Fahlman’s virtual
copy mechanism based on marker propagation [Fahlman 76]. Fahlman pro-
posed a semantic network formalism in which objects inherit information
from classes by passing markers along links in the network. The marker
passing is done in such a way that the object being considered becomes a
“virtual copy” of generic objects which contain information about classes.
In the Ontic system color labels are used instead of Fahlman’s markers. A
focus object is made into a virtual copy of a generic individual by assigning
the generic individual the same color label as the focus object; congruence
closure ensures that if two nodes have the same color label then they have
identical properties.

In the Ontic system inheritance is just one aspect of an integrated theo-
rem proving mechanism. Generic individuals are viewed as logical variables
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that range over a given type. Inheritance occurs when a generic individual
¢ is bound to a focus object r via a binding g + r. Fahlman’s inheritance
mechanism, on the other hand, was not viewed as a formal inference mech-
anism and Fahlman did not propose integrating his inheritance mechanism
with other formal inference techniques such as Boolean constraint propaga-
tion, congruence closure, or automatic universal generalization.

2.1.4 Automatic Universal Generalization

Automatic universal generalization arises from a very simple idea: if a fact is
proven about a generic individual g of type 7 and no assumptions have been
made about g other than that ¢ is an instance of 7, then the fact holds for all
instances of 7. In spite of the simplicity of the underlying idea, Ontic’s uni-
versal generalization technique seems to be unlike any previous automatic
inference mechanism. For example, a comparison of Ontic and resolution
theorem provers shows that when Ontic performs universal generalization it
is treating a generic individual as a Skolem constant introduced by a univer-
sally quantified goal formula. But, unlike resolution, the Ontic system does
not make any distinction between variables and Skolem constants. Generic
individuals in Ontic are used in three different ways. If instances of a type
7 are known to exist then each generic individual of type 7 is asserted to be
an instance of 7. In this way the generic individuals can be used as Skolem
constants introduced by the premise that instances of 7 exist. But generic
individuals are also used as variables that can be bound to specific terms in
much the same way that resolution variables are bound during unification.
Generic individuals are used in yet a third way by the universal generaliza-
tion mechanism; universal generalization treats generic individuals as Skolem
constants introduced by universally quantified goal statements.

The real novelty of the Ontic system lies in the way that the above four
inference mechanisms are brought together. Ontic integrates constraint prop-
agation, congruence closure, inheritance, and universal generalization in a
single object-oriented labeling process on a fixed graph structure.




2.2. FOCUSED BINDING VS. UNIFICATION 51

2.2 Focused Binding vs. Unification

One of the most striking features of the Ontic system, as compared to other
theorem proving systems, is that Ontic does not use unification. Unification
is often used to access information in a data base. A Prolog interpreter,
for example, takes a goal formula and finds a production in the data base
whose left hand side unifies with the given goal. A rewrite system takes an
expression to be simplified and finds a rewrite rule in the data base whose
left hand side unifies with the expression to be simplified. Under the set-
of-support heuristic a resolution theorem prover finds a clause in the data
base such that a literal of that clause unifies with a subgoal in the current
problem. In all these cases the system is finding an expression in the data
base which unifies with an expression in the current problem.

Ontic accesses information in the lemma library via the focused binding
mechanism. Both unification and focused binding generate variable bindings
which are useful to produce specialized instances of the general formulas
in a data base. However, unification and focused binding generate variable
bindings in very different ways. Unification starts with the expressions to be
matched and generates variable bindings which lead to the match. Focused
binding, on the other hand, starts with focus objects then generates variable
bindings (bindings of generic individuals) and relies on congruence closure to
generate “matches” between expressions involving variables and expressions
involving the focus objects. Unification is a local process: unification is
used in the application of a single rewrite rule or in a single resolution step.
Focused binding, on the other hand, is a global process involving an arbitrary
number of facts from the lemma library. Focused binding is integrated into
the theorem-proving process. Automated inference and knowledge from the
lemma library is used both in determining the types which apply to a given
object and in determining equivalences between expressions after bindings
have been performed.

Considerable research has been directed toward incorporating various
kinds of knowledge (axiomatic theories) into unification. Equational axioms,
such as the commutativity and associativity properties of addition, can be
incorporated into the unification process so that, for example, a + x matches
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b+ a with the binding z +— b. Taxonomic information, information involving
the classification of objects into types, can also be incorporated into the uni-
fication process. Because Ontic’s focused binding mechanism is integrated
with the theorem proving process, focused binding automatically incorpo-
rates both equational and taxonomic information into the matching process;
any lemma in the lemma library may be used in Ontic’s matching process.
However, unlike most unification mechanisms, Ontic’s matching process is
not logically complete: it is possible that two expressions are provably equiv-
alent and yet the Ontic system fails to match them. This is consistent with
the overall design philosophy of the Ontic system; to ensure that the system
always terminates quickly, completeness has been abandoned.

2.2.1 TUnification Relative to Equational Theories

There has been a considerable amount of research dedicated to incorporating
equational theories into unification. For example consider addition as an
associative and commutative operator. Now consider the problem of unifying
z+ (a+b) and a + (¢ +b). The binding z + ¢ unifies these two terms in the
sense that the equation

c+(a+b)=a+(c+bd)

follows from the associative and commutative properties of +.

More generally, let T’ be a set of universally quantified equations between
first order terms. For example I' might consist of the associative and commu-
tative laws for addition. A general purpose theorem prover, such as a resolu-
tion system, could handle the equations in I' simply by adding the equations
in I to the data base of general facts. In practice, however, it seems more
efficient to incorporate certain equational facts into the unification process.
Once these facts have been incorporated into the unification process they can
be removed from the general data base without loss of logical completeness.

A given set of equational axioms I' has a corresponding unification prob-
lem. For any substitution ¢ and any expression u we define o(u) to be the
result of simultaneously replacing all free variables in u with their image un-
der 0. A unification of two expressions s and ¢ relative to the axioms in I' is
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a substitution ¢ which yields a match between s and ¢ relative to T', i.e. such
that the equational formulas in I' imply that o(s) equals o(¢). If T states
that + is associative and commutative then the substitution {z ~ ¢} unifies
¢+ (a+b) and a+ (c+ b) relative to I'. The unification problem for I' is the
problem of computing, for any given expressions s and ¢, a representation of
all unifications of s and ¢ relative to T'.

If T' consists of a single commutative operation then it is easy to determine
if there exists a unification of any two given terms relative to I'. On the other
hand if I states that a binary operator - is associative, and - distributes over a
binary operator +, then there is no procedure which can decide the existence
of a unification of two arbitrary terms relative to I'. These results and others
are discussed in a review article by Siekmann [Siekmann 84].

Unification relative to equational theories can be compared with Ontic’s
focused binding mechanism. Ontic first binds variables (generic individuals)
of the appropriate type to focus objects and then uses congruence closure to
“match” expressions involving the variables with expressions involving the
focus objects. Ontic’s matching process (congruence closure) automatically
incorporates equations from the lemma library. For example suppose that
Ontic’s lemma library contains the associative and commutative laws for ad-
dition on the natural numbers. More specifically, suppose the lemma library
includes the following three lemmas:

(FORALL ((X NATURAL-NUMBER)
(Y NATURAL-NUMBER))

(= (SUM-OF X Y)
(SUM-OF Y X)))

(FORALL ((X NATURAL-NUMBER)
(Y NATURAL-NUMBER)
(Z NATURAL-NUMBER))

(= (SUM-OF X (SUM-OF Y Z))
(SUM-O0F (SUM-0F X Y) 2)))
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(FORALL ((X NATURAL-NUMBER)
(Y NATURAL-NUMBER)
(Z NATURAL-NUMBER))

(= (SUM-OF X (SUM-OF Y 2))
(SUM-O0F (SUM-OF Y Z) X)))

The first and second lemma above express the fact that addition is com-
mutative and associative respectively. The third lemma follows from the
other two. If the third lemma were not explicitly given, however, then when
focusing on three generic numbers g;, g2 and g3 the following equation would
not be obvious to the Ontic system.

g1+ (92+93) = (924 93) + 0

To prove this equation in the absence of the third lemma, or to prove the
third lemma from the other two, the system must focus on the sum ¢, + g3
so that the commutative law is applied to g1 + (g2 + g3). The associative and
commutative laws allow for twelve different ways of writing down the sum of
g1, g2 and gs: there are six different orders in which the numbers can appear
and two different ways of parenthesizing each order. In the presence of the
three lemmas given above all twelve ways of writing the sum are equivalent;
the twelve nodes in the graph structure that represent the twelve different
expressions for this sum are all in the same equivalence class; they have the
same color label. Now suppose the user focuses on three particular numbers
a, b and c¢. The Ontic system will bind a generic number to each of these
three particular numbers; assume that the system generates the bindings

gll——)a

g2 b
gs—c¢

Given that all twelve expressions for the sum of g;, g, and gs are in the
same equivalence class, congruence closure together with the above bind-
ings ensures that the term a+(b+c) is equivalent to the term b+(c+a). By
using congruence closure as a matching mechanism, and by precompiling
equational theories as equations involving generic individuals, the Ontic sys-
tem automatically performs theory-relative matching. Unfortunately Ontic’s




2.2. FOCUSED BINDING VS. UNIFICATION 55

matching process is not complete; the incompleteness is demonstrated by the
need for the third lemma given above. On the other hand, as the example
shows, one can always improve the power of the matching process by adding
derived equational lemmas to the lemma library.

Ontic’s focused binding mechanism automatically incorporates any equa-
tional lemma whatsoever into the congruence closure process; in the Ontic
system one does not have to design a new theory-relative matching process
for each new theory as one must do for theory relative unification. Ontic’s
mechanism has the disadvantage however that there is no guarantee of com-
pleteness — congruence closure may fail to equate semantically equal terms.

2.2.2 Unlification Relative to Taxonomic Theories

Several researchers have investigated unification relative to theories which
are not equational. Non-equational theories incorporated into the unification
process are sometimes called taronomic theories because they usually encode
a classification of objects into types. The separation of “taxonomic” and
“assertional” information has been discussed in the knowledge representation
literature [Brachman, Fikes & Levesque 82]. For example consider the axiom

Vo whale(z) = mammal(z)

This axiom expresses an inclusion relation between the “type” whale and
the type mammal. Inclusion relations of this kind can be incorporated into
the unification process and need not be stated explicitly in the data base of
a general purpose theorem prover.

Walther has given a unification algorithm which handles any taxonomic
theory expressible as a partial order on class symbols [Walther 84a]. He
showed that for any such taxonomic theory I' and any two typed terms s
and ¢ the set of all unifications of s and ¢ can be expressed with a finite set of
most general unifiers (i.e. the unification problem is finitary). Furthermore
he showed that if the type hierarchy is a tree then there is a single most
general unifier.

Ait-Kaci and Nasr have given a unification algorithm for a more expressive
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class of taxonomic theories and propose using this algorithm in an implemen-
tation of the programming language PROLOG [Ait-Kaci & Nasr 86]. Stickel
has investigated the use of taxonomic theories in even greater generality al-
though Stickel does not address unification as a mechanism for generating
variable bindings (only the ground case is considered as lifting to the general
case is “straightforward”) [Stickel 85].

Ontic’s mechanism for inheritance via semantic modulation is based on
taxonomic information. More specifically, the Ontic system classifies each
focus object by associating each focus object with a set of types known to be
true of that focus object. This classification process takes the type hierarchy
into account. For example if r is a focus object, ¢ is a type known to hold of
r, and the formula (IS-EVERY o 7) is labeled true, then the classification
process will collect 7 as a type known to hold of r.

Unlike unification, Ontic’s focused binding mechanism integrates the use
of type information with other theorem proving mechanisms. Ontic may
prove a statement about types and use that statement immediately in clas-
sifying the current focus objects. Ontic’s focused binding mechanism auto-
matically incorporates arbitrary lemmas about the types of objects. There is
no guarantee, however, that Ontic’s focused binding mechanism will derive
all the logical consequences of taxonomic information.

2.2.3 Higher-Order Unification

Unification has been generalized to allow for higher-order variables; higher-
order unification can be used to bind variables that range over functions and
predicates as well as variables ranging over first order terms. For example,
consider the induction schema for Peano arithmetic.

P(0) A ¥n(P(n)= P(n+1)) = ¥nP(n) (2.1)

In this schema P is a variable which ranges over predicates. This schema
can be instantiated with any predicate P and higher-order unification can
be used to find bindings for P. For example consider a function f which is
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known to be monotone:

Vim f(m+1) 2 f(m) (2.2)

and we wish to prove

Vm  f(m) 2 f(0) (2.3)

To prove this last statement a backward chaining theorem prover might unify
P(n) from the conclusion of 2.1 with the goal f(m) > f(0) from 2.3. This
unification leads to the following bindings:

n—m

P — (A(n) f(n) > £(0))

A backward chaining inference system could then establish the antecedents
of 2.1 under the above binding for the predicate P.

The first complete unification procedure for higher-order logic was con-
structed by Gerard Huet [Huet 75]. Higher-order unification has been used
effectively in at least two mathematical verification systems, Ketonen’s EKL
system [Ketonen 84] and Andrews’ TPS [Miller et al. 82]. In both sys-
tems the higher-order unification procedure was found to terminate quickly
in practice.

The Ontic system is higher-order in the same sense that axiomatic set
theory is higher-order; functions and predicates can be “reified” as sets and
thus first order variables can be made to range over functions and predicates.
In the Ontic system the user can focus on a reified predicate Q and thus cause
the system to bind variables to the predicate Q. This kind of “higher-order”
binding is used many times in the mathematical development given in the
appendix.

While the Ontic system does allow for higher-order reasoning, the Ontic
system does not adequately handle mathematical induction. Verifying in-
duction proofs in the Ontic system results in a large expansion factor; the
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machine readable proofs are significantly longer than the natural language
counterpart.

Higher-order unification provides one technique for reducing the expan-
sion factor for induction proofs. The EKL system relies on higher order
unification both in establishing the well formedness of recursive definitions
and in performing induction arguments to prove properties of recursively
defined functions. But there seem to be other, perhaps even better, tech-
niques for reasoning about recursive definitions. The Boyer-Moore theorem
prover is extremely effective in performing induction arguments but does not
use higher order unification [Boyer & Moore 79]. Ontic’s weakness with re-
gard to induction arguments and possible ways of making Ontic’s induction
mechanisms more powerful are discussed in section 3.2.2.

2.3 Inference Mechanisms Unlike Ontic’s

This section surveys some of the general purpose inference mechanisms that
have been introduced in the past thirty years and compares these mechanisms
with Ontic’s object-oriented inference mechanisms. Only general purpose in-
ference mechanisms are discussed here; domain specific mechanisms, such as
Chou’s application of Wu’s method for geometry theorem, will not be dis-
cussed [Wu 86] [Chou 84]. I will also not discuss decision procedures for

particular theories or mechanisms for combining decision procedures [Nel-
son & Oppen 79] [Shostak 82].

This section briefly discusses some particular general purpose inference
systems. The automath proof verification systems used normalization of the
typed lambda calculus as an inference mechanism. The Davis-Putnam proce-
dure was based on a direct enumeration of the Herbrand universe for a set of
first order sentences. The resolution procedure and its variants improved on
the Davis-Putnam procedure by introducing unification, thereby allowing a
large number of ground inferences to be abbreviated with a single resolution
step. The Boyer-Moore theorem prover finds induction proofs for verifying
equations concerning recursive programs in pure Lisp. The Boyer-Moore
theorem prover is based on user-defined (and machine verified) rewrite rules
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together with heuristics for generalizing induction hypotheses. The Knuth-
Bendix procedure provides a way of converting a set of unordered equations
into a set of rewrite rules for canonicalizing expressions. The Knuth-Bendix
procedure can also be used for proving certain equations about recursive
programs via an “inductionless” induction technique. Finally, a fair num-
ber of systems have been constructed which use automated theorem proving
support to verify natural deduction proofs.

2.3.1 Automath

The typed lambda calculus is closely related to intuitionistic (constructive)
proof theory. The analogy between typed lambda calculus and intuitionistic
proof theory is based on viewing types as formulas and viewing a term of type
7 as a proof of 7 (where 7 is viewed as a formula). If the formulas encoded
by types include quantifiers, i.e., if the type system has dependent types,
then it can be difficult to determine if a term u has type 7. More specifically,
determining if u has type 7 may involve normalizing (i.e. evaluating) the term
u. This normalization process can be viewed as inference where g reductions
correspond to either the inference rule of modus-ponens or the inference rule
of universal instantiation.

The relationship between types and formulas of intuitionistic logic un-
derlies one of the earlier mathematical verification systems, the Automath
system [deBruijn 68], [deBruijn 73]. The Automath system has been used
to verify Landau’s Grundlagen, a book on the foundations of the integers,
rationals, reals, and complex numbers [Jutting 79]. The book includes a very
rigorous (almost formal) definition of each number system. The rationals are
defined as equivalences classes of pairs of integers, the reals are defined as
Dedekind cuts in the rationals, the complex numbers are defined as pairs of
reals. The book also includes proofs that the basic algebraic operations on
these numbers are well defined (e.g. addition of rationals, multiplication of
reals). No significant theorems are proven other than the well-formedness of
these basic definitions.

Even though Landau’s grundlagen is an extremely rigorous (almost for-
mal) book, the version of the book readable by the Automath system is about
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ten times as long as the Grundlagen itself. This indicates that the Automath
verifier does not use powerful automatic inference mechanisms; there is not
yet good evidence that normalization of the typed lambda calculus is a useful
automated inference mechanism.

2.3.2 The Davis-Putnam Procedure

The Davis-Putnam procedure [Davis & Putnam 60] is based directly on Her-
brand’s theorem for the first order predicate calculus. Herbrand’s theorem
implies that if ¥ is an unsatisfiable set of first order formulas in Skolem nor- -
mal form then there exists a finite set I' of ground instantiations of ¥ such
that T is inconsistent. It is possible to write a computer program that decides
whether a set of ground formulas is consistent. To determine if the original
set ¥ of first order formulas is satisfiable, one can simply enumerate all finite
ground instantiations I' of ¥ and test each one for consistency. If ¥ is incon-
sistent then by Herbrand’s theorem one will find a ground instantiation I of
¥ that is inconsistent.

The Davis-Putnam procedure is not used today; resolution theorem prov-
ing is more effective [Robinson 65]. The Davis-Putnam procedure spends
most of its time deciding the satisfiability of quantifier-free ground formulas.
Resolution theorem proving is more effective because a large (infinite) num-
ber of of ground inferences are summarized in a single resolution step. More
specifically, the formula generated by a resolution step can be viewed as a
universally quantified lemma which summarizes a large number of ground
statements [Robinson 65]. Because other proof mechanisms (resolution) are
more effective than the Davis-Putnam procedure, the Davis-Putnam proce-
dure will not be discussed further here.

2.3.3 Resolution and its Variants

Most research in automated theorem proving in the past twenty years has
been based in some way on resolution. The basic resolution rule was intro-
duced by Robinson in 1965 and shown to be refutation complete for first order
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predicate calculus [Robinson 65]. The resolution principle represented a clear
advance over the Davis-Putnam procedure because a single resolution step
abbreviates a large number of the ground inferences. However the number
of possible n-step deductions grows exponentially in n and it soon became
clear that resolution theorem provers could not, in practice, find significant
theorems by searching this large space of possible deductions.

The late sixties saw the development of a large number of restrictions on
the resolution principle. Each such restriction rules out certain resolution
steps and thus reduces the number of possible n-step deductions. In spite of
the reduction in the number of possible inferences, various restricted forms
of resolution are logically complete. A description of various restrictions and
modifications of the resolution rule can be found in [Loveland 78]. Connection

graph resolution, a resolution restriction invented by Kowalski, is described
in [Bibel 81].

One perceived difficulty with resolution theorem proving, in addition to
the large search spaces encountered, is the use of normal forms. Resolution
requires that first order formulas be put in normal from in three stages. First,
all quantifiers are moved to the beginning of the formula resulting in a for-
mula in prenez normal form. Second, existential quantifiers are replaced by
skolem functions resulting in an equisatisfiable formula in prenex normal form
with only universal quantifiers. Finally, the matrix of the formula (the part
after the quantifiers) must be placed in conjunctive normal form resulting
in a set of universally quantified clauses where each clause is a disjunction
of literals. Several researchers have developed theorem proving techniques
which are similar to resolution but which do not require the last normaliza-
tion step: the matrix of the formula need not be in conjunctive normal form.
Such “non-clausal” provers are described in [Andrews 81], [Murray 82], and
[Stickel 82]. These non-clausal procedures are similar to resolution in that
they use unification to find matches between formulas and matched formulas
are combined to generate new formulas. The non-clausal procedures are also
similar to resolution in that existential quantification is eliminated in favor
of Skolem constants.

Research in resolution theorem proving and related techniques has focused
on establishing logical completeness. However, logical completeness may not
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be important in practice. The Boyer-Moore theorem prover is clearly not
complete, it often terminates in failure, and yet the Boyer-Moore prover has
been been used effectively in more applications than has any other theorem
proving system.

As a side effect of focusing on completeness, the resolution theorem prov-
ing community has failed to make any distinction between “obvious” and
“non-obvious” inferences. The failure to distinguish obvious and non-obvious
inferences makes it difficult to use resolution theorem provers in interactive
proof verifiers. Any interactive proof verifier based on resolution must have
some way of forcing the resolution process to terminate so that a proposed
proof step can be rejected in a finite amount of time. For example Bledsoe
built an interactive verifier which simply imposed a time limit on the reso-
lution process [Bledsoe 71]. A more principled restriction of the resolution
process has been introduced by Davis [Davis 81] and used in the Mizar sys-
tem [Trybulec & Blair 85]. However the restriction proposed by Davis forces
the decision procedure for obvious inferences to determine the satisfiability
of an arbitrary set of ground clauses. Determining the satisfiability of a set
of ground clauses is known to be NP-complete. Furthermore, as far as I
know, there has never been a detailed comparison of natural arguments and
theorems provable under Davis’ suggestion.

2.3.4 Rewriting Mechanisms

Automated inference systems often have a hard time dealing with equality
and equational axioms. Directed rewrite systems provide one approach to
reasoning about equality. The process of rewriting expressions is also known
as simplification, symbolic evaluation or demodulation. Rewrite systems iter-
atively simplify a given expression until it is in canonical form. A statement
can be proved by rewriting it to the constant true.

Some of the most effective theorem proving systems are based on rewrite
mechanisms. Most notably, the Boyer-Moore theorem prover uses a sim-
plification mechanism guided by user defined (but machine verified) rewrite
rules [Boyer & Moore 79]. The Boyer-Moore theorem prover has been used to
verify a wide variety of theorems from number theory, recursive function the-




2.3. INFERENCE MECHANISMS UNLIKE ONTIC’S 63

ory, formal logic and software and hardware verification [Boyer & Moore 84],
[Shankar 85], [Russinoff 85], [Boyer & Moore 86]. The real power of the Boyer-
Moore prover comes from its ability to perform induction proofs. However
the simplification (rewrite) mechanism is central to the system.

The Boyer-Moore prover is primarily used to prove equations between
terms defined in pure Lisp. Once an equation has been proven it is treated
as a rewrite rule to be used in future proofs. The direction of each newly
proven rewrite rule is provided by the human user, e.g. when the system
proves an equation s = ¢ the human user specifies whether this equation
should be treated as s — ¢, which rewrites s to ¢, or as ¢ — s, which rewrites
t to s.

Ketonen’s EKL system is another example of a verification system based
on user defined rewrite rules [Ketonen 84]. As in the Boyer-Moore prover,
the direction of EKL rewrite rules are specified by the human user. Unlike
the Boyer-Moore prover however, the EKL system uses Huet’s higher order
unification procedure to perform induction proofs. The EKL system lacks
the facility for generalizing induction hypotheses used in the Boyer-Moore
prover.

Knuth and Bendix developed a powerful method for constructing decision
procedures for certain equational theories [Knuth & Bendix 69]. Unlike the
Boyer-Moore prover and the EKL system, the Knuth-Bendix procedure can
be used to automatically convert undirected equations to directed rewrite
rules. More specifically, equations can be ordered via a general (but user
specified) order > on terms. If s > ¢ then the equation s = ¢t becomes the
rule s — ¢; if t = s then the equation s = ¢ becomes ¢ — s. The partial order
> used in the Knuth-Bendix procedure must be well founded, respect term
structure, and obey substitutions (see [Knuth & Bendix 69] for details).

After ordering equations into rewrite rules, the Knuth-Bendix procedure
can also be used to automatically construct additional “derived” rewrite
rules. More specifically, given a set of unordered equations, and an acceptable
partial order > on terms, the Knuth-Bendix procedure both converts equa-
tions to rewrite rules and constructs additional rewrite rules whose validity
follows from the original equations. The set of rewrite rules that results from
applying the Knuth-Bendix procedure to a set of ¥ is often much larger than
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Y. If the Knuth-Bendix procedure terminates with success it generates a set
of rewrite rules that completely canonicalize expressions relative to the given
equations; by canonicalizing expressions one can determine if two terms can
be proven equal from the original set of equations. Unfortunately, however,
the Knuth-Bendix procedure does not always succeed; it can either terminate
in failure or fail to terminate.

The Knuth-Bendix procedure has been used extensively in system which
manipulate equational specifications of computer programs and equational
programming languages [Kapur et al. 86] [Lescanne 86] [Huet 86]. These
systems are based on an equational view of programming in which computer
data structures are viewed as terms constructed from atomic symbols (Lisp
atoms) and “data constructor functions” such as the Lisp function CONS. Re-
cursive functions can be defined via equations involving the defined function

symbols [Guttag & Horning 78] [O’Donnell 85].

The Knuth-Bendix procedure can also be used to generate “induction
arguments” of the type performed by the Boyer-Moore theorem prover [Huet
& Hullot 83]. More specifically, consider the closed (variable free) terms
which can be constructed from a set of “atoms” (constructor functions of no
arguments), constructor functions (functions such as CONS which construct
data objects), and defined functions. A “data object” is a term with no
defined functions. Let X be a set of equations which defines the defined
function symbols as operations on the data objects, i.e. no two data objects
can be proven equal from ¥ and every closed term involving defined functions
can be proven (under ¥) to be equal to some data object. Now suppose we
wish to prove some equation s = ¢ where s and ¢ are distinct terms involving
defined functions and free variables. For example the equation s = ¢ might
state the associativity of the APPEND function on lists. The equation s = ¢
holds in the data object universe just in case there is no counter example,
i.e. no ground variable substitution ¢ such that o(s) denotes a different
data object from o(t). If there exists a counter example to the equation
s = t then adding this equation to ¥ would allow one to prove an equation
between two distinct data objects. The Knuth-Bendix procedure can be used
(in some cases) to convert ¥ U {s = t} to a complete set of rewrite rules.
By examining this set of rewrite rules it is possible to determine whether
YU {s =t} allows one to prove an equation between distinct data objects. If
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such equation is provable then the equation s = ¢ has a counter example. If
no such equation between distinct data objects is provable from X U {s = ¢}
then the equation s = t has no counter examples and must be true in the
data object universe. In general it may be possible to show that s = ¢ has
counter examples at an intermediate point in the Knuth-Bendix procedure;
thus a complete set of rewrite rules for ¥ U {s = ¢} may not be required.

One problem with the Knuth-Bendix procedure however is the need for
a single partial order on all expressions. There may be domain specific intu-
itions about how terms should be rewritten and it is difficult to incorporate
such knowledge into a single uniform term ordering. While some sophisti-
cated partial orders have been developed [Dershowitz 79], it is not yet clear
whether a uniform term ordering can be used for the large verifications that
have been done with the Boyer-Moore prover.

Like unification research, research on term rewriting systems using the
Knuth-Bendix mechanism has centered on the notion of logical completeness.
There are many equational theories ¥ with an undecidable set of logical
consequences (an undecidable word problem) and in this case the Knuth-
Bendix procedure either terminates in failure or fails to terminate. In systems
based on the Knuth-Bendix procedure it is not clear what to do when the
procedure fails. Even if a complete set of reductions is found, the time
required to perform the rewriting may be prohibitively large. The rigid
framework of the Knuth-Bendix procedure may make it difficult to perform
the large verifications that have been done with the Boyer-Moore prover; it is
not clear that a Knuth-Bendix based system could verify the RSA encryption
algorithm or the undecidability of the halting problem as has been done with
the Boyer-Moore system [Boyer & Moore 84] [Boyer & Moore 86].

Rewrite systems are designed to handle equational theories. The Ontic
system handles equality with its congruence closure mechanism; rewrite rules
are not used. The congruence closure mechanism can be quite powerful in
practice. Figure 2.1 gives an example of an inference done using Ontic’s
congruence closure mechanism. Consider a distributive lattice with a least
member 0 and a greatest member 1 (a lattice with a least and greatest mem-
ber is called bounded). If x and y are members of the lattice L then we say
that  and y are complements if the meet of x and y is 0 and the join of




66 CHAPTER 2. COMPARISON WITH OTHER WORK

(IN-CONTEXT ((LET-BE L (AND-TYPE DISTRIBUTIVE-LATTICE
BOUNDED-LATTICE))
(LET-BE X (IN-U-SET L))
(PUSH-GOAL
(AT-MOST-ONE (COMPLEMENT-OF X L))))

(IN-CONTEXT ((SUPPOSE (EXISTS (COMPLEMENT-OF X L)))
(LET-BE Y1 (COMPLEMENT-OF X L))
(LET-BE Y2 (COMPLEMENT-OF X L)))
(NOTE-GOAL))

(NOTE-GOAL))
Ontic “sees” this theorem using its congruence closure mechanism as follows:

y1 =1 A1 A previously established fact.
=y1 A (y2V ) Because y, is a complement of z.
= (y1 Ay2) V(y1 Az) By definition of a distributive lattice.
=(y1Ay2) VO Because y; is a complement of z.
= (y1 Ay2) V(y2 Az) Because y; is a complement of z.

=(y2Ay1) V(y2Az) Because A is commutative.

=y A(y1 V) By definition of a distributive lattice.
=y A1l Because y; is a complement of z.
= Yo Because y; = y2 A 1

Figure 2.1: A statement that is obvious to Ontic but not obvious to people
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z and y is 1. It was obvious to the Ontic interpreter that in any bounded
distributive lattice a given member z has at most one complement. Ontic’s
proof of this fact, also shown in figure 2.1, uses congruence closure.

Figure 2.1 shows that congruence closure is a powerful technique for rea-
soning about equality. Because Ontic handles equality with congruence clo-
sure rather than rewrite rules, there is no need for the user to specify rewrite
directions for equations; the Ontic system can handle undirected declarative
equations. The value of declarative as opposed to procedural representations
is discussed in more detail in section 2.4.2.

2.3.5 Natural Deduction Systems

Natural deduction systems are based on “natural” rules of inference. A given
rule says that a goal G of a certain form can be proven by reducing the goal
G to the subgoals G1,G;...G,. Different rules provide different ways of
achieving a goal where the success of any one rule is sufficient. The earli-
est natural deduction system was Newell, Shaw and Simon’s Logic Theorist
[Newell, Shaw & Simon 57]. This system used natural deduction rules and
backward chaining to prove theorems in Whitehead and Russell’s Principia
Mathematica. Soon after the construction of the Logic Theorist, Gelernter
constructed his program for finding proofs in Euclidean geometry [Gelern-
ter 59]. Gelernter’s system also used backward chaining and natural deduc-
tion rules but the subgoals were pruned by the use of a diagram, i.e. a model
of the assumptions in the proof. If a subgoal was false in the diagram then
the system could infer that the subgoal could not be achieved and thus should
be abandoned.

During the sixties research in automatic theorem proving focused pri-
marily on resolution theorem proving. However, during the early seventies
frustration with resolution systems lead to a renewed interest in natural de-
duction systems [Bledsoe 77]. Natural deduction systems from the seventies
include [Bledsoe 71], [Nevins 72], [Bledsoe et al. 72], [Reiter 73], [Ernst 73],
[Goldstien 73], [Bledsoe & Bruell 73], and [deKleer et al. 77]. These later
natural deduction systems often used resolution as a subroutine for prov-
ing subgoals. A time limit was imposed on resolution proofs to force the
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resolution theorem prover to terminate quickly [Bledsoe 71].

One of the major problems with using resolution as a test for “obvious”
subgoals was the tendency of resolution to get lost when it was given too many
initial facts. In other words resolution was not able to automatically find the
relevant facts in a large lemma library. As Bledsoe says in [Bledsoe 71]:

One of the more serious [problems is referencing]. The com-
puter should be able to bring to bear “all it knows” (all definition
axioms and previously proven theorems) ... But if one attempts
a resolution proof on a large number of formulas, the result is the
production of a glut of irrelevant clauses and sure failure, even
when the best known search strategies are used. Thus the crucial
part of a resolution proof is the selection of the reference theo-
rems by the human user; the human, by this one action, usually
employs more skill than that used by the computer in the proof.

It is useful to remember that this was written in 1971, well after most of
the refinements to resolution had been developed. These comments about
the ineffectiveness of resolution on large lemma libraries are probably as true
today as they were in 1971. The Ontic interpreter on the other hand seems
to handle large lemma libraries without difficulty. It would be interesting to
reconstruct these old natural deduction systems using the Ontic interpreter
rather than resolution to test for obvious subgoals.

The Seventies also saw a development of basic natural deduction proof
checking systems that did not provide much automated reasoning support.
For example McDonald and Suppes developed an interactive proof checking
system for teaching an introductory logic course [McDonald & Suppes 84].
Richard Weyhrauch also developed the FOL system for checking first order
logic proofs [Weyhrauch 77].

While the FOL system does not provide sophisticated general purpose
theorem proving, it does provide a uniform mechanism for associating any
given predicate or function symbol with a computer program for computing
the value of the predicate or function on “semantic” arguments. It seems clear
that mathematical verification systems could benefit from the addition of
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computational oracles. Along with procedures for basic arithmetic (addition
multiplication etc.) one can imagine incorporating procedures for symbolic
integration, series summation, or polynomial manipulation. No attempt has
been made to incorporate such features into the Ontic system.

Procedural attachment is part of a general focus on “metatheory” within
the FOL system [Weyhrauch 80]. While procedural attachment has clear
potential value, I think the emphasis on metatheory is misplaced. There
seems to be a fundamental unity in all mathematics; there is no fundamental
distinction between “metamathematics”, number theory, graph theory, fi-
nite combinatorics, or real analysis. A system which reason about numbers,
graphs, and ordered sets can just as easily reason about formulas, models,
and Tarskian truth functions.

During the late seventies and into the eighties there has been an empha-
sis on “programmable” natural deduction systems. These systems provide a
mechanism for adding user defined inference rules. The first programmable
natural deduction system was Edinburgh LCF [Gordon, Milner & Wadsworth
79]. A more recent programmable natural deduction system is the Nuprl sys-
tem developed by Bates and Constable [Constable et al. 86] [Howe 86]. The
Nuprl system grew out of research in interactive verifications systems [Con-
stable et al. 82] and their use in teaching formal logic and formal approaches
to program verification. The Nuprl system is based on constructive type
theory and places particular emphasis on finding constructive proofs. The
system provides a facility for converting a constructive proof that a certain
number exists into a program for computing that number.

Backward chaining natural deduction systems use rules of inference to
convert a given goal to a set of subgoals. In the Nuprl system the user
can define new inference rules, or “tactics”, for converting a goal to a set of
subgoals. When a tactic replaces a goal G by a set of subgoals G, G, ...
G, the tactic must construct a proof showing that the replacement is sound,
i.e. that the subgoals Gy, Gz, ... G, imply the goal G. One could write a
tactic for showing that any given set S is a subset of U by supposing that
S is non-empty and then considering an arbitrary member of S. One could
then use this tactic as a subroutine and write another tactic for showing that
two sets are equal by showing that each is a subset of the other. In the
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Ontic system one has to repeat this style of argument every time one wants
to prove set equality. It seems likely that tactics could be used in the Ontic
system to reduce the length of machine readable proofs. On the other hand
it seems likely that Ontic’s object oriented inference mechanisms could be
used to reduce the length of proofs in the Nuprl system.

2.4 Issues in Automated Reasoning

There are several general issues involved in the construction of proof verifi-
cation systems. First, in designing a verification system one should consider
the expressive power of the formal language involved. Does the language
allow one to express a wide variety of formal concepts and arguments? Sec-
ond, one should consider the extent to which the knowledge base contains
procedural as opposed to declarative information. Procedural information
may help make the system run more effectively but procedural information
is harder to construct and a reliance on procedural information makes au-
tomatic discovery of useful information more difficult. Third, one should
consider whether the system should rely on backward or forward chaining.
It is not clear whether forward chaining has any intrinsic advantage over
backward chaining or vice versa. In both cases the basic problem is to con-
trol the generation of facts or subgoals. Simplification seems to be effective
as a guiding principle in backward chaining while focus seems to be effective
as a guiding principle in forward chaining,.

2.4.1 Expressive Power

Some very restricted formal languages have tractable inference problems:
there exists a tractable procedure for determining the validity of any state-
ment expressible in the language. Thus there seems to be a trade off between
expressive power and computational tractability in knowledge representation
languages [Levesque & Brachman 85]. However this “trade off” is mislead-
ing. In order to design a language with a tractable inference problem one
must design a language in which hard questions can not be asked. But this
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does not produce the result one really wants; rather than making it easier
to answer hard questions, limiting the expressive power of a language simply
makes it impossible to ask hard questions. On the other hand, increasing
the expressive power of the reasoning language can make it easier to reason
about hard questions.

Natural mathematics (mathematics done in natural language) seems to
have a notion of “well typed” expressions. For example consider the well
typed phrase

“the value of the map f on the point z”

as opposed to the “garbled” phrase
“the value of topological space X on the point z”

The notion of a well typed natural phrase seems to correspond to the notion
of a well typed formal expression. Mathematicians talk about groups, rings,
fields, topological spaces, differentiable manifolds, groups homomorphisms,
differentiable maps and much more. It seems that in natural mathematics
any definable set (or class) can be used as a type in determining the set of
well typed phrases. Most strongly typed formal systems, however, do not
allow arbitrary predicates to be used as types.

In designing a type system there appears to be a trade off between ex-
pressive power and computational tractability. One can ensure computa-
tional tractability by restricting the type system so that only certain simple
predicates can be used as types. Restricted type systems can not express nat-
ural types such as “prime number”, “symmetric matrix”, or “transitive re-
duced graph”. While the inability to express such types makes type-checking
tractable, it prevents the type-checking process from even attempting to ver-
ify certain semantic properties of programs. It seems likely that one could
construct a quickly terminating type-checking procedure which could verify
all simple types and could also verify some more difficult “semantic” types.
Restrictions on the vocabulary of types does not make it easier to answer
hard questions, it only makes hard questions impossible to ask.
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2.4.2 Declarative Representations

Many automated inference systems require every declarative fact to be aug-
mented with procedural information: information about how the declarative
fact is to be used in the inference process. Purely declarative facts, facts not
augmented with procedural instructions, have the advantage that they are
easier to generate — it seems easier for people to write down a set of purely
declarative facts than to write down both the declarative facts and additional
information about how those facts are to be used. The ease of generating
purely declarative facts may be particularly important in discovery systems
— systems which automatically generate new lemmas. The task of discover-
ing and using new facts is easier if one does not have to specify procedural
information each time a new fact is discovered.

Unfortunately, purely declarative facts have the disadvantage that they
are more difficult to compute with. Ketonen has discussed the difficulty of
constructing effective theorem provers that use purely declarative informa-
tion [Ketonen 84]. In supporting the use of procedural information Ketonen
considers the following formula:

P(z)=>A=B

He argues that there is no single way to use this formula and lists the following
possible procedural interpretations:

1. Replace P(z) = A = B by true whenever it appears.

2. Replace A = B by true if one can prove P(z) in the current situation.

3. Replace P(z) by false if one can prove A # B.

4. Replace A by B whenever one can prove P(z).

5. Replace B by A whenever one can prove P(z).

6. Replace A by B whenever one can prove P(z) but not in terms resulting
from this substitution.
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Ketonen argues that one must choose between the above procedural inter-
pretations. Interpretations (4) and (5) seem opposite in intent. Furthermore
formulas involving quantifiers would have an even greater number of different
interpretations. Ketonen concludes that the user must specify how formulas
are to be used.

It seems that Ketonen’s difficulty with purely declarative representation
comes from his commitment to rewrite systems. Ontic’s inference mechanism
effectively uses interpretations (1) through (5) simultaneously. Replacing a
formula @ by true in a rewrite system is analogous to putting the label true
on the node for @ in the Ontic’s marker propagation mechanism. In the On-
tic system Boolean constraint propagation handles the procedural interpre-
tations (1) through (3) above. In the Ontic system equalities between nodes
are represented by giving those nodes the same color label. This representa-
tion of equality together with the congruence closure mechanism effectively
handles both procedural interpretations (4) and (5). The 6th procedural in-
terpretation seems a little strange and is not handled in the Ontic system —
congruence closure effectively performs all substitutions.

One of the primary features of the Knuth-Bendix procedure is that equa-
tions are automatically converted to rewrite rules using a single partial order
that is defined for all terms. Thus, once the partial order has been defined,
purely declarative equations are automatically given procedural interpreta-
tions. However the Knuth-Bendix procedure is not guaranteed to succeed: it
may terminate without producing a complete set of rewrite rules or it may
run forever in attempting to generate such a set. Furthermore, because the
Knuth-Bendix procedure produces rewrite rules, it must choose either proce-
dural interpretation (4) or interpretation (5) — the Ontic system effectively
does both simultaneously. The effectiveness of the Knuth-Bendix procedure
in large verification applications has not yet been established.

Further experimentation is needed to see if systems which use purely
declarative information, such as Ontic, can be made as effective as systems
which are based on rewrite rules, such as the Boyer-Moore theorem prover.
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2.4.3 Forward Chaining

Forward chaining systems start with a set of premises and derive conclusions
from those premises. Backward chaining systems start with a goal and reduce
that goal to subgoals. It is not clear whether forward chaining has any
intrinsic advantage over backward chaining or vice versa. In both cases the
basic problem is to control the generation of facts or subgoals. Both forward
chaining and backward chaining systems can become swamped in a sea of
derived facts or derived subgoals. Certain sources of guidance seem to work
for backward chaining and other sources of guidance seem to work for forward
chaining.

Simplicity seems to work as a guiding principle in backward chaining.
Rewrite systems are backward chaining because they start with the expres-
sion to be proved and rewrite that expression in an attempt to show it equiv-
alent to the constant true. Rewrite systems are guided by some notion of
simplicity: a goal expression is always replaced by a simpler goal. The notion
of simplicity is either implicit in the user specified rewrite rules, as in the
Boyer-Moore prover, or explicitly defined as an ordering on expressions, as in
Knuth-Bendix based systems. In both cases however a notion of simplicity
guides the generation of subgoals.

Focus seems to work as a guiding principle in forward chaining. Ontic’s
object oriented inference mechanisms are guided by the restriction that de-
rived facts must be about the focus objects. A similar restriction is used
in other forward chaining systems such as Nevins’ geometry theorem prover
[Nevins 74], constraint systems such as Waltz labeling [Waltz 75], and con-
straint languages such as that described by Sussman and Steele [Sussman &
Steele 80].

It should be possible to integrate both backward and forward chaining in
a single system. In such a system simplification should be used as a guiding
principlein backward chaining and focus should be used as a guiding principle
in forward chaining,.




Chapter 3

Ontic as a Cognitive Model

One can attempt to evaluate Ontic as a model of human mathematical cog-
nition by comparing the formal “proofs” that are acceptable to the Ontic
system with the natural language proofs that are acceptable to people. There
are some clear differences between Ontic proofs and natural arguments. In
certain cases the Ontic system can verify proof steps that are not obvious
to people; we say that Ontic exhibits superhuman performance. In other
cases there are statements which are obvious to people but which require
multi-step proofs in the Ontic system; we say that Ontic exhibits subhuman
performance. The superhuman performance and much of the subhuman per-
formance can be attributed to specific computational aspects of the Ontic
system.

Ontic’s congruence closure mechanism provides a clear example of su-
perhuman performance. The Ontic system can use its congruence closure
mechanism to “see” that in a distributive lattice complements are unique.
This fact is not obvious to people. The appendix contains several examples of
superhuman performance based on congruence closure. All of the examples
involve lattice theoretic identities. One example is the proof of de Morgan’s
laws from the the algebraic axioms for a Boolean lattice.

After giving examples of superhuman inference based on congruence clo-
sure, a very fast computationally limited architecture is proposed for mas-
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sively parallel computation. Boolean constraint propagation can be easily
implemented in this massively parallel architecture but congruence closure
can not. Substitution constraints are then proposed as an alternative to con-
gruence closure. Substitution constraints perform many of the substitution
inferences normally done by congruence closure. Furthermore, substitution
constraints can be handled by Boolean constraint propagation and thus can
be implemented on the proposed massively parallel architecture. However,
substitution constraints do not generate the given examples of superhuman
performance.

Of course the Ontic system also exhibits subhuman performance. Some
cases of subhuman Ontic performance can be traced to weaknesses in the
lemma library. Several proofs could be shortened by adding lemmas which
introduce the principle of duality for Boolean lattices and the algebraic “def-
inition” of a lattice. A more significant set of examples of subhuman Ontic
performance involve mathematical induction. Although the Ontic system
can be used to verify induction arguments, the expansion factor is large. In
natural mathematics induction arguments are often unstated and unnoticed
even though people understand the arguments and agree to their validity.
For example consider a graph where the nodes of the graph are colored such
that any two nodes with an arc between them have the same color. Clearly
if nodes n and m have different colors then there is no path between them in
the graph. To verify this clear and obvious fact with the Ontic system would
require an induction on the length of paths. There are many other examples
from both mathematics and common sense where induction arguments seem
to be carried out at a subconscious level.

Future experimentation will certainly turn up additional ways in which
the Ontic system exhibits subhuman performance; hopefully examples of sub-
human performance will lead to the discovery of additional inference mech-
anisms that bring the system closer to human ability in verifying natural
arguments.
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3.1 Superhuman Performance

Congruence closure accounts for all the examples of superhuman performance
of the Ontic system. The mathematical development given in the appendix
contains six examples of superhuman performance based on congruence clo-
sure. All of these examples involve reasoning about lattice identities.

3.1.1 Examples of Superhuman Performance

The first example of superhuman Ontic performance is the proof that in
a distributive lattice complements are unique. This example is given in chap-
ter 2 and is discussed in more detail below. The second example is the proof
of de Morgan’s laws for complemented distributive lattices. De Morgan’s
laws are straightforward if one assumes that Boolean operations have their
standard meaning as operators on sets, or equivalently, if Boolean operations
have their standard meaning as operations on truth functions. However, un-
til one has proven the Stone representation theorem one must consider the
possibility that there exist pathological complemented distributive lattices in
which the Boolean operations can not be viewed as operations on sets or as
truth functions. The Ontic proof of de Morgan’s laws and an analysis of that
proof are shown in figure 3.1. Given several previously established simple
identities for Boolean lattices the Ontic system immediately “sees” that de
Morgan’s laws are true in an arbitrary complemented distributive lattice.

The mathematical development in the appendix also contains a proof that
for any elements z and y of a complemented distributive lattice the following
are equivalent:
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An Ontic Proof:

(IN-CONTEXT ((LET-BE B BOOLEAN-LATTICE)
(LET-BE X (IN-U-SET B))
(LET-BE Y (IN-U-SET B))
(LET-BE CX (COMPLEMENT X B))
(LET-BE CY (COMPLEMENT Y B))
(LET-BE M (MEET X Y B))
(LET-BE J (JOIN CX CY B)))
(NOTE (IS J (COMPLEMENT-OF M B))))

A Corresponding Natural Argument:

Let z* and y* be the complements of z and y respectively. Let
m be the meet of z and y and let j be the join of z* and y*. We
must show that m and j are compliments, i.e. that m A j = 0
and mV j = 1. This can be done as follows:

mA(z*Vy*)=(mAz*)V(mAy*) By distributivity of A over V.
=((zAz*)Ay)V((yAy*)Az) By assoc. and comm. of A.
=(0Ay)V(0AZ) By definition of complement.
=0 By algebraic properties of 0.

(zAy)Vi =(@ViA(yVy) By distributivity of V over A.
=w*V(e*Va))A(z*V(y*Vy)) By assoc. and comm. of V.
=(y*V1)V(z*V1) By definition of complement.
=1 By algebraic properties of 1.

Figure 3.1: An example of superhuman Ontic performance.
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The Ontic proof of the equivalence of the above facts is done by showing
that 1) = 2) = 3) => 4) = 1). This is done in a context where the unique-
ness of complements and de Morgan’s laws have already been established.
For each implication there is a set of four focus objects which makes the im-
plication obvious to the Ontic system. The proof of each implication shows
superhuman performance involving congruence closure.

3.1.2 A Very Fast Parallel Architecture

This section proposes an architecture for massively parallel computation and
argues that, unlike Boolean constraint propagation, congruence closure is
difficult to implement on this architecture. ! People make truth judgments
about obvious statements in about a second. Although the computation
performed by neurons is not well understood, it is clear that neurons run very
slowly. It seems likely that neurons would require one to ten milliseconds to
compute the logical and of two Boolean signals. If people are computing
truth judgments with Boolean circuitry, and if the gate delay for neuronal
hardware is on the order of one to ten milliseconds, then people make truth
judgments about obvious statements in 100 to 1000 gate delays. Computing
complex truth judgments in only 100 to 1000 gate delays requires massive
parallelism.

Consider a finite state machine where the state of the machine at time s
is given by an n-bit bit vector D;. The state transition table of the machine
can be given by a Boolean circuit ® of n inputs and n outputs where the
state transitions of the machine are governed by the equation

Diyy = @(Dy)

To make the finite state machine run quickly the Boolean circuit ® should
have low depth, say ten gates. If ® has depth ten then a state transition can

1t is easy to show that Boolean constraint propagation is polynomial time complete
and thus “unparallelizable”; the worst case running time on a parallel machine is linear in
the size of the graph. In many cases however, a parallel implementation would run much
faster than a serial implementation; a parallel implementation runs in time proportional to
the longest single inference chain while a serial implementation runs in time proportional
to the total number of inferences.
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be computed in ten gate delays. However, the bit vector defining the state
of the machine can be very large: millions or tens of millions of bits, and the
circuit ® can involve millions or tens of millions of gates.

It seems possible to compile an Ontic graph structure into a Boolean
circuit governing a finite state machine. More specificly, a labeling of an Ontic
graph could be encoded in the state bit vector of the machine. The basic
inference operations on graph labels could be incorporated into a Boolean
circuit ¢ governing state transitions. Two bits are needed for each formula
node to represent the three possible labeling states of the node: true, false and
unknown. Boolean constraints on formula nodes could be compiled directly
in the structure of the Boolean circuit ®. Every node in an Ontic graph is
also associated with a color label. The color label for a given node in the
graph could be represented with a set of bits in the machine’s state vector.
The Boolean circuit governing state transitions could be designed in such
a way that if an equation node became true then the color labels of the
equated nodes at time 7 + 1 would each be set to the maximum of the two
labels at time 7. In this way the color labels could be made to respect the
truth of equality formulas. With the exception of congruence closure, all of
the inference techniques used in the Ontic system seem to be amenable to a
massively parallel implementation in a low-depth Boolean circuit governing
a finite state machine.

The implementation of congruence closure described in chapter 5 uses a
hash table to map color tuples to colors. In order to implement a hash table
one needs to be able to compute memory addresses for a random access
memory. I don’t see any way of implementing parallel access to a large hash
table in a low depth Boolean circuit governing a large finite state machine.

Congruence closure can be replaced with substitution constraints as de-
scribed in the next section. Substitution constraints are Boolean constraints
involving equality formulas; such constraints can be compiled directly into a
low-depth Boolean circuit governing a finite state machine.
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3.1.3 Substitution Constraints

Substitution constraints provide an alternative to congruence closure for rea-
soning about equality. Substitution constraints rely on Boolean constraint
propagation’s ability to handle certain equality inferences. Boolean con-
straint propagation ensures a simple relationship between the truth of equal-
ity formulas and the color labels encoding equivalence. Boolean constraint
propagation, however, does not automatically handle the substitution of
equals for equals; in the Ontic system substitution is handled by congruence
closure. On the other hand, Boolean constraint propagation can be made to
handle substitution by adding certain Boolean constraints called substitution
constraints. Boolean constraint propagation with substitution constraints is
weaker than congruence closure in that it generates fewer obvious truths in
a given context.

As a simple example of a substitution constraint consider a term f(c)
which consists of an operator f applied to a specific argument c¢. We can
assume that the operator f is defined on objects of a certain type 7 and that
c is an instance of 7. Suppose that g is a generic individual of type 7. To
ensure that inheritance works properly one can add the Boolean constraint

g=c = f(9)=f(c)

Now if the system ever generates a binding g — ¢ then g and ¢ will get
the same color label and Boolean constraint propagation will ensure that
the equation g = ¢ gets labeled true and thus, by the above substitution
constraint, the equation f(g) = f(c) will be labeled true. Independent of
congruence closure, if f(g) has the same color label as f(c) then certain facts
about f(g) can be inherited by f(c). For example if f(g) is known to be
an instance of a type o then f(c) will also be known to be an instance of
the type 0. Thus the above Boolean constraint allows the binding ¢ — ¢ to
cause c to inherit facts that are stated in terms of g.

Substitution constraints can be used to perform inferences based on the
substitution of equals for equals. Suppose that ¢ is known to be equal to
b and consider the terms f(c) and f(b). Furthermore assume the graph
structure underlying Boolean constraint propagation includes the following
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substitution constraints
g=c = flg9)=f(c)
=b = f(9)=f(b)

Now suppose that the system focuses on ¢ and generates the binding ¢ — c.
Since ¢ and b are known to be equal, the nodes for g, ¢, and b will all get the
same color label. Thus the equations ¢ = ¢ and g = b will become true. Thus
both the equations f(g) = f(c) and f(g) = f(b) will become true and the
nodes for f(g), f(c) and f(b) will all get the same color label. Thus focusing
on ¢ causes the system to deduce that f(c) equals f(b). This scheme for
handling substitution of equals for equals via substitution constraints can be
suitably generalized to handle operators of more than one argument.

Unlike congruence closure, substitution constraints combined with fo-
cused binding and Boolean constraint propagation will only substitute equals
for equals when the expressions being substituted for are focus objects. All
of the examples of superhuman Ontic performance involve substitutions of
non-focused expressions.

3.1.4 Superhuman Performance Re-Examined

It is important to note that the scheme for equality inference based substitu-
tion constraints is not as powerful as the full congruence closure mechanism.
More specifically, using substitution constraints the substitution of equals for
equals can only be done when the substituted expressions are equal to some
focus object. All of the examples of superhuman performance discussed above
involve substitution for non-focused objects. For example consider the proof
shown in chapter 2 that in a distributive lattice complements are unique.
The uniqueness of complements is obvious to the Ontic system.

Figure 2.1 in chapter 2 shows the Ontic “proof” that complements are
unique together with an expanded derivation showing how the Ontic system
proved that if y; and y, are both complements of z then y; must equal y,.
The second line in the expanded derivation is derived by replacing 1 with
(y2 V z) even though neither 1 nor (y, V z) is a focus object. If congruence
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inference required focusing on the substituted expression then the second line
could only be derived by focusing on y, V z. Similarly, line four is derived by
substituting 0 for y; A = even though y; A z is not a focus object. Lines five
and seven also involve substitution for non-focused expressions.

Even the weaker scheme based on substitution constraints could prove
that complements are unique in a single inference step if the system focused
on x, Y1, Y2, Y2V, y1 Az, y2 Az and y, V z all at the same time. However,
it seems that people have a hard time focusing on seven objects simultane-
ously. The ability of the Ontic system to focus on a large number of objects
simultaneously is perhaps another source of superhuman performance.

3.2 Subhuman Performance

Some proofs in the appendix exhibit subhuman performance which can be
attributed, at least in part, to weaknesses in the lemma library. Other ex-
amples, not given in the appendix, indicate weaknesses in the fundamental
inference architecture. It is hoped that examples of subhuman performance
lead to new inference techniques which increase the usefulness of verification
systems.

3.2.1 Weaknesses in the Lemma Library

The lemma library developed in the appendix does not include a duality
principle for Lattices. Given an appropriate duality principle the proof of
any identity in lattice theory would lead immediately to a proof of the dual
identity. For example consider de Morgan’s laws. A first de Morgan law can
be phrased as follows.

(zVy) =z*Ay*

A second de Morgan’s law can be derived from the first via a duality principle
for Boolean lattices: the result of switching V and A (and 1 and 0) in any
Boolean lattice identity leads to another Boolean lattice identity. Given the
duality principle for Boolean lattices the validity of the above de Morgan law
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leads immediately to the validity of the dual law:
(zAy) =z Vy"

One could incorporate the duality principle into the Ontic system by defining
the dual of a lattice. Given any lattice (or any partial order) the dual of the
lattice is defined to be that lattice which has the same elements but in which
the partial order has been reversed. Using the Ontic system one could easily
define a function which mapped any lattice to its dual lattice. Furthermore
one could prove that if L’ is the dual of a Boolean lattice L then L’ is a
Boolean lattice such that the meet operation in L’ equals the join operation
in L, the join operation in L’ equals the meet operation of L, and L' has
the same complement operation as L. Given a Boolean lattice identity I one
could then prove that the dual identity I’ must hold in an arbitrary Boolean
lattice L by considering the dual lattice L’ and noting that I’ holds in L just
in case the lattice identity I holds in the dual L'.

Another example where standard notions could be added to the lemma
library to reduce the length of proofs involves the algebraic characterization
of a lattice. It turns out that the partial order of a lattice is determined by
the meet and join operations and in fact one can define a Boolean lattice
to be a set together with meet, join and complement operations that satisfy
certain equational axioms. This algebraic view of a lattice is described in
textbooks on lattice theory and could be added to Ontic’s lemma library.
The algebraic view of a lattice would allow a shorter machine readable proof
of one of the lemmas given in the appendix. More specifically, the algebraic
view of a lattice provides a short proof that if S is a subset of a Boolean lattice
L such that S is closed under the meet, join and complement operations of
L then the set S together with the partial order of L restricted to S forms a
lattice with the same lattice operations as L.

3.2.2 Mathematical Induction

The clearest examples of subhuman behavior on the part of the Ontic system
involve mathematical induction. Many common sense inferences appear to
involve induction. Consider the following examples:
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e Consider a colored graph in which adjacent nodes have the same color,
i.e. if there is an arc between nodes n and m then n and m have the
same color. If nodes n and m have different colors then there is no path
between them in the graph. A formal proof requires induction on the
length of paths in the graph.

o Consider a chess board. The white pawns start on the second rank and
never move backward. Therefore no white pawn can ever appear on
the first rank. A formal proof of this statement requires induction on
the number of steps in the game.

o Consider two containers for holding marbles. Initially each container is
empty. Marbles are then placed in the containers in pairs; one marble
from each pair is placed in each container. No matter how many times
this is done, assuming the containers do not overflow, there will be
the same number of marbles in each container. A formal proof of this
statement requires an induction on the number of marbles placed in
the containers.

e Consider Rubic’s cube. Suppose the cube starts in a solved position
and is scrambled by some number of rotations of faces of the cube.
There exists a set of steps that unscrambles the cube. A formal proof
of this statement requires an induction on the number of rotations used
to scramble the cube.

e Consider a mouse running in a maze. Suppose the maze is arranged
inside a box such that there are no openings in the walls of the box
and the mouse can not jump over the walls. No matter how long the
mouse runs, and no matter where it goes inside the maize, the mouse
will not get outside the box. A formal proof of this statement requires
induction on the number of “moves” the mouse makes in the box.

In each of the above examples the conclusion is obvious to people. In each
example, if the concepts involved were approximated by mathematically pre-
cise notions, then any mathematician would accept the conclusion as obvious
and would not ask for further proof.
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Ontic can be used to perform induction proofs. However induction proofs
must be done explicitly: one must explicitly formulate the induction hypoth-
esis and explicitly verify the induction step. For example, consider verifying
that white pawns in a game of chess can not get to the first rank. This fact
can be verified using the following induction principle for natural numbers.

(DEFTYPE SET-O0F-NATNUMS
(LAMBDA ((S SET))
(IS-EVERY (MEMBER-OF S) NATURAL-NUMBER)))

(LEMMA
(FORALL ((S SET-OF-NATNUMS))

(=> (AND (IS ZERO (MEMBER-OF S))
(FORALL ((N (MEMBER-OF S)))
(IS (SUCCESSOR N) (MEMBER-OF S))))

(IS-EVERY NATURAL-NUMBER (MEMBER-OF S)))))

The above induction principle says that if a set S contains zero and is closed
under successor then it contains all numbers. The set S represents an induc-
tion hypothesis; S is the set of numbers which satisfy the hypothesis.

In the chess example one must prove that white pawns never end up on
the first rank. More formally, let an instance of the type CHESS-GAME be
a particular games of chess, i.e. a particular sequence of moves. If G is a
particular chess game and N is some natural number then

(WHITE-PAWN-ON-BOARD G N)

denotes the type whose instances are the white pawns which are on the chess
board after then N’th move of the game G. We let

(RANK-OF P G N)

be the rank occupied by the pawn P immediate after the N’th move of the
game G. Figure 3.2 contains statements which follow form the rules of chess.
An Ontic proof that pawns never get to the first rank is given in figure 3.3.
The goals in the proof are numbered and the NOTE-GOAL steps are labeled




3.2. SUBHUMAN PERFORMANCE 87

(FORALL ((G CHESS-GAME)
(N NATURAL-NUMBER))
(IS-EVERY (WHITE-PAWN-ON-BOARD G (SUCCESSOR N))
(WHITE-PAWN-ON-BOARD G N)))

(FORALL ((G CHESS-GAME)
(N NATURAL-NUMBER)
(P (WHITE-PAWN-ON-BOARD G (SUCCESSOR N))))
(IS (RANK-OF P G (SUCCESSOR N))
(GREATER-OR-EQUAL-TO (RANK-OF P G N))))

(FORALL ((P (WHITE-PAWN-ON-BOARD G ZER0)))
(IS (RANK-OF P G ZERO)
(EQUAL-TO TWO)))

Figure 3.2: Statements which follow from the rules of chess.

with the number of the goal being noted. The proof uses the facts listed in
table 3.2 together with simple facts about the ordering of natural numbers.

The proof starts by considering an arbitrary chess game G. The proof
shows that the following induction hypothesis holds for any number N.

(FORALL ((P (WHITE-PAWN-ON-BOARD G N)))
(IS (RANK-OF P G N)
(GREATER-OR-EQUAL-TQO TW0)))

The induction principle for natural numbers states that if a set of numbers
contains zero and is closed under successor then it contains all numbers. If
the induction hypothesis is ®(N) then one should consider the set of all N
such that ®(N). For the above induction hypothesis one should consider the
following set:

(THE-SET-0F-ALL
(LAMBDA ((N NATURAL-NUMBER))
(FORALL ((P (WHITE-PAWN-ON-BOARD G N)))
(Is (RANK-OF P G N)
(GREATER-OR-EQUAL-TO TW0)))))
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(IN-CONTEXT ((LET-BE G CHESS-GAME)

(LET-BE HYP-SATISFIERS
(THE-SET-OF-ALL
(LAMBDA ((N NATNUM))
(FORALL ((P (WHITE-PAWN-ON-BOARD G N)))
(IS (RANK-OF P G N)
(GREATER-OR-EQUAL-TO TW0))))))
(PUSH-GOAL
(IS-EVERY NATURAL-NUMBER
(MEMBER-OF HYP-SATISFIERS)))) ;#1
(IN-CONTEXT ((PUSH-GOAL
(IS ZERO (MEMBER-OF HYP-SATISFIERS)))) ;#2
(IN-CONTEXT ((LET-BE ZEROVAR ZERO))
(IN-CONTEXT ((SUPPOSE
(EXISTS-SOME (WHITE-PAWN-ON-BOARD G ZEROD)))
(LET-BE P (WHITE-PAWN-ON-BOARD G ZERO))
(LET-BE TWOVAR TWO))
(NOTE-GOAL)) ;#2
(NOTE-GOAL))) ;#2
(IN-CONTEXT ((PUSH-GOAL
(FORALL ((N (MEMBER-OF HYP-SATISFIERS)))
(IS (SUCCESSOR N) (MEMBER-OF HYP-SATISFIERS)))) ;#3
(LET-BE SATISFIER (MEMBER-OF HYP-SATISFIERS))
(LET-BE NEXT-SATISFIER (SUCC SATISFIER)))
(IN-CONTEXT ((PUSH-GOAL
(FORALL ((P (WHITE-PAWN-ON-BOARD G NEXT-SATIFIER)))
(IS (RANK-OF P G NEXT-SATISFIER)
(GREATER-OR-EQUAL-TO TW0))))) ;#4
(IN-CONTEXT ((SUPPOSE
(EXISTS-SOME
(WHITE-PAWN-ON-BOARD G NEXT-SATISFIER)))
(LET-BE P (WHITE-PAWN-ON-BOARD G NEXT-SATISFIER))
(LET-BE R1 (RANK-OF P G SATISFIER))
(LET-BE R2 (RANK-OF P G NEXT-SATISFIER))
(LET-BE TWOVAR TWO0))
(NOTE-GOAL)) ;#4
(NOTE-GOAL)) ;#4
(NOTE-GOAL)) ;#3
(IN-CONTEXT ((LET-BE N (MEMBER-OF HYP-SATISFIERS)))
(NOTE (IS HYP-SATISFIERS SET-OF-NATNUM)))
(NOTE-GOAL)) ;#1

Figure 3.3: The proof that white pawns never get to the first rank.
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The Ontic proof in figure 3.3 focuses on the set representing the induction
hypothesis. It then proceeds to prove the base case and induction step. The
base case uses the fact that the rank of a white pawn at time zero equals
two and every number is greater than or equal to itself. In order to apply
the fact that every number is greater than equal to itself one must focus on
the number two. The induction step uses the fact that the rank of the pawn
at time n is greater or equal to two and the rank of the pawn at time n + 1
is greater or equal to the rank at time n. To invoke the transitivity of the
ordering on natural numbers one must focus on the three numbers given by
the rank of pawn at times n and n + 1 together with the number two.

The proof shown in figure 3.3 is clearly much longer than a natural lan-
guage argument which simply states that white pawns never get to the first
rank. This example indicates that without additional theorem proving mech-
anisms the Ontic system will exhibit a large expansion factor on many in-
duction proofs.

One possible mechanism for reducing the expansion factor in induction
proofs would be a backward chaining procedure (a tactic) for automatically
generating proofs such as the one shown in the figure 3.3. It would be easy
to automatically convert the induction hypothesis into a set of numbers and
automatically focus on that set of numbers. Furthermore one could auto-
matically attempt to prove the base and induction cases of the argument.
As figure 3.3 shows however, proving the base and induction cases with the
Ontic system may require focusing on additional objects. In figure 3.3 the
user focuses on an arbitrary white pawn and the number two. In the induc-
tion case the user focuses on the rank of the pawn at two different times. It
seems that it might be difficult to automatically generate these additional
focus objects.

Several automated inference systems include inference mechanisms for
handling mathematical induction [Boyer & Moore 79] [Huet & Hullot 83]
[Ketonen 84]. Research is needed to determine if these, or other, induction
mechanisms can be incorporated into the Ontic system. These inference
mechanisms are all backward chaining; the induction hypothesis is taken
from the goal statement. It would be interesting to see if some forward
chaining induction mechanism could be found that was more in the spirit of




Chapter 4

Quantifier Free Inference

Each context in the Ontic system is specified by a lemma library, a set of focus
objects, and a set of assumptions. Given a lemma library, an assumption
set, and a focus set the Ontic system uses focused forward chaining inference
mechanisms to generate a set of “obvious truths” for the given context. In
any given context the operations NOTE and NOTE-GOAL can be used to make
permanent additions to the lemma library.

Each lemma, focus object and assumption is an expression in the for-
mal language Ontic. Rather than manipulate Ontic expressions directly, the
Ontic system compiles these expressions into graph structure where there is
a one to one correspondence between graph nodes and Ontic expressions.
Compilation and inference are separate processes; compilation generates a
graph structure and inference manipulates graph labelings without creating
additional graph structure. For efficiency reasons the graph constructed by
the Ontic system is saved and used repeatedly in many different contexts.

In the Ontic system the current context is specified by incrementally
adding and removing suppositions and focus objects. The system maintains
a stack discipline with respect to the addition and removal of focus objects:
the last supposition or focus object added must be the first one removed. The
graph labeling of a given context is determined by the lemma library, focus
objects and suppositions; the graph labeling does not depend on how the
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context was constructed. Labelings can be computed incrementally however.
When a focus object or supposition is added Ontic’s inference mechanisms
extend the labeling to include more truth labels and to satisfy more equiv-
alences. The system also maintains an “undo list” so that when a focus
object or supposition is removed the previous context can be restored and
then updated to reflect additions to the lemma library.

Chapters 6 and 7 specify the formal language Ontic and the way in which
the graph structure is generated from the lemma library. This chapter, and
the one that follows, specify the formal structure of the graph and the mecha-
nisms for labeling that graph. The graphs constructed by the Ontic compiler
have five different kinds of nodes and nine different kinds of “links” between
nodes. However, this chapter discusses only those kinds of nodes and links
that are used in Boolean constraint propagation and congruence closure.
These node types and link types are introduced in three stages by defining
three progressively more sophisticated types of graphs.

The first two sections of this chapter discuss graph structure and in-
ference mechanisms that are relevant to Boolean constraint propagation.
Boolean constraint propagation is responsible for enforcing certain Boolean
constraints on formula nodes and for enforcing certain relationships between
truth labels of equation nodes and color labels representing equivalences.
Congruence closure ensures that the color labels that represent equivalences
respect the substitution of equals for equals.

4.1 Boolean Constraint Graphs

This section describes Boolean constraint graphs and the inference mecha-
nisms that apply to them. Sections 4.1.2 and 4.1.3 can be safely ignored by
readers who are not interested in correctness proofs; the graph structure and
inference mechanisms are fully specified by the end of section 4.1.1.

Boolean constraint graphs are a very simple approximation of the graphs
produced by the Ontic compiler; Boolean constraint graphs have only a single
kind of node and a single kind of link. The nodes represent formulas and
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each link is a disjunctive constraint on truth values assigned to the nodes.

Definition: Let A be a set of formula nodes. A literal ¥ over
N is either a node n in N or the negation —n of some node n in

N.

A clause over N is a disjunction of the form
U, vVI,Vv... ¥,

where each U, is a literal over V.

A Boolean constraint graph B consists of a set of formula nodes
and a set of clauses over those nodes.

The Boolean constraint propagation algorithm manipulates partial truth
labelings of Boolean constraint graphs. More specifically, the propagation
algorithm extends partial truth labelings in a manner justified by the clauses
in the graph.

Definition: A partial truth labeling v of Boolean constraint graph
B is a partial map from the nodes in B to the set {true, false};
if n is a node in B then (n) is either true, false or undefined.

A partial truth labeling y on B determines a partial truth labeling
on all literals ¥ over B as follows:

true if v(n) = false

false if y(n) = true
v(-n) =
undefined if y(n) is undefined

Each clause is a disjunction of the form

Uy Vi, vV... ¥,
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which states that one of the literals must be true. The propagation algorithm
is based on the notion of a unit clause; Boolean constraint propagation ex-
tends partial truth labels by identifying unit clauses in the graph structure.
The notion of a unit clause is defined relative to the partial truth labeling .
Consider a clause of the form

U, vVi,Vv... ¥,

and a partial truth label 4. If 4(\¥;) is false then the above clause expresses
the constraint that one of the other literals must be true. In general one
should only pay attention to the non-false literals in a clause. A clause with
only a single non-false literal is called a unit clause.

Definition: A clause Uy VU, V... ¥, is called a y-unit-clause if
there is exactly one literal ¥; such that +(¥;) is not false. The
single non-false literal is called the unit literal of the clause.

An open y-unit-clause is a y-unit-clause where the unit literal has
no truth label under v, i.e. 4(¥) is undefined for the unit literal
v,

An open 7-unit-clause provides grounds for extending the partial truth
labeling ; if there is only one non-false literal in a clause C' then the remain-
ing literal, the unit literal of the clause, must be true. Boolean constraint
propagation uses open unit clauses to extend the truth labeling until either
an inconsistency is discovered or there are no remaining open unit clauses.

Definition: Let B be a Boolean constraint graph and let v be a
partial truth labeling on B.

The partial labeling v will be called B-inconsistent if there is some
clause

U, V¥,Vv...0,

in B such that v(¥;) is false for each literal U; in the clause. If
~ is not B-inconsistent we say that v is B-consistent.
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Let ¥ be any literal over the nodes in B such that v(¥) is un-
defined. The labeling 4[¥ := true] is the partial truth labeling
which agrees with 4 on all nodes other than that appearing in
U and such that y[¥ := true](¥) equals true. [V := false] is
defined similarly.

Boolean constraint propagation starts with an arbitrary partial labeling
7 of a Boolean constraint graph B and returns a new partial labeling Np(7).
The Boolean constraint propagation procedure can be defined as follows:

Definition: A partial truth labeling v of a Boolean constraint
graph B is called normalized if either it is B-inconsistent or there
are no open unit clauses in B under .

Procedure for Computing Ng(7):

If v is normalized then return +, otherwise choose an open -unit-
clause in B with unit literal ¥ and return the labeling Ng(y[¥ :=
true]).

Since there are only finitely many formula nodes in C the partial truth
labeling can not be extended indefinitely and the recursion in the above
procedure must terminate. Furthermore the labeling returned by the above
procedure is always normalized.

The normalization of a labeling of a Boolean constraint graph involves
inference. If a labeling 4’ can be derived via a single inference from a labeling
v then we write y—gz +'. In analyzing Ontic’s inference mechanisms the one
step inference relation —p is easier to think about than the normalization
function Ng. More formally, for any Boolean constraint graph B the relation
—p 1s defined on the labelings of B as follows:

Definition: Let v and 4’ be two partial truth labelings of a
Boolean constraint graph B. We write v — 5 7' if v is B-consistent
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and ' can be derived in a single unit inference from v, i.e. if there
is some open #-unit-clause in B with unit literal ¥ and such that
~" equals 4[¥ := true].

The relation —p should be viewed as a reduction relation analogous to re-
duction relations in the lambda calculus or term rewriting systems. For any
labeling « of B the normalized labeling Ng () is the normalization of y under
the reduction relation —pg .

4.1.1 Compiling Boolean Combinations

The graph structure used in semantic modulation is constructed by compiling
expressions in the Ontic language; the compilation process translates the
Ontic expressions into graph structure. The utility of Boolean constraint
propagation is best understood in light of this compilation process. The
full Ontic compiler is precisely defined in chapter 7. However this section
describes the compilation of Boolean combinations of formulas.

The compilation process converts an Ontic formula @ to a formula node
ng. Certain Ontic formulas are associated with clauses called meaning pos-
tulates. When the node ng is constructed the meaning postulates for @
are added to the graph. For example suppose that the formula ® is a
Boolean combination of the formulas ©; and ©,, e.g. ® might be the formula
(OR O; O3). The meaning postulates for ® are clauses that relate the node
ng to the nodes ne, and ne,. The exact nature of the clauses relating ne
to ne, and ne, depends on the Boolean connective used in ®. Table 4.1
shows the meaning postulates for the Boolean connectives used in the Ontic
system.

Boolean constraint propagation generates a normalized partial truth la-
beling of the constraint graph generated by the compilation process. If the
normalized labeling is B-consistent then the meaning postulates for Boolean
connectives ensure certain relationships between Boolean formulas and their
subformulas. For example consider the following meaning postulate for im-
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Formula ¢

(AND O, ©3)

(0R ©7 O3)

(IFF ©; 0O2)

(NOT ©)

Table 4.1:

(IMPLIES ©,; ©,)
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Meaning Postulates for ng

TN(aED @, ©,) V Ne,
NN @, ©,) V Ne,
—ne, Ve, Vnaum e, 0,

ne, V Nwr 0, 0,
—ne, V nNwr 0, ©;)
—Ner ©; ©,) V Ne, V ne,

—ne, V N mpLiEs ©, ©,)
ne, V N(IMpLIES ©; ©,)
TM(IMPLIES ©; ©) Y TN, V ne,

TN(IFF ©; ©,) V TNe, V ne,
TN(IFF ©; 0 V Ne, V Tne,
ne, V Ne, VNarF 0, 6,)
ne, V ne, V narr 0, 0,)

ne V Mot ©)
ne V "N@ot ©)

l.e.
i.e.
l.e.

il.e.
i.e.
i.e.

i.e.
l.e.
i.e.

ie.
i.e.
i.e.
ie.

TL(AND ©, @y) = M@,
T (AFD ©; @y) = NE,
ne, N\ nNe, = N ©; ©,)

N, = N(r 0, 6,)
ne; = N(R ©; O,)
n(OR ©; 03) = n@] V n@z

Ne, = T (IMPLIES ©; O,)
M@, = T(IMPLIES ©; O,)
T (IMPLIES ©; ©,) A\ Ne, = Ne,

NaFF 0, ©,) A\ Ne; = Ne,
N(IFF ©; 0,) A 7Ne, = Tne,
ne, A ne, = N(IFF 0; ©,)
ne, A TNe, = NuFF 0, ©,)

Meaning postulates for Boolean connectives
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plications of the form (IMPLIES ©; O,)

TN (IMPLIES ©; ©,) Y TNe, V Ne,

Now suppose v is a B-consistent normalized partial truth labeling such that
v(n(mpLies ©; ©,)) is true and v(ne,) is true. In this case the first two
literals in the above clause are labeled false under 4. By assumption ~ is
B-consistent so the last literal is not false. Furthermore since «y is assumed
to be normalized the above clause can not be an open +-unit-clause so the
last literal must be labeled true. In summary:

If + is a B-consistent normalized labeling such that

y(n(mpLiss @, @) = true

and
v(ne,) = true

then
v(ne,) = true

Thus B-consistent normalized labelings are closed under the inference rule
of modus ponens. A similar argument can be used to prove the following:

If v is a B-consistent normalized labeling such that

Y(n(mrLies o, @) = true
and
¥(ne,) = false

then
v(ne,) = false

A similar argument concerning the meaning postulates for negations shows
that if v is a B-consistent normalized partial truth labeling and the nodes
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ne and n(gor @) have been constructed in the graph then either 4 does not
provide a truth label for either of these nodes or the 4 assigns these nodes
opposite labels.

Now let op be any binary Boolean operator listed in table 4.1 and let v be a
B-consistent normalized truth labeling. The meaning postulates ensure the
following conditions:

o If the nodes ne, and ne, both have truth labels then any node of the
form n(op @, ©,), also has a truth label; n¢p 0, o,) has the truth label
given by the meaning of op.

o If the meaning of op allows the truth of (op ©; ©,) to be derived
from either the truth label for ne, or the truth label for (or ne,) then
N(op ©; ©,) has the appropriate truth label. For example a disjunction
is true whenever one of its disjuncts is true and a conjunction is false
whenever one of its conjuncts is false.

o If the meaning of op allows the truth of ng, to be derived from the
truth label of n(op 0, ©,) then ne, has the appropriate truth label. For
example if a conjunction is true then each conjunct is true and if a
disjunction is false then each disjunct is false. If an implication is false
then its antecedent is true and its consequent is false.

o If the meaning of op allows the truth of ne, to be derived from both
the truth label of nep @, ©,5 and the truth label of ng, then neg, has
the appropriate truth label. An analogous statement holds for deriving
labelings of ne, from labelings of n¢yp 0, o,y and ne,. For example if
a conjunction is labeled false and one of its conjuncts is labeled true
then other will be labeled false. If a disjunction is labeled true and
one of its disjuncts are labeled false then the other disjunct will be
labeled true.

The above properties of a B-consistent normalized labeling v do not guar-
antee that v is closed under all possible Boolean inferences. Boolean con-
straint propagation constructs a normalized labeling in time proportional to
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the number of nodes in the graph; assuming P # NP any logically com-
plete Boolean inference mechanism requires exponential time. Thus it is not
surprising that Boolean constraint propagation is logically incomplete. More
specifically, Boolean constraint propagation does not perform case analyses.
For example there exists a B-consistent normalized labeling v with the fol-
lowing properties:

7(ncor 0, 0p) = true

¥(n(mpLiEs ©, ©y)) = true
¥(n(mpLEs @, ©,)) = true
v(ne,) is undefined

In the above situation Boolean constraint propagation does not generate
truth labels for any of the nodes ng,, ne, or ne,.

4.1.2 Order Independence for Boolean Inference

The Boolean constraint propagation procedure defined above is non-deterministic;
the procedure extends a partial truth labeling by non-deterministically choos-

ing an open unit clause. Fortunately however, one can prove that the labeling
generated by the propagation procedure is independent of the order in which
open unit clauses are chosen.

Definition: Two partial labelings v; and ~, of a Boolean con-
straint graph B will be called B-equivalent if either v, equals 7,
or both 41 and ~, are B-inconsistent.

Normalization Theorem: For any partial labeling v of a Boolean
constraint graph B the Boolean constraint propagation procedure
terminates and all possible values of Nz(y) are B-equivalent.

This theorem can be proven by examining the inference relation —5 .
Viewing —5 as a reduction relation, the above theorem is implied by the
fact that the relation — 5 satisfies a certain Church-Rosser property. The
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Church-Rosser property of —5 is proven using general lemmas that apply
to any reduction relation.

Definition: For any binary relation — we write z —* y if either
z equals y or there exists some z such that £ — 2 and z —* y.

We say that — is well founded if there is no infinite sequence

X1 —> Ty —> T3z — ...

We say that y is a normal form under — if there is no z such
that y — 2. We say that y is a normal form of z under — if y is
a normal form under — and z —* y.

We say say that — is a terminating normalizer modulo an equiv-
alence relation = if — is well founded and normalizations under
— are unique up to &, i.e. if y and z are both normal forms of z
then y ~ 2.

—p Normalization Lemma: —5 is a terminating normalizer
modulo B-equivalence.

To prove the normalization lemma first note that whenever y—z 4’ the
labeling 4" provides more truth labels than does 7. Since there are only
finitely many nodes in B there can not be any infinitely long reduction chains
under the relation —g . Thus —p is well founded. Thus, to prove that —z
is a terminating normalizer it suffices to show that normal forms are unique
up to B-equivalence.

Definition: We say that — satisfies the diamond property mod-
ulo an equivalence relation = if for every z, y and z such that
z — y and z — z there exists a w and w’ such that y —* w,
z —=*w and w ~ w'.
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Diamond Lemma: If — is well founded and satisfies the dia-
mond property modulo & then for any object x in the domain
of the relation —, all normal forms of x under — are equivalent
under &, i.e. — is a terminating normalizer modulo =.

The diamond lemma as stated above is a straightforward modification of
a theorem proved by Knuth and Bendix for term rewrite systems [Knuth &
Bendix 69]. The diamond property for a given relation can be proven by
showing that individual inferences commute. More specifically if there are
two open unit clauses which each can be used to extend the partial truth
labeling in two different ways then one can perform both inferences and the
result is the same no matter which inference is performed first. Unfortunately
the situation is complicated by the possibility of contradictions but the basic
result holds: —p satisfies the diamond property modulo B-equivalence of
partial truth labelings.

Lemma: — 3 satisfies the diamond property modulo B-equivalence.

Proof: Suppose vo—p 1 and yo—p5 72 where v; is a different
labeling from 4,. From the definition of —5 there must exist
distinct literals ¥y and ¥4 such that

T = Y0[¥; := true]

and
Y2 = "}’0[\1’2 = true]

Let c¢; be the clause in B which is an open ~o-unit-clause with
unit literal ¥; and let ¢; be the clause in B which is an open
~o-unit-clause with unit literal U,.

First suppose that ¥; and ¥, are opposite literals for the same
formula node. In this case the assignment ¥, :=true will cause
U, to be false. Thus every literal in ¢; will be false under +; so
in this case v; is B-inconsistent. Similarly every literal in ¢; will
be false under -, and so in this case 7, is B-inconsistent. But if
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v, and 42 are both B-inconsistent then they are B-equivalent so
the diamond property holds.

Now suppose that the literals ¥; and ¥, involve different for-
mula nodes. Let 3 be the labeling

(v[¥; := true])[¥; := true]

Since ¥; and ¥, involve different formula nodes 3 can also be
written as
(v[¥; := true])[¥; := true]

Since ¥, and ¥, involve different formula nodes the clause c; is
still an open ~;-unit-clause. Thus if 7, is B-consistent y;—p 7a.
Similarly if 4, is B-consistent then 43— 3. Thus if both +; and
~o are B-consistent then they both reduce to ;3 so the diamond
property holds. If both 4; and 7, are B-inconsistent then they are
B-equivalent so the diamond property holds. Now suppose that
1 is B-consistent but v, is not. In this case 4; reduces to 43. But
~s is a proper extension of v, and 4, is B-inconsistent so 3 must
also be B-inconsistent. But this implies that 3 is B-equivalent
to 2 so the diamond property holds.

Since —p is well founded and satisfies the diamond property modulo
B-equivalence for partial truth labelings the Knuth-Bendix diamond lemma
implies that normalizations are unique up to B-equivalence and thus — gz
is a terminating normalization relation modulo B-equivalence. Thus, up to
B-equivalence, there is only one possible value of Np(y).

4.1.3 Semantic Soundness

For any Boolean constraint graph B the relation —p5 can be viewed as an
inference relation. It is possible to provide a simple semantics for Boolean
constraint graphs and prove that the relation —p is sound modulo this
semantics. For the most part the soundness of —5 1is self evident. However
the semantics given here provides groundwork that will be needed to prove
the soundness of semantic modulation inference relations.
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Any semantic interpretation of a set of formula nodes provides a way of
assigning every node a truth value, either true or false. Thus any semantic
interpretation of a set of formula nodes yields a complete truth labeling of
those nodes.

Definition: A partial truth labeling of a Boolean constraint
graph B is called complete if it assigns every node a truth la-
bel. Complete labelings will be called Boolean interpretations
and will be denoted with the greek letter w.

Clauses in a Boolean constraint graph and any partial truth labelings express
constraints on possible interpretations.

Definition: Let B be a Boolean constraint graph, let v be a
partial truth assignment on the nodes in B, and let w be a Boolean
interpretation of the nodes in B.

‘We say that w satisfies a clause
U, VU, V... ¥

if w makes at least one of the literals ¥; true. We say that w
satisfies the Boolean constraint graph B just in case w satisfies
every clause in B.

We say that w satisfies the partial truth labeling v if every node
that is assigned a truth label by + is assigned the same truth label
by w.

The reduction relation —5 can be viewed as a sound inference relation
in the sense that if 7y—p3 v, then every constraint in 7, is implied by the
constraints in v, and B, i.e. if w satisfies v; and B then w also satisfies ;.

—p Soundness Lemma: If w is a Boolean interpretation that
satisfies a Boolean constraint graph B and a partial truth labeling
v, and if y—p5 4/, then w satisfies 7'
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4.2 Equality Constraint Graphs

This section describes equality constraint graphs and the inference mecha-
nisms that apply to them. Sections 4.2.1 and 4.2.2 can be safely ignored by
readers who are not interested in correctness proofs.

As the name implies, equality constraint graphs are used to reason about
equality. In addition to clause links equality graphs have equality links. An
equality expresses the fact that a certain formula node represents an equation
between two other nodes. Equality constraint graphs have both formula and
non-formula nodes. The non-formula nodes in an equality constraint graph
are divided into two types: quotation nodes and non-formula non-quotation
nodes. No two quotation nodes should ever be equal. If there are n quotation
nodes then there are order n? potential equalities between these nodes; the
existence of quotation nodes eliminates the need to explicitly state that these
n? equalities are all false. In the Ontic compilation process quotation nodes
are used to represent quotation expressions of the form (QUOTE symbol).

Definition: An equality constraint graph £ consists of a set of
formula nodes, a set of clause links over the formula nodes, a set
of quotation nodes, a set of non-formula non-quotation nodes,
and a set of equality links of the form

p &S n=m
where p is a formula node in £ and n and m are any nodes in £.

Let B be the Boolean constraint graph consisting of the formula
nodes and clause links in an equality constraint graph £. We say
that B is the Boolean constraint graph underlying £.

An equality link of the form p < n = m says that the formula node p
represents the equality between nodes n and m. The Ontic compiler creates
an equality link every time it compiles an equality formula. More specifically,
every time a node of the form n¢= , 5 is created the system constructs the
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equality link
N(=ab) < Na ="y

where n, is the node representing the expression a and n; is the node repre-
senting the expression b.

The labelings of equality graphs contains both a partial truth labeling of
formula nodes and a color labeling of all nodes. The color labeling represents
information about the equality of nodes; two nodes with the same color are
considered equal.

Definition: A labeling £ of a colorable node set £ is a pair
<7, K> where « is a partial truth labeling of the formula nodes
in £ and & is a color labeling which maps every node in £ to a
color.

The notion of a labeling as defined above is meaningful independent of
the links in the graph structure £. A labeling contains information about
which formula nodes are true (or false) and information about equivalences
between nodes (both equivalences between formula nodes and equivalences
between non-formula nodes). However the links in an equality constraint
graph &£ can be thought of as constraints on labelings. More specifically, we
have the following definition of a £-inconsistent labeling.

Definition: We say that a labeling <7, k> of £ is £-inconsistent
if any of the following conditions hold:

e v is B-inconsistent where B is the Boolean constraint graph
underlying £.

e There is some equality link p < n = m in £ such that
k(n) = k(m) but y(p) = false.

e There are two distinct quotation nodes n and m in &€ such
that k(n) = k(m).




4.2. EQUALITY CONSTRAINT GRAPHS 107

e There are two formula nodes p and ¢ such that «(p) = x(q),
both v(p) and «(¢) are defined but y(p) is the opposite of

7(9)-

If a labeling £ is not £-inconsistent then we say that the labeling
<7, k> is E-consistent.

A given equality constraint graph £ is associated with an inference rela-
tion —¢ on labelings. The inference relation —¢ can extend a labeling in
one of two ways: it can add a new truth label on a formula node or it can
merge two equivalence classes by assigning both classes the same color label.
When two equivalence classes are merged the smaller class is recolored to be
the color of the larger class. This class merger operation can be defined as
follows:

Definition: If x is a color labeling of the nodes in £, and n
and m are nodes in &£ then the color map x[union(n,m)] is a
color map which yields the same equivalence relation as k except
that the equivalence classes of n and m have been merged. More
specifically, if the size of the equivalence class of n under « is less
than or equal to the size of the class of m under & then the map
k[union(n,m)] is defined as follows:

. k(m) if k(q) = k(n
wlunion(n, m)]() ={ fcgq)) othér\)vise "
The above definition specifies that the union operation recolors
the class of n to be the same color as the class of m. If the size
of the class of n under & is larger than the size of the class of
m under k then x[union(n, m)] equals s[union(m,n)]. The union
operation always recolors the smaller equivalence class.

It is now possible to define the inference relation —¢ .




-

108 CHAPTER 4. QUANTIFIER FREE INFERENCE

Definition: Let £ be a labeling of £ which is equal to the pair
<7, k>. Let L’ be a labeling of £ which is equal to the pair

<7, k'>. We write L—¢ L' if one of the following conditions
hold:

o « = £’ and v’ is derived from 7 via unit inference, i.e. y—5 v’
where B is the Boolean constraint graph underlying £.

o £ contains the link p & n = m and each of the following
conditions hold

— 7(p) = true
— &(n) # &(m)

— 4’ = 4 and £’ = k[union(n, m)]

e & contains the link p & n = m and each of the following
conditions hold
= £(n) = &(m)
— v(p) is undefined
— k' =k and 4 = v[p := true]

o & contains two formula nodes p and ¢ such that the following
conditions hold:

— £(p) = x(q)
— v(p) is defined but v(g) is not.

— k' =k and v = 7[q := v(p)]

4.2.1 Semantic Soundness

Any semantic interpretation of an equality constraint graph provides both a
truth labeling and a color labeling where two nodes have the same color just
in case they denote the same semantic object. A labeling that corresponds
to a semantic interpretation must be complete in that every formula node
must have a truth label.
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The term “possible world” comes from modal logic; there is a strong similarity
between the semantics of the graphs described in chapter 5 and the possible
world semantics of modal logic. Clause links and equality links can both
be viewed as constraints on possible worlds. A partial labeling can also be

Definition: A labeling £ of an equality constraint graph & is
called complete if £ assigns every formula node in € a truth label,
either the label true or the label false. Complete labels are also
called possible worlds.

viewed as a constraint on possible worlds.

L.

Definition: A possible world w satisfies an equality constraint
graph & just in case the truth labeling of w satisfies every clause
link in &£, no two quotation nodes of £ are assigned the same color
by w, any two formula nodes which are assigned the same color
label by w are assigned the same truth label by w, and for every
equality link p & n = m in &, the world w assigns p the label
true just in case w assigns n and m the same color label.

A possible world w satisfies a labeling £ of an equality constraint
graph &£ just in case every formula node which is assigned a truth
value by L is assigned the same truth value by w and if two
nodes n and m are assigned the same color by £ then n and m
are assigned the same color by w.

The reduction relation —¢ can be viewed as a sound inference relation
in the sense that if £;—¢ L, then every constraint in £, is implicitly present
in £ and L4, i.e. if an interpretation satisfies £ and L, then it also satisfies

—¢ Soundness Lemma: If w is a possible world that satisfies
the equality constraint graph £ and the labeling £, and if L—¢ L',
then w satisfies £’.
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4.2.2 Termination and Order Independence

Note that if L—¢ £’ then either £’ provides more truth labels than £ or £’
has fewer colors (equivalences classes) than £. Since there are only finitely
many formula nodes that can take truth labels, and since the number of
equivalence classes can not be reduced below one, the inference process must
terminate, i.e. there are no infinite inference chains of the form

Li1—¢ Lo—e La—g ...

Thus the relation —¢ is well founded.

To prove that —¢ yields a well defined normalization operation one must
show that all normal forms of a labeling £ are equivalent modulo some equiv-
alence relation. This equivalence of normal forms can be established under
the following equivalence relation.

Definition: Two labelings £ and £’ of a colorable node set &
are called £-equivalent if either both £ and £’ are £-inconsistent
or if they both provide the same partial truth labeling on the
formula nodes in £ and the color labelings in £ and £’ determine
the same equivalence relation on £.

—¢ Normalization Lemma: —¢ is a terminating normalizer
relative to £-equivalence.

The proof of the above theorem uses the Knuth-Bendix diamond lemma.
The proof that —¢ satisfies the diamond property relative to £-equivalence
is similar to the proof that — g satisfies the diamond property relative to
B-equivalence; both proofs are based on the commutativity of individual
inference reductions.

4.2.3 Running Time

The union operation used to construct «[union(n, m)] recolors the the smaller
of the two equivalence classes. This has the important consequence that every
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time the color label of a node n changes the size of n’s equivalence class at
least doubles. Let |E| be the number of nodes in €. The color label for a given
node n can change at most |log, |€|] times because if the color of n changed
more than |log, ||| times the equivalence class of n would be larger than
|€]. Since the color of a given node n can change at most |log, |€]] times the
total number of coloring operations required to normalize a labeling £ is at
most |E]|log, |€|]. Since the number of truth labeling operations is at most
|| the total number of labelings operations is order |£]log |£].

4.3 Congruence Constraint Graphs

This section describes congruence constraint graphs and the inference mech-
anisms that apply to them. Sections 4.3.1 and 4.3.2 can be safely ignored by
readers who are not interested in correctness proofs.

Congruence constraint graphs are just like equality graphs except that
they contain subexpression links. Subexpression links relate a node for a
composite expression to nodes for its subexpressions. For example a subex-
pression link might relate the node representing the expression (F00 A) to
the nodes representing FOO and A. The labeling process which uses subex-
pression links is called congruence closure. Congruence closure effectively
performs the substitution of equals for equals. For example consider a color
labeling such that the node for A and the node for B are assigned the same
color and yet the nodes for (FOO A) and (FOO B) have different colors. This
labeling would not respect the substitution of equals for equals. A color la-
beling is said to be congruence closed if it does respect the substitution of
equals for equals.

Definition: A congruence constraint graph C is of an equality
constraint graph augmented with a set of subexpression links of
the form

(mimg ... mg)=n

where n and each m; are nodes in C.
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Let & be the equality constraint graph derived from a congruence
constraint graph C by deleting all subexpression links. We say
that £ is the equality constraint graph underlying C.

A labeling of a congruence constraint graph is a labeling of the
underlying equality constraint graph.

A subexpression link of the form (m; m2 ... my) = n says that the node
n represents the application of the operator m; to the arguments m, ..
my. The Ontic compiler generates subexpression links whenever it compiles
an applicative expression. Subexpression links can be used to define a new
inference relation on labelings.

Definition: A labeling £ of a congruence constraint graph C is
called C-consistent just in case £ is E-consistent where £ is the
equality constraint graph underlying C.

For any two labelings £ and £’ of a congruence constraint graph
C we write L—¢ L' just in case £ is equality consistent and either:

o L—¢ L' where £ is the equality constraint graph underlying
C.

o L’ can be derived from £ via a congruence inference, i.e. £
is a pair <7, k> such that there are two subexpression links
(ning ... ng) =mand (p1p2 ... pr) = ¢ in S such that for
each pair m; and ¢; of corresponding subnodes k(m;) = £(¢;)
but k(n) # x(p) and L' is the pair <v, s[union(n, p)]>.

If a labeling £ is normalized relative to —¢ then there is no pair of
subexpression links satisfying the conditions for congruence inference given
in the definition of —¢ . This implies that if £ is normalized under —¢ then
L is congruence closed.
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4.3.1 Semantic Soundness

Recall that a possible world is a complete labeling, i.e. a color and truth
labeling which assigns every formula node a truth label. The links in a
congruence constraint graph can be viewed as constraints on possible worlds.

Definition: A possible world w satisfies a congruence constraint
graph C just in case w satisfies the underlying equality constraint
graph and for any two subexpression links

(mlmg ...mk)=n

and
(p1p2 ... Pr)=q

if for each m; the world w assigns m; and p; the same color then
w assigns n and ¢ the same color.

The reduction relation —¢ can be viewed as a sound inference relation
in the sense that if £;—¢ £, then the constraints in C and £ semantically
imply the constraints in £'.

—¢ Soundness Lemma: If w is a possible world that satisfies
both a congruence constraint graph C and a labeling £ of C, and
if L—¢ L', then w satisfies £’

4.3.2 Termination and Order Independence

If L—¢ L' then either £’ provides more truth labels than £ or £’ provides
fewer color labels, and thus allows fewer equivalence classes than L. Since
there can not be more truth labels than there are formula nodes, nor fewer
equivalence classes than one, every reduction chain must terminate. Thus
the relation —¢ is well founded.
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To prove that —¢ yields a well defined normalization operation one must
show that all normal forms of a labeling £ are equivalent modulo some given
equivalence relation.

—¢ Normalization Lemma: —¢ is a terminating normalizer
modulo £-equivalence where £ is the equality constraint graph
underlying C.

The above theorem is proved via the Knuth-Bendix diamond lemma and the
proof that —¢ satisfies the diamond property is based on the commutativity
of individual inferences.

4.3.3 Implementation Techniques

For any labeling £ of a congruence constraint graph .C we can define N¢(£) to
be any normal form of £ under the reduction relation —¢ . The definition of
—¢ specifies the value of N¢(L) up to £-equivalence where £ is the equality
constraint graph underlying C. Furthermore, because the size of a node’s
equivalence class at least doubles every time the node is assigned a new
color, the normalization procedure involves at most order |C|log |C| labeling
operations. The above specification however does not provide a complete
description of an efficient implementation of the normalization function Ne.
More specifically no procedure has been given for finding the clauses, equality
links, and subexpression links involved in a single step of the normalization
process.

Most labeling inferences involve a single link in the graph structure; the
inference is justified by a single link and the label of the nodes in that link.
Boolean constraint propagation based on clause links, for example, always
involves a single clause. There are certain inferences, however, that involve
two objects that are not connected by any single link. For example, to test
for consistency the system must determine if two quotation nodes have the
same color label. To quickly test for the presence of two quotation nodes
with the same color label one can maintain a hash table with entries of the
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form ¢ — n where ¢ is a color and n is a quotation node. Every time a
quotation node n is assigned a color ¢ one checks the hash table to see if
some other quotation node has been labeled with color ¢. If there is such
a node, an inconsistency is flagged. If there is no such node then one adds
a new entry to the hash table. This hash table can be maintained during
the inference process. Assuming hash lookup takes constant time, the time
needed to maintain this hash table is proportional to the number of color
labeling operations.

Another example of an inference that involves two objects not related
by a single link is congruence inference. Congruence inference, as defined in
the previous section, requires finding two subexpression links which together
justify a congruence inference. Let s be the number of subexpression links.
Searching all pairs of subexpression links for a possible congruence inference
might require order s? comparisons. Fortunately an additional data structure
can be used to eliminate the need for s? comparisons.

Each labeling of a congruence constraint graph can be augmented with
a hash table that maps tuples of colors to nodes. More specifically each
labeling is associated with a set of hash table entries of the form

<C1Cp...Cr>— M

where each ¢; is a color and n is a node. Such a table entry corresponds to
a subexpression link of the form

(mimg ... mg)=n

where each node m; has color ¢;. Using this hash table it is possible to quickly
determine if there are two subexpressions links satisfying the conditions for
congruence inference. Such a hash table can be incrementally maintained as
a labeling is normalized.

Given the hash tables described above it is possible to determine if a
labeling can be further reduced by independently examining individual links.
If a given link £ can not be used to generate an inference then £ need not be
checked again until some label changes for some node in £. The total number
of labeling operations performed on any given node is order log(n) where n
is the number of nodes in the graph. If there is some upper bound on the
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number of nodes that appear in any given link then the number of times a
given link needs to be checked is also order log(n). Thus, if e is the number
of links in the graph, and n is the number of nodes, the total number of link
checks is order elog(n) and the total number of labeling operations is order
nlog(n). Efficient congruence closure algorithms are described in [Downey,

Sethi, & Tarjan 80].




Chapter 5

Inference with Quantifiers

Focused binding and automatic universal generalization are graph labeling
inference processes that construct binding environments and quantified for-
mulas. Certain nodes in the graph structure are identified as variable nodes.
Graph labelings are used to represent variable bindings. For example if n is
a variable node and r is some other node then the binding n — r can be
represented in a graph labeling by merging the equivalence classes of n and r.
This graph theoretic binding mechanism forms the basis for an inheritance
mechanism; a binding of the form n +— r causes information known to be
true of the variable (or generic individual) n to be inherited by the particular
instance 7.

Ontic’s inference mechanisms are fully described in sections 5.1, 5.4, 5.5
and 5.6; sections 5.2 and 5.3 can be safely ignored by readers who are not
interested in correctness proofs.

5.1 Semantic Modulation Graphs

Semantic modulation graphs have two new kinds of nodes: variable nodes
which represent variables and type nodes which represent types. Semantic
modulation graphs also have two new kinds of links: type declaration links

117




118 CHAPTER 5. INFERENCE WITH QUANTIFIERS

that associate a variable with a type and type assertion links each of which
states that a certain formula node represents the statement that a certain
object (node) is an instance of a certain type.

This section describes the inference relation —s . The inference relation
—s both performs inference and generates variable bindings. However, the
relation —s is not guided by focus objects. Section 5.4 describes the relation
—s7 which is similar to —s except that the generation of variable bindings
is guided by a set F of focus objects.

Before defining semantic modulation graphs we define the preliminary
notion of a variable graph. A semantic modulation graph is a variable graph
that satisfies a certain non-circularity constraint.

Definition: A wvariable graph consists of a congruence constraint
graph together with the following:

e a classification of the non-formula non-quotation nodes into
variable nodes, type nodes, and unclassified nodes.

o A set of free variable links of the form
ngLr
Where n is a variable node. Such a link says that n rep-
resents a variable that appears free in the expression repre-

sented by r.

o A set of type declaration links; for each variable node n there
is exactly one type declaration link of the form

n:m

The node m is called the type node of n and n is called a
variable of type m.
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o A set of type formula links of the form
p e rm

where p is a formula node, r is any node, and m is a type
node. Such a link says that formula node p represents the
statement that node r is an instance of the type represented
by m.

o A set of subtype links of the form
g & m<m

where ¢ is a formula node and m and m' are type nodes.
Such a link says that ¢ represents the formula that m is a
subtype of m’, i.e. every instance of m is an instance of m/.

Let C by the congruence constraint graph derived from a vari-
able graph V by removing all free variable links, type declaration
links, type formula links, and subtype links. We say that C is the
congruence constraint graph underlying V.

It may seem that the free variable links are redundant; it seems that
one could define the free variables of a node in terms of the subexpression
links discussed in chapter 4. Since a semantic modulation graph is just a
congruence graph with additional structure these subexpression links are
part of a semantic modulation graph. Unfortunately the graph may contain
nodes that represent lambda closures (functions, types, and type generators).
These nodes represent expressions that contain free variables but these nodes
are not involved in subexpression links in a way that allows the free variables
to be determined from the subexpression links. Thus explicit free variable
links are needed.

The semantic modulation inference mechanisms manipulate bindings of
the form n — r where n is a variable node. A binding of the form n + r
can be viewed as an instruction to set the value of the variable n to the
node r. Changing the value of a given variable forces the values of certain
other nodes to change. In ordinary predicate calculus changing the value of
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a variable ¢ causes changes in the meanings of terms that contain z as a
free variable; the meaning of expressions which do not contain z as a free
variable will not change when z is changed. The situation in Ontic is slightly
more complex. Suppose that z is a variable ranging over sets and that y is
a variable of type (MEMBER-OF z). In this case changing the meaning of the
variable z may force a change the meaning of the variable y even though z
is not a free variable of y. In general if  is a variable which appears free in
the type node of of another variable y then we say that y depends on . This
notion of dependency can be defined in terms of the structure of a variable
graph.

Definition: Let s be a node in a variable graph V and let n be
a variable node in V. We say that n is a free variable of s just
in case V contains the free variable link n < s. We say that s
depends on n just in case n is a free variable of s or there is some
free variable n’ of s such that the type node of n’ depends on n.

The soundness (or validity) of the semantic modulation inference process
relies on an additional property of graphs. More specifically, the soundness
of the semantic modulation inference process requires that the type node of
a variable n does not depend on n. Intuitively this condition allows one to
assign the value of a variable without changing the type of the variable.

Definition: A semantic modulation graph S is a variable graph
such that for every variable node n the type node of n does not
depend on n.

In addition to manipulating truth and color labels, the semantic modu-
lation inference process manipulates variable bindings. More specifically, a
state of the semantic modulation inference process contains both a truth and
color labeling £ and a binding set 3 where  contains bindings of the form
n +— r where n is a variable node.

Definition: Let S be a semantic modulation graph. A binding
set B over S is a set of bindings of the form n +— r where n is
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a variable node and r is any node in S. We say that a variable
node n in S is bound under 8 if § contains a binding of the form
n +— r. If n is not bound under B then n is called 3-free.

In order to define the inference relation on semantic modulation graphs
the notion of dependence needs to be defined relative to a binding set 8.
Recall that if s depends on n then changing the value of n may force a
change in the value of s. Consider a binding of the from n +— r. In the
presence of the binding n +— r changing the value of r forces a change in
the value of n; in the presence of the binding n + r the variable n depends
on r. This observation leads to the notion of #-dependence where 3 is any
binding set. If s 3-depends on n then, in the presence of the binding set £,
changing the value of n may force a change in the value of s. The precise
semantic significance of the following syntactic definition will be discussed in
more detail in later sections.

Definition: Let 8 be a binding set over a semantic modulation
graph S.

We say that a node s B-depends on a variable node n if one of
the following conditions hold:

e 1 is a free variable of s.

o There exists a free variable n’ of s such that n’ is bound
under 8 with binding n’ — r and r -depends on n.

o There exists a free variable n’ of s such that n’ is not bound

under S, i.e. is B-free, and the type node for n’ B-depends
on n.

I will use the term direct dependence to refer to the standard notion of
dependence as distinct from S-dependence. If 5 is empty then 3-dependence
is the same as direct dependence. In the definition of B-dependence the
presence of a binding of the form n +— r causes the variable node n to be
treated as a copy of the node r.
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The inference relation —s for semantic modulation graphs operates on
binding labelings where each binding labeling consists of a truth and color
labeling together with a binding set.

Definition: Let S be a semantic modulation graph.

A truth and color labeling of S is a labeling £ of the congruence
constraint graph underlying S.

A binding labeling T of S consists of a truth and color labeling £
of S together with a binding set 8 over S.

Before generating a binding of the form n +— 7 the system must be sure that
r is an instance of the type of n. More specifically, for any given truth and
color labeling £ and any node r it is possible to collect a set of types known
to contain r as an instance. These types are called the established types for
r.

bf Definition: Let £ be a truth and color labeling of a semantic
modulation graph & and let r be any node in §. The set of £-
established-type-nodes for r is the least set of type nodes satisfying
the following conditions:

o If there exists a type formula link p <& r:m in § such
that £ assigns p the label true then the node m is an £-
established-type-node for r.

o If v’ is a node which is assigned the same color as r under
the labeling £ then all L-established-type-nodes for r’ are
also L-established-type-nodes for r.

o If m is an L-established-type-node for r and m’ is assigned
the same color as m under £ then m’ is also an L-established-
type-node for r.

o If m is an L-established-type-node for r and S contains a
subtype link p & m < m’ such that £ assigns p the label
true then m’ is an L-established-type-node for r.
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Before generating a binding of the form n — r the system must be sure
that this binding can be satisfied. For example suppose that n ranges over
numbers and consider the binding n +— n + 1. This binding is well typed
because n ranges over numbers and n +1 is always a number. However there
is no interpretation which assigns n the same number as n + 1. The system
ensures that a binding of the form n + r can be satisfied by checking that
r does not depend on n, i.e. that it is possible to set the value of n to the
value of r without changing the value of r. It is now possible to define the
inference relation —gs .

Definition: Let 7 be a binding labeling of S which consists of
the truth and color labeling £ and the binding set 8. let 7’
be a binding labeling of § which consists of the truth and color
labeling £’ and the binding set 5.

We write 7 —s T'if L—¢ L' where C is the congruence constraint
graph underlying S and 8 = ' or if there exists a node r in S,
an L-established-type-node m for r, a variable n of type m such
that the following conditions hold:

¢ 7 does not S-depend on n.
o n is B-free (i.e. not bound under B).

o ' = pU{n — r} and L’ is the truth and color labeling
which results from £ by merging the equivalence classes of
-n and r.

The bindings generated by —s can not be deduced from information in
the graph; the process which generates bindings is non-deductive. However
it is possible to assign semantic meaning to binding labelings of semantic
modulation graphs in such a way that the relation —5 can be proven to be
semantically sound.
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5.2 Semantic Soundness

This section proves the semantic soundness of the inference relation —gs .
The inference relation —s 1is fully specified in section 5.1 and those readers
not interested in correctness proofs can safely ignore this section.

Before one can prove a soundness theorem for the relation —s one must
define a semantics for semantic modulation graphs. A semantics for a se-
mantic modulation graph is a set of possible worlds analogous to the possible
worlds in a model of modal logic. Given this semantics it is easy to state
the soundness theorem for the inference relation —g . The proof of the —g
soundness theorem requires the notion of a W-valid binding labeling; the
relation —g preserves the W-validity of binding labelings. Unfortunately
the definition of a W-valid binding labeling is fairly complex. Furthermore
the proof that —s preserves W-validity is quite long and has been relegated
to a separate section. This section defines the semantics of semantic modu-
lation graphs, states the —s soundness theorem, and defines the notion of
W-validity which is preserved by —s .

5.2.1 Semantics

Semantic modulation graphs have a more sophisticated semantics than any
of the graphs used for purely quantifier free inference. The soundness results
for Boolean constraint graphs, equality constraint graphs and congruence
constraint graphs were stated in terms of a single possible world w. On the
other hand the soundness result for semantic modulation graphs is stated
in terms of a set W of possible worlds. The set W of possible worlds is
analogous to a semantic model of a modal logic.

The graphs generated by the Ontic compiler have an intended semantics
which is a special case of the general semantics defined in this section. Each
node in a graph generated by the Ontic compiler is associated with an expres-
sion in the formal language Ontic. Expressions in the language Ontic have a
semantics which is defined in terms of a universe of sets. More specifically,
the meaning of an Ontic expression is defined relative to a universe and an
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interpretation of each variable as an object in that universe which is an in-
stance of the type of the variable. Consider a fixed universe and consider all
the type-respecting variable interpretations over that universe. Each type-
respecting variable interpretation over a fixed universe determines a truth
value for every Ontic formula and a meaning (value) for every Ontic expres-
sion. The meanings can be treated as colors and thus each type-respecting
variable interpretation provides a truth and color labeling the graph gener-
ated by the Ontic compiler. Each such truth and color labeling is complete in
that every formula node has a truth label. The set of truth and color label-
ings that c