
0

0

0

k

L

0

L

TN el IV 7 v A A A /T x% A I eo% too -A
I-JUVILL J-71s 1V1UjtX11CSLC1-

�41T Artificial Intelligence Laboratory

Technical Report 979

ONTIC:

A Knowledge Representation System

for Mathematics

by

David Allen McAllester

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 1987 in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy in
Computer Science

Abstract: Ontic is an interactive system for developing and verifying math-
ematics. Ontic's verification mechanism is capable of automatically finding
and applying 'information from a library containing hundreds of mathemati-
cal facts. Starting with only the axioms of Zermelo-Fraenkel set theory, the
Ontic system has been used to build a data base of definitions and lemmas
leading to a proof of the Stone representation theorem for Boolean lattices.
The Ontic system has been used to explore issues in knowledge representa-
tion, automated deduction, and the automatic use of large data bases.

----- -1- I

Hi

Acknowledgments: This thesis would never have been completed without
the unending encouragement of my thesis supervisor Gerry Sussman. Albert
Meyer forced me to clarify my thinking and to demonstrate the utility of my
ideas by constructing a working system. Jonathan Rees provided stimulating
discussions and useful feedback as the first user of the Ontic formal language.
I would also like to thank all the people who read and commented on early
versions of the thesis.

This thesis describes research done at the Artificial Intelligence Laboratory
at the Massachusetts Institute of Technology, supported by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval
Research contract N00014-86-K-0180.

--- , *,m opm

/on en s

Ontic in Brief 1

1 I The Nature of Natural Arguments 4

1.2 Ontic as a Formal Language 6

1.2.1 Types . 7

1. 2.2 Term s . 8

1. 2.3 Formulas . 1 0

1.2.4 Definitions . 11

1.2.5 Summary . 13

1.3 Examples of Verification . 14

1.4 The Inference Mechanisms . 35

1.4.1 Inference Mechanisms for Quantifier-Free Logic 36

1.4.2 Generic Individuals, Classification, and Focused Binding 37

1.4.3 Automatic Universal Generalization 40

1.4.4 The Size of the Graph Structure 43

v

-- - -11 -i �% * , -4 *�- I..",".-,,*,%�mm

vi CONTENTS

2 Comparison with Other Work

2.1 Inference Mechanisms Similar to Ontic's

2.1.1 Constraint Propagation

2.1.2 Congruence Closure

2.1.3 Focused Binding as Inheritance

2.1.4 Automatic Universal Generalization

2.2 Focused Binding vs. Unification

2.2.1 Unification Relative to Equational Theories

2.2.2 Unification Relative to Taxonomic Theories

45

46

46

48

48

50

51

52

55

56

58

59

60

60

62

67

70

70

72

74

2.2.3 Higher-Order Unification

2.3 Inference Mechanisms Unlike Ontic's

2.3.1 Automath .

2.3.2 The Davis-Putnam Procedure

2.3.3 Resolution and its Variants

2.3.4 Rewriting Mechanisms

2.3.5 Natural Deduction Systems

2.4 Issues in Automated Reasoning

2.4.1 Expressive Power .

2.4.2 Declarative Representations

2.4.3 Forward Chaining .

3 Ontic as a Cognitive Model 75

i

CONTENTS vii

3.1 Superhuman Performance . 77

3.1.1 Examples of Superhuman Performance 77

3.1.2 A Very Fast Parallel Architecture 79

3.1.3 Substitution Constraints 81

3.1.4 Superhuman Performance Re-Examined 82

3.2 Subhuman Performance . 83

3.2.1 Weaknesses in the Lemma Library 83

3.2.2 Mathematical Induction 84

4 Quantifier Free Inference 91

4.1 Boolean Constraint Graphs 92

4.1.1 Compiling Boolean Combinations 96

4.1.2 Order Independence for Boolean Inference 100

4.1.3 Semantic Soundness 103

4.2 Equality Constraint Graphs 105

4.2.1 Semantic Soundness 108

4.2.2 Termination and Order Independence 110

4.2.3 Running Time . 110

4.3 Congruence Constraint Graphs 111

4.3.1 Semantic Soundness 113

4.3.2 Termination and Order Independence 113

4.3.3 Implementation Techniques 114

viii CONTENTS

5 Inference with Quantifiers 117

5.1 Semantic Modulation Graphs 117

5.2 Semantic Soundness . 124

5.2.1 Sem antics . 124

5.2.2 The Proof of the +s Soundness Theorem 127

5.3 Proof of the -+s Preservation Theorem 131

5.3.1 P-Dependency-Paths 132

5.3.2 Minimal-O-Assignments 134

5.3.3 The +s Preservation Theorem 137

5.3.4 Proof of the Frst Minimal Assignment Lemma 141

5.4 Focus, Termination, and Order Independence 146

5.4.1 Termination and Order Independence 148

5.5 Assum ptions . 154

5.5.1 Proof of the --+SA Soundness Theorem 156

5.5.2 Combining Assumptions and Focus Objects 160

5.5.3 Termination and Order Independence 160

5.6 Automatic Universal Generalization 162

5.6.1 Semantic Soundness 167

5.6.2 Assumptions . 171

5.6.3 Soundness under Assumptions 174

5.6.4 Focus, Termination and Order Independence 175

CONTENTS ix

6 The

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

7 The

7.1

7.2

7.3

7.4

7.5

7.6

Ontic Language

Non-Mini'mality of the Ontic Language

The Ontic Language

Binding and Freedom

Translating External Expressions

Substitution

M acros .

Definitions .

Summary .

177

. 177

. 180

. 185

. 188

. 191

. 194

. 197

. 198

Ontic Compiler 199

An Overview of Compilation 199

A-Types and Variables 203

Meaning Postulates with Quantifiers 206

Reification Expressions . 211

Miscellaneous Meaning Postulates 212

Sum m ary . 214

8 Some Potential Applications

S. I Interactive Knowledge Bases

8.2 Software Verification .

8.3 Common Sense and Default Reasoning

217

. 219

. 220

. 221

CONTENTSx

9 A Summary of Ontic 225

A The Stone Representation Theorem

A. I Fundamentals

A.2 Pairs, Rules and Structures

A .3 M aps .

A.4 Relations, Choice, and Relation Structures

A-5 Partial Orders and Zorn's Lemma

A .6 Lattices

A.7 Bounded, Distributive and Complemented]

A.8 Sublattices

A.9 Lattice Morphisms

A.10 Filters and Ultrafilters

A-11 The Stone Representation Theorem

229

231

253

261

275

285

305

319

327

335

341

353

. . .

. . .

. . .

Lattices

. . .

a er

0 0 0
n ic in rie

Ontic is a computer system for verifying mathematical arguments. Starting

with the axioms of Zermelo-Fraenkel set theory, including Zorn's lemma as

a version of the axiom of choice, the Ontic system has been used to to define

concepts involving partial orders and lattices and to verify a proof of the

Stone representation theorem for Boolean lattices. This theorem involves an

ultrafilter construction and 'is similar 'in complexity to the Tychonoff theorem

in topology which states that an arbitrary product of compact spaces i's

compact. The individual steps 'in the proof were verified with an automated

theorem prover. The Ontic theorem prover automatically accesses a lemma

library containing hundreds of mathematical facts; as more facts are added

to the system's lemma library the system becomes capable of verifying larger

inference steps.

The Ontic theorem prover is based on what I call object-oriented 'in-

ference. Object-oriented 'inference i's a forward chaining inference process

applied to a large lemma library and guided by a set of focus objects. The

focus ob'ects are terms in the sense of first order predicate calculus; they

are expressions which denote objects. It is well known that unrestricted for-

ward chaining starting with a large lemma library leads to an mmediate

combinatorial explosion. However, the Ontic theorem prover is guided by

the focus objects; the inference process is restricted to statements that are,

in a technical sense, about the focus objects. Thus the inference process

1

2 CHAPTER 1. ONTIC IN BRIEF

is "object-oriented". In verifying an argument the user specifies the set of
focus objects. For example the user may tell the system to consider an ar-
bitrary lattice L, an arbitrary subset of L, and an arbitrary member x
of S. Ontic's inference mechanisms are restricted to a finite set of formulas
that are about the given focus objects. Certain forward chaining constraint
propagation techniques can be effectively applied to this finite set of formu-
las. Natural language mathematical arguments, like those found in textbooks
and journals, appear to be ob'ect-oriented 'in the sense that they instruct the
reader to focus on certain objects. Thus Ontic's object-oriented 'Inference
mechanisms seem well suited for verifying natural arguments.

There are two motivations for building a system for verifying natural
arguments. First there 'is an engineering motive: a sufficiently powerful me-
chanical verifier could have a variety of 'Important practical applications,
such as ensuring the correctness of mathematical arguments, the correctness
of software systems, and the correctness of engineered devices in general. Sec-
ond, the construction of a verification system for natural arguments can be
motivated n terms of cognitive psychology. A verification system for natural
arguments provides a computational model of the human cognitive processes
involved in verifying arguments. The plausibility of such a cognitive model
can be judged by comparing the length and structure of the arguments ac-
ceptable to people with the length and structure of arguments acceptable to
the cognitive model.

T he engineering motive and the cognitive model motive for building ver-
ification systems are not independent; a verification system that 'is a good
cogn'tive model is likely to be pragmatically useful. More specifically, a

'fication sys is a go
veri tem ' od cognitive model to the extent that arguments
acceptable to the model are similar to the arguments acceptable to people.
Thus if a verification system i's a good cognitive model then it should be easy
to convert arguments that are acceptable to people to arguments that can
be verified by the system; a system that is a good cognitive model provides
a good "impedance match" between the human user and the verification
system.

On the other hand the two motivations for verifications system, the en-
gineering motive and the cognitive model motive, are different motivations

3

with derent criteria for success. A verification system that exhibits clearly
superhuman performance 'in 'Its ability to verify statements is a bad cogni-
tive model but a good verifier from an engineering point of vew. It turns
out that Ontic's mechanism for reasoning about equality, congruence closure,
leads to some clear examples of superhuman performance on the part of the
Ontic system. Thus congruence closure is not a good cognitive model for the
way people reason about equality-there are equality reasoning mechanisms
which are weaker than congruence closure which provide better cognitive
models. However, from an engineering point of view congruence closure is
better than the weaker mechanism (at least on serial machines). The anal-
ysis of congruence closure as a bad cognitive model is presented 'in detail in
chapter 3.

The Ontic system was designed with both motivations in mind-an at-
tempt was made to make the system a pragmatically eective verification
system and the same time to make the system a rough model of human math-
ematical cognition. The Ontic system should be judged on two ndependent
grounds relative to these two goals. First, one can evaluate the system as
an engineered device for verifying proofs by attempting to use the system
for that purpose. Second, one can attempt to evaluate the system as a cog-
nitive model by judging the similarity between natural language arguments
acceptable to people and formal arguments acceptable to the system.

The remainder of this chapter 'is divided 'Into four sections. The first
section briefly discusses the nature of natural language mathematical argu-
ments. The second section of the chapter discusses the formal language used
in the Ontic system. The third section describes the user-level interface to the
system and gives several examples of arguments verified by the system. The
fourth section describes the object-oriented 'inference mechanisms in more
detail.

The relationship between Ontic and previous work in reasoning, knowl-
edge representation, and theorem proving is discussed 'in detail in chapter 2.
Chapter 3 presents an analysis of the Ontic system as a cognitive model giv-
ing examples of both superhuman and subhuman performance on the part of
the Ontic system. Chapters 4 and give a mathematically precise account of
the inference mechanisms as marker propagation algorithms on certain kinds

4 CHAPTER 1. ONTIC IN BRIEF

of graph structure. Chapter 6 gives a mathematically precise definition of the
Ontic formal language and chapter 7 gives a mathematically precise account
of the compilation process by which expressions 'in the formal language are
converted into graph structure. Chapter lists some potential applications
of automated 'Inference systems such as Ontic and chapter 9 summarizes the
main features of the Ontic system.

ill The Nature of Natural Argurnents

By a "natural mathematical argument" I mean a proof written in a natural
language, such as English, that would be acceptable as a fully worked out
proof 'in a textbook or journal article. A natural mathematical argument
consists of a sequence of natural language statements and the human reader
is expected to use hs or her knowledge and 'intelligence to see that each step
clearly and necessarily follows from the previous steps. As an example of a
natural argument consider the following proof that the square root of 2 'is
irrational.

Suppose that the square root of two were rational, i.e.

P 2
- 2
q2

The squares p 2 and q 2 must each have an even number of prime
factors. Thus if 2Iq 2'is an 'Integer then this integer must also
have an even number of prime factors. But 2 has only a single
prime factor so p 2Iq 2cannot equal 2.

This argument is perfectly rigorous; every step clearly follows from the
previous steps and the conclusion 'is clearly established; v/2 must be irra-
tional. However understanding this argument requires knowing certain facts
about arithmetic and multisets. More specifically the above argument im-
plicitly rests on the following facts:

1.1. THE NATURE OF NATURAL ARGUMENTS 5

1. The fundamental theorem of arithmetic - every natural number has
a unique multiset of prime factors.

2- The multiset of factors of p is the multiset union of the prime factors
of p wth 'Itself.

3. The multiset union of a multiset with 'Itself has an even number of
members (an even multiset cardinality).

4. If p1q is an integer then the multiset of prime factors of q must be a
subset of the multiset of prime factors of p.

5. If p1q is an 'Integer then the multiset of prime factors of p1q 'is the
multiset dfference of the prime factors of p and the prime factors of q.

6. If the multisets ml andM2both have an even number of members and
M2 is a subset of ml then the multiset difference of ml andM2 has an
even number of members.

The fundamental theorem of arithmetic 'is a deep theorem nvolving sev-
eral induction proofs. It seems quite likely that people have simply memo-
rized this fact and use it freely. The other facts 'in the above lst have simpler
proofs given the fundamental theorem of arithmetic). However, an explicit
proof of any one of the above facts would be at least as long as the above
proof that the square root of 2 is irrational. Furthermore, each of the above
facts seems to be generally useful and thus it seems likely, or at least plau-
sible, that people have memorized each of the above facts in addition to the
fundamental theorem of arithmetic. People seem capable of using facts, such
as the fundamental theorem, unconsciously; when reading the above natural
argument one is not consciously aware of using the fundamental theorem of
arithmetic. The above example suggests that people verify mathematical ar-
guments by using knowledge they already have about the concepts involved
and by applying that knowledge unconsciously in verifying the steps of the
argument.

CHAPTER 1. ONTIC IN BRIEF6

L2 Ontic as a Forynal Language

The Ontic system cannot read natural language-before an argument can
be verified it must be translated nto a machine readable form. The Ontic
system manipulates formulas n the formal language called Ontic. The Ontic
language is a syntactic sugar for first order set theory. The design of this
syntactic sugar was driven by two motivations. First, the language 'is designed
to be as similar as possible to natural language while still being smple and
mathematically precise. Most atomic formulas n the Ontic language consists
of a subject "noun phrase" and a predicate "verb phrase". In addition to
being similar to natural language, the syntactic structure of the Ontic formal
language facilitates the object-oriented 'Inference mechanisms used in the
system. Object-oriented inference is guided by a set of focus objects. The
inference mechanisms "type" the focus ob'ects-the system assigns a set of
types to each focus object. In the Ontic system a type is any predicate of one
argument; the types assigned to a focus object are predicates that are known
to be true of that ob'ect. The syntax of the Ontic language is designed to
facilitate thi's typing process; most atomic formulas state that a particular
type applies to a particular object.

In the Ontic language there is no distinction between types, classes, sorts,
and predicates of one argument. For an object x and type -r the phrases r
contains x" x is an instance of r" and "r is true of x" all mean the same
thing. The word type 'is used, as opposed to the word class or predicate,
because Ontic types are used in much the same way that types are used
in computer programming languages; functions in the formal language can
only be applied to arguments of the appropriate type and thus there is a
distinction between "well-typed" and "ill-formed" expressions. For example,
cons'der a function TOPOLOGICAL-CLOSURE such that if X is a topological

space and A i's a subset of X then

(TOPOLOGICAL-CLOSURE A X)

denotes the topological closure of A as a subset of X. An application of the

operator TOPOLOGICAL-CLOSUREI's well typed just 'in case its second argument

denotes a topological space and its first argument denotes a subset of that

1.2. ONTIC AS A FORMAL LANGUAGE 7

space. The above expression is well typed but the expression

(TOPOLOGICAL-CLOSURE X A)

that results from reversing the arguments is not well typed because A i's not

a topological space and X need not be a subset of A.

Rather than give a rigorous syntax and semantics for the Ontic language,

this section discusses the language informally and largely by example. A more

rigorous treatment 'is presented 'in chapter 6 Every expression of the Ontic

language belongs to exactly one of five syntactic categories; an expression

is either a term a formula a function expression, a type expression, or a

type generator expression. Terms are expressions that denote objects.' A

formula is an expression which denotes one of the Boolean truth values true

or false.' A function expression denotes a mapping from objects to objects.

Each function expression takes a fixed number of arguments and returns an
4object.' Type expressions are predicates of one argument. A type generator

expression denotes a mapping from objects to types. Each type generator
5expression takes a fixed number of arguments and returns a type.

1.2.1 Types

Figure 1 A lsts some type expressions. The first five type expressions in figure

1.1 are type symbols. The types THING and SET are primitive type symbols

in the Ontic system. The Ontic system allows for the possibility that there

are instances of the universal type THING, such as symbols, which are not in-

stances of the type SET. Each of the types GROUP, TOPOLOGICAL-SPACE, and

RIEMANNIAN-MANIFOLD can be defined in terms of more primitive concepts.

'A term is an expression of kind OBJECT. It is consistent with axioms of the logic to
assume that all objects are actually sets in a standard model of ZFC set theory. However,
it is more natural, and equally consistent, to assume that there exist objects which are
not sets.

'A formula is an expression of kind BOOLEAN.
'Function expressions have kind OBJECT x OBJECT x ... x OBJECT --+ OBJECT.
4TvDe expressions have kind OBJECT --+ BOOLEAN.
5Type generator expressions have kind OBJECT x OBJECT x x OBJECT --+ TYPE.

8 CHAPTER 1. ONTIC IN BRIEF

THING, SET, GROUP, TOPOLOGICAL-SPACE, RItMANNIAN-MANIFOLD

(MEMBER-OF s), (LOWER-BOUND-OF s p)

(LAMBDA ((x 7)) D(x))

(EITHER x y)

(AND-TYPE 2)

(OR-TYPE 2)

Figure 1.1: Ontic Type Expressions

The next two type express' e ty

ions ar Pes that result from applying type gen-
erators to arguments. If a terms denotes a set then (MEMBER-OF s) is a type

expression such that an object is an instance of the type (MEMBER-OF just
in case it 'is a member of the set 8.6 Instances of the type

(LOWER-BOUND-OF s p)

are members of the partially ordered set p which are lower bounds of the

subset of p. One place lambda predicates are also type expressions. The
instances of the type

(LAMBDA ((x 7)) D(x))

consist of exactly those instances x of the type -r which satisfy the formula

(D(x). The type (EITHER X Y contains only theinstances X and Y. The type

(AND-TYPE rl -r2) contains exactly those objects which are instances of both

the types and 2 The type (OR-TYPE 2 contains exactly those things
which are instances of ether of the types or 2

1.2.2 Terms

Figure 12 gives some Ontic terms. There are several ways of constructing

terms 'in Ontic. The application of a function to arguments is a term. If

'The term s denotes an object while the expression (MEMBER-OF denotes a type; no
expression is allowed to be both a term and a type.

, , II , " O imll III

1.2. ONTIC AS A FORMAL LANGUAGE 9

(fun xi X2 - - -)

(THE-SET-OF-ALL 7)

(THE-RULE fun)

(THE 7)

symbol

Figure 12: Ontic Terms

is a "small" type expression then the expression (THE-SET-OF-ALL r is a

term which denotes the set of all 'Instances of r. The process of converting a

type to a set 'is called rei cation and sets of the form

(THE-SET-OF-ALL 7)

are often called reified types. It is important to remember that there is a

syntactic distinction between terms (which denote objects) and type expres-

sions (which denote predicates). There are types, such as the type THING,
which can not be converted to sets-there is no set of all things. Most of the
axioms of Zermelo-Fraenkel set theory state that certain sets exist. One can

view these axioms as saying that certain types can be converted to sets. In'

the Ontic system these axioms of set theory are incorporated into the notion

of a syntactically small type expression; the operator THE-SET-OF-ALL can

only be applied to syntactically small type expressions. The notion of a syn-

tactically small type expression, and the relation between this notion and the

axioms of set theory, are dscussed 'in more detail 'in chapter 6 section 61.

If fun 'is a function of one argument then the term (THE-RULE fun) de-

notes the "rule" that corresponds to the function. The relationship between

functions and rules i's analogous to the relationship between types and sets-

the expression (THE-RULE fun) is a term and denotes an ob'ect while fun

is a function expression. Expressions of the form (THE-RULE fun) are often

referred to as reified functions. There exist functions which can not be reified

as rules, e.g any function defined on all sets, such as the function that maps

an arbitrary set to its power set, 'is too bg to be reffied as a rule.

----I -0 wo--

CHAPTER 1. ONTIC IN BRIEF10

If 'is a type with exactly one instance then the expression (THE r 'is a

term which denotes the single object contained in the type. For example, 'if

(PRIME-NUMBER-BETWEEN n m)

is a type whose instances are the prime numbers between n and m then

(THE (PRIME-NUMBER-BETWEEN 20 25))

denotes the number 23.

Expressions of the form I symbol are also terms. For example the expres-

sion I FOO denotes the symbol FOO. Quoted symbols denote objects which are

instances of the type SYMBOL. The Ontic. system allows for the possibility

that all ob'ects are sets i.e. that every object is an element of a model of

Zermelo-Fraenkel set theory. However, the Ontic, system also allows for a

more natural interpretation under which rules and symbols are not sets-the

types SET, RULE, and SYMBOL can be assumed to be dis'oint.

1.2.3 Formulas

Figure 13 gives some Ontic formulas. The formula (IS x -r) is true just in

case x denotes an 'instance of the type . Formulas of this form are intuitively
pleasing because they seem to reflect natural language syntax-x is a subject

"noun phrase" and the type is a predicate that applies to the subject. The

formula (EXISTS-SOME -r) is true 'ust 'in case there exists an 'Instance of .

The formula

(EXISTS (xl 1) (X2 72) ... 41�(Xl i X2)

is true just 'in case there exists instances a,, a2 ... anof the types r,,r2,...,r3

respectively such that such that 41) 'is true when the variablesX1, X2, X", are

interpreted as a,, a2 ... a,, res ectively. The formula

(FORALL (xl 1) (X2 TO ... (D(XI, X2,

has the obvious analogous meaning. The formula (EXACTLY-ONE r is true

just in case there i's exactly one nstance of the type r. The formula

(IS-EVERY r 2

00.01

1.2. ONTIC AS A FORMAL LANGUAGE 11

(I S x r)

(EXISTS-SOME)

(EXISTS xi 1) (X2 2 ... 4)(X1, X2,

(FORALL (xl 1) (X2 '72) (D(X1i X27 - -

(EXACTLY-ONE 7)

(IS-EVERY 7 2)

(NOT)

(AND 4D, (N)

Figure 13: Ontic Formulas

is true just in case every instance of r, is an instance of 2. Of course Boolean

combinations of formulas are also formulas.

1.2.4 Definitions

Figure 14 gives some examples of definitions of functions and type gener-

ators. Functions are defined with the DEFTERM construct as shown 'in the

first example. In the first example the function POWER-SET i's defined to be

equivalent to the lambda function

(LAMBDA ((S SET)) (THE-SET-OF-ALL (SUBSET-OF S)))

Thus the function POWER-SET takes one argument which must be a set and

returns the set of all subsets of that set. Types and type generators are

defined with the DEFTYPE construct. The second definition in figure 14 de-

fines LOWER-BOUND-OF to be a type generator which takes two arguments: a

set s and a poset p where the set is required to be a subset of the set of

elements of p. The type generator LOWER-BOUND-OF takes these arguments

and returns a type: a predicate of one argument. An object x is an element

of the type (LOWER-BOUND-OF s p) 'ust in case x is an element of the un-

derlying set of the poset p and every member of the set is greater than or

CHAPTER 1. ONTIC IN BRIEF12

(DEFTERM (POWER-SET (S SET))

(THE-SET-OF-ALL (SUBSET-OF S)))

(DEFTYPE (LOWER-BOUND-OF

(S (SUBSET-OF (U-SET P)))

(P POSET))

(LAMBDA ((X. (MEMBER-OF (U-SET P))))

(IS-EVERY (MEMBER-OF)

(GREATER-OR-EQUAL-TO X P))))

(DEFTYPE (GREATEST-LOWER-BOUND-OF

(S. (SUBSET-OF (U-SET P)))

(P POSET))

(LAMBDA ((X, (LOWER-BOUND-OF S P)))

(IS-EVERY (LOWER-BOUND-OF S P)

(LESS-OR-EQUAL-TO X P))))

(DEFTYPE COMPLETE-LATTICE

(LAMBDA UP POSET))

(FORALL US (SUBSET-OF (U-SET P))))

(EXISTS-SOME (GREATEST-LOWER-BOUND-OF S P)))))

Figure 14: Some Ontic Definitions

1.2. ONTIC AS A FORMAL LANGUAGE 13

equal to x under the ordering imposed by the poset p. The type generator
GREATEST-LOWER-BOUND-OFl's similar to LOWER-BOUND: it takes a set and a

poset p where is a subset of the underlying set of p and yields a type. An
object x 'is an element of the type (GREATEST-LOWER-BOUND-OF s p) just in

case x is a lower bound of in the poset p and every lower bound of in p

is greater or equal to x. The type COMPLETE-LATTICE is defined so that an

ob'ect p 'is of type COMPLETE-LATTICE just in case p is a poset such that for

every subset s of the underlying set of p there exists a greatest lower bound

of .9 under the ordering 'imposed by p.

The type restrictions on the formal parameters of functions and type

generators determine a distinction between well-typed and ill-formed expres-

sions. The Ontic system will not invoke the definition of a function or type

generator unless the arguments to the function or type generator have been

proven to be of the correct type; the Ontic system effectively type-checks

expressions before it expands definitions. Gven the expressive power of the

Ontic type system, however, one can easily show that there are well-typed

expressions which fail to type check. In the Ontic system type checking 'in-

volves theorem proving based on a lemma library. Many of the lemmas of the

lemma library state that certain objects have certain types; not surprisingly,

such lemmas play an important role 'in determining 'if an expression 'is well

typed. It is often the case that a given expression fails to type check using

one lemma library but succeeds 'in type checking given a stronger lemma

library.

1. 2.5 S ummary

In addition to providing a distinction between well-typed and ill-formed ex-

pressions, the Ontic type vocabulary seems to allow for concise and natural

formal statements. For example the IS-EVERY phrase constructor allows the

concise expression of statements that would normally require explicit quan-

tification Smilarly, the EXISTS-SOME phrase constructor uses the type vo-

cabulary to make concise existential statements. Types are also used drectly

by the phrase constructors THE-SET-OF-ALL, THE, and EXACTLY-ONE.

The definitions 'in figure 14 should provide an 'Indication of the con-

14 CHAPTER 1. ONTIC IN BRIEF

ciseness and expressive power of the Ontic language. Jonathan Rees spent
about a month defining various mathematical concepts in Ontic. Starting
with only the fundamental notions described above, he used the Ontic lan-
guage to formally define groups, rings, 'Ideals in a rng, fields, the natural
numbers, the real numbers (defined both as a totally ordered complete field
and as Dedekind cuts), topological spaces, continuous functions, homotopy
of maps between topological spaces, the fundamental group of a topological
space, differentiable functions on the reals, the derivative of a function, the
notion of a category and products and limits in arbitrary categories. The ease
with which Rees expressed these concepts suggests that any mathematical
concept can be readily expressed 'in Ontic.

1,3 Exan-iples of Verification

Object-oriented 'Inference operates in a context. A context consists of three
things: a lemma library, a set of focus objects and set of suppositions about
the focus objects. Figure 1.5 gives a block diagram of the object-oriented
inference mechanisms used n the Ontic system. The nference process i's
forward chaining; it draws conclusions from the lemma library wthout being
given any goal formula. It is well known that unrestricted forward chaining
from a large lemma library leads to an 'Immediate combinatorial explosion
- vast numbers of formulas are generated where each formula can be de-
rived from the gven lemmas in only a few steps. The forward chaining
inference mechanisms used in the Ontic system, however, are guided by the
focus objects. The focus objects are Ontic terms, expressions that denote ob-
jects. The system restricts its inference process to formulas that are in some
sense "about" the focus objects. There are four basic inference mechanisms:
Boolean constraint propagation, congruence closure, focused binding (also
called semantic modulation), and automatic universal generalization. The
first two inference mechanisms are well known inference procedures for the
quantifier-free predicate calculus with equality. The last two inference mech-
anisms are unique to the Ontic system. These four inference mechanisms are
discussed 'in section 14 and again 'in more detail 'in chapters 4 and 5. In a
given context the four forward chaining inference mechanisms generate a set
of formulas about the focus objects called "obvious truths".

Lemma Library

Focus Objects

Suppositions

1.3. EXAMPLES OF VERIFICATION 15

Boolean Constraint Propagation

Congruence Closure

Focused Bnding

Automatic Universal Generalization

Obvious Truths

Figure 1.5 A Block Dagram of Ob'ect-Oriented Inference

,I I I I I � I I . L . I I I - - I I i , , , - , -; � �I

(let-be F family-of-sets)

(let-be S set)

(suppose (is-every (member-of F) (superset-of S)))

Ontic Listener

Ontic Stack
3 (SUPPOSE (IS-EVERY (MEMBER--OF F) (SUPERSET-OF S))

2 (LET-BE SET)

I (LET-BE F FAMILY-OF-SETS)

16 CHAPTER 1. ONTIC IN BRIEF

Figure 16: The Ontic Interpreter Dsplay

1.3. EXAMPLES OF VERIFICATION 17

The Ontic interpreter is an interactive system for verifying proofs. Each
step in an argument 'is associated with a context, i.e. a set of focus objects,
a set of suppositions about the focus objects and the current lemma library.
The user tells the system when to enter new contexts, when to leave old
contexts, and when to "note" a fact that has been established in a given
context. Fgure 16 shows the display of the Ontic interpreter as seen by a
user who is about to verify a fact concerning families of sets. The top half of
the display is a Lisp listener: a window for 'Interacting with a Lisp interpreter.
The bottom half of the display shows the context stack which dsplays the
set of suppositions and focus objects for the current context. In the example
shown in figure 16 the user first instructs the system to let F be a family of
sets. This caused the system to enter a context in which 'it is focusing on an
arbitrary family of sets denoted by F. The user then 'Instructs the system to
let be any set. This causes the system to enter a context where it is focusing
on an arbitrary set S. Finally the user instructs the system to suppose that
every set 'in the family F is a superset (i.e. contains) the set S. Each time
a new context is entered, the nstruction for entering that context is pushed
onto the context stack shown in the bottom half of the display. By looking
at the context stack display one can determine the set of focus objects and
suppositions that are currently active.

Figures 17 through 113 show successive stages in the verification of a
simple fact concerning families of sets. Let F be a family of sets, let S be
a set and suppose that every member of the family F contains the set S.
Figures 17 through 113 present an argument showing that the set S must
be a subset of the intersection of the members of the family F. Figure 17
shows the definition of the function FAMILY-INTERSECTION which takes a
family of sets and returns the intersection of all 'Its members. In Figure 17
the user asks the system to abbreviate the term (FAMILY-INTERSECTION F)
with the symbol INT. This causes the intersection INT to become a focus
ob'ect. The user then asks the system 'if the set S is a subset of INT and
the system says it doesn't know. The user then states that the formula
(IS S (SUBSET-OF INT)) is a goal to be proven. This last 'instruction has
no effect on the context; the system is not goal directed and 'ignores goals
which appear on the context stack. Goals act as comments which improve
the readability of proofs (the written form of proofs will be dscussed later).

18 CHAPTER 1. ONTIC IN BRIEF

(defterm (family-intersection (F family-of-sets))
(the-set-of-all

(lambda ((x (enber-of-sember F)))
(is-every (member-of F) (set-containing x)))))

DEFINING FAMILY-INTERSECTION
EONTIC:0EFINED-FUNCT!ON�-SYMBOL, FAMILY-INTERSECTION]

(let-be INT (family-intersection F))

(is? (subset-of IND)
I-DONT-KNOW

(push-goal (is (subset-of INT)))

Onti Ltener

Ontic Stack
5 (PUSH-GOAL (IS S (SUBSET-OF INT)))

4 (LET-BE INT (FAMILY-INTERSECTION F))

3 (SUPPOSE (IS-EVERY (MEMBER-OF F) (SUPERSET-OF S)))

2 (LET-BE SET)

1 (LET-BE F FAMILY-OF-SETS)

Figure 17: Statement of a New Lemma. to be Proved

ftmldmmm�- -

wmm��

-- "' 1, I-, --l- - � -- , �- �, -, � � ̀ :,- , : � - I � 11 -, � l� - - -
_-, - - --------

I

I
4

1.3. EXAMPLES OF VERIFICATION 19

(let-be X (ember-of S))
0) 1>>Error* You have not established (EXISTS-SOME (MEMBER-OF S)

0PROPERTY LET-BE ONTIC*CONSTRUCTOR-FUNCTION)*
Arg 8 (ONTICOABBREV)* X
Arg 1 (ONTIC*TYPE)* (MEMBER-OF
Rest arg (FORMULA)* NIL

s-A, mom" Back to frame 5 rad-eval-print
Return to Lsp Top Level in Ontic Listener

s-C" Restart process Lisp Pons I

Ontic St;ack

(LET-BE X (MEnSER-OF S))�_
town'I(PUSH-GOAL (is (SUBSET-WOF IND))

4 (LET-BE INT-_(FAMILY-INTERSECTION F))

3 (SUPPOSE (IS-EVERY (MEMBER-OF F) (SUPERSEt70F S))),
2 (LET-BE SET)
1 (LET-BE F FAMILY-OP-SETS)

Figure 8 A Failed Instruction to the Interpreter

� I i 11 � 1 1 - i � . -
I II 11 I I' , - I � �

(suppose (exists-some (member-of S)))

(let-be X (member-of S))

(is? X (member-of IND)
I-DONT-KNOW

Ontric Listener

On tic Strack
7 (LET-BE X (MEMBER-OF S))

6 (SUPPOSE (EXISTS-SOME (MEMBER.WOF-S)))

5 (PUSH-GOAL (IS (SUBSET-OF !NT)))

4 (LET-BE INT (FAMILY-INTERSECTION F))

3 (SUPPOSE (IS-EVERY (MEMBER-OF F) (SUPERSET-OF S)))
2 (LET-BE SET)
1 (LET-BE F FAMILY-OF-SETS)

-- oh I I I 1 1 1 I I I
-..

20 CHAPTER 1. ONTIC IN BRIEF

Figure 19: Supposing the Existence of Ob'ects of Certain Kind

� � q I ; I 'I
.- I . I 1 1 I I - - I � . I � � I' ' , I' I -1 11' I I - " i i .� I i �

,01 �-,
V'

0(defterm (family-intersection Flani Iy-of-sets))
0 (the-set-of-ell

(lambda ((x (member-of-member F)))
IsIt (is-every (nember-of F) (set-containing x)))))

(let-be S2 (member-of F))

(is? X (nember-of S2))
YES

(is? X (member-of IND)
YES

(isl S (SUBSET-OF IND)
YES

(note-goal)

Ont;ic Stack
8 (LET-BE S2 (MEMBEI-OF F))

7 (LET-BE X (MEMBER-OF S))

is (SUPPOSE (EXISTS-SOME (ME MBER,70F S)))

15 (PUSH-GOAL (IS (SUBSET-OF INT)))

14 (LET-BE INT (FAMILY-INTERSECTIION F))
13 (SUPPOSE (IS-EVERY (MEMBER-OF F) (SUPERSET-OF S)))
12 (LET-BE SET)
11 (LET-BE F FAMILY-OF-SETS) "NOW""

Figure 1.10: Establishing the Coal 'in a Certain Context

- -1 � -- I

1.3. EXAMPLES OF VERIFICATION 21

le �, 1,

I

EAborU
NIL

EAbort3
NIL

(is? (subset-of IND)
YES

Ontic Listener

Ontic Stack
6 (SUPPOSE (EXISTS-SOME (MEMBER-OF S)))

5 (PUSH-GOAL (IS (SUBSET-OF IN

4 (LET-BE INT (FAMILY-INTERSECTION F))

3 (SUPPOSE (IS-EVERY (MEMBER-6P-F) (SUPERSET-OF S)))

2 (LET-BE SET)

I (LET-BE F FAMILY-OF-SETS)

, I o I mmillom,

22 CHAPTER 1. ONTIC IN BRIEF

Figure 111: Bringing the Result Back to an Earlier Context

[Abort3
NIL

(is? S (subset-of IND).w
I-DONT'KNOW

Ontlc Listener

Ontric Stack
5 (PUSH-GOAL (IS S (SUBSET-OF IND))

4 (LET-BE INT (FAMILY-INTERSECTION F))

3 (SUPPOSE (IS-EVERY (MEMBER-OF F) (SUPERSET-OF S)))

2 (LET-BE SET)
I (LET-BE F FAMILY-OF-SETS)

W I I I I owpow

- . - - 1, . I 1, � � I I - I

i

1.3. EXAMPLES OF VERIFICATION 23

Figure 112: The Result Does Not Move Past Relevant Suppositions

W�
(note-goal)
T

(is? S (subset-of IND)
YES

Ontic Listener

Ontic St;�qck

4 (LET-BE INT (FAMILY-IN'TERSECTION F))

3 (SUPPOSE (IS-EVERY (MEMBER-MOF F) (SUPERSET-OF S)

2 (LET-BE SET)
1 (LET-BE F FAMILY-OF-SETS)

I " 1001 I 1 !

24 CHAPTER I ONTIC IN BRIEF

5 (PUSH-GOAL (IS (SUBSET-OF INT)))

Figure 113: A Simple Automatic Refutation Finishes the Proof

----------l- - - 1

1.3. EXAMPLES OF VERIFICATION 25

To show that the set 'is a subset of INT we must show that every member
of is a member of INT. To do this we can consider some arbitrary member
X of the set S. In figure 1.8 the user tells the system to do so. However,
the system complains that we have not yet established that such members
exist; the set S might be empty. In general the system ensures that every
object being considered is known to exist. In order to consider an arbitrary
member of the set S we must first assume that such members exist. In figure
1.9 the user first instructs the system to suppose that there are members
of the set S and then he 'instructs the system to consider a particular (but
arbitrary) member X. The user then asks the system if X is a member of INT
and the system doesn't know. At this point the user may be mystified as to
why the system does not "see" the obvious fact that X is indeed a member
of the family intersection INT. Before proceeding further, the user reviews
the definition of the function FAMILY-INTERSECTION as shown in figure 1.10.
This definition states that X is a member of the family intersection just 'in
case X is a member of every set in the family F. In figure 1.10 the user
shows that X 'is a member of the 'intersection INT by showing that X is a
member of an arbitrary set S2 'in the family F. This is done by considering an
arbitrary member S2 of the family F. In this scenario instances of the t pe

I y
FAMILY-OF-SETS are by definition non-empty and thus we do not need the
additional assumption that F 'is non-empty. When the system focuses on the
member S2 of the family F it "sees" that because X is a member of S, and
S 'is a subset of S2 X is a member of S2. At this point the system performs
an automatic universal generalization. Snce S2 is an arbitrary member of
F, and since X has been shown to be a member of S2 Iit follows that X is a
member of every member of F. Furthermore since X is an arbitrary member
of S the system can perform yet another automatic universal generalization
and conclude that all members of S must be members of INT and thus S is a
subset of INT. Asking the system a question has no effect on the state of the
system; the questions shown n figure 1.10 serve only to 'Indicate the line of
reasoning used by the system. The problem was actually solved by forward
chaining as soon as the last context was entered.

The forward chaining 'Inference mechanisms establish the goal in the con-
text shown 'in figure 110. In order to remember that the goal has been
proven, the system must update the underlying lemma library. More specif-
ically, if the lemma library were not updated, then when the user returned

26 CHAPTER]. ONTIC IN BRIEF

to a previous context, nothing would have been learned; the set of "obvious
truths" in a context 'is determined by the lemma lbrary, the focus ob'ects
and the suppositions. In the scenario shown 'in figure 1.10 the user explicitly
updates the lemma library by calling the function NOTE-GOAL. In this case
the system adds the following lemma:

(FORALL ((F FAMILY-OF-SETS)
(S SET))

(AND (IS-EVERY (MEMBER-OF F) (SUPERSET-OF S))
(EXISTS-SOME (MEMBER-OF S)))

(IS S (SUBSET-OF (FAMILY-INTERSECTION F)))))

In any context, the user can instruct the system to note any formula that
is obviously true 'in that context. The function NOTE-GOAL is just an abbre-
viation for noting the latest goal which has been pushed onto the context
stack- the same effect would have been achieved if the user had typed

(NOTE (IS (SUBSET-OF INT)))

When a formula i's noted the system constructs the implication which
states that suppositions active 'in the current context imply the noted for-
mula. The system then adds the universal closure of that implication to the
permanent lemma library- Note that 'in this case we have not really proven
the desired lemma; we have only proven it for the case where the set is
non-empty.

Figure 1 II shows that wth the updated lemma lbrary, the desired result
is "obvious" in the context associated with stack frame 6 However, the result
must still be proven for the case where is empty; figure 1 12 shows that
the result has not yet been established at stack frame 5. But the case for
the empty set is trivial, and in figure 1 13 the user simply asks the system
to note the goal. Since the goal is not known directly at frame 5, the system
does a refutation proof- it enters a context where the goal is assumed to be
false. Given the new lemma shown above, the forward chaining inference
mechanisms are able to derive a contradiction from the negation of the goal,
and thus the goal is established by refutation. Thus the note-goal in figure
1.13 has the effect of adding the following lemma to the lemma library.

I. 3. EXAMPLES OF VERIFICATION 27

(FORALL ((F FAMILY-OF-SETS)

(S SET))

(IS-EVERY (MEMBER-OF F)

(SUPERSET-OF S))

(IS S (SUBSET-OF (FAMILY-INTERSECTION F)))))

The "proof" shown 'in figures 17 through 113 is automatically recorded
by the system Fgure 1.14 shows an automatically generated textual repre-
sentation of the complete proof. Evaluating the form shown in figure 114
with the Lisp 'Interpreter causes the above two lemmas to be proved and
added to the lemma library. (The second lemma makes the first one obsolete
and the user can Iif he wshes, explicitly delete the first lemma after the proof
has been done.)

The textual representation of proofs involves IN-CONTEXT expressions In
general an IN-CONTEXT expression is composed of two parts: a "context def-
inition" and a body; the context definition specifies the construction of a
new context by giving a list of context-constructing instructions. The body
is a list of instructions to be executed in the specified context. The bod of
an IN-CONTEXT expression may contain embedded IN-CONTEXT expressions.
Embedded contexts nherit the focus objects and suppositions of outer con-
texts.

The two note-goal expressions in figure 114 correspond to the case anal-
ysis performed in the interactive proof. The first note-goal notes that 'if there
exists a member of then the theorem is true. The second note-goal invokes
a refutation proof which effectively handles the case where is empty. In
general multiple note-goals for the same goal correspond to a case analysis.
Often, as in this example, the context for the last case does not need to be
explicitly constructed because an automatic refutation process initiated by
the last note-goal effectively constructs the context for the last case.

The Ontic interpreter is able to use a large lemma library wthout human
assistance; the system automatically applies facts from the lemma library
whenever it enters a new context. Figure 1.15 shows the lemma established
by the proof 'in figure 14 together with two other facts: for every family
of sets F, every member of F contains (as a subset) the family intersection
of F; and, for two sets, if each is a subset of the other, then the two sets

CHAPTER 1. ONTIC IN BRIEF28

(IN-CONTEXT ((LET-BE F FAMILY-OF-SETS)

(LET-BE S SET)

(SUPPOSE (IS-EVERY (MEMBER-OF F)

(SUPERSET-OF S)))

(LET-BE INT (FAMILY-INTERSECTION F))

(PUSH-GOAL (IS (SUBSET-OF INT))))

(IN-CONTEXT ((SUPPOSE (EXISTS (MEMBER-OF S)))

(LET-BE X (MEMBER-OF S))

(LET-BE S2 (MEMBER-OF F)))

(NOTE-GOAL))

(NOTE-GOAL))

Figure 1 14: The History

(FORALL ((F FAMILY-OF-SETS)

(S SET))

(IS-EVERY (MEMBER-OF F)

(SUPERSET-OF S))

(IS S (SUBSET-OF (FAMILY-INTERSECTION F)))))

(FORALL ((F FAMILY-OF-SETS)

(S (MEMBER-OF F)))

(IS (FAMILY-INTERSECTION F)

(SUBSET-OF S)))

(FORALL ((Sl SET)

(S2 SET))

(AND (IS Sl (SUBSET-OF S2))

(IS S2 (SUBSET-OF Si)))

Sl S2)))

Figure 1.15: Some Simple Facts

lll�� ...q.-MPRO! - -- �

1.3. EXAMPLES OF VERIFICATION 29

(IN-CONTEXT ((LET-BE SET)

(LET-BE S2 (SUBSET-OF S))

(LET-BE F (THE-SET-OF-ALL

(AND-TYPE (SUBSET-OF)

(SUPERSET-OF S2)))))

(IN-CONTEXT ((PUSH-GOAL = 2 (FAMILY-INTERSECTION F)))

(IN-CONTEXT ((LET-BE INT (FAMILY-INTERSECTION F)

(LET-BE S3 (MEMBER-OF F))

(NOTE-GOAL))))

Figure 116 A Proof Using Lemmas

are equal. Fgure 116 is a proof which makes use of the facts 'in figure 115.
We assume that the lemmas 'in figure I. 15 have been placed in the lemma
library and are therefore available to the Ontic 'Interpreter. The proof in
figure 116 goes as follows: Let be any set and let S2 be any subset of
S. Let F be the set of all subsets of S which contain the set S2. We wsh
to show that the family intersection of F equals the set S2. Frst the user
focuses on the family 'Intersection of F by abbreviating this intersection with
the symbol INT. Next the user focuses on an arbitrary member of the family
F. Focusing on arbitrary member of F causes the system to "realize" various
facts about F. For example every member of F 'is a set and thus F is a family
of sets. By proving that F 'is a family of sets the system establishes that
the term (FAMILY-INTERSECTION F) is well typed and thus the definition of
FAMILY-INTERSECTION can be 'Invoked. Furthermore S3 'is a superset of 2
so S2 i's a subset of S3 and by universal generalization S2 is a subset of every
member of F. Once the system deduces that F is a family of sets and every
member of F i's a set which contains S2 the system automatically applies the
first lemma 'in figure 116 and realizes that S2 is a subset of the intersection
INT. The system also realizes that the set S2 i's a member of the family F and
applies the the second lemma in figure 14 thus realizing that the intersection
INT is a subset of S2. Finally the system applies the the third fact n figure
1.15 and realizes that INT equals S2.

Actually the Ontic interpreter makes no distinction between definitions
and lemmas; definitions are just universally quantified equations which are

-0 - I

CHAPTER 1. ONTIC IN BRIEF30

accessed in the same manner as lemmas. The proof shown 'in figure 1 16
relies on definitions as well as the lemmas shown in figure 1. 15. The proof
shown n figure 1 14 does not involve any previously proven lemmas but 'it
does involve the definition of the intersection of a family of sets.

In general, the user need not make explicit references to definitions and
lemmas. The'user relies on the system to use definitions and lemmas when-
ever they are appropriate. For example, consider an arbitrary lemma of
following form:

(FORALL ((x r (y 2 ix, y))

This "lemma" might actually be a definition in which case is an equation

or logical equivalence. The Ontic system will automatically use this lemma

in any context where there are two focus ob'ects A nd such that A is an

instance of and is an instance of 2. In general, a universally quantified

lemma such as the one shown above wll be instantiated with all combina-

tions of focus objects that match the type restrictions of the lemma. Once

the lemmas have been instantiated with the focus objects, the system applies

the forward chaining inference techniques of Boolean constraint propagation,

congruence closure, and automatic universal generalization. The instantia-

tion process that invokes facts from the lemma library 'is a graph-theoretic

marker-propagation inheritance mechanism called focused binding or seman-

tic modulation. The focused binding mechanism achieves the effect of instan-

tiation but avoids constructing the formulas that result from the syntactic

substitutions done by normal instantiation.

One way of measuring the performance of a verification system 'is to com-

pare the length of a natural argument with the length of a corresponding

machine readable proof. The ratio of the length of a machine readable proof

to the length of the corresponding natural argument is called the expansion

factor for that proof. Fgure 117 shows both an English natural argument

(taken from a textbook on lattice theory, [Gratzer 78] page 24) and a corre-

sponding Ontic proof. The natural argument contains 75 words and mathe-

matical symbols, while the Ontic proof contains 73 symbols, yielding a word

count expansion factor of about one. For the most part the "clear and nec-

essary)) steps of this particular natural argument correspond to statements

that the Ontic 'interpreter can verify in a single step.

1.3. EXAMPLES OF VERIFICATION 31

Proof. Let P be a poset in which V S exists for all C P. For
H C P, let K be the set of all lower bounds of 1. By hypothesis
V K exists; set a = V K. If h E H, then h > k for all k E K;
therefore h > a and a E K. Thus a is the greatest member of K,
that is a = AH.

(IN-CONTEXT ((LET-BE P POSET)
(SUPPOSE (FORALL ((S (SUBSET-OF (U-SET P))))

(EXISTS (LEAST-UPPER-BOUND-OF S P))))
(LET-BE H (SUBSET-OF (U-SET P)))
(PUSH-GOAL

(EXISTS (GREATEST-LOWER-BOUND-OF H P))) #1

(IN-CONTEXT
((LET-BE K (THE-SET-OF-ALL (LOWER-BOUND-OF H P)))

(LET-BE a (THE (LEAST-UPPER-BOUND-OF K P))))

(IN-CONTEXT ((PUSH-GOAL (IS a (LOWER-BOUND-OF H P)) #2
(IN-CONTEXT ((SUPPOSE (EXISTS (MEMBER-OF H)))

(LET-BE h (MEMBER-OF H)))

(IN-CONTEXT
((PUSH-GOAL (IS h (UPPER-BOUND-OF K P)) #3

(IN-CONTEXT
((SUPPOSE (EXISTS (MEMBER-OF K)))

(LET-BE k (MEMBER-OF K)))
(NOTE-GOAL)) #3

(NOTE-GOAL))) #3

(NOTE-GOAQ); 2

(NOTE-GOAL))) #1

Figure 117: Least upper bounds yield greatest lower bounds.

32 CHAPTER 1. ONTIC IN BRIEF

The natural argument shown in figure 1 17 concerns complete lattices.
A complete lattice 'is a partially ordered set P such that every subset of P
has both a least upper bound and a greatest lower bound. The arguments
in figure 1 17 show that if every subset of a partially ordered set P has a
least upper bound, then every subset of P must also have a greatest lower
bound. In the argument from Gratzer's book, shown in figure 117, the least
upper bound of a set H 'is denoted V H and the greatest lower bound of H
is denoted A H. In the Ontic proof the goals are numbered so that one can
more easily see the association between the statement of the goal and the
achievement of the goal.

A different measure of the length of an argument or proof is obtained by
counting the number of type expressions rather than words. The number of
type expressions used in an argument provides a rough measure of the number
of "statements" involved. A direct translation of the natural argument in
figure 117 into Ontic would contain 14 type expressions while the actual
Ontic proof contains only 13 type expressions yielding an expansion factor
of about one. Thus the basic result that the Ontic proof 'is about the same
length as the English proof does not depend on the particular way in which
one measures length.

In checking the proof in figure 1.17 the Ontic interpreter makes use of a
large lemma library. The system uses some basic facts about partial orders
together wth the following facts:

1. The definitions of the concepts involved, e.g. the definition of partial
orders, lower bound, least member and greatest lower bound.

2. The fact that if 'is a subset of a partially ordered set p then the set
of all lower bounds of s is a subset of p.

3. The fact that for any subset s of a partially ordered set , there is at
most one least upper bound of s.

One can argue that the expansion factor measured for the proof of figure
1.17 is too low because the Ontic interpreter was allowed to use preproven
lemmas that are not shown in the formal proof. But all of the lemmas used

--- - -- oil I 11 III III

33I. 3. EXAMPLES OF VERIFICATION

Lemma Predicate Count Word Count
Expansion Factor Expansion Factor

if arbitrary least up- .9 1.0
per bounds exist then arbi-
trary greatest lower bounds
also exist.

Every filter is contained in 1.3 1.2
an ultrafilter.

If F 'is an ultrafilter and 2.1 2.7
x V y E F then E F or

E F.

Every Boolean algebral's'so- 2.0 1.7
morphic to a field of sets.

Table 1.1: Various Measurements of the Expansion Factor

by the Ontic interpreter in proving this theorem are of general interest and
have 'in fact been used in several different contexts. Furthermore the last two
lemmas listed above have simple one or two line proofs in the Ontic system
and thus 'if those lemmas had not been in the lemma library the proof shown
in figure 117 would not be much longer.

It seems likely that human mathematicians unconsciously 'Invoke a large
data base of general facts when they think about mathematical objects. Fur-
thermore, it seems likely that in familiarizing oneself with a new domain one
must verify a large body of "trivial" facts and 'incorporate these facts 'Into
the way one thinks about the domain.

Bell and Machover's text on mathematical logic gives a more concise proof
of the lemma of figure 117 Bell Machover 77] page 127). In the proof a

Aoo*,%I

CHAPTER 1. ONTIC IN BRIEF34

least upper bound i's called a supremum and a greatest lower bound is called
an infimum.

Let L be a partially ordered set in which each subset has a
supremum. Let X be a subset of L and let Y be the set of lower
bounds of X in L. Then Y has a supremum z and it is not hard
to see that z is the infimum of X.

A direct translation of the statements in Bell and Machover s into the
language Ontic would contain 7 type expressions while the machine verifiable
Ontic proof has 13 type expressions yelding a predicate count expansion
factor of about to. While Bell and Machover's proof is clearly shorter than
Gratzer's proof, Bell and Machover's proof includes the phrase "and it is not
hard to see that". This phrase seems to be an admission that the given proof
is not complete. Gratzer's proof, on the other hand, contains no such phrase
and we must take Gratzer's proof as a fully expanded (complete) proof.

The appendix contains a complete listing of a mathematical development
that ends with a proof of the Stone representation theorem for Boolean lat-
tices. Thi's appendix provides a large number of examples of Ontic proofs
and these proofs can be used to evaluate the Ontic verifier. Table 1.1 shows
four expansion factor measurements taken from four of the larger proofs done
in the Ontic system. The table lists both a predicate count expansion factor
and a word count expansion factor for each test case. Both the natural ar-
gument and the corresponding Ontic proofs for each test case can be found
in the appropriate sections of the appendix.

The machine readable proofs underlying table 1.1 relied on an extensive
lemma library and the expansion factor measurements are thus open to the
criticism that parts of the machine readable proof have been hidden in the
lemma lbrary. However, once a sufficiently large lemma library has been
constructed, it should be possible to prove new theorems without extending
the basic lemma library. I believe that the numbers lsted 'in table 1.1 are
accurate in that, with a mature lemma library, new theorems can be verified
with small expansion factors even if the expansion factor takes into account
all lemmas added during the verification.

-WOM � --1 ---

1.4. THE INFERENCE MECHANISMS 35

L4 The Inference 1\4echanisins

All of the inference mechanisms used in the Ontic system manipulate label-
ings of a graph structure. More specifically, the Ontic system compiles the
lemma library into a graph structure where the nodes 'in the graph struc-
ture correspond to unique expressions 'in the formal language. There are
nodes that correspond to terms, formulas, type expressions, function expres-
sions and type generator expressions. The graph structure has nine different
kinds of "links" where each link expresses a certain way that nodes are re-
lated. For example 'if n 'is the node corresponding to the type expression
(LOWER-BOUND-OF s) then there is a subexpression link that relates n to
the three nodes that correspond to the expressions LOWER-BOUND-OF, S and p.
There are also lnks that express Boolean constraints among formula nodes,
links that relate a lambda function to the node representing the bound vari-
able and the body of that expression, and six other kinds of links.

A labeling of the graph structure consists of two parts: a partial truth
labeling on formula nodes, and a color labeling on all nodes. For each formula
node p the partial truth labeling either assigns p the label true, assigns p the
label false, or leaves p unlabeled. The color nodes represent an equivalence
relation on nodes: two nodes with the same color label are considered to be
equivalent, ie. proven equal in the current context. Whenever an inference
is made the system updates the labeling: either a formula 'is assigned a truth
label or two equivalence classes are merged by recoloring one class to be the
same color as the other class. Any such inference process for updating labels
on a fixed graph structure must terminate because there are only finitely
many formula nodes which can be assigned truth labels and every merger of
equivalence classes reduces the number of euivalence classes remaining and
the number of equivalence classes can not drop below one.

The same underlying graph structure can be used in many dfferent con-
texts. Graph structure is never thrown away: each time new graph structure
is created 'it is saved for use in other contexts. Truth and color labels, on
the other hand, are temporary; they are thrown away, for example, when the
system stops considering a particular supposition or focus object.

This section presents an informal description of the 'Inference mechanisms

/0011-11,
f�

36 CHAPTER 1. ONTIC IN BRIEF

which operate on the graph structure and the way in which the graph struc-
ture is constructed from the lemma library. A precise description of the
inference mechanisms and graph structure is presented in chapters 4 and .
Chapter 6 contains a precise description of the Ontic language and chapter 7
contains a precise description of the way the lemma library is compiled into
graph structure.

1.4.1 Inference Mechanisms for Quantifier-Free Logic

Boolean constraint propagation and congruence closure were originally de-
signed as 'Inference techniques for quantifier-free logic. Boolean constraint
propagation adds truth labels in response to Boolean constraints and pre-
vious truth labels. For example, if the node for the implication =>)
is labeled true and the node for is labeled true then Boolean constraint
propagation will ensure that the node for is labeled true. Similarly, if the
node for => T) is labeled true, and the node 'is labeled false, then
Boolean constraint propagation will ensure that the node for is labeled
false.

Boolean constraint propagation 'is also responsible for ensuring a certain
relationship between color labels and the truth labels of nodes representing
equalities. To ensure this relationship the system may merge equivalence
classes in response to the addition of a truth label or, alternatively, add a
truth label 'in response to the merger of equivalence classes. More specifi-
cally, let p be a node which represents an equation between the expressions
represented by nodes nj and n2 If the equality node p is assigned the label
true then the system ensures that nodes nj and n2have the same color label,
i.e. are in the same equivalence class. On the other hand if the nodes nj
and n2 are in the same equivalence class then the system ensures that p i's

7assigned the label true.

Congruence closure 'is responsible for ensuring that the equivalence rela-
tion represented by the color labels respects the substitution of equals for
equals. For example consider terms (POWER-SET sl) and (POWER-SET SO

'If nj and n2 are in the same equivalence class and the equality node p has been labeled
false by some other inference process then the system signals a contradiction.

1.4. THE INFERENCE MECHANISMS 37

Congruence closure ensures that if the nodes representing the terms 1 and 2

have the same color label (are 'in the same equivalence class) then the nodes
representing the expressions (POWER-SET sl) and (POWER-SET 82) also have

the same color label. When two equivalence classes are merged congruence

closure may merge additional equivalence classes in order to ensure that the

equivalence relation respects the substitution of equals for equals.

1.4.2 Generic Individuals, Classification, and Focused
Binding

Recall that a context consists of a lemma lbrary a set of focus ob'ects and

a set of suppositions about the focus objects. Focused binding 'is a way of

applying the universally quantified formulas 'in the lemma brary to the focus

objects 'in a context. This 'is done using an inheritance mechanism similar

in spirit to Fah1man's virtual copy mechanism based on marker propagation

[Fahlman 79]. More specifically, each type -r which has been compiled into

a node in the graph structure is associated with a set of (typically two or

three) generic individuals of that type. Information that is known to hold for

a given type is explicitly stated about the generic 'Individuals of that type. A

focus object which 'is known to be an nstance of type -r becomes a "virtual

copy" of one of the generic individuals of type and thus inherits information
from that 'Individual.

Each generic individual is a term node in the graph structure. nformation

which is known to hold for the type is explicitly stated about each generic

individual of type -r. More specifically, f the system compiles into graph

structure a universal formula of the form

(FORALL ((x 7)) D(x))

then for each generic individual g of type which is added to the graph struc-

ture, the system constructs a Boolean constraint equivalent to the following
implication.

38 CHAPTER ONTIC IN BRIEF

(AND (FORALL ((x 7)) 4�(x))

(EXISTS-SOME r))

,Ng))

Given the above constraint Iif the universally quantified formula 'is true in a

context, and instances of type 7 are known to exist 'in that context, then the

body of the universal formula is known to be true for each generic individual

of type r. In this way everything that 'is known about the type in general is

explicitly stated about the generic ndividuals of that type.

Classification assigns types to focus objects. Classification is needed in

order for focus objects to inherit information from generic ndividuals. The

system classifies a focus object r by collecting a set, types(r), of types known

to hold for r according to the following rules:

1. If the node for the formula (IS r -r) 'is labeled true then is included

in types(r).

2. If s is a term that 'is in the same equivalence class as the focus object

r, and 'if the formula (IS s c) 'is labeled true, then a is included 'in

types(r).

3. If -r is a member of types(r), and the formula (IS-EVERY r 6) is labeled

true, then o- 'is included in types(r).

4. If is a member of types(r) and 'is a type in the same equivalence

class (with the same color as) then a 'is included in types(r).

Focused binding causes a given focus object to inherit information from

a given generic individual. More specifically, for each focus object r and

each type 'in the set types(r) the system chooses a generic individual g of

type and constructs the binding g 4 r. The generic individual can be

thought of as a typed variable and the binding g F-+ r can be thought of

as a variable binding. In the Ontic system the variable binding g 4 r is

implemented va the color labels: when the system constructs the binding

g - r it assigns g and r the same color label, thereby making g equivalent

to r. When g i's made equivalent to r, the congruence closure mechanism 'is

Imis"Immom... - --- - -*"mm � --

1.4. THE INFERENCE MECHANISMS 39

used to unify" or "match" the expressions 'Involving the generic 'Individual
g with the expressions involving the focus object r. In this way the focus
object r becomes a virtual copy of the generic ndividual . Snce general
knowledge about the type -r i's explicitly stated about the generic ndividual
g, general knowledge about the type -r becomes effectively stated about the
focus object r. In this way general facts in the lemma library are effectively
applied to focus objects of the correct type.

The focused binding process 'is sometimes called semantic modulation
because it involves modulating (changing) the interpretation of a fixed generic
individual. The same generic individual can be bound to different focus
objects in dfferent contexts. In this way the system modulates the semantic
denotation of the generic individual, hence the term semantic modulation.

There are several subtleties involved in focused binding. First, the system
must not bind the same generic 'Individual to two different focus objects
simultaneously. For example, consider a generic number and two numbers
j and k which are focus ob'ects such that j is an even number and k i's an
odd number. If the system bound the generic number g to both and k
simultaneously then 'it could prove that g was both even and odd and thus
that there exists a number which is both even and odd.

A second subtlety involves the possibility of circular bindings. Before
generating a bnding of the form g F--+ r the system must be sure that r
does not depend on g. Any term can be given as a focus object. Generic
individuals themselves correspond to terms in the Ontic language (they are
Ontic variables) and thus a focus object may be a generic individual or a term

8that contains a generic individual. For example, 'if g 'is a generic individual
ranging over numbers then the term I g might be a focus object. In this
case one should prevent the bnding g F- I + g; no number is equal to the
next number. The dependency test for avoiding circular bndings is similar
to the occurs-check done in unification. Given a focus object r of type
the system chooses a generic 'individual g such that g does not "occur in" r.
Unfortunately the occurs-check performed by the Ontic system is somewhat

'By abuse of notation I will identify a generic individual with the corresponding Ontic
variable. Technically, a generic individual is a node in the graph structure while an Ontic
variable is a term of the Ontic language.

CHAPTER 1. ONTIC IN BRIEF40

complicated. Consider a generic individual y which ranges over numbers
which are greater than x, where x 'is a generic individual ranging over all
numbers (y 'is a generic individual of type (GREATER-THAN x)). The binding
X f+ 1 + y 'is illegal because it forces x to be greater than tself. However, x
is not a free variable of the expression I y. Rather, x is a free variable of
the type of y where y is a free variable of + y. We say that an expression
u depends on a variable x if either x appears free 'in u or there is some
free variable y of u such that the type of y depends on x. Unfortunately
this notion of dependence still does not provide a sound occurs-check in the
Ontic system: if x and y both range over arbitrary numbers the system
must prevent the two simultaneous bindings x -4 1 + y and y + 1 + x.
To prevent such circularities the system must take previous bindings into
account when computing occurs-checks. It turns out that there is a subtle
interaction between previous bindings and the dependencies introduced by
types. More specifically, if the system has already constructed the binding
y �-4 u then the type of y can be ignored in the occurs-check procedure. The
resulting occurs-check procedure runs quickly but the proof that the occurs-
check procedure leads to sound 'Inference is somewhat complex (see sections
5.2 and 53).

1.4.3 Automatic Universal Generalization

The fourth inference mechanism used by the Ontic system 'is automatic uni-
versal generalization. Universal generalization can be applied when the sys-
tem has deduced a fact about an arbitrary individual and no assumptions
have been made about that individual. More specifically, a universal gener-
alization inference can be made f-.

* g is a generic individual of type .

* The system has labeled the node for a formula D(g) true.

o No assumptions have been made about te 'Individual g other than the
assumption that it I's an instance of type .

- I - -mmmilml,

1.4. THE INFERENCE MECHANISMS 41

9 No free variable of D (g) has a type that depends on g. The notion of
dependence used here is the same as that defined above: depends on
x just in case x appears free 'in or some free variable of has a type
which depends on x.

When the above conditions are met the system can infer the universal closure

(FORALL ((x 7)) Dx))

There are several things to note about automatic universal generalization.

First, this 'Inference mechanism does not construct new formulas or new graph
structure; automatic universal generalization is only applied when the graph

already contains nodes for the formulas g) and the universal closure

(FORALL ((x 7)) D(x))

Second, types play a central role in the automatic universal generalization

mechanism. When the system proves the formula D(g) it is allowed to use the

fact that g is an instance of the type r, and the resulting universal statement
applies to all 'Instances of -. Third, wthout the last restriction universal

generalization 'is unsound. For example, consider a generic individual y that

ranges over numbers greater than the generic number x. Without making

any assumptions about x and y other than that they are both instances of

their respective types, the system can deduce that x 'is less than y. It does not

follow, however, that all numbers are less than y; there 'is no largest number.

The fact that x 'is less than y does not 'Imply that all numbers are'less then

y because the x "occurs 'In" y; x is a free variable in the type of y. The same

proof that shows that the Ontic occurs-check procedure is sound for focused

binding can be used to show that the Ontic occurs-check procedure leads to

sound universal generalization.

The above notion of universal generalization can be made more powerful

by relaxing the restriction that no assumptions have been made about the

arbitrary ndividual being generalized over. More specifically one can perform

universal generalization under the following conditions:

* g is a generic individual of type .

42 CHAPTER 1. ONTIC IN BRIEF

0 The system has labeled the node for a formula Dg) true.

0 The system has bound g va the binding g h.

* h 'is a generic individual of type where has the same color label as
,r in the current context.

* No assumptions have been made about h.

* h does not "occur 'In" any free variable of D(g) other than .

When the above conditions are met the system can 'infer the universal closure

(FORALL ((x 7)) D(x))

Again, note that this inference mechanism does not construct new for-

mulas or add new graph structure. In order for this 'Inference mechanism to

be applied, all of the formulas involved must already be compiled into nodes

in the graph structure.

To see the importance of the more general automatic universal general-

ization mechanism, consider a subset of a partially ordered set and the

set u of all lower bounds of as a subset of p. Now consider a member x of

s. By definition u is the set of lower bounds of s so x is an upper bound of

u. It turns out that 'in the Ontic system proving this last statement requires

universal generalization. More specifically the Ontic system must focus on

an arbitrary member y of u and note that x is greater than or equal to y.

Since y is an arbitrary member of u, x is greater than or equal to all members

of u. In this situation the system will construct the following bindings:

81�_4

Z F-+

Here s' 'is a generic 'Individual ranging over arbitrary subsets of p and z is a

generic individual ranging over members of s'. Now y 'is a generic 'individual

ranging over members of u and z is a generic individual ranging over members

of S, so z and y are different generic individuals whose types happen to be

equal n the current context. Furthermore z is bound to y. In this situation

�Wwop - INNIMINIIIIII,

1.4. THE INFERENCE MECHANISMS 43

the system generalizes over the variable z rather than the variable y. The
system must generalize over z rather than y because the definition of upper
bound 'is stated about the generic subset s' rather tan the particular subset
u and thus the quantified formula in question quantifies over members of '
rather than members of u.

All of the inference mechanisms used in the Ontic system run concurrently
and interact with each other. Inferences can lead to more knowledge about
the types of focus objects; this can lead to more bindings, which can lead
in turn to more inference. The time required to finish the overall 'Inference
process is bounded by the size of the graph structure. This is because the
inference processes can only add as many truth labels as there are formula
nodes and can only merge as many equivalence classes as there are nodes
in total. The factors that contribute to the size of the graph structure are
discussed below.

1.4.4 The Size of the Graph Structure

When a new focus object r of type 'is introduced, it 'is possible that all
generic individuals of type have ether already been bound to other objects
or occur in the focus object r and thus can not be bound to r. In this case
the system creates a new generic individual of type -r and copies all of the in-
formation known about type as explicit statements about that new generic
individual. Once the generic individual has been constructed, however, it
is saved and can be used 'in other contexts. For most arguments there are
already enough generic ndividuals 'in the graph structure to accommodate
the focus ob'ects and no new graph structure is created. However, if there
are not enough generic individuals to accommodate the focus objects, then
generic individuals are created on demand as focus objects are 'Introduced.
As generic individuals are created the underlying graph structure expands.

The size of the graph structure created by the Ontic compiler is deter-
mined by the library of mathematical facts and by the number of generic
individuals that have been created for each type. Fortunately, for any given
bound on the level of quantifier nesting, the size of the graph structure is
linear in the size of the lemma library; the amount of graph structure i's the

oppmmom - -www"M M. I �

44 CHAPTER 1. ONTIC IN BRIEF

sum over all lemmas of the amount of structure created by each lemma. This
fact allows the Ontic system to be used with large libraries of mathematical
facts. However, the cost of an individual lemma can be quite high. Consider
a lemma of the following form:

(FORALL ((x 1) (y 2 (z r3)) 4(x, y, z))

The body of this lemma will be copied for each triple gi, 92, 93 where

91i 92 and 93 are generic individuals of type , -r2 and -r3 respectively. In

general every quantified formula which 'is compiled into graph structure gets

instantiated with every generic individual of the appropriate type. Let il,

1721 and r3l be the number of generic ndividuals for r, 2, and respectively.

The number of copies of the body of the above lemma is:

I 7 I1721 1731

Generic individuals are created on demand as new focus objects are intro-

duced. If no more than n focus objects have been introduced in any one

context then there will be at most n generic ndividuals of each type. If the

maximum number of quantifiers used in any lemma is d then there can be no
more than n dcopies of the body of each lemma. Lemmas rarely involve more

than three quantifiers and most sessions with the Ontic interpreter involve at

most five simultaneous focus objects. Thus a typical lemma in a typical ses-
3Sion generates no more than or 125 instantiations. In practice this number

is smaller because most lemmas quantify over highly specialized types and

there are typically only a small number of generic individuals of specialized

types. Again note that the size of the graph structure is linearin the size of

the lemma library; the total amount of graph structure 'is ust the sum over

all lemmas of the amount of structure generated by each lemma. However,

the sze of graph structure is very sensitive to the maximum number of focus

objects introduced 'in a given context. A good rule of thumb seems to be

that the size of the graph structure is proportional to n3JEJ where n is the

maximum number of focus objects introduced in ay one context and 'is
the sze of the lemma library.

er

arlson vvi er 0

The Ontic system represents a synthesis of ideas from artificial intelligence
and automated theorem proving. Constraint propagation is a forward chain-
ing 'Inference technique that terminates quickly because it monotonically fills
a finite set of "slots"; the Ontic system monotonically generates truth and
color labels for nodes in a finite graph structure. Congruence closure is a pow-
erful theorem proving technique for reasoning about equality. Congruence
closure is usually vewed as an inference procedure reasoning about equalities
involving ground (variable-free) expressions. In the Ontic system, however,
congruence closure is used as an integral part of general first order theorem
proving. Focused bnding, also known as semantic modulation, is closely re-
lated to inheritance mechanisms which have been developed for knowledge
representation languages and object oriented computer programming lan-
guages. Focused binding integrates inheritance with other theorem proving
mechanisms. Congruence closure 'is used to 'implement a strong virtual copy
mechanism that allows focus objects to 'Inherit from generic ndividuals. Au-
tomatic universal generalization 'is perhaps the simplest and yet the most
original feature of the Ontic system. Ontic brings all these ideas together in
a single integrated inference process.

The first section of this chapter relates each of the four basic inference
mechanisms used 'in Ontic with previous work in knowledge representation
and automated theorem proving. The second section of the chapter relates

45

CHAPTER 2 COMPARISON WITH OTHER WORK46

Ontic's focused binding mechanism to unification. Focused binding and uni-
fication provide alternative ways of selecting and applying facts from a fact
library. The third section of the chapter lists various theorem proving mech-
anisms other than those used in the Ontic system and attempts to show how
they are related to Ontic. The final section of the chapter lsts some of the
general issues to be considered in constructing a proof verification system and
discusses how Oxx set term Ontic and various other systems have addressed
those 'issues.

2A Inference 1\4echanisins Sirnflar to Ontic's

The following four sections discuss each of Ontic's four inference mechanisms
in turn. The first three inference mechanisms are related to well known
inference techniques. Ontic, however, brings these mechanisms together in
an integrated, object oriented theorem proving process.

2.1.1 Constraint Propagation

There are many mechanisms in the artificial intelligence literature which
could be described as constraint propagators. By constraint propagation"
I mean an 'Inference process whose running time, or number of processing
steps, is drectly bounded by the size of a finite constraint network. On-

tic is a constraint propagation system in two ways. First of all, one of the

fundamental inference mechanisms 'is Boolean constraint propagation which

is a special case of the arc-consistency constraint propagation technique for

general constraint satisfaction problems [Mackworth 77]. Second, all of On-

tic's 'inference mechanisms operate by labeling a graph structure. The graph

structure is analogous to a constraint network in that the total number of

labeling operations is directly bounded by the sze of that graph structure.

Many artificial ntelligence researchers have used constraint propagation.

Waltz used constraint propagation to filter the possible 'Interpretations of

lines in a lne drawings of polygonal physical objects [Waltz 75]. A line 'in a

drawing of a scene can be interpreted as a convex edge on single object, a

2. 1. INFERENCE MECHANISMS SIMILAR TO ONTIC'S 47

concave edge on a single object or an edge between two objects. A particular
interpretation of an edge is called a "label" for that edge. Vertices between
edges provide constraints on the possible interpretations of edges. In Waltz
line labeling a forward chaining inference process systematically eliminates
possible labelings of 'Individual edges. The running time of the process is
directly bounded by the number of edges and the number of labels that can
be eliminated.

The Waltz line labeling procedure can be used in the more general setting
of an arbitrary constraint satisfaction problem [Mackworth 77]. A constraint
satisfaction problem consists of a set of variables each of which can be as-
signed one of a finite set of possible values and a set of constraints where each
constraint restricts the smultaneous assignments for a given subset of the
variables. The arc-consistency procedure, which 'is a straightforward general-
ization of Waltz labeling, systematically eliminates possible nterpretations of
variables based on local constraints. The running time of the arc-consistency
procedure is directly bounded by the number of variables and the number
of possible assignments for each variable. Boolean constraint propagation
is a special case of the arc-consistency procedure where the variables are
Boolean, i.e. they can be assigned the labels true or false, and the constraints
are di 'unctive clauses involving the Boolean variables. Boolean constraint
propagation is described in more detail in chapter 4.

Sussman and Steele have proposed a language for expressing constraints
on real valued variables and constraint propagation techniques for dealing
with such constraints [Sussman Steele 80]. The number of propagation
operations performed by Sussman and Steele's system was drectly bounded
by the number of variables 'involved.

Nevins constructed a forward chaining geometry theorem prover which
restricted the forward chaining inference process to an a priori fixed set of
formulas [Nevins 74]. Nevins' program used a diagram to focus the system's
attention on certain lines. If a geometry problem has n points then there
are n possible line segments between these points. A diagram however2 I

'fies a subset of the lines, those actually drawn 'in the diagram.
By limiting forward chaining to statements about these focused lines, the
forward chaining process does not generate large numbers of irrelevant facts.

48 CHAPTER 2 COMPARISON WITH OTHER WORK

With Nevins' focused forward chaining mechanism there is no need for the
diagrammatic filter used by Gelernter [Gelernter 59].

Ontic's 'Inference processes operate on a finite graph structure- the number
of labeling operations is directly bounded by the size of that graph structure.
The Ontic system can use the same graph structure 'in different contexts to
reason about dfferent focus objects. When a generic 'Individual g is bound to
a focus object r, a formula involving g can be viewed as a formula involving r;
in the presence of bindings the formula nodes n the graph structure represent
formulas about focus objects. Different bindings cause the nodes in the graph
structure to represent statements about different objects.

2.1.2 Congruence Closure

Congruence closure is the process of "closing" an equivalence relation on ex-
pressions under the 'Inference rule of substitution of equals for equals. Con-
gruence closure was first discussed by Kozen for reasoning about finitely
presented algebras [Kozen 77]. Congruence closure has also been used by
Nelson and Oppen in constructing fast decision procedures for a variety of
problems that arise 'in automatic program verification [Nelson and Oppen 80].
The congruence closure procedure used 'in the Ontic system, and discussed in
some detail in chapter 4 is based on the procedure given by Downey, Sethi
and Tarjan [Downey, Sethi Tarjan 80].

Ontic uses congruence closure both as a mechanism for reasoning about
equality and as a replacement for unification. The relationship between On-
tic's use of congruence closure and traditional unification is discussed in sec-
tion 22.

2.1.3 Focused Binding as Inheritance

Focused bnding can be vewed as an inheritance mechanism: 'Information
about a type 'is inherited by 'instances of that type. Type hierarchies and
inheritance also play an important role 'in object oriented programming lan-

2. 1. INFERENCE MECHANISMS SIMILAR TO ONTIC'S 49

guages such as Smalltalk [Ingalls 76]. In object-oriented programming, data
types are organized into a hierarchy where one data type can be a subtype of
another. Data objects are usually records with data fields. A given data ob-
ject inherits both data fields and functional behavior from all the supertypes
of its immediate type. A fairly rigorous, though not very general, treatment
of some basic 'ideas in ob'ect-oriented programming is given 'in [Cardelli 84].

Type hierarchies and inheritance also play a central role 'in many knowl-
edge representation systems and ob'ect oriented programming languages.
Frame-based knowledge representation languages typically allow the user to
define "concepts" which he or she organizes 'Into an "is-a" hierarchy (e.g.
[Brachman Schmolze 85]). A concept represents a class of structured ob-
ects; the concept is associated with a set of "slots"; an instance of that

concept is an object with specific "fillers" or "values" for the slots of the
concept. For example the concept room might have slots ceiling, floor, walls,
and furniture. Any particular room will have a particular ceiling a particular
floor, and a particular set of pieces of furniture. Furthermore, a concept can
place certain constraints on the slot fillers. For example the concept room
might specify that the furniture slot 'is always filled wth a set of physical
objects. The user could 'Introduce the concept auditorium as a specialization
of the concept room and the concept auditorium would then automatically
"inherit" the slots and constraints of the concept room.

Ontic's focused binding mechanism is very similar to Fahlman's virtual
copy mechanism based on marker propagation [Fahlman 76]. Fahlman pro-
posed a semantic network formalism in which objects inherit information
from classes by passing markers along links in the network. The marker
passing 'is done in such a way that the ob .ect being considered becomes a
�Cvirtual copy" of generic objects which contain 'information about classes.
In the Ontic system color labels are used 'Instead of Fahlman's markers. A
focus object i's made into a virtual copy of a generic ndividual by assigning
the generic ndividual the same color label as the focus object; congruence
closure ensures that if two nodes have the same color label then they have
identical properties.

In the Ontic system inheritance 'is just one aspect of an integrated theo-
rem proving mechanism. Generic ndividuals are vewed as logical variables

50 CHAPTER 2 COMPARISON WITH OTHER WORK

that range over a given type. Inheritance occurs when a generic individual
g is bound to a focus object r via a binding g F-+ r. Fahlman's inheritance
mechanism, on the other hand, was not vewed as a formal 'inference mech-
anism and Fahlman did not propose integrating hs inheritance mechanism
with other formal inference techniques such as Boolean constraint propaga-
tion, congruence closure, or automatic universal generalization.

2.1.4 Automatic Universal Generalization

Automatic universal generalization arises from a very simple idea: if a fact is
proven about a generic individual g of type and no assumptions have been
made about g other than that g is an instance of -r, then the fact holds for all
instances of -r. In spite of the smplicity of the underlying idea, Ontic's un'_

versal generalization technique seems to be unlike any previous automatic

inference mechanism. For example, a comparison of Ontic and resolution

theorem provers shows that when Ontic performs universal generalization it

is treatin a generic 'Individual as a Skolem constant introduced by a univer-

sally quantified goal formula. But, unlike resolution, the Ontic system does

not make any distinction between variables and Skolem constants. Generic

individuals n Ontic are used in three dfferent ways. If instances of a type

,,r are known to exist then each generic individual of type -r is asserted to be

an instance of r. In this way the generic individuals can be used as Skolem

constants introduced by the premise that instances of -r exist. But generic

individuals are also used as variables that can be bound to specific terms in

much the same way that resolution variables are bound during unification.

Generic individuals are used in yet a third way by the universal generaliza-

tion mechanism; universal generalization treats generic individuals as Skolem

constants 'introduced by universally quantified goal statements.

The real novelty of the Ontic system lies 'in the way that the above four

inference mechanisms are brought together. Ontic integrates constraint prop-

agation, congruence closure, neritance, and universal generalization in a

single ob'ect-oriented labeling process on a fixed graph structure.

- Ila --- r-----", ---- M� mmllflvmlml I - I -, - -

2.2. FOCUSED BINDING VS. UNIFICATION 51

2,2 Focused Bnding vs. Unification

One of the most striking features of the Ontic system, as compared to other
theorem proving systems, is that Ontic does not use unification. Unification
is often used to access 'Information in a data base. A Prolog 'interpreter,
for example, takes a goal formula and finds a production in the data base
whose left hand sde unifies wth the given goal. A rewrite system takes an
expression to be simplified and finds a rewrite rule in the data base whose
left hand side unifies wth the expression to be simplified. Under the set-
of-support heuristic a resolution theorem prover finds a clause 'in the data
base such that a literal of that clause unifies with a subgoal in the current
problem. In all these cases the system is finding an expression in the data
base which unifies with an expression in the current problem.

Ontic accesses information in the lemma library via the focused binding
mechanism. Both unification and focused binding generate variable bindings
which are useful to produce specialized instances of the general formulas
in a data base. However, uification and focused binding generate variable
bindings 'in very different ways. Unification starts with the expressions to be
matched and generates variable bndings which lead to the match. Focused
binding, on the other hand, starts with focus objects then generates variable
bindings (bindings of generic 'Individuals) and relies on congruence closure to
generate "matches" between expressions nvolving variables and expressions
involving the focus objects. Unification 'is a local process: unification is
used 'in the application of a sngle rewrite rule or in a single resolution step.
Focused binding, on the other hand, is a global process involving an arbitrary
number of facts from the lemma library. Focused bding is integrated into
the theorem-proving process. Automated inference and knowledge from the
lemma library is used both 'in determining the types which apply to a given
object and n determining equivalences between expressions after bndings
have been performed.

Considerable research has been directed toward incorporating various
kinds of knowledge axiomatic theories) into unification. Equational aioms,
such as the commutativity and associativity properties of addition, can be
incorporated into the unification process so that, for example, a + x matches

CHAPTER 2 COMPARISON WITH OTHER WORK52

b a wth the binding x 4 b. Taxonomic information, information involving
the classification of objects into types, can also be incorporated nto the uni-
fication process. Because Ontic's focused binding mechanism is integrated
with the theorem proving process, focused binding automatically 'incorpo-
rates both equational and taxonomic information into the matching process;
any lemma in the lemma library may be used in Ontic's matching process.
However, unlike most unification mechanisms, Ontic's matching process is
not logically complete: it is possible that two expressions are provably equiv-
alent and yet the Ontic system fails to match them. This is consistent with
the overall design philosophy of the Ontic system; to ensure that the system
always terminates quickly, completeness has been abandoned.

2.2.1 Unification Relative to Equational Theories

There has been a considerable amount of research dedicated to incorporating
equational theories 'Into unification. For example consider addition as an
associative and commutative operator. Now consider the problem of unifying
x + (a + b) and a (c + b). The binding x -4 c unifies these two terms in the
sense that the equation

+ (a + b = a (c + b)

follows from the associative and commutative properties. of

More generally, let r be a set of universally quantified equations between
first order terms. For example r might consist of the associative and commu-
tative laws for addition. A general purpose theorem prover, -such as a resolu-
tion system, could handle the equations in smply by adding the equations
in to the data base of general facts. In practice, however, it seems more
efficient to incorporate certain equational facts into the unification process.
Once these facts have been 'incorporated 'Into the unification process they can
be removed from the general data base wthout loss of logical completeness.

A given set of equational axioms r has a corresponding unification prob-
lem. For any substitution a and any expression u we define a(u) to be the
result of simultaneously replacing all free variables in u with their image un-
der cr A unification of two expressions and t relative to the axioms in IF is

2.2. FOCUSED BINDING VS. UNIFICATION 53

a substitution a which yields a match between s and t relative to r, i.e. such
that the equational formulas in r imply that or(s) equals a(t). If r states
that is associative and commutative then the substitution I X �-4 C} unifies
x (a + b) and a (c + b) relative to r. The unification problem for r is the
problem of computing, for any given expressions and t a representation of
all unifications of and t relative to r.

If r consists of a single commutative operation then t is easy to determine
if there exists a unification of any two given terms relative to r. On the other
hand if r states that a binary operator is associative, and dstributes over a
binary operator , then there is no procedure which can decide the existence
of a unification of two arbitrary terms relative to r. These results and others
are discussed in a review article by Siekmann [Siekmann 84].

Unification relative to equational theories can be compared wth Ontic's
focused binding mechanism. Ontic first binds variables (generic 'individuals)
of the appropriate type to focus objects and then uses congruence closure to
4� match" expressions involving the variables wth expressions nvolving the
focus objects. Ontic's matching process (congruence closure) automatically
incorporates equations from the lemma library. For example suppose that
Ontic's lemma lbrary contains the associative and commutative laws for ad-
dition on the natural numbers. More specifically, suppose the lemma library
includes the following three lemmas:

(FORALL ((X NATURAL-NUMBER)

(Y NATURAL-NUMBER))

(SUM-OF X Y)

(SUM-OF Y X)))

(FORALL ((X NATURAL-NUMBER)

(Y NATURAL-NUMBER)

(Z NATURAL-NUMBER))

(SUM-OF X (SUM-OF Y Z))

(SUM-OF (SUM-OF X Y) Z)))

54 CHAPTER 2 COMPARISON WITH OTHER WORK

(FORALL ((X NATURAL-NUMBER)

(Y NATURAL-NUMBER)

(Z NATURAL-NUMBER))

(SUM-OF X (SUM-OF Y Z))

(SUM-OF (SUM-OF Y Z) X)))

The first and second lemma above express the fact that addition 'is com-
mutative and associative respectively. The third lemma follows from the
other two. If the third lemma were not explicitly given, however, then when
focusing on three generic numbers gj, 92 and93 the following equation would
not be obvious to the Ontic system.

91 + 92 93) = 92 93) + 1

To prove this equation in the absence of the third lemma, or to prove the
third lemma from the other two, the system must focus on the SUM 92 93

so that the commutative law is applied to91 + 92 93). The associative and
commutative laws allow for twelve different ways of writing down the sum of
91, 92 and g: there are sx different orders 'in which the numbers can appear
and two different ways of parenthesizing each order. In the presence of the
three lemmas given above all twelve ways of writing the sum are equivalent;
the twelve nodes in the graph structure that represent the twelve dferent
expressions for this sum are all 'in the same equivalence class; they have the
same color label. Now suppose the user focuses on three particular numbers
a, b and c. The Ontic system will bind a generic number to each of these
three particular numbers; assume that the system generates the bindings

gj �-4a

92 F-+ b

93 F- C

Given that all twelve expressions for the sum of gi, 92 and 93 are in the
same equivalence class, congruence closure together with the above bind-
ings ensures that the term a(b+c) is equivalent to the term b(c+a) By
using congruence closure as a matching mechanism, and by precompiling
equational theories as equations involving generic ndividuals, the Ontic sys-
tem automatically performs theory-relative matching. Unfortunately Ontic's

2.2. FOCUSED BINDING VS. UNIFICATION 55

matching process 'is not complete; the incompleteness 'is demonstrated by the
need for the third lemma gven above. On the other hand, as the example
shows, one can always improve the power of the matching process by adding
derived equational lemmas to the lemma library.

Ontic's focused binding mechanism automatically incorporates any equa-
tional lemma whatsoever into the congruence closure process; in the Ontic
system one does not have to design a new theory-relative matching process
for each new theory as one must do for theory relative unification. Ontic's
mechanism has the disadvantage however that there is no guarantee of com-
pleteness - congruence closure may fail to equate semantically equal terms.

2.2.2 Unification Relative to Taxonomic Theories

Several researchers have investigated unification relative to theories which
are not equational. Non-equational theories incorporated into the unification
process are sometimes called taxonomic theories because they usually encode
a classification of objects 'Into types. The separation of "taxonomic" and
44 assertional" information has been discussed 'in the knowledge representation
literature [Brachman, Fikes & Levesque 82]. For example consider the axiom

Vx whale(x) =:�* mammal(x)

This axiom expresses an inclusion relation between the "type" whale and
the type mammal. Inclusion relations of this knd can be incorporated into
the unification process and need not be stated explicitly in the data base of
a general purpose theorem prover.

Walther has given a unification algorithm which handles any taxonomic
theory expressible as a partial order on class symbols [Walther 84a] He
showed that for any such taxonomic theory r and any two typed terms
and t the set of all unifications of and t can be expressed with a finite set of
most general unifiers (i.e. the unification problem 'is finitary). Furthermore
he showed that if the type herarchy 'is a tree then there is a single most
general unifier.

Ait-Kaci and Nasr have given a unification algorithm for a more expressive

mm pill-I'llil I 11' I I oll , "Mommo

CHAPTER 2 COMPARISON WITH OTHER WORK56

class of taxonomic theories and propose using this algorithm n an implemen-
tation of the programming language PROLOG [Ait-Kaci & Nasr 861. Stickel
has 'investigated the use of taxonomic theories in even greater generality al-
though Stickel does not address unification as a mechanism for generating
variable bindings (only the ground case is considered as lifting to the general
case is straightforward") [Stickel 85].

Ontic's mechanism for inheritance via semantic modulation is based on
taxonomic information. More specifically, the Ontic system classifies each
focus object by associating each focus object with a set of types known to be
true of that focus ob'ect. This classification process takes the type hierarchy
into account. For example 'if r 'is a focus ob'ect a 'is a type known to hold of
r, and the formula (IS-EVERY a r) is labeled true, then the classification
process will collect as a type known to hold of r.

Unlike unification, Ontic's focused binding mechanism integrates the use
of type 'Information wth other theorem proving mechanisms. Ontic may
prove a statement about types and use that statement 'Immediately 'in clas-
sifying the current focus ob'ects. Ontic's focused binding mechanism auto-
matically incorporates arbitrary lemmas about the types of objects. There 'is
no guarantee, however, that Ontic's focused binding mechanism will derive
all the logical consequences of taxonomic nformation.

2.2.3 Higher-Order Unification

Unification has been generalized to allow for higher-order variables; higher-
order unification can be used to bind variables that range over functions and
predicates as well as variables ranging over first order terms. For example,

'der the 'nduct'on schema for Peano arithmetic.

P (0 A Vn P (n = P n + 1)) Vn P n) (2.1)

In this schema P is a variable which ranges over predicates. This schema
can be instantiated with any predicate P and higher-order unification can
be used to find bindings for P. For example consider a function f which is

2.2. FOCUSED BINDING VS. UNIFICATION 57

known to be monotone:

Vm f(m+1)>f(rn) (2.2)

and we wish to prove

Vm f (m) �: f (0) (2-3)

To prove this last statement a backward chaining theorem prover might unify
P (n) from the conclusion of 21 wth the goal f (m) f (0) from 23. This
unification leads to the following bndings:

n �-+

P �-4 (A n) f (n) f (0))

A backward chaining inference system could then establish the antecedents
of 21 under the above bnding for the predicate P.

The first complete unification procedure for higher-order logic was con-
structed by Gerard Huet [Huet 75]. Higher-order unification has been used
effectivelyin at least two mathematical verification systems, Ketonen's EKL
system [Ketonen 84] and Andrews' TPS [Miller et al. 82]. In both sys-
tems the higher-order unification procedure was found to terminate quickly
in practice.

The Ontic system is higher-order in the same sense that axiomatic set
theory is higher-order; functions and predicates can be "reified" as sets and
thus first order variables can be made to range over functions and predicates.
In the Ontic system the user can focus on a reified predicate Q and thus cause
the system to bind variables to the predicate Q. This knd of "higher-order"
binding is used many times in the mathematical development given in the
appendix.

While the Ontic system does allow for higher-order reasoning, the Ontic
system does not adequately handle mathematical induction. Verifying in-
duction proofs 'in the Ontic system results in a large expansion factor; the

58 CHAPTER 2 COMPARISON WITH OTHER WORK

machine readable proofs are significantly longer than the natural language
counterpart.

Higher-order unification provides one technique for reducing the expan-
sion factor for 'Induction proofs. The EKL system relies on higher order
unification both 'in establishing the well formedness of recursive definitions
and in performing induction arguments to prove properties of recursively
defined functions. But there seem to be other, perhaps even better, tech-
niques for reasoning about recursive definitions. The Boyer-Moore theorem
prover is extremely effective in performing 'Induction arguments but does not
use higher order unification [Boyer Moore 79]. Ontic's weakness with re-
gard to induction arguments and possible ways of making Ontic's induction
mechanisms more powerful are discussed in section 32.2.

2,3 Inference 1\4echanisnis Unlike Ontic's

This section surveys some of the general purpose 'Inference mechanisms that
have been 'introduced in the past thirty years and compares these mechanisms
with Ontic's object-oriented inference mechanisms. Only general purpose 'in-
ference mechanisms are discussed here; domain specific mechanisms, such as
Chou's application of Wu's method for geometry theorem, will not be dis-
cussed [Wu 86] [Chou 84]. I will also not discuss decision procedures for
particular theories or mechanisms for combining decision procedures [Nel-
son Oppen 79] [Shostak 82].

. This section briefly discusses some particular general purpose inference
systems. The automath proof verification systems used normalization of the
typed lambda calculus as an 'Inference mechanism. The Davis-Putnam proce-
dure was based on a direct enumeration of the Herbrand universe for a set of
first order sentences. The resolution procedure and its variants improved on
the Davis-Putnam procedure by introducing unification, thereby allowing a
large number of ground inferences to be abbreviated with a sngle resolution
step. The Boyer-Moore theorem prover finds induction proofs for verifying
equations concerning recursive programs in pure Lisp. The Boyer-Moore
theorem prover i's based on user-defined (and machine verified) rewrite rules

2.3. INFERENCE MECHANISMS UNLIKE ONTIC'S 59

together with heuristics for generalizing induction hypotheses. The Knuth-
Bendix procedure provides a way of converting a set of unordered equations
into a set of rewrite rules for canonicalizing expressions. The Knuth-Bendix
procedure can also be used for proving certain equations about recursive
programs via an "inductionless" induction technique. Finally, a fair num-
ber of systems have been constructed which use automated theorem proving
support to verify natural deduction proofs.

2.3.1 Automath

The typed lambda calculus is closely related to intuitionistic (constructive)
proof theory. The analogy between typed lambda calculus and intuitionistic
proof theory i's based on viewing types as formulas and viewing a term of tpe
-r as a proof of (where is vewed as a formula). If the formulas encoded
by types include quantifiers i.e., if the type system has dependent types,
then 'it can be difficult to determine if a term u has type r. More specifically,
determiningif u has type -r may involve normalizing (i.e. evaluating) the term
u. This normalization process can be vewed as 'Inference where reductions
correspond to either the inference rule of modus-ponens or the inference rule
of universal instantiation.

The relationship between types and formulas of intuitionistic logic un-
derlies one of the earlier mathematical verification systems, the Automath
system [deBruijn 68], [deBru"n 73]. The Automath system has been used
to verify Landau's rundlagen a book on the foundations of the 'integers,
rationals, reals, and complex numbers [Jutting 79]. The book includes a very
rigorous (almost formal) definition of each number system. The rationals are
defined as equivalences classes of pairs of integers, the reals are defined as
Dedekind cuts in the rationals, the complex numbers are defined as pairs of
reals. The book also includes proofs that the basic algebraic operations on
these numbers are well defined (e.g. addition of rationals, multiplication of
reals). No sgnificant theorems are proven other than the well-formedness of
these basic definitions.

Even though Landau's grundlagen is an extremely rigorous (almost for-
mal) book, the version of the book readable by the Automath system is about

CHAPTER 2 COMPARISON WITH OTHER WORK60

ten tmes as long as the Grundlagen itself. This indicates that the Automath
'fier does not use powerful automatic nference mechanisms; there is not

yet good evidence that normalization of the typed lambda calculus is a useful
automated inference mechanism.

2.3.2 The Davis-Putnam Procedure

The Davis-Putnam procedure [Davis Putnam 60] is based drectly on Her-
brand's theorem for the first order predicate calculus. Herbrand's theorem
implies that 'if is an unsatisfiable set of first order formulas in Skolem nor-
mal form then there exists a finite set I' of ground instantiations of such
that IF is 'inconsistent. It 'is possible to write a computer program that decides
whether a set of ground formulas is consistent. To determine if the original
set E of first order formulas is satisfiable, one can simply enumerate all finite
ground instantiations of and test each one for consistency. If is incon-
sistent then by Herbrand's theorem one will find a ground instantiation. of
E that is inconsistent.

The Davis-Putnam procedure is not used today; resolution theorem prov-
ing is more effective [Robinson 65]. The Davi's-Putnam procedure spends
most of 'Its tme deciding the satisfiability of quantifier-free ground formulas.
Resolution theorem proving 'is more effective because a large (infinite) num-
ber of of ground 'Inferences are summarized in a single resolution step. More
specifically, the formula generated by a resolution step can be viewed as a
universally quantified lemma which summarizes a large number of ground
statements [Robinson 65]. Because other proof mechanisms (resolution) are
more effective than the Davis-Putnam procedure, the Davis-Putnam proce-
dure will not be discussed further here.

2.3.3 Resolution and its Variants

Most research in automated theorem proving in the past twenty years has
been based in some way on resolution. The basic resolution rule was intro-
duced by Robinson in 1965 and shown to be refutation complete for first order

2.3. INFERENCE MECHANISMS UNLIKE ONTICS 61

predicate calculus [Robinson 65]. The resolution principle represented a clear
advance over the Davis-Putnam procedure because a single resolution step
abbreviates a large number of the ground 'Inferences. However the number
of possible n-step deductions grows exponentially in n and it soon became
clear that resolution theorem provers could not, 'in practice, find sgnificant
theorems by searching this large space of possible deductions.

The late sixties saw the development of a large number of restrictions on
the resolution principle. Each such restriction rules out certain resolution
steps and thus reduces the number of possible n-step deductions. In spite of
the reduction 'in the number of possible inferences, various restricted forms
of resolution are logically complete. A description of various restrictions and
modifications of the resolution rule can be found in [Loveland 78]. Connection
graph resolution, a resolution restriction invented by Kowalski, 'is described
in [Bibel 81].

One perceived dfficulty with resolution theorem proving, in addition to
the large search spaces encountered, 'is the use of normal forms. Resolution
requires that first order formulas be put in normal from in three stages. First,
all quantifiers are moved to the beginning of the formula resulting in a for-
mula in prenex normal form. Second, existential quantifiers are replaced by
skolem functions resulting 'in an equisatisfiable formula in prenex normal form
with only universal quantifiers. Finally, the matrix of the formula (the part
after the quantifiers) must be placed in conjunctive normal form resulting
in a set of universally quantified clauses where each clause is a disjunction
of literals. Several researchers have developed theorem proving techniques
which are similar to resolution but which do not require the last normaliza-
tion step: the matrix of the formula need not be 'in conjunctive normal form.
Such "non-clausal" provers are described in [Andrews 81], [Murray 82], and
[Stickel 82]. These non-clausal procedures are smilar to resolution in that
they use unification to find matches between formulas and matched formulas
are combined to generate new formulas. The non-clausal procedures are also
similar to resolution 'in that existential quantification is eliminated in favor
of Skolem constants.

Research n resolution theorem proving and related techniques has focused
on establishing logical completeness. However, logical completeness may not

CHAPTER 2 COMPARISON WITH OTHER WORK62

be important 'in practice. The Boyer-Moore theorem prover is clearly not
complete, it often terminates in failure, and yet the Boyer-Moore prover has
been been used effectively in more applications than has any other theorem
proving system.

As a sde effect of focusing on completeness, the resolution theorem prov-
ing community has failed to make any dstinction between obvious" and
"non-obvious" 'Inferences. The failure to dstinguish obvious and non-obvious
inferences makes it difficult to use resolution theorem provers in 'interactive
proof verifiers. Any interactive proof verifier based on resolution must have
some way of forcing the resolution process to terminate so that a proposed
proof step can be rejected in a finite amount of tme. For example Bledsoe
built an 'Interactive verifier which simply imposed a time lmit on the reso-
lution process [Bledsoe 71] A more principled restriction of the resolution
process has been 'Introduced by Davis [Davis 81] and used in the Mizar sys-
tem [Trybulec & Blair 85]. However the restriction proposed by Davis forces
the decision procedure for obvious inferences to determine the satisfiability
of an arbitrary set of ground clauses. Determining the satisfiability of a set
of ground clauses is known to be NP-complete. Furthermore, as far as I
know, there has never been a detailed comparison of natural arguments and
theorems provable under Davis' suggestion.

2.3.4 Rewriting Mechanisms

Automated 'inference systems often have a hard tme dealing wth equality
and equational axioms. Directed rewrite systems provide one approach to
reasoning about equality. The process of rewriting expressions is also known
as simplification, ymbolic evaluation or demodulation. Rewrite systems iter-
atively simplify a given expression until it is in canonical form. A statement
can be proved by rewriting 'it to the constant true.

Some of the most effective theorem proving systems are based on rewrite
Mechanisms. Most notably, the Boyer-Moore theorem prover uses a sim-
plification mechanism guided by user defined (but machine verified) rewrite
rules [Boyer Moore 79]. The Boyer-Moore theorem prover has been used to
verify a wide variety of theorems from number theory, recursive function the-

2.3. INFERENCE MECHANISMS UNLIKE ONTICS 63

ory, formal logic and software and hardware verification [Boyer Moore 84],

[Shankar 85], [Russinoff 85], [Boyer & Moore 86]. The real power of the Boyer-

Moore prover comes from its ability to perform induction proofs. However

the simplification (rewrite) mechanism is central to the system.

The Boyer-Moore prover is primarily used to prove equations between

terms defined in pure Lisp. Once an equation has been proven it 'is treated

as a rewrite rule to be used 'in future proofs. The direction of each newly

proven rewrite rule 'is provided by the human user, e.g. when the system

proves an equation t the human user specifies whether this equation

should be treated as s t, which rewrites s to t, or as t --+ s, which rewrites

t to S.

Ketonen's EKL system 'is another example of a verification system based

on user defined rewrite rules [Ketonen 84]. As 'in the Boyer-Moore prover,

the direction of EKL rewrite rules are specified by the human user. Unlike

the Boyer-Moore prover however, the EKL system uses Huet's higher order

unification procedure to perform 'induction proofs. The EKL system lacks

the facility for generalizing induction hypotheses used 'in the Boyer-Moore

prover.

Knuth and Bendix developed a powerful method for constructing decision

procedures for certain equational theories [Knuth Bendix 69]. Unlike the

Boyer-Moore prover and the EKL system, the Knuth-Bendix procedure can

be used to automatically convert undirected equations to directed rewrite

rules. More specifically, equations can be ordered via a general (but user

specified) order >- on terms. If s >- t then the equation s = t becomes the

rule s -+ t; if t - s then the equation = t becomes t --+ s. The partial order

>- used in the Knuth-Bendix procedure must be well founded, respect term

structure, and obey substitutions (see [Knuth Bendix 69] for details).

After orderin equations into rewrite rules, the Knuth-Bendix procedure

can also be used to automatically construct additional "derived" rewrite

rules. More specifically, given a set of unordered equations, and an acceptable

partial order on terms, the Knuth-Bendix procedure both converts equa-

tions to rewrite rules and constructs additional rewrite rules whose validity

follows from the original equations. The set of rewrite rules that results from

applying the Knuth-Bendix procedure to a set of is often much larger than

64 CHAPTER 2 COMPARISON WITH OTHER WORK

E. If the Knuth-Bendix procedure terminates with success 'it generates a set
of rewrite rules that completely canonicalize expressions relative to the given
equations; by canonicalizing expressions one can determine if two terms can
be proven equal from the original set of equations. Unfortunately, however,
the Knuth-Bendix procedure does not always succeed; it can either terminate
in failure or fail to terminate.

The Knuth-Bendix procedure has been used extensively in system which
manipulate equational specifications of computer programs and equational
programming languages [Kapur et al. 86] [Lescanne 861 [Huet 86]. These
systems are based on an equational view of programming in which computer
data structures are vewed as terms constructed from atomic symbols (Lisp
atoms) and "data constructor functions" such as the Lisp function CONS. Re-

cursive functions can be defined via equations 'involving the defined function

symbols utta Horning 781 O'Donnell 851.

The Knuth-Bendix procedure can also be used to generate "'Induction

arguments" of the type performed by the Boyer-Moore theorem prover [Huet

& Hullot 83]. More specifically, consider the closed variable free) terms

which can be constructed from a set of "atoms" (constructor functions of no

arguments), constructor functions (functions such as CONS which construct

data objects), and defined functions. A "data object" is a term with no

defined functions. Let E be a set of equations which defines the defined

function symbols as operations on the data objects, ie. no two data ob'ects

can be proven equal from E and every closed term involving defined functions

can be proven (under E) to be equal to some data object. Now suppose we

wish to prove some equation = t where s and t are distinct terms involving

defined functions and free variables. For example the equation = might

state the associativity of the APPEND function on lists. The equation = t

holds in the data object universe 'ust in case there 'is no counter example,

i.e. no ground variable substitution such that a(s) denotes a different

data ob'ect from a(t). If there exists a counter example to the equation

s = t then adding this equation to E would allow one to prove an equation

between two distinct data objects. The Knuth-Bendix procedure can be used

(in some cases) to convert E U Is = t to a complete set of rewrite rules.

By examining this set of rewrite rules it 'is ossible to determine whether

t allows one to prove an equation between distinct data ob'ects If

2.3. INFERENCE MECHANISMS UNLIKE ONTIC'S 65

such equation is provable then the equation = t has a counter example. If
no such equation between distinct data ob'ects is provable from U

J fS = t}
then the equation = t has no counter examples and must be true in the
data object universe. In general 'it may be possible to show that = t has
counter examples at an 'Intermediate point 'in the Knuth-Bendix procedure;
thus a complete set of rewrite rules for U f s = t} may not be required.

One problem wth the Knuth-Bendix procedure however is the need for
a single partial order on all expressions. There may be domain specific intu-
itions about how terms should be rewritten and 'it 'is dfficult to incorporate
such knowledge into a single uniform term ordering. While some sophisti-
cated partial orders have been developed [Dershowitz 79], it is not yet clear
whether a uniform term ordering can be used for the large verifications that
have been done with the Boyer-Moore prover.

Like unification research, research on term rewriting systems using the
Knuth-Bendix mechanism has centered on the notion of logical completeness.
There are many equational theories with an undecidable set of logical
consequences (an undecidable word problem) and 'in this case the Knuth-
Bendix procedure ether terminates 'in failure or fails to terminate. In systems
based on the Knuth-Bendix procedure 'it 'is not clear what to do when the
procedure fails. Even if a complete set of reductions is found the time
required to perform the rewriting may be prohibitively large. The rigid
framework of the Knuth-Bendix procedure may make it dfficult to perform
the large verifications that have been done with the Boyer-Moore prover; it is
not clear that a Knuth-Bendix based system could verify the RSA encryption
algorithm or the undecidability of the halting problem as has been done with
the Boyer-Moore system [Boyer Moore 84] [Boyer Moore 86].

Rewrite systems are designed to handle equational theories. The Ontic
system handles equality wth its congruence closure mechanism- rewrite rules
are not used. The congruence closure mechanism can be quite powerful in
practice. Figure 21 gives an example of an inference done using Ontic's
congruence closure mechanism. Consider a distributive lattice with a least
member and a greatest member (a lattice with a least and greatest mem-
ber 'is called bounded). If x and y are members of the lattice L then we say
that x and y are complements if the meet of x and y is and the joi of

66 CHAPTER 2 COMPARISON WITH OTHER WORK

(IN-CONTEXT ((LET-BE L (AND-TYPE DISTRIBUTIVE-LATTICE

BOUNDED-LATTICE))

(LET-BE X (IN-U-SET L))

(PUSH-GOAL

(AT-MOST-ONE (COMPLEMENT-OF X L))))

(IN-CONTEXT ((SUPPOSE (EXISTS (COMPLEMENT-OF X L)))

(LET-BE Y1 (COMPLEMENT-OF X L))

(LET-BE Y2 (COMPLEMENT-OF X L)))

(NOTE-GOAL))

(NOTE-GOAL))

Ontic "sees" this theorem using its congruence closure mechanism as follows:

A previously established fact.

Because Y2 is a complement of x.

By definition of a distributive lattice.

Because yj is a complement of x.

Because Y2 is a complement of x.

Because A is commutative.

By definition of a distributive lattice.

Because y 'is a complement of x.

Because Y2 = Y A I

yj yjAl

- y A Y2 V X)

= (y A Y2) V (y A x)

= (y A Y2) V 0

= (y A Y2) V (Y2 A x)

(Y2 A y) V (Y2 A x)

= Y A y, v X)

Y A

Y2

Figure 21: A statement that 'is obvious to Ontic but not obvious to people

wastmWom".-

2.3. INFERENCE MECHANISMS UNLIKE ONTIC'S 67

x and y is 1. It was obvious to the Ontic interpreter that in any bounded
distributive lattice a given member x has at most one complement. Ontic's
proof of this fact, also shown in figure 21, uses congruence closure.

Figure 21 shows that congruence closure is a powerful technique for rea-
soning about equality. Because Ontic handles equality wth congruence clo-
sure rather than rewrite rules, there is no need for the user to specify rewrite
directions for equations; the Ontic system can handle undirected declarative
equations. The value of declarative as opposed to procedural representations
is discussed in more detail in section 24.2.

2.3.5 Natural Deduction Systems

Natural deduction systems are based on "natural" rules of 'Inference. A given
rule says that a goal G of a certain form can be proven by reducing the goal
G to the subgoals G1, G2 ... G,,. Different rules provide derent ways of
achieving a goal where the success of any one rule is sufficient. The earli-
est natural deduction system was Newell, Shaw and Simon's Logic Theorist
[Newell, Shaw Simon 57]. This system used natural deduction rules and
backward chaining to prove theorems 'in Whitehead and Russell's Principia,
Mathematica. Soon after the construction of the Logic Theorist, elernter
constructed his program for finding proofs 'in Euclidean geometry [Gelern-
ter 59]. Gelernter's system also used backward chaining and natural deduc-
tion rules but the subgoals were pruned by the use of a diagram, i.e. a model
of the assumptions in the proof. If a subgoal was false 'in the diagram then
the system could infer that the subgoal could not be achieved and thus should
be abandoned.

D uring the sixties research 'in automatic theorem proving focused pri-
marily on resolution theorem proving. However, during the early seventies
frustration wth resolution systems lead to a renewed interest in natural de-
duction systems [Bledsoe 771. Natural deduction systems from the seventies
include [Bledsoe 71], [Nevins 72], [Bledsoe et al. 72], [Reiter 73], [Ernst 73],
[Goldstien 73], [Bledsoe Bruell 73], and [deKleer et al. 77]. These later
natural deduction systems often used resolution as a subroutine for prov-
ing subgoals. A time limit was 'imposed on resolution proofs to force the

68 CHAPTER 2 COMPARISON WITH OTHER WORK

resolution theorem prover to terminate quickly [Bledsoe 71].

One of the major problems with using resolution as a test for "obvious"
subgoals was the tendency of resolution to get lost when t was gven too many
initial facts. In other words resolution was not able to automatically find the
relevant facts 'in a large lemma library. As Bledsoe says 'in [Bledsoe 71]:

One of the more serious [problems is referencing]. The com-
puter should be able to bring to bear "all it knows" (all definition
axioms and previously proven theorems) ... But if one attempts
a resolution proof on a large number of formulas, the result is the
production of a glut of irrelevant clauses and sure failure, even
when the best known search strategies are used. Thus the crucial
part of a resolution proof 'is the selection of the reference theo-
rems by the human user; the human, by this one action, usually
employs more skill than that used by the computer in the proof.

It is useful to remember that this was written in 1971, well after most of
the refinements to resolution had been developed. These comments a-bout
the ineffectiveness of resolution on large lemma libraries are probably as true
today as they were in 1971. The Ontic interpreter on the other hand seems
to handle large lemma libraries wthout dfficulty. It would be interesting to
reconstruct these old natural deduction systems using the Ontic. interpreter
rather than resolution to test for obvious subgoals.

The Seventies also saw a development of basic natural deduction proof
checking systems that dd not provide much automated reasoning support.
For example McDonald and Suppes developed an interactive proof checking
system for teaching an introductory logic course [McDonald Suppes 84].
Richard Weyhrauch also developed the FOL system for checking first order
logic proofs [Weyhrauch 77].

While the FOL system does not provide sophisticated general purpose
theorem proving, it does provide a uniform mechanism for associating any
given predicate or function symbol with a computer program for computing
the value of the predicate or function on semantic" arguments. It seems clear
that mathematical verification systems could benefit from the addition of

2.3. INFERENCE MECHANISMS UNLIKE ONTIC'S 69

computational oracles. Along with procedures for basic arithmetic (addition

multiplication etc.) one can imagine incorporating procedures for symbolic
6

integration, series summation, or polynomial manipulation. No attempt has

been made to incorporate such features into the Ontic system.

Procedural attachment is part of a general focus on "metatheory" within

the FOL system [Weyhrauch 80]. While procedural attachment has clear

potential value, I think the emphasis on metatheory is msplaced. There

seems to be a fundamental unity in all mathematics; there is no fundamental

distinction between "metamathematics", number theory, graph theory, fi-

n'te combinatorics or real analysis. A system whi& reason about numbers,
graphs, and ordered sets can just as easily reason about formulas, models,

and Tarskian truth functions.

During the late seventies and into the eighties there has been an empha-

sis on "programmable" natural deduction systems. These systems provide a

mechanism for adding user defined inference rules. The first programmable

natural deduction system was Edinburgh LCF [Gordon, Milner & Wadsworth

79] A more recent programmable natural deduction system is the Nuprl sys-

tem developed by Bates and Constable [Constable et al. 86] [Howe 86]. The

Nuprl system grew out of research in 'Interactive verifications systems [Con-

stable et al. 82] and their use 'in teaching formal logic and formal approaches

to program verification. The Nuprl system is based on constructive type

theory and places particular emphasis on finding constructive proofs. The

system provides a facility for converting a constructive proof that a certain

number exists 'Into a program for computing that number.

Backward chaining natural deduction systems use rules of inference to

convert a given goal to a set of subgoals. In the Nuprl system the user

can define new inference rules, or tactics", for converting a goal to a set of

subpals. When a tactic replaces a goal G by a set of subgoals G1, G2, - - -

G,, the tactic must construct a proof showing that the replacement is sound,

i.e. that the subgoals G1, G2, .. G imply the goal G. One could write a

tactic for showing that any given set is a subset of U by supposing that

S is non-empty and then considering an arbitrary member of S. One could

then use this tactic as a subroutine and write another tactic for showing that

two sets are equal by showing that each 'is a subset of the other. In the

CHAPTER 2 COMPARISON WITH OTHER WORK70

Ontic system one has to repeat this style of argument every tme one wants
to prove set equality. It seems likely that tactics could be used in the Ontic
system to reduce the length of machine readable proofs. On the other hand
'it seems likely that Ontic's ob'ect oriented inference mechanisms could be
used to reduce the length of proofs 'in the Nuprl system.

2.4 Issues in Autornated Reasoning

There are several general issues 'Involved 'in the construction of proof verifi-
cation systems. First, in designing a verification system one should consider
the expressive power of the formal language involved. Does the language
allow one to express a wide variety of formal concepts and arguments? Sec-
ond, one should consider the extent to which the knowledge base contains
procedural as opposed to declarative nformation. Procedural information
may help make the system run more effectively but procedural information
is harder to construct and a reliance on procedural information makes au-
tomatic discovery of useful nformation more difficult. Third, one should
consider whether the system should rely on backward or forward chaining.
It 'is not clear whether forward chaining has any 'Intrinsic advantage over
backward chaining or vice versa. In both cases the basic problem is to con-
trol the generation of facts or subgoals Smplification seems to be effective
as a guiding principle in backward chaining while focus seems to be effective
as a guiding principle in forward chaining.

2.4.1 Expressive Power

Some very restricted formal languages have tractable inference problems:
there exists a tractable procedure for determining the validity of any state-
ment expressible in the language. Thus there seems to be a trade off between
expressive power and computational tractability in knowledge representation
languages [Levesque Brachman 85]. However this "trade off" is mislead-
ing. In order to design a language wth a tractable inference problem one
must design a language in which hard questions can not be asked. But this

2.4. ISSUES IN AUTOMATED REASONING 71

does not produce the result one really wants- rather than making it easier
to answer hard questions, lmiting the expressive power of a language simply
makes it impossible to ask hard questions. On the other hand 'increasing
the expressive power of the reasoning language can make it easier to reason
about hard questions.

Natural mathematics (mathematics done in natural language) seems to
have a notion of "well typed" expressions. For example consider the well
typed phrase

"the value of the map f on the point x"

as opposed to the "garbled" phrase

"the value of topological space X on the point x"

The notion of a well typed natural phrase seems to correspond to the notion
of a well typed formal expression. Mathematicians talk about groups, rings,
fields, topological spaces, dfferentiable manifolds, groups homomorphisms,
differentiable maps and much more. It seems that 'in natural mathematics
any definable set (or class) can be used as a t pe in determining the set of
well typed phrases. Most strongly typed formal systems, however, do not
allow arbitrary predicates to be used as types.

In designing a type system there appears to be a trade off between ex-
pressive power and computational tractability. One can ensure computa-
tional tractability by restricting the type system so that only certain simple
predicates can be used as types. Restricted type systems can not express nat-
ural types such as "prime number", symmetric matrix", or transitive re-
duced graph". While the inability to express such types makes type-checking
tractable, it prevents the type-checking process from even attempting to ver-
ify certain semantic properties of programs. It seems likely that one could
construct a quickly terminating type-checking procedure which could verify
all smple types and could also verify some more difficult semantic" types.
Restrictions on the vocabulary of types does not make 'it easier to answer
hard questions, it only makes hard questions impossible to ask.

CHAPTER 2 COMPARISON WITH OTHER WORK72

2.4.2 Declarative Representations

Many automated inference systems require every declarative fact to be aug-
mented wth procedural 'Information: information about how the declarative
fact is to be used in the inference process. Purely declarative facts, facts not
augmented with procedural instructions, have the advantage that they are
easier to generate - it seems easier for people to write down a set of purely
declarative facts than to write down both the declarative facts and additional
information about how those facts are to be used. The ease of generating
purely declarative facts may be particularly 'important in dscovery svstems
- systems which automatically generate new lemmas. The task of discover-
ing and using new facts 'is easier 'if one does not have to specify procedural
information each time a new fact 'is discovered.

Unfortunately, purely declarative facts have the dsadvantage that they
are more dfficult to compute wth. Ketonen has discussed the difficulty of
constructing effective theorem provers that use purely declarative informa-
tion [Ketonen 84]. In supporting the use of procedural information Ketonen
cons'ders the following formula:

P(x) A =

He argues that there 'is no single way to use this formula and lists the following
possible procedural interpretations:

1. Replace P(x) =:;> A = by true whenever it appears.

2. Replace A = by true 'if one can prove P(x) in the current stuation.

3. Replace P(x) by false if one can prove A B.

4. Replace A by B whenever one can prove P(x).

5. Replace B by A whenever one can prove P(x).

6. Replace A by B whenever one can prove P(x) but not in terms resulting
from this substitution.

2.4. ISSUES IN AUTOMATED REASONING 73

Ketonen argues that one must choose between the above procedural inter-
pretations. Interpretations 4) and (5) seem opposite in intent. Furthermore
formulas nvolving quantifiers would have an even greater number of dfferent
interpretations. Ketonen concludes that the user must specify how formulas
are to be used.

It seems that Ketonen's dfficulty wth purely declarative representation
comes from h commitment to rewrite systems. Ontic's inference mechanism
effectively uses interpretations) through (5) simultaneously. Replacing a
formula by true 'in a rewrite system is analogous to putting the label true
on the node for in the Ontic's marker propagation mechanism. In the On-
tic system Boolean constraint propagation handles the procedural 'interpre-
tations (1) through 3) above. In the Ontic system equalities between nodes
are represented by giving those nodes the same color label. This representa-
tion of equality together with the congruence closure mechanism eectively
handles both procedural interpretations 4) and (5). The 6th procedural in-
terpretation seems a little strange and i's not handled in the Ontic system -
congruence closure eectively performs all substitutions.

One of the primary features of the Knuth-Bendix procedure is that equa-
tions are automatically converted to rewrite rules using a sinale partial order
that is defined for all terms. Thus, once the partial order has been defined,
purely declarative equations are automatically given procedural interpreta-
tions. However the Knuth-Bendix procedure 'is not guaranteed to succeed: it
may terminate without producing a complete set of rewrite rules or it may
run forever 'in attempting to generate such a set. Furthermore, because the
Knuth-Bendix procedure produces rewrite rules, it must choose either proce-
dural interpretation 4) or interpretation (5) - the Ontic system effectively
does both simultaneously. The eectiveness of the Knuth-Bendix procedure
in large verification applications has not yet been established.

Further experimentation is needed to see if systems which use purely
declarative 'information, such as Ontic, can be made as effective as systems
which are based on rewrite rules, such as the Boyer-Moore theorem prover.

CHAPTER 2 COMPARISON WITH OTHER WORK74

2.4.3 Forward Chaining

Forward chaining systems start with a set of premises and derive conclusions
from those premises. Backward chaining systems start with a goal and reduce
that goal to subgoals. It 'is not clear whether forward chaining has any
intrinsic advantage over backward chaining or vice versa. In both cases the
basic problem is to control the generation of facts or subgoals. Both forward
chaining and backward chaining systems can become swamped in a sea of
derived facts or derived subgoals. Certain sources of guidance seem to work
for backward chaining and other sources of guidance seem to work for forward
chaining.

Simplicity seems to work as a guiding principle 'in backward chaining.
Rewrite systems are backward chaining because they start with the expres-
Sion to be proved and rewrite that expression 'in an attempt to show it equi'v-
alent to the constant true. Rewrite systems are guided by some notion of
Simplicity: a goal expression is always replaced by a simpler goal. The notion
of simplicity is either implicit in the user specified rewrite rules, as in the
Boyer-Moore prover, or explicitly defined as an ordering on expressions, as in
Knuth-Bendix based systems. In both cases however a notion of simplicity
guides the generation of subgoals.

Focus seems to work as a guiding principle in forward chaining. Ontic's
object oriented 'Inference mechanisms are guided by the restriction that de-
rived facts must be about the focus objects. A smilar restriction is used
in other forward chaining systems such as Nevins' geometry theorem prover
[Nevins 74], constraint systems such as Waltz labeling [Waltz 75], and con-
straint languages such as that described by Sussman and Steele [Sussman
Steele 80].

It should be possible to 'integrate both backward and forward chaining in
a single system. n such a system simplification should be used as a guiding
principle n backward chaining and focus should be used as a guiding principle
in forward chaining.

a er

n ic as a �'o ni ive 0 e

One can attempt to evaluate Ontic as a model of human mathematical cog-

nition by comparing the formal "proofs" that are acceptable to the Ontic

system with the natural language proofs that are acceptable to people. There

are some cle 'ar differences between Ontic proofs and natural arguments. In

certain cases the Ontic system can verify proof steps that are not obvious

to people; we say that Ontic exhibits superhuman performance. In other

cases there are statements which are obvious to people but which require
multi--step proofs 'in the Ontic system; we say that Ontic exhibits subhuman

performance. The superhuman performance and much of the subhuman per-

formance can be attributed to specific computational aspects of the Ontic

system.

Ontic's congruence closure mechanism provides a clear example of su-

perhuman performance. The Ontic system can use its congruence closure

mechanism to "see" that in a distributive lattice complements are unique.

This fact is not obvious to people. The appendix contains several examples of

Isuperhuman performance based on congruence closure. All of the examples

involve lattice theoretic dentities. One example is the proof of de Morgan's

laws from the the algebraic axioms for a Boolean lattice.

After gving examples of superhuman inferenc e based on congruence clo-

sure, a very fast computationally limited architecture is proposed for mas-

75

76 CHAPTER 3. ONTIC AS A COGNITIVE MODEL

sively parallel computation. Boolean constraint propagation can be easily

implemented 'in this massively parallel architecture but congruence closure

can not. Substitution constraints are then proposed as an alternative to con-

gruence closure. Substitution constraints perform many of the substitution

inferences normally done by congruence closure. Furthermore, substitution

constraints can be handled by Boolean constraint propagation and thus can

be implemented on the proposed massively parallel architecture. However,

substitution constraints do not generate the given examples of superhuman
performance.

Of course the Ontic system also exhibits subhuman performance. Some

cases of subhuman Ontic performance can be traced to weaknesses 'in the
lemma library. Several proofs could be shortened by adding lemmas which

introduce the principle of duality for Boolean lattices and the algebraic "def-

inition" of a lattice. A more significant set of examples of subhuman Ontic

performance involve mathematical 'induction. Although the Ontic system

can be used to verify induction arguments, the expansion factor 'is large. In

natural mathematics 'Induction arguments are often unstated and unnoticed

even though people understand the arguments and agree to their validity.

For example consider a graph where the nodes of the graph are colored such

that any two nodes with an arc between them have the same color. Clearly

'if nodes n and have different colors then there 'is no path between them in

the graph. To verify this clear and obvious fact with the Ontic system would

require an induction on the length of paths. There are many other examples

from both mathematics and common sense where 'Induction arguments seem

to be carried out at a subconscious level.

Future experimentation wll certainly turn up additional ways in which

the Ontic system exhibits subhuman performance; hopefully examples of sub-

human performance will lead to the discovery of additional inference mech-

anisms that bring the system closer to human ability 'in verifying natural
arguments.

-4

3.1. SUPERHUMAN PERFORMANCE 77

3.1 Superhurnan Perforinance

Congruence closure accounts for all the examples of superhuman performance
of the Ontic system. The mathematical development given 'in the appendix
contains six examples of superhuman performance based on congruence clo-
sure. All of these examples 'involve reasoning about lattice identities.

3.1.1 Examples of Superhuman Performance

The first example of superhuman Ontic performance 'is the proof that in
a distributive lattice complements are unique. This example 'is gven in chap-
ter 2 and is discussed in more detail below. The second example is the proof
of de Morgan's laws for complemented dstributive lattices. De Morgan's
laws are straightforward if one assumes that Boolean operations have their
standard meaning as operators on sets, or equivalently, if Boolean operations
have their standard meaning as operations on truth functions. However, un-
til one has proven the Stone representation theorem one must consider the
possibility that there exist pathological complemented distributive lattices in
which the Boolean operations can not be vewed as operations on sets or as
truth functions. The Ontic proof of de Morgan's laws and an analysis of that
proof are shown in figure 31. Given several previously established smple
identities for Boolean lattices the Ontic system 'immediately "sees" that de
Morgan's laws are true 'in an arbitrary complemented dstributive lattice.

The mathematical development in the appendix also contains a proof that
for any elements x and y of a complemented dstributive lattice the following
are equivalent:

1 <

2. < *

I xAy*-O

4. x*Vy-l

CHAPTER 3. ONTIC AS A COGNITIVE MODEL78

An Ontic Proof:

(IN-CONTEXT ((LET-BE BOOLEAN-LATTICE)

(LET-BE X (IN-U-SET B))

(LET-BE Y (IN-U-SET B))

(LET-BE CX (COMPLEMENT X B))

(LET-BE CY (COMPLEMENT Y B))

(LET-BE M (MEET X Y B))

(LET-BE J (JOIN CX'CY B)))

(NOTE (IS J (COMPLEMENT-OF M B))))

A Corresponding Natural Argument:

Let x* and y* be the complements of x and y respectively. Let
m be the meet of x and y and let j be the join of x* and y* We
must show that m and j are complements, i.e. that A j =
and V j = . This can be done as follows:

A X* V y* = m A x*) V (A y*)

= ((x A x* A y) V ((y A y* A x)

= (A y) V (A x)

= 0

By distributivity of A over V.

By assoc. and comm. of A.

By definition of complement.

By algebraic properties of .

By distributivity of V over A.(x A y) Vj = (x V j A y V j)

= (y V (x V x) A (x V (y V y)) By assoc. and comm. of V.

= (Y* 1) (* 1)
= I

By definition of complement.

By algebraic properties of .

Figure 31: An example of superhuman Ontic performance.

3.1. SUPERHUMAN PERFORMANCE 79

The Ontic proof of the equivalence of the above facts is done by showing
that 1) =:� 2 ==:> 3 ==> 4 =�- 1). This is done in a context where the unique-
ness of complements and de Morgan's laws have already been established.
For each implication there is a set of four focus objects which makes the im-
plication obvious to the Ontic system. The proof of each implication shows
superhuman performance involving congruence closure.

3.1.2 A Very Fast Parallel Architecture

This section proposes an architecture for massively parallel computation and
argues that, unlike Boolean constraint propagation, congruence closure 'is
difficult to implement on this architecture. 1 People make truth judgments
about obvious statements in about a second. Although the computation
performed by neurons is not well understood, it is clear that neurons run very
slowly. It seems likely that neurons would require one to ten milliseconds to
compute the logical and of two Boolean signals. If people are computing
truth judgments wth Boolean circuitry, and if the gate delay for neuronal
hardware is on the order of one to ten milliseconds, then people make truth
judgments about obvious statements in 100 to 1000 gate delays. Computing
complex truth judgments in only 100 to 1000 gate delays requires massive
parallelism.

Consider a finite state machine where the state of the machine at time i
is given by an n-bit bit vector Di. The- state transition table of the machine
can be gven by a Boolean circuit of n inputs and n outputs where the
state transitions of the machine are governed by the equation

Di+, = (Di)

To make the finite state machine run quickly the Boolean circuit should
have low depth, say ten gates. If has depth ten then a state transition can

,it is easy to show that Boolean constraint propagation is polynomial time complete
and thus "unparallelizable"; the worst case running time on a parallel machine is linear in
the size of the graph. In many cases however, a parallel implementation would run much
faster than a serial implementation; a parallel implementation runs in time proportional to
the longest single inference chain while a serial implementation runs in time proportional
to the total number of inferences.

CHAPTER 3 ONTIC AS A COGNITIVE MODEL80

be computed in ten gate delays. However, the bit vector defining the state
of the machine can be very large: mllions or tens of millions of bts, and the
circuit can involve millions or tens of millions of gates.

It seems possible to compile an Ontic graph structure into a Boolean
circuit governing a finite state machine. More specificly, a labeling of an Ontic
graph could be encoded n the state bit vector of the machine. The basic
inference operations on graph labels could be incorporated into a Boolean
circuit governing state transitions. Two bts are needed for each formula
node to represent the three possible labeling states of the node: true, false and
unknown. Boolean constraints on formula nodes could be compiled directly
in the structure of the Boolean crcuit (D. Every node in an Ontic graph is
also associated with a color label. The color label for a given node in the
graph could be represented with a set of bits in the machine's state vector.
The Boolean circuit governing state transitions could be designed in such
a way that if an equation node became true then the color labels of the
equated nodes at tme i I would each be set to the maximum of the two
labels at time i. In this way the color labels could be made to respect the
truth of equality formulas. With the exception of congruence closure, all of
the 'Inference techniques used in the Ontic system seem to be amenable to a
massively parallel implementation in a low-depth Boolean circuit governing
a finite'state machine.

The implementation of congruence closure described 'in chapter uses a
hash table to map color tuples to colors. In order to implement a hash table
one needs to be able to compute memory addresses for a random access
memory. I don't see any way of implementing parallel access to a large hash
table in a low depth Boolean circuit governing a large finite state machine.

Congruence closure can be replaced with substitution constraints as de-
'bed in the next section. Substitution constraints are Boolean constraints

involving equality formulas; such constraints can be compiled directly into a
low-depth Boolean circuit governing a finite state machine.

3.1. SUPERHUMAN PERFORMANCE 81

3.1.3 Substitution Constraints

Substitution constraints provide an alternative to congruence closure for rea-
soning about equality. Substitution constraints rely on Boolean constraint
propagation's ability to handle certain equality inferences. Boolean con-
straint propagation ensures a smple relationship between the truth of equal-
ity formulas and the color labels encoding equivalence. Boolean constraint
propagation, however, does not automatically handle the substitution of
equals for equals; in the Ontic system substitution is handled by congruence
closure. On the other hand, Boolean constraint propagation can be made to
handle substitution by adding certain Boolean constraints called substitution
constraints. Boolean constraint propagation wth substitution constraints 'is
weaker than congruence closure in that it generates fewer obvious truths in
a given context.

As a simple example of a substitution constraint consider a term f (c)
which consists of an operator f applied to a specific argument c. We can
assume that the operator f is defined on ob'ects of a certain type -r and that
c is an instance of -. Suppose that g is a generic individual of type To
ensure that inheritance works properly one can add the Boolean constraint

g = =�* f(g = AC)

Now if the system ever generates a binding g F-+ c then and c will get
the same color label and Boolean constraint propagation will ensure that
the equation g c gets labeled true and thus, by the above substitution
constraint, the equation f(g = f(c) will be labeled true. Independent of
congruence closure, if f (g) has the same color label as f (c) then certain facts
about f (g) can be inherited by f (c). For example if f (g) is known to be
an instance of a type or then f (c) wll also be known to be an 'Instance of
the type a. Thus the above Boolean constraint allows the binding g F c to
cause c to inherit facts that are stated in terms of g.

Substitution constraints can be used to perform 'inferences based on the
substitution of equals for equals. Suppose that c is known to be equal to
b and consider the terms f (c) and f (b). Furthermore assume the graph
structure underlying Boolean constraint propagation includes the following

CHAPTER 3. ONTIC AS A COGNITIVE MODEL82

substitution onstraints

g C f (g) f (C)

g b f (g) f (b)

Now suppose that the system focuses on c and generates the binding g F+ c.
Since c and b are known to be equal, the nodes for g, c, and b will all get the
same color label. Thus the equations g = c and g = b will become true. Thus
both the equations f (g = f (c) and f (g = f (b) will become true and the
nodes for f (g), f (c) and f (b) will all get the same color label. Thus focusing
on c causes the system to deduce that f (c) equals f (b). This scheme for
handling substitution of equals for equals via substitution constraints can be
suitably generalized to handle operators of more than one argument.

Unlike congruence closure, substitution constraints combined with fo-
cused binding and Boolean constraint propagation will only substitute equals
for equals when the expressions being substituted for are focus objects. All
of the examples of superhuman Ontic performance involve substitutions of
non-focused expressions.

3.1.4 Superhuman Performance Re-Examined

It is important to note that the scheme for equality inference based substitu-
tion constraints is not as powerful as the full congruence closure mechanism.
More specifically, using substitution constraints the substitution of equals for
equals can only be done when the substituted expressions are equal to some
focus object. All of the examples of superhuman performance discussed above
involve substitution for non-focused objects. For example consider the proof
shown in chapter 2 that in a dstributive lattice complements are unique.
The uniqueness of complements is obvious to the Ontic system.

Figure 21 in chapter 2 shows the Ontic "proof" that complements are
unique together with an expanded derivation showing how the Ontic system
proved that if y, and Y2 are both complements of x then y, must equal Y2-

The second line in the expanded derivation is derived by replacing with
(Y2 V x) even though neither nor (Y2 V X) is a focus object. If congruence

3.2. SUBHUMAN PERFORMANCE 83

inference required focusing on the substituted expression then the second line

could only be derived by focusing on Y2 V X Similarly, line four 'is derived by

substituting for y A x even though y A x is not a focus object. Lines five

and seven also involve substitution for non-focused expressions.

Even the weaker scheme based on substitution constraints could prove

that complements are unique in a single inference step 'if the system focused

on Xi Yli Y2i Y2 V Xi y A x, Y A x and Y2 V x all at the same time. However,

it seems that people have a hard time focusing on seven objects simultane-

ously. The ability of the Ontic system to focus on a large number of objects

simultaneously is perhaps another source of superhuman performance.

3.2 Subhunian Perforrnance

Some proofs in the appendix exhibit subhuman performance which can be

attributed, at least in part, to weaknesses in the lemma library. Other ex-

amples, not gven in the appendix, indicate weaknesses 'in the fundamental

inference architecture. It 'is hoped that examples of subhuman performance

lead to new 'Inference techniques which increase the usefulness of verification

systems.

3.2.1 NVeaknesses in the Lemma Lbrary

The lemma library developed in the appendix does not 'Include a duality

principle for Lattices. Given an appropriate duality principle the proof of

any identityin lattice theory would lead 'immediately to a proof of the dual

identity. For example consider de Morgan Is laws. A first de Morgan law can

be phrased as follows.

(X V Y) = A y*

A second de Morgan's law can be derived from the first via a duality principle

for Boolean lattices: the result of switching V and A (and I and 0) in any

Boolean lattice identity leads to another Boolean lattice identity. Given the

duality principle for Boolean lattices the validity of the above de Morgan law

84 CHAPTER 3. ONTIC AS A COGNITIVE MODEL

leads 'Immediately to the validity of the dual law:

(x A y) = x* V y*

One could incorporate the duality principle 'Into the Ontic system by defining
the dual of a lattice. Given any lattice (or any partial order) the dual of the
lattice is defined to be that lattice which has the same elements but in which
the partial order has been reversed. Using the Ontic system one could easily
define a function which mapped any lattice to its dual lattice. Furthermore
one could prove that 'if L is the dual of a Boolean lattice L then L is a
Boolean lattice such that the meet operation in L equals the join operation
in L the join operation 'in L equals the meet operation of L and L has
the same complement operation as L. Given a Boolean lattice identity I one
could then prove that the dual identity must hold in an arbitrary Boolean
lattice L by considering the dual lattice L' and noting that holds in L just
in case the lattice 'Identity I holds in the dual .

Another example where standard notions could be added to the lemma
library to reduce the length of proofs involves the algebraic characterization
of a lattice. It turns out that the partial order of a lattice is determined by
the meet and 'oin operations and in fact one can define a Boolean lattice
to be a set together wth meet, join and complement operations that satisfy
certain equational axioms. This algebraic vew of a lattice is described in
textbooks on lattice theory and could be added to Ontic's lemma library.
The algebraic view of a lattice would allow a shorter machine readable proof
of one of the lemmas given 'in the appendix. More specifically, the algebraic
view of a lattice provides a short proof that if 'is a subset of a Boolean lattice
L such that 'is closed under the meet, join and complement operations of
L then the set together wth the partial order of L restricted to forms a
lattice with the same lattice operations as L.

3.2.2 Mathematical Induction

The clearest examples of subhuman behavior on the part of the Ontic system
involve mathematical 'induction. Many common sense inferences appear to
involveinduction. Consider the following examples:

3.2. SUBHUMAN PERFORMANCE 85

0 Consider a colored graph 'in which adjacent nodes have the same color,
i.e. if there 'is an arc between nodes n and then n and m have the
same color. If nodes n and m have different colors then there is no path
between them in the graph. A formal proof requires 'Induction on the
length of paths in the graph.

* Consider a chess board. The white pawns start on the second rank and
never move backward. Therefore no white pawn can ever appear on
the first rank. A formal proof of this statement requires induction on
the number of steps in the game.

* Consider two containers for holding marbles. Initially each container is
empty. Marbles are then placed in the containers 'in pairs; one marble
from each pair is placed in each container. No matter how many times
this is done, assuming the containers do not overflow, there wll be
the same number of marbles n each container. A formal proof of this
statement requires an induction on the number of marbles placed in
the containers.

* Consider Rubic's cube. Suppose the cube starts 'in a solved position
and 'is scrambled by some number of rotations of faces of the cube.
There exists a set of steps that unscrambles the cube. A formal proof
of this statement requires an 'Induction on the number of rotations used
to scramble the cube.

* Consider a mouse running in a maze. Suppose the maze is arranged
inside a box such that there are no openings in the walls of the box
and the mouse can not jump over the walls. No matter how long the
mouse runs, and no matter where it goes inside the maize, the mouse
will not get outside the box. A formal proof of this statement requires
induction on the number of "moves" the mouse makes in the box.

In each of the above examples the conclusion is obvious to people. In each
example, if the concepts involved were approximated by mathematically pre-
cise notions, then any mathematician would accept the conclusion as obvious
and would not ask for further proof.

�sm�-

CHAPTER 3. ONTIC AS A COGNITIVE MODEL86

Ontic can be used to perform induction proofs. However induction proofs
must be done explicitly: one must explicitly formulate the induction hypoth-
esis and explicitly verify the nduction step. For example, consider verifying
that white pawns in a game of chess can not get to the first rank. This fact
can be verified using the following induction principle for natural numbers.

(DEFTYPE SET-OF-NATNUMS

(LAMBDA ((S SET))

(IS-EVERY (MEMBER-OF S) NATURAL-NUMBER)))

(LEMMA

(FORALL ((S SET-OF-NATNUMS))

(AND (IS ZERO (MEMBER-OF S))

(FORALL ((N (MEMBER-OF S)))

(IS (SUCCESSOR N) (MEMBER-OF S))))

(IS-EVERY NATURAL-NUMBER (MEMBER-OF S)))))

The above 'induction principle says that 'if a set contains zero and is closed

under successor then 'it contains all numbers. The set represents an induc-

tion hypothesis; is the set of numbers which satisfy the hypothesis.

In the chess example one must prove that white pawns never end up on

the first rank. More formally, let an instance of the type CHESS-GAME be

a particular games of chess, i.e. a particular sequence of moves. If G is a

particular chess game and N is some natural number then

(WHITE-PAWN-ON-BOARD G N)

denotes the type whose instances are the white pawns which are on the chess

board after then N'th move of the game G. We let

(RANK-OF P G N)

be the rank occupied by the pawn P immediate after the N'th move of the

game G. Figure 32 contains statements which follow form the rules of chess.

An Ontic proof that pawns never get to the first rank is given in figure 33.

The goals in the proof are numbered and the NOTE-GOAL steps are labeled

3.2. SUBHUMAN PERFORMANCE 87

(FORALL ((G

(N

(IS-EVERY

CHESS-GAME)

NATURAL-NUMBER))

(WHITE-PAWN-ON-BOARD

(WHITE-PAWN-ON-BOARD

G (SUCCESSOR N))

G N)))

(FORALL ((G CHESS-GAME)

(N NATURAL-NUMBER)

(P (WHITE-PAWN-ON-BOARD G (SUCCESSOR N)))

(IS (RANK-OF P G (SUCCESSOR N)

(GREATER-OR-EQUAL-TO (RANK-OF P G N))

(FORALL UP (WHITE-PAWN-ON-BOARD G ZERO)))
(IS (RANK-OF P G ZERO)

(EQUAL-TO TWO)))

Figure 32: Statements which follow from the rules of chess.

with the number of the goal being noted. The proof uses the facts listed in
table 32 together with simple facts about the ordering of natural numbers.

The proof starts by considering an arbitrary chess game G. The proof
shows that the following induction hypothesis holds for any number N.

(FORALL ((P (WHITE-PAWN-ON-BOARD G N)))

(IS (RANK-OF P G N)

(GREATER-OR-EqUAL-TO TWO)))

The induction principle for natural numbers states that if a set of numbers
contains zero and is closed under successor then it contains all numbers. If
the induction hypothesis is D(N) then one should consider the set of all N
such that 4(N). For the above induction hypothesis one should consider the
following set:

(THE-SET-OF-ALL

(LAMBDA ((N NATURAL-NUMBER))

(FORALL ((P (WHITE-PAWN-ON-BOARD G N)))

(IS (RANK-OF P G N)

(GREATER-OR-EQUAL-TO TWO)))))

l---------------l-- ---- -- --

88 CHAPTER 3. ONTIC AS A COGNITIVE MODEL

(IN-CONTEXT ET-BE G CHESS-GAME)

(LET-BE HYP-SATISFIERS

(THE-SET-OF-ALL

(LAMBDA UN NATNUM))

(FORALL UP (WHITE-PAWN-ON-BOARD G NM

(IS (RANK-OF P G N)

(GREATER-OR-EQUAL-TO TWOMM

(PUSH-GOAL

(IS-EVERY NATURAL-NUMBER

(MEMBER-OF HYP-SATISFIERS)))) ;#l

(IN-CONTEXT ((PUSH-GOAL

(IS ZERO (MEMBER-OF HYP-SATISFIERS)))) ;#2

(IN-CONTEXT ET-BE ZEROVAR ZERO))

(IN-CONTEXT ((SUPPOSE

(EXISTS-SOME (WHITE-PAWN-ON-BOARD G ZERO)))

(LET-BE P (WHITE-PAWN-ON-BOARD G ZERO))

(LET-BE TWOVAR TWO))

(NOTE-GOAL)) ;#2

(NOTE-GOAL))) ;#2

(IN-CONTEXT ((PUSH-GOAL

(FORALL UN (MEMBER-OF HYP-SATISFIERS)))

(IS (SUCCESSOR N) (MEMBER-OF HYP-SATISFIERS)))) ;#3

(LET-BE SATISFIER (MEMBER-OF HYP-SATISFIERS))

(LET-BE NEXT-SATISFIER (SUCC SATISFIERM

(IN-CONTEXT ((PUSH-GOAL

(FORALL ((P (WHITE-PAWN-ON-BOARD G NEXT-SATIFIERM

(IS (RANK-OF P G NEXT-SATISFIER)

(GREATER-OR-EQUAL-TO TWO))))) ;#4

(IN-CONTEXT SUPPOSE

(EXISTS-SOME

(WHITE-PAWN-ON-BOARD G NEXT-SATISFIER)))

(LET-BE P (WHITE-PAWN-ON-BOARD G NEXT-SATISFIER))

(LET-BE Rl (RANK-OF P G SATISFIER))

(LET-BE R2 (RANK-OF P G NEXT-SATISFIER))

(LET-BE TWOVAR TWO))

(NOTE-GOAL)) ;#4

(NOTE-GOAL)) ;#4

(NOTE-GOAL)) ;#3

(IN-CONTEXT ET-BE N (MEMBER-OF HYP-SATISFIERS)))

(NOTE (IS HYP-SATISFIERS SET-OF-NATNUM)))

(NOTE-GOAL)) ;#l

Figure U.- The proof that white pawns never get to the first rank.

3.2. SUBHUMAN PERFORMANCE 89

The Ontic proof in figure 33 focuses on the set representing the induct'ion
hypothesis. It then proceeds to prove the base case and induction step. The
base case uses the fact that the rank of a white pawn at time zero equals
two and every number is greater than or equal to itself. In order to apply
the fact that every number 'is greater than equal to 'Itself one must focus on
the number two. The 'Induction step uses the fact that the rank of the pawn
at time n 'is greater or equal to two and the rank of the pawn at tme n + 1
is greater or equal to the rank at time n. To 'invoke the transitivity of the
ordering on natural numbers one must focus on the three numbers given by
the rank of pawn at times n and n I together with the number two.

The proof shown 'in figure 33 is clearly much longer than a natural lan-
guage argument which simply states that white pawns never get to the first
rank. This exampleindicates that without additional theorem proving mech-
anisms the Ontic system will exhibit a large expansion factor on many in-
duction proofs.

One possible mechanism for reducing the expansion factor in 'induction
proofs would be a backward chaining procedure (a tactic) for automatically
generating proofs such as the one shown in the figure 33. It would be easy
to automatically convert the nduction hypothesi's 'Into a set of numbers and
automatically focus on that set of numbers. Furthermore one could auto-
matically attempt to prove the base and 'Induction cases of the argument.
As figure 33 shows however, proving the base and induction cases wth the
Ontic system may require focusing on additional ob'ects. In figure 33 the
user focuses on an arbitrary white pawn and the number two. In the induc-
tion case the user focuses on the rank of the pawn at two different times. It
seems that 'it might be dfficult to automatically generate these additional
focus objects.

Several automated 'inference systems include inference mechanisms for
handling mathematical induction [Boyer Moore 79] [Huet & Hullot 83]
[Ketonen 84]. Research 'is needed to determine if these, or other I induction
mechanisms can be incorporated into the Ontic system. These inference
mechanisms are all backward chaining; the 'Induction hypothesis is taken
from the goal statement. It would be interesting to see 'if some forward
chaining 'Induction mechanism could be found that was more 'in the spirit of

a er

uan i er ee n erence

Each context in the Ontic system 'is specified by a lemma library, a set of focus
objects, and a set of assumptions. Gven a lemma library, an assumption
set, and a focus set the Ontic system uses focused forward chaining inference
mechanisms to generate a set of "obvious truths" for the given context. In
any given context the operations NOTE and NOTE-GOAL can be used to make
permanent additions to the lemma library.

Each lemma focus ob'ect and assumption is an expression in the for-
mal language Ontic. Rather than manipulate Ontic expressions directly, the
Ontic system compiles these expressions into graph structure where there is
a one to one correspondence between graph nodes and Ontic expressions.
Compilation and 'inference are separate processes- compilation generates a
graph structure and inference manipulates graph labelings without creatin9
additional graph structure. For efficiency reasons the graph constructed by
the Ontic system is saved and used repeatedly in many different contexts.

In the Ontic system the current context is specified by incrementally
adding and removing suppositions and focus objects. The system maintains
a stack discipline with respect to the addition and removal of focus objects:
the last supposition or focus object added must be the first one removed. The
graph labeling of a given context 'is determined by the lemma library, focus
ob'ects and suppositions; the graph labeling does not depend on how the

91

92 CHAPTER 4 QUANTIFIER FREE INFERENCE

context was constructed. Labelings can be computed incrementally however.
When a focus ob'ect or supposition 'is added Ontic's inference mechanisms
extend the labeling to 'Include more truth labels and to satisfy more equiv-
alences. The system also maintains an "undo list" so that when a focus
object or supposition 'is removed the previous context can be restored and
then updated to reflect additions to the lemma library.

Chapters 6 and 7 specify the formal language Ontic and the way in which
the graph structure is generated from the lemma library. This chapter, and
the one that follows, specify the formal structure of the graph and the mecha-
nisms for labeling that graph. The graphs constructed by the Ontic compiler
have five different knds of nodes and nne different kinds of "links" between
nodes. However this chapter discusses only those kinds of nodes and links
that are used in Boolean constraint propagation and congruence closure.
These node types and link types are ntroduced 'in three stages by defining
three progressively more sophisticated types of graphs.

The first two sections of this chapter dcuss graph structure and 'in-
ference mechanisms that are relevant to Boolean constraint propagation.
Boolean constraint propagation is responsible for enforcing certain Boolean
constraints on formula nodes and for enforcing certain relationships between
truth labels of equation nodes and color labels representing equivalences.
Congruence closure ensures that the color labels that represent equivalences
respect the substitution of equals for equals.

4A Boolean Constraint Graphs

This section describes Boolean constraint graphs and the 'inference mecha-
nisms that apply to them. Sections 41.2 and 41.3 can be safely ignored by
readers who are not interested in correctness proofs; the graph structure and
inference mechanisms are fully specified by the end of section 41.1.

Boolean constraint graphs are a very simple approximation of the graphs
produced by the Ontic compiler; Boolean constraint graphs have only a single
kind of node and a single kind of link. The nodes represent formulas and

4.1. BOOLEAN CONSTRAINT GRAPHS 93

each link is a disjunctive constraint on truth values assigned to the nodes.

Definition: Let A be a set of formula nodes. A literal over
Y is either a node n in A" or the negation --in of some node n 'in
./V.

A clause over A" is a disjunction of the form

�Vl V T2 V ... XF n

where each Ti 'is a lteral over Y.

A Boolean constraint graph consists of a set of formula nodes
and a set of clauses over those nodes.

The Boolean constraint propagation algorithm manipulates partial truth
labelings of Boolean constraint graphs. More specifically, the propagation
algorithm extends partial truth labelings in a manner justified by the clauses
in the graph.

Definition: A partial truth labeling of Boolean constraint graph
B 'is a partial map from the nodes in to the set Itrue, false};
if n is a node in then 7(n) is either true, false or undefined.

A partial truth labeling on determines a partial truth labeling
on all literals IF over as follows.-

false
7 (--i n = true

undefined

if -y(n = true
if -y(n = false

'if 7(n) is undefined

Each clause 'is a dsjunction of the form

Tl V XF2 V ... XF n

94 CHAPTER 4 QUANTIFIER FREE INFERENCE

which states that one of the lterals must be true. The propagation algorithm
is based on the ntion of a unit clause; Boolean constraint propagation ex-
tends partial truth labels by identifying unit clauses in the graph structure.
The notion of a unit clause is defined relative to the partial truth labeling -.
Consider a clause of the form

T1 V T2 V ... n

and a partial truth label . If -y(Ti) 'is false then the above clause expresses
the constraint that one of the other literals must be true. In general one
should only pay attention to the non-false literals in a clause. A clause with
only a sngle non-false literal is called a unit clause.

Definition: A clause T1 V T2 V - - Tn is called a y-unit-clause 'if
there is exactly one literal Ti such that -y(Ti) is not false. The
single non-false literal 'is called the unit literal of the clause.

An open -y-unit-clause is a y-unit-clause where the unit lteral has
no truth label under -y, i.e. -y(T) is undefined for the unit lteral
XF.

An open -y-unit-clause provides grounds for extending the partial truth
labeling ; 'if there is only one non-false literal in a clause C then the remain-

ing literal, the unit literal of the clause, must be true. Boolean constraint

propagation uses open unit clauses to extend the truth labeling until either

an inconsistency is discovered or there are no remaining open unit clauses.

Definition: Let be a Boolean constraint graph and let be a

partial truth labeling on B.

The partial labeling - wll be called B inconsistent if there 'is some
clause

4fl V T2 V Tn

in B such that -y(Ti) is false for each literal in the clause. If

^/ is not Binconsistent we say that is 13-consistent.

4.1. BOOLEAN CONSTRAINT GRAPHS 95

Let be any literal over the nodes in such that -y(T) is un-
defined. The labeling 7[T = true] is the partial truth labeling
which agrees with -y on all nodes other than that appearing 'in
T and such that -y[T = true](T) equals true. -y[T = false] is
defined smilarly.

Boolean constraint propagation starts with an arbitrary partial labeling
-y of a Boolean constraint graph and returns a new partial labeling NS -Y).

The Boolean constraint propagation procedure can be defined as follows:

Definition: A partial truth labeling -y of a Boolean constraint
graph is called normalized if ether it is B-inconsistent or there
are no open unit clauses in under .

Procedure for Computing NL(7):

If 'is normalized then return -y, otherwise choose an open -y-unit-
clause 'in with unit literal and return the labeling NL3(-y[T
t rueD

Since there are only finitely many formula nodes 'in C the partial truth
labeling can not be extended indefinitely and the recursion in the above
procedure must terminate. Furthermore the labeling returned by the above
procedure is always normalized.

The normalization of a labeling of a Boolean constraint graph involves
inference. If a labeling -y' can be derived via a single inference from a labeling
7 then we write -1--+L3 y'. In analyzing Ontic's inference mechanisms the one
step inference relation s easier to think about than the normalization
function NB More formally, for any Boolean constraint graph the relation

8 is defined on the labelings of as follows:

Definition: Let and ' be two partial truth labelings of a
Boolean constraint graph B. We write -� --+L3 -y' if -y is B-consistent

CHAP TE R 4 QUANTIFIER FREE INFERENCE96

and -y' can be derived 'in a sngle unit inference from ^�, i.e. if there
is some open -- unit-clause 'in with unit literal and such that
7/ equals 7['F = true].

The relation --+L3 should be vewed as a reduction relation analogous to re-
duction relations in the lambda calculus or term rewriting systems. For any
labeling -y of the normalized labeling NL3 (-y) is the normalization of -y under
the reduction relation --+L5 .

4.1.1 Compiling Boolean Combinations

The graph structure used in semantic modulation 'is constructed by compiling
expressions in the Ontic language; the compilation process translates the
Ontic expressions into graph structure. The utility of Boolean constraint
propagation i's best understood 'in light of this � compilation process. The
full Ontic compiler 'is precisely defined in chapter 7 However this section
describes the compilation of Boolean combinations of formulas.

The compilation process converts an Ontic formula to a formula node
nq, Certain Ontic formulas are associated with clauses called meaning pos-
tulates. When the node n is constructed the meaning postulates for
are added to the graph. For example suppose that the formula 'is a
Boolean combination of the formulas 01 andO2, e.g. might be the formula
(OR 01 02). The meaning postulates for are clauses that relate the node

n.j> to the nodes ng, and nE),. The exact nature of the clauses relating D

to ne, and no, depends on the Boolean connective used in (D. Table 41

shows the meaning postulates for the Boolean connectives used in the Ontic
system.

Boolean constraint propagation generates a normalized partial truth la-

beling of the constraint graph generated by the compilation process. If the

normalized labeling is 8-consistent then the meaning -postulates for Boolean

connectives ensure certain relationships between Boolean formulas and their

subformulas. For example consider the following meaning postulate for im-

4.1. BOOLEAN CONSTRAINT GRAPHS 97

Formula Meaning Postulates for np

(AND E) 1 02)

(OR E), 02)

(IMPLIES 01 02)

(IFF E), 02)

i.e.

i.e.
i.e.

i.e.

i.e.

i.e.

i.e.
i.e.

i.e.

i.e.

i.e.

i.e.

i.e.

--in(AND 9, 02) V n,

--in(AND G E2) V n82

--ine, V --,ne, V n(AND 1 2)

--inel V n(OR O E2)

--in (92 V n(OR E)i 2)

--in(OR el e2) V no, V n 82

--inE)2 V n(IMPLIES el 02)

nel Vn(IMPLIES e e2)

--in(IMPLIES 1 02) V --inel V nE)2

--in(IFF l 2) V --inel V nE)2

--in(IFF 81 e2) V no, V --inel

--ine, V --ine2 V n(IFF 1 e2)

nel Vn 02 V n(IFF el o2)

n(AND el e2) ne,
n(AND el 02) no,
ne A ne2 * n(AND e, e2)

no, n (OR el e2)

no, n(OR , e2)

n(OR l o2) * ne, V ne2

no, :> n(IMPLIES l o2)

-,-in(, ==>, n(IMPLIES 9 (92)

n(IMPLIES ol (E)2 A n, ==>, nE)2

n(IFF E), E2 A n, =�- nE)2

n(IFF ol 82 A -,nel * ---Ine2

ne A ne2 * n (IFF el e2)

--ine A n 02 =�, n(IFF el 02)

(NOT) ne V nNot e)

-,-,ne V --,n(xot e)

Table 41: Meaning postulates for Boolean connectives

CHAPTER 4 QUANTIFIER FREE INFERENCE98

plications of the form (IMPLIES E), 02)

--in(IMPLIES el 02) V --ine, V ne2

Now suppose is a B-consistent normalized partial truth labeling such that
,y(n(IMPLIES 1 2)) is true and ne,) is true. In this case the first two
literals 'in the above clause are labeled false under By assumption - is
8-consistent so the last literal i's not false. Furthermore since -Y 'is assumed
to be normalized the above clause can not be an open 7-unit-clause so the
last lteral must be labeled true. In summary:

If is a B-consistent normalized labeling such that

(n (IMPLIES el e2)) true

and
- (nE),) = true

then
-y(ne2) = true

Thus B-consistent normalized labelings, are closed under theinference rule
of modus ponens. A similar argument can be used to prove the following:

If -y 'is a 8-consistent normalized labeling such that

(n(IMPLIES 01 2)) - true

and
7(n92)= false

then
7(ne, = false

A smilar argument concerning the meaning postulates for negations shows
that 'if / is a 8-consistent normalized partial truth labeling and the nodes

4.1. BOOLEAN CONSTRAINT GRAPHS 99

no and n(NOTe) have been constructed in the graph then ether -X does not
provide a truth label for either of these nodes or the assigns these nodes
opposite labels.

Now let op be any binary Boolean operator listed in table 41 and let be a
B-consistent normalized truth labeling. The meaning postulates ensure the
following conditions:

0 If the nodes ng, and ng, both have truth labels then any node of the
form n op el 02) , also has a truth label; n.p 1 9,) has the truth label
given by the meaning of op.

* If the meaning of op allows the truth of (op E), 02) to be derived
from either the truth label for no, or the truth label for (or n 2) then
n(op el) has the appropriate truth label. For example a disjunction
is true whenever one of its disjuncts is true and a conjunction is false
whenever one of its conjuncts 'is false.

* If the meaning of op allows the truth of nE), to be derived from the
truth label of n.p el e.0 then no, has the appropriate truth label. For
exam le if a conjunction 'is true then each con .unct is true and 'if a

p J
di 'unction is false then each dis'unct is false. If an 'Implication 'is false
then its antecedent is true and its consequent is false.

* If the meaning of op allows the truth of nE), to be derived from both
the truth label of n (op el 02) and the truth label of nE)2 then ne, has
the appropriate truth label. An analogous statement holds for deriving
labelings of ne2 from labelings of nOp el e2) and nE),. For example if
a conjunction is labeled false and one of its conjuncts 'is labeled true
then other will be labeled false. If a disjunction is labeled true and
one of 'Its disjuncts are labeled false then the other disjunct will be
labeled true.

The above properties of a B-consistent normalized labeling do not guar-
antee that -y is closed under all possible Boolean inferences. Boolean con-
straint propagation constructs a normalized labeling in time proportional to

100 CHAPTER 4 QUANTIFIER FREE INFERENCE

the number of nodes 'in the graph; assuming P :� NP any logically com-
plete Boolean inference mechanism requires exponential tme. Thus it is not
surprising that Boolean constraint propagation is logically incomplete. More

'fically, Boolean constraint propagation does not erform case analyses.
For example there exists a B-consistent normalized labeling with the fol-
lowing properties:

7(n(OR , E,) = true

(n(IMPLIES 1 G3))- true

,7(n(IMPLIES e2 3)) true

^/(no.) is undefined

In the above stuation Boolean constraint propagation does not generate
truth labels for any of the nodes nE)1, n92 or n3-

4.1.2 Order Independence for Boolean Inference

The Boolean constraint propagation procedure defined above is non-deterministic;
the procedure extends a partial truth labeling by non-deterministically choos-
ing an open unit clause. Fortunately however, one can prove that the labeling
generated by the propagation procedure is independent of the order in which
open unit clauses are chosen.

Definition: Two partial labelings -/1 and 72 of a Boolean con-
straint graph will be called B-equivalent if either 1 equals ^/2

or both 1 and 72 are Sinconsistent.

Normalization Theorem: For any partial labeling -y of a Boolean
constraint graph the Boolean constraint propagation procedure
terminates and all possible values of NL3(7) are S-equivalent.

Thi's theorem can be proven by examining the 'inference relation--+ B
Viewing -L3 as a reduction relation, the above theorem is implied by the
fact that the relation --+L3 satisfies a certain Church-Rosser property. The

ww� swommi 1, . --, - -- - -

4.1. BOOLEAN CONSTRAINT GRAPHS 101

Church-Rosser property of q3 is proven using general lemmas that apply
to any reduction relation.

Definition: For any binary relation --+ we write x -- +* y if ether
x equals y or there exists some z such that x -- z and z -+* y.

We say that -+ 'is well founded if there is no 'infinite sequence

X1 - X2 4 X3 -- ,

We say that y 'is a normal form under --+ 'if there 'is no z such
that y -- * z. We say that y is a normal form of x under --+ 'if y is
a normal form under and x --+ Y.

We say say that ---+ 'is a terminating ormalizer modulo an equiv-
alence relation 'f 'is well founded and normalizations under
-* are unique up to i.e. if y and z are both normal forms of x
then y ? z.

Normalization Lemma: -+L3 is a terminat' malizer
modulo 8-equivalence.

To prove the normalization lemma first note that whenever 7--+L3 -y' the
labeling ' provides more truth labels than does . Since there are only
finitely many nodes in there can not be any infinitel long reduction chains
under the relation --+,y . Thus -8 is well founded. Thus, to prove that --+L3
is a terminating normalizer it suffices to show that normal forms are unique
up to B-equivalence.

Definition: We say that --+ satisfies the diamond property mod-
ulo an equivalence relation if for every x, y and z such that
X y and x z there exists a w and such that y --+* w,
z w' and w O.

CHAPTER 4 QUANTIFIER FREE INFERENCE102

Diamond Lemma: If --+ is well founded and satisfies the dia-
mond property modulo ;z:� then for any ob'ect x 'in the domain
of the relation ---+, all normal forms of x under are equivalent
under i.e. is a terminating normalizer modulo

The diamond lemma as stated above is a straightforward modification of
a theorem proved by Knuth and Bendix for term rewrite systems [Knuth
Bendix 69]. The diamond property for a given relation can be proven by
showing that individual 'Inferences commute. More specifically if there are
two open unit clauses which each can be used to extend the partial truth
labeling in two different ways then one can perform both inferences and the
result is the same no matter which inference is performed first. Unfortunately
the situation is complicated by the possibility of contradictions but the basic
result holds: --+L3 satisfies the diamond property modulo 8-equivalence of
partial truth labelings.

Lemma.- -*L3 satisfies the diamond property modulo S-equivalence.

Proof: Suppose ^/O--4L3 -�, and 7 --+ S 72 where 1 is a different
labeling from 2. From the definition of __+8 there must exist
distinct literals T, and 2 such that

71 ^O[T, true]

and

^/2 - '70 T 2true]

Let c be the clause in which is an open 7o-unit-clause with
unit literal T, and let C2 be the clause in which is an open
7o-un -clause wth unit literal XF2

First suppose that and T2 are opposite literals for the same
formula node. In this case the assignment T, :=true will cause
T2 to be false. Thus every lteral in C2 Will be false under 1 so
in this case X, is B-inconsistent. Similarly every literal in c, will
be false under 2 and so in this case -y2 'is Binconsistent. But if

4.1. BOOLEAN CONSTRAINT GRAPHS 103

,/1 an d 2 are both B-inconsistent then they are B-equivalent so
the damond property holds.

Now suppose that the literals IF, and T2 involve different for-
mula nodes. Let 3 be the labeling

(-/[,Fl = true])[T2 = true]

Since T, and T2 involve different formula nodes -y3 can also be

written as

(7[T2 = true])[Ti = true]

Since T, and XF2 involve different formula nodes the clauseC i S

still an open 71-unit-clause. Thus if yj is consistent 71- 3.

Similarly if y2 i's B-consistent then _Y2--+8 3. Thus if both -yj and

72 are B-consistent then they both reduce to 3 so the diamond

property holds. If both /1 and 2 are Binconsistent then they are

B-equivalent so the diamond property holds. Now suppose that

71 is B-consistent but 72 is not. In this case -yj reduces to -y3. But

73 is a proper extension of y2 and -y2 is B-inconsistent so -y3must

also be Binconsistent. But this 'Implies that B-equivalent

to 'Y2 so the damond property holds.

Since -+L3 'is well founded and satisfies the diamond property modulo

B-equivalence for partial truth labelings the Knuth-Bendix diamond lemma

implies that normalizations are unique up to B-equivalence and thus --+L3
is a terminating normalization relation modulo B-equivalence. Thus, up to

B-equivalence, there is only one possible value of Nt3(7).

4.1.3 Semantic Soundness

For any Boolean constraint graph the relation -*L3 can be vewed as an

inference relation. It 'is possible to provide a simple semantics for Boolean

constraint graphs and prove that the relation +L3 is sound modulo this

semantics. For the most part the soundness of self evident. However

the semantics given here provides groundwork that will be needed to prove

the soundness of semantic modulation inference relations.

CHAPTER 4 QUANTIFIER FREE INFERENCE104

Any semantic interpretation of a set of formula nodes provides a way of
assigning every node a truth value, either true or false. Thus any semantic
interpretation of a set of formula nodes yields a complete truth labeling of
those nodes.

Definition: A partial truth labeling of a Boolean constraint
graph 'is called complete if it assigns every node a truth la-
bel. Complete labefings will be called Boolean interpretations
and wll be denoted wth the greek letter .

Clauses in a Boolean constraint graph and any partial truth labelings express
constraints on possible interpretations.

Definition: Let be a Boolean constraint graph, let -y be a
partial truth assignment on the nodes 'in , and let be a Boolean
interpretation of the nodes in B.

'We say that satisfies a clause

T1 V T2 V ... k

if w makes at least one of the literals Ti true. We say that
satisfies the Boolean constraint graph just in case satisfies
every clause 'in B.

We say that satisfies the partial truth labeling 'if every node
that 'is assigned a truth label by ^/ is assigned the same truth label
by .

The reduction relation --+L3 can be viewed as a sound inference relation
in the sense that 'if ^yl -+L3 ^� 2 then every constraint 'in -y2 is implied by the
constraints 'in ̂ /1 and B, i.e. if satisfies ^/1 and then also satisfies 72-

--+B Soundness Lemma: If is a Boolean interpretation that
satisfies a Boolean constraint graph B and a partial truth labeling
^/, and if 7-+L3 /, then satisfies '.

4.2. EQUALITY CONSTRAINT GRAPHS 105

4,2 Equality Constraint Graphs

This section describes equality constraint graphs and the inference mecha-
nisms that apply to them. Sections 42.1 and 42.2 can be safely 'ignored by
readers who are not 'Interested 'in correctness proofs.

As the name implies, equality constraint graphs are used to reason about
equality. In addition to clause links equality graphs have equality links. An
equality expresses the fact that a certain formula node represents an equation
between two other nodes. Equality constraint graphs have both formula and
non-formula nodes. The non-formula nodes 'in an equality constraint graph
are divided into two types: quotation nodes and non-formula non-quotation
nodes. No two quotation nodes should ever be equal. If there are n quotation
nodes then there are order n 2 potential equalities between these nodes; the
existence of quotation nodes eliminates the need to explicitly state that these
n2 equalities are all false. In the Ontic compilation process quotation nodes
are used to represent quotation expressions of the form (QUOTE symbol).

Defini'tion: An equality constraint graph consists of a set of
formula nodes, a set of clause lnks over the formula nodes, a set
of quotation nodes, a set of non-formula non-quotation nodes,
and a set of equality links of the form

P �� n = m

where p is a formula node in and n and m are any nodes 'in E.

Let be the Boolean constraint graph consisting of the formula
nodes and clause links in an equality constraint graph E. We say
that is the Boolean constraint graph underlying S.

An equality lnk of the form p -�* n = m says that the formula node p
represents the equality between nodes n and m. The Ontic compiler creates
an equality link every time it compiles an equality formula. More specifically,
every time a node of the form n (=a b) is created the system constructs the

CHAPTER 4 QUANTIFIER FREE INFERENCE106

equality link
n(= a b) #� n a = n b

where na is the node representing the expression a and nb is the node repre-
senting the expression b.

The labelings of equality graphs contains both a partial truth labeling of
formula nodes and a color labeling of all nodes. The color labeling represents
information about the equality of nodes; two nodes with the same color are
considered equal.

Definition: A labeling of a colorable node set is a pair
<-X, > where is a partial truth labeling of the formula nodes
in and 'is a color labeling which maps every node in to a
color.

The notion of a labeling as defined above is meaningful independent of
the links 'in the graph structure . A labeling contains 'Information about
which formula nodes are true (or false) and information about equivalences
between nodes (both equivalences between formula nodes and equivalences
between non-formula nodes). However the links in an equality constraint
graph E can be thought of as constraints on labelings. More specifically, we
have the following definition of a E-inconsistent labeling.

Definition: We say that a labeling <, r,,> of E is E-inconsi8tent
if any of the following conditions hold:

is B-inconsistent where i's the Boolean constraint graph
underlying S.

There is some equality link n = m in E such that
K(n = K(m) but 7(p) = false.

There are two dstinct quotation nodes n and m 'in such

that K(n = c(m).

4.2. EQUALITY CONSTRAINT GRAPHS 107

There are two formula nodes p and q such that K(p = rv(q),
both 7(p) and -y(q) are defined but -y(p) is the opposite of
7(q).

If a labeling C is not Einconsistent then we say that the labeling
<7, K> is S-consistent.

A given equality constraint graph 'is associated with an inference rela-
tion on labelings. The inference relation --+e can extend a labeling 'in
one of two ways: it can add a new truth label on a formula node or it can
merge two equivalence classes by assigning both classes the same color label.
When two equivalence classes are merged the smaller class is recolored to be
the color of the larger class. This class merger operation can be defined as
follows..

Definition: If r. is a color labeling of the nodes 'in S, and
and rn are nodes in then the color map K[union(n, m)] 'is a
color map which yields the same equivalence relation as rx, except
that the equivalence classes of n and m have been merged. More
specifically, if the size of the equivalence class of n under is less
than or equal to the size of the class of m under r. then the map
K[union(n, m)] is defined as follows:

K [union (n, m)] (q) r (m) if (q) (n)
K(q) otherwise

The above definition specifies that the union operation recolors
the class of n to be the same color as the class of m. If the size
of the class of n under 'is larger than the sze of the class of
m under ri, then c[union(n, m)] equals K[union(m, n)]. The union
operation always recolors the saller equivalence class.

It 'is now possible to define the 'Inference relation --+c .

CHAPTER 4 QUANTIFIER FREE INFERENCE108

Definition: Let be a labeling of which is equal to the pair
<-�, r,,>. Let L' be a labeling of which 'is equal to the pair
< K I>. We write L' if one of the following conditions
hold:

0 = I and -' is derived from via unit 'inference i.e. -y-+L37'
where is the Boolean constraint graph underlying S.

o contains the link #� n = m and each of the following
conditions hold

17(p) true

K (n) =� r (ra)

7 and K = K [union(n, M)I

o contains the link �� n = m and each of the following

conditions hold

K (n) tc (m)

17(p) is undefined

K = and -Y'= 7[p:= true]

o E contains two formula nodes p and q such that the following

conditions hold:

K (p = r (q)

7(p) 'is defined but 7(q) is not.

K = and 7'= -y[q -.- ^t(p)]

4.2.1 Semantic Soundness

Any semantic interpretation of an equality constraint graph provides both a

truth labeling and a color labeling where two nodes have the same color just

in case they denote the same semantic object. A labeling that corresponds

to a semantic interpretation must be complete 'in that every formula node

must have a truth label.

4.2. EQUALITY CONSTRAINT GRAPHS 109

Definition: A labeling of an equality constraint graph is
called complete 'if L assigns every formula node in a truth label,
either the label true or the label flse. Complete labels are also
called possible worlds.

The term "possible world" comes from modal logic; there is a strong similarity
between the semantics of the graphs described in chapter and the possible
world semantics of modal logic. Clause links and equality links can both
be viewed as constraints on possible worlds. A partial labeling can also be
viewed as a constraint on possible worlds.

Definition: A possible world w satisfies an equality constraint
graph just in case the truth labeling of w satisfies every clause
link inF, no two quotation nodes of are assigned the same color
by w, any two formula nodes which are assigned the same color
label by w are assigned the same truth label by w, and for every
equality link p � n = in S, the world w assigns p the label
true ust in case w assigns n and rn the same color label.

A possible world w satisfies a labeling of an equality constraint
graph just in case every formula node which is assigned a truth
value by is assigned the same truth value by w and 'if two
nodes n and m are assigned the same color by then n and
are assigned the same color by w.

The reduction relation --+e can be viewed as a sound 'Inference relation
in the sense that if Ll-+e L2 then every constraint in L2 is implicitly present
in and L1, i.e. 'if an nterpretation satisfies and Ll then it also satisfies

2

Soundness Lemma.- If w is a possible world that satisfies
the equality constraint graph and the labeling f, and if L-+o L,
then w satisfies .

110 CHAPTER 4 QUANTIFIER FREE INFERENCE

4.2.2 Termination and Order Independence

Note that if C-*e ' then either provides more truth labels than C or C'
has fewer colors equivalences classes) than r. Since there are only finitely
many formula nodes that can take truth labels , and since the number of
equivalence classes can not be reduced below one, the 'Inference process must
terminate, i.e. there are no 'infinite inference chains of the form

,Cl--+S C2-+ C-+S

Thus the relation --+c is well founded.

To prove that -+e yields a well defined normalization operation one must
show that all normal forms of a labelingC are equivalent modulo some equiv-
alence relation. This equivalence of normal forms can be established under
the following equivalence relation.

Definition-. Two labelings L and of a colorable node set
are called S-equivalent if either both and ' are S-inconsistent
or if they both provide the same partial truth labeling on the
formula nodes in and the color labelings 'in and ' determine
the same equivalence relation on S.

-+e Normalization Lemma: --+e is a terminating normalizer
relative to E-equivalence.

The proof of the above theorem uses the Knuth-Bendix diamond lemma.
The proof that -+e satisfies the diamond property relative to E-equivalence
is similar to the proof that +B satisfies the diamond property relative to
B-equivalence; both proofs are based on the cornmutativity of individual
inference reductions.

4.2.3 Running Time

The union operation used to construct rlunion(n,)] recolors the the smaller
of the two equivalence classes. This has the important consequence that every

4.3. CONGRUENCE CONSTRAINT GRAPHS III

time the color label of a node n changes the sze of n's equivalence class at
least doubles. Let IS I be the number of nodes in S. The color label for a given
node n can change at most L1092 IU times because if the color of n changed
more than 1_1092 SIJ times the equivalence class of n would be larger than
IS1. Since the color of a given node n can change at most 1_1092 ISIJ times the
total number of coloring operations required to normalize a labeling 'is at
most I E I 1_1092 I E Since the number of truth labeling operations is at most
ISI the total number of labelings operations is order SI log SI.

4,3 Congruence Constraint Graphs

This section describes congruence constraint graphs and the inference mech-
anisms that apply to them. Sections 43.1 and 43.2 can be safely ignored by
readers who are not 'interested in correctness proofs.

Congruence constraint graphs are ust like equality graphs except that
they contain subexpression links. Subexpression links relate a node for a
composite expression to nodes for 'Its subexpressions. For example a subex-
pression link might relate the node representing the expression (FOO A) to
the nodes representing FOO and A. The labeling process which uses subex-
pression links is called congruence closure. Congruence closure eectively
performs the substitution of equals for equals. For example consider a color
labeling such that the node for A and the node for are assigned the same
color and yet the nodes for (FOO A) and (FOO B) have different colors. This
labeling would not respect the substitution of equals for equals. A color la-
beling i's said to be congruence closed if it does respect the substitution of
equals for equals.

Definition. A congruence constraint graph C 'is of an equality
constraint graph augmented with a set of subexpression links of
the form

(m, m2 . . . Mk)= n

where n and each ri are nodes in C.

112 CHAPTER 4 QUANTIFIER FREE INFERENCE

Let be the equality constraint graph derived from a congruence
constraint graph C by deleting all subexpression links. We say
that is the equality constraint graph underlying C.

A labeling of a congruence constraint graph is a labeling of the
underlying equality constraint graph.

A subexpression link of the form(Ml M2 ... k)= n says that the node
n represents the application of the operator ml to the arguments 2 - - -

Mk. The Ontic compiler generates subexpression links whenever it compiles
an applicative expression. Subexpression links can be used to define a new
inference relation on labelings.

Definition: A labeling of a congruence constraint graph C 'is
called C-consistent 'ust 'in case 'is Econsistent where 'is the
equality constraint graph underlying C.

For any two labelings L and LI of a congruence constraint graph
C we write L--+c Ljust in caseC 'is equality consistent and either:

Ce C' where is the equality constraint graph underlying
C.

* C' can be derived from via a congruence inference, e. L
is a pair <, > such that there are two subexpression links
(n, n2 ... nk)= rn and Pi P2 - - - Pk) = q in such that for
each pair rni and j of corresponding subnodes n(mj) K(qi)
but (n) �4 rc(p) and is the pair <-y, Kunion(np)>.

If a labeling 'is normalized relative to --+C then there is no pair of
subexpression links satisfying the conditions for congruence inference given
in the definition of --+c . This implies that if is normalized under --+C then
L is congruence closed.

4.3. CONGRUENCE CONSTRAINT GRAPHS 113

4.3.1 Semantic Soundness

Recall that a possible world 'is a complete labeling, i.e. a color and truth
labeling which assigns every formula node a truth label. The links in a
congruence constraint graph can be viewed as constraints on possible worlds.

Definition: A possible world w satisfies a congruence constraint
graph C 'ust in case w satisfies the underlying equality constraint
graph and for any two subexpression links

(Ml 2 ... Mk)= n

and
(Pl P2 ... Pk) = q

'if for each mi the world w assigns mi and pi the same color then
w assigns n and q the same color.

The reduction relation --+c can be viewed as a sound inference relation
in the sense that if Ll--+C L2 then the constraints in C and semantically
imply the constraints 'in .

--+C Soundness Lemma: If w 'is a possible world that satisfies
both a congruence constraint graph C and a labeling of C, and
'if C--+c V, then w satisfies L.

4.3.2 Termination and Order Independence

If L--+c L' then either L' provides more truth labels than or L' provides
fewer color labels, and thus allows fewer equivalence classes than L. Since
there can not be more truth labels than there are formula nodes, nor fewer
equivalence classes than one, every reduction chain must terminate. Thus
the relation -+C is well founded.

/" T TCnAPTER 4 QUANTIFIER FREE INFERENCE114

To prove that -+C yelds a well defined normalization operation one must
show that all normal forms of a labeling L are equivalent modulo some given
equivalence relation.

--+C Normalization Lemma.- --*c is a terminating normalizer
modulo S-equivalence where 'is the equality constraint graph
underlying C.

The above theorem is proved va the Knuth-Bendix diamond lemma and the
proof that --+C satisfies the diamond property is based on the commutativity
of individual inferences.

4.3.3 Implementation Techniques

For any labeling L of a congruence constraint graph C we can define NC (L) to
be any normal form of L under the reduction relation --4c The definition of

--*C specifies the value of N (L) up to S-equivalence where is the equality

constraint graph underlying C. Furthermore, because the size of a node's

equivalence class at least doubles every time the node 'is assigned a new

color, the normalization procedure involves at most order C log CI labeling

operations. The above specification however does not provide a complete

description of an efficient implementation of the normalization function NC.

More specifically no procedure has been given for finding the clauses, equality

links, and subexpression links involved n a sngle step of the normalization
process.

Most labeling 'inferences involve a single link in the graph structure; the

inference is justified by a single link and the label of the nodes in that link.

Boolean constraint propagation based on clause links, for example, always

involves a single clause. There are certain 'inferences, however, that involve

two objects that are not connected by any single link. For example, to test

for consistency the system must determine 'if two quotation nodes have the

same color label. To quickly test for the presence of two quotation nodes

with the same color label one can maintain a hash table with entries of the

4.3. CONGRUENCE CONSTRAINT GRAPHS 115

form c + n where c is a color and n is a quotation node. Every time a
quotation node n 'is assigned a color c one checks the hash table to see if
some other quotation node has been labeled with color c If there i's such
• node, an inconsistency is flagged. If there is no such node then one adds
• new entry to the hash table. This hash table can be maintained during
the inference process. Assuming hash lookup takes constant time, the time
needed to maintain this hash table is proportional to the number of color
labeling operations.

Another example of an inference that involves two objects not related
by a single link is congruence nference. Congruence inference, as defined in
the previous section, requires finding two subexpression links which together
justify a congruence inference. Let s be the number of subexpression links.
Searching all pairs of subexpression lnks for a possible congruence inference
might require order s 2 comparisons. Fortunately an additional data structure
can be used to eliminate the need for s 2 comparisons.

Each labeling of a congruence constraint graph can be augmented with
a hash table that maps tuples of colors to nodes. More specifically each
labeling i's associated with a set of hash table entries of the form

<Cl C2 ... Cn>�-4 n

where each ci is a color and n 'is a node. Such a table entry corresponds to
a subexpression link of the form

(Ml M2 ... Mk) = n

where each node mi has color ci. Using this hash table 'it 'is possible to quickly
determine 'if there are two subexpressions links satisfying the conditions for
congruence inference. Such a hash table can be incrementally maintained as
a labeling is normalized.

Given the hash tables described above it 'is possible to determine if a
labeling can be further reduced by independently examining individual links.
If a given link can not be used to generate an inference then need not be
checked again until some label changes for some node in �- The total number
of labeling operations performed on any given node is order log(n) where n
is the number of nodes in the graph. If there is some upper bound on the

116 CHAPTER 4 QUANTIFIER FREE INFERENCE

number of nodes that appear in any given link then the number of times a
given link needs to be checked is also order log(n). Thus, 'if is the number
of links in the graph, and n 'is the number of nodes, the total number of lnk
checks is order e log(n) and the total number of labeling operations is order
nlog(n). Efficient congruence closure algorithms are described in [Downey,
Sethi & Tarjan 80].

a er

n erence vvi uan 1 ers

Focused binding and automatic universal generalization are graph labeling
inference processes that construct binding environments and quantified for-
mulas. Certain nodes 'in the graph structure are identified as variable nodes.
Graph labefings are used to represent variable bindings. For example if n is
a variable node and r 'is some other node then the binding n 4 r can be
represented in a graph labeling by merging the equivalence classes of n and r.
This graph theoretic binding mechanism forms the basis for an nheritance
mechanism; a binding of the form n 4 r causes information known to be
true of the variable (or generic 'individual) n to be inherited by the particular
instance r.

Ontic's inference mechanisms are fully described 'in sections 5.1 54, 5.5
and 56; sections 52 and 53 can be safely 'ignored by readers who are not
interested 'in correctness proofs.

5,1 Sernantic 1\4odulation Graphs

Semantic modulation graphs have two new kinds of nodes: variable nodes
which represent variables and type nodes which represent types. Semantic
modulation graphs also have two new kinds of links: type declaration links

117

CHAPTER 5. INFERENCE WITH QUANTIFIERS118

that associate a variable with a type and type assertion links each of which
states that a certain formula node represents the statement that a certain
object (node) 'is an instance of a certain type.

This section describes the inference relation -+s . The inference relation
-+S both performs inference and generates variable bindings. However, the
relation -+s 'is not guided b focus ob'ects. Section 54 describes the relation
--+Sy which is similar to --+s except that the generation of variable bindings
is guided by a set F of focus objects.

Before defining semantic modulation graphs we define the preliminary
notion of a variable graph. A semantic modulation graph 'is a variable graph
that satisfies a certain non-circularity constraint.

Definition: A variable graph consists of a congruence constraint
graph together with the following:

* a classification of the non-formula non-quotation nodes into
variable nodes, type nodes, and unclassified nodes.

9 A set of free variable links of the form

n < r

Where n is a variable node. Such a link says that n rep-
resents a variable that appears free 'in the expression repre-
sented by r.

* A set of type declaration links; for each variable node n there
is exactly one type declaration link of the form

n ., m

The node is called the type node of n and n is called a
variable of type rn.

5.1. SEMANTIC MODULATION GRAPHS 119

e A set of type formula links of the form

p 4* r: m

where p 'is a formula node, r is any node, and m 'is a type

node. Such a link says that formula node p, represents the

statement that node r is an instance of the type represented

by m.

* A set of subtype links of the form

q #� M � M

where q is a formula node and and ' are type nodes.

Such a link says that q represents the formula that m 'is a
subtype of m', i.e. everyinstance of m is an instance of rn'.

Let C by the congruence constraint graph derived from a vari-

able graph V by removing all free variable links, type declaration

links, type formula lnks, and subtype lnks. We say that C 'is the

congruence constraint graph underlying V.

It may seem that the free variable links are redundant; it seems that

one could define the free variables of a node in terms of the subexpression

links discussed in chapter 4 Since a semantic modulation graph 'is ust a

congruence graph wth additional structure these subexpression links are

part of a semantic modulation graph. Unfortunately the graph may contain

nodes that represent lambda closures (functions, types, and type generators)

These nodes represent expressions that contain free variables but these nodes

are not involved in subexpression links 'in a way that allows the free variables

to be determined from the subexpression links. Thus explicit free variable

links are needed.

The semantic modulation 'Inference mechanisms manipulate bindings of

the form n 4 r where n is a variable node. A bnding of the form n 4 r

can be viewed as an 'instruction to set the value of the variable n to the

node r. Changing the value of a given variable forces the values of certain

other nodes to change. In ordinary predicate calculus changing the value of

CHAPTER 5. INFERENCE WITH QUANTIFIERS120

a variable x causes changes in the meanings of terms that contain x as a
free variable; the meaning of expressions which do not contain x as a free
variable will not change when x 'is changed. The situation n Ontic is slightly
more complex. Suppose that x 'is a variable ranging over sets and that y is
a variable of type (MEMBER-OF x). In this case changing the meaning of the

variable x may force a change the meaning of the variable y even though x

is not a free variable of y. In general if x is a variable which appears free in

the type node of of another variable y then we say that y depends on x. This

notion of dependency can be defined in terms of the structure of a variable

graph.

Definition: Let be a node in a variable graph V and let n be

a variable node 'in V. We say that n 'is a free variable of just

in case V contains the free variable link n < s. We say that

depends on n just in case n 'is a free variable of or there is some

free variable n' of s such that the type node of n' depends on n.

The soundness (or validity) of the semantic modulation inference process

relies on an additional property of graphs. More specifically, the soundness

of the semantic modulation 'inference process requires that the type node of

a variable n does not depend on n. Intuitively this condition allows one to

assign the value of a variable wthout changing the type of the variable.

Definition A semantic modulation graph is a variable graph

such that for every variable node n the type node of n does not

depend on n.

In addition to manipulating truth and color labels, the semantic modu-

lation inference process manipulates variable bindings. More specifically, a

state of the semantic modulation 'Inference process contains both a truth and

color labeling and a binding set where contains bindings of the form

n F-+ r where n is a variable node.

Definition: Let be a semantic modulation graph. A binding

set over is a set of bindings of the form n t* r where n is

5.1. SEMANTIC MODULATION GRAPHS 121

a variable node and r is any node in S. We say that a variable
node n in S 'is bound under if contains a binding of the form
n �--* r. If n is not bound under then n 'is called �-free.

In order to define the inference relation on semantic modulation graphs
the notion of dependence needs to be defined relative to a bnding set P.
Recall that 'if depends on n then changing the value of n may force a
change in the value of s. Consider a bnding of the from n * r. In the
presence of the binding n 4 r changing the value of r forces a change 'in
the value of n; in the presence of the binding n -4 r the variable n depends
on r. This observation leads to the notion of P-dependence where is any
binding set. If s 0-depends on n then, in the presence of the bnding set ,
changing the value of n may force a change 'in the value of 9. The precise
semantic sgnificance of the following syntactic definition will be discussed in
more detail in later sections.

Definition: Let be a binding set over a semantic modulation
graph S.

We say that a node 0-depends on a variable node n if one of
the following conditions hold:

* n is a free variable of .

9 There exists a free variable n' of such that n' is bound
under with binding n' �-4 r and r 0-depends on n.

* There exists a free variable n' of s such that n' is not bound
under , i.e. is 0-free, and the type node for n' 0-depends
on n.

I will use the term direct dependence to refer to the standard notion of
dependence as distinct from 0-dependence. If is empty then -dependence
is the same as drect dependence. In the definition of 0-dependence the
presence of a binding of the form n -* r causes the variable node n to be
treated as a copy of the node r.

,--'f T TunAPTER. 5. INFERENCE WITH QUANTIFIERS122

The inference relation -+S for semantic modulation graphs operates on
binding labelings where each binding labeling consists of a truth and color
labeling together wth a bnding set.

Definition.- Let be a semantic modulation graph.

A truth and color labeling of is a labeling of the congruence
constraint graph underlying .

A binding labeling T of S consists of a truth and color labeling C
of S together with a bnding set over S.

Before generating a bnding of the form n 4 r the system must be sure that
r is an instance of the type of n. More specifically, for any given truth and
color labeling C and any node r t i's possible to collect a set of types known
to contain r as an instance. These types are called the established types for

bf Definition: Let C be a truth and color labeling of a semantic
modulation graph S and let r be any node n S. The set of -
established-type-nodes for r 'is the least set of type nodes satisfying
the following conditions:

* If there exists a type formula link p r : m in S such
that C assigns p the label true then the node is an C-
established-type-node for r.

* If r' 'is a node which is assigned the same color as r under
the labeling C then all -established-type-nodes for r' are
also -established-type-nodes for r.

* If m is an L-establ'shed-type-node for r and m' is assigned
the same color as under then ' is also an C-established-
type-node for r.

* If rn 'is an Cestablished-type-node for r and S contains a
subtype link p � m - m' such that C assigns p the label
true then ' is an Cestablished-type-node for r.

Ao"*Ill
1��

5. 1. SEMANTIC MODULATION GRAPHS 123

Before generating a binding of the form n 4 r the system must be sure
that this binding can be 8atisfied. For example suppose that n ranges over
numbers and consider the binding n 4 n + 1. This binding 'is well typed
because n ranges over numbers and n + I is always a number. However there
is no interpretation which assigns n the same number as n + 1. The system
ensures that a bnding of the form n 4 r can be satisfied by checking that
r does not depend on n i.e. that it is possible to set the value of n to the
value of r without changing the value of r. It is now possible to define the
inference relation --4s .

Definition: Let 'T be a bnding labeling of which consists of
the truth and color labeling C and the bnding set let '
be a binding labeling of which consists of the truth and color
labelingC' and the binding set O'.

We write T--+s ' if L -- +c V where C is the congruence constraint
graph underlying and = or 'if there exists a node r in ,
an Cestablished-type-node m for r a variable n of type such
that the following conditions hold:

* r does not O-depend on n.

* n is O-free (i.e. not bound under

0)3f 0 Uln �-4 r} and is the truth and color labeling
which results from C by merging the equivalence classes of
.n and r.

The bndings generated by -+s can not be deduced from -information in
the graph; the process which generates bindings 'is non-deductive. However
it is possible to assign semantic meaning to binding labelings of semantic
modulation graphs in such a way that the relation --+,5 can be proven to be
semantically sound.

-I.- I 194M.011190110 -;,., -, � -

CHAPTER 5. INFERENCE WITH QUANTIFIERS124

5,2 Sernantic Soundness

This section proves the semantic soundness of the inference relation -- �s
The 'Inference relation --+s is fully specified in section 5.1 and those readers
not interested 'in correctness proofs can safely ignore this section.

Before one can prove a soundness theorem for the relation s one must
define a semantics for semantic modulation graphs. A semantics for a se-
mantic modulation graph is a set of possible worlds analogous to the possible
worlds in a model of modal logic. Given this semantics it is easy to state
the soundness theorem for the nference relation s . The proof of the -+s
soundness teorem requires the notion of a -valid binding labeling; the
relation s preserves the W-validity of binding labelings. Unfortunately
the definition of a -valid binding labeling is fairly complex. Furthermore
the proof that s preserves W-validity is quite long and has been relegated
to a separate section. This section defines the semantics of semantic modu-
lation graphs, states the -+s soundness theorem, and defines the notion of
W-validity which is preserved by --+s .

5.2.1 Semantics

Semantic modulation graphs have a more sophisticated semantics than any
of the graphs used for purely quantifier free inference. The soundness results
for Boolean constraint graphs, equality constraint graphs and congruence
constraint graphs were stated in terms of a single possible world w. On the
other hand the soundness result for semantic modulation graphs is stated
in terms of a set /V of possible worlds. The set of possible worlds is
analogous to a semantic model of a modal logic.

The graphs generated by the Ontic compiler have an intended semantics
which is a special case of the general semantics defined in this section. Each
node in a graph generated by the Ontic compiler is associated with an expres-
sion in the formal language Ontic. Expressions in the language Ontic have a
semantics which is defined in terms of a universe of sets. More specifically,
the meaning of an Ontic expression is defined relative to a universe and an

5.2. SEMANTIC SOUNDNESS 125

interpretation of each variable as an object in that universe which is an in-
stance of the type of the variable. Consider a fixed universe and consider all
the ty-pe-respecting variable interpretations over that universe. Each type-
respecting variable nterpretation over a fixed universe determines a truth
value for every Ontic formula and a meaning (value) for every Ontic expres-
sion. The meanings can be treated as colors and thus each type-respecting
variable interpretation provides a truth and color labeling the graph gener-
ated by the Ontic compiler. Each such truth and color labeling is complete in
that every formula node has a truth label. The set of truth and color label-
ings that correspond to the different type-respecting variable interpretations
over a fixed universe determines a set of possible worlds.

Definition: Let be a semantic modulation graph.

A semantics for for is a set of possible worlds (complete
truth and color labelings) for nodes in together wth a binary
relation ":" on the color labels that appear in words in W.

The semantic domain of a semantics V for 'is the set of all
color labels which appear in the worlds in)/V.

If c and c' are colors n the semantic domain of a semantics W
and if c: c' (i.e. c is related to c' under the relation 'Y') then we
say that c is an instance of the type color c'.

A color c 'in the semantic domain of a semantics W 'is called a type color if
there exists a type node m and a world w 'in W such that rn has color, c 'in w.
The relation "-." on colors allows a type color (or any color) to be viewed as a
set. More specifically a type color c can be viewed as the set of all instances
of c. Worlds assign colors to type nodes. Thus each world provides a way of
interpreting each type node as a set; the set associated with type node m in
world w is the set of all instances of the color of in w. Note that the set
associated wth a given type node can be different in different worlds.

Definition: The color c i's said to be an nstance of a type node

126 CHAPTER 5. INFERENCE WITH QUANTIFIERS

in a world w 'ust in case c: c, where c, is the color of m in
the world w.

A type node m is said to be a subtype, of a type node m' in world
w just in case every instance of m in w is also an instance of m'
in w.

Variables are nodes whose nterpretation can be varied. More specifically
suppose that n is a variable node wth type node m. Furthermore suppose
that w is a world such that c is an 'Instance of the type of m in w. In this case
it should be possible 'in interpret the variable n as the color c, i.e. one should
be able to assign n the value c. Changing the 'Interpretation of a variable n
forces changes in the interpretation of expressions that depend on n. These
intuitions are formally captured in the following semantic definition of an
assignment.

Definition: Let 'YV be a semantics for a semantic modulation
graph S.

We say that two worlds w and w in agree on a node if w
and w assign s the same color label and if 'is a formula node
then w and w assign s the same truth label.

Let n be a variable node in S, let c be a color in the semantic
domain of W, and let w be any world in W. An assignment of
n to c in w is a world w[n = c] which assigns n the color c and
which agrees with w on all nodes that do not depend on n.

The links 'in a semantic modulation graph can be viewed as constraints
on possible worlds. More specifically a semantics W is called a atisfactory
semantics for a semantic modulation graph S if the information in the links
in S holds true under the semantics W.

Definition: We say that a semantics W for a semantic modu-
lation graph S is a satisfactory semantics for S if the following
conditions hold.-

5.2. SEMANTIC SOUNDNESS 127

* Every world 'in W satisfies the congruence constraint graph
underlying S.

9 The labels of a node are determined by the labels of the
free variables of that node e 'if w and w are two worlds in
W such that w and w agree on all free variables of a node
8, then w and w agree on (in particular if s has no free
variables then all worlds in W must agree on)

* If p ,� r: m is a type formula link 'in S and w 'is a world in
W then w assigns p the label true just in case the color of
r in w is an instance of in w.

* If �� -� m' is a subtype link in S and w is a world in W
then w assigns p the label true just 'in case is a subtype
of m' in W.

9 If n is a variable node of type m and c is an instance of
in a world w then W contains an assignment wn =] of n
to c in w.

It is now possible to state the main soundness theorem of this section. The
proof of this theorem is long and complex and 'is gven in the next section.

--+S Soundness Theorem: Let W be a satisfactory semantics
for a semantic modulation graph S. Let be a bnding labeling
with an empty binding set such that every world 'in W satisfies
the truth and color labeling of T. Now suppose T -s * T' where
T' has binding set and labeling V. If p is a formula node that
is labeled true under and p does not depend on any variable
bound under 3 then p must be labeled true in all worlds in W.

5.2.2 The Proof of the -- +S Soundness Theorem

The proof of the semantic modulation soundness theorem relies on the con-
struction of a complex property, or induction hypothesis, that is preserved

CHAPTER 5. INFERENCE WITH QUANTIFIERS128

under the relation --+, . More specifically, given a satisfactory semantics W
for a semantic modulation graph we define the notion of a W-valid bind-
ing labeling and prove that --+,5 preserves -validity. A binding labeling
is W-valid if its binding set 'is W-legal and the equations represented by its
binding set imply the constraints in its labeling. The notion of a)/V-Iegal
binding set is quite complex. First of all every W-legal bnding set must be
universally satisfiable in the following sense.

Definition: Let be a satisfactory semantics for a semantic
modulation graph and let be a bnding set over S.

A world w in W satisfies the binding if for every bnding n 4 r
in 13, the world w assigns n and r the same color label.

The binding set is W-universally-satisfiable 'if for every world w
in W the semantics W also contains a world w[p] such that w[o]
satisfies and agrees with w on all nodes that do not depend on
any variable bound under .

It is interesting to note that a bnding set can be type respecting but still
not be universally satisfiable in the above sense. For example suppose that n
is a variable node that ranges over all numbers. The expression n I always
denotes a number. Thus the binding n - n I is type respecting. However
there is no world 'in which n equals n I and so the binding n -4 n I is
not satisfiable.

If one could prove that --+S preserves the universal satisfiability of binding
sets and preserves the fact that a binding labeling's binding set implies the
constraints 'in 'its labeling then one could prove the -+S soundness theorem.
Unfortunately the notion of a universally satisfiable binding set does not
prov'de a strong enough induction hypothesis; to prove that --+S preserves
the universal satisfiability of binding sets it is necessary to prove that --+S
preserves a stronger property of binding contexts. This stronger property is
called W-legality. Before defining W-legality however we need the notion of a
0-assignment. In the presence of a binding set we are only concerned with
those worlds that satisfy . More specifically if w 'is a world that satisfies
then we are interested in finding assignments wn = c] that also satisfy fl.

5.2. SEMANTIC SOUNDNESS 129

Definition: Let be a binding set over a semantic modulation
graph and let w be a world in a satisfactory semantics W for
S. Let n be a variable node 'in S and let be a color in the
semantic domain of W. A 0-assignment of n to c in w is a world
w[p, n = c] which satisfies , assigns n the color , and which
agrees with w on all nodes that do not P-depend on n.

Of course the above definition does not guarantee that that P-assignments
exist whenever c is an instance of the type of n. It turns out however that *s
preserves the property that if n 'is not bound under then g-assignments
exist for n. Recall that variables which are not bound under are called
�-free.

Definition: Let be a binding set over a semantic modulation
graph S and let W be a satisfactory semantics for S. We say
that P-assignments exist in W if for every world w 'in W, every
P-free variable node n in S, and every instance c of the type of n
in world w under semantics W, the semantics W also contains a
0-assignment WA n = c] of n to in w.

There are universally satisfiable bnding sets which do not have the prop-
erty that P-assignments exist. However, the existence of /3-assignments 'is
one of the properties preserved under the relation -s The relation -- �S
preserves a property called W-legality. A binding set is W-legal if it is
universally satisfiable, P-assignments exist, and there are not -dependency
loops as defined below.

Definition: Let W be a satisfactory semantics for a semantic
modulation graph , let be a binding set over S.

A P-dependency-loop 'is a variable node n such that either n is
bound under wth binding n 4 r and r P-depends. on n or n is
P-free and the type node of n P-depends, on n.

CHAPTER 5. INFERENCE WITH QUANTIFIERS130

We say that the binding set 'is W-legal 'if there are no -
dependency loops, is W-universally-satisfiable, and /3-assignments
exist in W.

The notion of a /V-Iegal binding set leads to the notion of a -valid
binding labeling. A binding labeling is W-valid if its binding set 'is W-legal
and its color and truth labeling is implied by 'Its binding set, i.e. every world
which satisfies its binding set also satisfies its labeling.

Definition: Let W be a satisfactory semantics for a semantic
modulation graph S. A binding labeling T 'is called W-'alid if
the binding set of T is W-legal and every world in W which
satisfies the bnding set of T also satisfies the labeling of T.

It 'is now possible to state the main theorem of this section: the relation -- +s
preserves W-validity.

-+S Preservation Theorem: Let W be a satisfactory seman-
tics for a semantic modulation graph S. f T is a W-valid binding
labeling and --4s V, then T' 'is also W-valid.

Before gving the proof of the -S preservation theorem it is 'important to
note that the --4,s preservation theorem implies the --+S soundness theorem.
More specifically consider an initial binding labeling T, i.e. a binding labeling
with an empty binding set and such that every world in the satisfactory
semantics W satisfies the labeling of T. It is easy to show that any such
initial bnding labeling is W-valid. Now suppose 'T --+S* T' and consider a
formula node p which is labeled true under the labeling of T' and such that
p does not (directly) depend on any variable bound under the bnding set
of V. We must show that the inference relation --+S is sound in the sense
that under these conditions all worlds in W label p true. To prove the --+S
soundness theorem we must show that all worlds in W label p true. Consider
any world w in V. The ---+S preservation theorem 'implies that T' is W-valid

5.3. PROOF OF THE --+s PRESERVATION THEOREM 131

and thus the binding set of T' 'is W-legal. Let be the binding set of T' the
binding set is universally satisfiable and so there exists a world w[o] that
satisfies and that agrees with w on all nodes that do not (directly) depend
on variables bound under . Since is W-valid, and since w[p] satisfies ,
w[p] satisfies the labeling which labels p true. Thus w[O] labels p true.
But since does not depend on any variables bound under �, w[#] must
agree w'th w on p. Thus w must label p true. Thus the -+s preservation
theorem implies the --+,5 soundness theorem.

5.3 Proof of the -+s Preservation Theorern

This section can safely be 'ignored by those readers not interested in correct-
ness proofs.

The proof of the --+s preservation theorem is fairly long and complex.
Most of the complexity of this theorem results from the definition of -
dependence. The above definition of O-dependence implies that Independence
is non-monotonic in ; the addition of a binding n 4 r can remove as well

as add dependencies. In particular, suppose directly depends on n, i.e.

,9 depends on n relative to the empty bnding set. Further suppose that n

directly depends on W This this case depends on n' in such a way that

the dependency from to n' passes through the node n. If the dependency
from s to n' passes through the node n then the binding n 4r can �4 erase�l

this dependency; it is possible that 0-depends on n' when is empty but

s does not O-depend on n' if fl consists of the single binding n 4 r. Thu's

the 0-dependence relation is non-monotonic in ; adding bindings to can

remove dependencies.

There is a simpler, monotonic, notion of 0-dependence which I will call

weak-p-dependence. A node weakly-p-depends on a variable n if either

directly depends on n or there is a binding n' �-+ r in such that s weakly-

0-depends on n' and r weakly-,3-depends on n. In the current discussion I

will use the term strong-p-dependence to refer to the notion of O-dependence

that has been used used 'in the definition of -+s and the definition of a -

legal binding set. Strong-p-dependence implies weak-o-dependence but the

132 CHAPTER 5. INFERENCE WITH QUANTIFIERS

converse does not hold; 'it is possible that weakly-o-depends on n but that
s does not strongly-0-depend on n. Weak-�-dependence is monotonic in ;
adding bindings monotonically increases dependencies.

if weak-o-dependence had been used rather than strong-o-dependence
the relation -s would still preserve W-validity and the proof of the preser-
vation theorem would be much smpler. Unfortunately the use of weak-p-
dependence would not allow as many bindings under the relation --+, . Fur-
thermore strong-#-dependence provides a stronger universal generalization
inference mechanism. Universal generalization is discussed later.

Under strong-o-dependence the proof of the --+,5 preservation theorem
is long and complex. The proof 'is divided into four parts. The first two
parts introduce two concepts needed in the proof: 0-dependency-paths and
minimalo-assignments. The third part contains the proof 'itself. This proof
relies on the first minimal assignment lemma which is stated but not proven
in the section on minimal assignments. The fourth part of the proof consists
of a proof of the first mnimal assignment lemma.

5.3.1 3-Dependency-Pa ths

Before proving the s preservation theorem it is useful to prove certain
lemmas involving the notion of (strong) 0-dependence. The following def-
inition and lemma provide an alternative characterization of the notion -
dependence.

Definition.- Let be a binding set over a semantic modulation
graph S A -dependency-path is a sequence <nl, n2, ... nk>
each ni i's a variable node and for each pair ni, n+j in the path

one of the following two conditions hold.

0 n is 0-free and nj+j is a free variable of the type node of ni.

* ni is bound under by vrtue of the binding ni - r and
ni+l is a free variable of the node r.

5.3. PROOF OF THE --+s PRESERVATION THEOREM 133

If s 'is node 'in such that n, is a free variable of s then the -

dependency-path <ni, n2, ... nk>is said to be a 0-dependency-

path from node to the variable nk-

Lemma: If is a binding set over a semantic modulation graph

S, s is any node 'in S, and n is a variable node in then s P-

depends on a n just 'in case there exists a 0-dependency-path from

s to n.

Lemma: There are no 0-dependency-loops just in case there is

no P-dependency-path of length greater than I that begins and

ends with the same variable node.

The characterization of P-dependence in terms of P-dependency paths

makes it easier to verify certain facts about P-dependency. The following

lemma precisely characterizes the non-monotonic nature of 0-dependency.

This non-monotonicity lemma is will be important 'in the proof of the S

preservation theorem.

Non-Monotonicity Lemma: Let be a binding set over a

semantic modulation graph S. Let n - r be a bnding such that

r does not P-depend on n and let be the bnding set which

results from adding the binding n -4 r to P. Now let be any

node and let n' be any variable node. If s 3-depends on n' but s

does not '-depend on n' then every P-dependency path form s

to n' must include n and r must not -depend on W.

Proof: Suppose s 0-depends on n' but that s does not depend

on W it 'is easy to show that every P-dependency path from s to

n' includes n. More specifically if there existed a P-dependency-

path from s to n' that does not include n then this path will

also be a P-dependency-path and thus s would '-depend on W.

Now I wll show that r does not P-depend on . Suppose r did

O-depend on W In this case there exists a P-dependency-path

from r to W The conditions of the lemma state that r does not

P-depend on n and thus the P-dependency path from r to n' does

CHAPTER 5. INFERENCE WITH QUANTIFIERS134

not include n. Thus this path is also a '-dependency path and
so r also depends on W Furthermore, since 0-depends on n'
there must exist a 0-dependency-path from s to n' and, by the
above comments, any such path must include n. Consider the
shortest possible 0-dependency path from r to n. This path only
involves n as the last node in the path and thus 'it is also a -
dependency path. The dependency-paths from s to n and from
r to n' can be combined to yield a dependency-path from s to
W. But this violates the assumption that s does not depend
on W Thus r must not O-depend on W.

5.3.2 Minimal-,3-Assienments

Intuitively one would like an assignment of the form n = c to alter as few
nodes as possible. For example suppose that n 'is a variable node that ranges
over numbers and that n' is a variable node that ranges over numbers which
are greater than n. Since n is a free variable of the type of n', the variable
node n' depends on the variable node n. Now suppose w 'is a world in which
n is 2 and n' is and consider the assignment n = 4 Since n' depends
on n the assignment n = 4 is allowed to change the value of W In this
case however such a change is not needed; the old value of n', the number
5, is still an 'instance of the type of n' when n is set to the number 4 A
minimal-o-assignment is a 0-assignment that changes only those parameters
whose values must be changed.

Definition: Let fl be any binding context over a semantic mod-
ulation graph and let n be any variable node in S. A -
supervariable of n is defined to be any 0-free variable other than
n that O-depends on n.

Let be a binding set over a semantic modulation graph S, let
w be a world in a satisfactory semantics for S, let n be a
O-free variable node n S and let c be an nstance of the type
of n in world w under semantics W A minirnal-0-assignment
w[o, n .-= c] of n to c in world w is a 0-assignment w[o, n = c]

5.3. PROOF OF THE -- >s PRESERVATION THEOREM 135

of n to c in w such that if W is a O-supervariable of n and the
color of W under w is an instance of the type of W in w[�, n =]
then w[o, n = c] agrees with w on W.

Let be a binding set over a semantic modulation graph and
let /V be a satisfactory semantics for S. We say that inirnal-
0-assignrnents exist in W 'if for every world w in W, every O-free
variable node n in S and every instance c of the type of n in
w under semantics /V, the semantics contains a minimal-0-
assignment of n to c in w.

First Mnimal Assignment Lemma: Let be a bnding set
over a semantic modulation graph S and let /V be a satisfactory
semantics for S. If O-assignments exist in I/V and there are no
P-dependency loops then minimal-o-assignments exist in W.

The first minimal assignment lemma is proved by via a conceptual pro-
cedure for constructing minimal assignments. A minimal assignment can be
found by first making an arbitrary assignment and then fixing up" the su-
pervariables that were needlessly changed by the assignment. The full proof
of the first minimal assignment lemma is fairly long and cumbersome and is
relegated to 'its own section so that it can be easily avoided by the reader.

Second Minimal Assignment Lemma: Let be a binding
set over a semantic modulation graph S. Let w be a world in a
satisfactory semantics /V for S such that w satisfies . Let n be
a variable node in S, let c be a color 'in the semantic domain of
W and let w[o, n = c] be a member of W that is a minimal-o-
assignment of n to c in w. If s 'is a node in S such that w and
w[o, n = c] disagree on s, and if there are no P-dependency loops
then there exists a 0-dependency-path from to n such that w
and w[�, n =] disagree on every node in that path.

Proof: If there are no 0-dependency-loops then no 0-dependency
path is longer than the number of nodes in the graph S. Thus
there is an absolute maximum length for 0-dependency-paths.

F I

136 CHAPTER 5. INFERENCE WITH QUANTIFIERS

For any member of D let the P-path-distance from s to n be the
maximum length of any 0-dependency-path from to n.

Let D be the set of all nodes such that w and w[o, n = c]
disagree on s Since w[fl, n = c] is a P-assignment of n to c in
WI if w and w[#, n = disagree on s then must -depend
on n. Thus if s 'is in D then there exists a 0-dependency-path
from s to n. Now consider an arbitrary member s of D. We
must show that there exists a 0-dependency-path from to n
such that the entire path is contained in D. It suffices to show
that there exists a 0-dependency-path contained entirely in D
from to some node closer to n a path in D from to n can
be constructed from smaller paths that always get closer to n.
Since is a satisfactory semantics for the labels of a node
are determined by the color labels of the free variables of that
node. Thus 'if is in D, i.e. 'if w and w[p, n = c] disagree on ,
then there must be some free variable n' of which is also in D.
Furthermore the 0-path-distance from n' to n must less than or
equal to the 0-path-distance from s to n. If n' equals n then the
singleton path <n'> is a �-dependency-path from s to n which
is contained entirely 'in D. So suppose n' is not equal to n. Now
there are two cases. First suppose that contains a bnding of
the form n' �-4 r. Since both w and w[o, n = c] satisfy both
worlds assign the same color to n' and r and since n' is in D,
r must be 'in D. But since r is in D some free variable n" of r
must be in D. But <n' n> 'is a Independency path contained
entirely in D from to O and n" must be closer to n than under
�-path-distance. Now suppose that ' is P-free. In this case n'
is a 0-supervariable of n. Furthermore since is in D and since
w[#, n = c] is a rninimal-o-assignment of n to c in w, the color of
n' in w[o, n = c] must not be an instance of the type of n in w.
This implies that the type of n' in w[O, n .-= is different from
the type of n' in w. But since /V is a satisfactory semantics the
type of a variable is determined by the color of the type node of
that variable. Thus the type node of n' must be 'in D. But this
implies that some free variable n" of the type node of n' is also
in D. In this case <n/ n//> is the desired 0-dependency-path in

5.3. PROOF OF THE --+,s PRESERVATION THEOREM 137

D from to a node which is closer to n under 0-path-distance.

5.3.3 The -- +,S Preservation Theorem

Except for the proof of the first minimal assignment lemma, the ground-
work has now been laid for the proof of the --4s preservation theorem. The
theorem uses a simple lemma about f-established-type-nodes.

Lemma: Let be a satisfactory semantics for a semantic mod-
ulation graph S, letC be a truth and color labeling of and let w
be a world in such that w satisfies . If is an Cestablished-
type-node for a node r of then the color of r 'in the world w is
an instance of m 'in w.

The above lemma follows directly from the definition of a f-established-
type-node and the definition of a satisfactory semantics for a semantic mod-
ulation graph- the proof is left to the reader. Given this lemma we can now
prove the S preservation theorem.

Proof of the -s Preservation Theorem: Suppose that Tis
W-valid and that T--+s V We must show that T is W-valid.
First suppose that the binding set of T is the same as the binding
set of T. In this case let be the binding set of T and let C and
r' be the labelings of T and T' respectively. Since the binding
set of T' also equals it is clear that the binding set of T' is
W-legal. Now let w be any world in that satisfies . To show
that T' is W-val'd it suffices to show that w satisfies f. Because
T is W-valid, w must satisfyC. Furthermore it follows from the
definition of S that if the binding set of T equals the binding
set of T' then f, --+c V where C is the congruence constraint graph
underlying S. But now the soundness of -4C mplies w satisfies
V.

CHAPTER 5. INFERENCE WITH QUANTIFIERS138

Now suppose that the binding set of ' 'is different from the
binding set of T. Let and O' be the binding set of T and
T' respectively and let C and C be the labelings of T and T'
respectively. It follows from the definition of --+s that O' equals
Pufn �-4 rl where n is a -free variable of type m, is an
L-established-type-node for r, and r does not P-depend on n.

First consider any world w that satisfies the binding set P'.

We must show that w satisfies L'. Since w satisfies it must

also satisfy the labeling L. Since w satisfies the bnding n F- r

it must assign n and r the same color. Thus w must assign all

nodes which are equivalent to n under L and all nodes which are

equivalent to r under L the same color. The labeling L' is the

labeling derived from C by merging the equivalence classes of n

and r. Thus w satisfies .

Next I will show that there are no dependency-loops. The

proof 'is by contradiction. Suppose there were a dependency-

loop. In this case there is a dependency-path of length greater

than from a variable node to itself, i.e. a loop. This loop must

involve the node n because otherwise it would be a 0-dependency-

loop and by assumption there are no such loops. But O' contains

the binding n F- r and thus if there exists a dependency-loop

that involves n there must exist a dependency path from r to

n. Consider a particular fl'-dependency path from r to n. The

node n might occur multiple times 'in this path. Consider the

subpath of this path that ends with the first occurance, of n. This

subpath is a -dependency path. But by assumption there are

no 0-dependency-paths from r to n.

Now I will show that O' is W-universally-satisfiable. Let w be

any world n W. Since 'is universally satisfiable there exists a

world w[,3] which satisfies and which agrees with w on all nodes

that do not depend on any variable bound under . Because T is

W-valid and w[p] satisfies , w[p] must also satisfy . Because

m is an L-established-type-node for r and w[o] satisfies L, the

color of r in w[O] must be an instance of rn in w[,3]. Let c be

5.3. PROOF OF THE --+s PRESERVATION THEOREM 139

the color assigned to r in the world w[fl]. Because 0-assignments
exist there exists a O-assignment 10110, n =] of n to cin w[O].
Since r does not O-depend on n the world w[o][3, n :-] must
assign r the color c. Thus, 'in addition to satisfying P, the world
w[o][0, n = also satisfies the binding n -4 r and thus this
world satisfies O'. It remains only to show that w[o][0, n = c]
agrees with w on all nodes that do not directly depend on any
variable bound under P'. Let s be such a node. There does not
exist any drect dependency path from to a node bound under
P'. Therefore there can not exist any 0-dependency path from
s to n because any such path would either be a drect path or
would include a direct path to some node bound under P'. Thus
s does not O-depend on n and thus w[#][0, n = c] and w[O] must
agree on s. But by the definition of w[O], w[O] must agree with
w on .

Finally I wll show that assignments exist. Let w be any
world in W that satisfies �', let W be a P-free variable and let c be
an instance of the type of W in the world w under the semantics
W. We must construct a P-assignment w[p' W .-= c] of W to c
in w. Recall that differs from 'in that contains the one
additional binding n * r. The world w[P' W = c] is constructed
in one of three different ways depending on which, if any, of the
nodes n and r P-depend on W In all three cases the construction
begins by considering a P-assignment w[o W = cl of W to c 'in
w. Unfortunately the world w[p W = c] need not satisfy the
binding n * r. Furthermore, and more seriously, in one of the
three cases 0-dependence is non-monotonic; there may be a node
,9 which 0-depends on W but does not P-depend on W In this
case w[o W .-= cl may disagree with w on s even though does
not �'-depend on W.

First consider the case where neither n nor r O-depend on
W. Since W is a satisfactory semantics for S, /V contains a
assignment w[13, n c] of W to c in w. In this case w[,3 W =]
is also a 3'-assignment of W to in w. To see this first note that
w[o W = c] satisfies the binding n - r. More specifically, by

CHAPTER 5. INFERENCE WITH QUANTIFIERS140

assumption w satisfies n + r and since neither n nor r -depend
on n/ w[�, n' = c] also satisfies n --4 r. Furthermore the non-
monotonicity lemma implies that in this case every node which
0-depends on n' also depends on W Every node on which w
and w[o, n' :- c] disagree must O-depend on n' and therefore
every such node must depend on W.

Now suppose that r 0-depends on W Since is W-legal,
contains a 0-assignment w[o, n' = c] of n' to c in w. Since is
W-val'd and since w[o, n' = c] satisfies , the world w[o, n' :- c]
satisfies C. However w[o, n' -.= c] need not satisfy the binding
n - r; the assignment to n' may change the value of r In

this case we satisfy the binding n 4 r by reassigning n. More

specifically let c, be the color assigned to r 'in the world w [, n' : =

c]. Since the type node for n is an Cestabl'shed-type-node for

r, the color c, must be an 'instance of the type node of n in the

world w[o, n' = c]. Thus contains a 0-assignment w[o, n:=

C110, n Cr] of ntO Cr in w[o, n' = c] I will show that w[o, n' :=
c][�, n c,] is the desired assignment of n' to c in w. Since

r does not O-depend on n the world w[P, n' = c][0, n = Cr]

assigns r the color Cr and thus this world satisfies the binding

n �--+ r. Furthermore one can show that n' does not -depend

on n. More specifically, 'in this case r 0-depends on n' so 'if n' 0-

depended on n and then r would P-depend on n which is ruled out

by the conditions governing the generation of bindings. Since n'

does not -depend on n the world w [, n' c] [0, n Cr] assigns
I I n/

n' the color c. Fnally consider some node s such that w[o,
c] [0, n Cr] disagrees with w on s. We must show that O'-

depends on W Note that in this case either w and w[o, n' = c]

disagree on .9 or w[O, n' :- c] and w[O, n' c][0, n = c,] ust

disagree on s. First note that if w[O, n' c] disagrees with w

on s then s must O-depend on W The non-monotonicity lemma

implies that 'if r 0-depends on n' then every node which 0-depends

on n/ also depends on W Thus if w[o, n' = c] dsagrees with

w on then 0depends on W Now suppose that w[o, n/ :- C]

and w[o, n' = c][0, n = Cr] disagree on s. In this case s must -
depend on n. Furthermore, one can show that 0depends on n;

--- - -- ---

5.3. PROOF OF THE -+s PRESERVATION THEOREM 141

since there are no 0-dependency-loops a 0-dependency-path from
s to n 'involves n as a the final node and therefore any such path
is also a dependency path. Furthermore, since r 0-depends on
W but does not O-depend on n there exists a 0-dependency path
from r to W that does not involve n. The path from r to W is
also a '-dependency path. Thus there 'is a dependency'path
from s to W.

Now consider the non-monotonic case where n 0-depends on
W but r does not O-depend on W Since 0-assignments exist 'in
W, minimal O-assignments also exist 'in W. Thus W contains a
minimal 0-assignment w[o W = c] of W to c in w. I wll show
that thi's mnimal 0-assignment is the desired assignment of
n, to c 'in w. Since r does not O-depend on W the worlds w and
w[o W = c] agree on r; let c, be the color assigned to r in either
world. By the argument given above c, must be an instance of
the type of n in the world w[o W :- c]. Now by the definition
of minimal-O-assignments the world w[o W = c] must assign n
the color c, Thus w[O W = c] satisfies the binding n * r.
Now consider a node s such that w and w[,3 W = c] disagree
on s. By the definition of 0-assignments s must O-depend on
W. Now suppose that does not depend on W In this case
the non-monotonicity lemma implies that every 0-dependency-
path from to W includes the node n. But the second minimal
assignment lemma implies that if w and w[o W - c] disagree on
.s then there exists a 0-dependency-path from s to W such that
w and w[o W = c] disagree on every node in the path. But
this is impossible because every 0-dependency-path from s to W
includes n and it has been shown that w and w[fl W = c] agree
on n.

5.3.4 Proof of the First Mnimal Assignment Lemma

Intuitively, minimal-#-assignments exist because there exists a conceptual
procedure for constructing them. The procedure takes an arbitrary assign-

142 CHAPTER 5. INFERENCE WITH QUANTIFIERS

ment and "fixes up" variables that were unnecessarily changed. Variables
are fixed up using a recursive procedure for targeted assignment.

Definition: Let be a binding set over a semantic modulation
graph S. Let w and W' be worlds in a satisfactory semantics
W for S such that both w and w satisfy . Let n be a �-free
variable node, let c be an 'Instance of the type of n in the world
w. A tar eted-0-a8signment of n to c in w wth target w is a

O-assignment w[, n = c of n to c 'in w such that 'if n' is a

supervariables of n and the color of n' under the target world w'

is an instance of the type of n' in w[o, n = c] then w[o, n = c]

agrees with the target w on W.

A procedure for computing targeted assignments can be used to compute

minimal assignments a minimal assignment is just a targeted assignment

where the target equals the world 'in which the assignment 'is done. More

specifically, to prove the first minimal assignment lemma it suffices to prove

that targeted assignments exist.

Definition: Let be a binding set over a semantic modulation

graph S, let be a satisfactory semantics for S and let n be a

,3-free variable node in S.

We say that targeted-O-assignments exist for n 'in if for all

worlds w and w in and all colors c which are instances of the

type of n in w under the semantics W, the semantics W contains
a targeted-#-assignment of n to c i'll W with target w'.

We say that targeted-O-assignments exist in W if for every 0-free

variable node n in S targeted-O-assignments exist for n in .

The conceptual procedure for computing a targeted assignment of n to c

takes an arbitrary assignment of n to c and recursively "fixes" the immediate-

�-supervariables of n. Recall that a O-supervariable of n is a fl-free variable

5.3. PROOF OF THE --+s PRESERVATION THEOREM 143

node n' other than n which -depends on n. If there are on 0-dependency-
loops then the notion of fl-dependence determines a partial order on variable
nodes. If n' 0-depends on n then we can picture n' as being above n. The
immediate-�-supervariables of n are the least members (under 0-dependence)
of the P-supervariables of n.

Definition.- Let be a binding set over a semantic modulation
graph S. Let n be a -free variable node in S.

An immediate-#-supervariable of n is a 0-supervariable n' of n
such that there 'is no variable in between n' and n, i.e. there is no
P-supervariable n" of n such that n' is a 0-supervariable of n".

Observation: No two immediate-o-supervariables of n 0-depend
on each other i.e. if Wand n" are distinct'mmediate-o-supervariables
of n then n' does not 0-depend on n".

Observation: If there are no fl-dependency-loops then every -
supervariable of n is either an immediate-o-supervariable of n or
is a 0-supervariable of some 'mmediate-P-supervariable of n.

The conceptual procedure for recursively computing targeted assignments
always terminates because the recursive calls always involve variables of lower
depth and no variable has depth less than 1. The depth 'of a variable 'is defined
as follows:

Definition: Let be bnding set over a semantic modulation
graph S such that there are no 0-dependency-loops. For each
variable node n let the 0-depth of n be the length of longest -
dependencv -path ending at n.

Observation: If is a binding set over S such that there are no
0-dependency-loops and n i's a 0-free variable node in S then all
P-supervariables of n have smaller,3-depth than n.

144 CHAPTER 5. INFERENCE WITH QUANTIFIERS

The recursive conceptual procedure for computing targeted assignments
can be expressed as an induction proof that targeted assignments exist. The
proof is by induction on the 0-depth of variable nodes.

Lemma: Let be a be a binding set over a semantic modulation
graph such that there are no 0-dependency-loops and let
be a satisfactory semantics for such that 0-assignments exist
in I/V. Under these conditions targeted 0-assignments also exist
in W.

Proof: I will show by induction on the depth of variable nodes
that for all variable nodes n, if n 'is 0-free then targeted assign-
ments exist for n 'in W Every variable node in has a 0-depth
of at least (the singleton path < n > is always a dependency
path). Suppose that n has depth 1. n this case there are no
0-supervariables of n and thus any assignment of n to c satisfies
the definition of a targeted assignment. Thus if n is 0-free and
has depth I then targeted 0-assignments exist for n 'in W. Now
suppose that n is a variable of depth k where is greater than
and targeted-O-assignments exist in W for all 0-free variables of
depth less than k. Now suppose that n is 0-free and let w and
W' be worlds in IN that satisfy . Let c be a color which is an
instance of of the type of n in the world w. We must show that
W contains a targeted-O-assignment of n to c in w with target w'.
Since 0-assignment exist in W there exists a world w[o, n c]
in W which 'is a 0-assignment of n to c in w. Let n, , n2, nk

be the immediate-o-supervar'ables of n and letC1, C2, - -Ckbe the
target colors for n, n2 ... nk, i.e. Ci is the color of ni in the target
world w'. Each variable ni has smaller depth than n so by the
induction hypothesis targeted-O-assignments exist in W for each
ni. LetWO, W1 I W2 ... Wn be worlds in W defined as follows: wo
equals w[#, n = . If c is an instance of the type of ni in the
world wi-, then wi is a targeted-O-assignment wj_,[�, n :- c of
ni to ci in wi-, with target w'. If ci is not an instance of ni in the
world wi-, then wi is a targeted-p-assignment wi- [, ni = bi]
with target w where bi 'is the color of n in w-, with target w'

5.3. PROOF OF THE -+s PRESERVATION THEOREM 145

(this targeted-0-assignment fixes the fl-supervariables of ni) I
wiRI now show thatWk is the desired targeted-O-assignment of n
to C 'in w with target w

Consider an arbitrary P-supervariable n' of n and let ct be the
target color for n', i.e. the color assigned to n' by the target world
W'. We must show that if the target color t is an instance of the
type of n' in the worldWk thenWk in fact assigns n' the target
color ct. So suppose that ct 'is an instance of the type of n' in the
worldWk. Now there are two cases. The variable n' is either an
immediate-o-supervariable of n or n' is a 0-supervariable of some
immediate-p-supervar'able of n.

First consider the case where n' is an 'mmediate-o-supervariable
ni of n and let mi be the type node of ni. The type node mi must
not O-depend on any immediate-o-supervar'ables of n and thus
for all < j k the world wj must agree withWk on the type
node mi. In particular wi-, must agree with Wk on mi. By as-

sumption the target color Ct is a member of the type of ni in the

world Wk and so ct must also be a member of the type of ni 'in the
ignmen ni ct] of ni

world w-1. Thus wi is a target ass' t Wi- [1

to 'Its target color in wi-, with target w'. Thus ni 'is assigned the
target color ct in the world wi. Furthermore ni does not O-depend

on any other immediate P-supervariables of n and thus Wk Mst

agree with wi on n and thus Wk must assign ni the target color

Ct.

Now suppose that n' is a O-supervariable of one or more of the

immediate-0-supervariables nj. Let ni be the "last" immediate-

0-supervariable such that n' 0-depends on ni, i.e. let ni be the

immediate-fl-supervariable such that n' P-depends on ni and n'

does not O-depend on any immediate-o-supervariable n of n for

j > i. Let be the type node of W. Since n' does not P-depend

on any n for j > i, the type node must not O-depend on any

nj for j > i. Thus the world wi defined above must agree with

Wk on the type node m. By assumption the target color ct is

an instance of the type of n' 'in the world Wk. Thus ct must be

CHAPTER 5. INFERENCE WITH QUANTIFIERS146

an instance of the type of n' in the world wi. But w is always
a targeted-�-assignment of ni wth target O Frthermore n' 0-
depends on ni. Thus, by the definition of a targeted-o-assignment
and the fact that the target ct is an 'Instance of the type of n in
the world wi, the world w must assign n' the target color ct. But
n' does not P-depend on any nj for j > i and thus the worlds wi
andWkmust agree on n'. ThusWk assigns n' the target color ct.

5,4 Focus, Terrnination, and Order Indepen-
dence

This section describes a relation S,,r which is similar to s except that
binding construction is guided by a set of focus objects. The relation --+Sjr
is fully described in the beginning of this section; section 54.1 can be safely
ignored by readers not interested in correctness proofs.

The semantic modulation inference relation -*s generates bindings of
the form n 4 r. Unfortunately, in most applications there is a very large

number of potential bindings. To make the semantic modulation inference

process effective one must select useful bndings. In the Ontic system binding

selection 'is guided by a set of focus nodes. Given a set F of focus nodes the

Ontic system only generates bindings of the form n i-4r where r is a member
o f T.

Focus nodes represent ob'ects that the system is thinking about. Given a

set of focus objects the system uses forward chaining to generate facts about

those ob'ects. A focus object is often a variable node. For example the user

might drect the system to consider an arbitrary lattice. When this is done

the system chooses a variable node n whose type node represents the class of

all lattices. The variable n is then added to the set of focus objects. While

focusing on the arbitrary lattice n the system wll generate facts that hold for

all lattices. In order to ensure that the facts generated about a focus variable

n hold for all instances of the type of n the -system must avoid binding n to
any particular object. In general the system avoids binding variables that

are depended on by focus objects; binding a variable depended on by a focus

5.4. FOCUS, TERMINATION, AND ORDER INDEPENDENCE 147

object can change the meaning of the focus object.

The system also avoids redundant bndings. Suppose that n and n' are
two variables that have the same type node m and suppose that is a -
established-type-node for r. For the graphs generated by the Ontic compiler
there is no point 'in binding both n and n' to r; given the bnding n 4 r

nothing additional will be learned from the binding n' -+ r.

In summary the Ontic system imposes three constraints on the binding

process.- variables are only bound to focus nodes, the system does not bind

variables depended on by focus nodes, and the system does not generate

redundant bindings. These three constraints lead to the following definition

of the inference relation --+Sy defined relative to a semantic modulation

graph and a set of focus objects.

Definition: Let F be a subset of the nodes in a semantic mod-
ulation graph S.

Definition: Let T be a binding labeling of a semantic modula-

tion graph S such that has binding set . Let ' be a binding

labeling of S wth binding set P'.

We write +Sy ' if --+s ' and either O' equals or the

difference between O' and consists of a sngle bnding n - r

where the following conditions hold:

* r is an element of F.

* No member of F (directly) depends on n.

0 contains no binding n' F-+ r where n' has the same type

node as n.

We say that a variable node n 'in S is -protected if some focus

node in F depends on n. We say that an arbitrary node r is

.F-protected if every free variable of r 'is F-protected. Clearly the

elements of F are -protected.

OPINION" --

CHAPTER 5. INFERENCE WITH QUANTIFIERS148

If is a binding set generated by the relation Sjr and if p is a node
that 'is F-protected then no variable depended on by p will be bound under
13. One effect of this statement is that if p 'is F-protected, is a binding
set generated by --+Sy , and n is any variable node then p 0-depends on n
just in case p directly depends on n. Furthermore all members of the focus
set F are F-protected and thus in the second restriction on bindings in the
above definition it doesn't matter whether one uses 0-dependence or direct
dependence - the two notions of dependence are the same when discussing
the dependence of r-protected nodes.

The relation --+s,,r is simply a restriction of the relation -4s and thus

the soundness theorem holds for -+Sjr . Furthermore if p is T-protected then

no variable depended on by p will be bound by the inference relation --+Sjr .

More specifically we have the following special case of the soundness theorem.

--+S.F Soundness Theorem: Let be a satisfactory semantics

for a semantic modulation graph S. Let T be a binding labeling

with an empty binding set and with a truth and color labeling C

such that every world in satisfies r. Now suppose T--+Sy *T'
where T' has binding set and truth and color labeling V. If p

is a formula node that 'is F-protected and p is labeled true under

,C' then p must be labeled true 'in all worlds in W.

5.4.1 Termination and Order Independence

This section proves a certain Church-Rosser property for relation --+Sy . The

relation --+,s is fully specified above and those readers not interested in cor-

rectness proofs can safely 'ignore this section.

The relation --+Sy operates on bnding labelings of a semantic modulation

graph S. Since a given variable can only be bound once, and partial truth

labelings and color labelings can not be extended indefinitely, there can be

no infinite reduction chains of the form

El--+SY I2-+SY I3--+SY ...

00"I"NP

5.4. FOCUS, TERMINATION, AND ORDER INDEPENDENCE 149

Thus the relation S.F 'is well founded.

Let be a semantic modulation graph, let T an initial binding labeling,

let F be a focus set over S, and let p be a formula node which is F-protected,

i.e. p represents some statement about the focus objects. The inference

relation --+Sy can be used in an attempt to prove p by binding variable

nodes to focus objects. More specifically the labeling can be extended

via the relation --+,S.F until a normal form is found. Let ' and V be two

normal forms of T under the inference relation --+Sy . Now for the graphs

generated by the Ontic. compiler either ' and are both nconsistent

or they both agree on p. More specifically, the compilation of individual

variables (which compile into generic ndividual nodes) and closed formulas

(such as the formulas in the lemma library) results in a homogeneous graph

as described below. For homogeneous graphs it i's ossible to prove that the

normal forms ' and V are equivalent under a certain equivalence relation

defined below. This equivalence relation has the property that if ' and V

are equivalent then ether they both exhibit premature termination of they

must agree on p. A bnding labeling exhibits premature termination if it is
inconsistent or if there 'is some focus ob'ect r and a Cestablished-type-node

m for r but there are no variables of type m that have been bound to r and

no variables of type available for binding to r. In other words a binding

labeling exhibits premature termination if it runs out of variables to bind to

focus nodes. Because the Ontic compiler generates variables on demand, a

binding labeling does not exhibit premature termination in practice unless

it 'is inconsistent. Thus 'if ' and are both normals forms of under

the relation --+Sy and if p 'is F-protected, they either ' and V are both

inconsistent or they agree on p.

Definition: Let T be a binding labeling of a semantic modula-

tion graph S. We say that T is Sinconsistent if the labeling of

T is Cinconsistent where C is the congruence constraint graph

underlying S.

Let F be a subset of the nodes of a semantic modulation graph S

and let T be a bnding labeling of Swith truth and color labeling

)C. We say that T exhibits premature F-termination if either T

.- I W-M

150 CHAPTER 5. INFERENCE WITH QUANTIFIERS

is S-inconsistent or there exists a focus object r in F and a C-
established-type-node for r such that there is no binding of
the form n 4 r in the binding set of where n is a variable of

type and every variable of type i's either F-protected or is

already bound under the bnding set of E.

The equivalence relations defined in previous sections had the property

that any two inconsistent labelings were equivalent. The equivalence relation

defined below has the property that any two binding labelings which exhibit

premature termination are equivalent. In practice the Ontic system generates

variables on demand so that there are always enough variables in the graph
to avoid premature termination due a lack of ariables. Thus in practice,

premature termination always 'Involves an inconsistency. If T is a normalized

binding labeling wth truth and color labeling such that T does not exhibit

premature termination and if r is a focus object and m is a Cestablished-

type-node for r then some variable of type m is bound to r under the binding

set of T.

The graphs generated by the Ontic. compiler are homogeneous in the sense

that if n and n' are two variables wth the same type node then n and n'

are "identical" as nodes in the graph. More specifically if n and n' are both

variables wth the same type node then there exists a symmetry of the graph

which carries n to W A symmetry is a particular way that an ob'ect is

identical to itself. For example a square is identical to itself when rotated

ninety degrees. The formal definition of symmetry is based on the general

notion of isomorphism. Two semantic modulation graphs are isomorphic if

there is a bijection between there nodes which carries the structure of one

onto the structure of the other. A symmetry is an isomorphism of an ob ect

with itself, e.g. a rotation of a square is particular way that the square is
isomorphic to itself.

To precisely define the notion of isomorphism one needs to define how a

map carries the structure of a graph. More specifically consider a Hection t

which maps the nodes of a semantic modulation graph to some other set

of nodes ,V. The map carries the graph to the graph t(S) such that the

nodes of t(S) consist of the elements of �V and the classification of nodes and

the lnks of t(S) are defined as follows:

1515.4. FOCUS, TERMINATION, AND ORDER INDEPENDENCE

Definition: Let be a semantic modulation graph and let be a
bijection mapping the nodes in to some set. The map carries
the graph to the graph t(S) where the graph (S) is defined as
follows:

* The formula nodes of t(S) are the objects of the form (n)
where n is a formula node of S. The quotation nodes, type
nodes, variable nodes and unclassified nodes of t(S) are de-
fined similarly.

0 If is a literal over the formula nodes in S then t(T is
defined so that if IF 'is the node n then t(T) equals t(n) and
if is the literal --in then t(T) equals --it(n). The clause
links of t(S) consist of all clause links of the form

t(Tl) V t(T2) ... V t('Fk)

where S contains the clause link

T1 V T2 ... V Tk

0 The equality lnks of t(S) consist of all links of the form

t (p) �* t (n) = t (m)

where S contains the link

P <* n = n

* The subexpression links, free variable links, type declara-
tion links, type formula links, and subtype lnks in t(S) are
defined smilarly.

Now consider a bijection that maps the nodes of a graph S to any set.
As discussed above the bijection carries the structure of the graph S over
to the structure of a new graph t(S). The bijection S also carries binding
labefings of S over to binding labefings of the graph t(S).

CHAPTER 5. INFERENCE WITH QUANTIFIERS152

Definition: Let be a bi'ection from the nodes of a semantic
modulation graph to some set.

Let be a truth an color labeling of S. The labeling t(C) is the
truth and color labeling of t(S) such that if C labels p true then
t(C) labels t(p) true and if L assigns node r the color c then t(C)
assigns t(r) the color c.

Let be a binding set over L. The bisection t carries to the
binding set tP) over the graph t(S) where t(o) consists of all
bindings of the form t(n) �-* t(r) where n 4r is a binding in .

Let be a binding labeling of S with binding set and truth
and color labeling L. The mapping carries to the binding
labeling t(T) with bnding set o) and truth and color labeling
t(C).

For any bi'ection from the nodes of a semantic modulation graph to
some set the graph t(S) is in some sense identical to the graph S even though
the nodes of t(S) may be different from the nodes of S. This observation
leads to the notion of isomorphism.

Definition: Two semantic modulation graphs S and S' are iso-
morphic just in case S' can be written as t(S) for some bijection
t between the nodes of S and the nodes of S'. A map which
carries S to S' i's called an isomorphism between S and S'.

The notion of isomorphism leads to a notion of symmetry.

Definition: A symmetry of a semantic constraint graph S is an
isomorphism of S wth itself, ie a bijection from the nodes of
S to themselves such that t(S) equals S.

As mentioned above the graphs generated by compiling individual variables
and closed formulas are highly symmetrical. More specifically, such graphs
are homogeneous in the following sense.

5.4. FOCUS, TERMINATION, AND ORDER INDEPENDENCE 153

Definition: Two variables n and n' in a semantic modulation
graph will be called S-identical if there exists a symmetry of
S which exchanges n and n' and which is the identity map for all
nodes r which do not depend on either n or W.

A semantic modulation graph is called homogeneous if any two
variables with the same type node are S-identical.

If variables of the same type are 'Identical then it shouldn't matter which
variable is bound to a given focus object; two labelings should be considered
to be equivalent if the only difference between them 'is that they bind dfferent
but identical variables to the same focus ob'ect. More specifically let be
a focus set over a semantic modulation graph and let be a symmetry of
S that is the identity function on all T-protected nodes. The symmetry
exchanges identical variables but preserves all F-protected nodes. If is a
binding labeling of then the binding labeling t(T) should be equivalent to

Definition: Let F be focus set over a semantic modulation graph
S.

A symmetry of S is called F-preserving 'if t is the identity func-
tion on all Jr-7-protected nodes in S.

Two binding labefings and of S are called immediately-S-
equivalent if they have the same binding set, they assign the same
truth values to formula nodes, and their color labefings define the
same equivalence relation on nodes.

Two binding labelings 'T and of S are called S.F-equivalent if
either both 'T and ' exhibit premature termination or there ex-
ists a77-preserving symmetry of S such that t(T) is immediately-
S-equivalent to V.

It is possible to prove that -+S,�r satisfies the diamond property modulo
S.F-equivalence and thus -+S.F is order 'Independent.

154 CHAPTER 5. INFERENCE WITH QUANTIFIERS

--*Sy Normalization Theorem: If S 'is a homogeneous seman-
tic modulation graph and F 'is a focus set over then the relation
-- +Sjr is a terminating normalizer modulo SF-equivalence.

The above order independence result implies that 'in certain easily iden-
tified cases the answers generated by the the Ontic system do not depend on
the order in which inference operations are performed.

Corollary: Let be focus set over a homogeneous semantic
modulation graph let p be a -protected formula node, and
let T be a binding labeling of S. If ' and are both nor-
malizations of T under --+Sy then either both ' and V exhibit
premature termination or V and 'T" agree on the truth of p.

5,5 Assurnptions

This section describes an inference relation --+SA which performs inference
in the presence of assumptions (suppositions). The inference relation --+SA
is fully described in the beginning of the section. The relation --+SYA that
incorporates focus, is described in section 55.2. Sections 55.1 and 55.3
involve soundness and unique normalization respectively and can be safely
ignored by readers not interested in correctness proofs.

Recall that a binding labeling T for S is VV-valid if the binding set of T
is egal and the binding set of T implies the truth and color labeling of
T, i.e. every world in W that satisfies the binding set of T also satisfies the
truth and color labeling of T. If W is a satisfactory semantics for the graph
S then the relation --+S preserves W-validity. Unfortunately the notion of
W-validity does not allow for assumptions. An assumption is a statement
that 'is true in some worlds but not others. To properly handle assumptions
one must deal with labelings that are not W-valid.

Definition: Let be a semantic modulation graph and let

5.5. A SS UMP TIONS 155

be a satisfactory semantics for S.

An assumption set over S is a subset A of the formula nodes in
S. If w is a world in W then we say that w satisfies A if w assigns
every formula node 'in A the label true.

Assumptions can be handled by an 'Inference relation --+SA where A is
an assumption set over S. A later section will discuss how assumptions can
be combined with focus objects to yield an inference relation --+S,-rA which
is a controlled restriction of the relation -�SA defined here. However, focus
objects are ignored in the remainder of this section.

The labelings manipulated by the relation --+SA contain 'Information that
is deduced from the assumption set A. The assumptions in A may contain

assumptions about the types of objects. Thus a certain binding may be type

respecting relative under the assumptions in A even if that binding can not

be proven to be type respecting in general. Furthermore the assumptions in

A place restrictions on the free variables of the assumptions; it may not be

possible to assign values to the free variables of assumption without making

the assumptions false. Thus the relation --+SA aids bnding variables which

are depended on by elements of the assumption set A In fact the only

difference between the relations -- +S and --+SA is that ---+SA avoids binding
variables depended on by the assumptions n A.

Definition: Let A be an assumption set over a semantic modu-
lation graph S.

If is a binding set over S then a variable node n in S is called

AO-freeif n is O-free, i.e. not bound under , and no assumption
in A -depends on .

Let and ' be two bnding labelings of S. We write T--+SA E/

if T--*s T' and either T and T' have the same bnding set or the

binding sets of T' contains an additional binding n - r where n

is AO-free.

The restriction on bindings given in the above definition makes it possible to

156 CHAPTER 5. INFERENCE WITH QUANTIFIERS

prove a soundness theorem for the relation --+SA this theorem establishes
that --+SA can be used to find logical consequences of a set of assumptions.

-- �SA Soundness Theorem: Let be a satisfactory semantics
for a semantic modulation graph and let A be an assumption
set over S. Let be a binding labeling with an empty binding set
and such that every world in 'YV that satisfies A also satisfies the
truth and color labeling of E. Now supposeT --+SA *T' where
'T' has binding set . If p 'is a formula node such that p is labeled
true under T' and no variable depended on by p is bound under
0 then p must be labeled true in all worlds in that satisfy A.

Intuitively, the assumption soundness theorem holds because assumptions
do not constrain variables not depended on by the assumptions; variables not
depended on by assumptions are still free to range over their types and such
a variable can be assigned to any object that is known to be an instance of
'Its type. These intuitive comments are made more precise below.

5.5.1 Proof of the ---+SA Soundness Theorem

Like the semantic modulation soundness theorem, the assumption soundness
theorem 'is proven by showing that the relation --+SA preserves a certain
property of binding labelings. More specifically the relation -- *SA preserves
A)/V-valid'ty where a bnding labeling is AW-valid just in case 'its binding
set is A-legal and its bindings together with the assumptions 'in A imply
its truth and color labeling. The notion of an AW-legal binding context is
similar to the notion of a -legal binding context except that the concepts
involved are relativized 'in some way to the assumption set A.

An A/V-Iegal binding set need not be -legal; the legality of bindings 'in
an A/V-Iegal bnding set may depend on assumptions in A. More specifically,
an A/V-Iegal bnding set need not be W-universally-satisfiable; if is AIV-
legal, and w 'is a world in /V such that w does not satisfy A, then need
not contain a world w[13] that satisfies 3 and agrees with w on all nodes

5.5. ASSUMPTIONS 157

that do not depend on variables bound under . In defining the AW-legal.
binding sets the notion of W-universal-sat'sfiabilityl's replaced by the notion
of AW-universal-satisfiability.

Definition: Let be a satisfactory semantics for a semantic
modulation graph S, let A be an assumption set over S, and let
0 be a binding set over S. The bnding set is AW-universally-
satisfiable if for every world w in W em such that w satisfies A
the semantics contains a world w[o] such that w[p] satisfies
0 and agrees with w on all nodes that do not depend on any
variable bound under .

The following lemma states that if is A-protecting in the sense defined
below then O-assignments to AO-free variables always preserve the truth of
the assumptions 'in A Recall that a variable n is AO-free 'ust in case n 'is
0-free and no assumption in A O-depends on n.

Definition: Let A be an assumption set over a semantic modu-
lation graph S, let be a satisfactory semantics for S, and let
0 be a binding set over S.

The binding set is called A-protecting if no variable depended
on by an element of A is bound under .

Lemma: If is A-protecting, w is a world in VV that satisfies A,
n is an AO-free variable node, and c is an instance of the type of
n in a world w then any O-assignments of n to c in w also satisfies
A.

Proof: Since n is AO-free no assumption in A (directly) de-
pends on n. Furthermore, I will show that no assumption in A
O-depends on n. More specifically, suppose that there existed a
0-dependency-path from and assumption p in A to the variable
n. Since p does not drectly depend on n this path must involve

158 CHAPTER 5. INFERENCE WITH QUANTIFIERS

some variable bound under P. Thus there must be a drect de-
pendency path from p to some variable bound under . But this
is impossible because P 'is assumed to be A-protecting. Thus no
assumption 'in A P-depends on n. Thus if w[O, n = c] is a -
assignment of n to c in w then w and w[#, n = c] must agree on
all elements of A. By assumption w satisfies A so w[p, n = c]
also satisfies A.

An AW-legal binding set P need not have the property that P-assignments
exist in W. More specifically the existence of 0-assignments may depend on
the assumptions in A and thus 'if w 'is a world that does not satisfy A there
may be a variable node n and an 'instance c of the type of n such that W does
not contain a 0-assignment of n to 'in w. When dealing with assumptions
the requirement that P-assignments exist must be restricted to those worlds
which satisfy the assumption set.

Definition: We say that 0-assignrnents exist in W under A if for
every world w in W that satisfies both and A, every AP-free
variable node n in S, and every instance c of the type of n 'in
world w the semantics W contains a P-assignment of n to c in
W.

It is now possible to define the A/V-Iegal binding sets.

Definition: Let W be a satisfactory semantics for a semantic
modulation graph S, let A be an assumption set over S, and let
P be a binding set over S. We say that the binding set is AIV-
legal if there are no 0-dependency loops, is A-universally-
satisfiable, P is A-protecting, and P-assignments exist in W under
A.

If P is the empty bnding set then there are no P-dependency-loops P
is clearly AW-universally-satisfiable; and P 'is A-protecting. Furthermore 'if

5.5. ASSUMPTIONS 159

0 is empty then 0-assignments exist in all worlds in W. Thus the empty
binding set is AW-legal.

The notion of an A/V-legal binding context leads to the notion of an
AVV-valid binding labeling. A binding labeling is A-valid if its binding
set is AW-legal and its truth and color labeling is implied by 'Its bnding set
and the assumptions 'in A.

Definition: Let W be a satisfactory semantics for a semantic
modulation graph and let A be an assumption set over S. A
binding labeling is called AW-valid if the binding set of is
AW-legal and every world in W which satisfies both A and the
binding set of T also satisfies the truth and color labeling of T.

It is now possible to state the main theorem of this section: the relation
--+SA preserves Al/V-validity.

--+SA Preservation Theorem: Let W be a satisfactory seman-
tics for a semantic modulation graph S and let A be an as-
sumption set for S. If T i's an Al/V-valid binding labeling and
T--+SA V, then T' is also AVV-valid.

The proof of the-*SA preservation theorem is essentially the same as
the proof of the --+S preservation theorem given earlier; the proof will not
be given here. It 'is important to note however that the restriction on bind-
ings stated 'in the definition0f -SA is essential for the --+SA preservation
theorem. More specifically suppose contained a bnding of the form n 4r
where some assumption in A depends on n. In this case the binding n �- r
may violate the assumptions 'in A; the bnding may not be satisfiable by any
world that satisfies A.

160 CHAPTER 5. INFERENCE WITH QUANTIFIERS

5.5.2 Combining Assumptions and Focus Objects

Focus objects guide the choice of bindings generated in the Ontic system.
It is easy to combine focus and assumptions. More specifically the relation
--+S,'FA can be defined as follows:

Definition: If T and T' are two bnding labelings of a s'e'mantic
modulation graph then we write T--+S,'FAT'if T--+SAT' and
T --+ sy T1.

The above definition implies that the relation ---*SYA is a restriction of
the relation--+SA More specifically -+SyA is that restriction of--+SA which
only generates bndings n 4 r where r 'is a member of the focus set F no
other variable with the same type node as n has already been bound to r,
and no member of the focus set depends on n. Since -+SyA 'is a restriction
Of --+SA it preserves AW-validity.

5.5.3 Termination and Order Independence

Since each variable can be bound at most once, and since truth and color
labelings can not be extended indefinitely, all of the inference relations d's-
cussed so far are well founded; there are no infinite inference chains.

Furthermore it can be shown that the ability of the relation SYA to

prove a given result does not depend on the order in which inferences are
performed. More specifically, let be a semantic modulation graph; let
be a focus set over S, and let p be a formula node which is -protected,
i.e. p represents some statement about the focus objects; and let A be an
assumption set over S. The relation SyA can be used in an attempt to
prove that p follows from the assumptions 'in A More specifically let T an
initial binding labeling such that the labeling of T satisfies A and let T'
and be two normal forms of T under the 'inference relation --+s.FA it

turns out that the relation -�S.FA 'is order independent in the sense that, for

the graphs generated by compiling individual variables and closed formulas,

either and V are both 'Inconsistent or they both agree on p.

5.5. ASSUMPTIONS 161

The proof of the order 'Independence result for the relation S,�:-A is very
similar to the proof of the order independence result for --+SY In fact the
only difference between these two proofs involves the notion of premature
termination. It is possible that a binding labeling ' i's normalized under
--+SyA even though it could be reduced further under ---�Sy . More specifi-
cally, a variable might be O-free and thus available for binding under --+Sy
but not AO-free and thus not available for binding under -+SyA In fact
it is possible that ' exhibits premature termination with respect to the re-
lation --+SYA even though it does not exhibit premature termination with
respect to the relation --+Sy A binding labeling 'T exhibits premature AF-
termination just 'in case the truth and color labeling of T is 'Inconsistent or
there are not enough variables of the appropriate types available for binding
to the focus objects (the precise definition should be clear and is not given
here).

The ---+syA normalization theorem 'is stated in terms of a certain equiv-
alence relation on labelings. The notion of A.FS-equivalence can be defined
as follows:

Definition: Let be a focus set over a semantic modulation
graph and let A be an assumption set over S.

A node r is called A.F-protected if every variable depended on by
r is also depended on by some element of F or A. (If r is AF-
protected then no binding generated by --+SJrA binds a variable
depended on by r.)

A symmetry of S 'is called AT-preserving 'if 'is the identity
function on all A�F-protected nodes.

Two binding labelings'T and ' of S are called AS.F-equivalent
if either both T and ' exhibit premature A.F-termination or
there exists an AF-preserving symmetry t of S such that t(T is
immediately-S-equivalent to V.

Now it is possible to prove that if S is homogeneous then -+SyA satisfies
the diamond property modulo AY'S-equivalence. Thus SyA is a terminat-

162 CHAPTER 5. INFERENCE WITH QUANTIFIERS

ing normalizer relative to AFS-equivalence. Furthermore if and ' are
AFS-equivalent and p is an A17-protected formula node then either and
T' both exhibit premature termination or they both agree on the truth of p.
Thus the ability of the system to determine the truth of an A.F-protected
formula does not depend on the order in which reductions are done.

5,6 Autoinatic Universal Generalization

This section describes an inference relation -4g which performs automatic

universal generalization. The inference relation ---�g is fully described in the

beginning of the section and sections 56.1 can safely be 'ignored by read-

ers not interested in correctness proofs. Section 56.2 describes the relation

--+9A which 'is smilar to --+g except that 'it handles a set of assumptions

(suppositions). Section 56.3 discusses semantic soundness and can be safely

ignored by readers not interested in correctness proofs. The relations --+g

and -9A are not guided by focus ob'ects; section 56.4 describes a relation

that i's guided by focus ob'ects.

Universal generalization is a method for deducing formulas of the form

(FORALL ((X -)) D)

More specifically, suppose that a variable X of type appears free in the

formula and that has been proven using only the fact that X is an instance

of the type r. In this case must be true no matter how one interprets X as

an instance of and thus one can 'Infer that the above universal formula is
true.

In the Ontic system the formula

(FORALL ((X

abbreviates the formula

(NOT

(EXISTS-SOME

(LAMBDA ((X

(NOT (D)))

5.6. AUTOMATIC UNIVERSAL GENERALIZATION 163

LAMBDA 'is the only true quantifier in the Ontic system; classical quantification
is handled with the quantifier LAMBDA and formulas of the form

(EXISTS-SOME)

where c 'is a type expression. In order to implement universal general-
ization as a graph labeling inference mechanism two additional kinds of
links are needed corresponding to the quantifier LAMBDA and the operator
EXISTS-SOME.

Definition: An Ontic graphs consists of a semantic modulation
graph together with

* a set of existential links of the form

P #� Im

where p is a formula node and is a type node. Such a link

says that prepresents the formula which says that there exist
instances of the type m.

9 a set of closure links of the form

An.p = m

where n is a variable node, p 'is a formula node such that

no free variable of p other than n depends on n, and is

a type node. Such a link says that represents the type

whose instances are the values of the variable n which satisfy
the formula represented by p.

If S 'is the semantic modulation graph derived by deleting all

existential links and closure lnks from an Ontic graph then

is called the'semantic modulation graph underlying .

Let !9 be an Ontic graph and let be the underlying semantic

modulation graph. A labeling of !; is simply a labeling of S a

binding set over is a binding set over S; and a binding labeling
of !9 i's a bnding labeling of S.

CHAPTER 5. INFERENCE WITH QUANTIFIERS164

Universal generalization can be done whenever a fact has been proven
about a variable n and no assumptions have been made about n other than
that it is an instance of 'its own type node. The following definitions identify
those variable nodes n such that "no assumptions have been made about n".
These definitions have been carefully designed to maximize the deductive
power of automatic universal generalization while still ensuring the soundness
of universal generalization 'Inferences.

Definition: Let T be a bnding labeling of an Ontic graph !9, let
P be the binding set of T and let n be a variable node of .

We say that two type nodes m and ' are known to be equal under
T if the labeling of T assigns and ' the same color label.

We say that n 'is T-free if either n is 0-free, or n is bound under
0 with a binding n 4n where n' is a P-free variable node such
that the type node of n' 'is known to be equal to the type node of
n under T.

If n 'is T-free then the T-freedom-source for n 'is defined as follows:
If n is 0-free then the T-freedom-source for n is n itself. If n is
T-free and the binding set of T contains a binding of the form
n �-4 n' then the T-freedom-source for n is the variable node W.

There are two forms of universal generalization used in the Ontic system:
formula generalization and established type generalization. Formula gener-
alization. generalizes the truth of a formula node. Consider a formula node'
p and a variable node n such that n is a free variable of p. Now suppose
that p has been proven to be false without using any assumptions about the
particular value for n. In this case one can deduce that the type An.p is
empty; there is no 'interpretation of n that makes p true. If the type An.p is
empty then it may be possible to determine that a certain existential formula
node is false. A universal formula 'is always represented as the negation of
an existential formulas so formula generalization can result in assigning a
universal formal the label true.

5.6. AUTOMATIC UNIVERSAL GENERALIZATION 165

Established type generalization is a form of universal generalization that
involves subtype links. If !9 contains a subtype link p ,� m -< m' then
the formula node p represents the statement that every instance of the type
m is an instance of the type m'. Thus p represents a universally quantified
statement: a statement that quantifies over all instances of the type m. Now
suppose that n is a variable with type node m and that rn' is an established
type for n where no assumptions have been made about n. In this case one
can deduce that every instance of m is also an 'instance of ' so the formula
p which represents the subtype relation must be true.

In addition to the two kinds of universal generalization Ontic graphs
are associated wth existential generalization inferences. If an Ontic graph
contains an existential link p.� Im then the node p represents the statement
that there exist instance of the type m. Now if there exists a node r such
that m 'is an established type node for r then one can infer that 'Instances of
m exist and therefore that p must be true.

Definition: Let!9 be an Ontic graph. Let T be a bnding labeling
of !9 wth binding set and truth and color labeling C.

We say that a formula node q can be proven false by Tg-formula-
generalization over a variable node n just in case contains a
closure link An.p = m such that assigns p the label false, n is
T-free with freedom source n', no free variable of p other than n
0-depends on n', and contains the existential lnk q � 3m.

We say that a formula node p can be proven true by g-type-
establishment-generalization over a variable node n just 'in case
contains a subtype lnk p �* m --.< m' such that m is the type
node for n, ' is a !9-established type node for n, n is -free
with freedom source n' and ' does not P-depend on W.

We say that a formula node p can be proven true by T!9-existential-
generalization if contains an existential link p � 3m such that
there exists a node r in !9 such that m is a Cestablished-type-
node for r.

166 CHAPTER 5. INFERENCE WITH QUANTIFIERS

Under certain bnding labelings it is possible to prove that a certain for-
mula node 'is true even though that node has already been assigned the label
false. Binding labelings wth this property are inconsistent.

Definition: Let be an Ontic graph and let T be a binding
labeling of We say that T is 9-inconsistent if any of the
following conditions hold:

9 The color and truth labeling of Tis C-inconsistent where C
is the congruence constraint graph underlying .

* There exists a formula node p which can be proven false via
T9-formula-generalization but p is labeled true under T.

* There exists a formula node p which can be proven true via
either Tg-established-type-general'lzat'lon or Tg-existential-
generalization but p 'is labeled false under T.

Given a definition of the kinds of 'Inferences that are associated with Ontic
graphs and the notion of inconsistency we can now define the relation --+g .

Definition: Let!; be an Ontic graph and let T and T' be binding
labelings of !9. We write T--* g T' if ether T--+S T' where is the
semantic modulation graph underlying or else T is!g-consistent,
the binding set of T' equals the binding set of T, and one of the
following conditions holds:

* There exists a formula node p that can be proven false via
Tg-formula-generalization and the truth and color labeling
of T' is the result of assigning p the label false in the truth
and color labeling of T.

* There exists a formula node p that can be proven true via
either Tg-established-type-generalization or 9T-existential-
generalization and the truth and color labeling of T' is the
result of assigning p the label true 'in the truth and color
labeling of T.

5.6. AUTOMATIC UNIVERSAL GENERALIZATION 167

5.6.1 Semantic Soundness

The semantics of full Ontic graphs 'is very similar to that of semantic mod-
ulation graphs. However the semantics of full Ontic graphs must properly
account for the meaning of closure and existential links. The precise semantic
meaning of closure and existential links is captured in the following definition
of a satisfactory semantics for an Ontic graph.

Definition: A satisfactory -semantics for an Ontic graph is
a satisfactory semantics for the semantic modulation graph
underlying such that the following conditions hold.

0 If p ,� 3 is an existential link n !9 and w is a world in W
then w assigns p the label true ust in case there exists a
color c which i's an instance of m in the world w.

0 If An.p = m i's a closure link in and let w be a world in
W then a color c is an instance of m in w just in case c is
an instance of the type of n in w such that if w[n = c] is an
assignment of n to c in w then w[n :- c] assigns p the label
true.

The formal language Ontic has an intended semantics which can be de-
fined relative to a fixed universe of mathematical objects (a fixed model of
ZFC set theory). The meaning, or denotation of an Ontic expression can be
defined relative to a type respecting variable 'Interpretation; a given interpre-
tation of Ontic variables as mathematical objects yields an interpretation for
every Ontic expression. In the graph produced by the Ontic compiler each
node 'is associated with an Ontic expression. Since a type-respecting inter-
pretation of Ontic variables assigns a meaning to every expression, such a
variable interpretation can be used to assign labels to the nodes in the graph
produced by the Ontic compiler. Thus each variable interpretation yields a
world and the set of all such variable nterpretation yelds a set of worlds, 'i.e.
a semantics. The ntended semantics for the graphs produced by the Ontic
compiler i's a satisfactory semantics in the technical sense defined above.

168 . CHAPTER 5. INFERENCE WITH QUANTIFIERS

The semantic soundness theorem for Ontic graphs is analogous to the seman-
tic soundness theorem for semantic modulation graphs.

-+g Soundness Theorem: Let be a satisfactory semantics
for an Ontic graph . Let be a binding labeling of with an
empty binding set and with a labeling C such that every world
in W satisfies f, Now suppose T -+ g * ' where ' has binding
set and labeling L'. If p is a formula node that is labeled true
underC' and such that p does not depend on any variable bound
under then p must be labeled true 'in all worlds in W.

The g soundness theorem implies that universal and existential gener-
alization as allowed under --+g are semantically sound 'Inference techniques.
As was the case for --+s the --+g soundness theorem 'is proven by showing
that --+g preserves /V-validity. Recall that a binding labeling i's W-valid
if its binding set 'is Iegal and every world in w that satisfies the binding
set of also satisfies the truth and color labeling of T. Both the notion
of a YIegal binding set and the notion of a W-valid binding labeling are
defined purely in terms of the semantics W; these notions do not depend on
graph structure and do not need to be redefined here. The proof of the --+g
preservation theorem uses the following lemma:

Freedom Source Lemma: Let /V be a satisfactory semantics
for a semantic modulation gra-Ph . Let T be a W-valid binding
labeling of !j with bnding set and truth and color labeling C.
Let n be a T-free variable node with freedom source n'. Let w be
a world in W that satisfies . If c is an instance of the type of n

ignmen n :-
in w then the semantics W contains a ass' t WA C]

of n' to c in w and for any such 0-assignment assigns n the color
C.

proof: Since n' is the freedom source for n then ether n' is the
same node as n or else contains the binding n 4 n' and C
assigns the same color labels to the type nodes of n and n' In

5.6. AUTOMATIC UNIVERSAL GENERALIZATION 169

either case n' is 0-free; any world which satisfies assign n and
n' the same color label; and any world which satisfies C assigns
the tv-oe nodes for n and n' the same color label.

Since w satisfies and T 'is -valid, w must satisfy and
thus w must assign the type nodes for n and n' the same color
label. Thus c is an instance of the type of n' in w. Thus, snce is
W-legal and n' is -free, the semantics W contains a O-assignment
w[o, n' = c] of n' to c in w. Furthermore w[#, n' = c] satisfies
0 and assigns n' the color c so w[o, n' = c] must also assign n
the color c.

--*g Preservation Theorem: Let be a satisfactory seman-
tics for an Ontic graph . Let T and ' be binding labelings for
9. If T is W-valid and --+g ' then ' is W-valid.

Proof: Suppose that T is W-valid and that --+g V. Either
T--+s ' where is the semantic modulation graph underlying
!9 or else ' is derived from T by universal or existential gener-
alization. If --+s ' then the -+s preservation theorem implies
that ' is /V-valid. Now suppose ' is derived from T by either
universal or' existential generalization. In this case the binding
set of ' equals the binding set of ; let be this bnding set.
By assumption 'is W-valid and thus is W-legal. It remains
only to show that every world 'in /V which satisfies also satisfies
the truth and color labeling of V. Let be the truth and color
labeling of and let be the truth and color labeling of .
Consider a world w 'in /V which satisfies . Since 'T is W-valid,
w satisfies L. Now there are three cases.

First suppose that there exists a formula q which can be
proven false via 9-formula-generalization over a variable node
n and that L' is derived from C assigning q the label false. In
this case there exists a closure lnk An.p = m and an existential
link q � 3 such that C labels p false, n is -free with freedom
source n' and no free variables of p other than n O-depend on W.
To show that ' is /V-valid let w be any world in /V that satisfies

CHAPTER 5. INFERENCE WITH QUANTIFIERS170

O'. We must show that w satisfies L Since is valid, and
since equals P', the world w must satisfy L. Thus to show that
w satisfies L' it suffices to show that w assigns q the label false.
Given the semantics of existential links it suffices to show that
there are no instances of m in w. The semantics of closure links
state that a color c is an instance of in w just 'in case c is an
instance of the type of n such that if w[n = c] is an assignment of
n to c in w then w[n = c] assigns p the label true. Let c be any
instance of the type of n in w and let wn = c] be an assignment
of n to c in w. To show that there are no instances of m it suffices
to show that wn = c assigns p the label false. By the above
freedom source lemma the semantics W contains a 0-assignment
w[o, n' = c] of n' to c in w and any such fl-assignment must
assign n the color c. Since w[�, n' = c] satisfies , and since T is
W-valid, the world w[o, n' = c] must satisfy the labeling L and
thus w[o, n' = cl must assi n the label false. It now suffices to
show that wn = c] agrees wth w[O, n' = c] on the formula p.
To show that w[n :- c] and w[o, n' = c] agree on p it suffices to
show that these two worlds agree on the free variables of p. Both
w[n = c] and w[o, n' = c] assign n the color c. Now consider
the free variables of p other than n. Since no free variable of p
other than n �-depends on n', w[o, n' : c] agrees with w on
the free variables of p other than n. Furthermore, the definition
of an Ontic graph states that no free variable of p other than n
directly depends on n. Thus w[n .-=] also agrees with w on the
free variables of p other than n. Thus w[n = c] and w[o, n' =]
agree on all the free variables of p and thus agree on p.

Now suppose that there exists a formula node p such that p
can be proven true via g-established-type-generalization over
a variable node n and that L' is derived from L by assigning p
true. In this case there exists a subtype lnk p � m -� m' such
that m is the type node of n n is T-free with freedom source n'
and m' is a Lg-established-type-node for n such that m' does not
fl-depend on W To show that T' is W-valid consider a world w
that satisfies O'. We must show that w satisfies L'. Since T is /V-
valid, and since equals O', the world w must satisfy L. Thus t

5.6. AUTOMATIC UNIVERSAL GENERALIZATION 171

suffices to show that w assigns p the label true. By the definition
of a satisfactory semantics it suffices to show that every instances
of m 'in w is also an 'Instances of m' in w. Let c be an 'Instance
of in w. It suffices to show that c is an instance of m' in w.
Since the variable n has type node m, the color c 'is an instance
of the type of n. Thus the above freedom source lemma implies
that VV contains a O-assignment W[O, ni = c] ofn' to c in w and
any such P-assignment assigns n the color c. Since w[o, n' = c]
satisfies P and since is -valid, w[o, n' = c] must satisfy .
Now since m' is aC-established-type-node for n the color of n in
w[o, n' -.= c] must be an instance of m' in w[o, n' = c]. Thus
c is an 'Instance of m' 'in the world w[p, n' = c]. To show that
c is an instance of ' in w it now suffices to show that w and
w[o, n' = c] agree on m'. But this follows immediately from the
assumption that ' does not O-depend on W.

Now consider existential generalization. Suppose that !j con-
tains an existential link p �* 3m such that there exists a node
r such that m is a Cestablished-type-node of r and that C is
derived from C by assigning p the label true. To show that is
W-valid let w be a world in that satisfies P'. We must show
that w satisfies '. Since equals O' and snce is W-valid the
world w must satisfy r. To show that w satisfies r' it suffices to
show that w assigns p the label true. Since w satisfies C and
since is a Cestablished-type-node for r, the color of r 'in w
must an instance of m in w. But this implies that there exists
an instance of m in w so by the semantics of existential links w
must assign p the label true.

5.6.2 Assumptions

Recall that the notion of W-validity does not allow for assumptions; to prop-
erly handle assumptions one must deal with labelings, that are not -valid.
To deal wth relations that not -valid we need a new inference relation
-+9A . The relation -+9A restricts bndings to avoid binding variables de-

172 CHAPTER 5. INFERENCE WITH QUANTIFIERS

pended on by assumptions 'in A and also restricts universal generalization so
that one does not generalize over variables depended on by assumptions in
A.

Definition: An assumption set over an Ontic graph is a set A
of the formula nodes 'in .

Let be an Ontic graph, let A be an assumption set over !9 and
let T be a binding labeling of wth binding set

A variable node n is called AT-free with freedom source n' just
in case n is -free with freedom source n' and no element of A
0-depends on W.

It is now possible to define the forms of 'inference associated with an Ontic
graph under a set of assumptions.

Definition: Let be an Ontic graph and let A be an assumption
set over Let T be a bnding labeling of

We say that a formula p can be proven false by A!9-formula-
generalization over a variable node n just in case p can be proven
false by !g-formula-generalization over n and n is AT-free.

We say that a formula p can be proven true by A9-established-
type-generalization over a variable node n just in case p can be
proven true by T!g-establ'shed-type-generalization over n and n
is AT-free.

As the above definition indicates, the inferences that are allowed in the pres-
ence of assumptions are slightly different from the inferences that are allowed
when no assumptions are present; certain universal generalization inferences
may be allowed in the absence of assumptions but not allowed when assump-
tions are present. This difference in the allowed inferences is reflected in a
difference in the notion of consistency.

5.6. AUTOMATIC UNIVERSAL GENERALIZATION 173

Definition: Let be an Ontic graph, let T be a bnding labeling
of and let A an assumption set over . We say that T 'is A9-
inconsistent if any of the following conditions hold:

9 The color and truth labeling of Tis Cinconsistent where C
is the congruence constraint graph underlying .

* There exists a formula node which can be proven false via
AT9-formula-generalization but p i's labeled true under T.

* There exists a formula node p which can be proven true via
el'ther AT!g-established-type-generalization or Tg-existential-
generalization but p is labeled false under T.

Given a definition of the kinds of inferences that are associated with Ontic
graphs under assumptions and the notion of AC-inconsistency we can now
define the relation -+9A

Definition: Let be an Ontic graph, let A be an assumption
set over , and let T and T' be binding labelings of !9. We write
T--+gAT' if either T--+,SAT' where is the semantic modulation
graph underlying!; or else T is Ag-consistent, the binding set of
T' equals the binding set of T, and one of the following conditions
holds:

e There exists a formula node p that can be proven false via
AT!;-formula-generalization and the truth and color label-
ing of T' is the result of assigning the label false in the
truth and color labeling of T.

9 There exists a formula node p that can be proven true via e-
ther AT!;-established-type-generalization or T-existential-
generalization and the truth and color labeling of T' is the
result of assigning p the label true in the truth and color
labeling of E.

CHAPTER 5. INFERENCE WITH QUANTIFIERS174

5.6.3 Soundness under Assumptions

The soundness theorem for the relation-*9A is analogous to the soundness
theorem for--+ SA

---+GASoundness Theorem: Let be a satisfactory semantics
for an Ontic graph !9 and let A be an assumption set over . Let
T be a binding labeling wth an empty binding set and such that
every world in /V that satisfies A also satisfies the truth and color
labeling of T. Now suppose T -!gA* T' where T' has binding
set �. If p is a formula node such that p is labeled true under LI
and no variable depended on by p is bound under then p must
be labeled true 'in all worlds in W that satisfy A.

The soundness theorem for -+9A can be proven by showing that ---+9A
preserves AW-validity. Recall that T is A/V-valid if the binding set of T is
AW-legal and every world in W that satisfies both A and the binding set of
T also satisfies the truth and color labeling of T. The notion of AW-validity
is defined in a purely semantic way; the AW-validity of the binding labeling,
T does not depend on any graph structure and need not be redefined here.

-+gA Preservation Theorem: Let be a satisfactory seman-
tics for an Ontic graph and let A be an assumption set for .
If T is an A-valid bnding labeling and T--+ T' then T' is
also A-valid.

The proof of the-+9A preservation theorem is directly analogous to the
proof of the �g preservation theorem and is not given here. The proof relies
on the fact that if n is AT-free with freedom source n' then no element of
A O-depends on n' where is the binding set of T. More specifically, if
n' is O-free and no element of A O-depends on n' then, by definition, n is
AO-free. Since n' is AO-free, and is A-legal, O-assignments exist for n'
in all worlds that satisfy both and A. If n' were O-free but not AO-free
then the A-legality of would not ensure that O-assignments exist for W.

5.6. AUTOMATIC UNIVERSAL GENERALIZATION 175

5.6.4 Focus, Termination and Order Independence

Of course it 'is possible to control the generation of bndings wth focus ob-
jects. A focus set over an Ontic graph !j is simply a subset of the nodes of .
One can define the relation as a restriction of the relation -- *,CA the
relation --+gyA never bindings variables which are F-protected, only binds
variables to focus objects and never binds two variables with the same type
node to the same focus ob'ect. Because the relation -+9YA is a restriction
of the relation -+9A it clearly preserves AW-validity.

Order independence for the relation that --+gyA requires a restriction
an universal generalization inferences. More specifically the freedom source

of the variable being generalized over in a universal generalization inference

must be F-protected. This ensures that no binding operation allowed under

--+gyA binds the freedom source involved in a universal generalization infer-

ence. This in turn ensures that all allowed universal generalization inferences

commute with all allowed binding operations. This restriction on universal
generalization inference has not been a problem in practice.

-11-I.."Kaft"Mm"NOMMOMPAMM - 11 111- - --- - I L-_ - -

a er

e n ic an ua e

The formal language Ontic consists of twenty three kinds of expression plus
seven macros that provide convenient abbreviations for expressions. The
Ontic compiler converts a set of Ontic expressions to an Ontic graph G(E).
The graph G(E) is simpler than the set E; although there can be twenty three
different kinds of expressions 'in there are only nine kinds of links 'in Ontic
graphs. The compiler is described n chapter 7 the current chapter describes
the language Ontic and various syntactic properties of that language.

There are several aspects of the syntax of the Ontic language that need
explaining. First of all, most of the axioms of Zermelo-Fraenkel set theory
are encoded n the notion of a syntactically small type expression- a type
expression can be "reified" as a set only if the type expression is syntactically
small. This chapter also describes free variables and substitution; the type
system used 'in the Ontic language makes these notions somewhat complex.

6A Non-1\4inin-lality of the Ontic Language

The Ontic language is not semantically mnimal; many of the constructs in
the Ontic language could be semantically defined in terms of more basic con-
structs. There are three reasons for the non-minimality of the Ontic language.

177

178 CHAPTER 6. THE ONTIC LANGUAGE

First, the Ontic system encodes the axioms of set theory in the syntax of the

Ontic language. Second, the non-minimality of the Ontic language allows the

compilation process to generate efficient graph structure. There is an analogy

between the non-minimality of the Ontic language and the non-minimality

of programming languages - greater efficiency is achieved by allowing the

compiler to directly implement certain non-minimal language features. Fi-

nally, directly compiling non-minimal language features 'improves the input-

output behavior of the system; there are automatic inferences based on the

graph structure generated from the non-minimal language which would not

be done automatically if the compilation process was restricted to a minimal

language.

The notion of a syntactically small type expression encodes many of the

axioms of set theory. Rather than have explicit comprehension axioms, the

Ontic system allows the construction of sets of -the form

(THE-SET-OF-ALL)

where -r is a syntactically small type expression. Not all type expressions are

syntactically small; the types SET, GROUP, FIELD, or TOPOLOGICAL-SPACE are

all large and an error is generated 'if an attempt is made to construct the set

of all sets or the set of all topological spaces. On the other hand f 'is a

term that denotes a set then the type

(SUBSET-OF s)

is syntactically small and one can construct the set

(THE-SET-OF-ALL (SUBSET-OF 8))

The smallness of types of the form (SUBSET-OF s) corresponds to the axiom

of power set; for every set there exists another set P(s) such that Ps)

contains all subsets of s. The smallness of types of the form (EITHER tj t2)

corresponds to the set theoretic axiom of pairing. The smallness of lambda

types corresponds to the axiom of restricted comprehension and the smallness

of types of the form (RANGE-TYPE f) correspond to the axioms of union, and

replacement.

The non-minimality of the Ontic language also allows the graph G(E to

be smaller than it would be otherwise. For example consider a type expression

6.1. NON-MINIMALITY OF THE ONTIC LANG UA. GE 179

of the form

(OR-TYPE r 2

An ob'ect is an instance of this type just in case it is an instance of either

the type ri or the type -2. Semantically this type is equivalent to the type

(LAMBDA ((X THING)) (OR (IS X 1) (IS X 2

However the lambda type quantifies over the type THING and generates ad-

ditional graph structure for each variable of type THING. By implementing

the OR-TYPE operator as a primitive one can avoid quantifying over the type

THING and thus create less graph structure. The primitive implementations

of IF, EITHER and RANGE-TYPE lead to similar savings in the amount of graph

structure created.

The non-minimality of the Ontic language also leads to greater inferential

power. For example consider the reification of functions. Expression in the

Ontic language are divided into five syntactic categories: terms, formulas,

functions, types and type-generators. Of these five categories terms are the

only first class objects; variables can be bound only to erms and only terms

can be used to specify focus ob'ects. However certain type expressions (syn-

tactically small type expressions) can be reified, 'i.e. coerced to a term va the

operator THE-SET-OF-ALL. Furthermore, functions can be reified, or coerced

to terms, via the operator THE-RULE. If f is a syntactically small function ex-

pression which takes one argument then the Ontic expression (THE-RULE f)

denotes the set of pairs that corresponds to the function f. Unlike the func-

tion expression f, the term expression (THE-RULE f) 'is a first class object;

variables can be bound to it and it can be used as a focus object in an Ontic

context. The operator THE-RULE is not semantically minimal; it is possible to

define the operator THE-RULE using the operator THE-SET-OF-ALL. However

the primitive implementation of the operator THE-RULE allows the system to

perform inferences in a single step that would take many steps if the system

were forced to reason purely in terms of the operator THE-SET-OF-ALL. More

specifically the Ontic language 'Includes the operator APPLY-RULE such that

for any syntactically small function f of one argument the implementation

of the operator THE-RULE allows the system to derive the following equation

in a single step.

180 CHAPTER 6. THE ONTIC LANGUAGE

(IS (APPLY-RULE (THE-RULE f) x)

(EQUAL-TO (f x)))

If THE-RULE were a macro that expanded to an expression involving THE-SET-OF-ALL

then the above equation would have to be proved using a several step proof

for each reified function f. One can not state the above equation as a lemma

about all functions because one can not quantify over functions. However

one can quantify over rules and the operator THE-RULE provides a way of

reifying syntactically small functions as rules.

6.2 The Ontic Language

The expressions in the Ontic language are divided into four categories: terms,

functions, formulas, types and type generators. Terms are expressions that

denote mathematical objects such as sets, pairs, graphs, partially ordered

sets and lattices. Function expressions denote operators (functions) that

map ob'ects to objects. Formulas are expressions that are either true or false

in any given interpretation. Type expressions denote one place predicates on

objects; if 'is a type expression and the predicate denoted by -r 'is true of an

object x, then we say that x is an instance of the type -r. Type generators

are operators which take arguments (which are always terms) and return a

type. For example the type generator GREATER-THAN takes a partially

ordered set P and an element x of P and returns a type whose instances are

the elements of P which are greater than x under the ordering imposed by

P.

Functions, types, and type generators can be A-expressions. A A-expression

is an expression of the form

(LAMBDA (X1 1) (X2 72) ... (Xk k body)

A A-expression always denotes an operator; the above expression is an op-

erator that takes k arguments where each argument must be an instance

of the associated type. If the body of a A-expression is a formula then the

expression is a tv-pe expression and 'is only allowed to take one argument. If

the body 'is a term then the A-expression 'is a function; if the body is a type

then the A-expression 'is a type generator.

6.2. THE ONTIC LANG UA GE 181

There are actually two versions of the Ontic language which differ in the
way variables are treated. The first version of the language is the one used
in the top level user interface. In this external version of the Ontic language
a variable is simply a symbol such as X and the same symbol can be used
in different ways in different contexts. The external version of the language
should be distinguished from the internal version where individual variables
have more structure and stronger identity.

There is a one to one correspondence between the nodes in the graph
generated by the Ontic compiler and expressions in the internal language.
In particular there is a one to one correspondence between variable nodes in
the graph structure and variables of'the internal language. This one to one
correspondence would be impossible for the external language because the
external language allows a given symbol to be used as variables of different
types in different contexts. In the 'internal version of the Ontic language
each variable has a fixed type that 'is taken to be a syntactic property of that
variable. The following A-type is an example of an external expression:

(LAMBDA ((X SET))
(IS-EVERY (MEMBER-OF X) SET))

This external expression gets mapped to the following internal expression

(LAMBDA (XSET)

(IS-EVERY (MEMBER-OF XSET) SET))

Note that in the translation process the external symbol X has been replaced
by the internal variable XIET of type SET.

Only the internal language is formally defined here. Fortunately, the

external and internal versions of the Ontic language are very similar and the

definition of the external language should be clear from the definition of the

internal language. A method of translating external expressions into internal

expressions is discussed in a later section.

An internal Ontic expression can be formally defined as one of the twenty

three different knds of expressions listed below.

WORM

CHAPTER 6. THE ONTIC LANGUAGE182

Definition. An internal Ontic expression is one of the following:

A type expression which is one of the following:

- One of the type symbols THING, SET, RULE or SYMBOL.

The type SYMBOL 'is syntactically small while the types

THING, SET, and RULE are all large.

- An application of the form tl t2 ... tk) where g is a

type generator of k arguments and each t 'is a term. A

type expression of this form is syntactically small just

in case the type generator g is syntactically small.

- A A-type of the form (LAMBDA (xr) where xr is vari-

able of type and (1) 'is a formula. A type of this form

is syntactically small just in case the domain type is

syntactically small. The class of instances of this type

is a subclass of the instances of the type -r.

- An expression of the form (OR-TYPE 7 -r2) where 71

and 2 are types. A type expression of this form is syn-

tactically small ust in case both the types7i and 2 are

syntactically small.

- An expression of the form (RANGE-TYPE f) where f a

function expression of any number of arguments. A type

expression of this form 'is syntactically small just in case

the function expression f is syntactically small.

A term which is one of the following:

- A variable x where7 'is a type expression. Each type

7 is associated wth an 'Infinite sequence x, x, x'1 2 3 ...

of variables of type7.

- An application of the form(f t1 t2 ... tk) where f is a
function expression of k arguments and each t is a term.

- An expression of the form (THE-SET-OF-ALL) where

7is a syntactically small type expression.

- An expression of the form (THE -r) where7is a synt ac-

tically small type expression.

- A conditional expression of the form (IF P t, t2)where

(P is a formula and ti and t2 are terms.

6.2. THE ONTIC LANGUAGE 183

- An expression of the form (THE-RULE f) where f is a

syntactically small A-function of one argument.

- An expression of the form (QUOTE symbol) where symbol

is an atomic symbol.

A function expression which 'is one of the following:

- A A-function of k arguments of the form
(LAMBDA (x'rl xr' ... xk) body)

1 2 k

where each Zi is a variable of type -ri and body is a term.i
A-function is syntactically small 'ust in case each type

expression i is syntactically small.

- An expression of the form (THE-FUNCTION t) where t

is a term. The term t should denote an instance of the

type RULE, i.e. something expressible as (THE-RULE f).

All functions of this form are functions of one argument

and are syntactically small.

- The primitive function symbol RULE-DOMAIN which is a

large function of one argument. This function should

only be applied to instances of the type RULE.

A formula which is one of the following:

- A type formula of the form (IS t) where t is a term

and 'is a type expression.

- An existence formula of the form (EXISTS-SOME 7 where

-r is a type expression.

- An equality of the form = el e2) where el and e2 are

any internal Ontic expressions.

- A Boolean application of formulas constructed with one

of the boolean operators NOT, OR, AND, IMPLIES, or IFF.

- A subtype formula of the form (IS-EVERY r where

a and -r are type expressions.

A type generator expression which is one of the following:

- One of the primitive type generators EQUAL-TO, MEMBER-OF,

SUBSET-OF, EITHER or RULE-BETWEEN. The type gener-

---p- - .

CHAPTER 6 THE ONTIC LANGUAGE184

ators EITHER and RULE-BETWEEN both take two argu-

ments, all the others take one. All these type generators

are syntactically small.

- A non-primitive type generator of k arguments of the

form
(LAMBDA (xr' xT2 XT`�) body)

1 2 ...

where body is a type expression. A type generator of this

form is syntactically small just in case the type body is

syntactically small.

An unclassified combinator expression. Combinator expres-

sions are generated when a A-type is compiled 'Into graph

structure. Combinator expressions are discussed in chap-

t er 7.

The large size of the 'Internal language makes it dfficult to define prop-

erties of expressions; to define an operation on internal expressions it seems

that one must define that operation on each of the twenty three different
kinds of expressions. Fortunately this problem can be aoided. More specifi-

cally the twenty three different kinds of expressions can be classified into four

groups: atomic expressions, variables lambda expressions, and extensional

applications.

Definition-, An atomic expression 'is either one of the primitive

type symbols, one of the primitive type generator symbols, or a

quotation of the form (QUOTE symbol).

A A-expression is either a A-type, a A-function or a non-primitive

type generator.

An extensional application is an expression other than a variable,

an atomic expression or a A-expression. All extensional applica-

tions have the form

(op arg, ar92 ... a rgk)

- ----- -- - -- - --- - ---- -

6.3. BINDING AND FREEDOM 185 .

6,3 Binding and Freedorn

There are some subtleties in the internal language concerning the notion of
a free variable. The external formula

(EXISTS ((X (MEMBER-OF S)))

(IS X (MEMBER-OF U)))

Is an abbreviation for the external formula

(EXISTS-SOME

(LAMBDA ((X (MEMBER-OF S)))

(IS X (MEMBER-OF U))))

Which corresponds to the 'internal formula

(EXISTS-SOME
(LAMBDA (X (MENBER-OF sSET)

(IS (MEMBER-OF aSET) (MEMBER-OF USET)

This formula says that there exists a member of SSIT which is also a
memb er of uET . Thus the variable SSET must be a free variable of this for-
mula. Note however that SSET appears in the type of the bound variable
X(MEMBER-OF sSET) . More generally consider any A-type of the form

(LAMBDA (xr) D)

A free variable 'in the type -r 'is considered to be free in the A-type.

In general consider a A-expression of the form
(LAMBDA (xri xT' x"�) body)

1 2 k

If this A-expression is a A-type then it denotes the class of instances of that
type. If the A-expression 'is a function or type generator then 'it denotes
a certain class of tuples. In ether case the meaning of the A-expression
depends on the classes associated with the types r which in turn can depend
on the 'Interpretation of free variables in the type expressions. Thus the free
variables of a A-expression include free variables 'in the types of the bound
parameters.

186 CHAPTER 6. THE ONTIC LANGUAGE

Definition: A variable y appears fee in an internal expression
e if one of the following conditions hold:

* is the variable y7.

* is an extensional application

(op arg, arg2 ... ar9k)

and y" either appears free 'in the operator op or one of the

arguments argi

e is a A-expression of the form

(LAMBDA (xT x ... x-) body)

1 2 k

where y is not equal to any and y6 appears free either

in body or the type 7i of some formal parameter i2 .

Note that 'in A-functions and type generators of more than one argument a

free variable 'in the type of one' argument may be bound as another argument.

For example consider the type generator GREATER-OR-EQUAL-TO defined 'in

the external language as follows.

(DEFTYPE (GREATER-OR-EQUAL-TO (X (IN-USET P) P POSET))

(LAMBDA ((Y (IN-USET P))

(OR = Y X)

(IS Y (GREATER-THAN X P)))

The type generator GREATER-OR-EQUAL-TO takes two arguments X and P

where P is a partially ordered set and X 'is a member of P. The above defini-

tion introduces the symbol GREATER-OR-EQUAL-TO as an abbreviation for an

internal type generator of the form

(LAMBDA (X (IN-USET pPOSET)PPOSET) body)

In this expression the variable p POSET which appears free in the type of the
bound variable x (IN-USET pPOSET) is bound as the second argument and thus

does not appear free in the overall expression.

6.3. BINDING AND FREEDOM 187

The definition of the free variables of an expression may seem problematic.
In particular consider an external A-expression of the form

(LAMBDA ((X (MEMBER-OF Y)) (Y (MEMBER-OF X)) body)

According to the definition given above both occurrences of X and Y in the

type expressions are bound as arguments to the A-expression. But there 'is a
circularity in the typing of the formal parameters; the expression takes two

arguments X and Y where X is a member of Y and Y 'is a member of X. It turns

out that no 'Internal A-expression has circularities of this kind. Any attempt

to translate circular external expressions into the internal language produces

an error. To see why internal A-expression are non-circular we need to define
the notion of rank for internal expressions.

Definition,.:

0 If e 'is an atomic expression then the rank of is .

0 If 'is a variable xr then the rank of e is one greater than
the rank of the type .

0 If 'is an extensional application

(op a rg a 2 ... ar9k)

then the rank of is one greater than the maximum rank of
op and the arguments argi.

* If is a A-expression

(LAMBDA (x'rl x ... xk) body)

1 2 k

then the rank of is one greater than the maximum rank of
body and variables xT.

Lemma: All parameter lists 'in the internal expression are non-
circular i.e. for any parameter lst (x" x2 ... x') there exists

I 1 2 k

permutation (y' y2 ... y'k) of thi's list such that 'if y ap-

pears free n the type expression then i must be less than

CHAPTER 6. THE ONTIC LANGUAGE188

Proof: Let
T2

(Y1 Y2 Yk

be a permutation of the list which sorts the parameters by rank,
i.e. if i 'is less than then the rank of y' is less than or equal

i i
to the rank of yT. Now suppose that y appears free in 7j We

3 z

must show that 'in this case i is strictly less than j. It follows
from the definition of rank that if y' appears free in rj then the
rank of -rj must be greater than the rank of Furthermore the
rank of yTj is one greater than the rank of r. Thus the rank of

3

Ti must be less then the rank of yTj so i ust be less than j.Yi 3

6.4 Translating External Expressions

The syntax of the external language 'is smilar to the syntax of the internal
language except that external symbols are used rather than variables and
the syntax of A-expressions is slightly different. The definition of when a
symbol X appear8free 'in an external expression i's directly analogous to the
corresponding definition for the internal language.

The translation of an external expression into an 'Internal expression is
defined relative to a symbol translation table which contains entries of the
form

X

where X 'is an external symbol and e is an internal expression. Each context
in the Ontic system 'is associated with a particular symbol translation table;
different translation tables are used in different contexts. If is a type
expression in the external language then the context construction operation

(LET-BE X a)

constructs a context where the symbol translation table includes the entry

X F+ X"

where xO" is an internal variable of type a' where a' is the type expression in
the 'Internal language that corresponds to the external tpe expression cr If

6.4. TRANSLATING EXTERNAL EXPRESSIONS 189

t is a term 'in the external language then the context constructor

(LET-BE X t)

yields a context where the symbol translation table contains the entry

X �. tf

where t' is the internal term corresponding to the external term t. The same

symbol can be used 'in different ways in different contexts.

Now consider an external A-expression of the form

(LAMBDA ((X 7)) body)

To translate this expression relative to a given translation map p the system

first translates the external type expression -r to an internal expressions' If

there is some free symbol in which 'is not mapped by p then the translation

of -r fails. The system then chooses an 'Internal variable x" such that x" does

not appear 'in p, i.e. x' does not appear free 'in any term t which is the right

hand side of a mapping Y 4 t 'in the table p. The system then translates

body relative to the table p[Xi--+ xr'] which is the table identical to p except

that it maps X to x". Let body' be the result of translating body relative to

this modified table. The overall translation process then yields the internal

A-expression
(LAMBDA (x") body')

The eneral translation process can be precisely defined by a simple case

analysis on the syntax of external expressions.

Definition.- If 'is an external expression and p is a symbol

translation table then the translation Trans(e, p) of the expres-

Sion w'th respect to the table p is defined as follows:

* If is an atomic expression then Trans(e, p) equals .

* If is an external symbol then Trans(e, p) equals p(e).

* If is an application

(op arg, ar92 ... a ryk)

190 CHAPTER 6 TE ONTIC LANGUAGE

then Trans(e, p) equals

(Trans(op, p) Trans(argj, p) Trans(a%, p) ... Trans(argk, p)

If e is a lambda expression of the form

(LAMBDA X r ... (Xk k body)

then let p be

NeWMaP(P, ((Xi TO ... (Xk TO

where the function NewMap is defined below. The transla-

tion Trans(e,) is then defined to be

(LAMBDA (p'(Xi) ... P(Xk)) Tans(body, p'))

Let arglist be an argument list of the form (Xi (Xk TO

and let p be a symbol translation table. If aglist 'is empty then

the translation table NewMap(p, arglist) equals the table p If

arglist 'is not empty then the table NewMap(p, arglist) is defined

as follows:

0 let (Xi -ri) be a pair in arglist such there i's no pair (Xi rj in

arylist such that Xj appears free 'in -ri. If no such pair (Xi -ri)

exists then there is a circularity in the type structure of

arglist and the attempt to construct a new translation table

fails.

* Let be Trans(-rj, p) and let xri be the first variable of type,

-rj' which does not appear in p, i.e. which does not appear

free in any term t which 'is the right hand sde of a mapping

Y�-+ t in p.

* Let P' be the table [Xi �-4 xi] which is identical to p ex-

cept that it maps Xi to x and let restargs be the result of

removing the pair (Xi 'TO from arglist.

* NewMap(p, arglist) equals NewMap(p', estarg-9)

6.5. SUBSTITUTION 191

Lemma: If p is a translation table of the form

NewMap(P, ((Xi TO ... (Xk Irk

then for any pair (Xi i) in the given argument list p(Xi) is an

internal variable of type Tans(Ti, p')

When translating A-expressions the system chooses iternal variables which

replace external symbols. The 'Internal variables of each type -r are ordered

in a linear sequence x, x, x, etc. When the system chooses an internal

variable of type -r it always chooses the first acceptable variable 'in this se-

quence. In this way the least possible number of distinct variables appear in
the internal expression resulting from the translation. Minimizing the num-
ber of distinct variables that appear in the output expression reduces the

size of the graph generated by the compilation process; the size of the graph

is quite sensitive to the number of distinct variables of a given type which
appear in the expressions being compiled.

6,5 Substitution

Given the notion of a free variable we can now define the notion of substi-

tution. If e is any internal expressions"' y' is any internal variable, and t is

any internal term, the expression e[t/y"T] is the result of replacing all free

occurrences of y in e by t with appropriate renaming of bound variables in

e. For example suppose i's a A-expression of the form
(LAMBDA (xr' xr' ... x) body)

1 2 k

The free variables of this expression may include free variables in the type

expressions ri and computing e[t/y7] may involve substituting into a type

Iri of a formal parameter. Thus if is a lambda expression then the formal

parameters of e[t/y'] may have different types than the formal parameters of

e and thus the formal parameters of e[t/y7] must be different from the formal

parameters of e. To properly define substitution for internal Ontic expres-

sions one must use the more general notion of a simultaneous substitution
for a set of expressions.

192 CHAPTER 6. THE ONTIC LANGUAGE

Definition. A substitution is a finite set of mappings of the
form

y t

where y' is an internal variable and t is an internal term and a
given variable has at most one mapping under .

The expression e[t/yo] is defined to be w(e) where is the sub-
stitution containing the single mapping yc' �-4 t.

For any substitution and any internal expression e, the expres-

sion w(e) 'is defined as follows:

* If does not contain a mapping for any free variable in
then w(e) equals .

* If a variable ' and contains a mapping of the form
y6 �--4 t then w(e) equals t.

0 If 'is an extensional application of the form

(op a rg a g2 ... ar9k)

then w(e) equals

(w(op) w(argj w(a%) w(argj)

* If is a A-expression of the form

(LAMBDA (x x ... xk) body)1 2 k

then let freevars be the set of free variables of then let '
be the substitution

NewSubst(w, (Zi x2 ... xk), freevars)

1 2 k

where then function NewSubst is defined below. In this case
w(e) equals

(LAMBDA (w'(x") w(x2) - . w'(x'k)) w(body))1 2 k

6.5. SUBSTITUTION 193

Let be a substitution, let arglist be an argument list of the form
(x'l x2 ... x) and let freevars be a set variables. If arglist is1 2 k

empty then the substitution NewSubst(w, arglist, freevars) equals
the substitution w. If arglist 'is not empty then

NewSubst(w, arglist, freevars)

is defined as follows:

* Let be a member of the argument list such that no vari-2
able Zj in the argument list appears free 'in -ri. Such an3
argument must exist because there must be some argument
of least rank.

9 Let zw(ri) be the first variable of type w0rj) such that for
every var in freevars either there ex'sts a mapping
Y' F-+ t in and z(ri) does not occur free in t or there is no

mapping y7 �-4 t in and zw(ri) is distinct from yo'. '

* Let be w[xTi F-+ zw(ri)] which 'is identical to except that
it maps xs to w(rj)

* Let arglise be argli8t minus the argument xT'.z

e Let freevars' be freevars plus the variable Z'

* NewSubst(w, arglist, freevars) equals

NewSubst(w', arglise, freevars)

Recall that for each type -r the variables of type are ordered 'in a lin-

ear sequence x, xr, xr, etc. The above algorithm specifies that whenever

bound variables are renamed, and a variable of type must be chosen as

a replacement for some other variable, one must take the earliest possible

variable of type r. This minimizes the number of variables which ultimately

get translated into graph structure.

'The first condition ensures that free variables introduced by are not captured by the
new bound variables. The second condition ensures that members of fteevars not mapped
by are not captured by the new bound variables.

194 CHAPTER 6 TE ONTIC LANGUAGE

6.6 Aacros

The External language 'Includes certain macros that provide convenient ab-
breviations. The most important macros used in the external language are
EXISTS and FORALL. The external expression

(EXISTS ((X 7)) D)

is an abbreviation for the external formula

(EXISTS-SOME
(LAMBDA ((X T))

(D))

In general the quantifier EXISTS can involve more than one bound variable.

For example consider an external formula of the form

(EXISTS ((X (IN-USET P))

(P POSET))
(D)

This formula abbreviates the formula

(EXISTS ((P POSET))
(EXISTS ((X (IN-USET P)))

C

Which becomes

(EXISTS-SOME
(LAMBDA ((P POSET))

(EXISTS-SOME
(LAMBDA ((X (IN-USET P)))

C)))

In general the formula

(EXISTS ((Xi ... (Xk TO 4[b)

Abbreviates the formula

6.6. MA CROS 195

(EXISTS ((Xi -ri))

(EXISTS ((Xi -ri)

(Xi-i -ri-i)

(Xi+i 'ri+l)

(Xk TO

Where no X appears free in 7. This requirement insures that none of the

bound symbols Xi appear free in the overall expression. If every7i has a free

occurrences of some Xj then the macro expansion fails.

The macro FORALL 'is defined in terms of EXISTS. More specifically

(FORALL (Xl T ... (Xk rk)) (D)

abbreviates

(NOT (EXISTS (Xl 1) ... (Xk -rk)) (NOT D)))

The following list shows some additional macros where a and each 7i are

external type expressions, t and u are external terms f is an external function

expression of one argument, each Xi is an external symbol and Y and Z are

external symbols distinct from all Xi and which do not appear free in t,) f)

cr or any ri.

Macro Expression

(AND-TYPE 2

Expansion

(LAMBDA ((Y 1)

(I S Y -r2))

196 CHAPTER 6 TE ONTIC LANGUAGE

(WRITABLE-AS

(xi -ri)

(RANGE-TYPE

(LAMBDA (Xl 1)

(Xk TO (Xk TO

))

(WRITABLE-AS

(xi -ri)

(WRITABLE-AS Y

(Xi 1)

(Xk TO (Xk TO

(Y a)

(AT-MOST-ONE o,) (FORALL ((Y or)

(Z a)

(= Y))

(EXACTLY-ONE a) (AND (EXISTS-SOME)

(AT-MOST-ONE c))

(APPLY-RULE t u) ((THE-FUNCTION t) u)

In addition to the macros specified above the external language allows
some simple syntactic abbreviations involving operators and macros which
take a single type as an argument. More specifically the expression

(THE-SET-OF-ALL ((X 7)) 4D)

abbreviates
(THE-SET-OF-ALL (LAMBDA ((X r)) C)

Similarly
(THE ((X -)) D)

abbreviates
(THE (LAMBDA ((X 7)) D))

The operators AT-MOST-ONE, EXACTLY-ONE and THE-RULE allow for similar
abbreviations.

� ---

6.7. DEFINITIONS 197

The macros EXISTS and FORALL also allow abbreviated type expressions in
the list of bound variables. For example the expression

(FORALL ((X

says that holds for every X of type such that (D. This formula abbreviates
(FORALL ((X)) T) where a is the type (LAMBDA ((X r)

6.7 Definitions

Of course the external Ontic language allows for user specified definitions A
definition is an expression of the form

(DEFINE symbol

where symbol is an external symbol and 'is any external expression. A
definition of this form alters the base level symbol translation table so that
symbol gets translated as the expression e' where e,' is the internal translation
of .

Definitions can be made more concise with the macros DEFTYPE and
DEFTERM. For example the definition

(DEFTYPE symbol r)

is the same as
(DEFINE symbol T)

but the definition

(DEFTYPE (symbol X, r ... (Xk TO

-r)

is an abbreviation for the definition

(DEFINE symbol
(LAMBDA (Xl -rl) ... (Xk -rk

,T)

CHAPTER 6. THE ONTIC LANGUAGE198

Similarly the definition

(DEFTERM symbol u)

is the same as

(DEFINE symbol u)

However, the definition

(DEFTERM (symbol (Xi i ... (Xk 70)

U)

is an abbreviation for the definition

(DEFINE ymbol

(LAMBDA X T ... (Xk TO

U))

6.8 S urnn-lary

The external Ontic language has now been entirely efined; all of the language

constructs that appear as primitives in the proof given in the appendix have

been described in this chapter. A procedure has been given for translating

expressions in the external language into an internal language where there is

a one to one correspondence between the nodes in the graph generated by the

Ontic compiler and expressions in the 'internal language. The structure of the

internal language has been discussed in detail, including the notion of free

variables and a procedure for performing variable substitutions on internal

expressions. The next section shows how a set of internal Ontic expressions

can be converted to an Ontic graph G(E). Ontic graphs are simpler than

Ontic expressions, while there are twenty three knds of Ontic expressions,

the Ontic graphs defined 'in chapter have only five kinds of nodes and nine
kinds of links.

a er

e n ic 0 i er

The Ontic system compiles a set of Ontic expressions into an Ontic graph
G(E). The graph structure-'is much simpler than the Ontic language. The
node and link types of Ontic graphs do not provide the distinguished prim-
itive types THING, SET, RULE or SYMBOL. Ontic graphs make no distinction

between syntactically small and syntactically large types. The node and link

types of Ontic graphs do not provide set construction operations or definite

descriptions. Ontic graphs have no explicit provisions for defining new func-
tions or type generators or for reify functions as terms. However, in spite of

the relative simplicity of Ontic graphs Iit is possible to compile internal Ontic

expressions into Ontic graphs in a way that implements all the features of

the Ontic language.

7,1 An Overview of Cornpilation

The Ontic compiler takes a set of 'Internal Ontic expressions and generates

an Ontic graph G(E). Each node in the graph G(E) corresponds to some

particular expression in the internal Ontic language, although the expression

represented by a node in G(E) need not be a member of E. The notation

C(E) will be used to denote the set of expressions that correspond to the

nodes in G(E). In order to precisely define the set C(E) each internal Ontic

199

200 CHAPTER 7. THE ONTIC COMPILER

expression will be associated with a set Aux(e) of internal Ontic expressions
called the auxiliary expressions for e. The function Aux is defined on a case by
case bases in later sections. The set C(E) is defined relative to the mapping
Aux as follows:

Definiti'on-, The auxiliary closure C(E) of a set of expressions
is the least set of expressions such that

* If an extensional application op a rg a 2 ... argk) is in
C(E) then op, and each agi are in C(E).

If a A-expression (LAMBDA (Z' xr' Tk) body) is 'in C(E)

then body and each 'is 'in C(E).

e If a variable xr is 'in C(E) then 'is 'in C(E).

* If is in C(E) then C(E) contains Aux(e).

* Let a be a A-type of the form (LAMBDA (xr) bxr)) and let

y'r be a variable of typer. If both a and y are in C(E) then

C(E) also contains the formula

(IFF (IS y' a) (D(y'))

where Py'r) is the result of replacing all free occurrences of

X'r in with yr as discussed in chapter 6.

There is a direct one-to-one correspondence between the expressions in

C(E) and the nodes in the Ontic graph G(E); If is in C(E) then the

node represented by is written as n,. Recall that the nodes in an Ontic

graph come in five types: formula nodes, quotation nodes, variable nodes,

type nodes, and unclassified nodes. The nodes in the Ontic graph G(E)

that correspond to Ontic formulas, quotation expressions Ontic variables

and types expressions, are classified 'in the obvious way. The nodes corre-

sponding to all other expressions are unclassified. Note that 'if an extensional

application op argi arg2 ... argk) 'is in C(E) then C(E) also contains the

operator op. This implies that C(E) contains "expressions" such as IMPLIES

and EXISTS-SOME which are not technically Ontic expressions. Thus the

7.1. AN OVERVIEW OF COMPILATION 201

graph G(E) contains unclassified nodes that correspond to operators such as
IMPLIES and EXISTS-SOME.

Just as the set C(E) is defined relative to an auxiliary mapping Aux, the

links in the graph G(E) are defined relative to a meaning postulate mapping

M. More specifically each expression in the internal Ontic language is asso-

ciated with a set M(e) of meaningP08tulates where each meaning postulate
in M(e) is a clause link

1F1 V T2 V ... k

where each Ti is a literal involving a node n, where s is either the expression

e a subexpression of or a member of Aux(e). The mapping M which assigns

every expression a set of meaning postulates 'is defined on a case by case basis
in later sections. Recall that Ontic graphs have nine knds of links: clause

links, equality links, subexpression links, free variable links, type declaration

links, type formula links, subtype links, existence lnks, and closure links.

The complete Ontic graph G(E) is defined relative to the meaning postulate
map M as follows:

e The nodes of G(E) consist of all nodes of the form n. where is an
expression in C(E).

9 The clauses in G(E) are given as follows:

- G(E) includes all clauses in M(e) for e in C(E).

- If a is the A-type (LAMBDA (x') D(x')) and y is a variable of

type and both o- and yT are in C(E) then G(E) includes the
clause

--,n(EXISTS-SOME -r) V n(IFF (IS yr) 1(yr))

where Dy'r) is the result of replacing all free occurrences of xr

in with y' as discussed in chapter 6 The significance of such

clauses is discussed below.

0 The equality lnks n G(E) consist of

- All links of the form

ngs t (EQUAL-TO t2)) �-* n t = nt2

CHAPTER 7 THE ONTIC COMPILER202

where the formula (IS t (EQUAL-TO t2)is in C(E).

- All links of the form

n(IFF p q) �* nP = n.

where the formula (IFF p q) is in C(E).

- All links of the form

n(=el e2)) ne = n.,

where the formula = el e2)) is 'in C(E).

* The subexpression links 'in G(E) consist of all links of the form

(nop narg, nar92 . . . nargh = n(op argl a2 . .. argk)

where the extensional application (op arg, arg2 ... ar9k) is in C(E).

* The free variable links 'in G(E) consist of all links of the form

nx < n.

where is an expression in C(E) such that xr appears free in .

* The type declaration links in G(E) consist of all links of the form

nxr : n.

where xr is in C(E).

* The type formula links in G(E) consist of all links of the form

n(Is r �* nu: n,

where the formula (IS U) 'is member of C(E).

* The subtype links in G(E) consist of all links of the form

n (IS-EVERY _r) �� n., -� n-r

where the formula (IS-EVERY o- 7) is a member of C(E).

7.2. A-TYPES AND VARIABLES 203

0 The existence formula links in G(E) consist of all links of the form

n(EXISTS-SOME 3n,

where the formula (EXISTS-SOME r) is a member of C(E).

* The closure links in G(E) consist of all links of the form

Anyr.n<D(,,r) n(LAMBDA (xr I'))

where (LAMBDA (x') D(xr)) 'is a A-type 'in C(E), y' is a variable of

type in C(E) such that y' does not appear free in (LAMBDA (x')

(D(xT)) and D(y') is the result of replacing all free occurrences of xr in

(1) b y y

The complete specification of the set C(E) and the graph G(E) depends

on a specification of the mappings Aux and M which give the Auxiliary

expressions and the meaning postulates respectively that are associated with

any given expression. The mappings Aux and M are defined on a case by case

basis in the following sections. The sgnificance of each meaning postulate i's

also discussed.

7.2 A-Types and Variables

A-types and variables are of central 'importance in the Ontic system; all

quantification involves the 'Interaction of A-tv-Des and variables. The graph

G(E) contains meaning postulates for individual A-types, meaning postulates

for ndividual variables, and clauses which are generated by a combination

of a A-type and a variable.

The meaning postulates for individual A-types and variables are fairly

simple. If a 'is the A-type (LAMBDA (xr) D) then a 'is a subtype of -r; every

instance of cr 'is an instance of r. Thus' a has the auxiliary expression

(IS-EVERY a)

204 CHAPTER 7 THE ONTIC COMPILER

The meaning postulates for include a clause that contains only the node
for the above subtype expression. This clause ensures that the node for
the subtype expression is true in any consistent normalized labeling. The
aux'liary expressions for the A-type also include (EXISTS-SOME a) and
(EXISTS-SOME) and the meaning postulates for a include the clause

--,n(EXISTS-SOME or) V n(EXISTS-SOME -)

This clause states that 'if there exists an instance of a then there exists an
instance of -r. While this last clause 'is semantically redundant it forces certain
inferences which would not be performed otherwise.

There are also meaning postulates for A-types which allow congruence clo-
sure to operate on A-types. In fact every A-expression in the Ontic language
has an auxiliary combinator expression. More specifically there is a func-
tion Comb-Trans which converts A-expressions into combinator form. For
any A-expression the combinator expression Comb-Trans(e) is an auxiliary
expression of e. The meaning postulates for include the clause containing
the sngle node

n(= e Comb-Trans(e))

This clause ensures that ne is equivalent to nComb-Trans(e)-

Combinator expressions allow congruence closure to act on A-expressions.
For example consider the two lambda types

(LAMBDA (x') (IS u (RELATED-TO x)))

(LAMBDA (x') (IS w (RELATED-TO x)))

where u and w are terms which do not contain x as a free variable. If both
of the above expressions are 'in C(E) and if a particular labeling C of G(E)
makes the node for u equivalent to the node for w, then C will equate the
nodes for these two A-expressions. Note that if x appears free 'in either u or
v then this congruence inference is not valid.

Combinator conversion algorithms are discussed in [Turner 79] and will
not be described here. Combinator expressions are used solely for congruence
closure on A-expressions; combinator expressions have no auxiliary expres-
sions or meaning postulates. However combinator expressions are extensional
applications and therefore generate subexpression links.

7.2. A-TYPES AND VARIABLES 205

Each individual variable also has some auxiliary expressions and a mean-
ing postulate. If xr 'is a variable of type -r then the auxiliary expressions for
X Ir consist of the formulas (EXISTS-SOME -) and (IS xr). The meaning

postulates for xr consists of the the single clause

T) V n (Is x -0

This clause says that if there exists any 'Instance of the type then x is

an instance of r. This clause ensures that in an consistent normalized

labeling, if the node n(EXISTS-SOME)is labeled true then the type node n is
an established type node for the variable node nx,.

In addition to the auxiliary expressions and meaning postulates for in-

dividual A-types and variables there are expressions and clauses which are

generated by a combination of a A-type and a variable. Suppose that C(E)

includes both a A-type (LAMBDA (x') (D(x')) a variable yr of type -r. Let

cr be the lambda type (LAMBDA (x') 4D(xr)). Under these conditions C(E)

includes the formulas

(EXISTS-SOME 7)

and

(IFF (IS yr .) 4)(y'r))

where (D(y') is the result of substituting yr for all free occurrences of xr 'in

as dscussed in chapter 6 Furthermore the graph G(E) includes the clause

-7n(EXISTS-SOMEr) V n(IFF (IS y' or) -1>(y'r))

This clause says that, as long as there exist instances of the type -r, the

formula (IS yr c) is equivalent to (D(y'). This equivalence can be viewed

as a definition of the type cr.' More specifically, suppose that the system is

focusing on a term u of type and the system is to determine if u is of type

a (which is a more specific type than). The above equivalence says that u

is of type just in case the formula 4>(u) is true. For simplicity suppose that

the formulas (IS u a) and D(u) have been compiled, i.e. that they are both

in C(E). Since u is of type the system can generate the binding y �-4 u.

But if yr and u are equivalent then by congruence closure the formula (IS yr

'Actually the equivalence provides only a partial definition; it does not state the addi-
tional condition that o- is a subtype of -r.

206 CHAPTER 7 THE ONTIC COMPILER

a) is equivalent to the formula (IS u a) and DyT) is equivalent to D (U) 2

Thus the binding
YIr �_4

together with the truth of the equivalence

(IFF (IS yr .)))

causes the formula (IS u a) to be equivalent to).

In the presence of the binding yr �-4 u the equivalence

(IFF (IS y' a) 4�(y I

can be used to determine if u 'is of type a even when the formulas (IS u a)

and u) have not been compiled, i.e. are not in C(E). In the presence of the

binding Y'r �-4 u the semantic modulation inference mechanisms ensure that

the nodes n.7. and nu are virtually indistinguishable and that the formulas

(IS Y'r a) and 4D(y'r) behave exactly as the formulas (IS u c) and �5(u)

would behave if they were compiled.

In general there can be more than one variable of type r. The definition

of o- is stated in terms of each variable of type -r. This helps to ensure the

homogeneity of the generated graph: different variables nodes with the same

type are identical in that they carry exactly the same information.

7,3 Aeaning Postulates with Quantifiers

If the lemma library contains a formula of the form (FORALL (x') D-r))

then for each variable y' of type the ompilation process should generate

the formula D(y'r) which is the result of replacing all free occurrences of x in

4D with yr. In thi's way the compiler should ensure that all information known

to hold of the type is copied for each variable of type and any binding of

the form Y'r �- u causes the term u to inherit information known to hold of

'Because combinator expressions ensure that congruence closure is operates on A-
expressions the binding y' F- u causes D(y') to be equivalent to 41�(u) even in the case
where y' appears free inside A-expressions contained in �D(y').

7.3. MEANING POSTULATES WITH QUANTIFIERS 207

the type . The formula (FORALL (x') D(x')) is actually an abbreviation
for

(NOT
(EXISTS-SOME

(LAMBDA (x7)
(NOT D(x-r)))))

If the above formula is true the system should ensure that the formula
(D(y') is true. This 'is done via a. meaning postulate for type assertion for-
mulas. More specifically the meaning postulates for a type assertion formula
(IS u o-) consist of the single clause

u 0 V n(EXISTS-SOME

This clause states that if u is an instance of type then there exist instances
of type . The clause also states the equally important condition that if
there are no 'instances of a then u 'is not an instance of a. In particular, if
there are no 'Instances of then yr 'is not an instance of a. Given the above
meaning postulate for type assertion formulas and the meaning postulates
discussed in the previous section, one can prove an important lemma about
quantification in the Ontic, system.

Lemma: If the formula (FORALL (xr) D(xr)) is 'in C(E) and
YT is a variable of type -r n C(E) then C(E) also includes D(y'r).
Furthermore if is a consistent normalized labeling of G(E) such
that C assigns the label true to the nodes for (EXISTS-SOME)
and (FORALL (x') D(xr)) then also assigns the label true to
the node for D(y'r).

Proof: C(E) 'Includes the formula

(NOT
(EXISTS-SOME

(LAMBDA (xT)
(NOT D(xr)))))

208 CHAPTER 7. THE ONTIC COMPILER

Let a be the A-type

(LAMBDA (xT) (NOT 4D(x-r)))

Since both a and yr are in C(E) the equivalence

(IFF (IS y' c) (NOT Dy')))

must also be in C(E) and thus the formula d(y'r) is in C(E). Fur-
thermore the formula (IS Y'r a) is in C(E) and so G(E) includes
the clause

-,-,n(Is yr , V n(EXISTS-SOMIE

Now if assigns the above universal formula the label true it
must assign the node for (EXISTS-SOME a) the label false. Thus
the node for (IS yr c) must also be assigned false. Furthermore
G(E) contains the clause

--in(EXISTS-SOME r V n(IFF (IS y' a) (NOT �D(y')))

SinceC assigns the the node for (EXISTS-SOME) the label true,

L must also assign the label true to the node for

(IFF (IS y o) (NOT r)))

But since the node for (IS Y'r a) is assigned false the node for

(NOT D(y')) must also be assigned false. But this implies that
the node for D(y'r) 'is assigned true.

The expression
(FORALL x x ... x) C

1 2 k

is an abbreviation for nested universal quantification as described in chap-

ter 6 The above lemma for a single universal quantifier immediately general-

izes to multiple universal quantification a universal formula which quantifies

over several variables will be nstantiated with all variables of the appropriate
type.

7.3. MEANING POSTULATES WITH QUANTIFIERS 209

Several kinds of Ontic expressions have meaning postulates that 'involve
quantification. For example let f be a A-function or non-primitive type
generator of the form

(LAMBDA Ur x X"k) body)
1 2 k

The A-expression f has the single auxiliary expression

(FORALL (x'l x' x'r"N1 2 k-
(f XIrlX T2 XIrk

1 2 k

body))

The meaning postulates for f consist of a single singleton clause which states

that the above formula is true. This formula serves as the definition for

the operator f. In order for this definition to be invoked on an expres-

sion (f U1 U2 ... Uk) variables of the appropriate type must be bound

to the arguments ul U2 ... Uk- Once this has been done the application

(f U1 U2 ... Uk) will be equivalent to an appropriate substitution 'Instance

of body. However in order to get variables of the proper type bound to the

arguments one must focus on the arguments. Thus in order to invoke the def-

inition of an operator f in an application (f ul U2 ... Uk) one must focus
on all the arguments ui.

Semantically, the type generator EITHER could be defined as

(LAMBDA (XTHING yTHING)

(LAMBDA (ZTHI11G)

(OR ZTKINGX THING

ZTHINGy THING)

Note however that 'if EITHER where smply an abbreviation for the above

expression then types of the form (EITHER u w) would not be syntactically

small. Furthermore, and more seriously, invoking the above definition in

a particular application requires focusing on the arguments to the operator

EITHER. The usefulness of the operator EITHER is greatly improved by making

EITHER a primitive type generator and constructing meaning postulates for

every type of the form (EITHER u ').

Let c be a type expression of the form (EITHER u w). The type o- has
the auxiliary expressions

CHAPTER 7. THE ONTIC COMPILER210

(I U a)

(Is W CO

(FORALL x`)

(OR x u)

X,7 W)

The meaning postulates for o- consist of three singleton clauses which state

that each of the above formulas is true.

Let a be a type expression of the form (OR-TYPE 2 The type o- has

the auxiliary expressions

(IS-EVERY ,

(IS-EVERY 2 a)

(FORALL x)

(OR (IS x TO

(IS X 2)

The meaning postulates for a consist of three singleton clauses which state

that each of the above formulas 'is true.

Let f be a A-function of the form

(LAMBDA (x' xr2 ... xk) body)1 2 k

and let a be the type expression (RANGE-TYPE P. The type expression a

has two auxiliary formulas:

(FORALL (x x ... x Tk

1 2 k

is body o-)

(FORALL (y')
(EXISTS (x' xr' ... x Irk1 2 k

yo' body)

The meaning postulates for consist of two singleton clauses which assert

that the above formulas are true. These formulas constitute a definition of

the type a.

Let u be the term (THE -r) where is any type expression. The term u has

7.4. REIFICATION EXPRESSIONS 211

the auxiliary expressions

(EXACTLY-ONE)

(I U)

(FORALL (x') = x 0)

where these expressions abbreviate internal Ontic expressions as described

in chapter 6. The term u has meaning postulates

--m(EXACTLY-ONE -0 V nIs u r)

-r) V n(FORALL (xr) = X))

These meaning postulate states that if there 'is exactly one object of type

then u is of type and everything of type -r is equal to u.

7.4 Reification Expressions

The Ontic system can only focus on terms; in order to focus on types,
functions or type generators the s' stem must first coerce these ob'ects

y J
to terms. The process of coercing a higher order object to a first order

term is called reification. The Ontic language has two relocation operators:

THE-SET-OF-ALL which coerces a type to a set, and THE-RULE which coerces

a function of one argument to a set of pairs. Both of these reification op-

erators can only be applied to s ntactically small ob'ects. e.g. one can not

construct a set of all sets.

Let be an expression of the form (THE-SET-OF-ALL -), where -r 'is a

syntactically small type expression. The auxiliary expressions for consist

of the formulas (IS SET) and = (MEMBER-OF s)) and the meaning

postulates for consist of two singleton clauses which assert that these two

formulas are true.

Now consider the other reification operator, THE-RULE. Let f be the A-

function (LAMBDA (xr) u) where -r is a syntactically small type expression

212 CHAPTER 7 THE ONTIC COMPILER

and let r be the term (THE-RULE f). The term r has three auxiliary expres-
sions:

(I S r RULE)

(THE-FUNCTION r) f)

(RULE-DOMAIN r) (THE-SET-OF-ALL 7))

The meaning postulates for r consist of three sngleton clauses which state
that each of the the auxiliary formulas must be true.

The meaning postulates for expressions of the form (THE-RULE f do
not force this expression to denote a set of pairs; the meaning postulates do
not force any particular implementation of a rule in terms of sets. However
the meaning postulates are sufficient to recover all of the 'information 'in the
rule; if r 'is the expression (THE-RULE f) then one can construct the set of
pairs corresponding to r from the function (THE-FUNCTION r) and the set
(RULE-DOMAIN .

7.5 1\4iscellaneous 1\4eaning Postulates

Let u be the term (IF D w, W2) . The auxiliary expressions for u consist
of the equalities = u w) and(= U W2) The meaning postulates for u
consist of the following two clauses

-in(D V n= u wl)

n(p V n= uW2)

These two clauses state that if is true then u equals w, and if is false
then u equalsW2-

Let u be the quotation (QUOTE symbol). The node n is a quotation
node and any labeling which equates distinct quotation nodes is taken to
be explicitly contradictory. The auxiliary expressions for u consist of the
single formula (IS u SYMBOL) and the meaning postulates for u consist of a
singleton clause which states that this formula is true.

7.5. MISCELLANEOUS MEANING POSTULATES 213

The meaning postulates for expressions of the form (THE-SET-OF-ALL)

and (THE-RULE f) provide meanings for the types SET and RULE; every reified

predicate 'is a set and every reified function 'is a rule. Furthermore the type

SYMBOL is defined by the meaning postulates for quotations. The type THING

is the universal type and the type expression THING has the following auxiliary

expressions

(IS-EVERY SET THING)

(FORALL (XSET)

(IS-EVERY (MEMBER-OF XSET) THING))

(IS-EVERY RULE THING)

(IS-EVERY SYMBOL THING)

The meaning postulates for the type THING consist of three sngleton clauses

which state that each of the above formulas is true.

The type generator EQUAL-To has the following auxiliary expression.

EQUAL-TO
(LAMBDA (XTRING)

(EITHER XTHIff G TRING)

The meaning postulates for EQUAL-TO consist of a single clause which states

that the above formula 'is true. EQUAL-To has been listed as a primitive type

generator because formulas of the form

(IS u (EQUAL-TO w))

generate equality links; these equality links would not be generated if EQUAL-TO
was defined rather than taken as a primitive.

The type generator SUBSET-OF has the following auxiliary expression.

SUBSET-OF
(LAMBDA (XSET)

(LAMBDA (ySET)

(IS-EVERY (MEMBER-OF SET)

(MEMBER-OF XSET)

214 CHAPTER 7 THE ONTIC COMPILER

The meaning postulates for SUBSET-OF consist of a single clause which states
that the above equivalence is true. SUBSET-OF has been listed as a primitive
type generator because it 'is syntactically small; the equivalent A-expression
given above is not syntactically small.

The type generator RULE-BETWEEN has the following auxiliary expression.

RULE-BETWEEN
(LAMBDA (XSET YSET)

(LAMBDA (zRuLE)
(AND = (RULE-DOMAIN zRuLE)

XSET)

(FORALL (W (MEMBER-OF xSET)

(IS ((THE-FUNCTION ZRULE)

W (MEMBER-OF xSET)

(MEMBER-OF ySET))

The meaning postulates for RULE-BETWEEN consist of a single clause which
states that the above equivalence is true. RULE-BETWEEN has been listed as
a primitive type generator because it is syntactically small; the equivalent
A-expression gven above is not syntactically small.

The meaning postulates for Boolean connectives are given in table 41 in
chapterconst-prop-chap.

7,6 S urnimary

The Ontic compiler converts a set of expressions in the Ontic Language
to an Ontic graph G(E). There is a one to one correspondence between the
nodes in G(E) and a set C(E) of Ontic expressions where C(E) contains
E as a subset. The compilation process is specified in terms of meaning
postulates which are defined on a case by case basis for the various kinds of
Ontic expressions.

The compilation process is incremental; 'if E' 'is an incremental extension
of then G(E') can be constructed as an incremental extension of G(E).

7.6. S UMMARY 215

When a new expression is typed to the top level Ontic interpreter new graph
structure is incrementally added to represent that expression. When the
system focuses on a term u of type it is sometimes necessary to create a
new variable of type to bind to u. When a new variable is created new
graph structure is automatically constructed to represent that variable.

a er

orne o en ia ica ions

There are two ways of evaluating the ideas used in the Ontic system. First,
one can attempt to evaluate the utility of the 'Ideas in constructing useful
systems. Second, one can attempt to evaluate the extent to which Ontic's
inference mechanisms provide a plausible model of human mathematical cog-
nition. This chapter addresses the first evaluation technique by presenting
a list of potential applications of automated inference systems. The appli-
cations on this list represent directions for future research; the limitations
of Ontic's object oriented inference techniques 'in these applications are not
currently understood and future research may uncover other inference tech-
niques which make these application's practical.

One potential application for automated 'Inference systems is simply the
verification of mathematical arguments; an author could increase his con-
fidence in the correctness of a proof using machine verification. The time
required to "debug" the formal representation of proofs in the Ontic system
seems to make this application impractical at the current time. However,
as the inference power of the system 'is 'increased, and the lemma library is
made larger, the system may approach the point where machine verification
of new mathematics 'is practical.

Automated inference mechanisms are needed in the construction of in-
teractive knowledge bases. The Ontic system 'is able to automatically use

217

218 CHAPTER 8. SOME POTENTIAL APPLICATIONS

information from a lemma library. An Ontic system based on a lemma li-
brary that contained the contents of a mathematical textbook could answer
certain questions about the contents of that book. Such an interactive text-
book might be valuable in education. If the system could be made to run
with a very large lemma library, a library containing the contents of many
textbooks, one could construct an interactive mathematical encyclopedia.
An 'Interactive encyclopedia could be used by professional mathematicians to
answer questions and verify arguments in domains that were not familiar to
the human user.

Automated inference systems might also be useful 'in constructing inter-
active documentation systems. A computer operating system, for example, is
usually associated wth a large amount of documentation. It may be possible
to translate this documentation into first order axioms that can serve as a
lemma library underlying an inference system. One would then have a de-
vice for answering questions about the documented system. The problem of
answering questions about engineered devices seems similar to but possibly
more difficult than, the problem of answering questions about the material
in a mathematical textbook.

Ontic's object oriented inference mechanism may be useful for program
verification. Ontic's type system 'is similar to the type systems of strongly
typed programming languages. With sufficiently expressive types there is no
distinction between type checking and verification; any verification problem
for a computer program can be phrased as a type-checking problem. Ontic's
object-oriented inference mechanisms are organized around types. It would
be interesting to explore the application of Ontic's object-oriented inference
mechanisms to program verification where verification 'is viewed as a form of
type-checking.

Another possible application for Ontic's object-oriented inference mech-
anisms is common sense reasoning. In his naive physics manifesto Hayes
proposed writing down first order axioms which express common sense knowl-
edge about the physical world [Hayes 85]. One might ob'ect to Hayes' pro-
posal on the grounds that first order inference is 'intractable. It is clear,
however that certain limited inferences can be done quickly. It would be
interesting to explore the application of Ontic's 'inference mechanisms to rea-

8.1. INTERACTIVE KNOWLEDGE BASES 219

soning about common sense situations. Another objection to Hayes' proposal
is that much if not most common sense reasoning is heuristic: the conclu-
sions are not strictly implied by the gven information. The final section of
this chapter suggests a way in which Ontic's object oriented 'Inference mech-
anisms could be extended to perform certain forms of heuristic reasoning.

8A Interactive Knowledge Bases

Ontic's object-oriented 'Inference mechanisms are designed to automatically
access a large lemma library. By placing various kinds of information in the
knowledge base underlying an Ontic-like system one could construct inter-
active mathematical textbooks, interactive mathematical encyclopedias, and
interactive technical documentation libraries.

Access to information in Ontic's lemma library 'is controlled via types:
the inference mechanism accesses only those portions of the lemma library
that concern types which apply to the given focus objects. For example,
when reasoning about graphs the system automatically ignores facts about
differentiable manifolds. Thus the lemma library could 'include information
about a large number of different subjects and still be used eectively.

There are several ways one could use an interactive mathematical ency-
clopedia. First, the encyclopedia could be used to answer questions about
areas of mathematics that are unfamiliar to the user. Second, the encyclo-
pedia could verify a user's argument. This would be especially useful when
the human user is unfamiliar with the subject matter of his own argument.
Finally a mathematician who develops a new concept could ask the system
if that concept has already been defined under some other name.

Recognizing user-defined concepts 'is particularly difficult; there may be
a defined concept in the encyclopedia which is "essentially the same" as a
user-defined concept but the two definitions are technically different. For
example, consider the concept of an equivalence relation. An equivalence
relation can be defined as a relation, i.e. a set of pairs, which is symmetric,
transitive, and reflexive. Alternatively, an equivalence relation can be defined

220 CHAPTER 8. SOME POTENTIAL APPLICATIONS

as a partition of a set into equivalence classes. These two definitions seem
to define the same concept and yet the two classes are technically disjoint: a
partition 'is different from a set of pairs. It turns out that one can define a
very general notion of iso-onticity under which equivalence relations (as sets
of pairs) are iso-ontic to partitions [McAllester 83]. There are many other
examples of iso-onticities between classes. For example a function f of two
arguments defines a Curried function such that for for all arguments x and
Y, the application f(x) yields a function such that

f (I = P W ()

The function f is iso-ontic to its curried version As another example
consider a graph. A graph can be defined in two ways: a graph can be
defined as a set of nodes together with a set of arcs where each arc 'is a set of
two nodes. Alternatively a graph could be defined as a set of nodes together
with a symmetric anti-reflexive binary relation on those nodes. A relation,
i.e. a set of pairs, is different from a set of arcs, i.e. a set of sets. A set of
two-elements sets, however, 'is io-ontic to a symmetric anti-reflexive binary
relation. There are many examples of iso-onticities in mathematics. Ideally
an nteractive encyclopedia would recognize when a user-defined concept is
iso-ontic to a concept that already exists 'in the encyclopedia.

8,2 Software Verification

Type checking has proved to be a practical way of finding certain errors in
computer programs. Currently available type checking systems use a weak
vocabulary of types - there is no way to treat an arbitrary predicate as a
data type. If the type vocabulary is made richer then stronger "semantic's
properties of programs can be expressed as type constraints. In fact, if any
predicate on data structures can be expressed as a type then any semantic
specification for a computer program can be expressed as type restrictions.
For example, if iteration i's replaced by recursion then a programmer can
provide loop invariants simply by placing type restrictions on the arguments
of recursive functions.

If arbitrary predicates on data structures can be expressed as types then

8.3. COMMON SENSE AND DEFAULT REASONING 221

type checking requires theorem proving. One might argue that, because the-
orem proving is intractable, one should not use fully expressive type systems.
This criticism carries little weight, however if one is willing to allow type
checking to fail. A failure to type check smply means that the system failed
to prove the program correct; it does not mean that the program is wrong.
Since Ontic's ob.ect-oriented theorem proving mechanisms are guaranteed to
terminate quickly, a type checking system based on Ontic's theorem prov-
ing mechanisms could also be made to terminate quickly. Programs which
fail to type check are classified as "not obviously correct". Since the On-
tic's inference mechanisms can automatically use a large lemma library, the
power of a type checker based on Ontic could always be increased by adding
more lemmas. Such lemmas could ether be proved from first principles or
simply added as axioms. Adding lemmas should cause more programs to be
classified as obviously correct.

Type checking has already been demonstrated to be practical for certain
restricted type vocabularies. It seems likel that type checking using more
expressive types would be equally practical in the sense that all types which
are checked by existing systems could still be checked in the more general
setting. A system with fully expressive types could gradually be extended
to incorporate more powerful 'inference techniques under the constraint that
type checking terminates uickly.

8.3 Cornrnon Sense and Default Reasoning

Hayes has proposed using first order logic as a language for representing
common sense knowledge about the physical world [Hayes 85]. One possible
objection to first order logic as a representation language is that theorem
proving is intractable. It would be interesting to see if Ontic's object or'_
ented theorem proving mechanisms could be used to answer common sense
questions about the physical world using a formal fact library.

Another objection to first order logic as a knowledge representation lan-
guage is that common sense reasoning is often heuristic: heuristic reasoning
produces conclusions which are likely, but not necessarily true. This observa-

CHAPTER 8. SOME POTENTIAL APPLICATIONS222

tion has lead to the development of default logics and semantic network for-
malisms that allow the cancellation of inheritance links ahlman 79] Ether-
ington & Reiter 83]. It seems likely that Ontic's object oriented inference
mechanisms could be extended to handle certain kinds of heuristic inference.
Ontic's inference mechanisms are organized around types. It seems plausible
that heuristic knowledge could also be organized around types. More specif-
ically one could introduce the quantifier FORMOST which is analogous to the
quantifier FORALL. One could then write axioms such as the following

(FORMOST ((X BIRD)) (IS X FLYING-ANIMAL))

One can assign truth values to FORMOST formulas by associating each type
with a probability dstribution over instances of that type. In general, a
formula of the form

(FORMOST ((x 7)) 4x))

is true 'ust in case the fraction of instances of type which satisfy Dx)

is above some threshold a. If the threshold a 'is large, say 95%, then a

reasoning system might perform heuristic inferences by treating FORMOST the

same way it treats FORALL: given that most birds fly, and Tweety is a brd,

the system would "deduce" that Tweety flies. The facts that Tweety is a

bird and that most birds fly do not imply that Tweety flies, or even that
'it is likely that tweety fes, whatever that means. People, however, will

naturally conclude that Tweety probably flies. Thus heuristic inference is

not semantically sound. However unsound heuristic inference seems to be
useful.

The following example indicates that inclusion relationships between types

play an 'Important role in human heuristic reasoning I will use the expression

(ARE-MOST

as an abbreviation for

(FORMOST ((x 7)) (IS x cr))

The following "inheritance network" concerning molluscs is adapted from
[Etherington & Reiter 83].

(ARE-MOST MOLLUSC SHELL-BEARER)

� m -------

8.3. COMMON SENSE AND DEFAULT REASONING 223

(IS-EVERY CEPHALOPOD MOLLUSC)

(ARE-MOST CEPHALOPOD (NOT-TYPE SHELL-BEARER))

(IS-EVERY NAUTILUS CEPHALOPOD)

(IS-EVERY NAUTILUS SHELL-BEARER)

Given the above information together with the statement that Squirmy
is a mollusc one would naturally conclude that Squirmy is probably a shell-
bearer. If one is then told that Squirmy is a cephalopod one would conclude
that Squirmy is probably not a shell-bearer. Note that in this second case
there is a conflict between two FORMOST assertions that apply to Squirmy:
most molluscs have shells but most cephalopods do not have shells. In this
case the known inclusion relationship between the types CEPHALOPOD and
MOLLUSC seems to resolve the conflict. Finally, if one is told that Squirmy is
a nautilus one would in fact know, according to the above information, that
Squirmy is a shell bearer.

If a reasoning system treats FORMOST assertions in the same way that
it treats FORALL assertions it will perform unsound inferences. In particu-
lar, each uiversal instantiation of a FORMOST assertion is unsound. If some
unsound FORMOST instantiation produces a conclusion which conflicts with
known information then that unsound instantiation 'Inference should be re-
tracted. Furthermore, if two unsound instantiations of FORMOST assertions are
mutually contradictory, and there is an inclusion relation between the types
quantified over in the two FORMOST assertions, then the FORMOST assertion
with the more specific type should dominate and the unsound instantiation
of the other FORMOST assertion should be retracted. More research is needed
to determine 'if these guidelines lead to an efficient and useful heuristic rea-
soning system.

a er

Ullarnar 0 In ic

The Ontic system has the following features:

The Ontic formal language 'is organized around a rch vocabulary of
types.

- There are many different ways of constructing type expressions.
Any predicate of one argument is a type. Type generators can be
applied to arguments to yield types. There are special constructs
such as WRITABLE-AS for constructing types from terms. Types

can be combined with Boolean combinators to yield other types.

- There are many different ways of using types. Types are used as

predicates in formulas of the form (IS x r Types restrict the

range of quantifiers. A type can be used to construct a term via

the operator THE. A type can be used to construct a set via the

operator THE-SET-OF-ALL. Types can be directly related via the

combinator IS-EVERY.

- Types play a central role in Ontic's object-oriented inference mech-
anisms.

Most of the axioms of Zermelo Fraenkel set theory are incorporated into

the syntactic definition of a small type expression and a small function

225

CHAPTER 9 A SUMMARY OF ONTIC226

expression; tv-pe and function expressions which are syntactically small
can be reified via the operators THE-SET-OF-ALL and THE-RULE respec-

tively.

0 Many modern theorem provers are based on some kind of backward

chaining rewrite mechanism guided by a notion of simplification. On-

tic is based on a forward chaining mechanism guided by a notion of

focus. Ontic's forward chaining inference process is restricted to for-

mulas which are about a given set of focus objects.

0 Ontic automatically finds and applies information from a large lemma

library. The Ontic system classifies each focus object by findings types

that are true of that ob'ect. If a focus object x is classified as being
an instance of type -r then the system automatically applies knowledge

about the type to the focus object x.

0 Ontic's inference mechanisms are implemented as labeling operations

on a graph structure. The graph structure represents a compiled version

of the lemma library and is analogous to a semantic network. The graph

labeling process implements a virtual copy mechanism whereby a focus

object becomes a virtual copy of a generic individual.

0 Ontic performs automatic universal generalization as part of its for-

ward chaining 'inference process. In universal generalization the generic

individuals in Ontic's graph structure are analogous to the Skolem con-

stants introduced in a resolution theorem prover by a universally quan-

tified goal formula. At other times the same generic individuals are used

as universal variables which get instantiated with (bound to) focus ob-

jects. At still other times generic individuals act as Skolem constants

introduced by existential premises. The types associated with generic

individuals are central to the automatic universal generalization mech-

anism: the types determine the range of applicability of the derived

universal statement.

It is not clear which of the above features are most responsible for the

power of the Ontic system. Some features are orthogonal to others. For

examples the reification operations THE-SET-OF-ALL and THE-RULE could be

removed from the system: no other feature of the system depends on the

227

reification operators. Similarly, the universal generalization mechanism could
be removed without effecting any other mechanism. Other features are less
modular.

It would probably be possible to find some object-oriented forward chain-
ing inference mechanism that does not use graph-labeling. Such a mecha-
nism would be restricted so that variables are only instantiated with focus
objects. Implementing congruence closure and automatic universal general-
ization, however, might be difficult in a system that was based on formula
manipulation rather than graph labeling.

On the other hand one can image a graph-labeling inference mechanism
not guided by focus objects. In such a system bindings for generic individuals
would be generated in some other way. Early versions of the Ontic system
used graph-labeling inference mechanisms including a virtual copy mecha-
nism based on binding generic individuals, but did not use focus objects to
guide the binding process. These early versions of the system did not per-
form well. User-specified focus objects seem to be central to the operation
of Ontic.

All of the features of the Ontic system utilize types. In addition to provid-
ing concise and natural formulas, types are central to accessing information
in the lemma library, binding generic 'individuals, automatic universal gen-
eralization, and reification. It is difficult to imagine any version of the Ontic
system not organized around types.

Knowledge representation and automated inference may ultimately have
a profound effect on our society. Interactive encyclopedias may some day be
able to answer questions about a large fraction of human knowledge. Such
encyclopedias would make all current forms of publication obsolete. Thus,
however the future judges the ideas presented here, I hope that research in
inference and knowledge representation will continue.

IL en i IL

r e one ce resen a ion

eorern

This appendix contains a complete listing of a mathematical development
which starts with a foundational system equivalent to ZFC set theory and
ends with a proof of the Stone representation theorem. The listing contains
three types of information: the definitions of all non-primitive terms used in
the development, the lemmas proven, and the machine verified proof of each
lemma. Definitions appear centered on the page while lemmas are shown in
a left hand column next to their proofs which appear in a rght hand column.
The "proofs" are actually recorded hstories of interactions with the Ontic
interpreter.

The listing is cumulative; at each point in the lsting the system has access
to all definitions and lemmas presented earlier 'in the listing. At any given
point n the listing the definitions and lemmas given prior to that point are
stored in a fact library that is accessed automatically by the system. At
the end of the listing the accumulated fact library contains 509 facts: 54
definitions and 355 lemmas.

The listing is divided into sections each of which begins with an English
description of the contents of that section. The first four sections introduce
basic notions from set theory such as sngleton and doubleton sets, unions

229

APPENDIX A. THE STONE REPRESENTATION THEOREM230

Section Number of Facts

Fundamentals 95
Pairs, Rules and Structures 39
Maps 75
Relations, Choice and Relation Structures 45
Partial Orders and Zorn's Lemma 68
Lattices 48
Bounded, Distributive, and Complemented Lattices 40
Sublattices 35
Lattice Morphisms 25
Filters and Ultrafilters 18
The Stone Representation Theorem 21

Total 509

Table A.I: The number of facts 'in each section

and intersections, pairs, relations, structures, and functions. These first four
sections contain 254 facts; roughly half the total. The remaining sections
develop facts about partial orders, lattices, filters 'in lattices, and the Stone
representation theorem. Table A.1 shows the number of facts in each section.

A.I. FUNDAMENTALS 231

We begin with the empty set:

(DEFTYPE EMPTY-SET
(LAMBDA ((S SEM

(NOT
(EXISTS-SOME

(MEMBER-OF MY

(LEMMA (EXISTS-SOME EMPTY-SEM

(LEMMA (AT-MOST-ONE EMPTY-SET))

(IN-CONTEXT
((PUSH-GOAL (EXISTS-SOME EMPTY-SET))

(LET-BE S, SET)
(LET-BE 2

(THE-SET-OF-ALL (X (MEMBER-OF S))
(NOT = X WM

(NOTE-GOAL))

(IN-CONTEXT
MET-BE Sl EMPTY-SET)

(LET-BE S2 EMPTY-SET))
(NOTE (AT-MOST-ONE EMPTY-SETM

A, 1 Fundan-lentals

This section contains basic facts about sets. More specifically this section
contains:

0 A proof of the existence and uniqueness of the empty set.

0 Facts about inserting objects into sets.

o Facts about singleton and doubleton sets.

o A version of Russel's paradox that proves that for every set there exists
something not in that set.

o Facts about families of sets.

o Facts about unions and intersections of sets.

o Facts about removing objects from sets.

o Facts about power sets.

232 APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTERM THE-EMPTY-SET
(THE EMPTY-SET))

(LEMMA
(NOT

(EXISTS-SOME
(MEMBER-OF THE-EMPTY-SET))))

(IN-CONTEXT
MET-BE THE-EMPTY-SET))

(NOTE
(NOT

(EXISTS-SOME
(MEMBER-OF THE-EMPTY-SET)))))

(DEFTERM (INSERT (X THING) (S SEM

(THE-SET-OF-ALL

(OR-TYPE (EQUAL-TO X)

(MEMBER-OF SM)

(LEMMA
(FORALL THING)

(S SET))
(IS (INSERT Y S)
ft SETM

(LEMMA
(FORALL THING)

(Y THING)
(S SEM

(IS (INSERT X (INSERT Y S))
SETM

(LEMMA
(FORALL THING)

(X THING)
(S SEM

(INSERT X (INSERT Y S))
(INSERT Y (INSERT X S)))))

(IN-CONTEXT
MET-BE Y THING)

(LET-BE X THING)
(LET-BE SET)
(LET-BE IY (INSERT Y S))
(LET-BE IXY (INSERT X IYM

(NOTE (IS IY SEM
(NOTE (IS IXY SEM

(IN-CONTEXT
MET-BE IX (INSERT X S))

(LET-BE IYX (INSERT Y IX))
(PUSH-GOAL = IXY IYX)))

(IN-CONTEXT

((PUSH-GOAL (IS IXY (SUBSET-OF IYX))))
(IN-CONTEXT

MET-BE Z (MEMBER-OF IXYM
(IN-CONTEXT

((PUSH-GOAL (IS Z (MEMBER-OF IYX))))
(IN-CONTEXT

USUPPOSE Z XM
(NOTE-GOAL))

(IN-CONTEXT
USUPPOSE Z YM

(NOTE-GOAL))
(NOTE-GOALM

(NOTE+GENERALIZE-GOAL))
(NOTE-GOALM

A. 1. FUNDAMENTALS 233

(LEMMA

(FORALL US SET

(EXISTS-SOME

(MEMBER-OF M

(X (MEMBER-OF S))

(S2 (SUBSET-OF M

(IS (INSERT X S2)

(SUBSET-OF SM)

(LEMMA

(FORALL THING) (S SET))

(= (INSERT X S)

(INSERT X

(INSERT X WM

(IN-CONTEXT
MET-BE SET

(EXISTS-SOME (MEMBER-OF M
(LET-BE S2 (SUBSET-OF S))
(LET-BE X (MEMBER-OF S))
(LET-BE SX2 (INSERT X S2))
(PUSH-GOAL (IS SX2 (SUBSET-OF M)

(IN-CONTEXT
MET-BE Y (MEMBER-OF SX2)))

(IN-CONTEXT

((PUSH-GOAL (IS Y (MEMBER-OF M)
(IN-CONTEXT

((SUPPOSE (IS Y (MEMBER-OF S2))))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOALM

(IN-CONTEXT
MET-BE X THING)

(LET-BE SET)
(LET-BE S2 (INSERT X S))
(LET-BE S3 (INSERT X S2))
(PUSH-GOAL = 2 S3)))

(IN-CONTEXT
((PUSH-GOAL (IS S3 (SUBSET-OF S2)))

(LET-BE Y (MEMBER-OF S3)))
(IN-CONTEXT

((PUSH-GOAL (IS Y (MEMBER-OF S2))))
(IN-CONTEXT

((SUPPOSE = Y XM
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))

The DEFNOTATION construct allows the user to define macros. The fol-
lowing form defines the operator MAKE-SET so that (MAKE-SET X) abbrevi-
ates (INSERT X THE-EMPTY-SET) and (MAKE-SET X1 X2 ... XN) abbreviates
(INSERT X1 (MAKE-SET X2 ... XN)).

(DEFNOTATION (MAKE-SET &REST ELEMENTS)
(IF (FULL ELEMENTS)

)THE-EMPTY-SET
((INSERT (CAR ELEMENTS)

(MAKE-SET (CDR ELEMENTS)))))

234 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL THING))

(IS (MAKE-SET X) SETM

(LEMMA
(FORALL THING))

(IS X (MEMBER-OF (MAKE-SET MM

(IN-CONTEXT

MET-BE X THING)
(LET-BE E THE-EMPTY-SET))

(NOTE (IS ISERT X E) SET))

(NOTE (IS X (MEMBER-OF (INSERT X EM)
(IN-CONTEXT

MET-BE Y (MEMBER-OF (INSERT X EM)
(NOTE = X. Y))))

(LEMMA

(FORALL

M THING)

(Y (MEMBER-OF (MAKE-SET XM)

(= YM

(DEFTYPE SINGLETON-SET

(WRITABLE-AS (MAKE-SET X)

(X THINGM

(LEMMA (FORALL US SINGLETON-SET))
(IS SEM)

(LEMMA (FORALL ((Sl SINGLETON-SEM
(EXISTS-SOME (MEMBER-OF WM

(LEMMA (FORALL ((Sl SINGLETON-SEM
(AT-MOST-ONE (MEMBER-OF WM

(LEMMA
(FORALL ((S SEM

(EXACTLY-ONE (MEMBER-OF S))
S

(MAKE-SET
(THE (MEMBER-OF S)))))))

(LEMMA
(FORALL ((S SEM

(EXACTLY-ONE (MEMBER-OF S))
(IS S SINGLETON-SETM)

(IN-CONTEXT
MET-BE Sl SINGLETON-SET)

(WRITE-AS Sl (MAKE-SET X)

(X THINGM
(NOTE (IS Sl SET))
(NOTE (EXISTS-SOME (MEMBER-OF SW)
(IN-CONTEXT

MET-BE Yl (MEMBER-OF SW
(LET-BE Y2 (MEMBER-OF SW)

(NOTE (AT-MOST-ONE (MEMBER-OF Sl)))))

(IN-CONTEXT
MET-BE S SET)

(SUPPOSE (EXACTLY-ONE (MEMBER-OF M
(LET-BE THE-MEMBER

(THE (MEMBER-OF M
(LET-BE S2 (MAKE-SET THE-MEMBERM

(NOTE = S2))
(NOTE (IS SINGLETON-SET)))

A. . FUNDAMENTALS 235

(LEMMA
(FORALL THING)

(Y THING))
(IS (MAKE-SET X Y)

SETM

(LEMMA
(FORALL ((Y THING)

(X THING))
(IS X (MEMBER-OF (MAKE-SET X MM

(IN-CONTEXT
MET-BE X THING)

(LET-BE Y THING)
(LET-BE SY (MAKE-SET Y))
(LET-BE SXY (INSERT X SYM

(NOTE (IS SXY SET))
(NOTE (IS X (MEMBER-OF SXYM
(IN-CONTEXT

MET-BE Z (MEMBER-OF SXYM
(NOTE (OR Z X)

z MM

(LEMMA
(FORALL M THING)

(Y THING)
(Z (MEMBER-OF

(MAKE-SET X YM)
(OR = Z X)

(Y)

(LEMMA
(FORALL ((Y TING)

(X THING))
(= (MAKE-SET X Y)

(MAKE-SET Y XM)

(LEMMA
(FORALL THING)

(X THING)
(Z THING))

(= (MAKE-SET X Y Z)
(MAKE-SET Y X ZM)

(IN-CONTEXT
MET-BE X THING)

(LET-BE Y THING)
(LET-BE E THE-EMPTY-SEM

(NOTE = (MAKE-SET X Y)
(MAKE-SET Y XM)

(IN-CONTEXT
MET-BE X THING)

(LET-BE Y THING)
(LET-BE Z THING)
(PUSH-GOAL

(MAKE-SET X Y Z)
(MAKE-SET Y X ZM)

(IN-CONTEXT
MET-BE S (MAKE-SET ZM

(NOTE-GOALM

(DEFTYPE (NOT-EQUAL-TO (X THING))
(LAMBDA ((Y THING))

(NOT = X Y))))

236 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL US SET))

(EXISTS M THIRG))
(NOT (IS X (MEMBER-OF S))))))

(LEMMA
(FORALL ((X THIEW

(EXISTS-SOME (NOT-EQUAL-TO XM)

Russell's Paradox:
(IN-CONTEXT

MET-BE SET)
(SUPPOSE

(FORALL THING))
(IS X (MEMBER-OF M)

(LET-BE S2
(THE-SET-OF-ALL

(X (MEMBER-OF S))
(NOT (IS X (MEMBER-OF X))))))

(IN-CONTEXT
USUPPOSE (IS S2 (MEMBER-OF S2))))

(NOTE-CONTRADICTION))
(NOTE-CONTRADICTION))

(IN-CONTEXT
MET-BE X THING)

(LET-BE SX (MAKE-SET X))
(LET-BE Y THING

(NOT (IS Y (MEMBER-OF SX)))))
(NOTE (EXISTS-SOME (NOT-EQUAL-TO X))))

(DEFTYPE DOUBLETON-SET
(WRITABLE-AS (MAKE-SET X Y)

(X THING)
(Y (NOT-EQUAL-TO XM)

(LEMMA (EXISTS-SOME DOUBLETON-SET)) (IN-CONTEXT
MET-BE X THING)

(LET-BE Y (NOT-EQUAL-TO XM
(NOTE (EXISTS-SOME DOUBLETON-SET)))

A. . FUNDAMENTALS 237

(DEFTYPE (OTHER-MEMBER (S SET) (X (MEMBER-OF M
(AND-TYPE (MEMBER-OF S) (NOT-EQUAL-TO W)

(LEMMA

(FORALL ((S DOUBLETON-SET))

(IS S SETM

(LEMMA

(FORALL ((S DOUBLETON-SET))

(NOT (IS SINGLETON-SETM)

(LEMMA

(FORALL US DOUBLETON-SET))

(EXISTS-SOME (MEMBER-OF M)

(LEMMA

(FORALL ((S DOUBLETON-SET)

(Z (MEMBER-OF M

(EXISTS-SOME (OTHER-MEMBER ZM)

(LEMMA

(FORALL US DOUBLETON-SET)

(Z (MEMBER-OF M

(AT-MOST-ONE (OTHER-MEMBER ZM)

(LEMMA

(FORALL ((S DOUBLETON-SET)

(Z (MEMBER-OF M
S

(MAKE-SET

z

(THE (OTHER-MEMBER MM)

(IN-CONTEXT
MET-BE DOUBLETON-SET)

(WRITE-AS S (MAKE-SET X Y)
(X THING)
(Y (NOT-EQUAL-TO X))))

(NOTE (IS SET))

(NOTE (NOT (IS SINGLETON-SET)))

(NOTE (EXISTS-SOME (MEMBER-OF M

(IN-CONTEXT
MET-BE Z (MEMBER-OF M

(IN-CONTEXT
((PUSH-GOAL

(EXISTS-SOME
(OTHER-MEMBER S Z))))

(IN-CONTEXT
((SUPPOSE = Z XM

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

(AT-MOST-ORE (OTHER-MEMBER ZM
(LET-BE Wi (OTHER-MEMBER Z))
(LET-BE 2 (OTHER-MEMBER ZM

(IN-CONTEXT
((SUPPOSE = Z XM

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

S

(MAKE-SET
z
(THE (OTHER-MEMBER Z))))))

(IN-CONTEXT
((SUPPOSE = X ZM

(NOTE-GOAL))
(NOTE-GOALM)

(LEMMA
(FORALL ((S SINGLETON-SET))

(NOT (IS DOUBLETON-SETM)

(IN-CONTEXT
MET-BE SINGLETON-SET)

(LET-BE X (THE (MEMBER-OF M)
(NOTE (NOT (IS DOUBLETON-SETM)

APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTYPE (SET-CONTAINING (X THING))
(LAMBDA US SEV)

(IS X (MEMBER-OF M)

(DEFTYPE (SUPERSET-OF (Sl SEM
(LAMBDA ((S2 SEM

(IS Sl (SUBSET-OF S2))))

(DEFTYPE (PROPER-SUPERSET-OF (S SEM
(AND-TYPE (SUPERSET-OF S) (NOT-EQUAL-TO SM

(DEFTYPE (PROPER-SUBSET-OF (S SEM
(AND-TYPE (SUBSET-OF S) (NOT-EQUAL-t SM

(DEFTYPE (NOT-MEMBER-OF (S SEM
(LAMBDA THING))

(NOT (IS X (MEMBER-OF WM

(DEFTYPE NON-EMPTY-SET
(LAMBDA US SEM

(EXISTS-SOME (MEMBER-OF M)

238

(LEMMA (EXISTS-SOME NON-EMPTY-SET)) (IN-CONTEXT
MET-BE X THING)

(LET-BE SX (MAKE-SET XM
(NOTE (EXISTS-SOME SON-EMPTY-SETM

(DEFTYPE (NON-EMPTY-SUBSET-OF (S NON-EMPTY-SEM
(AND-TYPE (SUBSET-OF S) NON-EMPTY-SEM

(LEMMA (FORALL ((S SET)

(S2 (SUBSET-OF S))

(S3 (SUBSET-OF S2)))

(IS S3 (SUBSET-OF M)

(IN-CONTEXT
MET-BE SET)

(LET-BE S2 (SUBSET-OF S))
(LET-BE S3 (SUBSET-OF S2))
(PUSH-GOAL (IS S3 (SUBSET-OF M)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF S3)))
(LET-BE X (MEMBER-OF S3)))

(NOTE-GOAL))
(NOTE-GOAL))

(DEFTYPE FAMILY-OF-SETS
(LAMBDA ((F NON-EMPTY-SET))

(IS-EVERY (MEMBER-OF F) SETM

A. . FUNDAMENTALS 239

(LEMMA (FORALL ((Sl SET))
(IS (INSERT Sl THE-EMPTY-SET)

FAMILY-OF-SETSM

(LEMMA (EXISTS-SOME FAMILY-OF-SETS))

(LEMMA
(FORALL ((S SET)

(Fl FAMILY-OF-SETS))
(IS (INSERT Fl)

FAMILY-OF-SETSM

(LEMMA
(FORALL (02 SET)

(S3 SET))
(IS (MAKE-SET S2 S3)

FAMILY-OF-SETSM

(LEMMA
(FORALL ((Sl SET)

(S2 SET)
(S3 SEM

(IS (MAKE-SET Sl S2 S3)
FAMILY-OF-SETSM

(LEMMA
(FORALL US NON-EMPTY-SET)

(X (MEMBER-OF S))
(Y (MEMBER-OF M

(IS (MAKE-SET X Y)
(SUBSET-OF SM)

(IN-CONTEXT
MET-BE Sl SET))

(IN-CONTEXT
MET-BE Fl (MAKE-SET M

(LET-BE S (MEMBER-OF FM)
(NOTE (IS Fl FAMILY-OF-SETS))
(NOTE (EXISTS-SOME FAMILY-OF-SETSM)

(IN-CONTEXT
MET-BE S SET)

(LET-BE Fl FAMILY-OF-SETS)
(LET-BE F2 (INSERT FM
(PUSH-GOAL (IS F2 FAMILY-OF-SETSM

(IN-CONTEXT
MET-BE FMEM (MEMBER-OF F2)))

(IN-CONTEXT
((PUSH-GOAL (IS FMEM SETM

(IN-CONTEXT
USUPPOSE = FMEM SM

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOALM

(IN-CONTEXT
MET-BE Sl SET)

(LET-BE S2 SET)
(LET-BE S3 ET))

(IN-CONTEXT
MET-BE Fl (MAKE-SET S3))

(LET-BE F2 (MAKE-SET S2 S3))
(LET-BE F3 (MAKE-SET Sl S2 S3)))

(NOTE (IS F2 FAMILY-OF-SETS))
(NOTE (IS F3 FAMILY-OF-SETSM)

(IN-CONTEXT
MET-BE S, NON-EMPTY-SET)

(LET-BE X (MEMBER-OF S))
(LET-BE Y (MEMBER-OF S))
(LET-BE SXY (MAKE-SET X Y))
(PUSH-GOAL (IS SXY (SUBSET-OF M)

(IN-CONTEXT
MET-BE Z (MEMBER-OF SXY)))

(IN-CONTEXT

((PUSH-GOAL (IS Z (MEMBER-OF M)
(IN-CONTEXT

USUPPOSE = Z W)
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOALM

--------- -

APPENDIX A. THE STONE REPRESENTATION THEOREM240

(LEMMA
(FORALL ((S NON-EMPTY-SET)

(X (MEMBER-OF S))
(Y (MEMBER-OF S))
(Z (MEMBER-OF S)))

(IS (MAKE-SET X Y Z)
(SUBSET-OF S))))

(IN-CORTEXT
MET-BE NON-EMPTY-SET)

(LET-BE X (MEMBER-OF S))
(LET-BE Y (MEMBER-OF S))
(LET-BE Z (MEMBER-OF S))
(LET-BE S2 (MAKE-SET X Y Z))
(PUSH-GOAL (IS S2 (SUBSET-OF M)

(IN-CONTEXT
MET-BE S3 (MAKE-SET Y ZM

(NOTE-GOALM

(DEFTYPE (MEMBER-OF-MEMBER (F FAMILY-OF-SETS))
(WRITABLE-AS Z

(Z (MEMBER-OF Y))
(Y (MEMBER-OF F))))

(DEFTERM (FAMILY-UNION (F FAMILY-OF-SETS))
(THE-SET-OF-ALL (MEMBER-OF-MEMBER FM

(LEMMA
(FORALL ((F FAMILY-OF-SETS))

(IS (FAMILY-UNION F) SETM

(LEMMA
(FORALL ((F FAMILY-OF-SETS)

(S (MEMBER-OF FM
(IS (SUBSET-OF

(FAMILY-UNION FM))

(LEMMA

(FORALL ((F FAMILY-OF-SETS)
(S SET

(IS-EVERY
(MEMBER-OF F)
(SUBSET-OF SM)

(IS (FAMILY-UNION F)
(SUBSET-OF SM)

(IN-CONTEXT
MET-BE F FAMILY-OF-SETS)

(LET-BE UNION-F (FAMILY-UNION FM

(NOTE (IS UNION-F SET))

(IN-CONTEXT
MET-BE (MEMBER-OF F))

(PUSH-GOAL (IS (SUBSET-OF UNION-F))))
(IN-CONTEXT

USUPPOSE (EXISTS-SOME (MEMBER-OF M
(LET-BE X (MEMBER-OF M

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
MET-BE S SET

(IS-EVERY (MEMBER-OF F) (SUBSET-OF M
(PUSH-GOAL (IS UNION-F (SUBSET-OF M)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF UNION-FM
(LET-BE X (MEMBER-OF UNION-M
(LET-BE S2 (MEMBER-OF F)

(IS X (MEMBER-OF S2))))
(NOTE-GOAL))

(NOTE-GOALM

241

(LEMMA
(FORALL ((Si SET)

(S2 SET))
(IS (UNION S2) SETM

(LEMMA
(FORALL ((S2 SET)

(Si SEM

(IS Si
(SUBSET-OF UIO S S2)))))

(IN-CONTEXT MET-BE SET)
(LET-BE S2 SET)
(LET-BE F (MAKE-SET S2))
(LET-BE USET (UNION S2)))

(NOTE (IS USET SET))
(NOTE (IS Si (SUBSET-OF USETM

(IN-CONTEXT
MET-BE USET2

(THE-SET-OF-ALL
(OR-TYPE (MEMBER-OF)

(MEMBER-OF S2))))
(PUSH-GOAL = USET USET2)))

(IN-CONTEXT
((PUSH-GOAL (IS USET (SUBSET-OF USET2))))

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME (MEMBER-OF USETM
(LET-BE X (MEMBER-OF USET))
(LET-BE S3 (MEMBER-OF F)

(IS X (MEMBER-OF WM

(IN-CONTEXT
((PUSH-GOAL (IS X (MEMBER-OF USET2))))

(IN-CONTEXT
USUPPOSE = 3 S)))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL (IS USET2 (SUBSET-OF USETM)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF USET2)))
(LET-BE X (MEMBER-OF USET2)))

(IN-CONTEXT
((PUSH-GOAL (IS X (MEMBER-OF USETM)

(IN-CONTEXT
((SUPPOSE (IS X (MEMBER-OF))))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOALM

(LEMMk
(FORALL ((Sl SET) (S2 SEM

(= (UNION Sl S2)
(THE-SET-OF-ALL

(OR-TYPE (MEMBER-OF Sl)
(MEMBER-OF S2))))))

A. . FUNDAMENTALS

(DEFTERM (UNION (Sl SET) (S2 SEV)
(FAMILY-UNION (MAKE-SET Sl S2)))

APPENDIX A. THE STONE REPRESENTATION THEOREM242

(IN-CONTEXT
MET-BE Sl SET)

(LET-BE S2 SET)
(LET-BE F (MAKE-SET Sl S2))
(LET-BE USET (UNION Sl S2))
(LET-BE S3 (AND-TYPE (SUPERSET-OF Sl)

(SUPERSET-OF S2)))
(PUSH-GOAL

(IS S3 (SUPERSET-OF (FAMILY-UNION F)))))

(IN-CONTEXT
MET-BE S4 (MEMBER-OF FM

(IN-CONTEXT
((PUSH-GOAL (IS S4 (SUBSET-OF S3))))

(IN-CONTEXT
USUPPOSE = 4 Sl)))

(90TE-GOAL))
(NOTE-GOAQ)

(NOTE-GOALM

(LEMMA
(FORALL ((Sl SET)

(S2 SET)
(S3 (AND-TYPE

(SUPERSET-OF Sl)
(SUPERSET-OF S2))))

(IS S3
(SUPERSET-OF (UNION Sl S2)))))

(DEFTERM (FAMILY-INTERSECTION (F FAMILY-OF-SETS))
(THE-SET-OF-ALL (X (MEMBER-OP-MEMBER F))

(IS-EVERY (MEMBER-OF F) (SET-CONTAINING X))))

(LEMMA
(FORALL ((F FAMILY-OF-SETS))

(IS (FAMILY-INTERSECTIOM F) SETM

(LEMMA
(FORALL ((F FAMILY-OF-SETS)

(S (MEMBER-OF FM
(IS

(SUPERSET-OF
(FAMILY-INTERSECTION F)))))

(LEMMA
(FORALL ((F FAMILY-OF-SETS)

(S SET
(FORALL

((MEK2 (MEMBER-OF FM
(IS MEM2

(SUPERSET-OF S)))))
(IS (FAMILY-INTERSECTION F)

(SUPERSET-OF SM)

(IN-CONTEXT

MET-BE F FAMILY-OF-SETS)
(LET-BE INTERSECTION-F

(FAMILY-INTERSECTION FM

(NOTE (IS INTERSECTION-F SET))

(IN-CONTEXT

MET-BE (MEMBER-OF F))
(PUSH-GOAL

(IS S (SUPERSET-OF INTERSECTIOS-F))))
(IN-CONTEXT

USUPPOSE
(EXISTS-SOME

(MEMBER-OF INTERSECTION-M)
(LET-BE X (MEMBER-OF INTERSECTION-M)

(NOTE-GOAQ)
(NOTE-GOAL))

(IN-CONTEXT
MET-BE S SET

(IS-EVERY (MEMBER-OF F)
(SUPERSET-OF SM

(PUSH-GOAL
(IS INTERSECTION-F (SUPERSET-OF SM)

(IN-CONTEXT
((SUPPOSE (EXISTS-SOME (MEMBER-OF M

(LET-BE X (MEMBER-OF S))
(LET-BE S2 (MEMBER-OF FM

(NOTE-GOAQ)
(NOTE-GOALM

A. 1. FUNDAMENTALS 243

(DEFTERM (INTERSECTION (Sl SET) (S2 SET))
(FAMILY-INTERSECTION (MAKE-SET Si S2)))

(LEMMA
(FORALL ((Si SET)

(S2 SET))
(IS (INTERSECTION S2) SETM

(LEMMA
(FORALL ((S2 SET)

(Si SET))

(IS Si
(SUPERSET-OF

(INTERSECTION S S2)))))

(LEMMA
(FORALL ((Si SET) (S2 SEM

(INTERSECTION S2)
(THE-SET-OF-ALL

(AND-TYPE (MEMBER-OF)
(MEMBER-OF S2))))))

(IN-CONTEXT
MET-BE Sl SET)

(LET-BE S2 SET)
(LET-BE F (MAKE-SET Sl S2))
(LET-BE ISET (INTERSECTION Sl S2)))

(NOTE (IS ISET SEM

(NOTE (IS Sl (SUPERSET-OF ISETM

(IN-CONTEXT
MET-BE ISET2

(THE-SET-OF-ALL
(AND-TYPE (MEMBER-OF Sl)

(MEMBER-OF S2))))
(PUSH-GOAL = ISET ISET2)))

(IN-CONTEXT
((PUSH-GOAL (IS ISET (SUBSET-OF ISET2))))

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME (MEMBER-OF ISETM
(LET-BE X (MEMBER-OF ISETM

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL (IS ISET2 (SUBSET-OF ISETM)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF ISET2)))
(LET-BE X (MEMBER-OF ISET2))
(LET-BE S3 (MEMBER-OF FM

(IN-CONTEXT

((PUSH-GOAL (IS X (MEMBER-OF S3))))
(IN-CONTEXT

(OUPPOSE = 3 SM)
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))

(NOTE-GOALM

244 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL

(IN-CONTEXT
MET-BE Sl SET)

(LET-BE S2 SET)
(LET-BE F (MAKE-SET Sl S2))
(LET-BE ISET (INTERSECTION Sl S2))
(LET-BE S3 (AND-TYPE (SUBSET-OF Sl)

(SUBSET-OF S2)))
(PUSH-GOAL (IS S3 (SUBSET-OF ISETM)

(IN-CONTEXT
MET-BE S4 (MEMBER-OF FM

(IN-CONTEXT
((PUSH-GOAL

(IS S4 (SUPERSET-OF S3))))
(IN-CONTEXT

((SUPPOSE = S4 SM)
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOALM

((Sl SET)
(S2 SET)
(S3 (AND-TYPE

(SUBSET-OF Sl)
(SUBSET-OF S2M)

(IS 3
(SUBSET-OF

(INTERSECTION Si S2)))))

245

(LEMMA
(FORALL ((S2 SET)

(Sl SET)
(S3 SET))

(= (INTERSECTION l
(UNION S2 S3))

(UNION (INTERSECTION Sl S2)
(INTERSECTION Sl S3)))))

(IN-CONTEXT
MET-BE Sl SET)

(LET-BE 2 SET)
(LET-BE S3 SET)
(LET-BE U-S2-S3 UION S2 S3))
(LET-BE ISl-S2 (INTERSECTION Sl S2))
(LET-BE ISl-S3 (INTERSECTION Sl S3))
(LET-BE ISET (INTERSECTION Sl U-S2-S3))
(LET-BE USET (UNION I-Sl-S2 ISl-S3))
(PUSH-GOAL = ISET USETM

(IN-CONTEXT
((PUSH-GOAL (IS ISET (SUBSET-OF USETM)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF ISETM
(LET-BE X (MEMBER-OF ISETM

(IN-CONTEXT
((PUSH-GOAL (IS X (MEMBER-OF USETM)

(IN-CONTEXT
USUPPOSE (IS X (MEMBER-OF S2))))

(NOTE-GOAQ)
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL (IS USET (SUBSET-OF ISETM)

(IF-CONTEXT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF USETM
(LET-BE X (MEMBER-OF USETM

(IN-CONTEXT
((PUSH-GOAL (IS X (MEMBER-OF ISETM)

(IN-CONTEXT
((SUPPOSE

(IS X (MEMBER-OF ISl-S2))))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAQ)

(NOTE-GOAQ)

A. . FUNDAMENTALS

APPENDIX A. THE STONE REPRESENTATION THEOREM246

(LEMMA
(FORALL ((S2 SET)

(Si SET)

(S3 ST))
(= (UNION Si

(INTERSECTION S2 S3))
(INTERSECTION (UNION S2)

(UNION S 3)))))

(IN-CONTEXT
MET-BE Si SET)

(LET-BE S2 SET)
(LET-BE S3 SET)
(LET-BE I-S2-S3 (INTERSECTION S2 S3))
(LET-BE USl-S2 (UNION S2))
(LET-BE USl-S3 (UNION S3))
(LET-BE USET (UNION I-S2-S3))
(LET-BE ISET (INTERSECTION USl-S2 USl-S3))
(PUSH-GOAL = USET ISETM

(IN-CONTEXT
((PUSH-GOAL (IS USET (SUBSET-OF ISM)))

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME (MEMBER-OF USETM
(LET-BE X (MEMBER-OF USETM

(IN-CONTEXT
((PUSH-GOAL (IS X (MEMBER-OF ISETM)

(IN-CONTEXT
((SUPPOSE (IS X (MEMBER-OF WM

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL (IS ISET (SUBSET-OF USETM)

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME (MEMBER-OF ISEM)
(LET-BE X (MEMBER-OF ISETM

(IN-CONTEXT
((PUSH-GOAL (IS X (MEMBER-OF USETM)

(IN-CONTEXT
USUPPOSE (IS X (MEMBER-OF))))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))

247

(LEMMA
(FORALL ((Si SET)

(S3 (SUBSET-OF))
(S2 SET))

(IS (UNION S3 S2)
(SUBSET-OF (UNION S2)))))

(LEMMA
(FORALL ((Si SET)

(S3 (SUBSET-OF))
(S2 SET))

(IS (INTERSECTION S3 S2)
(SUBSET-OF

(INTERSECTION S S2)))))

(LEMMA
(FORALL ((Si SET)

(S2 (SUBSET-OF SW)
Si
(UNION S2))))

(LEMMA
(FORALL ((Si SET)

(S2 (SUBSET-OF)))
S2
(INTERSECTION S S2))))

(IN-CONTEXT
MET-BE Sl SET)

(LET-BE S2 SET)
(LET-BE S3 (SUBSET-OF))
(LET-BE USETI

(UNION S S2))

(LET-BE USET2
(UNION S3 S2))

(PUSH-GOAL (IS USET2 (SUBSET-OF USETM))
(IN-CONTEXT

USUPPOSE
(EXISTS-SOME (MEMBER-OF USET2)))

(LET-BE X (MEMBER-OF USET2)))
(IN-CONTEXT

((PUSH-GOAL (IS X (MEMBER-OF USETM))
(IN-CONTEXT

((SUPPOSE (IS X. (MEMBER-OF S3))))
(NOTE-GOAL))

(NOTE-GOAQ)
(NOTE-GOAL))

(NOTE-GOAL))

(IN-CONTEXT
MET-BE Si SET)

(LET-BE S2 SET)
(LET-BE S3 (SUBSET-OF))
(LET-BE ISET1

(INTERSECTION Si S2))
(LET-BE ISET2

(INTERSECTION S3 S2))
(PUSH-GOAL (IS ISET2 (SUBSET-OF ISETIM)

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME (MEMBER-OF ISET2)))
(LET-BE X (MEMBER-OF ISET2)))

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
MET-BE S SET)

(LET-BE S2 (SUBSET-OF)))
(IN-CONTEXT

MET-BE USET
(UNION Sl S2)))

(NOTE = i
(UNION S2))))

(IN-CONTEXT
MET-BE ISET

(INTERSECTION 1 S2)))
(NOTE =

(INTERSECTION Sl S2)))))

A.l. FUNDAMENTALS

APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTYPE (DISJOINT-FROM (Sl SEM
(LAMBDA US2 SEM

(= (INTERSECTION Sl S2)
THE-EMPTY-SEM)

248

(LEMMA
(FORALL ((Sl SEM

(EXISTS-SOME (DISJOINT-FROM 1M)

(LEMMA
(FORALL ((Sl SET) (S2 SEM

(IFF (IS Sl (DISJOINT-FROM S2))
(IS-EVERY

(MEMBER-OF Sl)
(NOT-MEMBER-OF WM)

(IN-CONTEXT ET-BE Si SET)
(LET-BE ESET THE-EMPTY-SEM

(NOTE (EXISTS-SOME (DISJOINT-FROM))))

(IN-CONTEXT
MET-gE Sl SET)

(LET-BE S2 SET)
(LET-BE INT (INTERSECTION Si S2))
(PUSH-GOAL

(IFF (IS (DISJOINT-FROM S2))
(IS-EVERY (MEMBER-OF Sl)

(NOT-MEMBER-OF WM)
(IN-CONTEXT

((SUPPOSE (IS-EVERY (MEMBER-OF Sl)
(NOT-MEMBER-OF S2))))

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME (MEMBER-OF INTM
(LET-BE X (MEMBER-OF INTM

(NOTE-CONTRADICTION))
(NOTE-GOAL))

(IN-CONTEXT
((SUPPOSE (IS (DISJOINT-FROM S2))))

(IN-CONTEXT
((PUSH-GOAL

(IS-EVERY (MEMBER-OF Sl)
(NOT-MEMBER-OF S2))))

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF)))
(LET-BE X (MEMBER-OF SM)

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

A.I. FUNDAMENTALS 249

(DEFTERM (SET-DIFFERENCE (Sl SET) (S2 SEM
(THE-SET-OF-ALL

(AND-TYPE (MEMBER-OF Sl) (NOT-MEMBER-OF S2))))

(LEMMA
(FORALL ((Sl SET) (S2 SEM

(IS (SET-DIFFERENCE Sl S2)
(SUBSET-OF WM

(LEMMA (FORALL ((Sl SET) (S2 SEM
(IS (SET-DIFFERENCE Sl S2)

(DISJOINT-FROM S2))))

(LEMMA (FORALL (01 SET) (S2 SEM
(UNION

S2
(SET-DIFFERENCE 1 S2))

(UNION Sl S2))))

(IN-CONTEXT
MET-BE Sl SET)

(LET-BE S2 SET)
(LET-BE SD (SET-DIFFERENCE Si S2)))

(IN-CONTEXT
((PUSH-GOAL (IS SD (SUBSET-OF WM

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF SD)))
(LET-BE X (MEMBER-OF SD)))

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

(IS SD (DISJOINT-FROM S2))))
(IN-CONTEXT

USUPPOSE
(EXISTS-SOME (MEMBER-OF SD)))

(LET-BE X (MEMBER-OF SD)))
(NOTE-GOAL))

(NOTE-GOAL))

(IN-CONTEXT
MET-BE USETi (UNION S2 SD))

(LET-BE USET2 (UNION Sl S2))
(PUSH-GOAL = USETI USET2)))

(IN-CONTEXT
((PUSH-GOAL

(IS USET2 (SUBSET-OF USETM))
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME

(MEMBER-OF USET2)))
(LET-BE X (MEMBER-OF USET2)))

(IN-CONTEXT
((PUSH-GOAL

(IS X (MEMBER-OF USETM))
(IN-CONTEXT

((SUPPOSE
(IS X (MEMBER-OF S2))))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOALM

IRM

l2d 5 0 APPENDIX A. THE STOAT REPRESE, ATTATION THEORE-All

(DEFTERM (REMOVE (X THING) (S SET))
(SET-DIFFERENCE (MAKE-SET XM

(LEMMA
(FORALL US SET) (X THING))

(= (REMOVE X S)
(THE-SET-OF-ALL

(AND-TYPE (MEMBER-OF S)

(NOT-EQUAL-TO X))))))

(IN-CONTEXT
MET-BE X THING)

(LET-BE SET)
(LET-BE REM

(REMOVE X S))
(LET-BE S2 (MAKE-SET X))
(LET-BE S3

(THE-SET-OF-ALL
(AND-TYPE (MEMBER-OF)

(ROT-EQUAL-TO X))))
(PUSH-GOAL (= REM S3)))

(II-CONTEXT

((PUSH-GOAL (IS REM (SUBSET-OF S3))))
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME (MEMBER-OF REMM

(LET-BE Y (MEMBER-OF REMM
(NOTE (IS Y (NOT-EQUAL-TO XM
(NOTE-GOAL))

(NOTE-GOAL))
(IN-CONTEXT

((PUSH-GOAL (IS S3 (SUBSET-OF REMM)
(IN-CONTEXT

((SUPPOSE (EXISTS-SOME (MEMBER-OF S3)))
(LET-BE Y (EMBEIL-OF S3)))

(NOTE (IS Y (NOT-MEMBER-OF

(INSERT THE-EMPTY-SETM)
(NOTE-GOAL))

(NOTE-GOAL))

(NOTE-GOAL))

251

(LEMMA
(FORALL ((S SET)

(X THING)
(Y THING))

(REMOVE Y (REMOVE X S))
(THE-SET-OF-ALL

(AND-TYPE (MEMBER-OF)
(NOT lQUAL-TO X)
(NOT-EQUAL-TO MM)

(LEMMA
(FORALL THING)

(X THING)
(S SEM

(REMOVE X (REMOVE Y S))
(REMOVE Y (REMOVE X WM

(IN-CONTEXT
MET-BE X THING)

(LET-BE Y THING)
(LET-BE S SET)
(LET-BE SX (REMOVE X S))
(LET-BE SYX (REMOVE Y SW
(LET-BE SYX2

(THE-SET-OF-ALL
(AND-TYPE (MEMBER-OF)

(NOT-EQUAL-TO X)
(NOT-EQUAL-TO YM)

(PUSH-GOAL = SYX SYX2)))
(IN-CONTEXT

((PUSH-GOAL (IS SYX (SUBSET-OF SYX2))))
(IN-CONTEXT

USUPPOSE
(EXISTS-SOME (MEMBER-OF SYX)))

(LET-BE Z (MEMBER-OF SYXM
(NOTE-GOAL))

(NOTE-GOAL))
(IN-CONTEXT

((PUSH-GOAL (IS SYX2 (SUBSET-OF SYX))))
(IN-CONTEXT

((SUPPOSE
(EXISTS'SOME (MEMBER-OF SYX2)))

(LET-BE Z (MEMBER-OF SYX2)))
(NOTE-GOAL))

(NOTE-GOAL))'
(NOTE-GOAL))

(IN-CONTEXT
MET-BE X THING)

(LET-BE Y THING)
(LET-BE SET)
(LET-BE SXY (REMOVE X (REMOVE Y SM
(LET-BE SYX (REMOVE Y (REMOVE X SM
(PUSH-GOAL = SXY SYXM

(IN-CONTEXT
((PUSH-GOAL (IS SXY (SUBSET-OF SYX))))

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF SXYM
(LET-BE Z (MEMBER-OF SXYM

(NOTE-GOAL))
(NOTE+GENERALIZE-GOAL))

(NOTE-GOAL))

A. 1. FUNDAMENTALS

252 APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTERM (POWER-SET (S SET))
(THE-SET-OF-ALL (SUBSET-OF M

(LEMMA
(FORALL US SET))

(IS (POWER-SET)
FAMILY-OF-SETSM

(LEMMA
(FORALL US SET))

(S

(FAMILY-UNION (POWER-SET S)))))

(IN-CONTEXT
MET-BE SET)

(LET-BE P (POWER-SET M

(IN-CONTEXT
MET-BE S2 (MEMBER-OF PM

(NOTE (IS P FAMILY-OF-SETSM

(IN-CONTEXT
MET-BE S2

(FAMILY-UNION (POWER-SET M)
(NOTE = (FAMILY-UNION (POWER-SET WM)

A.2. PAIRS, RULES AND STRUCTURES 253

A.2 Pairs, Rules and Structures

This section contains facts about pairs rules and structures. For any two
things x and y the pair < x, y > is implemented as the set , f x, y} A
rule is a set of pairs. An objects which appears on the right side a pair in a
rule r is called a domain element of r. The set of all domain elements of r
is called the rule domain of the rule r (rule domains are different from map
domains; map domains are discussed below).

A structure is a rule whose domain is a set of symbols. Ontic structures
are similar to the "structures" or "records" used 'in computer programming
langauges (e.g. structures defined via DEFSTRUCT 'in Common Lisp). The

symbols in the domain of a structure rule are somtimes called the "slots"

of the structure. From a mathematical point of view the most interesting

structures have a U-SET slot which contains the "domain" or "underlying

set" of the structure. A structure with a U-SET slot that contains a set is

called a set structure. Many different kinds of mathematical objects can be

modeled as set structures; partial orders, algebras, topologies, graphs, and

differentiable manifolds can all be implemented as set structures.

254 APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTERM (MAKE-PAIR (X THING) (Y THING))
(MAKE-SET (MAKE-SET X Y) (MAKE-SET XM

(LEMMA
(FORALL THING) (Y THING))

(= (FAMILY-UNION (MAKE-PAIR X M
(MAKE-SET X Y))))

(LEMMA
(FORALL ((Y THING) (X THING))

(= (FAMILY-INTERSECTION
(MAKE-PAIR X Y))

(MAKE-SET X))))

(IN-CONTEXT
MET-BE X THING)

(LET-BE Y THING)
(LET-BE SX (MAKE-SET X))
(LET-BE SXY (MAKE-SET X M
(LET-BE SPAIR (MAKE-PAIR X YM

(NOTE (IS (FAMILY-UNION SPAIR) SXY))
(NOTE (IS (FAMILY-INTERSECTION SPAIR) SX)))

(DEFTYPE PAIR
(WRITABLE-AS (MAKE-PAIR X Y)

(X THING)
(Y THINGM

(DEFTERM (LEFT (P PAIR))
(THE (MEMBER-OF (FAMILY-INTERSECTION PM)

(LEMMA
(FORALL ((X THING) (Y THING))

(x

(LEFT (MAKE-PAIR X MM

(IN-CONTEXT

MET-BE X THING)

(LET-BE Y THING)

(LET-BE P (MAKE-PAIR. X M

(LET-BE SX (FAMILY-INTERSECTION PM

(NOTE = X (LEFT PM)

(DEFTERM (RIGHT (P PAIR))
(IF (SINGLETON-SET P)

(LEFT P)
(THE (OTHER-MEMBER

(FAMILY-UNION P)
(LEFT PM))

(LEMMA

(FORALL THING) (Y THING))
(= y

(RIGHT (MAKE-PAIR X MM

(IN-CONTEXT
MET-BE X THING)

(LET-BE Y THING)
(LET-BE P (MAKE-PAIR X Y))
(PUSH-GOAL = Y (RIGHT PM
(LET-BE MX (MAKE-SET X))
(LET-BE MY (MAKE-SET X YM

(IN-CONTEXT
((SUPPOSE = X YM

(NOTE-GOAL))
(IN-CONTEXT

((SUPPOSE (NOT = X YM)
(NOTE (NOT = MX MYM
(NOTE-GOAL))

(NOTE-GOAL))

For efficiency the type RULE, the operators THE-RULE and THE-FUNCTION

A.2. PAIRS, RULES AND STRUCTURES 255

and the type generators DOMAIN-TYPE, and the type generator RULE-BETWEEN

are all 'implemented primitively. If f is a syntactically small function expres-

sion of one argument then the term (THE-RULE f) denotes a set theoretic

object, such as a set of pairs that corresponds to the function f. Instances of

the the type RULE are ob'ects which can be written as (THE-RULE f) where 'is

a syntactically small function expression of one argument. If denotes a rule

then the type (DOMAIN-TYPE R is the type corresponding to the domain of

the rule (function) f and (THE-FUNCTION R i's the function corresponding

to R. If and S2 denote sets then instances the type (RULE-BETWEEN SI

S2) are rules that give mappings from into S2.

(DEFTYPE (DOMAIN-TYPE (R RULE))
(MEMBER-OF (RULE-DOMAIN RM

(LEMMA
(FORALL ((Sl NON-EMPTY-SET)

(S2 NON-EMPTY-SET))
(EXISTS-SOME

(RULE-BETWEEN Sl S2))))

(IN-CONTEXT
MET-BE Sl NN-EMPTY-SET)

(LET-BE S2 NN-EMPTY-SET)
(LET-BE Y (MEMBER-OF S2))
(LET-BE R

(THE-RULE M (MEMBER-OF Sl))) Y)))
(NOTE

(EXISTS-SOME (RULE-BETWEEN Sl S2))))

(DEFTERM (RESTRICT-RULE (R RULE)
(S (SUBSET-OF

(RULE-DOMAIN RM)
(THE-RULE M (MEMBER-OF M

(APPLY-RULE R XM

(DEFTERM (RESTRICT-RELATION (R, RELATION)
(S (SUBSET-OF

(RULE-DOMAIN RM)
(THE-RULE M (MEMBER-OF M

(INTERSECTION S (APPLY-RULE R. W))

256 APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTYPE (INJECTIVE-RULE-BETWEEN (Sl SET) (S2 SET))
(LAMBDA ((R (RULE-BETWEEN Sl S2)))

(FORALL ((Y (MEMBER-OF Sl)))
(EXACTLY-ONE (X (MEMBER-OF (RULE-DOMAIN RM

(= (APPLY-RULE R X) (APPLY-RULE R MM)

(DEFTYPE INJECTIVE-RULE
(WRITABLE-AS R

(R (INJECTIVE-RULE-BETWEEN Sl S2))
(Sl SET)
(S2 SETM

(DEFTERM (RULE-RANGE (R RULE))
(THE-SET-OF-ALL

(WRITABLE-AS (APPLY-RULE R X)
(X (MEMBER-OF (RULE-DOMAIN R))))))

A.2. PAIRS, RULES AND STRUCTURES 257

(LEMMA
(FORALL ((S. SYMBOL)

(VAL THING)
(W STRUCTURE))

(IS (ASSIGN VAL W)
STRUCTUREM

(IN-CONTEXT
MET-BE STRUCTURE)

(LET-BE SYMBOL)
(LET-BE VAL THING)
(LET-BE 2 (ASSIGN VAL W))
(PUSH-GOAL (IS W2 STRUCTUREM

(IN-CONTEXT
MET-BE SYM

(MEMBER-OF (RULE-DOMAIN 2))))
(IN-CONTEXT

((PUSH-GOAL (IS SYM SYMBOLM
(IN-CONTEXT ((SUPPOSE = SY SM

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOALM

(DEFTERM (BASE-STRUCTURE (S SYMBOL) (X THING))
(THE-RULE M (EQUAL-TO M W

(LEMMA
(FORALL ((9 SYMBOL)

(X THING))
(IS (BASE-STRUCTURE X)

STRUCTUREM

(IN-CONTEXT
MET-BE SYMBOL)

(LET-BE X THING)
(LET-BE (BASE-STRUCTURE
(PUSH-GOAL (IS STRUCTUREM

(NOTE (IS STRUCTUREM

The type SYMBOL and the macro QUOTE are implemented primitively. All
atomic quotations are symbols. A structure is a rule whose domain 'is a set
of symbols.

(DEFTYPE STRUCTURE
(LAMBDA ((R RULE))

(AND (EXISTS-SOME
(MEMBER-OF (RULE-DOMAIN RM

(IS-EVERY (MEMBER-OF (RULE-DOMAIN R))
SYMBOLM)

(DEFTYPE (SIGNATURE-SYMBOL (W STRUCTURE))
(MEMBER-OF (RULE-DOMAIN M

(DEFTERM (STRUCTURE-COMPONENT
(STRUCT STRUCTURE)
(SYM (SIGNATURE-SYMBOL STRUCTM

(APPLY-RULE STRUCT SYM))

(DEFTERM (ASSIGN (ARG THING) (VALUE THING) (OLD-RULE RULE))
(THE-RULE (OR-TYPE

(EQUAL-TO ARG)
(MEMBER-OF (RULE-DOMAIN OLD-RULEM))

(IF = X ARG)
VALUE
(APPLY-RULE OLD-RULE X))))

258 APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTERM (MAKE-SET-STRUCTURE (S NON-EMPTY-SET))
(BASE-STRUCTURE U-SET S))

(DEFTERM (U-SET (STRUCTURE))
(STRUCTURE-COMPONENT U-SET))

(DEFTYPE SET-STRUCTURE
(LAMBDA US STRUCTURE))

(AND (IS U-SET (SIGNATURE-SYMBOL S))
(IS (U-SET S) NON-EMPTY-SETM)

(LEMMA
(FORALL ((S NON-EMPTY-SET))

(IS (MAKE-SET-STRUCTURE S)
SET-STRUCTUREM

(LEMMA
(FORALL ((S NON-EMPTY-SET))

(= (U-SET (MAKE-SET-STRUCTURE S))

SM

(IN-CONTEXT
MET-BE NON-EMPTY-SET)

(LET-BE M (AKE-SET-STRUCTURE S))
(LET-BE SYM U-SET))

(NOTE (IS M SET-STRUCTURE))
(NOTE = U-SET M) SM

(DEFTYPE (IN-U-SET (W SET-STRUCTURE))
(MEMBER-OF (It-SET M

(LEMMA

(FORALL ((W SET-STRUCTURE))

(EXISTS-SOME (IN-U-SET WM)

(LEMMA

(FORALL ((W SET-STRUCTURE)

(X (IN-U-SET M

(IS X THINGM

(LEMMA

(FORALL ((W SET-STRUCTURE)

(X (IN-U-SET WM

(IS (MAKE-SET X)

(NON-EMPTY-SUBSET-OF

(U-SET WM))

(LEMMA

(FORALL ((W SET-STRUCTURE)

(X (IN-U-SET W))

(Y (IN-U-SET M

(IS (MAKE-SET X Y)

(SUBSET-OF (U-SET WM))

(LEMMA

(FORALL ((W SET-STRUCTURE)

(X (IN-U-SET W))

(S2 (SUBSET-OF (U-SET WM)

(IS (INSERT X S2)

(SUBSET-OF (U-SET WM))

(IN-CONTEXT ET-BE SET-STRUCTURE)
(LET-BE (U-SET WM

(NOTE (EXISTS-SOME (IN-U-SET WM
(IN-CONTEXT ET-BE X (IN-U-SET WM

(NOTE (IS X THING))
(IN-CONTEXT ET-BE SX (MAKE-SET XM

(NOTE (IS SX (NON-EMPTY-SUBSET-OF SM)
(IN-CONTEXT MET-BE Y (IN-U-SET W))

(LET-BE SXY (MAKE-SET X YM
(NOTE (IS SXY (SUBSET-OF M)

(IN-CONTEXT MET-BE S2 (SUBSET-OF S))

(LET-BE SX2 (INSERT X S2)))
(NOTE (IS SX2 (SUBSET-OF WM)

A.2. PAIRS, RULES AND STRUCTURES 259

(LEMMA
(FORALL ((W SET-STRUCTURE)

(S2 (SUBSET-OF (U-SET WM)
(IS S2 SETM

(LEMMA
(FORALL ((W SET-STRUCTURE)

(S2 (SUBSET-OF (U-SET WM)
(IS-EVERY (MEMBER-OF S2)

(IN-U-SET WM)

(LEMMA
(FORALL ((W SET-STRUCTURE)

(S2 (SUBSET-OF (U-SET VM)
(EXISTS-SOME (MEMBER-OF S2))
(IS S2

(ION-EMPTY-SUBSET-OF
(U-SET MM

(II-COITEXT
MET-BE V SET-STRUCTURE)

(LET-BE (U-SET W))
(LET-BE S2 (SUBSET-OF (U-SET V))))

(NOTE (IS S2 SET))
(NOTE (IS-EVERY (MEMBER-OF S2)

(IN-U-SET M
(II-CONTEXT

USUPPOSE
(EXISTS-SOME (MEMBER-OF S2))))

(NOTE (IS S2 (NON-EMPTY-SUBSET-OF S)))))

260 APPENDIX A. THE STONE REPRESENTATION THEOREM

A-3. MAPS 261

A, 3 1\4ap s

The terminology used in the proof of Stone's theorem makes a distinction
between rules and maps; a rule is a just a set of pairs while a map consists
of a domain set structure, a range set structure, and a rule between the
underlying sets of the domain and range structures. The significance of the
distinction between rules and maps can be seen in the following formula:

(IS (DOMAIN F) LATTICE)

If F denoted a rule (a set of pairs) there would be no well defined domain
structure for F, at best the domain of F would be an unstructured set. On

the other hand maps, as opposed to rules, have specified domain and range

structures and it is possible that the domain of F is in fact a lattice.

Category theory generalizes the notion of a map to the notion of a "mor-

phism" A morphism is like a map in that it has a domain and a range but

the domain and range of a morphism need not be set structures. In anticipa-

tion of category theory we define a "mapoid" to be a structure with domain

and range slots. A map 'is a mapoid in which the domain and range slots are

filled with set structures and where the rule slot is filled with a rule between
the underlying sets of the domain and range.

(DEFTYPE MAPOID
(LAMBDA ((W STRUCTURE))

(AND (IS)DOMAIN (SIGNATURE-SYMBOL W))
(IS 'RANGE (SIGNATURE-SYMBOL WM))

(DEFTERM (MAKE-MAPOID (D THING) (R THING) (W STRUCTURE))
(ASSIGN)DOMAIN D

(ASSIGN)RANGE R WM

(DEFTERM (DOMAIN (W STRUCTURE))
(STRUCTURE-COMPONENT 'DOMAIN))

(DEFTERM (RANGE (W STRUCTURE))
(STRUCTURE-COMPONENT W 'RANGE))

262 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((D THING)

(R THING)
(W STRUCTURE))

(IS (MAKE-MAPOID D R W)
MAPOIDM

(LEMMA
(FORALL ((D THING)

(R THING)
(W STRUCTURE))

D
(DOMAIN

(MAKE-MAPOID D R W)))))

(LEMMA
(FORALL ((D THING)

(R THING)
(W STRUCTURE))

R
(RANGE

(MAKE-MAPOID D R W)))))

(IN-CONTEXT
MET-BE D THING)

(LET-BE R THING)
(LET-BE STRUCTURE)
(LET-BE M (AKE-MAPOID D R. W))
(LET-BE 2 (ASSIGN RANGE R W))
(LET-BE SYM1 'DOMAIN)
(LET-BE SYM2)RANGE))

(NOTE (IS M MAPOID))
(NOTE D (DOMAIN MM
(NOTE R (RANGE MM)

(DEFTERM (MAKE-MAP

(MAKE-MAPOID

(G SET-STRUCTURE)
(H SET-STRUCTURE)
(R (RULE-BETWEEN

(U-SET G)
(U-SET HM)

G
H
(BASE-STRUCTURE RULE RM

(DEFTYPE (MAP-BETWEEN (G SET-STRUCTURE)

(H SET-STRUCTURE))
(WRITABLE-AS (MAKE-MAP G H R)

(R (RULE-BETWEEN (U-SET G)
(U-SET H)))))

263

(LEMMA
(FORALL ((G SET-STRUCTURE)

(H SET-STRUCTURE))
(EXISTS-SOME

(RULE-BETWEEN (U-SET G)
(U-SET H)))))

(LEMMA
(FORALL ((G SET-STRUCTURE)

(H SET-STRUCTURE)
(R (RULE-BETWEEN (U-SET G)

(U-SET HM)
(IS R RULEM

(LEMMA
(FORALL ((H SET-STRUCTURE)

(G SET-STRUCTURE)
(R (RULE-BETWEEN (U-SET G)

(U-SET OM
(RULE-DOMAIN R)
(U-SET GM)

(IN-CONTEXT

MET-BE G SET-STRUCTURE)
(LET-BE H SET-STRUCTURE))

(IN-CONTEXT
MET-BE Sl (U-SET G))

(LET-BE S2 (U-SET HM
(NOTE

(EXISTS-SOME (RULE-BETWEEN Sl S2)))
(IN-CONTEXT

MET-BE R (RULE-BETWEEN Sl S2)))
(NOTE (IS R RULE))
(NOTE = (RULE-DOMAIN R) (U-SET GM
(NOTE

(FORALL (MEMBER-OF
(RULE-DOMAIN RM)

(IS (APPLY-RULE R X)
(MEMBER-OF (U-SET H))))))))

(LEMMA
(FORALL

((G SET-STRUCTURE)
(H SET-STRUCTURE)
(R (RULE-BETWEEN (U-SET G)

(U-SET HM
(X (MEMBER-OF (RULE-DOMAIN RM)

(IS (APPLY-MAP R X)
(MEMBER-OF (U-SET WM

(DEFTYPE (MAP-ON (G SET-STRUCTURE))
(WRITABLE-AS F

(F (MAP-BETWEEN G H))
(H SET-STRUCTUREM

(DEFTYPE (MAP-INTO (H SET-STRUCTURE))
(WRITABLE-AS F

(F (MAP-BETWEEN G H))
(G SET-STRUCTUREM

(DEFTYPE MAP
(WRITABLE-AS (MAP-BETWEEN G H)

(G SET-STRUCTURE)
(H SET-STRUCTUREM

(DEFTERM (MAP-RULE (M MAP))
(STRUCTURE-COMPONENT M RULE))

A-3. MAPS

264 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((H SET-STRUCTURE)

(G SET-STRUCTURE)
(R (RULE-BETWEEN

(U-SET G)
(U-SET HM)

(DOMAIN (MAKE-MAP G H R))

GM

(LEMMA
(FORALL ((G SET-STRUCTURE)

(H SET-STRUCTURE)
(R (RULE-BETWEEN (U-SET G)

(U-SET HM)
(RANGE (MAKE-MAP G R))
HM

(LEMMA
(FORALL ((G SET-STRUCTURE)

(H SET-STRUCTURE)
(R (RULE-BETWEEN

(U-SET G)
(U-SET OM

(MAP-RULE (MAKE-MAP G H R))
RM

(LEMMA
(FORALL ((H SET-STRUCTURE)

(G SET-STRUCTURE)
(M (MAP-BETWEEN G HM

G (DOMAIN MM)

(LEMMA
(FORALL ((G SET-STRUCTURE)

(H SET-STRUCTURE)
(M (MAP-BETWEEN G HM

H (RANGE MM)

(IN-CONTEXT
MET-BE G SET-STRUCTURE)

(LET-BE SET-STRUCTURE)
(LET-BE R (RULE-BETWEEN

(U-SET G)
(U-SET HM

(LET-BE M (MAKE-MAP G H R))
(LET-BE B (BASE-STRUCTURE

'RULE
R))

(LET-BE W (ASSIGN 'RANGE B))
(LET-BE SYM1 DOMAIN)
(LET-BE SYM2 'RANGE)
(LET-BE SYM3 'RULE))

(NOTE (DOMAIN M) G))
(NOTE (RANGE M) H))
(NOTE (MAP-RULE M) RM

(IN-CONTEXT
MET-BE G SET-STRUCTURE)

(LET-BE H SET-STRUCTURE)
(LET-BE M (MAP-BETWEEN G H))
(WRITE-AS M (MAKE-MAP G H R)

(R (RULE-BETWEEK
(U-SET G)
(U-SET WM

(NOTE (DOMAIN M) G))
(NOTE (RANGE M) HM

(DEFTERM (APPLY-MAP (F MAP)

(X (IN-U-SET (DOMAIN FM)
(APPLY-RULE (MAP-RULE F) M

265

(LEMMA
(FORALL ((M MAP))

(IS (DOMAIN M)
SET-STRUCTUREM

(LEMMA
(FORALL ((M MAP))

(RULE-DOMAIN (MAP-RULE M))
(U-SET (DOMAIN MM))

(LEMMA
(FORALL ((M MAP))

(IS (RANGE M) SET-STRUCTUREM

(LEMMA
(FORALL ((M MAP))

(IS (MAP-RULE M)
(RULE-BETWEEN

(U-SET (DOMAIN M))
(U-SET (RANGE MMM

(IN-CONTEXT
.((LET-BE MAP)

(WRITE-AS (MAP-BETWEEN G H)
(G SET-STRUCTURE)
(H SET-STRUCTURE))

(WRITE-AS M (MAKE-MAP G H R)
(R (RULE-BETWEEN (U-SET G)

(U-SET H))))
(LET-BE X (IN-U-SET (DOMAIN MM)

(NOTE (IS (DOMAII M) SET-STRUCTURE))
(NOTE = (RULE-DOMAIN (MAP-RULE M))

(U-SET (DOMAIN MM)
(NOTE (IS (RANGE M) SET-STRUCTURE))
(NOTE (IS (MAP-RULE M)

(RULE-BETWEEN
(U-SET (DOMAIN W
(U-SET (RANGE M)))))

(NOTE (IS (APPLY-MAP M X)
(IN-U-SET (RANGE MM))

(LEMMA
(FORALL ((M MAP)

(X (IN-U-SET (DOMAIN MM)
(IS (APPLY-MAP M X)

(IN-U-SET (RANGE M)))))

(DEFTYPE (IN-MAP-DOMAIN (F MAP))
(IN-U-SET (DOMAIN FM

(DEFTYPE (IN-MAP-RANGE (F MAP))
(IN-U-SET (RANGE FM

A-3. MAPS

266 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((M MAP))

(IS (U-SET (DOMAIN M))
SETM

(LEMMA
(FORALL ((M MAP))

(IN-U-SET (DOMAIN M))
(MEMBER-OF

(U-SET (DOMAIN MMM

(LEMMA
(FORALL ((M MAP))

(EXISTS-SOME
(MEMBER-OF

(U-SET (DOMAIN MMM

(LEMMA
(FORALL ((M MAP))

(IS (U-SET (RANGE M))
SETM

(LEMMA
(FORALL ((M MAP))

(IN-U-SET (RANGE M))
(MEMBER-OF

(U-SET (RANGE MMM

(LEMMA
(FORALL ((M MAP))

(EXISTS-SOME
(MEMBER-OF

(U-SET (RANGE MMM

(IN-CONTEXT
MET-BE M MAP))

(IN-CONTEXT
MET-BE G (DOMAIN M))

(LET-BE S (U-SET GM
(NOTE (IS SET))
(NOTE = IN-U-SET G)

(MEMBER-OF SM
(NOTE

(EXISTS-SOME (MEMBER-OF M)
(IN-CONTEXT

MET-BE G (RANGE M))
(LET-BE S, (U-SET GM

(NOTE (IS SET))
(NOTE = IN-U-SET G)

(MEMBER-OF SM
(NOTE

(EXISTS-SOME (MEMBER-OF WM

(LEMMA
(FORALL ((M MAP))

(IS (MAP-RULE M) RULEM

(IN-CONTEXT
MET-BE M MAP)

(LET-BE R (MAP-RULE M))
(LET-BE Sl (U-SET (DOMAIN MM
(LET-BE S2 (U-SET (RANGE MM)

(NOTE (IS R RULEM

(DEFTERM (APPLY-MAP-TO-SET
(F MAP)
(S (SUBSET-OF (U-SET (DOMAIN FM))

(THE-SET-OF-ALL
(WRITABLE-AS (APPLY-MAP F X)

(X (MEMBER-OF S)M)

267

(LEMMA
(FORALL ((M MAP)

(S (SUBSET-OF
(U-SET (DOMAIN MM))

(IS (APPLY-MAP-TO-SET M S)
(SUBSET-OF

(U-SET (RANGE MMM

(IN-CONTEXT
MET-BE M MAP)

(LET-BE DSET (U-SET (DOMAIN MM
(LET-BE RSET (U-SET (RANGE MM
(LET-BE (SUBSET-OF DSEM
(LET-BE S2 (APPLY-MAP-TO-SET M S))
(PUSH-GOAL

(IS S2 (SUBSET-OF RSETM)
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME (MEMBER-OF S2)))

(LET-BE X (MEMBER-OF S2))
(WRITE-AS X (APPLY-MAP M Y)

(Y (MEMBER-OF M)
(NOTE-GOAL))

(NOTE-GOAL))

(DEFTERM (IMAGE (F MAP))

(APPLY-MAP-TO-SET F (U-SET (DOMAIN FM)

(LEMMA
(FORALL ((M MAP))

(IMAGE M)
(THE-SET-OF-ALL

(WRITABLE-AS (APPLY-MAP M X)
(X (IN-U-SET

(DOMAIN M)MM)

(LEMMA
(FORALL ((M MAP))

(EXISTS-SOME
(MEMBER-OF (IMAGE MM))

(LEMMA
(FORALL ((M MAP))

(IS (IMAGE M)
(NON-EMPTY-SUBSET-OF

(U-SET (RANGE MMM

(IN-CONTEXT
MET-BE M MAP)

(LET-BE (U-SET (DOMAIN MM
(LET-BE 2 (IMAGE MM

(NOTE
(IMAGE M)
(THE-SET-OF-ALL

(WRITABLE-AS (APPLY-MAP M X)
(X (IN-U-SET

(DOMAIN MMM)
(IN-CONTEXT

MET-BE S3 (U-SET (RANGE MM
(LET-BE X (IN-U-SET (DOMAIN MM)

(NOTE
(EXISTS-SOME (MEMBER-OF (IMAGE MM)

(NOTE
(IS S2 (NON-EMPTY-SUBSET-OF S3)))))

(DEFTERM (PREIMAGE (F MAP)
(S (SUBSET-OF

(U-SET (RANGE FM))
(THE-SET-OF-ALL (X (MEMBER-OF

(U-SET (DOMAIN FM)
(IS (APPLY-MAP F X) (MEMBER-OF M)

A-3. MAPS

mm"Im

268

(LEMMA

(FORALL ((F MAP)

(S (NON-EMPTY-SUBSET-OF

(IMAGE FM)

(IS

(SUBSET-OF

(U-SET (RANGE FMM

(LEMMA

(FORALL ((F MAP)

(S (NON-EMPTY-SUBSET-OF

(IMAGE FM)

(EXISTS-SOME (MEMBER-OF M)

(LEMMA

(FORALL ((F MAP)

(Y (MEMBER-OF (IMAGE FM)

(EXISTS-SOME

(MEMBER-OF

(PREIMAGE F (MAKE-SET YMM

(LEMMA

(FORALL ((F MAP)

(Y (MEMBER-OF (IMAGE FM)

(PREIMAGE F (MAKE-SET M

(THE-SET-OF-ALL

(X (IN-U-SET (DOMAIN FM

(APPLY-MAP F X MM

(IN-CONTEXT
MET-BE F MAP)

(LET-BE ISET (IMAGE M
(LET-BE S (ION-EMPTY-SUBSET-OF

(IMAGE FM
(LET-BE RSET (U-SET (RANGE FM)

(NOTE (IS (SUBSET-OF RSETM
(NOTE (EXISTS-SOME (MEMBER-OF M)

(IN-CONTEXT
MET-BE F MAP)

(LET-BE ISET (IMAGE M
(LET-BE Y (MEMBER-OF ISET))
(LET-BE SY (MAKE-SET M
(LET-BE PRE-Yi (PREIMAGE F SM
(LET-BE PRE-Y2

(THE-SET-OF-ALL (X (IN-U-SET
(DOMAI FM

(APPLY-MAP F X) Y))))
(IN-CONTEXT

((WRITE-AS Y (APPLY-MAP F X)
(X (IN-U-SET (DOMAIN MM

(NOTE
(EXISTS-SOME (MEMBER-OF PRE-YOM

(IN-CONTEXT
((PUSH-GOAL = PRE-Yl PRE-Y2)))

(IN-CORTEXT
MET-BE X (MEMBER-OF PRE-Yl))

(LET-BE FX (APPLY-MAP F XM
(NOTE (IS PRE-Yl (SUBSET-OF PRE-Y2)))
(NOTE

(EXISTS-SOME (MEMBER-OF PRE-Y2))))
(IN-CONTEXT

MET-BE X (MEMBER-OF PRE-Y2)))
(NOTE-GOALM)

(DEFTYPE INJECTION
(LAMBDA ((F MAP))

(IS (MAP-RULE F)
INJECTIVE-RULEM

APPENDIX A. THE STONE REPRESENTATION THEOREM

269

(LEMMA
(FORALL ((M MAP))

(=> (FORALL (MEMBER-OF
(IMAGE MM)

(IS (PREIMAGE M (MAKE-SET W
SINGLETON-SET))

(IS M INJECTIONM)

(IN-CONTEXT
MET-BE MAP)

(SUPPOSE
(FORALL ((Y (MEMBER-OF (IMAGE MM)

(IS (PREIMAGE M (MAKE-SET M
SINGLETON-SETM

(PUSH-GOAL (IS M INJECTIONM
(IN-CONTEXT

MET-BE R (MAP-RULE M))
(LET-BE Sl (U-SET (DOMAIN MM
(LET-BE S2 (U-SET (RANGE MM
(LET-BE X (IN-U-SET (DOMAIN MM
(LET-BE MX (APPLY-MAP M XM

(IN-CONTEXT
MET-BE PRE-MX

(PREIMAGE M (MAKE-SET WM
(NOTE (EXACTLY-ONE (MEMBER-OF PRE-MX))))

(IN-CONTEXT
MET-BE X2 (IN-U-SET (DOMAIN M))

(APPLY-RULE R X2)
(APPLY-MAP M XM

(LET-BE X3 (IN-U-SET (DOMAIN M))
(APPLY-RULE R X3)
(APPLY-MAP M XM)

(NOTE-GOALM)

(DEFTYPE (INJECTION-BETWEEN (G SET-STRUCTURE)
(H SET-STRUCTURE))

(AND-TYPE (MAP-BETWEEN G H)
INJECTION))

(DEFTYPE SURJECTION
(LAMBDA ((F MAP))

(IMAGE F)
(U-SET (RANGE F)))))

(DEFTYPE (SURJECTION-BETWEEN (G SET-STRUCTURE)
(H SET-STRUCTURE))

(AND-TYPE (MAP-BETWEEM G H)
SURJECTION))

(DEFTYPE BIJECTION
(AND-TYPE SURJECTION

INJECTION))

(DEFTYPE (BIJECTION-BETWEEN (G SET-STRUCTURE)
(H SET-STRUCTURE))

(AND-TYPE (MAP-BETWEEN G H)
BIJECTION))

(DEFTERM (IDENTITY-MAP (W SET-STRUCTURE))
(MAKE-MAP

W
W
(THE-RULE M (IN-U-SET WM

XM

A. I MAPS

270 APPENDIX A. THE STONE REPRESENTATION THEOREM

(IN-CONTEXT ET-BE W SET-STRUCTURE)
(LET-BE R

(THE-RULE M (IN-U-SET WM

X))
(LET-BE S (U-SET W))
(LET-BE X (MEMBER-OF S))
(LET-BE I (IDENTITY-MAP WM

(NOTE (IS I (MAP-BETWEEN WM
(NOTE = (APPLY-MAP I X) XM

(IN-CONTEXT
MET-BE V SET-STRUCTURE)

(LET-BE I (IDENTITY-MAP W))
(PUSH-GOAL (IS I BIJECTIONM

(IN-CONTEXT
((PUSH-GOAL (IS I SURJECTIONM

(IN-CONTEXT
MET-BE ISET1 (IMAGE M

(LET-BE ISET2 (U-SET W))
(PUSH-GOAL = SET1 ISET2)))

(IN-CONTEXT
MET-BE X (MEMBER-OF ISET2)))

(NOTE-GOALM
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL (IS I INJECTION))

(LET-BE X (IN-U-SET (RANGE M)
(LET-BE PRE-X

(PREIMAGE I (MAKE-SET XM
(LET-BE PREXI (MEMBER-OF PRE-X))
(LET-BE PREX2 (MEMBER-OF PRE-X)))

(NOTE (EXACTLY-ONE
(MEMBER-OF PRE-X)))

(NOTE-GOAL))

(NOTE-GOAL))

(Iff-CONTEXT ET-BE M BIJECTION))
(NOTE (EXISTS-SOME INJECTIONM

(LEMMA
(FORALL ((W SET-STRUCTURE))

(IS (IDENTITY-MAP)
(MAP-BETWEEN V WM)

(LEMMA
(FORALL ((W SET-STRUCTURE)

(X (MEMBER-OF (U-SET WM)
(APPLY-MAP (IDENTITY-MAP W) X)

XM

(LEMMA
(FORALL ((V SET-STRUCTURE))

(IS (IDENTITY-MAP W) BIJECTIONM

(LEMMA (EXISTS-SOME INJECTION))

A-3. MAPS 271

(LEMMA

(FORALL ((M INJECTION)

(Y (MEMBER-OF (IMAGE MM)

(EXACTLY-ONE (X (IN-U-SET

(DOMAIN MM

(= (APPLY-MAP M X)

Y))))

(IN-CONTEXT
MET-BE M INJECTION)

(LET-BE Y (MEMBER-OF (IMAGE MM
(PUSH-GOAL

(EXACTLY-ONE (X (If-U-SET (DOMAIN MM
(APPLY-MAP X)

Y))))
(IN-CONTEXT

MET-BE R (MAP-RULE M))
(WRITE-AS R (INJECTIVE-RULE-BETWEEN DSET S3)

(DSET SET)
(S3 SETM

(IN-CONTEXT
((WRITE-AS Y (APPLY-MAP N X)

(X (IN-U-SET (DOMAIN MM))
(NOTE (EXISTS (S2 (IN-U-SET (DOMAIN MM

(APPLY-MAP M S2)

YM)
(IN-CONTEXT

MET-BE Xi (IN-U-SET (DOMAIN M))
(= (APPLY-MAP M X

(LET-BE X2 (IN-U-SET (DOMAIN M))
(= (APPLY-MAP M X2) YM

(NOTE-GOALM)

(DEFTYPE (STRUCTURE-CONTAINING (S SET))
(LAMBDA ((W SET-STRUCTURE))

(IS (SUBSET-OF (U-SET W)))))

(LEMMA

(FORALL US NN-EMPTY-SET))

(IS (MAKE-SET-STRUCTURE S)

(STRUCTURE-CONTAINING S))))

(IN-CONTEXT
MET-BE NON-EMPTY-SET)

(LET-BE V (MAKE-SET-STRUCTURE SM
(NOTE (IS W (STRUCTURE-CONTAINING M)

(DEFTERM (SET!-RANGE
(F MAP)
(W (STRUCTURE-CONTAINING (IMAGE FM)

(MAKE-MAP (DOMAIN F) W (MAP-RULE FM

(LEMMA

(FORALL ((F MAP))

(EXISTS-SOME

(STRUCTURE-CONTAINING

(IMAGE FM))

(LEMMA

(FORALL ((F MAP)

(W (STRUCTURE-CONTAINING

(IMAGE FM)

(IS W SET-STRUCTUREM

(IN-CONTEXT ET-BE F MAP))
(IN-CONTEXT MET-BE ISET (IMAGE FM

(NOTE
(EXISTS-SOME

(STRUCTURE-CONTAINING (IMAGE FM)
(IN-CONTEXT

MET-BE W
(STRUCTURE-CONTAINING (IMAGE FM)

(NOTE (IS W SET-STRUCTUREM))

272 APPENDIX A. THE STONE REPRESENTATION THEOREM

(IN-CONTEXT
MET-BE F MAP)

MET-BE
(STRUCTURE-CONTAINING

(IMAGE FM
(LET-BE R (MAP-RULE FM)

(IN-CONTEXT
MET-BE X. (MEMBER-OF

(IMAGE-OF FM
(LET-BE Sl (U-SET W))
(LET-BE S2 (IMAGE FM

(NOTE (IS X (IN-U-SET WM)
(IN-CONTEXT

((PUSH-GOAL
(IS R (RULE-BETWEEN

(U-SET (DOMAIN F))
(U-SET WM)

(LET-BE DSET (U-SET (DOMAIN FM
(LET-BE WSET (U-SET W))
(LET-BE X (MEMBER-OF DSET))
(LET-BE RX (APPLY-RULE R XM

(NOTE-GOAL))
(IN-CONTEXT

MET-BE F2 (SEV-RANGE F WM
(IN-CONTEXT

MET-BE DSTRUCT (DOMAIN FM
(NOTE

(IS F2 (MAP-BETWEEN DSTRUCT WM
(NOTE (IS F2 MAP))

(NOTE (DOMAIN F2) (DOMAIN)
(NOTE (RANGE F2)))
(NOTE (MAP-RULE F2)

(MAP-RULE FM)
(IN-CONTEXT

MET-BE X (IN-U-SET (DOMAIN F2))))
(NOTE = (APPLY-MAP F2 X)

(APPLY-MAP F WM)

(LEMMA
(FORALL ((F MAP)

(W (STRUCTURE-CONTAINING
(IMAGE FM

(X (MEMBER-OF (IMAGE FM)
(IS X (IN-U-SET WM)

(LEMMA
(FORALL ((F MAP)

(W (STRUCTURE-CONTAINING
(IMAGE FM)

(IS (MAP-RULE F)
(RULE-BETWEEN (U-SET (DOMAIN M

(U-SET WM))

(LEMMA
(FORALL ((F MAP)

(W (STRUCTURE-CONTAINING
(IMAGE FM)

(IS (SET!-RANGE F V)
(MAP-BETWEEN (DOMAIN F WM)

(LEMMA
(FORALL ((F MAP)

(W (STRUCTURE-CONTAINING
(IMAGE FM)

(IS (SET!-RANGE F W)
MAPM

(LEMMA

(FORALL ((F MAP)
(W (STRUCTURE-CONTAINING

(IMAGE FM)
(DOMAIN (SET!-RANGE F W))
(DOMAIN FM)

(LEMMA
(FORALL ((F MAP)

(W (STRUCTURE-CONTAINING
(IMAGE FM)

(RANGE (SET!-RANGE F W))
WM

(LEMMA
(FORALL ((F MAP)

(W (STRUCTURE-CONTAINING
(IMAGE FM)

(MAP-RULE (SET!-RANGE F W))
(MAP-RULE FM)

(LEMMA
(FORALL ((F MAP)

(W (STRUCTURE-CONTAINING
(IMAGE FM

(X (IN-U-SET
(DOMAIN

(SET!-RANGE F W)))))
(APPLY-MAP (SET!-RANGE F W)

X)
(APPLY-MAP F X))))

A-3. MAPS 273

(LEMMA
(FORALL ((F

(W

(IN-CONTEXT
MET-BE F MAP)

(LET-BE W (STRUCTURE-CONTAINING
(IMAGE FM

(LET-BE F2 (SET!-RANGE F W))
(LET-BE ISET (IMAGE F))
(LET-BE ISET2 (IMAGE F2))
(PUSH-GOAL = ISET ISET2)))

(IN-CONTEXT
MET-BE X (MEMBER-OF ISEM

(WRITE-AS X (APPLY-MAP F Y)
(Y (IN-U-SET (DOMAIN FM))

(NOTE (IS ISET (SUBSET-OF ISET2))))
(IN-CONTEXT

MET-BE X (MEMBER-OF ISET2))
(WRITE-AS X (APPLY-MAP F2 Y)

(Y (IN-U-SET (DOMAIN F2)))))
(NOTE (IS ISET2 (SUBSET-OF ISETM)

(NOTE-GOAL))

MAP)

(STRUCTURE-CONTAINING
(IMAGE FM)

(= (IMAGE F)
(IMAGE (SET!-RANGE F W)))))

I'll"NOINNOWA, I I -1 � m III

274 APPENDIX A. THE STONE REPRESENTATION THEOREM

A.4. RELATIONS, CHOICE, AND RELATION STRUCTURES 275

A relation r is "total" just in case for all x in the rule domain of r the set
r(x) 'is not empty. A choice function for a total relation r is a rule r' such
that for all x 'in the rule domain of r, r(x) is a member of r(x). The axiom of
choice (as stated here) says that every total relation has at least one choice
function.

Transitive, symmetric, antisymmetric, reflexive and irreflexive relations
are defined in the standard ways and some standard facts are proven, e.g. a
transitive irreflexive relation is antisymmetric.

A relation structure is a set structure wth a slot that contains a relation
on the underlying set. This section contains a surprising number of trivial
facts about relation srtuctures.

0A.4' Relations, Choice, and Relation Struc-
tures

Relations are implemented as non-deterministic rules. More specifically, a
relation is implemented as a rule that maps an object to a set of "possible
values". Objects x and y are related under the relation r ust in case y is a
member of the set rx).

276 APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTYPE RELATION
(LAMBDA RULE))

(FORALL ((X (MEMBER-OF (RULE-DOMAIR RM)
(IS (APPLY-RULE R X) SETM)

(DEFTYPE (RELATED-TO (X (MEMBER-OF (RULE-DOMAIN RM
(R. RELATION))

(MEMBER-OF (APPLY-RULE R XM

(DEFTYPE (RELATION-RANGE (R RELATION))
(FAMILY-UNION (RULE-RANGE RM

(DEFTYPE TOTAL-RELATION
(LAMBDA RELATION))

(FORALL (MEMBER-OF (RULE-DOMAIN RM)
(EXISTS-SOME (RELATED-TO X R)))))

(DEFTYPE (CHOICE-FUNCTION-FOR R. TOTAL-RELATION))
(LAMBDA M2 (RULE-BETWEEN

(RULE-DOMAIN R)
(RELATION-RANGE RM)

(FORALL (MEMBER-OF (RULE-DOMAIN WM
(IS (APPLY-RULE R2 X)

(MEMBER-OF (APPLY-RULE R. X))))))

;the axiom of choice:

(AXIOM
(FORALL ((R. TOTAL-RELATION))

(EXISTS-SOME (CHOICE-FUNCTION-FOR RM)

(DEFTYPE (RELATION-ON (S SET))
(RULE-BETWEEN (POWER-SET M

(LEMMA

(FORALL ((S SET))

(EXISTS-SOME (RELATION-01 SM)

(LEMMA

(FORALL US SET)

(R (RELATIOR-ON SM

(IS R RELATIONM

(LEMMA

(FORALL ((S SET)

(R (RELATION-ON M

(= (RULE-DOMAIN R) SM

(IN-CONTEXT
MET-BE SET)

(LET-BE P (POWER-SET M
(NOTE (EXISTS-SOME (RELATION-ON M

(IN-CONTEXT ET-BE R (RELATION-ON M

(IN-CONTEXT ((PUSH-GOAL (IS R RELATIONM
(IN-CONTEXT

USUPPOSE
(EXISTS-SOME (MEMBER-OF M

(LET-BE X (MEMBER-OF S))
(LET-BE Y (APPLY-RULE R XM

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE = (RULE-DOMAIN R) SM)

A.4. RELATIONS, CHOICE, AND RELATION STRUCTURES 277

(LEMMA
(FORALL ((S NN-EMPTY-SET)

(R RELATION))
(AND (FORALL (MEMBER-OF M

(IS (APPLY-RULE R X)
(SUBSET-OF SM

(RULE-DOMAIN R) S))
(IS R (RELATION-ON WM

(LEMMA

(FORALL US NON-EMPTY-SET)
(X (MEMBER-OF S))
(R (RELATION-ON S))
(Y (RELATED-TO X RM

(IS Y (MEMBER-OF M)

(IN-CONTEXT
MET-BE NON-EMPTY-SET)

(LET-BE R RELATION)
(SUPPOSE = (RULE-DOMAIN R) S))
(SUPPOSE (FORALL (MEMBER-OF M

(IS (APPLY-RULE R X)
(SUBSET-OF SM)

(PUSH-GOAL (IS R (RELATION-ON M)
(IN-CONTEXT MET-BE X (MEMBER-OF S))

(LET-BE Y
(APPLY-RULE R X))

(LET-BE D (POWER-SET M
(NOTE-GOALM

(IN-CONTEXT
MET-BE S NON-EMPTY-SET)

(LET-BE R (RELATION-ON S))
(LET-BE X (MEMBER-OF S))
(PUSH-GOAL (IS-EVERY (RELATED-TO X R)

(MEMBER-OF SM)
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME (RELATED-TO X RM

(LET-BE Y
(RELATED-TO X R))

(LET-BE P (POWER-SET S))
(LET-BE S2

(APPLY-RULE R XM
(NOTE-GOAL))

(NOTE-GOAL))

(DEFTERN (PROVIDE-RELATION (R (RELATION-ON (U-SET WM

(W SET-STRUCTURE))

(ASSIGN)RELATION R W))

(DEFTYPE RELATION-STRUCTURE

(LAMBDA ((W SET-STRUCTURE))

(AND (IS 'RELATION

(SIGNATURE-SYMBOL W))

(IS (STRUCTURE-COMPONENT)RELATION)

(RELATION-ON (U-SET WMM

(DEFTERM (GET-RELATION (S RELATIOR-STRUCTURE))

(STRUCTURE-COMPONENT S RELATION))

278 APPEND12Y A. THE STONE REPRESENTATION THEORE.All

(LEMMA
(FORALL ((W SET-STRUCTURW

(EXISTS-SOME
(RELATION-ON (U-SET W)))))

(LEMMA
(FORALL ((W SET-STRUCTURE)

(R (RELATION-ON (U-SET WM)
(IS (PROVIDE-RELATION R W)

RELATION-STRUCTUREM

(LEMMA
(FORALL ((W SET-STRUCTURE)

(R (RELATION-ON (U-SET WM)
(GET-RELATION

(PROVIDE-RELATION R W))
RM

(IN-CONTEXT ET-BE SET-STRUCTURE)
(LET-BE (U-SET WM

(NOTE
(EXISTS-SOME (RELATION-ON (U-SET WM)

(IN-CONTEXT
MET-BE R (RELATION-ON (U-SET WM

(LET-BE W2 (PROVIDE-RELATION R W))
(LET-BE SYM1 'RELATION)
(LET-BE SYM2 U-SET))

(NOTE (IS W2 RELATION-STRUCTURE))
(NOTE (GET-RELATION 2) R))
(NOTE (U-SET 2) (U-SET WM))

(LEMMA
(FORALL ((W SET-STRUCTURE)

(R (RELATION-ON (U-SET WM)
(= (U-SET (PROVIDE-RELATION R W))

(U-SET WM)

(DEFTERM (MAKE-RELATION-STRUCTURE (R (RELATION-ON S))
(S SET))

(PROVIDE-RELATION R (MAKE-SET-STRUCTURE SM

(LEMMA

(FORALL US NN-EMPTY-SET)

(R (RELATION-ON M

(IS (MAKE-RELATION-STRUCTURE R S)

RELATION-STRUCTUREM

(LEMMA

(FORALL US NON-EMPTY-SET)

(R (RELATION-ON M

(GET-RELATION

(MAKE-RELATION-STRUCTURE R S))

RM

(LEMMA

(FORALL US NON-EMPTY-SET)

(R (RELATION-ON M

(IN-CONTEXT

MET-BE NON-EMPTY-SET)

(LET-BE R (RELATION-ON S))

(LET-BE V (MAKE-RELATION-STRUCTURE R S))

(LET-BE 2 (MAKE-SET-STRUCTURE SM

(NOTE (IS RELATION-STRUCTURW

(NOTE = (GET-RELATION W) R))

(NOTE = U-SET W) SM

(= (U-SET
(MAKE-RELATION-STRUCTURE R S))

SM

(DEFTERM (RESTRICT-RELATION-STRUCTURE
(R RELATION-STRUCTURE)
(S (NON-EMPTY-SUBSET-OF (U-SET RM)

(MAKE-RELATION-STRUCTURE
(RESTRICT-RELATION (GET-RELATIOR R) S) S))

--- - --- --- I I I I-

A.4. RELATIONS, CHOICE, AND RELATION STRUCTURES 279

(LEMMA
(FORALL ((R, RELATION)

(S2 (SUBSET-OF
(RULE-DOMAIN RM)

(IS (RESTRICT-RELATION R S2)
(RELATION-ON S2))))

(LEMMA
(FORALL RELATION)

(S2 (SUBSET-OF
(RULE-DOMAIN RM

(Xl (MEMBER-OF S2))
(X2 (MEMBER-OF S2)))

(IFF
(IS xi

(RELATED-TO X2 R))
(IS xi

(RELATED-TO 2
(RESTRICT-RELATION R. S2))))))

(IN-CONTEXT
MET-BE R RELATION)

(LET-BE (RULE-DOMAIN R))
(LET-BE S2 (SUBSET-OF S))
(LET-BE R2 (RESTRICT-RELATION R S2)))

(IN-CONTEXT

((PUSH-GOAL (IS R2 (RELATION-ON S2))))
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME (MEMBER-OF S2)))

(LET-BE X (MEMBER-OF S2))
(LET-BE S3 (APPLY-RULE R X))
(LET-BE S4 (APPLY-RULE R2 XM

(NOTE-GOAL))
(IN-CONTEXT

USUPPOSE
(NOT

(EXISTS-SOME (MEMBER-OF S2))))
(LET-BE P (POWER-SET S2)))

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

(FORALL (MEMBER-OF S2))
(Y (MEMBER-OF S2)))

(IFF (IS X (RELATED-TO Y R))
(IS X (RELATED-TO Y R2))))))

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF S2)))
(LET-BE X (MEMBER-OF S2))
(LET-BE Y (MEMBER-OF S2))
(LET-BE SR (APPLY-RULE R M
(LET-BE SR2 (APPLY-RULE R2 M)

(IN-CONTEXT

USUPPOSE (IS X (RELATED-TO Y RM)
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOALM

-

280 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((W RELATION-STRUCTURW

(EXISTS-SOME
(NON-EMPTY-SUBSET-OF

(U-SET W)))))

(LEMMA
(FORALL ((W RELATION-STRUCTURE)

(S2 (NON-EMPTY-SUBSET-OF
(U-SET WM)

(IS S2 NON-EMPTY-SEM)

(LEMMA
(FORALL ((W RELATION-STRUCTURE)

(S2 (NON-EMPTY-SUBSET-OF
(U-SET WM)

(IS (RESTRICT-RELATION
(GET-RELATION)
S2)

(RELATION-ON S2))))

(LEMMA
(FORALL ((W RELATION-STRUCTURE)

(S2 (NON-EMPTY-SUBSET-OF
(U-SET WM

(Xl (MEMBER-OF S2))
(X2 (MEMBER-OF S2)))

(IFF
(IS xi

(RELATED-TO 2
(GET-RELATION WM

(IS xi
(RELATED-TO 2

(RESTRICT-RELATIOR
(GET-RELATION W)
S2))))))

(Iff-CONTEXT ET-BE RELATION-STRUCTURE)
(LET-BE (U-SETW)))

(NOTE
(EXISTS-SOME

(NON-EMPTY-SUBSET-OF (U-SET WM)
(IN-CONTEXT

MET-BE S2 �KON-EMPTY-SUBSET-OF SM
(NOTE (IS S2 NON-EMPTY-SET))
(IN-CONTEXT

MET-BE R
(RESTRICT-RELATION

(GET-RELATION W)
S2))

(LET-BE R2 (GET-RELATION M

(NOTE (IS (RESTRICT-RELATION
(GET-RELATION)
S2)

(RELATION-ON S2)))
(NOTE

(FORALL ((?:X (MEMBER-OF S2))
(X (MEMBER-OF S2)))

(IFF
(IS

(RELATED-TO ?:X (GET-RELATION WM
(IS

(RELATED-TO ?:X
(RESTRICT-RELATION

(GET-RELATION W)
S2)))))))))

A.4. RELATIONS, CHOICE, AND RELATION STRUCTURES 281

(LEMMA
(FORALL ((W RELATION-STRUCTURE)

(S2 (NON-EMPTY-SUBSET-OF
(U-SET WM)

(IS (RESTRICT-RELATION-STRUCTURE
w
S2)

RELATION-STRUCTUREM

(LEMMA
(FORALL ((W RELATION-STRUCTURE)

(S2 (NON-EMPTY-SUBSET-OF
(U-SET WM)

(GET-RELATION
(RESTRICT-RELATION-STRUCTURE

w
S2))

(RESTRICT-RELATION
(GET-RELATION) S2))))

(LEMMA
(FORALL (W RELATION-STRUCTURE)

(S2 (NON-EMPTY-SUBSET-OF
(U-SET WM)

(U-SET
(RESTRICT-RELATION-STRUCTURE

w
S2))

S2)))

(IN-CONTEXT
MET-BE W RELATION-STRUCTURE)

(LET-BE (U-SET W))
(LET-BE S2 (NON-EMPTY-SUBSET-OF S))
(LET-BE R

(RESTRICT-RELATION (GET-RELATION W) S2))
(LET-BE W2

(RESTRICT-RELATION-STRUCTURE W S2M

(NOTE (IS (RESTRICT-RELATION-STRUCTURE W S2)
RELATION-STRUCTURE))

(NOTE (GET-RELATION

(RESTRICT-RELATION-STRUCTURE W S2))
(RESTRICT-RELATION

(GET-RELATION W)
S2M

(NOTE (U-SET
(RESTRICT-RELATION-STRUCTURE W S2))

S2M

(LEMMA
(FORALL

((W RELATION-STRUCTURE)
02 (NON-EMPTY-SUBSET-OF

(U-SET WM
(X (IN-U-SET

(RESTRICT-RELATION-STRUCTURE
w
S2))))

(IN-CONTEXT
MET-BE RELATION-STRUCTURE)

(LET-BE 2

(NON-EMPTY-SUBSET-OF (U-SET WM
(LET-BE 2

(RESTRICT-RELATION-STRUCTURE W S2))
(LET-BE X (IN-U-SET W2))
(LET-BE S, (U-SET WM

(NOTE (IS X (IN-U-SET WM)

(IS X (IN-U-SET WM)

(DEFTYPE (RIGHT-ADJACENT (X (IN-U-SET R))
(R RELATION-STRUCTURE))

(RELATED-TO X (GET-RELATION RM

282 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA (IN-CONTEXT

(FORALL ((W RELATION-STRUCTURE) MET-BE RELATION-STRUCTURE)

(X (IN-U-SET W)) (LET-BE X (IN-U-SET W))

(Y (RIGHT-ADJACENT X WM (PUSH-GOAL (IS-EVERY (RIGHT-ADJACENT X W)

(IS Y (IN-U-SET WM) (IN-U-SET WM)

(IN-CONTEXT

USUPPOSE

(EXISTS-SOME (RIGHT-ADJACENT X WM

(LET-BE Y (RIGHT-ADJACENT X W)

(LET-BE S (U-SET W))

(LET-BE R (GET-RELATION WM

(NOTE-GOAL))

(NOTE-GOAL))

(DEFTYPE (LEFT-ADJACENT (Y (IN-U-SET R))

(R RELATION-STRUCTURW

(LAMBDA M (IN-U-SET RM

(IS Y (RIGHT-ADJACENT X RM)

(DEFTYPE (REFLEXIVE'RELATION-ON (S SET))

(LAMBDA (RELATION-ON M

(FORALL ((X (MEMBER-OF M

(IS X (RELATED-TO X R)))))

(DEFTYPE (IRREFLEXIVE-RELATION-ON (S SET))

(LAMBDA ((R. (RELATION-ON M

(FORALL ((X (MEMBER-OF M

(NOT (IS X (RELATED-TO X R))))))

(DEFTYPE (SYMMETRIC-RELATION-ON (S SET))

(LAMBDA ((R (RELATION-ON M

(FORALL ((X (MEMBER-OF S))

(Y (MEMBER-OF M

(IFF (IS X (RELATED-TO Y R))

(IS Y (RELATED-TO X R))))))

(DEFTYPE (ANTISYMMETRIC-RELATION-ON (S SET))

(LAMBDA (RELATION-ON M

(FORALL ((X (MEMBER-OF S))

(Y (OTHER-MEMBER)

(NOT (AND (IS X (RELATED-TO Y R))

(IS Y (RELATED-TO X R)))))))

(DEFTYPE (TRANSITIVE-RELATION-01 (S SET))

(LAMBDA ((R (RELATION-ON M

(FORALL (MEMBER-OF S))

(Y (RELATED-TO X RM

(IS-EVERY (RELATED-TO Y R) (RELATED-TO X R)))))

A.4. RELATIONS, CHOICE, AND RELATION STRUCTURES

(DEFTYPE (EQUIVALENCE-RELATION-ON (S SET))
(AND-TYPE (SYMMETRIC-RELATION-ON S)

(TRANSITIVE-RELATIOM-ON S)
(REFLEXIVE-RELATION-ON SM

(DEFTYPE EQUIVALENCE-RELATION
(WRITABLE-AS R

(R (EQUIVALENCE-RELATION-ON S))
(S SETM

(DEFTERM (THE-TOTAL-RELATION-ON (S SET))
(THE-RULE (KEMBER-OF SM S))

283

(LEMMA
(FORALL US NON-EMPTY-SET))

(IS (THE-TOTAL-RELATION-ON S)
(EQUIVALENCE-RELATION-ON S))))

(LEMMA

US NON-EMPTY-SET)
(R (TRANSITIVE-RELATION-ON S)))

(IS R
(IRREFLEXIVE-RELATION-ON S))

(IS R
(ANTISYMMETRIC-RELATION-ON S)))))

(IN-CONTEXT
MET-BE NON-EMPTY-SET)

(LET-BE R (THE-TOTAL-RELATION-ON S))
(PUSH-GOAL

(IS R (EQUIVALENCE-RELATION-ON SM)
(IN-CONTEXT ET-BE X (MEMBER-OF M

(NOTE (IS R (REFLEXIVE-RELATION-ON SM
(IN-CONTEXT ET-BE Y (MEMBER-OF M

(NOTE (IS R (SYMMETRIC-RELATION-ON SM)
(IN-CONTEXT ET-BE Y (RELATED-TO X RM

(NOTE (IS R TRANSITIVE-RELATION-ON SM)
(NOTE-GOAL))

(IN-CONTEXT
MET-BE S NON-EMPTY-SET)

(LET-BE R (TRANSITIVE-RELATION-ON S))
(SUPPOSE

(IS R (IRREFLEXIVE-RELATION-ON SM
(PUSH-GOAL

(IS R (ANTISYMMETRIC-RELATION-O SM)
(IN-CONTEXT ET-BE X. (MEMBER-OF M

(IN-CONTEXT
((PUSH-GOAL

(FORALL (OTHER-MEMBER XM
(NOT (AND (IS X (RELATED-TO Y R))

(IS Y (RELATED-TO X. R)))))))
(IN-CONTEXT

USUPPOSE

(EXISTS-SOME (OTHER-MEMBER)
;the above supposition constrains x
;and prevents full generalization
(LET-BE Y (OTHER-MEMBER XM

(NOTE (NOT (AND (IS X (RELATED-TO Y R))
(IS Y (RELATED-TO X R)))))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOALM

284 APPENDIX A. THE STONE REPRESENTATION THEOREM

A-5. PARTIAL ORDERS AND ZORN'S LEMMA 285

A,5 Partial Orders and Zorn's Len-in-la

A partial order is defined here as a transitive irreflexive relation (every
such relation 'is also antisymmetric). A poset (partially ordered set) is a
relation structure whose relation 'is a partial order on the underlying set.
Given a poset p and an element x of the underlying set of p the types
(LESS-THAN x) and (LESS-OR-EQUAL-TO x p) are defined 'in the obvi_

ous way. A total order is a partial order in which every two elements are

ordered.

Let p be a poset, s a subset of the underlying set of p, and x an element

of the underlying set of p. We say that x 'is a maximial element of if it is

an element of s and no element of s is greater than x. We say that x is the

greatest member of if it 'is a member of s and all members of s are less than

or equal to x. We say that x 'is an uper bound of s is every member of 'is

less than or equal to x. The notions of minimal member, least member, and
lower bound are defined similarly. We say that x is a least upper"bound of

-s if it is the least member of the set of all u per bounds of s; greatest lower

bounds are defined similarly.

A chain in a poset p is a subset of p which is totally ordered by order

relation of p. An inductive order is a partial order in which every chain has

an upper bound. Zorn's lemma states that if p is an inductive order and x

is a member of the underlying set of p then there is a maximal member of p

which is greater than or equal to x. Zorn's lemma can be proven from the

axiom of choice but we take it as an axiom.

(DEFTYPE (PARTIAL-ORDER-ON (S SEM
(AND-TYPE (TRANSITIVE-RELATION-ON S)

(IRREFLEXIVE-RELATION-ON SM

(DEFTERM (THE-EMPTY-RELATION-ON (S SEM
(THE-RULE (MEMBER-OF M

THE-EMPTY-SEM

286 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((S NON-EMPTY-SET))

(IS (THE-EMPTY-RELATION-ON S)
(PARTIAL-ORDER-ON S))))

(IN-CONTEXT
MET-BE NON-EMPTY-SET)

(LET-BE R (THE-EMPTY-RELATION-ON S))
(PUSH-GOAL (IS R (PARTIAL-ORDER-ON SM)

(IN-CONTEXT
MET-BE X (MEMBER-OF M

(IN-CONTEXT
MET-BE S2 (APPLY-RULE R XM

(NOTE (IS R (RELATION-ON M)
(NOTE-GOALM

(DEFTYPE POSET
(LAMBDA US RELATION-STRUCTURW

(IS (GET-RELATION)
(PARTIAL-ORDER-ON (U-SET WM

(LEMMA (EXISTS-SOME POSET)) (IN-CONTEXT
MET-BE NON-EMPTY-SET)

(LET-BE R (PARTIAL-ORDER-ON S))
(LET-BE W (MAKE-RELATION-STRUCTURE R S)))

(NOTE (EXISTS-SOME POSET)))

(DEFTYPE (LESS-THAN (X (IN-U-SET W) (W POSET))
(LEFT-ADJACENT X W))

A-5. PARTIAL ORDERS AND ZORN'S LEMMA 287

(LEMMA
(FORALL ((P POSET)

(X (IN-U-SET P)))
(NOT (IS X

(LESS-THAN X P)))))

(LEMMA
(FORALL ((P POSET)

(X (IN-U-SET P))
(Y (IN-U-SET P)))

(NOT
(AND

(IS
(LESS-THAN Y P))

(IS Y

(LESS-THAN X P))))))

(LEMMA
(FORALL ((P POSET)

(X (IN-U-SET P))
(Y (LESS-THAN X P))
(Z (LESS-THAN Y P)))

(IS Z (LESS-THAN X P))))

(IN-CONTEXT

MET-BE P POSET)
(LET-BE X (IN-U-SET PM

(IN-CONTEXT
((PUSH-GOAL

(NOT (IS X (LESS-THAN X PM)
(LET-BE R (GET-RELATION P))
(LET-BE S (U-SET PM

(NOTE-GOAL))

(IN-CONTEXT
MET-BE Y (IN-U-SET P))

(PUSH-GOAL
(NOT

(AID (IS X (LESS-THAN Y P))
(IS Y (LESS-THAN X P)))))

(LET-BE R (GET-RELATION P))
(LET-BE S (U-SET PM

(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

(FORALL ((Y (LESS-THAN X PM
(IS-EVERY (LESS-THAN Y P)

(LESS-THAN X P)))))
(IN-CONTEXT

((SUPPOSE

(EXISTS-SOME (LESS-THAN X PM
(LET-BE Y (LESS-THAN X PM

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (LESS-THAN Y PM
(LET-BE Z (LESS-THAN Y P))
(LET-BE R. (GET-RELATION P))
(LET-BE S (U-SET PM

(NOTE (IS-EVERY (LESS-THAN Y P)

(LESS-THAN X PM)
(NOTE (IS-EVERY (LESS-THAN Y P)

(LESS-THAN X PM
(NOTE-GOAL))

(NOTE-GOALM

(DEFTYPE (GREATER-THAN (X (IN-U-SET W)) (W POSET))
(RIGHT-ADJACENT X W))

288 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((P POSET)

(X (IN-U-SET P))
(Y (GREATER-THAN X P)))

(IS X (LESS-THAN Y P))))

(IN-CONTEXT
MET-BE P POSET)

(LET-BE X (IN-U-SET P))
(PUSH-GOAL

(FORALL ((Y (GREATER-THAN X PM
(IS X (LESS-THAN Y PM))

(IN-CONTEXT
(OUPPOSE

(EXISTS-SOME (GREATER-THAN X PM
(LET-BE Y (GREATER-THAN X M
(LET-BE R (GET-RELATION P))
(LET-BE S (U-SET PM

(NOTE-GOAL))
(NOTE-GOAL))

(DEFTYPE (LESS-OR-EQUAL-TO (X (IN-U-SET W)) (W POSET))
(OR-TYPE (LESS-THAN X W) (EQUAL-TO X)))

(LEMMA
(FORALL ((P POSET)

(X UN-U-SET P))
(Y UESS-OR-EQUAL-TO X P)))

(IS Y (IN-U-SET P))))

(LEMMA
(FORALL ((P POSET)

(X (IN-U-SET P))
(Y (LESS-OR-EQUAL-TO X P))
(Z (LESS-OR-EQUAL-TO Y P)))

(IS Z (LESS-OR-EQUAL-TO X P))))

(IN-CONTEXT
MET-BE P POSET)

(LET-BE X (IN-U-SET P))
(LET-BE Y (LESS-OR-EQUAL-TO X PM

(IN-CONTEXT

((PUSH-GOAL (IS Y (IN-U-SET PM)
(IN-CONTEXT

((SUPPOSE (IS Y (LESS-THAN X PM)
(NOTE-GOAL))

(NOTE-GOAL))
(IN-CONTEXT

MET-BE Z (LESS-OR-EQUAL-TO Y P))
(PUSH-GOAL

(IS Z (LESS-OR-EQUAL-TO X PM)
(IN-CONTEXT SUPPOSE = Y XM

(NOTE-GOAQ)
(IN-CONTEXT

((SUPPOSE (IS Y (LESS-THAN X P)
(IN-CONTEXT

((SUPPOSE (IS Z (LESS-THAN Y PM)
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOALM

(LEMMA
(FORALL UP POSET)

(X (IN-U-SET P))
(Y (LESS-OR-EQUAL-TO X P)))

(=> (IS X (LESS-OR-EQUAL-TO Y P))
(= Y))

(IN-CONTEXT
MET-BE P POSET)

(LET-BE X (IN-U-SET P))
(LET-BE Y (LESS-OR-EQUAL-TO X P))
(SUPPOSE

(IS X (LESS-OR-EQUAL-TO Y P))))
(NOTE = X Y)))

(DEFTYPE (GREATER-OR-EQUAL-TO (X (IN-U-SET W))
(W POSET))

(OR-TYPE (GREATER-THAI X W) (EQUAL-TO X)))

A 5. PARTIAL ORDE RS AND ZORN'S LEMMA 289

(LEMMA
(FORALL

((P
(X
(Y

(IS Y

(IN-CONTEXT
MET-BE P POSET)

(LET-BE X (IN-U-SET P))
(LET-BE Y (GREATER-OR-EQUAL-TO X P))
(PUSH-GOAL (IS Y (IN-U-SET PM)

(IN-CONTEXT
((SUPPOSE (IS Y (GREATER-THAN X PM)

(NOTE-GOAL))
(NOTE-GOAL))

I

(IN-CONTEXT MET-BE P POSET)
(LET-BE X (IN-U-SET P))
(LET-BE Y (IN-U-SET PM

(IN-CONTEXT
((SUPPOSE

(IS Y (LESS-OR-EQUAL-TO X PM
(PUSH-GOAL

(IS X (GREATER-OR-EQUAL-TO Y P)
(IN-CONTEXT

((SUPPOSE (IS Y (LESS-THAN X P)
(NOTE-GOAL))

(NOTE-GOAL))
(IN-CONTEXT

((SUPPOSE
(IS Y (GREATER-OR-EQUAL-TO X PM

(PUSH-GOAL
(IS X (LESS-OR-EQUAL-TO Y P)

(IN-CONTEXT
USUPPOSE

(IS Y (GREATER-THAN X PM)
(NOTE-GOAL))

(NOTE-GOALM

POSET)

(IN-U-SET P))

(GREATER-OR-EQUAL-TO X PM

(IN-U-SET P))))

(LEMMA
(FORALL UP POSET)

(Y (IN-U-SET P))
(X (IN-U-SET P)))

(is
(LESS-OR-EQUAL-TO X P))

(IS
(GREATER-OR-EQUAL-TO Y P)))))

(LEMMA
(FORALL ((P POSET)

(Y (IN-U-SET P))
(X (IN-U-SET P)))

(IS Y
(GREATER-DR-EQUAL-TO X P))

(IS
(LESS-OR-EQUAL-TO Y P)))))

(DEFTERM (RESTRICT-ORDER
(O POSET)
(S (NON-EMPTY-SUBSET-OF

(U-SET OM)
(RESTRICT-RELATION-STRUCTURE 0 S))

APPENDIX A. THE STONE REPRESENTATION THEOREM290

(LEMMA
(FORALL

((Sl NON-EMPTY-SET)
(Rl (TRANSITIVE-RELATION-ON SM

I (S2 (SUBSET-OF Sl)))

(IS (RESTRICT-RELATION Rl S2)
(TRANSITIVE-RELATIOY-ON S2))))

(IN-CONTEXT
MET-BE Sl NON-EMPTY-SET)

(LET-BE Rl (TRANSITIVE-RELATION-ON SM
(LET-BE S2 (SUBSET-OF M
(LET-BE R2 (RESTRICT-RELATION Rl S2))
(PUSH-GOAL

(IS R2 (TRANSITIVE-RELATION-ON S2))))
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME (MEMBER-OF S2)))

(LET-BE X (MEMBER-OF S2)))
(IN-CONTEXT

((PUSH-GOAL
(FORALL ((Y (RELATED-TO X R2)))

(IS-EVERY (RELATED-TO Y R2)
(RELATED-TO X R2)))))

(IN-CONTEXT ((SUPPOSE
(EXISTS-SOME

(RELATED-TO X R2)))
(LET-BE Y (RELATED-TO X R2)))

(IN-CONTEXT
((PUSH-GOAL

(IS-EVERY (RELATED-TO Y R2)
(RELATED-TO X R2))))

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME
(RELATED-TO Y R2)))

(LET-BE Z (RELATED-TO Y R2)))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))

(LEMMA
(FORALL US SET))

(EXISTS-SOME
(IRREFLEXIVE-RELATIOK-ON SM)

(LEMMA
(FORALL

((SI NON-EMPTY-SET)
(RI (IRREFLEXIVE-RELATION-ON S))
02 (SUBSET-OF)))

(IS (RESTRICT-RELATION R S2)
(IRREFLEXIVE-RELATION-ON S2))))

(IN-CONTEXT
MET-BE SET)

(LET-BE R (THE-EMPTY-RELATION-ON SM
(NOTE

(EXISTS-SOME
(IRREFLEXIVE-RELATION-01 SM)

(IN-CONTEXT
MET-BE Sl NON-EMPTY-SET)

(LET-BE Rl (IRREFLEXIVE-RELATION-O SM
(LET-BE S2 (SUBSET-OF M
(LET-BE R2 (RESTRICT-RELATION Rl S2))
(PUSH-GOAL

(IS R2 (IRREFLEXIVE-RELATION-ON S2))))
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME (MEMBER-OF S2)))

(LET-BE X (MEMBER-OF S2)))
(NOTE-GOAL))

(NOTE-GOAL))

A-5. PARTIAL ORDERS AND ZORN'S LEMMA 291

(LEMMA
(FORALL UP POSET)

(S2 (NON-EMPTY-SUBSET-OF
(U-SET P))))

(IS (RESTRICT-ORDER P S2)
POSET)))

(LEMMA
(FORALL ((P POSET)

(S2 (NON-EMPTY-SUBSET-OF
(U-SET P)))

(X (IN-U-SET
(RESTRICT-ORDER P S2))))

(IS X (IN-U-SET P))))

(IN-CONTEXT
MET-BE P POSET)

(LET-BE S2 (NON-EMPTY-SUBSET-OF (U-SET PM
(LET-BE P2 (RESTRICT-ORDER P S2)))

(IN-CONTEXT
MET-BE Sl (U-SET P))

(LET-BE Rl (GET-RELATION P))
(LET-BE R2 (GET-RELATION P2)))

(NOTE (IS P2 POSET))
(IN-CONTEXT ET-BE X (IN-U-SET P2))

(LET-BE Y (IN-U-SET P2)))
(NOTE (IS X (IN-U-SET PM
(NOTE

(IFF
(IS X (LESS-THAN Y P2))
(IS X. (LESS-THAN Y P)))))))

(LEMMA

(FORALL

(IFF

((P POSET)
(S2 (NON-EMPTY-SUBSET-OF

(U-SET PM
(Y (IN-U-SET

(RESTRICT-ORDER P S2)))
(X (IN-U-SET

(RESTRICT-ORDER P S2))))

(IS
(LESS-THAN Y

(RESTRICT-ORDER P S2)))
(IS

(LESS-THAN Y P)))))

(LEMMA

(FORALL

(IN-CONTEXT
MET-BE P POSET)

(LET-BE S2 (ON-EMPTY-SUBSET-OF
(U-SET PM

(LET-BE P2 (RESTRICT-ORDER P S2M

(IN-CONTEXT
MET-BE X (IN-U-SET P2))

(LET-BE Y (IN-U-SET P2M
(IN-CONTEXT

((PUSH-GOAL

(IFF (IS X (LESS-OR-EQUAL-TO Y P2))
(IS X (LESS-OR-EQUAL-TO Y PM))

(IN-CONTEXT
((SUPPOSE

(IS X (LESS-OR-EQUAL-TO Y MM
(IN-CONTEXT SUPPOSE = X YM

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
((SUPPOSE

(IS X (LESS-OR-EQUAL-TO Y PM)
(IN-CONTEXT SUPPOSE = X YM

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOALM)

((P POSET)
(S2 (NON-EMPTY-SUBSET-OF

(U-SET P)))
(Y (IN-U-SET

(RESTRICT-ORDER P S2)))
(X (IN-U-SET

(RESTRICT-ORDER P S2))))
(IFF

(IS
(LESS-OR-EQUAL-TO Y

(RESTRICT-ORDER P S2)))
(IS

(LESS-OR-EQUAL-TO Y P)))))

292 APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTYPE (TOTAL-ORDER-ON (S SET))
(LAMBDA ((R (PARTIAL-ORDER-ON SM

(FORALL (MEMBER-OF S))
(Y (MEMBER-OF M

(OR = X Y)
(IS X (RELATED-TO Y R))
(IS Y (RELATED-TO X R))))))

(DEFTYPE TOTALLY-ORDERED-SET
(LAMBDA ((S RELATION-STRUCTURE))

(IS (GET-RELATION)
(TOTAL-ORDER-ON (U-SET WM

(LEMMA (EXISTS-SOME
TOTALLY-ORDERED-SET))

(LEMMA
(FORALL ((W TOTALLY-ORDERED-SET))

(IS W POSEM)

(LEMMA
(FORALL ((W TOTALLY-ORDERED-SET)

(X (IN-U-SET W))
(Y (IN-U-SET W)))

(OR (IS X
(LESS-OR-EQUAL-TO Y W))

(IS Y
(LESS-OR-EQUAL-TO X W)))))

(IN-CONTEXT
MET-BE SINGLETON-SET)

(LET-BE R (THE-EMPTY-RELATION-ON S))
(LET-BE V (MAKE-RELATION-STRUCTURE R SM

(NOTE (EXISTS-SOME TOTALLY-OADgRED-SET)))

(IN-CONTEXT
MET-BE V TOTALLY-ORDERED-SET)

(PUSH-GOAL (IS POSET))
(LET-BE R (GET-RELATION V))
(LET-BE S (U-SET M

(NOTE-GOAL))

(IN-CONTEXT
MET-BE TOTALLY-ORDERED-SET)

(LET-BE X. (IN-U-SET W))
(LET-BE Y (IN-U-SET W))
(LET-BE R (GET-RELATION W))
(LET-BE S (U-SET WM

(IN-CONTEXT
((PUSH-GOAL

(OR (IS X (LESS-OR-EQUAL-TO Y W))
(IS Y (LESS-OR-EQUAL-TO X W)))))

(IN-CONTEXT SUPPOSE = X YM
(NOTE-GOAL))

(IN-CONTEXT ((SUPPOSE (IS X (LESS-THAN Y WM)
(NOTE-GOAL))

(NOTE-GOALM

(DEFTYPE (MINIMAL-ELEMENT-OF (W POSET))
(LAMBDA ((X (IN-USET W)))

(NOT (EXISTS-SOME (LESS-THAN X W)))))

(DEFTYPE (MAXIMAL-ELEMENT-OF (W POSEM
(LAMBDA M (IN-U-SET W)))

(NOT (EXISTS-SOME (GREATER-THAN X W)))))

(DEFTYPE (UPPER-BOUND-OF (S (SUBSET-OF (U-SET W)))
(W POSET))

(LAMBDA ((A (IN-U-SET W)))
(IS-EVERY (MEMBER-OF)

(LESS-OR-EQUAL-TO A W))))

A -5. PARTIAL ORDERS AND ZORN'S LEMMA 293

(LEMMA
(FORALL ((W POSET)

(X (IN-U-SET W))
(Y (IN-U-SET W)))

(IS-EVERY
(AND-TYPE

(GREATER-OR-EQUAL-TO X W)
(GREATER-OR-EQUAL-TO Y W))

(UPPER-BOUND-OF (MAKE-SET X Y)

W))))

(IN-CONTEXT
MET-BE POSET)

(LET-BE X (IN-U-SET W))
(LET-BE Y (IN-U-SET W))
(PUSH-GOAL

(IS-EVERY
(AND-TYPE (GREATER-OR-EQUAL-TO X W)

(GREATER-OR-EQUAL-TO Y W))
(UPPER-BOUND-OF (MAKE-SET X Y) WM)

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME
(AND-TYPE

(GREATER-OR-EQUAL-TO X W)
(GREATER-OR-EQUAL-TO Y WM)

(LET-BE Z (AND-TYPE
(GREATER-OR-EQUAL-TO X W)
(GREATER-OR-EQUAL-TO Y WM)

(IN-CONTEXT
((PUSH-GOAL

(IS
(UPPER-BOUND-OF (MAKE-SET X Y WM)

(IN-CONTEXT ET-BE S (MAKE-SET X Y))
(LET-BE Z2 (MEMBER-OF M

(IN-CONTEXT
((PUSH-GOAL

(IS Z (GREATER-OR-EQUAL-TO Z WM)
(IN-CONTEXT SUPPOSE = Z2 XM

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(LEMMA
(FORALL ((W POSET)

(Y (IN-U-SET W))
(X (IN-U-SET W)))

(IS-EVERY
(UPPER-BOUND-OF (MAKE-SET X Y) W)
(GREATER-OR-EQUAL-TO X W))))

(IN-CONTEXT
MET-BE POSET)

(LET-BE X (IN-U-SET W))

(LET-BE Y (IN-U-SET W))
(LET-BE S (MAKE-SET X Y))
(PUSH-GOAL

(IS-EVERY (UPPER-BOUND-OF S W)
(GREATER-OR-EQUAL-TO X WM)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (UPPER-DOUND-OF WM
(LET-BE Z (UPPER-BOUND-OF S WM

(NOTE-GOAQ)
(NOTE-GOAL))

294 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((P POSET)

(X (IN-U-SET P))
(S (SUBSET-OF (U-SET P))))

(IS-EVERY
(AND-TYPE

(GREATER-OR-EQUAL-TO X P)
(UPPER-BOUND-OF S P))

(UPPER-BOUND-OF
(INSERT X S)

P))))

(IN-CONTEXT
MET-BE P POSET)

(LET-BE S (SUBSET-OF (U-SET P)))
(LET-BE X (IN-U-SET P))
(PUSH-GOAL

(IS-EVERY
(AND-TYPE (GREATER-OR-EQUAL-TO X P)

(UPPER-BOUND-OF S P))
(UPPER-BOUND-OF (INSERT X S) P))))

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME
(AND-TYPE (GREATER-OR-EQUAL-TO X P)

(UPPER-BOUND-OF P))))
(LET-BE Y

(AND-TYPE (GREATER-OR-EQUAL-TO X P)
(UPPER-BOUND-OF S P))))

(IN-CONTEXT
((PUSH-GOAL

(IS Y (UPPER-BOUND-OF (INSERT X S) P))))
(IN-CONTEXT ET-BE S2 (INSERT X S))

(LET-BE Z (MEMBER-OF S2)))
(IN-CONTEXT

((PUSH-GOAL
(IS Y (GREATER-OR-EQUAL-TO Z PM)

(IN-CONTEXT ((SUPPOSE = Z XM
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOALM

(NOTE-GOAL))
(NOTE-GOAL))

(DEFTYPE (LOWER-BOUND-OF (S (SUBSET-OF (U-SET WM
(W POSET))

(LAMBDA ((A (IN-U-SET WM
(IS-EVERY (MEMBER-OF S) (GREATER-OR-EQUAL-TO A WM)

A-5. PARTIAL ORDERS AND ZORN'S LEMAIIA 295

(LEMMA
(FORALL ((W POSET)

(X (IN-U-SET W))
(Y (IN-U-SET WM

(IS-EVERY
(AND-TYPE

(LESS-OR-EQUAL-TO X W)
(LESS-OR-EQUAL-TO Y W))

(LOWER-BOUND-OF
(MAKE-SET X Y)

W))))

(IN-CONTEXT
MET-BE POSET)

(LET-BE X (IN-U-SET W))
(LET-BE Y (IN-U-SET W))

(PUSH-GOAL
(IS-EVERY

(AND-TYPE (LESS-OR-EQUAL-TO X W)
(LESS-OR-EQUAL-TO YW))

(LOWER-BOUND-OF
(MAKE-SET X Y)

WM)

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME
(AND-TYPE

(LESS-OR-EQUAL-TO X)
(LESS-OR-EQUAL-TO Y WM)

(LET-BE Z (AND-TYPE
(LESS-OR-EQUAL-TO X W)
(LESS-OR-EQUAL-TO Y WM)

(IN-CONTEXT
UPUSH-GOAL

(IS
(LOWER-BOUND-OF

(MAKE-SET X Y)

WM)

(IN-CONTEXT ET-BE (MAKE-SET X M
(LET-BE Z2 (MEMBER-OF M

(IN-CONTEXT
((PUSH-GOAL

(IS Z (LESS-OR-EQUAL-TO Z WM)
(IN-CONTEXT SUPPOSE = 2 XM

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(LEMMA
(FORALL ((W POSET)

(Y (IN-U-SET W))
(X (IN-U-SET W)))

(IS-EVERY
(LOWER-BOUND-OF (MAKE-SET X Y) W)
(LESS-OR-EQUAL-TO X W))))

(IN-CONTEXT
MET-BE W POSET)

(LET-BE X M-U-SET W))
(LET-BE Y (IN-U-SET W))
(LET-BE S (MAKE-SET X Y))
(PUSH-GOAL

(IS-EVERY (LOWER-BOUND-OF S W)
(LESS-OR-EQUAL-TO X WM)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (LOWER-BOUND-OF WM
(LET-BE Z (LOWER-BOUND-OF S WM

(NOTE-GOAL))
(NOTE-GOAL))

296 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((P POSET)

(X (IN-U-SET P))
(S (SUBSET-OF (U-SET P))))

(IS-EVERY
(AND-TYPE

(LESS-OR-EQUAL-TO X P)
(LOWER-BOUND-OF S P))

(LOWER-BOUND-OF
(INSERT X S)

P))))

(IN-CONTEXT
MET-BE P POSET)

(LET-BE S (SUBSET-OF (U-SET P)))
(LET-BE X (IN-U-SET P))
(PUSH-GOAL

(IS-EVERY
(AND-TYPE (LESS-OR-EQUAL-TO X P)

(LOWER-BOUND-OF S P))
(LOWER-BOUND-OF (INSERT X S) P))))

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME
(AND-TYPE (LESS-OR-EQUAL-TO X P)

(LOWER-BOUND-OF P))))
(LET-BE Y

(AND-TYPE (LESS-OR-EQUAL-TO X P)
(LOWER-BOUND-OF S P))))

(IN-CONTEXT
((PUSH-GOAL

(IS Y (LOWER-BOUND-OF (INSERT X S) P))))
(IN-CONTEXT ET-BE S2 (INSERT X S))

(LET-BE Z (MEMBER-OF S2)))
(IN-CONTEXT

((PUSH-GOAL

(IS Y (LESS-OR-EQUAL-TO Z PM)
(IN-CONTEXT SUPPOSE = Z XM

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOALM
(NOTE-GOAL))

(NOTE-GOAL))

(DEFTYPE (LEAST-MEMBER-OF (S (SUBSET-OF (U-SET WM
(W POSET))

(LAMBDA (MEMBER-OF M
(IS-EVERY (MEMBER-OF)

(GREATER-OR-EQUAL-TO X WM)

A-5. PARTIAL ORDERS AND ZORN'S LEM.A11A 297

(LEMMA
(FORALL ((W POSET)

(S (SUBSET-OF-U-SET WM
(IS-EVERY (LEAST-MEMBER-OF S W)

(IN-U-SET W))))

(LEMMA
(FORALL ((W POSET)

(S (SUBSET-OF (U-SET W))))
(AT-MOST-ONE

(LEAST-MEMBER-OF S W))))

(IN-CONTEXT
MET-BE POSET)

(LET-BE (SUBSET-OF-U-SET WM
(IN-CONTEXT

((PUSH-GOAL
(IS-EVERY (LEAST-MEMBER-OF S)

(IN-U-SET WM)
(IN-CONTEXT

USUPPOSE
(EXISTS-SOME

(LEAST-MEMBER-OF S, WM
(LET-BE X (LEAST-MEMBER-OF S W))
(LET-BE S (U-SET WM

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CORTEXT
((PUSH-GOAL

(AT-MOST-ONE (LEAST-MEMBER-OF S WM)
(IN-CONTEXT

USUPPOSE

(EXISTS-SOME (LEAST-MEMBER-OF S, WM
(LET-BE X (LEAST-MEMBER-OF S W))
(LET-BE Y (LEAST-MEMBER-OF S, WM

(NOTE-GOAL))
(NOTE-GOALM

(DEFTYPE (GREATEST-MEMBER-OF (S (SUBSET-OF (U-SET WM
(W POSET))

(LAMBDA (MEMBER-OF S)))
(IS-EVERY (MEMBER-OF)

(LESS-OR-EQUAL-TO X W))))

298 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((W POSET)

(S (SUBSET-OF-U-SET W))
(X (GREATEST-MEMBER-OF WM

(IS X (IN-U-SET W))))

(LEMMA
(FORALL ((W POSET)

(S (SUBSET-OF (U-SET W)))
(AT-MOST-ONE

(GREATEST-MEMBER-OF S W))))

(IN-CONTEXT
MET-BE POSET)

(LET-BE S (SUBSET-OF-U-SET M
(IN-CONTEXT

((PUSH-GOAL
(IS-EVERY (GREATEST-MEMBER-OF S W)

(IN-U-SET WM)
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME

(GREATEST-MEMBER-OF WM
(LET-BE X (GREATEST-MEMBER-OF S W))
(LET-BE S (U-SET WM

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

(AT-MOST-ONE (GREATEST-MEMBER-OF WM)
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME

(GREATEST-MEMBER-OF WM
(LET-BE X (GREATEST-MEMBER-OF S W))
(LET-BE Y (GREATEST-MEMBER-OF WM

(NOTE-GOAL))
(NOTE-GOALM

(DEFTYPE (LEAST-UPPER-BOUND-OF (S (SUBSET-OF (U-SET W)))
(W POSEM

(LEAST-MEMBER-OF
(THE-SET-OF-ALL (UPPER-BOUND-OF S W)) W))

A-5. PARTIAL ORDERS AND ZORN'S LEMMA 299

(LEMMA

(FORALL ((W POSET)

(S (SUBSET-OF (U-SET W))))

(IS (THE-SET-OF-ALL

(UPPER-BOUND-OF S W))

(SUBSET-OF (U-SET W)))))

(LEMMA

(FORALL ((W POSET)

(S (SUBSET-OF (U-SET W))))

(AT-MOST-ONE

(LEAST-UPPER-BOUND-OF S W))))

(LEMMA

(FORALL

((W POSET)

(S (SUBSET-OF (U-SET W)))

(X. (LEAST-UPPER-BOUND-OF S W)))

(IS X (UPPER-BOUND-OF S W))))

(LEMMA

(FORALL ((W POSET)

(S (SUBSET-OF (U-SET W))))

(EXISTS-SOME

(UPPER-BOUND-OF S W))

(FORALL

M (UPPER-BOUND-OF S W)))

(IS-EVERY

(UPPER-BOUND-OF S)

(GREATER-OR-EQUAL-TO X. W))

(IS

(LEAST-UPPER-BOUND-OF S

(LEMMA

(FORALL ((W POSET)

(S (SUBSET-OF (U-SET W))))

(EXISTS-SOME

(LEAST-UPPER-BOUND-OF S W))

(FORALL

((Y (UPPER-BOUND-OF S W)))

(IS-EVERY

(LEAST-UPPER-BOUND-OF S)

(LESS-OR-EQUAL-TO Y W))))))

(IN-CONTEXT

MET-BE POSET)

(LET-BE S (SUBSET-OF (U-SET M

(LET-BE S2 (THE-SET-OF-ALL

(UPPER-BOUND-OF S WM)

(IN-CONTEXT ET-BE S3 (U-SET V))

(PUSH-GOAL (IS S2 (SUBSET-OF WM

(IN-CONTEXT SUPPOSE

(EXISTS-SOME (MEMBER-OF S2)))

(LET-BE X (MEMBER-OF 2M

(NOTE-GOAL))

(NOTE-GOAL))

(NOTE (AT-MOST-ONE (LEAST-UPPER-BOUND-OF WM

(IN-CONTEXT

((PUSH-GOAL

(IS-EVERY (LEAST-UPPER-BOUND-OF S W)

(UPPER-BOUND-OF S WM)

(IN-CONTEXT

((SUPPOSE

(EXISTS-SOME

(LEAST-UPPER-BOUND-OF WM

(LET-BE X (LEAST-UPPER-BOUND-OF WM

(NOTE-GOAL))

(NOTE-GOAQ)

(IN-CONTEXT

USUPPOSE

(EXISTS-SOME (UPPER-BOUND-OF WM

(LET-BE X (UPPER-BOUND-OF S W))

(SUPPOSE

(IS-EVERY (UPPER-BOUND-OF S W)

(GREATER-OR-EQUAL-TO X WM)

(NOTE (IS X (LEAST-UPPER-BOUND-OF S WM)

(IN-CONTEXT

USUPPOSE

(EXISTS-SOME

(LEAST-UPPER-BOUND-OF WM

(LET-BE X (LEAST-UPPER-BOUND-OF S W))

(LET-BE Y (UPPER-BOUND-OF WM

(NOTE (IS X (LESS-OR-EQUAL-TO Y W)))))

300 APPENDIX A. THE STONE REPRESENTATION THEORE-A/f

(LEMMA
(FORALL ((W POSET)

(X (IN-U-SET W))
(Y (IN-U-SET W)))

(AT-MOST-ONE
(LEAST-UPPER-BOUND-OF

(MAKE-SET X Y)
W))))

(LEMMA
(FORALL ((W POSET)

(X (IN-U-SET W))
(Y (IN-U-SET W)))

(EXISTS-SOME
(LEAST-UPPER-BOUND-OF

(MAKE-SET X Y)
W))

(Iff-CONTEXT
MET-BE V POSET)

(LET-BE X (IN-U-SET W))
(LET-BE Y (II-U-SET W))
(LET-BE S (MAKE-SET X Y)))

(NOTE (AT-MOST-ONE

(LEAST-UPPER-BOUND-OF S W)))

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME
(LEAST-UPPER-BOUND-OF WM

(LET-BE Z
(THE (LEAST-UPPER-BOUND-OF S W))))

(IN-CONTEXT
MET-BE Z2 (UPPER-BOUND-OF WM

(NOTE (IS Z (LESS-OR-EQUAL-TO Z2 W))))))

(FORALL M2 (UPPER-BOUND-OF
(MAKE-SET X Y)

W)))
(IS (THE (LEAST-UPPER-BOUND-OF

(MAKE-SET X Y)
W))

(LESS-OR-EQUAL-TO Z2
W))))))

(DEFTYPE (GREATEST-LOWER-BOUND-OF
(S (SUBSET-OF (U-SET W)))
(W POSET))

(GREATEST-MEMBER-OF
(THE-SET-CF-ALL

(LOWER-BOUND-OF S W))

W))

301

(LEMMA

(FORALL ((W POSET)

(S (SUBSET-OF (U-SET W))))

(IS (THE-SET-OF-ALL

(LOWER-BOUND-OF S W))

(SUBSET-OF (U-SET W)))))

(LEMMA

(FORALL ((W POSET)

(S (SUBSET-OF (U-SET W))))

(AT-MOST-ONE

(GREATEST-LOWER-BOUND-OF S W))))

(LEMMA

(FORALL

((W POSET)

(S (SUBSET-OF (U-SET W)))

(X (GREATEST-LOWER-BOUND-OF S, W)))

(IS X (LOWER-BOURD-OF S W))))

(LEMMA

(FORALL ((W POSET)

(S (SUBSET-OF (U-SET W))))

(EXISTS-SOME

(LOWER-BOUND-OF S W))

(FORALL

M (LOWER-BOUND-OF S W)))

(IS-EVERY

(LOWER-BOUND-OF S W)

(LESS-OR-EQUAL-TO X W))

(IS

(GREATEST-LOWER-BOUND-OF S

W)))))))

(LEMMA

(FORALL ((W POSET)

(S (SUBSET-OF (U-SET W))))

(EXISTS-SOME

(GREATEST-LOWER-BOUND-OF W))

(FORALL

((Y (LOWER-BOUND-OF S W)))

(IS-EVERY I

(GREATEST-LOWER-BOUND-OF S W)

(GREATER-OR-EQUAL-TO Y W))))))

(IN-CONTEXT
MET-BE W POSET)

(LET-BE S (SUBSET-OF (U-SET WM
(LET-BE S2 (THE-SET-OF-ALL

(LOWER-BOUND-OF WM)
(IN-CONTEXT MET-BE S3 (U-SET W))

(PUSH-GOAL (IS S2 (SUBSET-OF S3))))
(IN-CONTEXT SUPPOSE

(EXISTS-SOME (MEMBER-OF S2)))
(LET-BE X (MEMBER-OF S2)))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE
(AT-MOST-ONE

(GREATEST-LOWER-BOUND-OF S VM

(IN-CONTEXT
((PUSH-GOAL

(IS-EVERY (GREATEST-LOWER-BOUND-OF S W)
(LOWER-BOUND-OF S WM)

(IN-CONTEXT
(OUPPOSE

(EXISTS-SOME
(GREATEST-LOWER-BOUND-OF S M

(LET-BE X (GREATEST-LOWER-BOUND-OF WM
(NOTE-GOAL))

(NOTE-GOAL))

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (LOWER-BOUND-OF S WM
(LET-BE X (LOWER-BOUND-OF W))
(SUPPOSE

(IS-EVERY (LOWER-BOUND-OF S W)
(LESS-OR-EQUAL-TO X WM)

(NOTE (IS X (GREATEST-LOWER-BOUND-OF S WM)

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME
(GREATEST-LOWER-BOUND-OF S WM

(LET-BE X (GREATEST-LOWER-BOUND-OF S W))
(LET-BE Y (LOWER-BOUND-OF WM

(NOTE (IS X (GREATER-OR-EQUAL-TO Y W)))))

A A PARTIAL ORDERS AND ZORN'S LEMMA

302

(IN-CONTEXT
MET-BE POSET)

(LET-BE X (IN-U-SET W))
(LET-BE Y (IN-U-SET W))
(LET-BE S (MAKE-SET X Y)))

(NOTE
(AT-MOST-ONE

(GREATEST-LOWER-BOUND-OF S W)))

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME
(GREATEST-LOWER-BOUND-OF S W)))

(LET-BE Z
(THE (GREATEST-LOWER-BOUND-OF S W))))

(IN-CONTEXT
MET-BE Z2 (LOWER-BOUND-OF S W)))

(NOTE (IS Z (GREATER-OR-EQUAL-TO Z2 W))))))

(LEMMA
(FORALL ((W POSET)

(X (IN-U-SET W))
(Y (IN-U-SET WM

(AT-MOST-ONE
(GREATEST-LOWER-BOUND-OF

(MAKE-SET X Y)

W))))

(LEMMA
(FORALL ((W POSET)

(X (IN-U-SET W))
(Y (IN-U-SET W)))

(EXISTS-SOME
(GREATEST-LOWER-BOUND-OF

(MAKE-SET X Y)
W))

(FORALL
((Z2 (LOWER-BOUND-OF

(MAKE-SET X Y)

W)))
(IS (THE

(GREATEST-LOWER-BOUND-OF
(MAKE-SET X Y)

W))
(GREATER-OR-EQUAL-TO Z2

W)j))))

(DEFTYPE (CHAIN-IN (P POSET))
(LAMBDA ((S (NON-EMPTY-SUBSET-OF (U-SET P))))

(IS (RESTRICT-ORDER P S)
TOTALLY-ORDERED-SET)))

(LEMMA
(FORALL UP POSET)

(X (IN-U-SET P)))
(IS (MAKE-SET X)

(CHAIN-IN P))))

(LEMMA
(FORALL ((Pl POSET)

(C (CHAIN-IN Pl))
(X (MEMBER-OF C))
(Y (MEMBER-OF CM

(OR (IS X
(LESS-OR-EQUAL-TO Y PM

(IS
(LESS-OR-EQUAL-TO X Pl)))))

(IN-CONTEXT ET-BE P POSET)
(LET-BE X (IN-U-SET P))
(LET-BE S (MAKE-SET X))
(PUSH-GOAL (IS (CHAIN-IN P))))

(LET-BE ((RCHAIN (RESTRICT-ORDER P S))
(LET-BE REL (GET-RELATION RCHAINM

(NOTE-GOALM

(IN-CONTEXT ET-BE Pl POSET)
(LET-BE C (CHAIN-IN PM
(LET-BE P2 (RESTRICT-ORDER Pl M
(LET-BE X (MEMBER-OF C))
(LET-BE Y (MEMBER-OF CM

(NOTE (OR (IS X (LESS-OR-EQUAL-TO Y PM
(IS Y (LESS-OR-EQUAL-TO X PMM

APPENDIX A. THE STONE REPRESENTATION THEOREM

A-5. PARTIAL ORDERS AND ZORN'S LEMMA 303

(DEFTYPE INDUCTIVE-ORDER
(LAMBDA ((R POSEM

(FORALL ((S (CHAIN-IN RM
(EXISTS-SOME (UPPER-BOUND-OF S R)))))

;We take Zorn's Lemma as an axiom

(AXIOM
(FORALL ((R INDUCTIVE-ORDER)

(X (IN-U-SET RM
(EXISTS-SOME

(AND-TYPE (MAXIMAL-ELEMENT-OF R)
(GREATER-OR-EQUAL-TO X R)))))

304 APPENDIX A. THE STONE REPRESENTATION THEOREM

A -6. LATTICES 305

A.6 Lattices

A lattice is a poset in which every pair of elements has both a least upper
bound and a greatest lower bound. The greatest lower bound and least upper
bound of two elements are called the meet and join respectively. A complete
lattice is a poset in which every subset of the underlying set has a least upper
bound. We prove that in a complete lattice every subset also has a greatest
lower bound.

The inclusion order on a family of sets F is a poset whose underlying
set is the family F and where x 'is less than or equal to y just in case x is
a subset of y. For any set the inclusion order on the power set of s is a
complete lattice such that for any subset F of the power set of s the least
upper bound and greatest lower bound of F are resectively the union and
intersection over F. The poset which is the 'Inclusion order on the power set
of is called a power set lattice.

The meet and join functions are monotone in each argument, i.e. increas-
ing an rgument never decreases the meet or .oin. The meet of x and the
meet of y and z is the greatest lower bound of the set x, y, z and thus the
meet function is associative. The join function is smilarly associative.

306 APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTYPE LATTICE
(LAMBDA ((W POSET))

(FORALL M (IN-U-SET W))
(Y (IN-U-SET WM

(AND
(EXISTS-SOME

(LEAST-UPPER-BOUND-OF (MAKE-SET X Y) W))
(EXISTS-SOME

(GREATEST-LOWER-BOUND-OF (MAKE-SET X Y) WMM

(DEFTERM (JOIN (X (IN-U-SET L))
(Y (IN-U-SET 0)
(L LATTICE))

(THE (LEAST-UPPER-BOUND-OF (MAKE-SET X Y) LM

(DEFTERM (MEET (X (IN-U-SET L))
(Y (IN-U-SET L))
(L LATTICE))

(THE (GREATEST-LOWER-BOUND-OF (MAKE-SET X Y) LM

(DEFTYPE COMPLETE-LATTICE
(LAMBDA ((W POSET))

(FORALL US (SUBSET-OF (U-SET WM)
(EXISTS-SOME (LEAST-UPPER-BOUND-OF S WM))

(LEMMA (EXISTS-SOME COMPLETE-LATTICE)) (IN-CONTEXT

((PUSH-GOAL (EXISTS-SOME COMPLETE-LATTICE))
(LET-BE SINGLETON-SET)
(LET-BE R (THE-EMPTY-RELATION-ON S))
(LET-BE W (MAKE-RELATION-STRUCTURE R S))
(LET-BE S2 (SUBSET-OF (U-SET WM)

(IN-CONTEXT
((PUSH-GOAL

(EXISTS-SOME
(LEAST-UPPER-BOUND-OF S WM)

(IN-CONTEXT
((SUPPOSE (EXISTS-SOME (MEMBER-OF S2)))

(LET-BE X (MEMBER-OF S2))
(LET-BE Y (UPPER-BOUND-OF S WM

(NOTE-GOAL))
(IN-CONTEXT

USUPPOSE

(NOT (EXISTS-SOME (MEMBER-OF S2))))
(LET-BE X. (MEMBER-OF S))
(LET-BE Y (UPPER-BOUND-OF S WM

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))

A -6. LATTICES 307

(LEMMA

(FORALL ((W COMPLETE-LATTICE)

(S (SUBSET-OF (U-SET WM)

(EXISTS-SOME

(GREATEST-LOWER-BOUND-OF WM)

(IN-CONTEXT

MET-BE COMPLETE-LATTICE)

(LET-BE S, (SUBSET-OF (U-SET WM

(PUSH-GOAL

(EXISTS-SOME

(GREATEST-LOWER-BOUND-OF WM)

(IN-CONTEXT

MET-BE 2

(THE-SET-OF-ALL (LOWER-BOUND-OF WM

(LET-BE X

(THE (LEAST-UPPER-BOUND-OF S2 WM)

(IN-CONTEXT

((PUSH-GOAL (IS X (LOWER-BOUND-OF S WM)

(IN-CONTEXT SUPPOSE

(EXISTS-SOME (MEMBER-OF M

(LET-BE Y (MEMBER-OF M

(IN-CONTEXT

((PUSH-GOAL

(IS Y (UPPER-BOUND-OF S WM)

(IN-CONTEXT

USUPPOSE

(EXISTS-SOME (MEMBER-OF S2)))

(LET-BE Z (MEMBER-OF S2)))

(NOTE-GOAL))

(NOTE-GOALM

(NOTE-GOAL))

(NOTE-GOALM

(LEMMA

(FORALL ((W COMPLETE-LATTICE))

(IS W LATTICEM

(IN-CONTEXT MET-BE COMPLETE-LATTICE)
(PUSH-GOAL (IS LATTICEM

(IN-CONTEXT ET-BE X (IN-U-SET W))
(LET-BE Y (IN-U-SET W))
(LET-BE SXY (MAKE-SET X YM

(NOTE-GOALM

(DEFTERM (INCLUSION-ORDER (F FAMILY-OF-SETS))
(MAKE-RELATION-STRUCTURE

(THE-RULE US (MEMBER-OF F)))
(THE-SET-OF-ALL

(AND-TYPE (MEMBER-OF F)
(PROPER-SUPERSET-OF S))))

F))

308 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((F FAMILY-OF-SETS))

(IS (THE-RULE ((S (MEMBER-OF F)))
(THE-SET-OF-ALL

(AND-TYPE
(MEMBER-OF F)
(PROPER-SUPERSET-OF S))))

(RELATION-ON F))))

(LEMMA
(FORALL ((F FAMILY-OF-SETS))

(IS (INCLUSION-ORDER F) POSETM

(IN-CONTEXT
MET-BE F FAMILY-OF-SETS)

(LET-BE R
(THE-RULE ((S (MEMBER-OF FM

(THE-SET-OF-ALL
(AND-TYPE (MEMBER-OF F)

(PROPER-SUPERSET-OF S))))))

(IN-CONTEXT

((PUSH-GOAL (IS R (RELATION-ON FM
(LET-BE (MEMBER-OF M
(LET-BE F2 (APPLY-RULE R SM

(IN-CONTEXT
((PUSH-GOAL (IS F2 (SUBSET-OF FM)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF F2)))
(LET-BE S2 (MEMBER-OF F2)))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

(IS (INCLUSION-ORDER F) POSETM
(IN-CORTEXT

((PUSH-GOAL
(IS R (PARTIAL-ORDER-ON FM

(LET-BE Sl (MEMBER-OF FM
(IN-CONTEXT

((PUSH-GOAL
(FORALL ((S2 (RELATED-TO Sl RM

(IS-EVERY (RELATED-TO S2 R)
(RELATED-TO Sl R)))))

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME (RELATED-TO Sl RM
(LET-BE S2 (RELATED-TO Sl RM

(IN-CONTEXT
((PUSH-GOAL

(IS-EVERY (RELATED-TO S2 R)
(RELATED-TO Sl RM)

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME
(RELATED-TO S2 RM

(LET-BE S3 (RELATED-TO S2 RM
(NOTE (IS S3 (NOT-EQUAL-TO SM)
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
MET-BE W (INCLUSION-ORDER FM

(NOTE-GOALM)

A -6. LATTICES 309

(LEMMA (FORALL ((F FAMILY-OF-SETS))

(U-SET

(INCLUSION-ORDER F))

F)))

(LEMMA

(FORALL ((F FAMILY-OF-SETS)

(S2 (MEMBER-OF F))

(Si (MEMBER-OF F)))

(IFF

(IS Si

(LESS-OR-EQUAL-TO

S2

(INCLUSION-ORDER F)))

(IS Si

(SUBSET-OF 2)))))

(IN-CONTEXT
MET-BE F FAMILY-OF-SETS)

(LET-BE R
(THE-RULE ((S (MEMBER-OF F)))

(THE-SET-OF-ALL
(AND-TYPE (MEMBER-OF F)

(PROPER-SUPERSET-OF S)))))
(LET-BE W (INCLUSION-ORDER F)))

(NOTE = U-SET W) F))

(IN-CONTEXT
MET-BE Sl (MEMBER-OF F))

(LET-BE S2 (MEMBER-OF F))
(PUSH-GOAL

(IFF (IS Sl (LESS-OR-EQUAL-TO S2 W))
(IS Sl (SUBSET-OF S2)))))

(IN-CONTEXT
((SUPPOSE

(IS Sl (LESS-OR-EQUAL-TO S2 WM)
(IN-CONTEXT SUPPOSE = Sl S2)))

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT SUPPOSE (IS Sl (SUBSET-OF S2))))
(IN-CONTEXT SUPPOSE = Sl S2)))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOALM

(DEFTERM (POWER-SET-LATTICE (S NON-EMPTY-SET))
(INCLUSION-ORDER (POWER-SET M

(DEFTYPE POWER-LATTICE
(WRITABLE-AS (POWER-SET-LATTICE S)

(S NON-EMPTY-SETM

310 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((B POWER-LATTICE))

(IS B POSETM

(LEMMA
(FORALL ((B POWER-LATTICE))

(IS (U-SET B)
FAMILY-OF-SETSM

(LEMMA
(FORALL

((B POWER-LATTICE)
(S NON-EMPTY-SET

(= B (POWER-SET-LATTICE SM)
S

(FAMILY-UNION
(U-SET WM)

(LEMMA
(FORALL ((B POWER-LATTICE))

(IS (FAMILY-UNION (U-SET B))
NON-EMPTY-SETM

(LEMMA
(FORALL ((B POWER-LATTICE))

(U-SET B)
(POWER-SET

(FAMILY-UNION
(U-SET B))))))

(IN-CONTEXT
MET-BE POWER-LATTICE)

(WRITE-AS (POWER-SET-LATTICE S)
(S NON-EMPTY-SET))

(LET-BE P (U-SET B))
(LET-BE P2 (POWER-SET M

(NOTE (IS B POSET))
(NOTE (IS (U-SET B) FAMILY-OF-SETS))
(NOTE = (FAMILY-UNION (U-SET WM
(NOTE (IS (FAMILY-UNION (U-SET B))

NON-EMPTY-SET))
(NOTE

(U-SET B)
(POWER-SET

(FAMILY-UNION (U-SET WM))

(LEMMA
(FORALL ((B POWER-LATTICE)

(92 (IN-U-SET BM
(IS S2 SETM

(LEMMA
(FORALL ((B POWER-LATTICE)

02 (IN-U-SET BM
(IS S2

(SUBSET-OF
(FAMILY-UNION

(U-SET BMM

(IN-CONTEXT
MET-BE B, POWER-LATTICE)

(WRITE-AS B, (POWER-SET-LATTICE S)
(S NON-EMPTY-SET))

(LET-BE P (U-SET B))
(LET-BE S2 (IN-U-SET BM

(NOTE (IS S SM
(NOTE

(IS 2
(SUBSET-OF

(FAMILY-UNION (U-SET BMM

A -6. LATTICES 311

(LEMMA
(FORALL ((B POWER-LATTICE)

(S2 (SUBSET-OF
(FAMILY-UNION

(U-SET B)))))
(IS S2 (IN-U-SET B))))

(LEMMA
(FORALL

((B POWER-LATTICE)
(S2 (IN-U-SET B))
(S3 (LESS-OR-EQUAL-TO S2 BM

(IS S3 (SUBSET-OF S2))))

(LEMMA
(FORALL ((B POWER-LATTICE)

(S2 (IN-U-SET B))
(S3 (SUBSET-OF S2)))

(IS S3
(LESS-OR-EQUAL-TO S WM

(LEMMA
(FORALL ((B POWER-LATTICE)

(F (N-EMPTY-SUBSET-OF
(U-SET B))))

(IS F FAMILY-OF-SETSM

(LEMMA
(FORALL ((B POWER-LATTICE)

(F (NON-EMPTY-SUBSET-OF
(U-SET WM

(IS (FAMILY-UNION F)
(LEAST-UPPER-BOUND-OF F WM

(IN-CONTEXT
MET-BE POWER-LATTICE)

(WRITE-AS (POWER-SET-LATTICE S)
(S NON-EMPTY-SET))

(LET-BE P (U-SET BM

(IN-CONTEXT
MET-BE S2

(SUBSET-OF
(FAMILY-UNION (U-SET B)M)

(NOTE (IS S2 (IN-U-SET BM)

(IN-CONTEXT ET-BE S2 (IN-U-SET BM
(IN-CONTEXT

MET-BE S3 (LESS-OR-EQUAL-TO S2 BM
(NOTE (IS S3 (SUBSET-OF S2))))

(IN-CONTEXT ET-BE S3 (SUBSET-OF S2)))
(NOTE (IS S3 (LESS-OR-EQUAL-TO S2 B)))))

(IN-CONTEXT
MET-BE F (NON-EMPTY-SUBSET-OF (U-SET BM

(PUSH-GOAL (IS F FAMILY-OF-SETSM
(IN-CONTEXT ET-BE (MEMBER-OF FM

(NOTE-GOALM)

(IN-CONTEXT
MET-BE POWER-LATTICE)

(LET-BE F (NON-EMPTY-SUBSET-OF (U-SET BM
(LET-BE LUB (FAMILY-UNION M
(PUSH-GOAL

(IS LUB (LEAST-UPPER-BOUND-OF F WM
(IN-CONTEXT

((PUSH-GOAL (IS LUB (IN-U-SET BM
(LET-BE S (FAMILY-UNION (U-SET BM)

(NOTE-GOAL))
(IN-CONTEXT

((PUSH-GOAL
(IS LUB (UPPER-BOUND-OF F BM

(LET-BE S (MEMBER-OF FM
(NOTE-GOAL))

(IN-CONTEXT
MET-BE (UPPER-BOUND-OF F BM

(IN-CONTEXT
((PUSH-GOAL

(IS-EVERY (MEMBER-OF F)
(SUBSET-OF SM

(LET-BE S2 (MEMBER-OF FM
(NOTE-GOAL))

(NOTE-GOALM

312 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((B POWER-LATTICE)

(F (NON-EMPTY-SUBSET-OF
(U-SET WM

(IS (FAMILY-INTERSECTION F)
(GREATEST-LOWER-BOUND-OF F WM

(IN-CONTEXT
MET-BE POWER-LATTICE)

(LET-BE F (NON-EMPTY-SUBSET-OF (U-SET BM
(LET-BE GLB (FAMILY-INTERSECTION F))
(PUSH-GOAL

(IS GLB

(GREATEST-LOWER-BOUND-OF F BM)
(IN-CONTEXT

((PUSH-GOAL (IS GLB (IN-U-SET BM
(LET-BE S (FAMILY-UNION (U-SET BM
(LET-BE S2 (MEMBER-OF FM

(NOTE-GOAL))
(IN-CONTEXT

((PUSH-GOAL (IS GLB (LOWER-BOUND-OF F BM
(LET-BE S (MEMBER-OF FM

(NOTE-GOAL))
(IN-CONTEXT

MET-BE (LOWER-BOUND-OF F BM
(IN-CONTEXT

((PUSH-GOAL
(IS-EVERY (MEMBER-OF F)

(SUPERSET-OF SM
(LET-BE S2 (MEMBER-OF FM

(NOTE-GOAL))
(NOTE-GOALM

A -6 LATTICES 313

(LEMMA
(FORALL ((B POWER-LATTICE))

(IS COMPLETE-LATTICEM

(IN-CONTEXT
MET-BE POWER-LATTICE)

(PUSH-GOAL (IS COMPLETE-LATTICEM
(IN-CONTEXT

MET-BE F (SUBSET-OF (U-SET BM)
(IN-CONTEXT

((PUSH-GOAL
(EXISTS-SOME

(LEAST-UPPER-BOUND-OF F BM)
(IN-CONTEXT

USUPPOSE
(EXISTS-SOME (MEMBER-OF FM)

(IN-CONTEXT
MET-BE (U-SET BM

(NOTE+GENERALIZE
(IS F

(NON-EMPTY-SUBSET-OF
(U-SET B)M)

(NOTE-GOAL))
(IN-CONTEXT

USUPPOSE
(NOT (EXISTS-SOME (MEMBER-OF FM)

(LET-BE ESET THE-EMPTY-SET))
(IN-CONTEXT

((PUSH-GOAL (IS ESET (IN-U-SET BM
(LET-BE S (FAMILY-UNION (U-SET WM

(-NOTE-GOAL))
(IN-CONTEXT

MET-BE S (UPPER-BOUND-OF F BM
(NOTE-GOALM

(NOTE-GOAQ)
(NOTE-GOALM

11)

APPENDIX A. THE STONE REPRESENTATION THEOREM314

(IN-CONTEXT ET-BE POWER-LATTICE)
(LET-BE (IN-U-SET B))
(LET-BE S2 (IN-U-SET BM

(IN-CONTEXT
((PUSH-GOAL

(JOIN S S2 B)
(UNION SI S2))))

(IN-CONTEXT
MET-BE S3 (MAKE-SET S2)))

(NOTE
(EXACTLY-ONE

(LEAST-UPPER-BOUND-OF S3 BM
(NOTE

(IS (UNION S2)

(LEAST-UPPER-BOUND-OF S3 BM)
(IN-CONTEXT

MET-BE J (JOIN S2 B))
(LET-BE U (UNION Sl S2)))

(NOTE-GOALM

(IN-CONTEXT
((PUSH-GOAL

(MEET S S2 B)
(INTERSECTION S S2))))

(IN-CONTEXT
MET-BE S3 (MAKE-SET S2)))

(NOTE
(EXACTLY-ONE

(GREATEST-LOWER-BOUND-OF S3 BM
(NOTE

(IS (INTERSECTION S2)
(GREATEST-LOWER-BOUND-OF S3 BM)

(IN-CONTEXT
MET-BE J (MEET S2 B))

(LET-BE U (INTERSECTION S2)))
(NOTE-GOALM)

(LEMMA
(FORALL ((B POWER-LATTICE)

(Sl (IN-U-SET B))
(S2 (IN-U-SET BM

(JOIN Sl S2 B)
(UNION Sl S2))))

(LEMMA
(FORALL ((B POWER-LATTICE)

(Sl (IN-U-SET B))
(S2 (IN-U-SET BM

(MEET Sl S2 B)
(INTERSECTION Sl S2))))

A -6. LATTICES 315

(IN-CONTEXT
MET-BE L LATTICE)

(LET-BE (IN-U-SET L))
(LET-BE Y (IN-U-SET L))
(LET-BE S (MAKE-SET X YM

(IN-CONTEXT
((PUSH-GOAL

(IS (MEET X Y L)
(LESS-OR-EQUAL-TO X LM

(LET-BE M (MEET X Y LM
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

(IS (JOIN X Y L)
(GREATER-OR-EQUAL-TO X LM

(LET-BE J (JOIN X Y LM
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

(IS-EVERY
(AND-TYPE

(LESS-OR-EQUAL-TO X L)
(LESS-OR-EQUAL-TO Y L))

(LESS-OR-EQUAL-TO (MEET X Y L) L))))
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME

(AND-TYPE
(LESS-OR-EQUAL-TO X L)
(LESS-OR-EQUAL-TO Y LM)

(LET-BE Z
(AND-TYPE (LESS-OR-EQUAL-TO X L)

(LESS-OR-EQUAL-TO Y LM
(LET-BE M (MEET X Y LM

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL.

(IS-EVERY
(AND-TYPE

(GREATER-OR-EQUAL-TO X L)
(GREATER-OR-EQUAL-TO Y L))

(GREATER-OR-EQUAL-TO (JOIN X Y L OM
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME

(AND-TYPE (GREATER-OR-EQUAL-TO X L)
(GREATER-OR-EQUAL-TO Y OM

(LET-BE Z (AND-TYPE
(GREATER-OR-EQUAL-TO X L)
(GREATER-OR-EQUAL-TO Y LM

(LET-BE J (JOIN X Y LM
(NOTE-GOAL))

(NOTE-GOALM

(LEMMA
(FORALL LATTICE)

(X IN-U-SET L))
(Y (IN-U-SET LM

(IS (MEET X Y L)
(LESS-OR-EQUAL-TO X OM

(LEMMA
(FORALL LATTICE)

(X (IN-U-SET L))
(Y (IN-U-SET LM

(IS (JOIN X Y L)
(GREATER-OR-EQUAL-TO X OM

(LEMMA
(FORALL LATTICE)

(X (IN-U-SET L))
(Y (IN-U-SET LM

(IS-EVERY
(AND-TYPE

(LESS-OR-EQUAL-TO X L)
(LESS-OR-EQUAL-TO Y L))

(LESS-OR-EQUAL-TO
(MEET X Y L)
LM)

(LEMMA
(FORALL LATTICE)

(X (IN-U-SET L))
(Y (IN-U-SET LM

(IS-EVERY
(AND-TYPE

(GREATER-OR-EQUAL-TO X L)
(GREATER-OR-EQUAL-TO Y L))

(GREATER-OR-EQUAL-TO
(JOIN X Y L)
OM

316 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL LATTICE)

(Y (IN-U-SET L))
(X (IN-U-SET LM

(IFF (IS X
(LESS-OR-EQUAL-TO Y L))

(MEET X Y L)
XM)

(LEMMA
(FORALL LATTICE)

(Y (IN-U-SET L))
(X (IN-U-SET LM

(IFF (IS X
(GREATER-OR-EQUAL-TO Y L))

(JOIN X Y L)

XM)

(LEMMA
(FORALL LATTICE)

(X (IN-U-SET L))
(Y (IN-U-SET LM

(JOIN (MEET X Y L)
y
L)

YM

(LEMMA
(FORALL LATTICE)

(X (IN-U-SET L))
(Y UN-U-SET LM

(MEET (JOIN X Y L)
y
L)

YM

(IN-CONTEXT ET-BE L LATTICE)
(LET-BE X (IN-U-SET L))
(LET-BE Y (IN-U-SET LM

(II-CONTEXT
((PUSH-GOAL

(IFF (IS X (LESS-OR-EQUAL-TO Y 0)
(= (MEET X Y L) X))))

;the ony-if case is trivial
(IN-CONTEXT SUPPOSE = (MEET X Y L) W)

(NOTE-GOAL))

(IN-CONTEXT
((SUPPOSE

(IS X (LESS-OR-EQUAL-TO Y OM
;in this case it is obvious that x
;is a lower bound, thus we only need
;to show that x is the greatest lower
;bound
(IN-CONTEXT

MET-BE Z
(UPPER-BOUND-OF (MAKE-SET X Y) L))

(LET-BE S (MAKE-SET X YM
(NOTE-GOAL)))

(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

(IFF (IS X (GREATER-OR-EQUAL-TO Y L))
(= (JOIN X Y L) XM)

(IN-CONTEXT ((SUPPOSE = (JOIN X Y L) XM
(NOTE-GOAL))

(IN-CONTEXT
USUPPOSE

(IS X (GREATER-OR-EQUAL-TO Y LM)
(IN-CONTEXT

MET-BE Z
(UPPER-BOUND-OF (MAKE-SET X Y) 0)

(LET-BE S (MAKE-SET X YM
(NOTE-GOALM

(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL = (JOIN (MEET X Y L) Y L)

Y))
(LET-BE M (MEET X Y LM

(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL = (MEET (JOIN X Y L) Y L)

Y))
(LET-BE J (JOIN X Y LM

(NOTE-GOALM

A -6. LATTICES 317

(LEMMA
(FORALL LATTICE)

(X (IN-U-SET L))
(X2 (LESS-OR-EQUAL-TO X L))
(Y (IN-U-SET LM

(IS (MEET X2 Y L)
(LESS-OR-EQUAL-TO (MEET X Y L)

LM)

(LEMMA
(FORALL LATTICE)

(X (IN-U-SET L))
(X2 (LESS-OR-EQUAL-TO X L))
(Y (IN-U-SET LM

(IS (JOIN X Y L)
(GREATER-OR-EQUAL-TO

(JOIN X2 Y L)
LM)

(LEMMA
(FORALL LATTICE)

(X (IN-U-SET L))
(Y (IN-U-SET L))
(Z (IN-U-SET LM

(MEET Z (MEET X Y L) L)
(THE

(GREATEST-LOWER-BOUND-OF
(MAKE-SET X Y Z)
OM)

(LEMMA
(FORALL LATTICE)

(X (IN-U-SET Q)
(Y (IN-U-SET L))
(Z (IN-U-SET LM

(JOIN Z (JOIN X Y L) L)
(THE

(LEAST-UPPER-BOUND-OF
(MAKE-SET X Y Z)

OM)

(IN-CONTEXT
MET-BE L LATTICE)

(LET-BE X (IN-U-SET L))
(LET-BE Y (IN-U-SET L))
(LET-BE X2 (LESS-OR-EQUAL-TO X LM

(IN-CONTEXT
((PUSH-GOAL

(IS (MEET X2 Y L)
(LESS-OR-EQUAL-TO (MEET X Y L OM

(IN-CONTEXT ET-BE (MEET X2 Y LM
(NOTE-GOALM

(IN-CONTEXT
((PUSH-GOAL

(IS (JOIN X Y L)
(GREATER-OR-EQUAL-TO

(JOIN X2 Y L)
LM)

(IN-CONTEXT ET-BE (JOIN X Y LM
(NOTE-GOALM)

(IN-CONTEXT
MET-BE L LATTICE)

(LET-BE X (IN-U-SET L))
(LET-BE Y (IN-U-SET L))
(LET-BE Z (IN-U-SET L))
(LET-BE SXY (MAKE-SET X Y))
(LET-BE SXYZ (MAKE-SET X Y ZM

;meet is associative
(IN-CONTEXT

MET-BE MXY (MEET X Y L))
(LET-BE MXYZ (MEET Z MXY L))
(PUSH-GOAL

MXYZ
(THE

(GREATEST-LOWER-BOUND-OF SXYZ L)))))
;it is already a lower bound so we must show
;that it is the greatest
(IN-CONTEXT

MET-BE LBOUND (LOWER-BOUND-OF SXYZ LM
(NOTE-GOALM

;join is associative
(IN-CONTEXT

MET-BE JXY (JOIN X. Y L))
(LET-BE JXYZ (JOIN Z JXY L))
(PUSH-GOAL

JXYZ
(THE

(LEAST-UPPER-BOUND-OF SXYZ OM)
(IN-CONTEXT

MET-BE UBOUND (UPPER-BOUND-OF SXYZ LM
(NOTE-GOALM)

318 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL LATTICE)

(Y (IN-U-SET L))
(X (IN-U-SET LM

(MEET X Y L)
(MEET Y X OM

(LEMMA
(FORALL LATTICE)

(Y (IN-U-SET L))
(X UN-U-SET LM

(JOIN X Y L)
(JOIN Y X OM

(LEMMA
(FORALL LATTICE)

(Z (IN-U-SET L))
(X (IN-U-SET L))
(Y (IN-U-SET LM

(MEET (MEET X Y L) Z L)
(MEET Z (MEET X Y L) LM)

(LEMMA
(FORALL LATTICE)

(Z (IN-U-SET L))
(X (IN-U-SET L))
(Y (IN-U-SET LM

(JOIN (JOIN X Y L) Z L)
(JOIN Z (JOIN X Y L OM

(LEMMA
(FORALL LATTICE)

(X (IN-U-SET L))
(Y (IN-U-SET 0)
(Z (IN-U-SET LM

(MEET X (MEET Y Z L) L)
(MEET (MEET X Y L) Z OM

(LEMMA
(FORALL LATTICE)

(X (IN-U-SET L))
(Y (IN-U-SET L))
(Z (IN-U-SET LM

(JOIN X (JOIN Y Z L) L)
(JOIN (JOIN X Y L) Z LM)

(IN-CONTEXT ET-BE L LATTICE)
(LET-BE X (IN-U-SET L))
(LET-BE Y (IN-U-SET LM

(NOTE (MEET X Y L)
(MEET Y X LM

(NOTE (JOIN X Y L)
(JOIN Y X LM

(IN-CONTEXT ET-BE Z (IN-U-SET LM
(IN-CONTEXT ET-BE MXY (MEET X Y LM

(NOTE = (MEET MXY Z L)
(MEET Z MXY OM

(IN-CONTEXT ET-BE JXY (JOIN X Y LM
(NOTE = (JOIN JXY Z L)

(JOIN Z JXY L))))
(NOTE (MEET X (MEET Y Z L) L)

(MEET (MEET X Y L) Z LM
(NOTE (JOIN X (JOIN Y Z L) L)

(JOIN (JOIN X Y L) Z OM)

A-7. BOUNDEDDISTRIBUTIVEANDCOAIIPLEAfFiNTEDLATTICES319

A,7 Bounded, Distributive and Cornplen-lented
Lattices

A bounded lattice is a lattice wth a greatest and a least member where
the greatest member is distinct from the least member (singleton lattices are
ruled out). If L is a bounded lattice and x and y are elements of L we say
that x and y are complements if their meet is the least member of L and
there 'oin is the greatest member of L. A complemented lattice is a bounded
lattice in which every element has at least one complement.

A distributive lattice is lattice in which meet distributes over join and
vice versa. In a bounded distributive lattice every element has at most one
complement. A Boolean lattice is a complemented distributive lattice We
prove deMorgan's laws for Boolean lattices and establish several distinct
characterizations of the lattice order relation.

We also show that every power set lattice is a Boolean lattice.

(DEFTYPE BOUNDED-LATTICE
(LAMBDA LATTICE))

(AND
(EXISTS-SOME

(GREATEST-MEMBER-OF (U-SET L) L))
(EXISTS-SOME

(LEAST-MEMBER-OF (U-SET L) L))
(NOT

(THE (GREATEST-MEMBER-OF (U-SET L) L))
(THE (LEAST-MEMBER-OF (U-SET L) LM)

(LEMMA (IN-CONTEXT ET-BE L LATTICE)
(FORALL M LATTICE)) (LET-BE (U-SET LM

(AT-MOST-ONE (NOTE (AT-MOST-ONE (GREATEST-MEMBER-OF LM
(GREATEST-MEMBER-OF (U-SET L) L) (NOTE (AT-MOST-ONE (LEAST-MEMBER-OF S L))))

(LEMMA
(FORALL LATTICE))

(AT-MOST-ONE
(LEAST-MEMBER-OF (U-SET L) L)

(DEFTERM (TOP (L BOUNDED-LATTICE))
(THE (GREATEST-MEMBER-OF (U-SET L) LM

(DEFTERM (BOTTOM (L BOUNDED-LATTICE))
(THE (LEAST-MEMBER-OF (U-SET L) LM

320 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL POWER-LATTICE))

(NOT = (FAMILY-UNION (U-SET 0)
THE-EMPTY-SETM)

(LEMMA
(FORALL POWER-LATTICE))

(IS L BOUNDED-LATTICEM

(LEMMA
(FORALL PWER-LATTICE))

(TOP L)
(FAMILY-UNION (U-SET L)))))

(LEMMA
(FORALL POWER-LATTICE))

(= (BOTTOM L) THE-EMPTY-SET)))

(IN-CONTEXT
MET-BE L POWER-LATTICE)

(LET-BE F (U-SET L))
(LET-BE T (FAMILY-UNION M
(LET-BE BOT THE-EMPTY-SET)
(LET-BE X (IN-U-SET LM

(NOTE (NOT = T BOTM
(NOTE (IS L BUNDED-LATTICE))
(NOTE (TOP L) T))
(NOTE (BOTTOM L) BOTM

(LEMMA
(FORALL BOUNDED-LATTICE))

(IS (TOP L)
(IN-U-SET OM

(LEMMA
(FORALL BOUNDED-LATTICE)

(X (IN-U-SET LM
(IS

(LESS-OR-EQUAL-TO (TOP L)
OM

(LEMMA
(FORALL BOUNDED-LATTICE)

(X (IN-U-SET LM
x

(MEET X (TOP L) LM)

(LEMMA
(FORALL BOUNDED-LATTICE)

(X (IN-U-SET LM
(TOP L)
(JOIN X (TOP L OM

(LEMMA
(FORALL BOUNDED-LATTICE))

(IS (BOTTOM L)
(IN-U-SET LM)

(LEMMA
(FORALL BOUNDED-LATTICE)

(X (IN-U-SET LM
(IS

(GREATER-OR-EQUAL-TO
(BOTTOM L)
OM

(IN-CONTEXT ET-BE L BOUNDED-LATTICE)
(LET-BE X (IN-U-SET L))
(LET-BE S (U-SET LM

(IN-CONTEXT MET-BE T (TOP LM
(NOTE (IS T (IN-U-SET LM
(NOTE (IS X (LESS-OR-EQUAL-TO T LM
(NOTE X (MEET X T LM
(NOTE T (JOIN X T OM

(IN-CONTEXT ET-BE F (BOTTOM LM
(NOTE (IS F (IN-U-SET LM
(NOTE (IS X (GREATER-OR-EQUAL-TO F LM
(NOTE X (JOIN X F LM
(NOTE F (MEET X F OM)

(LEMMA
(FORALL BOUNDED-LATTICE)

(X (IN-U-SET LM
x

(JOIN X (BOTTOM L OM
(LEMMA

(FORALL BOUNDED-LATTICE)
(X (IN-U-SET LM

(BOTTOM L)
(MEET X (BOTTOM L) LM)

(DEFTYPE DISTRIBUTIVE-LATTICE
(LAMBDA LATTICE))

(FORALL M (IN-U-SET L))
(Y (IN-U-SET L))
(Z (IN-U-SET LM

(AND (JOIN X (MEET Y Z L) L)
(MEET (JOIN X Y L) (JOIN X Z L) L))
(MEET X (JOIN Y Z L) L)
(JOIN (MEET X Y L) (MEET X Z L OM))

A.7. BOUNDEDDISTRIBUTIVEANDCOMPLEMFiNTEDLATTICES321

322 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL POWER-LATTICE)

(SI (IN-U-SET L))
(S2 (IN-U-SET L))
(S3 (IN-U-SET LM

(JOIN S (MEET S2 S3 L) L)

(UNION
Si
(INTERSECTION S2 S3)))))

(LEMMA
(FORALL POWER-LATTICE)

02 (IN-U-SET L))
(SI (IN-U-SET L))

03 (IN-U-SET LM
(MEET (JOIN S2 L)

(JOIN SI S3 L)
L)

(INTERSECTION
(UNION S S2)
(UNION S S3)))))

(LEMMA
(FORALL POWER-LATTICE)

(SI (IN-U-SET L))
02 (IN-U-SET L))
(S3 (IN-U-SET LM

(MEET S (JOIN S2 S3 L) L)
(INTERSECTION S (UNION 2

S3)))))

(LEMMA
(FORALL POWER-LATTICE)

(S2 (IN-U-SET L))
(SI (IN-U-SET L))

(S3 (IN-U-SET LM
(JOIN (MEET S2 L)

(MEET S S3 L)

L)
(UNION (INTERSECTION S2)

(INTERSECTION S S3)))))

(LEMMA
(FORALL POWER-LATTICE))

(IS L DISTRIBUTIVE-LATTICEM

(IN-CONTEXT ET-BE L POWER-LATTICE)
(LET-BE (IN-U-SET L))
(LET-BE S2 (IN-U-SET L))
(LET-BE S3 (IN-U-SET LM

(IN-CONTEXT ET-BE M23 (MEET S2 S3 LM
(NOTE = (JOIN Si M23 L)

(UNION S (INTERSECTION S2 S3)))))

(IN-CONTEXT ET-BE J12 (JOIN S2 L))
(LET-BE J13 (JOIN S3 LM

(NOTE = (MEET J12 J13 L)
(INTERSECTION (UNION 2)

(UNION S3)))))

(IN-CONTEXT ET-BE J23 (JOIN S2 S3 LM
(NOTE = (MEET J23 L)

(INTERSECTION S (UNION S2 S3)))))

(IN-CONTEXT ET-BE M12 (MEET Sl S2 L))
(LET-BE M13 (MEET S3 LM

(NOTE = (JOIN M12 M13 L)
(INTERSECTION (UNION S2)

(UNION S S3)))))

(NOTE (IS L DISTRIBUTIVE-LATTICEM

A.7. BOUNDEDDISTRIBUTIVEANDCOAIIPLEMENTEDLATTICES323

(DEFTYPE (COMPLEMENT-OF (X (IN-U-SET L))
(L BOUNDED-LATTICE))

(LAMBDA M (IN-U-SET LM
(AND (MEET X Y L)

(BOTTOM L))
(JOIN X Y L)
(TOP L)))))

(DEFTYPE COMPLEMENTED-LATTICE
(LAMBDA BOUNDED-LATTICE))

(FORALL M (IN-U-SET LM
(EXISTS-SOME

(COMPLEMENT-OF X OM)

(LEMMA

(FORALL POWER-LATTICE)

(Si (IN-U-SET LM

(IS (SET-DIFFERENCE

(FAMILY-UNION (U-SET L))

Si)

(COMPLEMERT-OF OM

(LEMMA

(FORALL POWER-LATTICE))

(IS L COMPLEMENTED-LATTICEM

(IN-CONTEXT
MET-BE L POWER-LATTICE)

(LET-BE UNIVERSE (FAMILY-UNION (U-SET LM
(LET-BE S (IN-U-SET L))
(LET-BE S2 (SET-DIFFERENCE UNIVERSE)))

(NOTE (IS S2 (COMPLEMENT-OF Si LM
(NOTE (IS L COMPLEMENTED-LATTICEM

(LEMMA
(EXISTS-SOME

(AND-TYPE DISTRIBUTIVE-LATTICE
BOUNDED-LATTICEM

(LEMMA
(FORALL (AID-TYPE

DISTRIBUTIVE-LATTICE
BOUNDED-LATTICE))

(X (IN-U-SET LM
(AT-MOST-ONE (COMPLEMENT-OF X L))))

(II-CONTEXT ET-BE L POWER-LATTICE))
(NOTE

(EXISTS-SOME

(AND-TYPE DISTRIBUTIVE-LATTICE
BOUNDED-LATTICEM)

(IN-CONTEXT
MET-BE L (AND-TYPE DISTRIBUTIVE-LATTICE

BOUNDED-LATTICE))
(LET-BE X (IN-U-SET L))
(PUSH-GOAL (AT-MOST-ONE (COMPLEMENT-OF X LM)

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME (COMPLEMENT-OF X LM
(LET-BE Yl (COMPLEMENT-OF X L))
(LET-BE Y2 (COMPLEMENT-OF X LM

(NOTE-GOAL))
(NOTE-GOAL))

(DEFTYPE BOOLEAN-LATTICE
(AND-TYPE DISTRIBUTIVE-LATTICE

COMPLEMENTED-LATTICE))

(DEFTERM (COMPLEMENT
(X (IN-U-SET B))
(B BOOLEAN-LATTICE))

(THE (COMPLEMENT-OF X BM

324 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(EXISTS-SOME BOOLEAN-LATTICE))

(LEMMA
(FORALL ((B BOOLEAN-LATTICE)

(X (IN-U-SET B))
(Y (IN-U-SET BM

(COMPLEMENT (MEET X Y B) B)
(JOIN (COMPLEMENT X B)

(COMPLEMENT Y B)
B))))

(LEMMA
(FORALL ((B BOOLEAN-LATTICE)

(X (IN-U-SET B))
(Y (IN-U-SET BM

(COMPLEMENT (JOIN X Y B) B)
(MEET (COMPLEMENT X B)

(COMPLEMENT Y B)
WM

(LEMMA
(FORALL ((B BOOLEAN-LATTICE)

(X (IN-U-SET B))
(Y (IN-U-SET BM

(MEET X Y B)
(COMPLEMENT

(JOIN (COMPLEMENT X B)
(COMPLEMENT Y B)
B)

BM)

(LEMMA
(FORALL ((B BOOLEAN-LATTICE)

(X (IN-U-SET B))
(Y (IN-U-SET BM

(JOIN X Y B)
(COMPLEMENT

(MEET (COMPLEMENT X B)
(COMPLEMENT Y B)
B)

BM)

(IN-CONTEXT ET-BE L POWER-LATTICE))
(NOTE (EXISTS-SOME BOOLEAN-LATTICEM

(IN-CONTEXT
MET-BE BOOLEAN-LATTICE)

(LET-BE X. (IN-U-SET B))
(LET-BE Y (IN-U-SET B))
(LET-BE CX (COMPLEMENT X B))
(LET-BE CY COMPLEMENT Y BM

(IN-CONTEXT ET-BE M (MEET X Y B))
(LET-BE J (JOIN CX CY M

(NOTE = (COMPLEMENT M B) JM

(II-CONTEXT ET-BE J (JOIN X Y B))
(LET-BE (MEET CX CY M

(NOTE = (COMPLEMENT J B) MM)

(IN-CONTEXT ET-BE BOOLEAN-LATTICE)
(LET-BE X (IN-U-SET B))
(LET-BE Y (IN-U-SET BM

(IN-CONTEXT ET-BE M (MEET X Y B))

(LET-BE J (JOIN (COMPLEMENT X B)
(COMPLEMENT Y B)
BM

(NOTE = M (COMPLEMENT J B))))
(IN-CONTEXT ET-BE J (JOIN X Y B))

(LET-BE M (MEET (COMPLEMENT X B)
(COMPLEMENT Y B)
BM

(NOTE = J (COMPLEMENT B)))))

A-7. BOUNDEDDISTRIBUTIVEANDCOAIIPLEMENTEDLATTICES325

;the following are equivalent:

(IS X (LESS-OR-EQUAL-TO Y B))

(IS (COMPLEMENT Y B)
(LESS-OR-EQUAL-TO

(COMPLEMENT X B)
B))

(MEET X (COMPLEMENT Y B) B)
(BOTTOM B))

(JOIN (COMPLEMENT X B) Y B)
(TOP B))

(LEMMA
(FORALL BOOLEAN-LATTICE)

(X (IN-U-SET B))
(Y (IN-U-SET BM

(IS
(LESS-OR-EQUAL-TO Y B))

(IS (COMPLEMENT Y B)
(LESS-OR-EQUAL-TO

(COMPLEMENT X B)
B)))))

(LEMMA
(FORALL BOOLEAN-LATTICE)

(X (IN-U-SET B))
(Y (IN-U-SET BM

(IS (COMPLEMENT Y B)
(LESS-OR-EQUAL-TO

(COMPLEMENT X B)
B))

(MEET X (COMPLEMENT Y B) B)
(BOTTOM B)))))

(LEMMA
(FORALL ((B BOOLEAN-LATTICE)

(X (IN-U-SET B))
(Y (IN-U-SET BM
(MEET X (COMPLEMENT Y B) B)
(BOTTOM B))
(JOIN (COMPLEMENT X B) Y B)
(TOP B)))))

(LEMMA
(FORALL BOOLEAN-LATTICE)

(Y (IN-U-SET B))
(X (IN-U-SET BM
(JOIN (COMPLEMENT X B) Y B)
(TOP B))

(IS
(LESS-OR-EQUAL-TO Y B)))))

(IN-CONTEXT ET-BE BOOLEAN-LATTICE)
(LET-BE X (IN-U-SET B))
(LET-BE Y (IN-U-SET BM

(IN-CONTEXT
((SUPPOSE (IS X (LESS-OR-EQUAL-TO Y BM

(PUSH-GOAL (IS (COMPLEMENT Y B)
(LESS-OR-EQUAL-TO

(COMPLEMENT X B)
BM)

(IN-CONTEXT ET-BE CX (COMPLEMENT X B))
(LET-BE CY (COMPLEMENT Y BM

(NOTE-GOALM

(IN-CONTEXT
((SUPPOSE (IS (COMPLEMENT Y B)

(LESS-OR-EQUAL-TO
(COMPLEMENT X B)
BM

(PUSH-GOAL = (MEET X (COMPLEMENT Y B) B)
(BOTTOM BM)

(IN-CONTEXT ET-BE CX (COMPLEMENT X B))
(LET-BE CY (COMPLEMENT Y BM

(NOTE-GOALM

(IN-CONTEXT
((SUPPOSE = (MEET X (COMPLEMENT Y B) B)

(BOTTOM BM
(PUSH-GOAL = (JOIN (COMPLEMENT X B) Y B)

(TOP WM
(IN-CONTEXT ET-BE CY (COMPLEMENT Y B))

(LET-BE J
(JOIN (COMPLEMENT X B) Y BM

(NOTE-GOALM

(IN-CONTEXT

USUPPOSE = (JOIN (COMPLEMENT X B) Y B)
(TOP BM

(PUSH-GOAL (IS X (LESS-OR-EQUAL-TO Y WM
(IN-CONTEXT ET-BE CX (COMPLEMENT X B))

(LET-BE M (MEET X Y BM
(NOTE-GOALM)

326 APPENDIX A. THE STONE REPRESENTATION THEOREM

A-8. SUBLATTICES 327

A,8 Sublattices

A lattice subset of a Boolean lattice is a subset that is closed under the meet
and join operations of the lattice. The poset which results from restricting the
order in L to lattice subset of L is called a lattice ubalgebra of L. We prove
that a lattice subalgebra of L is a lattice wth the same lattice operations as
L.

A Boolean subset of Boolean lattice is a lattice subset which is also closed
under taking complements; from deMorgan's laws it is sufficient that the sub-
set be closed under intersection and complement or union and completement.
The poset which results from restricting the order of a boolean lattice L to
a Boolean subset of L is called a Boolean subalgebra of L. We prove that a
Boolean subalgebra of L is a Boolean lattice with the same Boolean opera-
tions as L.

(DEFTYPE (FINITE-MEET-SUBSET-OF (B LATTICE))
(LAMBDA US (NON-EMPTY-SUBSET-OF (U-SET BM)

(FORALL (MEMBER-OF M
(FORALL (MEMBER-OF M

(IS (MEET X Y B) (MEMBER-OF WM)

(DEFTYPE (FINITE-JOIN-SUBSET-OF (B LATTICE))
(LAMBDA US N-EMPTY-SUBSET-OF (U-SET BM)

(FORALL (MEMBER-OF M
(FORALL ((Y (MEMBER-OF M

(IS (JOIN X Y B) (MEMBER-OF WM)

(DEFTYPE (LATTICE-SUBSET-OF (L LATTICE))
(AND-TYPE (FINITE-MEET-SUBSET-OF L)

(FINITE-JOIN-SUBSET-OF LM

(LEMMA (IN-CONTEXT ET-BE L LATTICE)
(FORALL M LATTICE)) (LET-BE (U-SET L))

(IS (U-SET L) (PUSH-GOAL

(LATTICE-SUBSET-OF LM) (IS (LATTICE-SUBSET-OF LM)
(IN-CONTEXT ET-BE X (IN-U-SET L))

(LET-BE Y (IN-U-SET LM
(IN-CONTEXT ET-BE M (MEET X Y LM

(NOTE (IS M (MEMBER-OF M)
(IN-CONTEXT ET-BE J (JOIN X Y LM

(NOTE (IS J (MEMBER-OF M)
(NOTE-GOALM

328 APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTYPE (LATTICE-SUBALGEBRA-OF (L LATTICE))
(WRITABLE-AS (RESTRICT-ORDER L S)

(S (LATTICE-SUBSET-OF OM

(LEMMA
(FORALL LATTICE))

(EXISTS-SOME
(LATTICE-SUBALGEBRA-OF L))))

(LEMMA
(FORALL

((Li LATTICE)

M2 (LATTICE-SUBALGEBRA-DF LiM
(IS (U-SET L2)

(LATTICE-SUBSET-OF L))))

(IN-CONTEXT ET-BE L LATTICE)
(LET-BE (U-SET L))
(LET-BE L2 (RESTRICT-ORDER L SM

(NOTE
(EXISTS-SOME

(LATTICE-SUBALGEBRA-OF LM)

(IN-CONTEXT
MET-BE Ll LATTICE)

(LET-BE L2 (LATTICE-SUBALGEBRA-OF Ll))
(WRITE-AS L2 (RESTRICT-ORDER Ll S)

(S (LATTICE-SUBSET-OF Ll))))
(NOTE (IS (U-SET L2) (LATTICE-SUBSET-OF Ll))))

, - -----1 W�- �

A. 8. S UBLATTICES 329

(LEMMA

(FORALL

Ml LATTICE)

(L2 (LATTICE-SUBALGEBRA-OF Ll))

(X (IN-U-SET L2)))

(IS X (IN-U-SET Ll))))

(LEMMA

(FORALL

Ml LATTICE)

(L2 (LATTICE-SUBALGEBRA-OF Ll))

(X (IN-U-SET L2))

(Y (IN-U-SET L2)))

(IS (JOIN X Y Ll)

(LEAST-UPPER-BOUND-OF

(MAKE-SET X Y)

L2))))

(LEMMA

(FORALL

Ml LATTICE)

(L2 (LATTICE-SUBALGEBRA-OF Ll))

(X (IN-U-SET L2))

(Y (IN-U-SET L2)))

(IS (MEET X Y Ll)

(GREATEST-LOWER-BOURD-OF

(MAKE-SET X Y)

L2))))

(LEMMA

(FORALL

Ml LATTICE)

(L2 (LATTICE-SUBALGEBRA-OF Ll)))

(IS L2 LATTICEM

(LEMMA

(FORALL

Ml LATTICE)

U2 (LATTICE-SUBALGEBRA-OF Ll))

(X (IN-U-SET L2))

(Y (IN-U-SET L2)))

(JOIN X Y Ll)

(JOIN X Y L2))))

(LEMMA

(FORALL

Ml LATTICE)

(L2 (LATTICE-SUBALGEBRA-OF Ll))

(X UN-U-SET L2))

(Y UN-U-SET L2)))

(MEET X Y Ll)

(MEET X Y L2))))

(IN-CONTEXT
MET-BE Li LATTICE)

(LET-BE L2 (LATTICE-SUBALGEBRA-OF L))
(LET-BE X (IN-U-SET L2))
(LET-BE Y M-U-SET L2))
(WRITE-AS L2 (RESTRICT-ORDER L)

(S (LATTICE-SUBSET-OF L))))

(NOTE (IS X (IN-U-SET L)))

(IN-CONTEXT ET-BE (MAKE-SET X YM
(IN-CONTEXT

MET-BE J (JOIN X Y L)
(PUSH-GOAL

(IS J (LEAST-UPPER-BOUND-OF S L2)))
(LET-BE Z (UPPER-BOUND-OF S L2)))

(NOTE-GOAL))
(IN-CONTEXT

MET-BE M (MEET X Y Ll))
(PUSH-GOAL

(IS M (GREATEST-LOWER-BOUND-OF L2)))
(LET-BE Z (LOWER-BOUND-OF S L2)))

(NOTE-GOALM

(NOTE (IS L2 LATTICE))

(IN-CONTEXT ET-BE J (JOIN X Y L))
(NOTE = (JOIN X Y L) (JOIN X Y L2))))

(IN-CONTEXT ET-BE M (MEET X Y L))
(NOTE = (MEET X Y Ll) (MEET X Y L2)'))))

APPENDIX A. TE STONE REPRESENTATION THEOREM330

(LEMMA

(FORALL

Ml LATTICE)

(L2 (LATTICE-SUBALGEBRA-OF LW

(Z (IN-U-SET L2))

(X (IN-U-SET L2))

(Y (IN-U-SET L2)))

(MEET Z (JOIN X Y L2) L2)

(MEET Z (JOIN X Y Ll WM

(LEMMA

(FORALL

Ml LATTICE)

(L2 (LATTICE-SUBALGEBRA-OF LW

(Z (IN-U-SET L2))

(X (IN-U-SET L2))

(Y (IN-U-SET L2)))

(JOIN Z (JOIN X Y L2) L2)

(JOIN Z (JOIN X Y Ll) Ll))))

(LEMMA

(FORALL

Ml LATTICE)

M2 (LATTICE-SUBALGEBRA-OF LW

(X (IN-U-SET L2))

(Z (IN-U-SET L2))

(Y (IN-U-SET L2)))

(MEET (JOIN X Y L2)

(JOIN Z Y L2)

L2)

(MEET (JOIN X Y Ll)

(JOIN Z Y Ll)

WM

(IN-CONTEXT
MET-BE LI LATTICE)

(LET-BE L2 (LATTICE-SUBALGEBRA-DF L))
(LET-BE X (IN-U-SET L2))
(LET-BE Y (IN-U-SET L2))
(LET-BE Z (IN-U-SET L2))
(WRITE-AS L2 (RESTRICT-ORDER Ll S)

(S (LATTICE-SUBSET-OF L)))
(LET-BE J (JOIN X Y L2)))

(NOTE (MEET Z (JOIN X Y L2) L2)
(MEET Z (JOIN X Y L) Ll)))

(NOTE (JOIN Z (JOIN X Y L2),L2)
(JOIN Z (JOIN X Y L L)

(IN-CONTEXT ET-BE J2 (JOIN Z Y L2)))
(NOTE = (MEET (JOIN X Y L2)

(JOIN Z Y L2)
L2)

(MEET (JOIN X Y L)

(JOIN Z Y LI)
LI)))))

A. 8. S UBLATTICES 331

(LEMMA
(FORALL

MI LATTICE)
M2 (LATTICE-SUBALGEBRA-OF L))

(Z (IN-U-SET L2))
(X (IN-U-SET L2))
(Y (IN-U-SET L2)))
(JOIN Z (MEET X Y L2) L2)
(JOIN Z (MEET X Y L L)))

(LEMMA
(FORALL

((LI LATTICE)
M2 (LATTICE-SUBALGEBRA-OF L))
(Z (IN-U-SET L2))
(X (IN-U-SET L2))
(Y (IN-U-SET L2)))
(MEET Z (MEET X Y L2) L2)
(MEET Z (MEET X Y L) LIM)

(LEMMA
(FORALL

((LI LATTICE)
(L2 (LATTICE-SUBALGEBRA-OF L))

(X (IN-U-SET L2))
(Z (IN-U-SET L2))
(Y (IN-U-SET L2)))
(JOIN (MEET X Y L2)

(MEET Z Y L2)
L2)

(JOIN (MEET X Y L)
(MEET Z Y L)
LI))))

(LEMMA
(FORALL ((LI LATTICE))

(IN-CONTEXT
MET-BE L LATTICE)

(LET-BE L2 (LATTICE-SUBALGEBRA-CF L))
(LET-BE X (IN-U-SET L2))
(LET-BE Y (IN-U-SET L2))
(LET-BE Z (IN-U-SET L2))
(WRITE-AS L2 (RESTRICT-ORDER L)

(S (LATTICE-SUBSET-OF L))))

(IN-CONTEXT ET-BE M (MEET X Y L2)))
(NOTE (JOIN Z (MEET X Y L2) L2)

(JOIN Z (MEET X Y L L))

(NOTE (MEET Z (MEET X Y L2) L2)
(MEET Z (MEET X Y L L)))

(IN-CONTEXT ET-BE M2 (MEET Z Y L2)))
(NOTE = (JOIN (MEET X Y L2)

(MEET Z Y L2)
L2)

(JOIN (MEET X Y L)
(MEET Z Y L)

LIM))

(IN-CONTEXT
((SUPPOSE (IS L DISTRIBUTIVE-LATTICEM

(NOTE (IS L2 DISTRIBUTIVE-LATTICEM)

(IS Ll DISTRIBUTIVE-LATTICE)
(FORALL

M2 (LATTICE-SUBALGEBRA-OF LM)
(IS L2 DISTRIBUTIVE-LATTICE)))))

(DEFTYPE (COMPLEMENTED-SUBSET-OF (B BOOLEAN-LATTICE))
(LAMBDA ((S (NON-EMPTY-SUBSET-OF (U-SET WM

(FORALL (MEMBER-OF M
(IS (COMPLEMENT X B) (MEMBER-OF S)))))

(DEFTYPE (BOOLEAN-SUBSET-OF (B BOOLEAN-LATTICE))
(AND-TYPE (FINITE-MEET-SUBSET-OF B)

(FINITE-JOIN-SUBSET-OF B)
(COMPLEMENTED-SUBSET-OF BM

332 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((B BOOLEAN-LATTICE)

(S (SUBSET-OF (U-SET WM

(IS
(AND-TYPE

(FINITE-MEET-SUBSET-OF B)
(COMPLEMENTED-SUBSET-OF BM

(IS S (BOOLEAN-SUBSET-OF WM)

(IN-CONTEXT ET-BE BOOLEAN-LATTICE)
(LET-BE (SUBSET-OF (U-SET WM

(IN-CONTEXT
USUPPOSE

(IS
(AND-TYPE

(FINITE-MEET-SUBSET-OF B)
(COMPLEMENTED-SUBSET-OF WM

(PUSH-GOAL (IS (BOOLEAN-SUBSET-OF WM
(IN-CONTEXT ET-BE X (MEMBER-OF S))

(LET-BE Y (MEMBER-OF M
(IN-CONTEXT ET-BE CX (COMPLEMENT X B))

(LET-BE CY (COMPLEMENT Y BM
(NOTE (IS (MEET CX CY B) (MEMBER-OF M)

(IN-CONTEXT ET-BE J (JOIN X Y B))
(LET-BE M

(MEET (COMPLEMENT X B)
(COMPLEMENT Y B) BM

(NOTE-GOALM))

(IN-CONTEXT ET-BE BOOLEAN-LATTICE)
(LET-BE (SUBSET-OF (U-SET B))))

(IN-CONTEXT
((SUPPOSE

(IS
(AND-TYPE (FINITE-JOIN-SUBSET-OF B)

(COMPLEMENTED-SUBSET-OF WM
(PUSH-GOAL (IS (BOOLEAN-SUBSET-OF WM

(IN-CONTEXT ET-BE X (MEMBER-OF S))
(LET-BE Y (MEMBER-OF M

(IN-CONTEXT ET-BE CX (COMPLEMENT X B))
(LET-BE CY (COMPLEMENT Y BM

(NOTE (IS (JOIN CX CY B) (MEMBER-OF M)
(IN-CONTEXT ET-BE M (MEET X Y B))

(LET-BE J

(JOIN (COMPLEMENT X B)
(COMPLEMENT Y B) BM

(NOTE-GOALM))

(LEMMA
(FORALL ((B BOOLEAN-LATTICE)

(S (SUBSET-OF (U-SET BM)

(IS
(AND-TYPE

(FINITE-JOIN-SUBSET-OF B)

(COMPLEMENTED-SUBSET-OF B)))

(IS S (BOOLEAN-SUBSET-OF B)))))

(DEFTYPE (BOOLEAN-SUBALGEBRA-DF (B BOOLEAN-LATTICE))
(WRITABLE-AS (RESTRICT-ORDER)

(S (BOOLEAN-SUBSET-OF BM)

(LEMMA
(FORALL ((B BOOLEAN-LATTICE))

(IS (U-SET B)
(BOOLEAN-SUBSET-OF WM

(IN-CONTEXT ET-BE BOOLEAN-LATTICE)
(LET-BE (U-SET B))
(PUSH-GOAL

(IS S (BOOLEAN-SUBSET-OF WM
(IN-CONTEXT ET-BE X (IN-U-SET BM

(IN-CONTEXT ET-BE CX (COMPLEMENT X BM
(NOTE (IS CX (MEMBER-OF M)

(IN-CONTEXT ET-BE Y (IN-U-SET BM
(IN-CONTEXT ET-BE M (MEET X Y BM

(NOTE (IS M (MEMBER-OF M)
(NOTE-GOALM)

A 8. S UBLATTICES 333

(LEMMA
(FORALL

((Bl
(B2

(IS B2

(IN-CONTEXT

MET-BE Bl BOOLEAN-LATTICE)
(LET-BE B2 (BOOLEAN-SUBALGEBRA-OF BM
(WRITE-AS B2 (RESTRICT-ORDER Bl S)

(S (BOOLEAN-SUBSET-OF WM

(NOTE (IS B2 (LATTICE-SUBALGEBRA-DF BIM

(IN-CONTEXT MET-BE X (IN-U-SET B2)))
(IN-CONTEXT ET-BE CX (COMPLEMENT X Bl)))

;top = (join x cx bl)
(NOTE (IS (TOP Bl) (IN-U-SET B2)))
;bottom = (meet x cx b)
(NOTE (IS (BOTTOM Bl) (IN-U-SET B2)))))

(IN-CONTEXT ET-BE T (TOP M
(LET-BE X (IN-U-SET B2)))

(NOTE
(IS T

(GREATEST-MEMBER-OF (U-SET B2) B2))))

(IN-CONTEXT ET-BE F (BOTTOM M
(LET-BE X (IN-U-SET B2)))

(NOTE
(IS F

(LEAST-MEMBER-OF (U-SET B2) B2))))

(IN-CONTEXT ET-BE T (TOP Bl)))
(NOTE = (TOP B2) (TOP WM

(IN-CONTEXT ET-BE F (BOTTOM Bl)))
(NOTE = (BOTTOM B2) (BOTTOM BOM

(IN-CONTEXT ET-BE X (IN-U-SET B2))
(LET-BE CX (COMPLEMENT X BM

(NOTE (IS B2 COMPLEMENTED-LATTICE))
(ROTE = (COMPLEMENT X B2)

(COMPLEMENT X BMM

BOOLEAN-LATTICE)
(BOOLEAN-SUBALGEBRA-OF BM)
(LATTICE-SUBALGEBRA-OF BlM)

(LEMMA
(FORALL

(01 BOOLEAN-LATTICE)
02 (BOOLEAN-SUBALGEBRA-OF BM)

(IS (TOP Bl) (IN-U-SET KM)
(LEMMA

(FORALL
(01 BOOLEAN-LATTICE)
02 (BOOLEAN-SUBALGEBRA-OF Bl)))

(IS (BOTTOM B1) (IN-U-SET B2))))

(LEMMA
(FORALL

(01 BOOLEAN-LATTICE)
02 (BOOLEAN-SUBALGEBRA-OF BM)

(IS (TOP El)
(GREATEST-MEMBER-OF (U-SET B2)

KM)

(LEMMA
(FORALL

(01 BOOLEAN-LATTICE)
02 (BOOLEAN-SUBALGEBRA-DF Bl)))

(IS (BOTTOM El)
(LEAST-MEMBER-OF (U-SET B2 KM)

(LEMMA
(FORALL

((Bl BOOLEAN-LATTICE)
02 (BOOLEAN-SUBALGEBRA-OF BM)
(TOP B2) (TOP BM)

(LEMMA
(FORALL

((Bl BOOLEAN-LATTICE)
02 (BOOLEAN-SUBALGEBRA-OF Bl)))
(BOTTOM B2) (BOTTOM WM

(LEMMA
(FORALL

(01 BOOLEAN-LATTICE)
02 (BOOLEAN-SUBALGEBRA-OF BM)

(IS B2 COMPLEMENTED-LATTICEM

(LEMMA
(FORALL

(01 BOOLEAN-LATTICE)
02 (BOOLEAN-SUBALGEBRA-OF l))
(X (IN-U-SET B2)))
(COMPLEMENT X B2)
(COMPLEMENT X BOM

334 APPENDIX A. THE STONE REPRESENTATION THEOREM

A. 9. LATTICE MORPHISMS 335

A.9 Lattice I\4orphisrns

A Boolean homornorphisrn is a map between Boolean lattices which com-
mutes with meet, join, and complementation. By deMorgan's laws it suffices
that the map commute with meet and completentation or oin and comple-
mentation. The image of a Boolean homorphism is a Boolean subset of the
range lattice. A Boolean isornorphisrn is a bjective Boolean homomorphism.

(DEFTYPE LATTICE-MAP
(LAMBDA ((H MAP))

(AND (IS (DOMAIN H) LATTICE)
(IS (RANGE) LATTICEM)

(DEFTYPE MAP-WHICH-RESPECTS-JOIN
(LAMBDA ((H LATTICE-MAP))

(FORALL M (IN-MAP-DOMAIN H))
(Y (IN-MAP-DOMAIN HM

(APPLY-MAP H (JOIN X Y (DOMAIN HM
(JOIN (APPLY-MAP H X)

(APPLY-MAP H Y)
(RANGE WM)

(DEFTYPE MAP-WHICH-RESPECTS-MEET
(LAMBDA ((H LATTICE-MAP))

(FORALL M (IN-MAP-DOMAIN H)
(Y (IN-MAP-DOMAIN H))

(APPLY-MAP H (MEET X Y (DOMAIN HM
(MEET (APPLY-MAP H X)

(APPLY-MAP Y)
(RANGE WM)

(DEFTYPE BOOLEAN-MAP
(LAMBDA ((H LATTICE-MAP))

(AND (IS (DOMAIN H)
BOOLEAN-LATTICE0

(IS (RANGE H)
BOOLEAN-LATTICEM)

(DEFTYPE MAP-WHICH-RESPECTS-COMPLEMENT
(LAMBDA ((H BOOLEAN-MAP))

(FORALL M (IN-MAP-DOMAIN HM
(APPLY-MAP H (COMPLEMENT X (DOMAIN HM
(COMPLEMENT (APPLY-MAP X)

(RANGE WM)

336 APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTYPE BOOLEAN-HOMOMORPHISM
(AND-TYPE MAP-WHICH-RESPECTS-JOIN

MAP-WHICH-RESPECTS-MEET
MAP-WHICH-RESPECTS-COMPLEMENT))

(DEFTYPE (BOOLEAN-HOMOMORPHISM-BETWEEN
(Bl BOOLEAN-LATTICE)
(B2 BOOLEAN-LATTICE))

(LAMBDA (MAP-BETWEEN Bl B2)))
(IS H BOOLEAN-HOMOMORPHISM)))

(DEFTYPE BOOLEAN-ISOMORPHISM
(AND-TYPE BOOLEAN-HOMOMORPHISM

BIJECTION))

(DEFTYPE (BOOLEAN-ISOMORPHISM-BETWEEN
(Bl BOOLEAN-LATTICE)
(B2 BOOLEAN-LATTICE))

(AND-TYPE (BOOLEAN-HOMOMORPHISM-BETWEEN Bl B2)
BIJECTION))

(DEFTYPE (BOOLEAN-LATTICE-ISOMORPHIC-TO
(Bl BOOLEAN-LATTICE))

(LAMBDA ((B2 BOOLEAN-LATTICE))
(EXISTS-SOME

(BOOLEAN-ISOMORPHISM-BETWEEN Bl B2))))

(LEMMA
(EXISTS-SOME LATTICE-MAP))

(LEMMA
(EXISTS-SOME BOOLEAN-MAP))

(IN-CONTEXT ET-BE L LATTICE)
(LET-BE I (IDENTITY-MAP LM

(NOTE (EXISTS-SOME'LATTICE-MAP)))

(IN-CONTEXT ET-BE BOOLEAR-LATTICE)
(LET-BE I (IDENTITY-MAP M

(NOTE (EXISTS-SOME BOOLEAN-MAPM

337

(LEMMA
(FORALL ((H BOOLEAN-MAP))

(AND
(IS H

MAP-WHICH-RESPECTS-COMPLEMENT)
(IS H

MAP-WHICH-RESPECTS-JOIN))

(IS H MAP-WHICH-RESPECTS-MEET))))

(LEMMA
(FORALL ((H BOOLEAN-MAP))

(AND
(IS H

MAP-WHICH-RESPECTS-COMPLEMENT)
(IS H

MAP-WHICH-RESPECTS-MEET))

(IS H MAP-WHICH-RESPECTS-JOIN))))

(IN-CONTEXT ET-'BE BOOLEAN-MAP)
(LET-BE Bl (DOMAIN H))
(LET-BE B2 (RANGE HM

(IN-CONTEXT
USUPPOSE

(IS AP-WHICH-RESPECTS-JOIN))
(SUPPOSE

(IS H MAP-WHICH-RESPECTS-COMPLEMENT))
(PUSH-GOAL

(IS H MAP-WHICH-RESPECTS-MEET)))
(IN-CONTEXT ET-BE X (IN-U-SET BO)

(LET-BE Y (IN-U-SET BM)
(IN-CONTEXT

MET-BE CX COMPLEMENT X BO)
(LET-BE CY (COMPLEMENT Y BM
(LET-BE J (JOIN CX CY M)

(NOTE = (APPLY-MAP H (MEET X Y BM
(COMPLEMENT

(JOIN COMPLEMENT
(APPLY-MAP H X)
B2)

(COMPLEMENT
(APPLY-MAP H Y)

B2)
B2)

KM)
(IN-CONTEXT ET-BE HX (APPLY-MAP H X))

(LET-BE HY (APPLY-MAP YM
(NOTE-GOALM)

(IN-CONTEXT
((SUPPOSE

(IS H MAP-WHICH-RESPECTS-MEET))
(SUPPOSE

(IS H MAP-WHICH-RESPECTS-COMPLEMENT))
(PUSH-GOAL

(IS H MAP-WHICH-RESPECTS-JOIN)))
(IN-CONTEXT ET-BE X (IN-U-SET BM

(LET-BE Y (IN-U-SET BM)
(IN-CONTEXT

MET-BE CX (COMPLEMENT X BO)
(LET-BE CY CPLEMENT Y BM

(LET-BE M (MEET CX CY BM)
(NOTE = (APPLY-MAP (JOIN X Y BM

(COMPLEMENT
(MEET (COMPLEMENT

(APPLY-MAP X)
B2)

(COMPLEMENT
(APPLY-MAP H Y)
B2)

B2)
B2))))

(IN-CONTEXT ET-BE HX (APPLY-MAP H X))
(LET-BE HY (APPLY-MAP H YM

(NOTE-GOALM))

A. 9. LATTICE MORPHISMS

---Plmmmmpxm � � ., .-., I -- -1- � -1

338 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((B BOOLEAN-LATTICE))

(IS (IDENTITY-MAP)
BOOLEAN-HOMOMORPHISM)))

(LEMMA
(FORALL ((H BOOLEAN-HOMOMORPHISM))

(IS (IMAGE H)
(BOOLEAN-SUBSET-OF

(RANGE WM

(IN-CONTEXT
MET-BE BOOLEAN-LATTICE)

(LET-BE I (IDENTITY-MAP B))
(PUSH-GOAL

(IS I BOOLEAN-HOMOMORPHISM)))
(IN-CONTEXT ET-BE X (IN-U-SET B))

(LET-BE Y (IN-U-SET BM
(IN-CONTEXT MET-BE CX (COMPLEMENT X BM

(NOTE (IS I MAP-WHICH-RESPECTS-COMPLEMENT)))
(IN-CONTEXT ET-BE J (JOIN X Y BM

(NOTE (IS I AP-WHICH-RESPECTS-JOINM)
(NOTE-GOAL))

(IN-CONTEXT ET-BE H BOOLEAN-HOMOMORPHISM)
(LET-BE Bl (DOMAIN H))
(LET-BE B2 (RANGE H))
(LET-BE S (IMAGE HM

(IN-CONTEXT
((PUSH-GOAL

(IS S (BOOLEAN-SUBSET-OF B2))))
(IN-CONTEXT

MET-BE X (MEMBER-OF S))
(LET-BE Y (MEMBER-OF S))
(WRITE-AS X (APPLY-MAP H PRE-X)

(PRE-X (IN-U-SET (DOMAIN H)))
(WRITE-AS Y (APPLY-MAP H PRE-Y)

(PRE-Y (IN-U-SET (DOMAIN WM
(IN-CONTEXT

MET-BE PM
(MEET PRE-X PRE-Y (DOMAIN HM)

(NOTE
(IS (MEET X Y B2)

(MEMBER-OF SM)
(IN-CONTEXT

MET-BE PC

(COMPLEMENT PRE-X (DOMAIN HM)
(NOTE

(IS (COMPLEMENT X B2)
(MEMBER-OF SM)

(NOTE-GOALM)

(DEFTERM (BOOLEAN-IMAGE (H BOOLEAN-HOMOMORPHISM))
(RESTRICT-ORDER (RANGE H) (IMAGE H)))

339

(LEMMA
(FORALL ((H BOOLEAN-HOMOMORPHISM))

(IS (BOOLEAN-IMAGE H)
(BOOLEAN-SUBALGEBRA-OF

(RANGE WM

(LEMMA
(FORALL ((H BOOLEAN-HOMOMORPHISM))

(IS (BOOLEAN-IMAGE H)
BOOLEAN-LATTICEM

(LEMMA
(FORALL ((H BOOLEAN-HOMOMORPHISM))

(IS (BOOLEAN-IMAGE H)
(STRUCTURE-CONTAINING

(IMAGE KM))

(LEMMA
(FORALL ((H BOOLEAN-HOMOMORPHISM))

(U-SET (BOOLEAN-IMAGE H))
(IMAGE OM

(IN-CONTEXT ET-BE BOOLEAR-ROMOMORPHISM)
(LET-BE B2 (RANGE H)
(LET-BE S2 (IMAGE H))
(LET-BE B3 (BOOLEAN-IMAGE HM

(NOTE (IS B3 (BOOLEAN-SUBALGEBRA-OF B2)))
(NOTE (IS B3 BOOLEAN-LATTICE))
(NOTE (IS B3 (STRUCTURE-CONTAINING (IMAGE H))))
(NOTE = U-SET B3) (IMAGE OM

A. 9. LATTICE MORPHISMS

� -A--- -- -- --
I � � � -1-11 - -1-

340 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL

((H BOOLEAN-HOMOMORPHISM)
(X (IN-U-SET (BOOLEAR-INAGE H))))
(COMPLEMENT X

(BOOLEAN-IMAGE H))
(COMPLEMENT X

(RANGE H)))))

(LEMMA
(FORALL

((H BOOLEAN-HOMOMORPHISM)
(X (IN-U-SET

(BOOLEAN-IMAGE H)))
(Y (IN-U-SET

(BOOLEAN-IMAGE H))))
(JOIN X Y

(BOOLEAR-IMAGE H))
(JOIN X Y

(RANGE H)))))

(LEMMA
(FORALL

((H BOOLEAN-HOMOMORPHISM)
(X (IN-U-SET

(BOOLEAN-IMAGE H)))
(Y (IN-U-SET

(BOOLEAN-IMAGE H)))
(MEET X Y

(BOOLEAN-IMAGE H))
(MEET X Y

(RANGE H)))))

(LEMMA
(FORALL ((H BOOLEAN-HOMOMORPHISM))

(IS (SET!-RANGE (BOOLEAN-IMAOE H))
BOOLEAT-HOMOMORPHISM)))

(IN-CONTEXT
MET-BE H BOOLEAN-ROMOMORPHISM)

(LET-BE BIMAGE (BOOLEAT-IMAGE H))
(LET-BE 2 (SET!-RANGE H BIMAGEM

(IN-CONTEXT ET-BE BRANGE (RANGE H))
(LET-BE X (IN-U-SET BIMAGE))
(LET-BE Y (IN-U-SET BIMAGEM

(NOTE (COMPLEMENT X BIMAGE)
(COMPLEMENT X BRANGEM

(NOTE (JOIN X Y BIMAGE)
(JOIN X Y BRANGEM

(NOTE (MEET X Y BIMAGE)
(MEET X Y BRANGEM)

(IN-CONTEXT
((PUSH-GOAL

(IS H2 BOOLEAN-HOMOMORPHISM))
(LET-BE BDOMAIN (DOMAIN H))
(LET-BE X (IN-U-SET BDOMAIN))
(LET-BE Y (IN-U-SET BDOMAIN))
(LET-BE HX (APPLY-MAP H2 W
(LET-BE HY (APPLY-MAP H2 YM

(IN-CONTEXT

MET-BE CX (COMPLEMENT X BDOMAIN))
(LET-BE HCX (APPLY-MAP 2 CX)))

(NOTE
(IS H2

MAP-WHICH-RESPECTS-COMPLEMENT)))
(IN-CONTEXT

MET-BE MX (MEET X Y BDOMAIN))
(LET-BE HMX (APPLY-MAP H2 MX)))

(NOTE
(IS H2 MAP-WHICH-RESPECTS-MEET)))

(NOTE-GOALM

MMMRINNMOIOM -" m'' �� oWomp"

A. IO. FILTERS AND ULTRAFILTERS 341

A.10 Filters and Ultrafilters

A filter in a bounded lattice L is a subset F of L which satisfies the following
conditions:

* F does not contain the least member of L.

* If x is in F then every member of L greater than x 'is in F.

* If x and y are in L then the meet of x and y are 'in L.

If x is a member of a bounded lattice L then the filter generated by x is
the set of all members of L greater than or equal to x. We show that the
filter generated by x is a filter of L.

An utrafilter is a maximal filter, i.e. an ultrafilter of L 'is a filter of L
which is not a proper subset of any other filter of L. We show that the set
of all filters of L ordered under inclusion is an inductive order and thus by
Zorn's lemma every filter 'is contained in some ultrafilter. We also show that
if the 'oin of x and y is a member of an ultrafilter F then either x is 'in F or
y is in F. This 'Implies that if F 'is an ultrafilter in a Boolean lattice L and
x is any member of L, either x or the complement of x is a member of the
ultrafilter F.

(DEFTYPE (FILTER-OF (L BOUNDED-LATTICE))
(LAMBDA ((S (NON-EMPTY-SUBSET-OF (U-SET LM)

(AND (NOT (IS (BOTTOM L) (MEMBER-OF M
(FORALL (MEMBER-OF M

(IS-EVERY (GREATER-OR-EQUAL-TO X L)
(MEMBER-OF M

(FORALL ((X (MEMBER-OF M
(FORALL ((Y (MEMBER-OF M

(IS (MEET X Y L)
(MEMBER-OF WM))

(DEFTYPE (NOY-BOTTOM-MEMBER-OF (L BOUNDED-LATTICE))
(LAMBDA (IN-U-SET LM

(NOT = X (BOTTOM L)))))

(LEMMA (IN-CONTEXT ET-BE L BOUNDED-LATTICE)
(FORALL M BOUNDED-LATTICE)) (LET-BE T (TOP LM

(EXISTS-SOME (NOTE
(NON-BOTTOM-MEMBER-OF LM) (EXISTS-SOME

(NON-BOTTOM-MEMBER-OF LM)

-- - I -0 � 0 � �.- 40, , - I I

APPENDIX A. THE STONE REPRESENTATION THEOREM

(DEFTERM (FILTER-GENERATED-BY
(X (NON-BOTTOM-MEMBER-OF L))
(L BOUNDED-LATTICE))

(THE-SET-OF-ALL
(GREATER-OR-EQUAL-TO X LM

342

(II-CONTEXT
MET-BE L BOUNDED-LATTICE)

(LET-BE X (NON-BOTTOM-MEMBER-OF L))
(LET-BE F (FILTER-GENERATED-BY X L))
(PUSH-GOAL (IS F (FILTER-OF OM

(IN-CONTEXT ET-BE (U-SET L))
(LET-BE Y (MEMBER-OF FM

(NOTE
(IS F (NON-EMPTY-SUBSET-OF (U-SET OM)

(IN-CONTEXT ET-BE BOT (BOTTOM LM
(NOTE

(NOT
(IS (BOTTOM L) (MEMBER-OF F)))))

(IN-CONTEXT
MET-BE Y (MEMBER-OF F))

(LET-BE Z (GREATER-OR-EQUAL-TO Y LM
(NOTE (FORALL ((Y (MEMBER-OF FM

(IS-EVERY
(GREATER-OR-EQUAL-TO Y L)
(MEMBER-OF F)))))

(IN-CONTEXT MET-BE Y (MEMBER-OF F))
(LET-BE Z (MEMBER-OF F))
(LET-BE M (MEET X Y LM

(NOTE (FORALL ((Y (MEMBER-OF F))
(Z (MEMBER-OF FM

(IS (MEET Y Z L)
(MEMBER-OF F)))))

(NOTE-GOAL))

(LEMMA
(FORALL

M BOUNDED-LATTICE)
(X (NON-BOTTON-MEMBER-OF LM

(IS (FILTER-GENERATED-BY X L)
(FILTER-OF OM

(LEMMA
(FORALL BOUNDED-LATTICE)

(F (FILTER-OF LM
(IS (TOP L)

(MEMBER-OF FM)

(IN-CONTEXT
MET-BE L BOUNDED-LATTICE)

(LET-BE F (FILTER-OF)
(PUSH-GOAL

(IS (TOP L) (MEMBER-OF FM)

(IN-CONTEXT MET-BE X (MEMBER-OF F))
(LET-BE T (TOP LM

(NOTE-GOALM

(LEMMA
(FORALL ((B, BOOLEAN-LATTICE)

(F (FILTER-OF B))
(X (MEMBER-OF FM

(NOT (IS (COMPLEMENT X B)
(MEMBER-OF FM))

(IN-CONTEXT ET-BE BOOLEAN-LATTICE)
(LET-BE F (FILTER-OF B))
(LET-BE X (MEMBER-OF M
(LET-BE CX (COMPLEMENT X BM

(NOTE (NOT (IS CX (MEMBER-OF WM)

11 "N"op"m till, � -�

343

(MAXIMAL-ELEMENT-OF
(INCLUSION-ORDER

(THE-SET-CF-ALL (FILTER-OF OM)

(IN-CONTEXT MET-BE L BOUNDED-LATTICE)
(PUSH-GOAL

(IS-EVERY (ULTRAFILTER-OF L)
(FILTER-OF OM

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (ULTRAFILTER-OF LM
(LET-BE F (ULTRAFILTER-OF L))
(LET-BE FILTER-SET

(THE-SET-CF-ALL (FILTER-OF LM
(LET-BE FILTER-POSET

(INCLUSION-ORDER FILTER-SETM
(NOTE-GOAL))

(NOTE-GOAL))

(IN-CONTEXT
MET-BE L BOUNDED-LATTICE)

(PUSH-GOIL
(FORALL ((F (ULTRAFILTER-OF LM

(NOT
(EXISTS-SOME

(AND-TYPE
(FILTER-OF L)
(PROPER-SUPERSET-OF FMM)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (ULTRAFILTER-OF LM
(LET-BE F (ULTRAFILTER-OF LM

(IN-CONTEXT
(OUPPOSE

(EXISTS-SOME
(AND-TYPE

(FILTER-OF L)
(PROPER-SUPERSET-OF FM)

(LET-BE 2
(AND-TYPE (FILTER-OF L)

(PROPER-SUPERSET-OF FM
(LET-BE FILTER-SET

(THE-SET-OF-ALL (FILTER-OF LM
(LET-BE FILTER-POSET

(INCLUSION-ORDER FILTER-SETM
(NOTE-CONTRADICTION))

(NOTE-GOAL))
(NOTE-GOAL))

(LEMMA
(FORALL BOUNDED-LATTICE)

(F (ULTRAFILTER-OF LM
(IS F (FILTER-OF OM

(LEMMA
(FORALL M BOUNDED-LATTICE)

(F (ULTRAFILTER-OF LM
(NOT

(EXISTS-SOME
(AND-TYPE

(FILTER-OF L)
(PROPER-SUPERSET-OF F))))))

A. 10. FILTERS AND ULTRAFILTERS

(DEFTYPE (ULTRAFILTER-OF (L BOUNDED-LATTICE))

I

344 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL BOUNDED-LATTICE))

(IS (THE-SET-OF-ALL (FILTER-OF L))
FAMILY-OF-SETSM

(IN-CONTEXT
MET-BE L BOUNDED-LATTICE)

(LET-BE F
(THE-SET-OF-ALL (FILTER-OF LM

(LET-BE S (MEMBER-OF FM
(NOTE (IS F FAMILY-OF-SETSM

no

A. 0. FILTERS AND ULTRAFILTERS 345

We now come to the proof that every filter 'is contained 'in some ultrafilter.
The following natural argument is taken from [Bell & Machover 77] page 136.

Let F be the set of all filters in a Boolean algebra B F can be
partially ordered by inclusion. We wll show that, wth respect
to this ordering, chains in F have upper bounds in F. -

Let r be a chain in F, and let C = ur. if x, y E C then
for some D E r, x E D and y E. Sinceris a chain, either
D C E or E C D suppose the latter case obtains. Then x, y (E D
and because D is a filter we have x A y E D C C. If z E D and
x < z then ipso facto z E D C C. Since D for all DEr,
it follows that C. Therefore C is a filter and is the required
upper bound forrin F.

We may accordingly 'invoke Zorn's Lemma to conclude that,
for every filter D n F contains a maximal member i.e. an

I I
ultrafilter, which 'Includes D.

A comparison of the above English proof wth the Ontic proof given below
yields a predicater count loss factor of 13 and a word count loss factor of
1.2.

346 APPENDIX A. THE STONE REPRESENTATION THEOREM

(IN-CONTEXT
MET-BE L BOUNDED-LATTICE)

(LET-BE FILTER-FAMILY
(THE-SET-OF-ALL (FILTER-OF LM

(LET-BE FILTER-POSET
(INCLUSION-ORDER FILTER-FAMILM

(PUSH-GOAL (IS FILTER-POSET INDUCTIVE-ORDERM

(IN-CONTEXT ET-BE C (CHAIN-IN FILTER-POSETM

(IN-CONTEXT ET-BE (MEMBER-OF W)
(NOTE (IS C FAMILY-OF-SETSM

(IN-CONTEXT
((PUSH-GOAL

(EXISTS-SOME
(UPPER-BOUND-OF C FILTER-POSETM

(LET-BE UC (FAMILY-UNION W)

(IN-CONTEXT
((PUSH-GOAL (IS UC (FILTER-OF LM)

(IN-CONTEXT ET-BE USET (U-SET L))
(LET-BE S (MEMBER-OF W)

(NOTE
(IS UC (NON-EMPTY-SUBSET-OF USETM)

(IN-CORTEXT
MET-BE BOT (BOTTOM L))

(SUPPOSE (IS BOT (MEMBER-OF UCM
(WRITE-AS BOT (MEMBER-OF)

(S (MEMBER-OF CM)
(NOTE-CONTRADICTION))

(IN-CONTEXT
((PUSH-GOAL

(FORALL (MEMBER-OF UCM
(IS-EVERY

(GREATER-OR-EQUAL-TO X. L)
(MEMBER-OF UCM)

(LET-BE X (MEMBER-OF UC))
(LET-BE Y (GREATER-OR-EQUAL-TO X LM

(IN-CONTEXT ((WRITE-AS X (MEMBER-OF)
(S (MEMBER-OF CM)

(NOTE-GOALM

continued on next page

(LEMMA
(FORALL BOUNDED-LATTICE))

(IS (INCLUSION-ORDER
(THE-SET-OF-ALL

(FILTER-OF LM
INDUCTIVE-ORDERM

r�l

347

;continued from previous page (IN-CONTEXT
((PUSH-GOAL

(FORALL (MEMBER-OF UC))
(Y (MEMBER-OF UCM

(IS (MEET X Y L) (MEMBER-OF UCM)
(LET-BE X (MEMBER-OF UC))
(LET-BE Y (MEMBER-OF UC))
(LET-BE (MEET X Y LM

(IN-CONTEXT
((PUSH-GOAL (IS M (MEMBER-OF UCM

(WRITE-AS X (MEMBER-OF Sl)
(Sl (MEMBER-OF CM

(WRITE-AS Y (MEMBER-OF S2)
(S2 (MEMBER-OF CM)

(IN-CONTEXT

((SUPPOSE (IS Sl (SUBSET-OF WM
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))

(IN-CONTEXT ET-BE (MEMBER-OF CM
(NOTE

(IS c
(UPPER-BOUND-OF C FILTER-POSETM)

(NOTE-GOAL))

(NOTE-GOALM

(LEMMA
(FORALL BOUNDED-LATTICE)

(F (FILTER-OF LM
(EXISTS-SOME

(AND-TYPE
(ULTRAFILTER-OF L)
(SUPERSET-OF FM))

(IN-CONTEXT
MET-BE L BOUNDED-LATTICE)

(LET-BE F (FILTER-OF L))
(PUSH-GOAL

(EXISTS-SOME
(AND-TYPE (ULTRAFILTER-OF L)

(SUPERSET-OF F)))))
(IN-CONTEXT

MET-BE FILTER-SET
(THE-SET-OF-ALL (FILTER-OF LM

(LET-BE FILTER-POSET
(INCLUSION-ORDER FILTER-SET))

(LET-BE 2
(AND-TYPE

(MAXIMAL-ELEMENT-OF FILTER-POSET)
(GREATER-OR-EQUAL-TO F FILTER-POSETM)

(NOTE-GOALM

(DEFTYPE (ULTRAFILTER-CONTAINING
(X (IN-U-SET 0)
(L BOUNDED-LATTICE))

(LAMBDA ((F (ULTRAFILTER-OF LM
(IS X (MEMBER-OF FM)

A. IO. FILTERS AND ULTRAFILTERS

- - w --- NR- --

348 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL

M BOUNDED-LATTICE)
(X (NOR-BOTTON-MEMBER-OF LM

(EXISTS-SOME
(ULTRAFILTER-CONTAINIRG X LM)

(LEMMA
(FORALL ((B BOOLEAN-LATTICE)

(X (IN-U-SET B))
(Y (IN-U-SET BM

(NOT (IS X (LESS-OR-EQUAL-TO Y BM
(EXISTS-SOME

((F (ULTRAFILTER-CONTAINING X
BM

(NOT (IS Y (MEMBER-OF FMM)

(IN-CONTEXT
MET-BE L BOUNDED-LATTICE)

(LET-BE X (NON-BOTTOM-MEMBER-OF L))
(PUSH-GOAL

(EXISTS-SOME
(ULTRAFILTER-CONTAINING X OM

(IN-CONTEXT
MET-BE Gl (FILTER-GENERATED-BY X L))

(LET-BE G2 (AND-TYPE (ULTRAFILTER-OF L)
(SUPERSET-OF Gl))))

(NOTE-GOALM

CIN-CONTEXT
MET-BE B BOOLEAN-LATTICE)

(LET-BE X (IN-U-SET B))
(LET-BE Y (IN-U-SET B))
(SUPPOSE

(NOT (IS X (LESS-OR-EQUAL-TO Y WM
(PUSH-GOAL

(EXISTS ((F (ULTRAFILTER-CONTAINING X BM
(NOT (IS Y (MEMBER-OF FMM

(IN-CONTEXT
MET-BE CY (COMPLEMENT Y B))

(LET-BE M (MEET X CY B))
(LET-BE F (ULTRAFILTER-CONTAINING BM

(NOTE-GOALM

A. IO. FILTERS AND ULTRAFILTERS 349

We now come to the proof that if Fis an ultrafilter andif xVy F then x F
or y E F. The following natural argument is taken from [Bell Machover 77j
top of page 136, case (iii)==>-(iv).

Suppose F is an ultrafilter of a bounded distributive lattice L
and that x V y G F. To show that E F or y E F suppose that
x F. It 'is easy to see that f z : x V z (=- F} 'is a filter which
includes F and so since F is an ultrafilter F = G. But since
x V y E F 'it follows that y E G and hence y E F.

A comparison of the above natural argument with the Ontic proof yields a
predicate count loss factor of 21 and a word count loss factor of 27.

o - -I -- I

350

(LEMMA
(FORALL

M (AND-TYPE
DISTRIBUTIVE-LATTICE
BOUNDED-LATTICE))

(F (ULTRAFILTER-OF L))
(X (IN-U-SET L))
(Y (IN-U-SET LM

(IS (JOIN X Y L)
(MEMBER-OF F))

(OR (IS X (MEMBER-OF F))
(IS Y (MEMBER-OF F))))))

(IN-CONTEXT
MET-BE L (AND-TYPE

DISTRIBUTIVE-LATTICE
BOUNDED-LATTICE))

(LET-BE F (ULTRAFILTER-OF 0)
(LET-BE X (IN-U-SET L))
(LET-BE Y (IN-U-SET 0)
(SUPPOSE (IS (JOIN X Y L)

(MEMBER-OF FM
(PUSH-GOAL (OR (IS X (MEMBER-OF M

(IS Y (MEMBER-OF FM))

(IN-CONTEXT
((SUPPOSE (NOT (IS X (MEMBER-OF FM)

(PUSH-GOAL (IS Y (MEMBER-OF FM)

(IN-CONTEXT
MET-BE G

(THE-SET-OF-ALL (Z (IN-U-SET L))
(IS (JOIN X Z L) (MEMBER-OF FM))

;clearly y is in g
(IN-CONTEXT ((PUSH-GOAL = F GM

;this will complete the proof that
;y is in f

(IN-CONTEXT

((PUSH-GOAL (IS G (SUPERSET-OF FM
(LET-BE Z (MEMBER-OF M

(LET-BE J (JOIN X Z LM
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL (IS G (FILTER-OF LM)

;since f is a maximal filter this
;completes the proof
(IN-CONTEXT

((PUSH-GOAL
(IS G

(NON-EMPTY-SUBSET-OF
(U-SET OM

(LET-BE (U-SET 0)
(LET-BE Z (MEMBER-OF GM

(NOTE-GOAL))

(IN-CONTEXT ET-BE BOT (BOTTOM LM
(NOTE

(NOT (IS (BOTTOM L)
(MEMBER-OF GM))

continued on next page

APPENDIX A. TE STONE REPRESENTATION THEOREM

A. IO. FILTERS AND ULTRAFILTERS 351

;continued from previous page (IN-CONTEXT
((PUSH-GOAL

(FORALL
Ml (MEMBER-OF G))

(Z2 (GREATER-OR-EQUAL-TO Z1
LM

(IS Z2 (MEMBER-OF GM)
(LET-BE Z1 (MEMBER-OF G))
(LET-BE Z2

(GREATER-OR-EQUAL-TO Z1 L))
(LET-BE J1 (JOIN X Z1 L))
(LET-BE J2 (JOIN X Z2 LM

;j2 is greater or equal to j1
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

(FORALL M1 (MEMBER-OF G))
(Z2 (MEMBER-OF GM

(IS (MEET Z1 Z2 L)
(MEMBER-OF GM)

(LET-BE Z1 (MEMBER-OF G))
(LET-BE Z2 (MEMBER-OF GM

(IN-CONTEXT

MET-BE J1 (JOIN X Z1 L))
(LET-BE J2 (JOIN X Z2 LM

(NOTE (IS (JOIN X (MEET Z Z2 L) L)
(MEMBER-OF FM)

(IN-CONTEXT
MET-BE M (MEET Z1 Z2 LM

(NOTE-GOALM

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOALM
(NOTE-GOAL))

(LEMMA

(FORALL ((B BOOLEAN-LATTICE)
(F (ULTRAFILTER-OF B))
(X (IN-U-SET BM

(OR (IS X (MEMBER-OF M
(IS (COMPLEMENT X B)

(MEMBER-OF F)))))

(IN-CONTEXT MET-BE BOOLEAN-LATTICE)

(LET-BE F (ULTRAFILTER-OF B))
(LET-BE X (IN-U-SET B))
(LET-BE CX (COMPLEMENT X BM

(NOTE (OR (IS X (MEMBER-OF M

(IS CX (MEMBER-OF FM))

352 APPENDIX A. THE STONE REPRESENTATION THEOREM

A. 11. THE STONE REPRESENTATION THEOREM 353

A,11 The Stone Representation Theoren-i

Finally we come to the Stone representation theorem for Boolean algebras.
The following natural definitions and natural arguments are taken from [Bell

Machover 77] pages 141 and 142.

Let us define a field of sets to be a subalgebra of a power set
algebra. In particular, a field of subsets of a set X is a subalgebra
of the power set of X.

If is a Boolean algebra, we denote by SB the set of all ultrafil-
ters 'in B.

Theorem. Each Boolean algebra is isomorphic to a field of subsets
of SB.

Proof. Let B be a Boolean algebra. Define a mapping u B
PSB by putting:

u(x = fF C SB : x E Fj

for each x C= B. Thus u(x) is the set of all ultrafilters containing
X.

We claim that u is a homomorphism of B 'Into PSB. For
suppose that X, E B; then, if F E SB, we have

F E u(x A y),# x A y E F#: x E F&y E F# F E ux n uy)

Hence u(x A y = u(x) n u(y). Also, we have

F c= U(X*) 4� X* E F � x V F(by Thm. 35(iv)) 4# F E SB-u(x)

Accordingly u(x* = SB - u(x), so that, by Prob 33, u is a
homomorphism.

We also note that u is one-one, for if x -� y then by Cor.
3.9 there 'is an ultrafilter F containing x, say, but not y. Then
F E u(x) and F u(y), so that u(x) =� u(y).

We have therefore shown that u is an iomorphism of B onto
the subalgebra u[B] of PSB, which proves the theorem.

- m- -- -I . I

354 APPENDIX A. THE STONE REPRESENTATION THEOREM

A comparison of the above natural definitions and arguments with the re-
mainder of this section yields a predicate count loss factor of 20 and a word
count loss factor of 17.

(DEFTYPE FIELD-OF-SETS
(WRITABLE-AS (BOOLEAN-SUBALGEBRA-CF

(POWER-SET-LATTICE S))
(S SETM

(LEMMA
(EXISTS-SOME FIELD-OF-SETS))

(LEMMA
(FORALL ((B FIELD-OF-SETS))

(IS B BOOLEAN-LATTICEM

(IN-CONTEXT ET-BE SET)
(LET-BE P (POWER-SET-LATTICE SM

(NOTE (EXISTS-SOME FIELD-OF-SETSM

(IN-CONTEXT
MET-BE B FIELD-OF-SETS)

(WRITE-AS B (BOOLEAN-SUBALGEBRA-OF
(POWER-SET-LATTICE S))

(S SEM
(LET-BE B2 (POWER-SET-LATTICE SM

(NOTE (IS BOOLEAN-LATTICEM

(DEFTERM (ALL-STONE-MODELS (B BOOLEAN-LATTICE))
(THE-SET-OF-ALL (ULTRAFILTER-OF BM

(DEFTERM (THE-STONE-MODELS-OF
(X (IN-U-SET B))
(B BOOLEAN-LATTICE))

(THE-SET-OF-ALL
(ULTRAFILTER-CONTAINING X BM

(LEMMA
(FORALL ((B BOOLEAN-LATTICE)

(X (IN-U-SET BM
(IS (THE-STORE-MODELS-OF X B)

(SUBSET-OF
(ALL-STONE-MODELS WM)

(IN-CORTEXT
MET-BE B BOOLEAN-LATTICE)

(LET-BE (LL-STONE-MODELS B))
(LET-BE X (IN-U-SET B))
(LET-BE SX (THE-STONE-MODELS-OF X B))
(PUSH-GOAL (IS SX (SUBSET-OF M)

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME (MEMBER-OF SX)))
(LET-BE F (MEMBER-OF SXM

(NOTE-GOAL))
(NOTE-GOAL))

(DEFTERM (STONE-MAP (B BOOLEAN-LATTICE))
(MAKE-MAP

B
(POWER-SET-LATTICE

(ALL-STONE-MODELS B))
(THE-RULE M (IN-U-SET BM

(THE-STORE-MODELS-OF X WM

i. �, --- ,

A. 11. THE STONE REPRESENTATION THEOREM 355

(LEMMA
(FORALL ((B BOOLEAN-LATTICE))

(IS (POWER-SET-LATTICE
(ALL-STONE-MODELS B))

POWER-LATTICEM

(LEMMA
(FORALL ((B. BOOLEAN-LATTICE))

(U-SET (POWER-SET-LATTICE
(ALL-STONE-MODELS BM

(POWER-SET
(ALL-STONE-MODELS B)))))

(LEMMA
(FORALL

((B BOOLEAN-LATTICE)
(S2 (SUBSET-OF

(ALL-STONE-MODELS WM
(IS 2

(MEMBER-OF
(U-SET

(POWER-SET-LATTICE
(ALL-STONE-MODELS BMM)

(Iff-CONTEXT MET-BE BOOLEAN-LATTICE)
(LET-BE (ALL-STONE-MODELS BM

(NOTE (IS (POWER-SET-LATTICE S) POWER-LATTICE))
(IN-CONTEXT ET-BE PS (POWER-SET M

(NOTE = U-SET (POWER-SET-LATTICE S)) PS))
(NOTE

(IS-EVERY
(SUBSET-OF)
(MEMBER-OF

(U-SET
(POWER-SET-LATTICE WM))

356 APPENDIX A. THE STONE REPRESENTATION THEOREM

(LEMMA
(FORALL ((B BOOLEAN-LATTICE))

(IS (THE-RULE M (IN-U-SET BM
(THE-STONE-MODELS-OF X B))

(RULE-BETWEEN
(U-SET B)
(U-SET

(POWER-SET-LATTICE
(ALL-STONE-MODELS BMM)

(LEMMA
(FORALL ((B BOOLEAN-LATTICE))

(IS (STONE-MAP)
(MAP-BETWEEN

B
(POWER-SET-LATTICE

(ALL-STONE-MODELS B))))))

(LEMMA
(FORALL ((B BOOLEAN-LATTICE))

(IS (STONE-MAP B) OOLEAN-MAPM

(LEMMA
(FORALL ((B BOOLEAN-LATTICE))

(DOMAIN (STONE-MAP B))
BM

(LEMMA
(FORALL BOOLEAN-LATTICE))

(RANGE (STONE-MAP B))
(POWER-SET-LATTICE

(ALL-STONE-MODELS OM)

(LEMMA
(FORALL ((B BOOLEAN-LATTICE)

(X (IN-U-SET BM
(APPLY-MAP (STONE-MAP B) X)
(THE-STONE-MODELS-OF X B))))

(IN-CONTEXT
MET-BE BOOLEAN-LATTICE)

(LET-BE B
(POWER-SET-LATTICE (ALL-STONE-MODELS BM

(LET-BE H (STONE-MAP B))
(LET-BE R (THE-RULE (IN-U-SET BM

(THE-STONE-MODELS-OF X BM
(LET-BE X (IN-U-SET BM

(IN-CONTEXT MET-BE HX (APPLY-RULE R W
(LET-BE USET1 (U-SET B))
(LET-BE USET2 (U-SET SBM

(NOTE (IS R (RULE-BETWEEN USET1 USET2))))
(NOTE (IS H (MAP-BETWEEN SBM
(NOTE (IS H BOOLEAN-MAP))
(NOTE (DOMAIN H) B))
(NOTE (RANGE H) SB))
(NOTE (APPLY-MAP X)

(THE-STONE-MODELS-OF X BM)

amimi"W" - - I- - - -
- - 0111111 NO 1I I I

A. 11. THE STONE REPRESENTATION THEOREM 357

(LEMMA (IN-CONTEXT

(FORALL ((B BOOLEAN-LATTICE)) MET-BE BOOLEAN-LATTICE)
(IS (STONE-MAP B) (LET-BE H (STONE-MAP B))

BOOLEAN-HOMOMORPHISM))) (LET-BE B

(POWER-SET-LATTICE
(ALL-STONE-MODELS BM

(PUSH-GOAL
(IS BOOLEAN-ROMOMORPHISM)))

(IN-CONTEXT
((PUSH-GOAL

(IS H MAP-WHICK-RESPECTS-MEET))
(LET-BE X (IN-U-SET B))
(LET-BE Y (IN-U-SET B))
(LET-BE XMODELS (APPLY-MAP X))
(LET-BE YMODELS (APPLY-MAP H M
(LET-BE M (MEET X Y B))
(LET-BE MMODELS (APPLY-MAP H M))
(LET-BE MODEL-INTERSECTION

(INTERSECTION X-MODELS YMODELSM

(IN-CONTEXT
((PUSH-GOAL

(= M-MODELS. MODEL-INTERSECTIONM

(II-CONTEXT
((PUSH-GOAL

(IS MODEL-INTERSECTION
(SUBSET-OF MMODELSM)

(IN-CONTEXT
USUPPOSE

(EXISTS-SOME

(MEMBER-OF MODEL-INTERSECTIONM
(LET-BE F

(MEMBER-OF MODEL-INTERSECTIONM
(NOTE-GOAL))

(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

(IS M-MODELS

(SUBSET-OF MODEL-INTERSECTION))))
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME

(MEMBER-OF M-MODELSM
(LET-BE F (MEMBER-OF MMODELSM

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

continued on next page

I - - � 1.

358 APPENDIX A. THE STONE REPRESENTATION THEOREM

;continued from previous page (IN-CONTEXT
((PUSH-GOAL

(IS H AP-WHICH-RESPECTS-COMPLEMENT))
(LET-BE X (IN-U-SET B))
(LET-BE HX (APPLY-MAP H X))
(LET-BE C (COMPLEMENT-OF X B))
(LET-BE C-MODELS (APPLY-MAP H 0)
(LET-BE ALL-MODELS (ALL-STONE-MODELS B))
(LET-BE MODEL-COMPLEMENT

(SET-DIFFERENCE ALL-MODELS HX)))

(IN-CONTEXT

((PUSH-GOAL = CMODELS MODEL-COMPLEMENTM

(IN-CONTEXT
((PUSH-GOAL

(IS MODEL-COMPLEMENT
(SUBSET-OF CMODELSM)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME
(MEMBER-OF MODEL-COMPLEMENTM

(LET-BE F
(MEMBER-OF MODEL-COMPLEMENTM

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOAL

(IS CMODELS
(SUBSET-OF MODEL-COMPLEMENTM)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME
(MEMBER-OF CMODELSM

(LET-BE F (MEMBER-OF CMODELSM
(NOTE-GOAL))

(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))

I I ---- -- -- -- -

A. 11. THE STONE REPRESENTATION THEOREM 359

(LEMMA

(FORALL ((B BOOLEAN-LATTICE))

(IS (STONE-MAP B) INJECTIONM

(LEMMA

(FORALL ((B BOOLEAN-LATTICE))

(IS (BOOLEAN-IMAGE (STONE-MAP B))

FIELD-OF-SETSM

(LEMMA

(FORALL ((B BOOLEAN-LATTICE))

(IS (SET!-RANGE

(STONE-MAP)

(BOOLEAN-IMAGE (STONE-MAP M

(BOOLEAN-ISOMORPHISM-BETWEEN

B

(BOOLEAN-IMAGE

(STONE-MAP BMM

(LEMMA

(FORALL ((B BOOLEAN-LATTICE))

(EXISTS-SOME

(AND-TYPE

FIELD-OF-SETS

(BOOLEAN-LATTICE-ISOMORPRIC-TO

WM

(IN-CONTEXT MET-BE B, BOOLEAN-LATTICE)
(LET-BE H (STONE-MAP B))
(PUSH-GOAL (IS H INJECTIONM

(IN-CONTEXT
MET-BE MSET (MEMBER-OF (IMAGE HM

(LET-BE PRE-MSET
(PREIMAGE H (MAKE-SET MSETM)

(IN-CONTEXT
((PUSH-GOAL

(EXACTLY-ONE (MEMBER-OF PRE-MSETM
(LET-BE X (MEMBER-OF PRE-MSET))
(LET-BE Y (MEMBER-OF PRE-MSETM

(IN-CONTEXT
((PUSH-GOAL

(IS X (LESS-OR-EQUAL-TO Y WM
(IN-CONTEXT

((SUPPOSE
(NOT (IS X (LESS-OR-EQUAL-TO Y WM

(LET-BE F (ULTRAFILTER-CONTAINING X B)
(NOT (IS Y (MEMBER-OF F)))))

(NOTE-CONTRADICTION))
(NOTE+GENERALIZE-GOAL))

(NOTE-GOAL))
(NOTE-GOALM

(IN-CONTEXT ET-BE B, BOOLEAN-LATTICE)
(LET-BE H (STONE-MAP B))
(LET-BE B2 (BOOLEAN-IMAGE HM

(IN-CONTEXT ET-BE (ALL-STONE-MODELS BM
(NOTE (IS B2 FIELD-OF-SETSM

(IN-CONTEXT ET-BE H2 (SET!-RANGE B2)))
(NOTE

(IS H2
(BOOLEAN-ISOMORPHISM-BETWEEN B B2)))

(NOTE

(EXISTS-SOME
(AND-TYPE

FIELD-OF-SETS
(BOOLEAN-LATTICE-ISOMORPHIC-TO WM)

[Ait-Kaci &-, Nasr 86]

[Andrews 81]

[Bell Machover 77]

[Bibel 79]

[Bibel 1]

Hassia-n Ait.-Kac,1', Roo-or Nasr, Logic and Inheretance,
Thirtee.iitli Am-itial Symposium on Principles of Pro-
gramriiin.g Laiigtiaaes, January 1986, pp. 219-228.

Peter AndreI-NI's, rheorem Proving va General Mat-
ings, JACM, N761 28, no. 2 April 1981, pp. 193-214.

John Bell and Moshe achover A Course in Mathe-
matical Logic, North-Holland, 1977.

W. Bibel, Tautology Testing wth a Generalized Ma-

trix Reduction Method, Theoretical Computer Science

8, 1979, pp. 31-44.

W. Bibell Oi-i �a,'Iatriccs with Connections, JACM vol.

28, No. 4 Octobcr 181, pp 633-645.

[Ballantyne &-, Bledsoe 77] A. M Ba.11antyne and NV. W. Bledsoe, Automatic
Proofs of Theoi-erns in Analysis Using Nonstandard
Technique-ci, JACM vol. 24 no 3 July 1977, pp. 353-
374.

[Bledsoe et al. 72]

[Bledsoe Bruell 731

W. W Bledsoe 1. S. Boyer, W. H. Henneman, Com-
puter Proofs of Limit Teorems, Artificial Intelligence
3� 1972, pp. 27-60.

W. W. BleAsoe, Peter Bruel A Man-Machine Theo-
rem Proviiia Systeni, Proc. of the 3rd IJCAI, 1973,
pp. 56-65.

361

0

1 10 ra

BIBLIOGRAPHY362

[Bledsoe 77]

[Boyer Sz Moore 79]

[Boyer Moore 41

[Boyer Moore 86]

[Bundy 73]

[Brachman 79]

[Brachman, Fikes, &

W. W. Bledsoe, Non-resolut'on theorem Proving, Ar-
tificial IiAelligence 9 1977, p. 1-35.

llol)crt S. Boyer, J. Struther Moore, A Computational
Louic ACX1 Monogr,-aph Series, 1979.

Robert S. Boyer, J. Struther Moore, A Mechanical
Proof of the Unsolvability of the Halting Problem,
Journal o the Associateion for Computing Machin-
ery, Vol. 31, No. 3 July 1984, pp. 441-485.

Robert S. Boyer, J. Struther Moore, Overview of A
Tlicorem-Prover for A Computational Logic, 8th In-
ternational Conference on Autoated Deduction, Lec-
ture Notcs in Coinputer Science, Springer-Verlag 1986,
pp. 675-678.

Alan Bundy, Doing Arithmetic with Diagrams, Proc.
of te 3rd JCAL 1973, pp. 130-138.

Ronald J. Brachman On the EA pistemological Status of
Semantic Networks, in Readings 'in Knowledge Repre-
sentation, R. Brachman, 1-1. Levesque eds., Morgan
Kaufniann Publishers, 1985.

Levesqtio 82] R. Brachn-ian, R. Fikes, H. Levesque,
Krypton A Functional Approach to Knowledge Rep-
resentation, IEEE Computer 16, 1983, pp. 63-73

[Brachman & Schmolze 85 R J. Brachman, J. Schmolze, An Overview of
- the KL-O NE Knowledge Representation System, Cog-

nitive Science 9 1985, pp. 171-216.

[Cardelli 84] Luca, Cardelli, The Semantics of Multiple Inheritance,
Procedinus of the Conference on the Semantics of
Datatypes, Sprl'nger-Verlag Lecture Notes 'in Com-
puter Scl'ece, June 1984, pp. 51-66.

IBIBLIOGRAPHY 363

[Chang S-z Lee 73]

[Chou 84]

[Chou 85]

[Chou & Schelter 86]

[Constable et al. 82]

[Constable et al. 85]

[Constable 85]

[Constable et al. 86]

C. Changcan(l R. C. Lee, Symbolic Logic and Mechan-
ical Theorein Proving, Academic Press, New York

1973.

Shang-chino, Clioti, Proving Elementary Geometry

Theoreins Usii'ig Nk"u's AI(Torl'thm, in Automated The-

orem Proving fter 25 Years, W. W. Bledsoe and D.

Loveland eds., A-MS Contemporary Mathematics Se-
ries 29 1984), 243-286.

Shang-ching ChoLi, Proving and Discovering Geom-

etry Theorems using Wu's Method. PhD thesis, De-

partment of Mathematics, University of Texas, Austin
(1985).

Shang-cliing Cliou, Willicam, F. Schelter, Proving Ge-
ometry Tlicot-ems with Rewrite Rules, Journal of Au-

tomaled Re,-isoiiiiig 2 1986, pp. 253-273.

R. L. Constable, S. D. Johnson, C. D. Eichenlaub An

Introduction to te PL/CV2 Programming Logic, Lec-

ture Notes in Computer Science 135, Springer-Verlag,
1982

R. L. Constable, T.B Knoblock J L. Bates, Writ-

ing Programs that Construct Proofs. Journal of Au-

tomated Reasoning 1 1985) pp. 285-326.

Robert Constable, Constructive Mathematics as a

programmino� .,ogic 1: Some Principles of Theory, An-

nals of Discrete Mcathematics 24, North Holland, 1985,
pp. 21-38

R. L. Constable, S. F. Allen, H Nil. Bromely, W. R.

Cleavelwi(l, J. F. Crei.-ner R W. Harper, D. J. owe,

T. T'�'. T�noblock, N. P. Mendler P Panangaden, J. T.
Sasaki, S F Sniith, Implementing Mathematics wth

the Nuprl Development System, Prentice Hall, 1986.

BIBLIOGRAPHY364

[Davis 81]

[deBruijn 68]

[Dershowitz 79]

[deBrul'jn 73]

[delKleer et al. 77]

Martin Davis, Obvious Logical Inferences, Proc of
IJCAI-81, Vancouver, BC, August 1981, pp. 530-531.

N. G de Bruijn, The Mathematical Language Au-
tomath, its use ad some of its extensions. Symposium
on Atitoniatic Demonstration (Versailles, December
1.9.68), 1ecture Notes in Mathematics, Vol 125, pp.
29-61, S1)riiiger-Vcr1ag, Berlin, 1970.

Nacktan Dershowitz, Orderings for Term Rewriting
S37sterns, Proc. of the 20th Symposium on the Foun-
dations of Computer Science, 1979, pp. 123-131.

The AUTOMATH Checking Project. Procedings of
the Symposium on APL Paris, December 1973), ed.
P. Braffort.

J. de Klec,�r J Doyle, G Steele, C. Sussman, Explicit
Control f Reasoning, MIT Al Lab. Memo 427, June
1977.

[Downey, Sethi Sr Tax,an 80 Per J. Downey, Ravi Sethi, Robert E. Ta i . ri an,
on te Common Subexpression Problem,

JACM 27, No. 4 October 1980, pp. 758-771.

[Etherington &, Reiter 83 Dvid W. Etherington, Raymond Reiter, On In-
heritage Hierarchies With Exceptions, AAAI-83, pp.
104-108.

[Ernst 73]

[Fahlman 79]

[Gelernter 59]

G W Ernst A Definition Driven Theorem Prover,
Proc. of te 3r(I JCAI, 1973, pp. 51-55.

Scott, E. Falilman, NETL A System for Representing
"OReal �,N' ild Knowledae 4T Press Cambridge Mass,

1919.

11. Gelernter, Realization of a Geometry theorem
Proving Machine, in Automation of Reasoning J.
Sickliianii nd G Writson (eds.) Springer-Verlag 1983.

BIBLIOGRAPHY 365

[Goldstein 73] 1. Goldsteiii, Eleiaientaxy Geometry theorem Proving,
MIT-Al ab Meiiio 280, (Apri'l 1973).

[Gordon, Milner (�-z '"Tadsivorth 79] 4. Gordon, R.. Xfflner, C. Wadsworth,

Edinburgh LCF, Lectiire Notes in Computer Science

78, Springer-Verlag 1980.

[Gratzer 78] George Gralzer, General Lattice Theory, Academic
Press, 1978.

J 1 Specifi-[Guttag Sz Horning 78] J. V. Gat-a J J Horning, The Algebraic
cation of Abstract Data Types, Acta Informatica 10,
no. 1978, pp. -26-

[Harper 851

[Hayes 85]

[Ilowe 86]

[Huct 75]

[Huet & Hullot 83]

Robert 11axper Aspects of the Implementation of Type
Theory, Ph.D dsertation, Department of Computer
Science Cornell Uni'versitv, 1985.

Patrick Hyes The Second Naive Pliysics Manifesto,
in Formal Teories of the Commonsense World J.
Hobbs and R.. Moore eds., Ablex Publishers, 1985.

Douglas J Flowe, Implementing Number Theory: An
Experiment witli Nuprl i Sth Internaltion Confer-
ence on A utoniated Dduction, Lecture Notes 'in Com-
puter Scielice, Springcr-Vcrlag, July 1986, pp. 404-
415.

G. Ht, A. Unl-fica-tion Algorithm for Typed A-
Calculus, Theoretical Computer Science, 1, 27-57,
1975.

Gerard Fuet, Jean-Marie Fllot, Proofs by Induction
in Equational Theories with Constructors, JCSS 25,
1982, pp. 239-366.

[Iluet 86] Gerard 11tiet, Theorem Proving Systems of the Formel
Project, Proc. of ttic Stli Interliational Conference on
Autoinated Dediiction, Lecture Notes in Computer
Science Spi-iiiger-N,,'erlao- 19S6, pp. 687-688.

366 BIBLIOGRAPHY

[Inga-Ils 76]

[Jutting 79]

[Kapur et al. 86]

[Ketonen 84]

[Knuth Belidix 69]

[Kozen 77]

[Lescanne 86]

Daniel 1-1. ng<J1,s, The Sm--alltalk-76 Programming Sys-
toni: Desipi aiid In-iplementation, 5th Annual ACM
Syn-iposiurr o Principles of Programming Languages,
Jan 178, pp 915.

Cbecking Landau's "Grundhagen" in the AU-
TOMATH system. Mathematical Centre Tracts 83,
Mathematisch Centrum, Amsterdam 1979.

D. Kapur, G. Sivakumar, H. Zhang, RRL A Rewrite
Rule Laboratory, Proc. of the 8th International Con-
for(--,nce ort Automated Deduction, Lecture Notes in
Comptiter Science, Springer-Verlag, 1986, pp. 691-692.

Rissi Ketonen, EL - A Mathematically Oriented
Proof Checker, Procedings of te 7th International
Conference o Automated Deduction, Lecture Note
in Computer Science, 1984, pp. 65-79.

Donald E. nuth, Peter B. Bendix, Simple Word
Problems in Universal Algebras, in Computational
Problems in Abstract Algebra, J. Leech (ed.), Perg-
amon Press, 169.

Dexter C. Kozen, Complexity of Finitely Presented
Algebras, Doctoral Dssertation, Computer Science
Department, Cornell University, 1977.

Pierr(--, Lescanne, EVE a Rewrite Rule Laboratory,
Proc. of he 8th International Conference on Auto-

Deduction, Lecture Notesin Computer Science,

Springer-Verlag, 1986, pp. 695-696.

[Levesque Sz Brachman 85] Ilector J Levesque, Ronald J. Brachman A fn-
damelital Triadeof- in Knowledge Representation and
Re,-tsoiihig, iii Readings in Knowledge Representation,
R. J. Bra-chman, H. J. Levesque (Eds.), Morgan Kauf-
ni-cmii Publishers, 1985.

BIBLIOGRAPHY 367

[Loveland 78] Donald Loveland, Automated Theorem Proving A
Logical Basis, North-Holland 1978.

[Lusk McCune , Overbeek 82] E. L. Lusk, W. McCune, R A. Overbeek,
Logic Alachine Arch'tecture: Kernel Functions, Proc.
of the th Intorncitional Conference on Automated De-
duction, Lectu-re Notes i Computer Science 138 (Ed.
D.W. Lovelc-tnd) Sprnaer-Verlag 1982, pp. 70-84.

[Lusk Overbeek 84] E. L. Lusk, R A Overbeek A Portable Environment
for Research 'in Automated Reasoning, Proc. of the
7th International Conference on Automated Deduc-
tion, Lecture Notes In Computer Science, Springer-
Verlag, t984-

[Mackworth 77] A. K. Macl�wortli, Consistency in Networks of Rela-

tions, Artificial Intelligence 8, 1977, pp. 99-118.

[McAllester 83] David McAllestei'-, Symmetric Set Theory, A General

Theory of Isomorphism Astraction, and Represen-

tation, MIT Al La]). Mmo no. 710, August 1983.

[McDonald Suppes 84] J. McDonald, P. uppes, Student Use of an Inter-
active Tlicorem Prover, in Automated Theorem Prov-

ing After 2 Years (W. W. Bledsoe, D. W. Loveland
Eds.), Vol 29 of Contemporary athematics, AMS,

Providence R. I. 1984.

[Miller et al. 82] D. A. Miller, E. L. Cohen, P. B. Andrews, A look at

TPS, Proc. of te 6th International Conference on Au-

tomated De(Juctioii , Lecture Notes in Computer Sci'_

eiice 138, Spiiiiger-Verlag, 19S2, pp. 50-68.

[Murray 82] N. V. Xtirt-ay, Conipletely Non-Clausal Theorem

Proviiig, Ai-tificial Intelligence 18, 1982, pp. 67-85.

[Newell, Shaw Simon 57] A. Newell, J C. Shaw, H. A. Simon, Empirical
Explorations with the Logic Teory Machine: a Case
Study n Heuristics, 'In Automation of Reasoning 1 J.
Siekmann and G Writson (eds.) Springer-Verlag 1983.

BIBLIOGRAPHY368

[Nelson &-, Oppen 79]

[Nelson &-, Oppon 80]

[Nevins 74]

[Nevins 75]

[O'Donnell 85]

[Reiter 73]

[Robinson 65]

[Russinoff 85]

Greg Nelson, Derek Oppen Smplification by Cooper-
ating Decision Procedures, ACM Trans. Pro'g. Lang.
Syst 12 Oct. 1979, pp. 245-257.

Greg Nellson, Derek Oppen, Fast Decision Procedures
bcised o Congruence Closure, JACM 27, No. 2 April
1.980, pp 356-364.

A. J Nevins A human Oriented Logic for Automatic
Theoren-i'Proving, J. ACM 21, 1974, pp. 606-621.

A. J. Nevins, Plane eometry Theorem Proving using

Forward Chaining, Artificial Intelligence 6 1975, pp.

.1 -2 3.

Michael J. O'Donnell, Equational Logic as a Program-

ming Language, MIT Press, 1985.

R.. Rt_�iter A Semantically Guided Deductive System

for Atitoi-natic Teorem Proving, Proc. of the 3rd IJ-

CAll 1973, pp. 41-46.

J. A. Robirison A Machine Oriented Logic based on

tlie Resolution Principle, JACM 12, no. 1, 1965 pp.

23-41.

David M. Russinoff A Experiment with the Boyer-

Moore Theorem Prover: A Proof of Wilson's Theo-

rem, Journal of Automated Reasoning 1, 1985, pp.

121-139.

[Siekmann & Wrightson 83] J. Sickmann G Vrightson ed., Automation of
Reasoiiing: Classical Papers on Computational Logic,
SI)rhiger-Verlag 1978 (in two volumes).

[S'ekmann 84] Jorg -. Siekmann, Universal Unification, Proc. of the
7tli biternational Conference on Automated Deduc-
tioll, Lecture Notes In Computer Science, Springer-
'Verlag, 1984.

BIBLIOGRAPTI� r 369

[Shankar 85]

[Shostak 82]

[Slagel 74]

N. Shankax, Towards Mechanical Metamathematics,
Journal of Automated Reasoning 1, 1985, pp. 407-434.

Robert E Shostak, Deciding Combinations of The-
ories, 6th International Conference on Automated
Deduction Lecture Notes i Computer Science,
Springer-Verlag, 1982, pp. 112.

James SIcaael Automated Theorem-Proving for Theo-
ries with Simplifiers, Commutativity, and Associati'v-

ity� JACM 21, No. 4 October 1974, pp. 622-642.

[Stallman & Sussman 77] Richard M Sta.11man and Gerald J. Sussman, For-
ward Reasoning and Dependency-Directed Backtrack-
ing in a system -for Compuer-Aided Circuit Analysis,
Artificial Intelligence 9 1977, pp. 135-196.

[Stickel 82]

[Stickel 85]

[Siklossy et al. 73]

M. Stickel, A Non-clausal Connection Graph Theo-
rem Provei-, Proc. of AAAI-82 National Conference on
Artificial Intelligence, Pittsburgh, Pennsylvania, 1982,
pp. 229-233.

M. tictiel, Automated Deduction by Theory Resolu-
tion, Journal of Automated Reasoning 1, 1985, pp.
333-355.

L. Siklossy, A. Rich, V. Marinov, Breadth-Mrst
Search: Some Surprising Results, Artificial Intelli-
gence 4 1973, pp. 127.

[Sussman Steele 80] Gerald J Sussman, Guy Lewis Steele, CONSTRAITS
langtiaac for Expression Almost-Hierarchical De-

scriptions, Artificial Intelligence 14, 19SO pp. 139.

[Turner 79] David A. Turner. Another Algorithm for Bracket Ab-
stations The -Jotirnal of Symbolic Logic 44 2 June

9 7 9 p I , 2 6 7 -2 ' .

370 BIBLIOGRAPHY

[Trybulec & Blair 85]

[Walther 84a]

[Walther 4b]

[Waltz 75]

[Weyhrauch 77]

[Weyhrauch 80]

[Wos 82]

[NNTos & IVinkor 84]

A. Trybulec, H. Blair, Computer Assisted Reasoning
'th MIZAR Proc. of IJCAI-85, Los Angeles, Ca.,

August 1985 pp. 26-28.

Christoph Wdther, Unification in Many Sorted The-
ories, European Conference on Artificial Intelligence,
19S4, pp. 593-602.

Christoph Walther A Mechanical Solution of Schu-
bert's Steamroller by Alany-Sorted Resolution, Pro-
cedhigs of AAAT-84, pp. 330-334.

Dc-wid L Waltz, Understanding lne drawings of scenes
watch shadoivs, in Tze Psychology of Computer Vision,
Patrick 1. �i�7inston ed. McGraw-Hill, 1975.

Richard Weyhrauch, Arthur Thomas, FOL A Proof
Checker for First Order Logic, Stanford Artificial In-
telligence aboratory Memo AIM-235.1, 1977.

Richctrd Weyhrauch, Prolegomena to a Theory of
Mechanized Formal Reasoning, Artificial Intelligence,
vol. 13 no. 1A April 1980, pp. 133-170.

L. Wos, Solving Open Questions with an Automated
Theorem-Proving Program, Proc. 6th Conference on
Automated Deduction, New York, Lecture Notes 'in
Computer Science 138, Springer-Verlag 1982 pp. 113

L. �,Nlos S Winker, Open Questions Solved with the
Assistc-mce of Aura., in Automated Theorem Proving
After 25 Years, N761. 29 of Contemporary Mathemat-
i cs (�,N7.W. Bledsoe and D. W. Loveland Eds.), AMS,
Providence, Rhode sland, 1984, pp. 73-88.

[Wos et al. 84] ioL. V s, It. Overbeek, E. Lsk, J. Boyle, Automated

R.c.-ri.onina: Introduction and Applications, Prentice-0
.Hafl, EigteNvood Cliffs, 1984

BIBLIOGRAPHY 371

L. NVos, F. Pereira, R. Hong, R. Boyer, J. S. Moore,
NV. NV. Bledsoe, L. J Henschen, B. G. Buchanan,
C. NVrightson, C. Green, An Overview of Automated

Reasonina nd Related Fields, Journal of Automated

Reasoning 1, 1985, pp. 5-48.

Wit Wen-TS Lin 7Basic Principles of Mechanical The-

orem Prwving in Elementary eometries, Journal of

Automated Reasoning 2 1986, pp. 221-252

[Wos et al. 85]

[W-Li 86]

I

95
112
108
166
173
175
123
155
14:7
I 60

129
1297158

121
129
132
143
121
134
94

157
155
1.61
1 pip 3
161
172
172

AT!g-establ'shed-type-general'lzation
173

AT9-formula-generalization. 172
AW-legality 158
AW-universally-satisfiability 157
AW-validity 159

agreement 126

assignment 126

assumption set 155

atomic expressions 184

automatic universal generalization

14)40

8-inconsistent 94

auxiliary closure 200

8-equivalent 100

binding labeling 122
binding set 121

Boolean constraint graph 93
Boolean constraint propagation 14,36
Boolean interpretation 104
calc-consistent 112
classification 38 122
clause 93
closure links 163
compilation 35143
complete labeling 1041109
congruence closure 14X177
congruence constraint graph III

jC

__+C1A

__+9YA

___+S

--+SA

---+Sy

--+SYA

P-assignment
P-assignment existence
0-dependence
0-dependency-loop
�-dependency-path
0-depth
0-free
O-supervariable
7-unit-clause

A-protection
AO-free
A,'r-preservation
Ag-inconsistent
AS.F-equivalence
AT-freedom
AT-freedom-source

373

n ex

374 INDEX

connectionism 79
contexts 14,37
definitions 11
dependence 40�411120
diamond property 101
S-consistent 106
S-equivalent 110
equality constraint grap]-i 105
equality links 105
existential links 163
extensional application 184
expansion factor 30
T' ion

-preservat' 153
.FA-protection 161
focused binding 14)37
focus objects 1114737J47
formula nodes 105
formulas 10J83
function expressions 111183
free variables 1201186
free vriable links 118
9-inconsistent 166
generic 'Individuals 37
homogeneity 153
ill formed expressions 6
internal Ontic expression 182
immediate-o-supervariable 143
instances 125
induction 84
isomorphism 152
known equality 164
L-established-type-nodes 122
labelings 931106,122
lemma library 14137
literati 93
meaning postulates 201
minimal-O-assignment 134

normalized 95
occurrence 39
occurs check 39
Ontic expressions 7
Ontic graphs 163
open y-unit-clause 94
parallelism 79
partial truth labeling 93
possible world 109
premature termination 1491161
quotation nodes 105
rank 187
S-identical 153
S-inconsistent 149
S.F-equivalence 153
satisfaction 1041109JI37155
satisfactory semantics 1261167
semantic domain 125
semantic modulation 14
semantic modulation graph 120
semantics 1
subexpression link ill
substitution 192
subtype 126
subtype links 119
symmetry 152
T-freedom. 164
T-freedom-source 164
Tg-ex'lstent'al-general'lzat'lon 166
T9-formula-generalization 165
'Tg-type-establishment-generalization

166
targeted-O-assignment 142
terminating normalizer 101
terms 8J82
type declaration links 118
type ormula links 119

�, I- t , � .1 I � 5 � , :�: --- 1- - I I I I I I . - . . -

�! I -- I I I . I .- I . -

INDEX 375

type expressions 617 182
type generator expressions 11,183
type nodes 118
well founded 101
well typed expressions 6
unit literal 94
variable graph 118
variable nodes I IS
virtual copy 37
W-legal 130
W-universally-satisfiable 128
W-valid 130

MIT Document Services Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
ph: 617/253-5668 1 fx: 617/253-1690
email: docs�mit-edu
http:fllibraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are
unavo'idable flaws in this reproduction. We have made every
effort to provide you with the best copy available. If you are
dissatisfied with this product and find it unusable, please
contact Document Services as soon as possible.

Thank you-.

0

