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SUMMARY 
 

Simultaneous characterization of the taxonomic composition and metabolic gene content 

and expression in marine oxygen minimum zones (OMZs), has potential to broaden perspectives 

on the microbial  and biogeochemical dynamics in these environments.    Here, we present a 45 

metatranscriptomic survey of microbial community metabolism in the Eastern Tropical South 

Pacific OMZ off northern Chile. Community RNA was sampled in late austral autumn from four 

depths (50, 85, 110, 200 m) extending across the oxycline and into the upper OMZ.  Shotgun 

pyrosequencing of cDNA yielded 180,000 to 550,000 transcript sequences per depth.  Based on 

functional gene representation, transcriptome samples clustered apart from corresponding 50 

metagenome samples from the same depth, highlighting the discrepancies between metabolic 

potential and actual transcription.  BLAST-based characterizations of non-ribosomal RNA 

sequences revealed a dominance of genes involved with both oxidative (nitrification) and 

reductive (anammox, denitrification) components of the marine nitrogen cycle.  Using 

annotations of protein-coding genes as proxies for taxonomic affiliation, we observed depth-55 

specific changes in gene expression by key functional taxonomic groups. Notably, transcripts 

most closely matching the genome of the ammonia-oxidizing archaeon Nitrosopumilus 

maritimus dominated the transcriptome in the upper three depths, representing 1 in 5 protein-

coding transcripts at 85 m.  In contrast, transcripts matching the anammox bacterium Kuenenia 

stuttgartiensis dominated at the core of the OMZ (200 m; 1 in 12 protein-coding transcripts). The 60 

distribution of N. maritimus-like transcripts paralleled that of transcripts matching ammonia 

monooxygenase genes, which, despite being represented by both bacterial and archaeal 

sequences in the community DNA, were dominated (>99%) by archaeal sequences in the RNA, 

suggesting a substantial role for archaeal nitrification in the upper OMZ.  These data, as well as 

those describing other key OMZ metabolic processes (e.g., sulfur oxidation), highlight gene-65 

specific expression patterns in the context of the entire community transcriptome, as well as 

identify key functional groups for taxon-specific genomic profiling. 
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INTRODUCTION 

 70 

Oxygen minimum zones (OMZs) play critical roles in marine community structuring and 

global biogeochemical cycling.  Forming at intermediate depths (~100-1000m) in response to 

high biological oxygen demand and reduced ventilation, OMZs occur naturally in zones of 

nutrient-rich upwelling but are also expanding throughout the world’s oceans as a result of 

anthropogenic effects, such as enhanced nutrient runoff and climate change (Diaz and Rosenberg 75 

2009; Stramma et al. 2008).  This expansion critically impacts marine ecosystems, as OMZs, in 

which dissolved O2 often falls below 10 µM, displace oxygen-respiring macroorganisms (e.g., 

fish) and create anaerobic, microbially-dominated communities whose members exert important 

effects on marine nitrogen and carbon cycles (Ulloa and Pantoja, 2009).   

OMZ communities are typified by a low diversity and abundance of pelagic macrofauna 80 

but a complex microbial community adapted to life along the oxic-anoxic gradient.  Notably, 

OMZ-associated bacteria and archaea mediate oceanic fixed nitrogen loss to the atmosphere 

through denitrification and the anaerobic oxidation of ammonia to N2 (anammox) (Codispoti et 

al., 2001; Kuypers et al., 2005; Ward et al., 2009).  OMZs also play significant roles in 

greenhouse gas cycling, for example through the release of the potent heat-trapping gas nitrous 85 

oxide (N2O).  Recent genetic and biogeochemical evidence also suggests a role for pelagic sulfur 

cycling in OMZs, mediated in part by the dissimilatory metabolism of sulfur-oxidizing bacteria 

related to endosymbionts of deep-sea bivalves  (Stevens and Ulloa, 2008; Lavik et al., 2009; 

Walsh et al., 2009; Canfield et al., 2010).   

 Studies of the Eastern Tropical South Pacific (ETSP) OMZ off northern Chile and Peru 90 

have been critical in identifying the organisms and metabolisms characteristic of life in pelagic 

low oxygen environments.  In the ETSP-OMZ, persistent upwelling of nutrient-rich waters 

drives high primary production in the photic zone (Daneri et al., 2000).  As photosynthetically-

derived organic matter sinks, it is respired and degraded by aerobic heterotrophs, drawing 
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oxygen down from >200 µM at the surface to less than 1 µM below the oxycline (~50-100m).  95 

Throughout the core of the OMZ (~70-500m), oxygen decreases to nM concentrations, or even 

to anoxia (Revsbech et al., 2009).  Oxygen conditions remain depleted throughout the year, 

creating one of the largest persistently oxygen-deficient regions in the global ocean.   

As oxygen declines, anaerobic metabolism becomes increasingly important, significantly 

altering nutrient and organic matter profiles relative to aerobic zones.  Notably, oxidized nitrogen 100 

species dominate as oxidants in dissimilatory respiration by both autotrophs and heterotrophs. 

Autotrophic bacteria within the Planctomycetes have been described in the ETSP-OMZ as the 

primary group responsible for anammox, the likely predominant pathway for fixed nitrogen loss 

in this system (Thamdrup et al., 2006; Hamersley et al., 2007; Galan et al., 2009; Lam et al., 

2009).  However, heterotrophic denitrification, the oxidation of organic matter via a complete 105 

sequential reduction of nitrate (NO3) to N2, also occurs in the ETSP-OMZ (Farias et al., 2009), 

potentially producing ammonia (via organic matter remineralization) and nitrite (via nitrate 

reduction) for anammox.  Though the range of microorganisms mediating denitrification is not 

fully described, the multiple steps of this pathway likely involve diverse taxonomic groups.  

Notably, the dissimilatory reduction of oxidized nitrogen species may involve chemoautotrophic 110 

sulfur-oxidizing bacteria.  Indeed, genomic analysis of the lineage SUP05, a free-living 

gammaproteobacterial relative of clam endosymbionts sampled from a North Pacific seasonal 

OMZ, revealed enzymes necessary for the chemolithotrophic oxidation of reduced sulfur, as well 

as those for nitrate reduction to nitrous oxide (N2O), suggesting a mechanistic link between 

pelagic sulfur cycling and denitrification (Walsh et al., 2009).  Symbiont-like 16S rRNA gene 115 

sequences have been detected in the ETSP-OMZ, suggesting similar processes at work in this 

system (Stevens and Ulloa, 2008).  Additionally, aerobic ammonia oxidation to nitrite 

(nitrification) along the oxycline and in the upper OMZ is intrinsically linked to the dissimilatory 

nitrogen transformations at the OMZ core, potentially serving as a vital source of nitrite for 

anammox and fueling an influx of fixed carbon to the system (Lam et al., 2007; Molina and 120 

Farias, 2009).  Genetic evidence shows a complex nitrifier community in the ETSP-OMZ 
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composed of both bacteria and archaea, though the relative contributions of these two groups to 

ammonia-oxidation remains unclear (Molina et al., 2007; Molina et al., 2010).  

Our knowledge of these diverse OMZ metabolisms is based largely on studies of 

individual pathways (e.g., denitrification, anammox) or taxonomic groups, or on single-gene 125 

surveys of phylogenetic (e.g., 16S rRNA) diversity and functional gene abundance (e.g., nitrite 

reductase, ammonia monooxygenase).   However, we know little of the extent to which specific 

metabolic processes are represented in the exceedingly diverse pool of genes expressed across a 

complex microbial community.  Community-wide analysis of microbial gene expression in 

natural communities can help identify unforeseen linkages among metabolic processes 130 

(McCarren et al. 2010), as well as inform predictions of the relative synchrony between 

metabolic transformations and DNA, RNA, and protein abundance in diverse microbial 

assemblages.  Here, we present the first survey of pelagic microbial community gene expression 

(the metatranscriptome) in an oxygen minimum zone, focusing specifically on the ETSP-OMZ 

off northern Chile. 135 

  High-throughout sequencing of the metatranscriptome has provided an unprecedented 

overview of gene expression in natural microbial communities, but thus far has been restricted to 

a handful of aerobic marine environments (Frias-Lopez et al., 2008; Hewson et al., 2009; 

Poretsky et al., 2009; Shi et al., 2009; Hewson et al., 2010).  Here, we use pyrosequencing to 

analyze the community RNA and DNA from four depths spanning the aerobic photic zone (50 140 

m), the oxic-anoxic transition zone (85, 110 m), and the anoxic OMZ core (200 m) at a site on 

the continental slope.  Using BLAST-based characterizations of protein-coding genes, we 

characterize dominant patterns in metatranscriptome diversity, transcriptional activity, and 

sample-relatedness, as well as identify key trends in taxonomic and functional gene 

representation.  These datasets facilitate comparative analysis of bacterioplankton gene 145 

expression across diverse oceanic regions, as well as intensive exploration of cryptic, but 

functionally important, metabolic processes, genes, and organisms specific to low-oxygen 

marine environments.  
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RESULTS AND DISCUSSION 150 

 

Chemical profiles 

Vertical profiles of oxygen and inorganic nitrogen at the sampling site (Station #3, ~1050 

m depth; ~30 km northwest of Iquique, Chile; see map in Figure S1A) resembled those described 

previously for the ETSP off northern Chile (e.g., Farias et al., 2007; Galan et al., 2009) (Fig. 155 

S1B).  Oxygen dropped from ~230 µM at the surface to ~100 µM near the base of the photic 

zone (50 m, mid-oxycline), before falling to ~10 µM at the upper boundary of the OMZ (85 m).  

Within the OMZ core, oxygen hovered near the level of detection with standard oceanographic 

oxygen sensors, before gradually increasing again below 500 m.  Consistent with prior reports 

(Farias et al., 2007), nitrite began increasing below the oxycline, reaching a broad maximum  (>6 160 

µM) near the core of the OMZ (200 m).   Nitrate peaked initially at the base of the oxycline (~15 

µM), decreased gradually in the upper OMZ, then began increasing again near the core of the 

OMZ.  Ammonium concentrations were low along the profile, rising to ~0.35 µM in the center 

of the oxic zone before falling to near the limit of detection within the OMZ. 

 165 

Descriptive statistics of community RNA and DNA 

 

Despite rapid advances in sequencing technology, microbial metatranscriptome studies 

are still relatively rare, with only a handful of these studies also providing coupled metagenomic 

samples (Frias-Lopez et al., 2008; Urich et al., 2008; Shi et al., 2009; McCarren et al., 2010)  As 170 

these methods are increasingly applied to diverse ecosystems, it is important to describe general 

features of the microbial metatranscriptome.  We therefore provide statistics describing gene 

diversity, gene hit count distributions, and relatedness among samples both to establish a 
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framework for ecosystem-specific questions and to build a general understanding of gene 

expression in natural microbial communities.  175 

 

Read statistics 

Pyrosequencing (Roche 454 FLX technology) of community RNA and DNA across four 

depths generated 1.9 and 1.6 million sequence reads, respectively, with mean lengths of 251 bp 

and 172 bp (Table 1).  Of the RNA reads, 37-61% matched ribosomal RNA sequences and were 180 

excluded from further analysis.  Given the relatively high abundance of archaea in the samples 

(see below), further depletion of rRNA would likely have been possible if archaea-specific probe 

sets were included in the subtractive hybridization protocol used here to deplete rRNA (Stewart 

et al. 2010).  Of the non-rRNA-encoding reads, roughly two thirds of the DNA reads and one 

third of the RNA reads matched protein-coding genes (bit score > 50) in the NCBI-nr database, 185 

with similar fractions matching the KEGG database (Table 1).  The lower overall percentage of 

identifiable reads in the RNA data suggests large numbers of non-protein-coding, non-ribosomal 

RNA transcripts; a similar observation was made in a study showing abundant non-coding small 

RNAs (smRNA) in bacterioplankton transcriptomes from the subtropical North Pacific (Shi et 

al., 2009), suggesting a need for characterization of the potentially unique smRNA pool in the 190 

OMZ community.   

 

Protein-coding gene diversity and distributions  

The protein-coding gene sets were highly diverse, encompassing a total of 436,410 

unique nr reference sequences representing 7875 taxonomic identifiers (DNA + RNA combined).  195 

Of the reference sequences, only 0.2% were present in all datasets (Table S1), and only 4.2% of 

unique transcripts were detected in the expressed gene pool at all depths.  In both the DNA and 

RNA datasets, the vast majority (>85%) of reference sequences were represented by fewer than 2 

reads (Fig. S2).  The proportional abundance of each gene was highly variable within the RNA 

samples (low evenness; Table 2).  Calculated for sequence subsets standardized to a uniform 200 
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sample size (n=15,000), evenness was significantly lower across all RNA samples compared to 

DNA, falling to a minimum (0.06) in the 85 m sample (upper OMZ) before increasing with depth 

into the anoxic zone (110 and 200m).  Low evenness in the metatranscriptome was driven by 

small numbers of highly expressed genes (Fig. S3). Here, 13 to 30% of all identifiable protein-

coding transcripts were represented by the 100 most abundant genes.  Indeed, a single gene, 205 

encoding an ammonium transporter of the nitrifying crenarchaeote Nitrosopumilus maritimus, 

represented over 8% of the coding transcript pool in one sample (85 m; Fig. S3; Table S5).  In 

contrast, the most abundant genes in the DNA samples never exceeded 0.1% of the total (Table 

S5).  The overabundance of highly expressed genes in metatranscriptomic samples presents a an 

obstacle to obtaining statistically significant sequence coverage of low frequency transcripts.   210 

 

Shared gene content 

Shared gene content was used to assess the relatedness between sample pairs.  To 

calculate pairwise shared gene percentages and avoid bias due to variation in dataset size (i.e., 

large datasets share more reference sequences in common than smaller datasets), subsets of reads 215 

were randomly extracted from each dataset, yielding uniform numbers of unique nr references 

per dataset (mean: 12,606; stdev = 0.3%; Table S2).  On average, in DNA vs. DNA pairwise 

comparisons, only 14.7% of reference sequences (per dataset) were shared between depths.  A 

comparable percentage (mean: 13.2%) was shared between RNA samples, similar to values 

reported for metatranscriptome samples from two photic zone depths in the subtropical North 220 

Pacific (Stewart et al., 2010).  Comparisons of DNA to RNA datasets, however, revealed 

significantly lower percentages of shared genes (mean: 8.8%; P < 0.01, t-test).  Clustering using 

shared gene percentage as a similarity metric, as in Snel et al. (1999), confirmed that each RNA 

sample was on average more closely related to any other RNA sample than to its corresponding 

DNA sample from the same depth (Table S2), potentially suggesting similarity in expressed gene 225 

content despite high physicochemical heterogeneity across depths.  However, deeper sequencing 

will be required to confirm that the observed discrepancy between metagenome and 
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metatranscriptome gene content is not biased by detection of only the most abundant expressed 

genes.  

 To further examine sample relatedness, DNA and RNA datasets were hierarchically 230 

clustered based on the distribution of reads matching KEGG gene categories and nr taxonomic 

identifiers (Fig. 1).  These analyses revealed several patterns.  First, consistent with the results 

based on shared gene content percentage,  DNA datasets clustered apart from RNA datasets.  

This partitioning indicates that the content of the expressed functional gene pool, as currently 

detected at this level of sequencing depth, was distinct from that of the total DNA pool and 235 

similar across samples, as demonstrated most clearly at the broadest functional category level 

(KEGG 2; Fig. 1).  This pattern is consistent with a previous observation of metabolic functional 

similarity across surface water metatranscriptomes from geographically diverse open ocean sites 

(Hewson et al., 2010).  However, this clustering pattern may vary depending on the database 

used for deriving the similarity metric.  Indeed, the correlations between RNA samples 240 

weakened at finer levels of the KEGG hierarchy (ko gene level) and when the analysis was based 

not on functional category but on taxonomic identifier (Fig. 1, bottom), though the separation of 

DNA and RNA samples was maintained.  Second, correlations between samples were higher for 

DNA samples compared to RNA samples, indicating that variation in functional category 

distributions across depths was greater in the metatranscriptome than in metagenome (Table 2).  245 

However, this pattern was violated for the 200 m RNA sample, which more closely resembled 

the DNA samples in three of the four clustering analyses.  This grouping may reflect the 

transition to the unique microbial community at the core of the OMZ.  For example, if the 200 m 

community was sufficiently distinct from that of the upper depths, the 200 m RNA sample may 

be recruited into the DNA cluster based on similarity to its corresponding DNA sample.  Finally, 250 

the DNA samples showed clear vertical clustering, with the upper samples (50 and 85 m) 

clustering separately from those of the middle OMZ (110 and 200 m).  This pattern suggests 

depth-specific transitions in community structure, with a distinction between oxycline-associated 

communities and those from the lower, more oxygen depleted depths.  However, the consistent, 
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independent clustering of DNA and RNA samples suggests that the functional distinction 255 

between coupled metagenome and metatranscriptome samples is greater than that among 

samples from different depths.  Deeper sequencing is required to determine whether this pattern 

holds as more of the metatranscriptome becomes characterized.  

 

Transcriptional activity 260 

The transcriptional activity of protein-coding genes varied marginally with depth in the 

OMZ.  Mean expression ratios (RNA/DNA) calculated across the full datasets showed a spike 

just below the oxycline (85 m; Fig. 2).  However, this pattern was driven primarily, but not 

exclusively, by variation in sample size (total number of protein-coding genes per dataset).  At 

shallower sequencing depths (as in the 85 m RNA sample; Table 1), highly expressed genes 265 

occupy a greater proportion of the total number of unique genes detected; as sampling depth 

increases, low frequency genes occupy a greater proportion of the total and thereby depress the 

mean expression ratio.  After standardizing the datasets to a common size (n=15,000 protein-

coding reads), the increase in expression at 85 m decreased substantially, but remained elevated 

relative to values in the oxycline and at the OMZ core.  It is unclear to what extent transcript 270 

abundance serves as a proxy for cellular activity, particularly given the asynchrony frequently 

observed between transcript and protein levels (e.g., Taniguchi et al., 2010).  However, prior 

reports show that bacterioplankton cell counts reach a secondary local maximum below the 

oxycline in the OMZ off Iquique (Molina et al., 2005; Galan et al., 2009), potentially supporting 

a local increase in metabolic activity in this zone. 275 

 

Taxonomic diversity 

 

Protein-coding gene sequences 

The taxonomic identifications of protein-coding genes provide an alternative to ribosomal 280 

RNA-based classifications of taxonomy (e.g., Urich et al., 2008).  Here, we present results 
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characterized by searches against the extensive NCBI-nr database of protein-coding genes.  

Searches against nr maximized our chances of identifying functional gene diversity, as well as 

helped identify close relatives whose annotated genomes might be used to inform more targeted 

analyses of gene expression dynamics at the genome level.  Though the relatively short 285 

sequences (~200 bp) obtained via FLX-based pyrosequencing do not lend themselves to 

comprehensive phylogenetic reconstructions, the annotations of nr functional genes matching 

these sequences (top BLASTX hit) can be used as an approximate taxonomic classification for 

each read. Here, nr functional gene annotations revealed depth-specific transitions in microbial 

community composition and transcription across the OMZ.  At all depths, the rank abundances 290 

of dominant taxa differed between the DNA and RNA pools (Fig. 3,4). Assuming the ratio of 

RNA to DNA abundance of specific genes reflects the relative metabolic activity level, the data 

suggest several broad trends, supported in part by the high frequency of reads matching several 

prominent individual taxa (Fig. 5, Table S3,S4).    

First, metabolic activity along the oxic-suboxic transition zone was dominated by 295 

Crenarchaea.  Up to one third of all identifiable protein-coding transcripts from the upper OMZ 

and within the oxycline matched a crenarchaeote, including numerous uncultured 

representatives, as well as two ammonia-oxidizing species for which genome data are available: 

Cenarchaeum symbiosum, a marine sponge symbiont (Preston et al., 1996; Hallam et al., 2006b), 

and Nitrosopumilus maritimus (Nm), a cultured nitrifier isolated from a marine aquarium 300 

(Konneke et al., 2005; Schleper et al., 2005).  In contrast to other well represented taxonomic 

groups (e.g., Pelagibacter), the proportional representation of crenarchaea was consistently 

higher in the RNA reads, relative to the DNA, suggesting an active crenarchaeal community at 

these depths (Fig. 4). 

Crenarchaeal genes most highly similar to Nitrosopumilus maritimus (Nm) dominated 305 

these samples, constituting up to 20% of identifiable transcripts (85 m sample) and exhibiting a 

mean expression ratio 4.5-fold higher than that of the most abundant taxon represented in the 

DNA (Pelagibacter; Fig. 3-4,S4).  Of the protein-coding genes in the Nm genome (n=1795; 
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Walker et al., 2010), 74%, 81%, and 56% were recovered as top hits in BLASTX searches of the 

50, 85, and 110 m DNA reads, respectively, with relatively uniform coverage across the genome 310 

(Fig. 5).  A smaller proportion of Nm genes (15-41%) was represented in the transcript pool, 

likely reflecting (in part) the smaller size of the RNA datasets (Table 1).   

These results support prior studies underscoring the ubiquity of crenarchaeal-like 

Archaea in the global ocean.  Hallam et al. (2006) reported a high percentage of DNA sequences 

closely matching the genome of the crenarchaeal nitrifier Cenarchaeum symbiosum (mean 65% 315 

amino acid identity) during winter in the Sargasso sea.  A more recent analysis of the suboxic 

zone of the Black Sea revealed that up to one quarter of all prokaryotic cells fell within a single 

clade of nitrifying crenarchaea closely related to Nm (Labrenz et al., 2010).  Walker et al. (2010) 

recently reported that an average of 1.2% of the sequences present in the Global Ocean Sampling 

(GOS) database match Nm across diverse physiochemical habitats and geographic locations.  In 320 

their analysis, the majority of DNA reads mapping to Nm shared > 50% amino acid identity with 

the reference genome.  In our study, reads matched Nm at high identity (mean: 74-75% for 

DNA, 70-81% for RNA across depths), with the majority of top Nm hits > 75% identical to the 

reference (median: 76-78% for DNA, 64%-84% for RNA).  Consistent with previous studies 

(Hallam et al., 2006b; Walker et al., 2010), our analysis identified several gaps in genome 325 

coverage, perhaps highlighting regions unique to the cultured strain (Fig. 5).  Our data, along 

with supporting studies, highlight an emerging perspective of crenarchaeal dominance in the 

pelagic nitrification zone separating oxic from suboxic waters.    

Second, protein-coding gene annotations confirm a prominent sulfur-oxidizing microbial 

community in the ETSP-OMZ.  DNA and RNA reads from the OMZ core were particularly 330 

enriched in sequences matching the genomes of sulfur-oxidizing endosymbionts 

(gammaproteobacteria) of deep-sea clams (Candidatus Ruthia magnifica (Rm) and Candidatus 

Vesicomyosocius okutanii (Vo); Kuwahara et al., 2007; Newton et al., 2007) and the symbiont-

like SUP05 lineage isolated from a seasonally anoxic fjord off British Columbia (Walsh et al., 
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2009) (Fig. 3).  At all depths, the proportional abundance of these taxa was greater in the DNA 335 

than in the RNA, indicating reduced transcriptional activity relative to other groups (e.g., 

crenarchaea; Fig. 4). These results are consistent with prior genetic and genomic surveys.  

Indeed, ribosomal RNA gene (16S) sequences related to those from sulfur-oxidizing Rm and Vo 

endosymbionts have been recovered from diverse low oxygen regions including the ETSP 

(Stevens and Ulloa, 2008), the coastal North Pacific (Zaikova et al., 2010), the Arabian Sea 340 

(Fuchs et al., 2005), and the upwelling zone off Namibia (Lavik et al., 2009).  Furthermore, the 

metagenome of the SUP05 lineage has been sequenced (Walsh et al. 2009), revealing genes 

required for sulfur oxidation, carbon fixation, and nitrate reduction.  This metabolically versatile 

bacterium is hypothesized to oxidize reduced sulfur via the dissimilatory sulfite reductase (DSR) 

and sox pathways, using nitrate as a terminal electron acceptor (Walsh et al. 2009).  Here, our 345 

reads matched a diverse SUP05 gene set at relatively uniform abundance, with 73% of the genes 

encoded in the SUP05 metagenome detected in the 200 m DNA sample (Fig. 5).  Together, these 

studies confirm that organisms capable of chemolithotrophic oxidation of sulfide, likely with 

nitrate (Walsh et al. 2010; Lavik et al. 2009), are a common component of pelagic low oxygen 

environments. 350 

Third, bacteria capable of anaerobic ammonia oxidation (anammox) are common and 

transcriptionally active at the core of the OMZ.  Notably, reads matching the anammox 

planctomycete Candidatus Kuenenia stuttgartienis (Ks) increased with depth to 7.9% of total nr 

hits in the 200 m RNA sample, 1.7-fold higher than the proportional representation of Ks in the 

corresponding DNA (Fig. 3).  RNA reads matched a total of 705 distinct Ks genes (out of a 355 

possible 4681; (Strous et al., 2006), with a mean expression ratio of 9.3 per gene, comparable to 

that recorded for Nm at the oxycline (6.8) and considerably higher than that for SUP05 at the 

same depth (2.6; Fig. 5).  Prior ribosomal RNA gene surveys indicate that the majority of OMZ-

associated planctomycetes actually cluster within the marine Candidatus Scalindua group 
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(Kuypers et al., 2003; Woebken et al., 2008; Galan et al., 2009), rather than with Ks, which was 360 

characterized from a wastewater-fed laboratory bioreactor (Strous et al., 2006).  This clustering 

is consistent with the relatively low mean amino acid identity observed here for reads matching 

Ks (64%; Fig. 3,5), likely reflecting the scarcity of planctomycete genome data (e.g.,  Scalindua 

spp. protein-coding genes) in the NCBI-nr database.  

Finally, several taxa were consistently abundant throughout the OMZ but contributed 365 

disproportionately to the total transcript pool.  For example, the ubiquitous marine 

alphaproteobacterial genus Pelagibacter dominated the DNA at all depths (15% to 22% of all 

identifiable protein-coding genes; Fig. 3), consistent with prior reports based on 16S clone 

libraries (Stevens and Ulloa, 2008).  DNA reads matching a single genotype, Pelagibacter sp. 

HTCC7211 from the oligotrophic Sargasso Sea (Carlson et al., 2009), reached 12% of the total in 370 

the 50 and 85 m samples, and covered 89% of the protein-coding genes in the reference genome 

(Fig. 5).  However, the mean expression ratio for HTCC7211 genes in this sample was relatively 

low (1.5, compared to a sample mean of 2.0) and all Pelagibacter species were consistently 

underrepresented in the RNA pool (Fig. 1,4,S4).  This trend emphasizes the potential disconnect 

between genomic abundance and metabolic activity.    375 

 

Ribosomal RNA gene sequences 

DNA reads matching ribosomal RNA gene sequences constituted a small fraction of the 

total reads (16S rRNA reads <1%), but nonetheless provided a broad overview of the relative 

abundance of major taxonomic groups (Fig. S5).  At a general level, patterns in 16S reads 380 

paralleled those of the protein-coding DNA pool.  Notably, alphaproteobacteria sequences were 

consistently abundant throughout the OMZ (~1/3 of 16S reads at all depths), reflecting the strong 

representation of Pelagibacter species in the non-rRNA reads.  Gammaproteobacteria were 

equally well-represented, though slightly less abundant than reported previously for the OMZ off 

Iquique (Stevens and Ulloa, 2008).  Consistent with a spike in non-rRNA genes matching 385 

Candidatus Kuenenia stuttgartiensis, planctomycete 16S reads peaked at the core of the OMZ 
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(200 m).  Archaea represented less than  15% of 16S sequences at all depths, with crenarchaeal 

sequences constituting ~5% of 16S reads in the upper OMZ and above the oxycline, then 

declining in abundance into the suboxic depths.  This pattern parallels the gradient in protein-

coding DNA but belies the disproportionately strong expression signal from the crenarchaeal 390 

community.  A similarly asynchronous signal has been observed in the central Pacific Ocean, 

where the relative abundance of crenarchaeal ammonia monooxygenase (amoA) gene sequences 

was disproportionately low relative to amoA transcript abundance (Church et al., 2010).  Such 

patterns highlight the potential of numerically non-dominant members of the community to 

contribute significantly to microbial community metabolic activity.   395 

 

Functional trends 

 

Reads matching NCBI-nr functional genes and KEGG categories provide an overview of 

the functional processes driving transcriptional activity in the OMZ (see also Fig. S6-S11, Table 400 

S5-S8).  Exhaustive characterization of the functional genes and pathways represented in our 

data is beyond the scope of a single analysis.  However, several dominant trends emerge from 

our survey and are highlighted here.   

 

Ammonia oxidation 405 

Transcript distributions underscore a prominent role for crenarchaeal nitrification along 

the oxic-suboxic transition zone.  Crenarchaeal amo sequences, encoding the subunits of 

ammonia monooxygenase (AmoABC) were among the most highly expressed genes in the 50, 

85, and 110 m samples, representing 2.7-4.7% of all sequences identified by KEGG searches, 

exhibiting expression ratios of 85-167 (Table S5, Fig. S8).  In contrast to prior studies suggesting 410 

a role for bacterial nitrifiers in the Chilean OMZ (Molina et al., 2007; Lam et al., 2009), as well 

as to our DNA results which show a mixture of both bacterial and archaeal amo genes in the 

OMZ metagenome, the expressed amo transcripts were dominated exclusively by crenarchaeal 
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sequences (98-100%; Fig. S9).  These data corroborate recent results showing the relative 

dominance of archaeal amoA gene sequences in clone libraries and Q-PCR assays from 415 

permanent OMZ sites off Chile and Peru (Molina et al., 2010).  Here, transcripts matching Nm 

amo genes were particularly well-represented (Table S5).  While Nm has been shown 

experimentally to oxidize ammonia to nitrite, Nm amo genes have relatively low similarity to 

characterized bacterial amo genes and may encode a unique functional variant of the enzyme; 

indeed, other genes involved in nitrification (e.g., hydroxylamine oxidoreductase) are lacking 420 

from this organism (Konneke et al., 2005; Hallam et al., 2006b; Hallam et al., 2006a; Walker et 

al., 2010).  Together, our results confirm a major role for crenarachaeal ammonia-oxidation 

along the oxycline and into the OMZ, consistent with a growing body of literature describing the 

ubiquity and potential dominance of archaeal nitrification in diverse marine habitats (see 

(Wuchter et al., 2006), and references in (Prosser and Nicol, 2008; Erguder et al., 2009). 425 

 

Ammonium transport 

Membrane transport processes predominated in the OMZ metatranscriptome (Fig. S6-8), 

corroborating prior reports showing the general importance of transport functions in marine 

bacterioplankton across diverse environments (Frias-Lopez et al., 2008; Sowell et al., 2009; 430 

Poretsky et al., 2010).  While transcripts encoding ATP-dependent ABC transporters were 

consistently abundant throughout the OMZ (5-6% of total KEGG hits; Fig. S7), those encoding 

proton motive force-dependent nitrate transporters (e.g., NarK) increased markedly with depth, 

paralleling a similar increase in nitrate reductase transcription (see below).  In contrast, other ion 

coupled transporters peaked at the oxycline and in the upper OMZ (Fig. S7-8), before declining 435 

markedly toward the OMZ core.  Notably, transcripts encoding an ammonium transporter (Amt) 

constituted 11% of all reads with matches in the nr-database and 18.4% of all reads matching the 

KEGG database in the 85 m sample (Table S5, Fig. S8-9).  Of the Amt-like reads identified at 

this depth, 93% matched genes belonging to crenarchaea, with the ammonium transporter of N. 

maritimus (accession ABX13594) representing the single most abundant reference gene across 440 
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all datasets (Table S5).  In contrast, crenarchaea represented only 16% of the Amt-like reads in 

the DNA pool at this depth, emphasizing the sometimes striking differentiation between gene (or 

taxonomic) representation and functional expression (Fig. S9).  

The mechanistic basis for high Amt expression in the crenarchaeal community is unclear.  

It is tempting to speculate that active ammonium transport is required to support nitrification 445 

(Hallam et al., 2006b; Hallam et al., 2006a).  Indeed, ammonium accumulation via active 

transport has been shown for nitrifying bacteria (Nitrosomonas), and suggested as a mechanism 

for meeting internal kinetic requirements for ammonia oxidation when environmental 

concentrations and passive ammonia diffusion rates are low, as is common in marine 

environments (Schmidt et al., 2004; Weidinger et al., 2007).  However, less is known about Amt 450 

function in archaea (Andrade and Einsle, 2007; Leigh and Dodsworth, 2007), and the relative 

contributions of Amt-based transport to energy metabolism and biosynthesis have not been 

explored.  Interestingly, recent experiments on cultured cells show that Nitrosopumilus 

maritimus has a remarkably high affinity for reduced nitrogen, among the highest ever recorded 

for microbial substrates (Martens-Habbena et al., 2009).  This affinity is hypothesized to allow 455 

Nm to effectively compete against bacterial nitrifiers, as well as against other marine phototrophs 

and heterotrophs for ammonium in ammonium-depleted waters.  In the ETSP-OMZ, amt 

transcripts paralleled amo transcripts in Nm-like crenarchaea, raising the hypothesis that the 

unprecedented capacity for ammonium acquisition in cultured ammonia-oxidizing crenarchaea 

may be linked to overexpression of ammonium transporters.  However, the extent to which this 460 

hypothesis applies to in situ conditions in the OMZ is uncertain, as OMZ crenarchaea thrive 

along the oxycline where ammonium is available and produced at high rates (Fig. S1) (Molina et 

al., 2010).   

  

Anaerobic nitrogen metabolism 465 
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RNA profiles confirmed a significant transition to anaerobic nitrogen metabolism with 

depth in the OMZ.  Genes encoding the multi-subunit dissimilatory nitrate reductase (nar), 

present in both the traditional denitrification pathway and in anammox, were detected at all 

depths but were proportionately most abundant in the RNA samples (relative to DNA) and at the 

core of the OMZ (Table S5, Fig. S10).  Specifically, narG, encoding the alpha subunit of the 470 

enzyme, increased with depth to represent 1% of all identifiable protein-coding genes in the 200 

m transcriptome.  The pattern of narG sequence diversity differed substantially between the 

DNA and RNA pools (Fig. S10).  Diverse narG sequences were detected at all depths in the 

DNA, representing between 32 and 389 distinct nr reference genes and suggesting a range of 

taxa with the capacity for nitrate respiration.  In contrast, the narG transcript pool was strikingly 475 

uniform in the upper OMZ, where all transcripts from the 50 m and 85 m samples matched a 

single reference sequence, from the anammox planctomycete Candidatus Kuenenia 

stuttgartiensis (Ks; Fig. S10).  In contrast, at 200 m the nitrate reductase transcript pool was 

incredibly diverse, representing 187 distinct nr reference sequences from diverse taxa, including 

the symbiont-like sulfur oxidizers Vo and SUP05.  This transition in transcript diversity 480 

highlights a community-wide shift to nitrate as a terminal electron acceptor at the OMZ core (or 

anammox end product; Strous et al., 2006), emblematic of the high potential denitrifier diversity 

in OMZs (Castro-Gonzalez et al., 2005; Jayakumar et al., 2009). 

A strong representation of key planctomycete functional genes suggests a prominent role 

for anammox in the OMZ. Notably, the proportional abundance of transcripts encoding 485 

planctomycete hydrazine/ hydroxylamine oxidoreductase (HAO), an enzyme critical to the 

conversion of hydrazine to N2 during anammox (Kuenen, 2008), increased 300-fold from the 50 

m to the 200 m sample, accounting for a maximum of 1.4% of all identifiable protein-coding 

reads (NCBI-nr matches, summed across multiple taxa).  Of these reads, 98% matched sequences 

annotated as planctomycetes.  Planctomycete narG sequences, predominantly those matching Ks 490 

(see above), were also well represented, but were proportionately most abundant when 

planctomycete HAO transcripts were rare (Fig. S10).  The molecular basis of the anammox 
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reaction is not completely understood, but likely involves the Nar enzyme acting in reverse to 

oxidize nitrite to nitrate, pumping electrons into transport systems to fuel autotrophy (Strous et 

al., 2006; Jetten et al., 2009).  However, anammox bacteria may also use Nar to oxidize organic 495 

matter with nitrate.  Indeed, anammox planctomycetes are much more metabolically diverse than 

previously thought and have been shown to use organic acids as electron donors to reduce nitrate 

and nitrite and to out-compete heterotrophic denitrifiers for these substrates (Kartal et al., 2007a; 

Kartal et al., 2007b; Kartal et al., 2008). 

 500 

Sulfur energy metabolism 

Transcripts from diverse pathways confirm the activity of sulfur-based energy 

metabolism in the OMZ (Table S6).  Notably, genes of the dissimilatory sulfite reductase 

enzyme (Dsr), the sulfur oxidation (Sox) gene complex mediating thiosulfate oxidation, and the 

adenosine 5’-phosphosulfate (APS) reductase (Apr) were expressed throughout the OMZ (Table 505 

S6-8), with the greatest proportional representation coming from dsr genes at the OMZ core.  

Several of the proteins encoded by these genes, including Dsr and Apr enzymes, function in both 

oxidative and reductive pathways.  Notably, homologs encoding AprBA and DsrAB are present 

in a wide range of chemolithotrophic sulfur-oxidizers, as well as sulfate-reducers (Dhillon et al., 

2005; Meyer and Kuever, 2007b, a).  These genes share ancestry and structure but can be 510 

differentiated into distinct phylogenetic clades.  Here, the majority (>90%) of aprAB and dsrAB 

transcripts matched genes in NCBI-nr belonging to sulfur-oxidizing organisms, including green 

and purple sulfur bacteria, the SUP05 lineage, and thiotrophic symbionts of diverse hydrothermal 

vent and seep fauna (Table S7-8).  The detection of transcripts encoding the nitrate reductase 

present in several of these taxa (e.g., SUP05 and the symbiont Candidatus Vesicomyosocius 515 

okutanii; Fig. S10) suggests dissimilatory sulfur oxidation with nitrate in the OMZ and therefore 

a potential coupling between sulfur oxidation and denitrification in the OMZ.  Indeed, recent 
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experimental analyses of water from below the oxycline in the Chilean OMZ demonstrates a 

direct coupling between sulfide oxidation and nitrate reduction to both nitrite and nitrous oxide 

(Canfield et al., 2010), consistent with prior suggestions of coupling between marine sulfur and 520 

nitrogen cycles in other redox-stratified zones (Jensen et al., 2009; Lavik et al., 2009).  In 

conjunction with these studies, our data indicate an active sulfur cycle in the OMZ, highlighting 

the need for experimental metatranscriptomic analyses (e.g., bioreactor experiments) in which 

community sulfur (and nitrogen) metabolism can be directly monitored relative to biochemical 

rate measurements and in response to environmental perturbations.    525 

 

These results highlight only a small subset of the exceedingly diverse network of genes 

expressed in the OMZ.  Indeed, further examination of these datasets is warranted, and many 

interesting trends present in the data will emerge as more complementary data sets accumulate.  

For example, the relative abundance of transcripts encoding transposases increased 23-fold from 530 

the 50 m to the 200 m sample, paralleling a similar increase in the genomic DNA (Fig. S11).  

Overrepresentation of transposases with depth in DNA has been reported for bacterioplankton in 

the North Pacific Subtropical Gyre, where transposase abundance in metagenomic libraries 

increased ~30-fold from the surface to 4000 m (Delong et al., 2006; Konstantinidis et al., 2009).  

This trend was shown to parallel a general decrease in purifying selection pressure with depth, 535 

leading the authors to hypothesize a causal relationship between relaxed selection and mobile 

element expansion (Konstantinidis et al., 2009).  Though the ultimate factor(s) driving this 

pattern remain unclear, our data support a global trend in depth-specific mobile element activity 

that spans both oxic and suboxic conditions. In this coastal OMZ environment, the gradient of 

mobile element expansion verus depth appears much steeper that in the open ocean.  Additional 540 
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comparative analyses of individual genes and pathways will likely reveal other globally 

conserved processes operating in the OMZ 

 

Conclusions 

 545 

A central challenge in environmental microbiology is to place individual genes and 

species in the context of the integrated communities in which they operate.  High-throughput 

sequencing of community RNA takes an important step in this direction, providing snapshots in 

time of the proportional abundance of tens of thousands of diverse transcripts.  Here, we present 

the first survey of an OMZ metatranscriptome, with two broad goals. 550 

 

First, at a general level, we characterized the sequence diversity and relatedness between 

coupled metagenomic and metatranscriptomics datasets using descriptive statistics (e.g., 

evenness) and clustering.  Though metatranscriptomic analyzes are being increasingly applied to 

natural microbial communities, only a small number of studies have analyzed both DNA and 555 

RNA sequence pools in tandem (Frias-Lopez et al. 2008; Urich et al., 2008; Shi et al., 2009).  

The extent to which current sequencing and analytical methods capture the diversity in these two 

pools remains poorly described.  Here, despite read counts in the hundreds of thousands, minimal 

overlap in individual gene content occurred between datasets, although clustering based on 

broader functional gene categories identified similarity in expressed gene content across samples.  560 

The latter may be consistent with a broader trend in functional conservation in the highly 

expressed gene set (e.g., Hewson et al., 2010), but confirmation of this pattern requires 

comparative analysis of diverse microbial metatranscriptomes, which so far have been 

characterized primarily for marine bacterioplankton.  In conjunction with prior studies, our 

results describe the marine microbial metatranscriptome as dominated by small numbers of 565 

highly expressed genes (e.g., amt genes in this study, as in Frias-Lopez et al., 2008 and Hewson 

et al. 2010), emphasizing a need for greater sequencing depth to adequately characterize low 
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frequency transcripts, as well as potential functional (or evolutionary) differences among genes 

with varying expression patterns.  Targeted removal of highly expressed protein-coding genes, 

potentially via modification of existing subtractive hybridization protocols (e.g., Stewart et al., 570 

2010), may enable more comprehensive characterizations of functional diversity in the microbial 

metatranscriptome. 

 

Secondly, these datasets provided a snapshot of dominant taxonomic and functional 

trends in the Chilean OMZ at the time of collection.  This analysis was simplified in part by 575 

focusing on sequences matching specific organisms diagnostic of key OMZ functions (e.g., 

nitrate reduction, anammox, sulfur oxidation), an approach facilitated by comparisons against the 

extensive NCBI-nr database. Notably, these data identify nitrification by crenarchaeal relatives 

of Nitrosopumilus maritimus as a dominant energy source in the upper OMZ (in late autumn 

2008), suggesting this group as a candidate for more intensive taxon-specific genomic analyses 580 

over temporal gradients.  Additionally, together with other recent analyses (Lavik et al., 2009; 

Walsh et al., 2009; Canfield et al., 2010), our results indicate the presence of an active sulfur 

oxidizing community in the Chilean OMZ, showing the expression of a diverse set of 

dissimilatory sulfur oxidation genes and identifying a South Pacific relative of the SUP05 

lineage as a dominant and active component of the OMZ community with potential direct ties to 585 

the denitrification pathway.   However, dominant trends were highlighted here at the expense of 

more cryptic, but potentially equally important, patterns that could not be adequately addressed 

in a single study (e.g., carbon-fixation pathways). These datasets therefore provide a reference 

point for more targeted follow-up studies of specific pathways, ideally involving hypotheses that 

can be tested through direct experimentation or corroborated by metabolic rate measurements.  590 

As more metatranscriptome datasets become available, the integration of these and other data 

will facilitate comparative studies exploring fundamental features of microbial gene expression 

that occur across dynamic redox gradients.   
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EXPERIMENTAL PROCEDURES 595 

 

Sample Collection 

 Microbial community DNA and RNA samples were collected from the ETSP OMZ as 

part of the Microbial Oceanography of Oxygen Minimum Zones (MOOMZ-1) cruise aboard the 

R/V Vidal Gormaz (June 12-23, 2008).  Seawater was sampled from four depths (50 m, 85 m, 600 

110 m, 200 m) at Station #3 (20° 07'S, 70° 23'W; ~1050 m water depth; Fig. S1A) off the coast 

of Iquique, Chile on June 16-17  using 10L Niskin bottles deployed on a rosette system 

containing a conductivity-temperature-depth (CTD) profiler (Seabird 25; Seabird Electronics) 

equipped with an Optode dissolved oxygen sensor.  Replicate seawater samples for RNA 

extraction (n=4 replicates; 1.5-3.0 L seawater per replicate) were pre-filtered through 1.6 um 605 

GF/A filters (47 mm dia., Whatman) and collected onto 0.22 µm Durapore filters (25 mm dia., 

Millipore) using a peristaltic pump (1.5-3.0 L seawater per filter).  Filters were immediately 

transferred to microcentrifuge tubes containing 300 µl RNAlater®  (Ambion) and frozen at -

80°C, with less than 15 min elapsing between sample collection (arrival on deck) and fixation in 

RNAlater®.  Samples for DNA extraction were collected from the same water sample used for 610 

RNA collection, as in Frias-Lopez et al. (2008).  For each sample, seawater (15-30 L) was 

filtered through a 1.6 µm GF/A prefilter (125 mm dia., Whatman) and then collected on a 0.22 

µm Steripak-GP20 filter (Millipore).  The filter units were filled with lysis buffer (50 mM 

Tris•HCl, 40 mM EDTA, and 0.75 M sucrose), capped, and frozen at -80°C until extraction.    

 615 

RNA and DNA isolation 

 Total RNA was extracted from filters using a modification of the mirVanaTM miRNA 

Isolation kit (Ambion) as described previously (Shi et al., 2009; Stewart et al., 2010).  Briefly, 
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samples were thawed on ice, and the RNAlater® surrounding each filter was removed and 

discarded.  Filters were immersed in Lysis/Binding buffer (Ambion) and vortexed to lyse 620 

attached cells.  Total RNA was then extracted from the lysate according to the manufacturer's 

protocol, incubated (37ºC for 30 min) with TURBO DNA-free™ to remove genomic DNA, and 

purified and concentrated using the RNeasy MinElute Cleanup kit (Qiagen).  Genomic DNA was 

extracted from Steripak filters as described previously (Frias-Lopez et al., 2008).    

  625 

rRNA subtraction, RNA amplification and cDNA synthesis  

The proportion of bacterial ribosomal RNA transcripts (16S and 23S molecules) in total 

RNA extracts was reduced via a subtractive hybridization protocol using sample-specific rRNA 

probes, as described in Stewart et al. [2010].  rRNA-depleted total RNA (~35-100 ng) was then 

amplified using the MessageAmp™ II-Bacteria kit (Ambion) as described previously (Frias-630 

Lopez et al., 2008; Shi et al., 2009).  Briefly, total RNA was polyadenylated using Escherichia 

coli poly(A) polymerase.  Polyadenylated RNA was converted to double-stranded cDNA via 

reverse transcription primed with an oligo(dT) primer containing a promoter sequence for T7 

RNA polymerase and a recognition site for the restriction enzyme BpmI (T7-BpmI-(dT)16VN, 

Table 1).  cDNA was then transcribed in vitro at 37°C (12-14 hr), yielding large quantities (20-635 

110 µg) of single-stranded antisense RNA.  Amplified RNA (~5-10 µg aliquot) was then 

converted to double-stranded cDNA using the SuperScript® III First-Strand Synthesis System 

(Invitrogen) with priming via random hexamers for first-strand synthesis, and the SuperScript™ 

Double-Stranded cDNA synthesis kit (Invitrogen) for second-strand synthesis.  cDNA was then 

purified with the QIAquick PCR purification kit (Qiagen), digested with BpmI for 2-3 hrs at 640 

37°C to remove poly(A) tails, and used directly for pyrosequencing  
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Pyrosequencing  

Poly(A)-removed cDNA was purified for sequencing via the AMPure® kit (Agencourt®) 

and used for the generation of single-stranded DNA libraries and emulsion PCR according to 645 

established protocols (454 Life Sciences, Roche).  Clonally amplified library fragments were 

sequenced with full plate runs on a Roche Genome Sequencer FLX instrument (excluding the 85 

m cDNA sample, which was sequenced on a half plate). 

 

Data analysis 650 

Sequences sharing 100% nucleotide similarity and length (replicates) may represent 

artifacts generated by preparing samples for pyrosequencing (Gomez-Alvarez et al., 2009; 

Stewart et al., 2010).  Replicates were identified among non-rRNA sequences using the open-

source program CD-HIT (Li and Godzik, 2006) and removed from each dataset.  Non-replicate 

reads matching ribosomal RNA genes were identified in cDNA and DNA datasets by BLASTN 655 

comparisons to a database containing prokaryotic and eukaryotic small and large subunit rRNA 

nucleotide sequences (5S, 16S, 18S, 23S and 28S rRNA) compiled from microbial genomes and 

sequences in the ARB SILVA LSU and SSU databases (http://www.arb-silva.de).  Reads 

aligning with bit scores > 50 were identified as rRNA sequences and removed.  Small subunit 

ribosomal RNA reads (16S) from the DNA-based datasets were characterized according to the 660 

NCBI taxonomy based on alignments obtained through the greengenes workbench 

(greengenes.lbl.gov: Fig. S5).  

Non-replicate, non-rRNA sequences were characterized by homology searches 

(BLASTX) against the National Center for Biotechnology Information non-redundant protein 

database  (NCBI-nr, as of Nov. 26, 2009) and the Kyoto Encyclopedia of Genes and Genomes 665 

(KEGG, as of Feb. 2009).  The top reference gene(s) matching each read (bit score cutoff = 50) 

was used for NCBI-nr and KEGG annotations.  For reads matching multiple reference genes 
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with equal bit score, each matching reference gene was retained as a top hit, with its 

representation scaled proportionately to the number of genes sharing an equal bit score.  The 

relative transcriptional activity for a given gene was normalized to account for variations in gene 670 

abundance in the DNA pool and is presented as an expression ratio for each dataset:  

(RNA reads per gene/total RNA reads matching genes) /  

(DNA reads per gene/total DNA reads matching genes). 

Read counts across KEGG categories were used to cluster datasets based on shared gene 

content.  For each sample, hit counts per KEGG category were normalized to the percentage of 675 

total reads matching the KEGG database.  Pearson correlation coefficients were calculated for 

each pair of normalized datasets and used as similarity indices for hierarchical clustering based 

on the complete linkage method, as implemented in Cluster 3.0.   The same analysis was 

repeated using read counts per unique nr taxonomic identifier as relatedness criteria, with the 

number of unique taxonomic identifiers per dataset standardized across datasets (mean = 1885 680 

taxa; stdev = 0.3%). 

 

Nucleotide sequence data generated in this study are available in the NCBI Sequence Read 

Archive under accession number SRA023632.1. 

      685 
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Table 1.  Read numbers and statistics. 
 
 DNA RNA 
 50 m 85 m 110 m 200 m 50 m 85 m 110 m 200 m 
total reads 393,403 595,662 403,227 516,426 379,333 184386 557,762 441,273 
  mean length (bp) 257 253 244 250 183 206 163 161 
  mean GC% 38.1 38.2 40.2 41.2 49.2 50.3 47.2 49.6 
rRNA reads1 1781 1887 1114 1355 230,593 108,059 204,922 198,584 
  mean length (bp) 261 262 249 265 195 221 186 191 
  mean GC% 48.0 46.7 47.8 46.3 52.2 51.7 51.8 51.7 
non-rRNA reads2 340,117 567,772 380,057 485,044 117,760 69,200 268,093 149,699 
  mean length (bp) 256 253 243 249 168 190 165 168 
  mean GC% 37.7 38.0 39.9 41.1 43.5 47.6 43.5 46.5 
nr reads3 204,953 341,350 215,217 274,463 42,327 16,960 81,492 39,218 
  unique nr refs4 125,121 177,856 127,767 139,262 32,819 12,567 49,540 30,096 
  mean reads per ref5 1.6 1.9 1.7 2.0 1.3 1.3 1.6 1.3 
  unique nr taxa6 4028 4696 4043 4053 3183 1994 3465 2838 
  mean reads per taxa7 51 73 53 68 13 9 24 14 
KEGG reads8 216,497 329,570 211,024 273,709 38,409 15,430 71,847 33,779 
 

1 reads matching (bit score > 50) SSU or LSU rRNA sequences via BLASTN   
2 non-rRNA reads; duplicate reads (reads sharing 100% nucleotide identity and length) excluded 980 
3 reads matching (bit score > 50) protein-coding genes in the NCBI-nr database (as of Nov. 26, 2009) 
4 unique NCBI-nr references (accession numbers) identified as top BLASTX hits with bit scores > 50; for 
  reads with multiple top hits of the same bit score, all top hit references are included  
5 nr reads/unique nr refs 
6 unique NCBI-nr taxonomic identifiers of top BLASTX hits; ~0.6-1.0% of unique nr references contained 985 
  no taxonomic identification  
7 nr reads/unique nr rtaxa 
8 reads matching (bit score > 50) genes in the KEGG database (as of Feb. 2009) 
 
 990 
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Table 2.  Protein-coding gene diversity and evenness1. 
 
 DNA RNA 
 1/D E 1/D E 
50 m 10707 0.694 689 0.049 
85 m 9427 0.634 70 0.006 
110 m 12191 0.767 258 0.020 
200 m 8413 0.575 2008 0.152 
 
1 values are calculated for subsets of randomly selected protein-coding sequencing reads, standardized 
  to 15,000 reads per DNA/RNA sample 995 
1/D = Simpson’s diversity, where D = ∑ Pi2, and Pi is the proportion of the total number of protein-coding 
  sequences represented by the ith unique sequence (accession number) 
E = evenness = (1/D)/S, where S is the total number of unique sequences per sample; range = 0 to 1, 
  where 1 implies uniform equal counts per unique reference sequence  

1000 
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Figure Legends 1000 
 

Fig. 1. Relatedness of OMZ DNA and RNA datasets.  Heat maps show the relative distribution 

of protein-coding reads matching gene categories at three levels of the KEGG hierarchy (see 

Figures S6-8 for KEGG gene categories) and across NCBI-nr taxonomic identifiers.  Gray = 

missing data; white = low values, red = high values.  Dendrograms are based on hierarchical 1005 

clustering of Pearson correlation coefficients for each pairwise dataset comparison, with blue and 

red branches highlighting DNA and RNA datasets, respectively.  

 

Fig. 2.  Expression ratios (RNA/DNA) averaged across all protein-coding genes (NCBI-nr 

annotations) per depth.  “All data” shows values uncorrected for variation in sample size.  1010 

“Standardized” values are calculated for subsets of each full dataset standardized to a common 

size (n = 15,000 protein-coding reads each).  Error bars are 95% confidence intervals. 

 

Fig. 3. Community and expression shifts with depth in the OMZ.  The fifteen most abundant taxa 

per depth are identified based on the NCBI taxonomic affiliation of protein-coding genes 1015 

matching (top blast hit) DNA and RNA sequence reads.  Percentages (%ID) adjacent to taxon 

names are the mean amino similarities between reads and genes within each taxon, based only on 

the high-scoring segment pair (HSP) in each statistically significant BLAST alignment.  

Similarities were averaged per gene, and then across all genes per taxon. 

 1020 

Fig. 4.  Relationship between DNA and RNA abundance for dominant OMZ taxa, as identified 

by the NCBI taxonomic affiliation of protein-coding genes matching sequence reads (as top 

BLASTX hit in searches against the nr database).  Abundances are expressed as percentages of 
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the total number of reads with matches in nr (per dataset); plots show only the 100 most 

abundant taxa per depth (based on rankings in the RNA).  Axis units are log-scaled.  1025 

 

Fig. 5. Distribution and abundances of DNA (blue) and RNA (red) reads with top hits to protein-

coding genes in the genomes (or metagenomes) of prominent  OMZ taxa: Nitrosopumilus 

maritimus (crenarchaeote, ammonia oxidizer), Pelagibacter sp. HTCC7211 (alpha 

proteobacterium, heterotroph), Kuenenia stuttgartiensis (planctomycete, anammox), and the 1030 

SUP05 lineage (gamma proteobacteria, sulfur oxidizer).  Data are shown for the depth at which 

each taxon was best represented, based on the proportion of genes recovered as top hits in the 

RNA data (Fig. 3).  The total number of protein-coding genes, the mean amino acid sequence 

similarity of reads matching those genes (ID; mean per gene, averaged across all genes), and the 

mean expression ratio of genes present in both the DNA and RNA are shown below.  Genes are 1035 

sorted vertically by genome position (Nitrosopumilus, Pelagibacter) or accession number 

(Kuenenia, SUP05; synteny is therefore not implied for these taxa), with gene abundance (reads 

per gene as a percentage of total reads matching NCBI-nr genes) normalized per kb of gene 

length.  The most abundant expressed genes and the most highly expressed genes (exp. ratio) per 

taxon are listed in Table S3 and S4.   1040 
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