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We point out the possibility of a nearly flat band with Chern number C = 2 on the dice lattice in a simple
nearest-neighbor tight-binding model. This lattice can be naturally formed by three adjacent (111) layers of cubic
lattice, which may be realized in certain thin films or artificial heterostructures, such as the SrTiO3/SrIrO3/SrTiO3

trilayer heterostructure grown along the (111) direction. The flatness of two bands is protected by the bipartite
nature of the lattice. Including the Rashba spin-orbit coupling on nearest-neighbor bonds causes the flat bands to
separate from the others but maintain their flatness. Repulsive interaction will drive spontaneous ferromagnetism
on the Kramer pair of the flat bands and split them into two nearly flat bands with Chern number C = ±2. We
thus propose that this may be a route to the quantum anomalous Hall effect and further conjecture that the partial
filling of the C = 2 band may realize exotic fractional quantum Hall effects.

DOI: 10.1103/PhysRevB.84.241103 PACS number(s): 71.10.Fd, 73.43.Cd, 73.20.At

A few years after the experimental discovery of the integer
quantum hall effect (IQHE),1 Haldane wrote a tight-binding
model on the honeycomb lattice with IQHE,2 explicitly
showing that the essence of IQHE is not the external magnetic
field. However, it took more than two decades for people to
show that a similar statement is also true for the fractional
quantum Hall effect (FQHE). Recently several groups have
proposed to realize FQHE without Landau levels.3–7 The basic
idea is to engineer a nearly flat band in two dimensions (2D)
with a nonzero Chern number. Electron interaction in this
partially filled band may realize a fractional quantum Hall
effect, as suggested by exact diagonalization studies.4,5,7

In these proposals, nearly flat bands are obtained by fine-
tuning ratios between nearest-neighbor (NN), next-nearest-
neighbor (NNN), and even further neighbor tight-binding
parameters. In this Rapid Communication, we point out a
route to get completely flat bands without this fine-tuning
by employing a bipartite lattice with unequal number of
two subsets of sites.8 As a concrete example, we consider
the dice lattice as shown in Fig. 1. It is bipartite with an
unequal number of two subsets of sites (the coordination-
number-3 sites are twice as many as the coordination-number-6
sites). This system is inversion symmetric with respect to the
coordination-number-6 sites. We consider a single s orbital
with spin- 1

2 degrees of freedom (DOFs) on every site and
mainly focus on systems close to half-filling, that is, one
electron per site. The NN tight-binding model, including the
Rashba-type spin-orbit coupling (SOC) consistent with lattice
symmetry, will produce two completely flat bands separated
from the other bands. Because the two flat bands are half-filled,
ferromagnetism is a natural consequence of correlation,8–11

which gives rise to a Zeeman field on the mean-field level. We
demonstrate the spontaneous ferromagnetism by a variational
wave-function study of Hubbard interactions.

As a nice feature of the current model system, even a small
Zeeman field can split this Kramer pair of flat bands and
produce two separated nearly flat bands with Chern number
C = ±2. Filling one of them will then produce a quantized
anomalous Hall (QAH) effect with σxy = 2 e2

h
. This Zeeman

field could also be extrinsic, for example, growing the system

on a ferromagnetic substrate. Note that in a usual ferromagnetic
system, a realistic Zeeman splitting would not completely
separate the two bands with opposite spin polarizations, and
a ferromagnetic metal results. This is partially why the QAH
insulator, which needs to be a ferromagnetic insulator, has not
been realized experimentally so far. The main advantage of
the presently studied system is the existence of the half-filled
flat bands, which naturally support well-separated bands by a
realistic Zeeman splitting.

Material realizations. This model Hamiltonian may ac-
tually be relevant to some real systems. Heterostructures
of transition-metal oxide (TMO) perovskites, whose crystal
structures are cubic, are becoming available owing to recent
developments12–14 in the fields of oxide superlattices and oxide
electronics (for a review, see Ref. 15). In particular, layered
structures of TMO heterostructures can now be prepared with
atomic precision, thus offering a high degree of control over
important material properties, such as lattice constant, carrier
concentration, spin-orbit coupling, and correlation strength.

TMO heterostructures grown along the (111) direction
have been synthesized experimentally (e.g., Refs. 16 and
17). Recently it was pointed out that TMO (111) bilayer
heterostructures are promising candidates for hosting various
topological phases of matter.18 The dice lattice here can
be formed by three adjacent (111) layers of cubic lattice,
each of which is a triangular lattice (Fig. 1). Although we
considered only a simple s-orbital on every site here, the
result should be valid if the active orbital is a one-dimensional
representation of the D3d group. Some examples are the pZ

orbital (px + py + pz) and the a1g orbital (dyz + dzx + dxy) of
d electrons under cubic and trigonal crystal potentials.

A particularly relevant example is the transition-metal
oxide SrTiO3/SrIrO3/SrTiO3 trilayer heterostructure. Note
that although the crystal structure of the bulk SrIrO3 is a
monoclinic distortion of the hexagonal BaTiO3 structure,19

thin films of perovskite SrIrO3 have been synthesized on
substrates,20 which are reported to be metallic.21 This indicates
that an itinerant electronic model could be a good starting point
for describing the SrTiO3/SrIrO3/SrTiO3 trilayer heterostruc-
ture. Due to the strong spin-orbit coupling on the Ir4+ ion,
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together with the octahedral crystal field, the active orbital
is a half-filled effective Jeff = 1

2 doublet.21 The explicit form
of these doublet in the presence of cubic symmetry is |Jz =
1
2 〉 = 1√

3
(+i|xy,↑〉 − |xz,↓〉 + i|yz,↓〉), and |Jz = − 1

2 〉 is its
time-reversal partner. These half-filled orbitals hop around the
dice lattice and contribute to states close to the Fermi level.
indicating the correlation in the bulk system is intermediate. In
a (111) heterostructure, cubic symmetry is reduced to trigonal
symmetry. Nevertheless, to the leading order with respect to
trigonal distortion, the nearest-neighbor hoppings between
these J = 1

2 orbitals are identical to the hoppings of the s

orbitals, which form the model Hamiltonian considered here.
Therefore, we think that our proposal is a promising route

to realize the QAH effect. In the same spirit of previous
works on the FQHE without Landau levels, we conjecture that
fractional filling of these bands might produce exotic fractional
quantum hall (FQH) states. The nature of these FQH states
remains unclear, and we leave it as a subject of future research.
However, it is worth pointing out that in a nearly flat band with
Chern number C = 2, the natural candidate ground states for
ν = 1/m (m is odd integer) filling fractions are non-Abelian
states described by SU(m)2 Chern-Simons effective theory.22

NN model without SOC. The dice lattice and coordination
system are defined in Fig. 1. Label the three sublattices by

2e
ijD

ijD

ijD
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1
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+y
Z

Y
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FIG. 1. (Color online) Top: The dice lattice. Small upward tri-
angles (bottom layer), downward triangles (top layer), and hexagons
(middle layer) indicate the three sublattices. Numbers 1, 2, and 3 label
the three basis sites in the unit cell at origin. Coordination-number-3
sites (1 and 2) and coordination-number-6 sites (3) are the two subsets
of this bipartite lattice. Blue dashed arrows labeled by e1 and e2

indicate the two translations of the dice lattice. Thick green arrows
labeled as Dij indicate the Rashba SOC directions on those bonds
ij , with coordination-number-6 site j . Red dotted arrows with the
labels +x, +y, and +z indicate of the projection of the cubic lattice
axis. Capital letters X, Y , and Z are axes for spin space in Rashba
SOC. Z is the original (111) direction. Bottom: Perspective view of
three adjacent (111) layers of the cubic lattice. The middle layer has
a different color for easy recognition. The top view of this trilayer is
the dice lattice.

V1,2,3 respectively. Consider a single s orbital with spin- 1
2 DOF

on every site. As a warmup, consider NN spin-independent
hopping only:

H0 = −
∑
〈ij〉,α

(t c
†
iαcjα + H.c.) −

∑
i∈V3

ε ni, (1)

where α = ↑,↓ labels spin, i,j label sites, and ni = ∑
α c

†
iαciα

is the electron density on site i. Note that sublattice 3 (V3) has
a onsite energy difference ε from the other two sublattices,
as is allowed by symmetry. In this section, the spin DOF is
omitted.

In momentum space, the Hamiltonian reads

H0(k) = −

⎛
⎜⎝

0 0 t γ ∗
k

0 0 t γk

t γk t γ ∗
k ε

⎞
⎟⎠, (2)

where γk = 1 + eik1 + eik2 , i = √−1, k1,2 = k · e1,2 respec-
tively, and the basis is (c1k,c2k,c3k). This model has three
bands with dispersions E1 = −ε/2 −

√
ε2/4 + 2 t2|γk|2,

E2 = 0, and E3 = −ε/2 +
√

ε2/4 + 2 t2|γk|2, as illustrated
in Fig. 2(a).

The middle band is completely flat as required by the
bipartiteness. However, the top band touches the flat bands
quadratically at the Brillouin zone corners ±K = ±(k1 =
4π/3,k2 = 2π/3), similar to double-layer graphene23 or cer-
tain other models with flat bands.24 The effective two-band
Hamiltonian at the band touching point ±K is

3 t2

4 ε

(|δk|2 δk2
±

δk2
∓ |δk|2

)
+ O(δk4), (3)

where δk = k ∓ K, δk+ = eiπ/3(δkX + iδkY ), and δk− =
(δk+)∗.
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FIG. 2. (Color online) Dispersions of NN tight-binding models
on dice lattice along high-symmetry directions. Parameters used are
ε = 0.6 t , λ = 0.3 t , and B = 0.2 t . The bands marked as red in the
middle are the (nearly) flat bands. Top left corner is the Brillouin
zone with the high-symmetry lines indicated by dashed blue lines.
(a) Spin-independent hoppings only. (b) Spin-independent hoppings
plus Rashba SOC λ. (c) Spin-independent hoppings plus Rashba SOC
λ and magnetic field B along the Z (111) direction. The Chern number
of each band is indicated.
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The flat band has Bloch wave function (γ ∗
k , − γk,0) on

the three sublattices. It has local Wannier functions residing
on the six neighbors of a coordination-number-6 site (sub-
lattice 3) with opposite amplitudes between sublattice 1 and
sublattice 2.

NN model with Rashba SOC. Rashba SOC induced by
electric fields can be included as

H0,SOC = H0 −
∑

〈ij〉,α,β

[iλ c
†
iα(D̂ij · σ )αβcjβ + H.c.], (4)

where σ are spin Pauli matrices, D̂ij is the unit vector along
the direction of the cross product Eij × rij of electric field Eij

and displacement rij for bond ij , λ is the strength of SOC
and is uniform on all NN bonds as required by translation and
D3d point group symmetry of the trilayer. The D3d symmetry
further restricts the direction of Eij to be within the vertical
[perpendicular to the (111) layers] plane containing bond
ij . Therefore, D̂ij are all parallel to the (111) layers. Their
directions are illustrated in Fig. 1. In momentum space the
Hamiltonian reads

H0,SOC(k) = H0(k) ⊗ 12×2 − iλ

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 γ ∗
k+

0 0 0 0 γ ∗
k− 0

0 0 0 0 0 γk−
0 0 0 0 γk+ 0

0 −γk− 0 −γ ∗
k+ 0 0

−γk+ 0 −γ ∗
k− 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where γk± = 1 + ei(k1±2π/3) + ei(k2±4π/3), and the ba-
sis is (c1k↑,c1k↓,c2k↑,c2k↓,c3k↑,c3k↓). It has three dou-
bly degenerate bands with dispersions E1 = −ε/2 −√

ε2/4 + 2 t2|γk|2 + λ2(|γk,−|2 + |γk,+|2), E2 = 0, and E3 =
−ε/2 + √

ε2/4 + 2 t2|γk|2 + λ2(|γk,−|2 + |γk,+|2). If λ � ε,
the effective four-band Hamiltonian at the original band-
touching point ±K is

3 t2

4 ε

⎛
⎝|δk|2 δk2

±

δk2
∓ |δk|2

⎞
⎠ ⊗ 12×2 + 3

√
3 λ t

2 ε
12×2 ⊗

(
0 k∓
k± 0

)

+ 9λ2

2 ε
[14×4 ± τ z ⊗ σ z] + O(λ2δk) + O(δk4), (6)

where Pauli matrix τ z acts on the sublattices-1,2 space.
The mass term τ z ⊗ σ z has opposite sign between the two
band-touching points ±K , similar to the Haldane model.2

The dispersions are illustrated in Fig. 2(b). There are still two
completely flat band dictated by the Hamiltonian structure.

The flat bands have Bloch wave functions
(t γ ∗

k �k,iλ γ ∗
k+�∗

k, − t γk�k, − iλ γk−�∗
k,0,0) and its

Kramer pair, where �k = γkγ
∗
k+ − γ ∗

k γk−. Therefore these
flat bands also have local Wannier functions. One of the
Wannier functions is illustrated in Fig. 3. The other Wannier
functions can be produced by translation and time reversal.
Note that the spin-up component of the illustrated Wannier
function acquires a phase 2π/3 under six-fold rotation around
its “guiding center,” similar to the cyclotron orbit in Landau
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FIG. 3. (Color online) Local Wannier function of one of the flat
bands of the NN model on a dice lattice (black dotted lines) with
Rashba SOC λ (t = 1 for simplicity). The two-component vector
on each coordination-number-3 site indicates spin-up and spin-down
amplitudes on that site. Amplitudes on coordination-number-6 sites
vanish, and therefore the parameter ε has no effect. The small hexagon
is the “guiding center” of this Wannier function.

levels except that the phase here is twice as large, suggesting
Chern number C = 2.

Nearly flat band with Chern number C = 2. The previous
double degeneracy of the flat bands is protected by time-
reversal symmetry. Consider magnetic field effect,

H0,SOC+B = H0,SOC − g
∑

i

Bi · Si , (7)

where Si = (1/2)
∑

α,β c
†
iασ αβciβ is electron spin, the Bohr

magneton μB is omitted, and g = 2 (g = −2 for the Jeff =
1/2 states of Ir4+ ion25) is assumed hereafter. The field on
sublattices 1 and 2 may be different from that on sublattice
3. For illustration purposes, we draw the band structure with
uniform field Bi = 0.2 t along the (111) direction (Z direction)
in Fig. 2(c). As expected, the Kramer pair of flat bands split into
two nearly flat bands. Direct computation of Chern numbers
shows that they carry Chern number C = ±2 [Fig. 2(c)].

There is a simple physical argument that proves the C = ±2
for the two nearly flat bands. Let us turn off the Rashba-type
spin-orbit coupling λ for the moment. Note that the sublattices
1 and 2 form a honeycomb lattice by themselves. We could turn
on another artificial iλ1σ · (1,1,1) spin-orbit coupling between
the second neighbors on these two sublattices only, with the
same signs as the Kane-Mele model.26 In this λ1-only model,
spin rotation along the (111) direction is conserved so that
we could consider each spin-polarized subsystem separately.
Energy gaps at K and −K , the quadratic band-touching points,
in Fig. 2(a) are opened by λ1. However, it is well known that
the spin-orbit energy gap at a quadratic band-touching point
transfers a Chern number 1 between the two bands. Therefore,
two spin-orbit gaps at K and −K transfer Chern number 2
instead of 1 as in the Kane-Mele case. Including a Zeeman field

241103-3
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FIG. 4. (Color online) Left: The two nearly flat bands (red) with
Chern numbers C = ±2. Parameters are ε = 0.6 t , λ = 0.3 t , B1 =
0.2440 t , and B3 = −0.0162 t . Right: Dispersion of a cylinder with
32-unit-cell open boundary condition along e2 and periodic boundary
condition along e1, showing the edge states between the nearly flat
bands.

B along (111) split the C = ±2 bands, and clearly, the resulting
bands and their Chern numbers must be very similar to those of
the λ-only model [see Fig. 2(c)]. By fixing a Zeeman field B, it
turns out that one can adiabatically connect the λ1-only model
with the λ-only model by interpolation while keeping all the
six bands isolated from one another. This adiabatic evolution
preserves the Chern numbers of each bands. We thus prove the
Chern numbers in Fig. 2(c).

Spontaneous ferromagnetism. The flat band is half-filled
if the entire system is at half-filling. Add onsite Hubbard
interactions in the Hamiltonian,

Hint = H0,SOC +
∑

i

U ni↑ni↓. (8)

If SOC λ = 0, by Lieb’s theorem8 the ground state is ferro-
magnetic with total spin S = ( 1

2 )[(N1 + N2) − N3] = ( 1
2 )Ncell

(N1,2,3 is the number of sites on sublattices 1, 2, and 3
respectively and equals the number of unit cells Ncell). With
Rashba λ there is no known proof of ferromagnetism. We use
a variational (mean-field) treatment of this problem.

The ferromagnetic “mean-field” Hamiltonian is just the
free fermion Hamiltonian with magnetic field H0,SOC+B . By
inversion symmetry we assume fields on sublattices 1 and

2 are the same, B2 = B1, but may be different from that
on sublattice 3, B3. The variational wave function is the
free fermion wave function by half-filling this mean-field
Hamiltonian. We then evaluate the energy expectation value
of the Hubbard model Hint and try to minimize it with respect
to the variational parameters B1 and B3. From preliminary
numerical results, the system is unstable to spontaneous
ferromagnetism for infinitesimal repulsive U , consistent with
the Stoner criterion.11 However, the energy gain is very
insensitive to the field directions. For ε = 0.6 t , λ = 0.3 t ,
U = t , and the field directions along (111) (Z direction),
the field strength is B1 = 0.2440 t on sublattices 1 and 2 and
B3 = −0.0162 t on sublattice 3. The mean-field band structure
is very similar to Fig. 2(c) where a uniform B = 0.2 t is used.
The two nearly flat mean-field bands are drawn in Fig. 4.
The three occupied mean-field bands have total Chern number
C = 2 and exhibit anomalous quantum Hall effect. The edge
state on a cylindrical geometry is also shown in Fig. 4.

Conclusion. In this Rapid Communication, we discuss
a model with spin-orbit coupling on the dice lattice and
the correlation physics in it. A transition-metal oxide
SrTiO3/SrIrO3/SrTiO3 trilayer heterostructure grown along
the (111) direction, where this model may be realized,
is proposed. In this system, two degenerate flat bands at
half-filling are found. Stoner’s instability naturally leads to
ferromagnetism and splits the two bands, which give rise
two nearly flat bands with Chern number ±2. This indicate
a promising route to realize QAHE. We further speculate
that further doping into the nearly flat Chern bands could
lead to FQHE without an external magnetic field. We hope
these results could encourage experimental syntheses and
characterization of the material proposed here, as well as future
theoretical investigations on the nature of the possible FQH
states.
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