
Extending the Predictive Power and Scope of
Electronic Structure Theory and Quantum

Transport

Nicolas Poilvert
M.S., Quantum and Statistical Physics

École Normale Supérieure, 2006

Engineering Diploma, Mathematics and Physics
École Polytechnique, 2005

Submitted to the Department of Materials Science and Engineering
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN MATERIALS SCIENCE AND

ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

© MMXI Massachusetts Institute of Technology. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Materials Science and Engineering

May 18, 2011

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nicola Marzari

Associate Professor of Materials Science and Engineering
Thesis Supervisor

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Christopher A. Schuh

Chair, Department Committee on Graduate Students





Extending the Predictive Power and Scope of Electronic

Structure Theory and Quantum Transport

Nicolas Poilvert

Submitted to the Department of Materials Science and Engineering
on May 18, 2011, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Materials Science and Engineering

Abstract

The day 1998 Nobel Prize recipient Walter Kohn wrote his first article on Density
Functional Theory, he could never have predicted its eventual impact on computa-
tional materials science. Almost 50 years after his original article, the field has seen
tremendous improvement both in computer hardware and in software algorithms,
and the resulting combination of an elegant theory and truly predictive power has
enabled accurate, reliable simulation of relevant materials properties. But the story
does not end here. Density Functional Theory still needs major improvements in at
least two directions to really add the power of ab-initio quantum mechanics to the
toolbox of materials engineers. The first direction aims at improving the accuracy of
predicted materials properties, while the second aims at improving the scope of first-
principles predictions. In this work, an attempt to push the field forward in each of
the directions outlined above is set forth. A novel scheme that drastically reduces
self-interaction errors in Density Functional Theory, and re-establish physical mean-
ing in Kohn-Sham orbital energies is presented. The accuracy of the newly developed
functional is shown to remedy a lot of the known deficiencies of local and semi-local
functionals, while preserving their intrinsic qualities on established properties. A
second key contribution from this work has been the development of a set of robust
and efficient algorithms for large scale quantum transport calculations within Dens-
ity Functional Theory combined with the Non-Equilibrium Green’s Function formal-
ism. Emphasis on user-friendliness was an underlying motivation throughout the
implementation phase into the Wannier90 code. Systems with sizes up to two orders
of magnitude larger than what DFT can currently deal with can now routinely be
investigated. The automation of the whole process also opens up the possibility for
high-throughput quantum conductance calculations with potential usefulness in the
field of nanoelectronics.

Thesis Supervisor: Nicola Marzari
Title: Associate Professor of Materials Science and Engineering
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Reading Guide and Contributions

The thesis has been written with a view to provide a somehow self-contained and ped-

agogical approach to modern day Density Functional Theory. The strong emphasis

on establishing clean proofs for most of the major results was deliberate and the au-

thor hopes that it may help the reader to achieve a deeper level of understanding.

The contributions of this thesis being rather theoretical and algorithmic in nature,

the author feels that merging those smoothly alongside a presentation of the theory

leads to a better account of the unity of the field. Hopefully, the reader will arrive at

the same conclusion.

The work is organized in four parts. In Part I, an introduction to Density Func-

tional Theory (DFT) from the point of view of functional analysis is presented. In the

third chapter, the Kohn-Sham equations are derived as Euler-Lagrange equations to

a Variation Principle, both for orbital-dependent functionals and more “classic” unit-

ary invariant functionals like LDA or GGAs. Part II deals with the Bloch and Wan-

nier representations in mean-field theories (DFT being one such mean-field theory).

Although the content explicitly emphasizes the Kohn-Sham Hamiltonian, the results

are generally true for any Hamiltonian modeling a translationally periodic system.

In this part, a novel algorithm leading to a practical means to extract ordered real-

space Hamiltonian matrices is set forth. Once an ordered Hamiltonian matrix is

available, a large amount of physical properties can be derived, like band structures,

Fermi surfaces, Fermi energies, transmission functions, etc... Part III constitutes

one of the core contribution of this thesis. A new correction scheme to Density Func-

tional Theory is found which, once implemented, leads to dramatic improvements

in the prediction of a wealth of physical properties of quantum systems. This work

was initiated by Dr. Ismaila Dabo and Profs. Matteo Cococcioni and Nicola Marzari,

and led to a collaboration with Dr. Andrea Ferretti, Dr. Yanli Li and the author. A
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comprehensive analysis of the scheme’s accuracy is discussed in the second chapter

of that part. Such diverse properties as spectroscopic data, equilibrium geometries,

band structures of periodic solids, dissociation limits and chemical reaction barriers,

as predicted by this newly developed theory, are systematically compared to either

high-level accurate theoretical methods or experimental data. The last part of the

manuscript, Part IV, covers the basics of quantum transport along with a thorough

exposition of the author’s contributions to the field. The contributions split into two

parts. First, a novel set of algorithms developed explicitly to streamline and auto-

mate quantum conductance calculations was implemented into the Wannier90 code.

This work is the result of a collaborative effort between Dr. Matthew Shelley1, Dr.

Arash Mostofi, Prof. Nicola Marzari and the author. Second, a new suite of computer

codes, designed to be used as a post-processing to Wannier90, allows the “computa-

tional synthesis” of any quasi-one dimensional complex system from the fundamental

Hamiltonian building blocks provided by Wannier90, in much the same way as one

would assemble fundamental Legor bricks to build large complex structures. This

contribution is solely the work of the author and Prof. Nicola Marzari. We finally

give some conclusions and prospects for future work.

Part III and IV of the thesis have been published in peer-reviewed journals in

three different articles. Those are :

• “Koopmans’ condition for density-functional theory”, by Ismaila Dabo, Andrea

Ferretti, Nicolas Poilvert, Yanli Li, Nicola Marzari and Matteo Cococcioni. Phys-

ical Review B, 82, 115121 (2010)

• “Switchable Conductance in Functionalized Carbon Nanotubes via Reversible

Sidewall Bond Cleavage”, by Elise Li, Nicolas Poilvert and Nicola Marzari. Ac-

cepted to ACS Nano, to appear in 2011.

• “Automated quantum conductance calculations using maximally-localized Wan-

nier functions”, by Nicolas Poilvert, Matthew Shelley, Arash Mostofi and Nicola

Marzari. Accepted to Computer Physics Communications, to appear in 2011.

1Dr. Matthew Shelley former PhD student of Dr. Arash Mostofi at Imperial College, London
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Part I

Introduction to Density Functional
Theory



1
Mathematical Preliminary

Density Functional Theory has its roots in the field of Functional Analysis. This
mathematical domain is arguably one of the greatest achievement of 20th century
mathematics, and is associated with such prestigious names as Hilbert, Banach, Vol-
terra or Hadamard 1. The central idea of functional analysis is to consider functions
as vectors in a (functional) vector space, much like vectors in Euclidean spaces 2.
It is not an overstatement to say that this conceptual change has been critical in the
development of much of modern day physics. Such diverse areas as Quantum Mech-
anics, Fluid Dynamics, and General Relativity, have been greatly impacted by those
developments.

In this chapter, we will go over some of the most important notions in the fields of
Functional Analysis and Variational Calculus. This, in turn, will give us the appro-
priate vocabulary in which to express Density Functional Theory. Since the purpose
is to introduce only what is necessary, we will obviously not be comprehensive. In-
stead, we will try to introduce the notions in a simple and hopefully intuitive manner,
using some mathematical and/or physical analogies.

1.1 Functional Spaces

1.1.1 General Definition

We are used to think of spaces like R (the set of real numbers) or C (the set of complex
numbers). By space, we mean a collection or set of elements. In the case of R, it is a
set of points, each point corresponding to a real number. With these spaces in mind,
we define in a similar way functional spaces as sets or collections of elements. The
only difference is that those elements are functions in the usual sense.

Generally when one deals with functions, one likes to be able to multiply that
function by a real or complex number, but also to add two functions together. In
mathematics the above described processes are known respectively as multiplication
by a scalar and addition. If we add those two properties in our functional space, we
end up with what the mathematicians call a vector functional space. In the rest

1For a beautiful introduction to the field, the reader is directed to J. Dieudonné’s “History of Func-
tional Analysis”

2see http://en.wikipedia.org/wiki/Euclidean_space
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CHAPTER 1. MATHEMATICAL PRELIMINARY

of this thesis, whenever we will deal with a functional space, it will be understood
that the functional space is actually a vector functional space. As a general rule, we
will denote a vector functional space by the letter X.

1.1.2 Normed Functional Spaces
In order to be able to define a notion of convergence for a sequence of elements in a
space, the mathematicians introduced the notion of a norm. A norm is simply a gen-
eralization of the well-know absolute value in the case of real numbers or modulus
in the case of complex numbers. A norm is nothing else than a function that takes an
element x of a space X and returns a non-negative real number. But on top of that,
the norm has to satisfy the following properties

1. ||αx|| = |α|||x|| where α is a real or complex number

2. ||x|| = 0 implies that x = 0

3. ||x+ y|| ≤ ||x||+ ||y|| for all x and y in X

A Normed Functional Space is nothing else than a vector functional space equipped
with a norm.

1.1.3 Lp Spaces
There is an important special class of normed functional spaces that are constantly
used in mathematics and physics. Those are called Lp spaces after the French math-
ematician Henri Lebesgue. Those spaces are better introduced by using the analogy
with Euclidean spaces.

An element of an Euclidean space (a vector), can be written as a n-tuple of real
numbers x = (x1, x2, ..., xn), for some integer n. We are used to define the length of
such a vector by the Euclidean length

||x||2 =
(|x1|2 +|x2|2 + ...+|xn|2

)1/2

Where ||x||2 is a norm as defined above. But this is by no means the only way to define
a length in Rn. Indeed if x has a dimension of meters then the following expression
also gives a number in meters

||x||p = (|x1|p +|x2|p + ...+|xn|p
)1/p

and one can prove that ||...||p is also a norm in the mathematical sense. p does
not need to be an integer, and it can actually be any real number greater than 1.
Now imagine that each of the coordinates xi represents the coordinates of a function
in a given normed functional space. To illustrate what happens in the case of a
typical functional space, we will use the classic and intuitive example of the space of
continuous functions over an interval [a,b] of the real line. Then the “coordinates” of
the function in that space are simply the values of the function at every point in [a,b].
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Then the idea of summing up all the absolute values of the coordinates to the power
p is simply translated into taking the integral of the absolute value of the function
to the power p over the interval [a,b]. Then for dimensionality reasons, we take the
p-th root of that integral, and we end up with the following

|| f ||p =
(∫ b

a
| f (x)|pdx

)1/p �� ��1.1

One can prove that the function ||...||p defined above is indeed a norm in the mathem-
atical sense. It is a norm on the vector functional space of continuous functions over
[a,b].

A vector functional space equipped with the above norm is called a Lp space. As
an example, let us consider again the space C ([a,b],R) (vector functional space of
continuous functions over the interval [a,b] into R) equipped with ||...||2. Then from
equation 1.1, we see that

|| f ||2 =
(∫ b

a
| f (x)|2dx

)1/2

which is the very well-known 2-norm extensively used in Quantum Mechanics.

1.2 Functionals

Now that we have introduced the notion of a functional space, we can introduce the
notion of a functional. A functional, is nothing else than a mapping that takes a
function as its input and delivers a real number 3. This sounds complicated but it
really isn’t. Actually we are used to see and manipulate functionals all the time. An
excellent example is a norm in an Lp space. Indeed such a norm (like ||...||p defined
in equation 1.1) can be thought of as a mapping that takes a continuous function f (x)
and delivers a (positive) real number || f ||p. Here are some examples of functionals
over the functional space C ([a,b],R)

f 7→ f (x0) for some x0 in [a,b]
�� ��1.2

f 7→
∫ b

a
f (x)dx

f 7→
∫ b

a

(
d f
dx

(x)
)2

dx

f 7→
∫ b

a
G

(
x, f (x),

d f
dx

(x)
)

dx

where d f
dx means the derivative of f with respect to x and G(x, y, z) is for example a

continuous function over [a,b]×R×R.

3In general, a functional can also map to a complex number or even a vector but in this thesis we
will only consider real functionals
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1.3 Dual Spaces

The reason to introduce the concept of a dual space is motivated by the fact that
in Density Functional Theory we will see that the space of all possible admissible
external potentials that a system can be subject to, is the dual space of the space of
all admissible densities. Moreover, the notion of a dual space is central in many areas
of mathematics so knowing the definition is quite important.

1.3.1 A definition

Let X be a normed functional space. We have seen in the previous section what
a functional was. Let us now impose that the functional be linear and continuous.
Then if we call F the functional and take f , g and α to be respectively two elements
of X and a scalar, then F has the following property

F[α f + g]=αF[ f ]+F[g]
�� ��1.3

We then come to the definition of the Dual Space, which is the set of all linear and
continuous functionals on X. We will generally write X∗ for denoting the dual of X.
Moreover, we will use the following symbols

〈F,u〉 = F(u) for F in X∗ and u in X
�� ��1.4

1.3.2 Dual Space for Lp

An important result of functional analysis is to provide the dual space of Lp which is
simply Lq with q such that

1
p
+ 1

q
= 1

Actually saying that the dual of Lp is Lq is technically not appropriate since Lq is a
normed functional space while Lp∗ (the dual of Lp) is supposed to be a space of linear
functionals over Lp. The reason for such a shortcut is that there exist an isomorph-
ism between Lp∗ and Lq. An isomorphism being a one-to-one continuous mapping
between two spaces, such that the inverse mapping exists and is also continuous and
one-to-one. This means that for every element in Lp∗ there is one and only one ele-
ment in Lq that can be brought into correspondence with it. Hence, because of that
isomorphism, taking an element in Lp∗ or in Lq is really the same thing and so we
say for short that Lq is the dual of Lp. Going back to equation 1.4, we see that using
the result stated in this section we can write

〈g, f 〉 =
∫

g(x) f (x)dx for g in Lp∗ ≈ Lq and f in Lp
�� ��1.5
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1.4 Convex Functions and Functionals

The notion of convexity of a function is quite natural and well-known. Let’s describe
what it means for a continuous function over the interval [a,b]. Convexity means
that if one takes two points x1 and x2 in [a,b] and the corresponding function values
f (x1) and f (x2), then the segment linking the vectors of R2 (x1, f (x1)) and (x2, f (x2)) is
lying “above” the graph of f . This is illustrated in figure 1-1. From this figure, we

a x1 x2 b

f(x1)

f(x2)

x

f(x)

Figure 1-1: Illustration of the notion of convexity for a simple real function of a real
argument. The segment linking (x1, f (x1)) and (x2, f (x2)) (in green) lies above the
graph of f (x) (in blue).

easily find out that the mathematical translation of convexity is

f (αx2 + (1−α)x1)≤α f (x2)+ (1−α) f (x1) for all α ∈ [0,1]
�� ��1.6

In substance, this equation says that if one picks up a point x between x1 and x2, then
the function value at x, f (x), is less or equal than the linear interpolation between
f (x1) and f (x2) at x. For a twice differentiable function, one can easily check for
convexity by simply computing the second derivative of f . If that second derivative
is positive for all x in the function domain, then the function is convex over that
domain.

In the case of functionals, we could draw a very similar picture than figure 1-
1, but here x would actually be a function itself. The mathematical definition of
convexity for functionals is still the same as in equation 1.6. In the case of a functional
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F over the space C ([a,b],R), convexity would read

F(αg+ (1−α) f )≤αF(g)+ (1−α)F( f ) for all α ∈ [0,1]

for any functions f and g in C ([a,b],R).

1.5 Functional Derivatives

As soon as one comes up with the notion of a functional, one can start asking whether
we can “differentiate” that functional. But of course here the question is : “how do
you define the derivative of a functional?”. In order to have a “feeling” for what that
derivative might be, let us see how we would deal with a functional in practice.

On a computer, one cannot represent a function in its entirety because one cannot
represent an entire interval, let say [a,b], due to finite storage capabilities. So in
order to represent a function f (x) over [a,b], we would actually discretize the interval
[a,b] by introducing some kind of subdivision of it and consider f (x) to be the set of
all function values on that subdivision. Let us call {xi}1≤i≤N that subdivision and
{ f i = f (xi)}1≤i≤N the set of function values. Since f can take any value in R at every
point xi, we see that a discrete representation of a function in the space C ([a,b],R) is
akin to a vector ( f1, f2, ..., fN) in RN . If we now consider a functional F over C ([a,b],R),
we realize that the discretized version of the functional is simply a function of many
variables { f i}1≤i≤N which delivers a real number. At this point we know how to define
what is called the directional derivative of F. Indeed if we fix a vector f⃗ = ( f1, f2, ..., fN)
and consider another vector g⃗ = (g1, g2, ..., gN), then the directional derivative of F at
f⃗ in the direction of g⃗ is

F ′
g⃗( f⃗ )= lim

ϵ→0+
F( f⃗ +ϵ g⃗)−F( f⃗ )

ϵ

�� ��1.7

Using some fundamental results from Calculus, we arrive at the following expression

F ′
g⃗( f⃗ )=

N∑
i=1

∂F
∂ f i

g i = ∇⃗F. g⃗
�� ��1.8

Keeping those results in mind, we will now define what is called the Gâteaux de-
rivative of a functional in the same way as equation 1.7. Let us choose two functions
f (x) and g(x) and an ϵ> 0 and define the Gâteaux derivative as

F ′
g( f )= lim

ϵ→0+
F( f +ϵg)−F( f )

ϵ

�� ��1.9

Then using the fact that when the subdivision becomes very dense we have f i → f (x),
g i → g(x) and the sum in equation 1.8 becomes an integral over the interval [a,b],
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1.5. FUNCTIONAL DERIVATIVES

the “practical” definition of the Gâteaux derivative is

F ′
g( f )=

∫ b

a

δF
δ f (x)

g(x)dx
�� ��1.10

Equation 1.10 does not tell us what the derivative δF
δ f (x) is, but it defines it. It tells

us that if we know the analytical expression for F, then we compute the ratio in
equation 1.9 and let ϵ go to 0. If we can manage to recast the expression of that
limit into something like 1.10, then the term δF

δ f (x) is by definition the functional
derivative of F at f (x).

Using the above definitions, let us compute some functional derivatives of great
interest for the chapter on Density Functional Theory. We will be concerned here
with the following real functionals

F[ f ]=
∫ b

a

(
d f
dx

)2
dx

�� ��1.11

F[ f ]=
∫ b

a
f (x)V (x)dx

F[ f ]=
∫ b

a

∫ b

a

f (x) f (y)
|x− y| dxd y

The first functional is actually a kinetic energy functional in disguise. The second
functional will correspond to the energy associated with the external potential while
the last functional will represent the Hartree electrostatic energy.

Focusing on the first functional in 1.11 and using the linearity of usual derivatives
we have

F[ f +ϵg]−F[ f ]=
∫ b

a

((
d f
dx

+ϵ
dg
dx

)2
−

(
d f
dx

)2)
dx

Expanding the first term and neglecting all the terms of order ϵ2 or more into O (ϵ2)
we find

F[ f +ϵg]−F[ f ]= 2ϵ
∫ b

a

d f
dx

dg
dx

dx+O (ϵ2)

Dividing by ϵ and taking the limit ϵ→ 0 we end up with

F ′
g[ f ]= 2

∫ b

a

d f
dx

dg
dx

dx

Let us now suppose that the functional space allows for second derivatives (such that
d2 f
dx2 exists). Then integrating by parts leads us to

F ′
g[ f ]= 2{[g(x)

d f
dx

]b
a −

∫ b

a

d2 f
dx2 g(x)}

Finally introducing the δ functions δ(x− a) and δ(x− b), we can simplify the above
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expression to

F ′
g[ f ]=

∫ b

a
2

[
−d2 f

dx2 + f ′(b)δ(x−b)− f ′(a)δ(x−a)
]

g(x)dx

The above integral form is exactly equivalent to equation 1.10. By identification we
find

δF
δ f (x)

=−2
d2 f
dx2 +2 f ′(b)δ(x−b)−2 f ′(a)δ(x−a)

�� ��1.12

In the special case where the functions f and g are periodic over [a,b] (as will be the
case in general in Density Functional Theory), the last two terms in equation 1.12
can be dropped and the functional derivative simplifies to

δF
δ f (x)

=−2
d2 f
dx2

We now focus on the second functional in 1.11. Computing F[ f +ϵg]−F[ f ] trivially
gives us

F[ f +ϵg]−F[ f ]= ϵ

∫ b

a
V (x)g(x)dx

Dividing by ϵ and taking the limit ϵ→ 0, we find the functional derivative by identi-
fication with formula 1.10

δF
δ f (x)

=V (x)
�� ��1.13

For the last functional in 1.11, let us expand the term f (x) f (y) when f is replaced
with f +ϵg. Up to first order in ϵ we have

( f (x)+ϵg(x))( f (y)+ϵg(y))= f (x) f (y)+ϵ( f (x)g(y)+ f (y)g(x))+O (ϵ2)

Plugging the above expression back into F[ f ] we end up with

F[ f +ϵg]−F[ f ]= ϵ

∫ b

a

∫ b

a

f (x)g(y)+ f (y)g(x)
|x− y| dxd y+O (ϵ2)

Dividing by ϵ and taking the limit ϵ→ 0 we end up with

F ′
g[ f ]=

∫ b

a

∫ b

a

f (x)g(y)+ f (y)g(x)
|x− y| dxdy

Because of the symmetric nature of the integrand, the above expression can be sim-
plified into

F ′
g[ f ]=

∫ b

a

(
2

∫ b

a

f (y)
|x− y|dy

)
g(x)dx

which by identification with equation 1.10 finally gives us

δF
δ f (x)

= 2
∫ b

a

f (y)
|x− y|dy

�� ��1.14
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1.6 Legendre Transform of Convex Functions

The notion of Legendre transformation is very central in thermodynamics. It is un-
derlying the whole of thermodynamic potential theory. But perhaps less known is the
fact that Legendre transforms are also of paramount importance in Density Func-
tional Theory. Once again we will first introduce Legendre transforms in the context
of a simple function and then generalize to a functional.

Let us consider a convex function f (x) and a number p ∈ R. Then the function
− f (x) is a concave function. What’s more the function x 7→ px is also concave (actually
it is a linear function which has the special property to be both convex and concave).
Since the sum of two concave functions is a concave function, then x 7→ px− f (x) is
concave. A classic theorem about concave functions tells us that since the function
x 7→ px− f (x) is bounded over [a,b] (since it is continuous), then a maximum exists
and is unique4. This allows us to define what we will call the Legendre transform
of x 7→ px− f (x) at p

f ∗(p)= max
x∈[a,b]

{px− f (x)}
�� ��1.15

We now want to visualize geometrically what the Legendre transform is. For this we
draw a typical convex function between [a,b] along with two representative elements
from a family of straight lines with slope p on figure 1-2. Let us consider for simpli-
city that f (x) is differentiable. Then a necessary condition for having a maximum of
x 7→ px− f (x) is that the derivative of that function at the maximum (let us call it x0)
be zero

d
dx

(px− f (x)) |x=x0 = 0 which gives p = f ′(x0)

Since we know that this maximum exists and that it is unique, we realize that the
maximum is obtained when the line x 7→ px+β is actually the tangent to the curve
at x = x0. But we also know the equation of that tangent. It is given by

x 7→ f (x0)+ f ′(x0)(x− x0)

The ordinate at the origin of that tangent is then f (x0)− f ′(x0)x0. But since f ′(x0)= p,
that ordinate can be re-written as f (x0)− px0. Going back to the definition of the
Legendre transform, we see that f (x0)− px0 = − f ∗(p). So, the Legendre transform
is nothing else than the opposite of the ordinate at the origin of the tangent to the
curve f with slope p. On figure 1-2 the ordinate at the origin of the tangent is at
(0,0). We see that for every other line parallel to the tangent crossing the curve of f ,
the ordinate at the origin is of higher value.

Now that we have a feel for what a Legendre transform actually is, let us simply
extend the definition to a convex functional. Since the input space of a functional,
X, is generally an unbounded infinite dimensional space, the “maximum” may actu-
ally not exist. Nevertheless the supremum does. We then define the Legendre

4strictly speaking the uniqueness is valid only for strictly concave functions
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a x0 b

f(x0)
p�f�(p)

x

f(x)

Figure 1-2: A convex function f (in blue) is shown along with 2 elements of a family
of lines with given slope p. The tangent line to the curve (red line) at x0 is the only
line in the family that leads to the lowest ordinate at the origin (i.e. at x = 0). The
second line of slope p (dashed green line) clearly displays an ordinate at the origin
higher than the tangent line.

transform of a functional F[ f ] as

F∗[g]= sup
f ∈X

{〈g, f 〉−F[ f ]}
�� ��1.16

What is remarkable about a Legendre transform is that it is a convex function (or
functional) whatever the input function (or functional) F[ f ] is. To see this let us take
two element g1 and g2 in Y (actually the dual space to X, X∗) and α ∈ [0,1]. Then the
following expression

〈αg1 + (1−α)g2, f 〉−F[ f ]

can be re-written as (thanks to the linearity of 〈,〉 and the fact that 1=α+ (1−α))

α(〈g1, f 〉−F[ f ])+ (1−α)(〈g2, f 〉−F[ f ])

The last expression is obviously bounded from above by

αF∗[g1]+ (1−α)F∗[g2]

This comes from the very definition of the Legendre transform. We then deduce that
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〈αg1 + (1−α)g2, f 〉−F[ f ] is bounded from above by αF∗[g2]+ (1−α)F∗[g2] for all f
in X. Since the supremum is the smallest of those bounds, we conclude that

F∗[αg1+ (1−α)g2]≤αF∗[g2]+ (1−α)F∗[g2]
�� ��1.17

which proves the convexity of F∗.
We finish this review of Legendre transformation by stating an important the-

orem concerning the double Legendre transform of a lower semi-continuous 5 and
convex functional.

Theorem 1.6.1. (Double Legendre Transform) The Legendre transform of the Le-
gendre transform (called the bi-conjugate) of a lower semi-continuous and convex
functional F, is the functional itself, i.e. F∗∗ ≡ F

F∗∗ ≡ F ⇔ F is convex lower semi-continuous
�� ��1.18

1.7 The Technique of Lagrange Multipliers

The technique of Lagrange multipliers is a very elegant method for dealing with con-
straint optimization problems. Instead of minimizing the objective (or cost) function
directly by ensuring that one stays inside the minimization space (which can be a
complicated space because of the constraints), the Lagrange multiplier technique in-
troduces an alternative objective function that can be minimized over a larger space
without any constraints. In order to introduce Lagrange’s technique, we will first get
a feel for what the multipliers mean geometrically in the case of an objective function
of 2 variables. Then we will generalize to a function of N variables. Eventually we
will present the technique when the function is a functional.

1.7.1 A simple example

Let us consider the vector space R2 and a general objective function f of two variables
(x, y). We wish to minimize the function f given that (x, y) are constraint to satisfy
g(x, y)= 0. Figure 1-3 illustrate that idea. The black curve represents the constraint
g(x, y)= 0 (which defines a 1 dimensional manifold in R2), while the objective function
f is represented by a family of contour plots. We clearly see on that graph that f
possesses a global minimum at (x0, y0). However, since the space of accessible points
due to the constraint is reduced to the black curve, we see that we can never find the
global minimum when minimizing f onto the constraint space. Now that we have a
geometrical idea of the problem, let us try to understand how to solve that problem
analytically. Let us suppose that we found the minimum of f (here at (x1, y1)) given
that we can only take (x, y) onto the constraint space. Then if we move away from

5It is not so important in our discussion to know exactly what a semi-continuous functional is, but
for the curious reader please refer to Zeidler [104]

25



CHAPTER 1. MATHEMATICAL PRELIMINARY

x1x0

y1

y0

x

y

Figure 1-3: Illustration of a constraint optimization problem. The function to optim-
ize, f , is displayed by a family of ellipses that represent some of its contours. On
the other hand the minimization has to be carried out onto the black curve which
specifies the constraint. Even though the global minimum of f is at (x0, y0) the con-
straint minimization gives a minimum at (x1, y1).

this minimum but still stay in the constraint space, we can only come up with higher
values of f . This just means that the directional derivative of f in any direction in the
constraint space has to be zero. We then conclude that the only direction in which
the directional derivative of f can possibly not be zero, would be in an orthogonal
direction to the constraint space. But we know that such a direction is given by the
gradient of the function g that specifies the constraint space. We then deduce that
there must be some λ such that

∇⃗ f =λ∇⃗g
�� ��1.19

Looking back at figure 1-3, the above description can be interpreted by saying that
the black curve (which represents the constraint space) has to be tangent to a contour
plot of f (because a contour plot, by definition, is a locus of points for which f is
constant, and so the derivative of f is 0 along the contour space). That λ is called a
Lagrange multiplier. In order to find the constraint minimum, we could have consider
the following function

h(x, y,λ)= f (x, y)−λg(x, y)

and minimize that function for all (x, y,λ). Indeed finding the extremum points for
that new function is easier because we can just find a set of necessary conditions by
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equating the partial derivatives to 0

∂h
∂x

= 0

∂h
∂y

= 0

∂h
∂λ

= 0

The first two equations lead back to equation 1.19 while the last gives back the con-
straint g(x, y) = 0. We then see that solving the original problem or the alternative
one is equivalent. The alternative problem is called the Lagrange multiplier tech-
nique.

1.7.2 General Case in Rn

Let us now widen the range of applicability of the Lagrange multipliers technique
by considering an objective function f in Rn. We take a set of m constraints (m ≤ n)
g i(x)= 0 for i ∈ 1,2, ...,n. We wish to minimize the following

inf
x∈Rn

∀i∈{1,m} g i(x)=0

f (x)
�� ��1.20

As in the previous section, let us imagine that the infimum exists and is actually a
minimum. Then there is a x1 in Rn such that f can only increase when we move away
from x1. Just as in the 2 dimensional case, we find that the directional derivative of f
has to be zero for all possible vectors in the constraint space at x1. Equivalently, the
only space in which the directional derivative of f could potentially not be 0, would
be the complementary space of the constraint space. But this latter space is spanned
by the vectors ∇⃗g i which are vectors orthogonal to the constraint space. All in all, at
the minimum, we should have a set of scalars λi such that the gradient of f can be
written as

∇⃗ f =
m∑

i=1
λi∇⃗g i

�� ��1.21

Now if we define a new function h such that

h(x,λ1, ...,λm)= f (x)−
m∑

i=1
λi g i(x)

then we can easily show, just like in the last section, that the set of necessary condi-
tions generated when one minimizes h without any constraints, lead to the previous
set of equations. We are then solving the same problem as in 1.20.
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1.7.3 The Case of Functionals
Finally, we “translate” the technique to the case of functionals. The space over which
we minimize is now a vector functional space X. An element of that space is denoted
f and a functional F. A constraint in this case is of the following form

G i[ f ]= 0

where G i is itself a functional. The technique of Lagrange multipliers then reads

inf
f ∈X

∀i∈{1,m}G i[ f ]=0

F[ f ]

is equivalent to

inf
f ∈X

∀i∈{1,m}λi∈R

[
F[ f ]−

m∑
i=1

λiG i[ f ]

] �� ��1.22

The technique obviously holds when the λ’s are complex and when we are dealing
with any extremalization problem (i.e. not reduced to minimization problems).
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2
Fundamental Density Functional

Theory

In this chapter we will be concerned with establishing Density Functional Theory on
clean mathematical grounds. The purpose being to explicit the existence of a Density
Functional and of a Variational Principle that are exempt of mathematical uncertain-
ties. This goal being quite demanding in terms of mathematical rigor, we simply wish
to outline the necessary background and logic that underlies the construction of both
the Density Functional and the Variational Principle.

For a thorough review of the foundations of Density

Walter Kohn (1923-)

Functional Theory, we direct to the excellent monograph
by Eschrig [29]. It is interesting to note that until the
1980s, Density Functional Theory had not much math-
ematical rigor. The so-called Hohenberg-Kohn theorems
were restricted to very limited sets of possible ground
states and it took the genius of Elliott Lieb [62] to really
establish Density Functional Theory as a mathematically
sound theory.

2.1 Description of a Quantum System

In this section, we wish to explore the fundamental assumptions that we make when
we describe a system in Quantum Mechanics. We will see why we substitute the infin-
ite space R3 for a bounded space T3 with periodic boundary conditions, and also how
we describe a system especially in the grand canonical ensemble. Those assumptions
are motivated both theoretically and practically as we will discover.

2.1.1 Replacing R3 with T3

Let us consider an isolated molecule X, with a given atomic number (the sum of the
nuclei charges) Z. We know from experience that if one puts too many electrons in the
system, then beyond a certain threshold, the extra electrons are not bound anymore
to the molecule and escape to infinity. This means that for a given total number
of electrons, say M, a quantum system may not have a ground state in the sense
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that not all the particles are localized in space around the same region. In practice
we would not be in a position to converge the calculation in such a situation simply
because we cannot emulate an infinite space on a computer. Instead, in order to make
sure that we have a ground state in every situation, we replace the whole of R3 space
by a finite subspace T3 with periodic boundary conditions. The advantages of such
a substitution go as follows. If the system is isolated and supports a ground state,
then we will simply take a large enough but finite space. Since the charge density
goes to zero exponentially when we move away from the system [48] the influence
of the finiteness of T3 and of the periodic boundary conditions become negligible.
If, however, the system does not bind some of the electrons we will see it in the
calculation by observing a spreading of the charge over the whole space T3. In both
cases, the calculation still converges because we are dealing with a finite space, but
we can clearly distinguish the physical situations. At last when one deals with a
system with some spatial periodicity, then the finiteness of space is actually required.
In this case, periodicity introduces a reciprocal space characterized by a set of vectors
k⃗, and what we need to do is make sure that we introduce enough k⃗ vectors in the
calculation to converge the solution. As a consequence, we will always consider the
finite space T3 in both theory and practice. For a further description of why we use
T3 instead of R3, see Eschrig [29].

2.1.2 Wavefunction-based description

Basic quantum mechanics teaches us that an isolated system like an atom, a mo-
lecule, or even a nanoparticle, can be described by a normalized ket [12] |ψ〉 in a Hil-
bert space, or equivalently, by a normalized many-body wavefunction ψ(⃗x1, x⃗2, ..., x⃗M)
where M is the total number of electrons in the system (⃗x is a short-hand for both the
position in space r⃗ and the spin σ). An additional property in the case of electrons
(and fermions in general) is antisymmetry. If one exchanges 2 electrons, then the ket
|ψ〉 (or the wavefunction) picks up a factor -1 in front. Given an isolated system, an
Hamiltonian Ĥ can be defined. Calling V (⃗x) the external (electrostatic) potential ex-
erted by the nuclei onto the electrons, and w(|⃗xi− x⃗ j|) the electron-electron interaction,
then the real-space representation of that Hamiltonian is given by

Ĥ[V , M]=−1
2

M∑
i=1

∇⃗2
i +

M∑
i=1

V (⃗xi)+ 1
2

M∑
i ̸= j

w(|⃗xi − x⃗ j|)
�� ��2.1

Given an observable Â representing some physical quantity of interest like the kin-
etic energy, the particle number, or the Coulomb repulsion between the electrons, one
can compute the expectation value of that observable in the quantum state ψ using

〈Â〉 = 〈ψ|Â|ψ〉 =
∫
T3M

ψ(⃗x1, x⃗2, ..., x⃗M)Âψ∗(⃗x1, x⃗2, ..., x⃗M)dx⃗1dx⃗2...dx⃗M
�� ��2.2
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In particular the expectation value of the external potential is

〈V̂ 〉 =
∫
T3M

ψ(⃗x1, x⃗2, ..., x⃗M)
M∑

i=1
V (⃗xi)ψ∗(⃗x1, x⃗2, ..., x⃗M)dx⃗1dx⃗2...dx⃗M

which, when using the antisymmetry of the many-body wavefunction, the indistin-
guishability of the electrons and the definition of the single electron density n(⃗x)
simplifies to

〈V̂ 〉 =
∫
T3

V (⃗x)n(⃗x)dx⃗
�� ��2.3

For the sake of completeness we also give the expression for the single electron dens-
ity

n(⃗x) =
∫
T3M

ψ(⃗x1, x⃗2, ..., x⃗M)
M∑

i=1
δ(⃗x− x⃗i)ψ∗(⃗x1, x⃗2, ..., x⃗M)dx⃗1dx⃗2...dx⃗M

= M
∫
T3(M−1)

ψ(⃗x, x⃗2, ..., x⃗M)ψ∗(⃗x, x⃗2, ..., x⃗M)dx⃗2...dx⃗M
�� ��2.4

2.1.3 Density operator-based description

As convenient and powerful as the wavefunction description may be, it is, neverthe-
less, not the most general way to describe a system in Quantum Mechanics. Indeed,
if one is interested in knowing what is the average number of electrons in a system
in thermodynamic equilibrium with an electron reservoir, then a wavefunction de-
scription fails. The reason is that a wavefunction describes a system with a fixed
number of electron and so this number cannot fluctuate. In order to extend the class
of possible quantum states for a system, we introduce the density operator [72]
Γ̂. For a quantum system described by a ket |ψ〉 (with corresponding wavefunction
ψ(⃗x1, x⃗2, ..., x⃗M)), the density operator is simply

Γ̂= |ψ〉〈ψ|
�� ��2.5

If a quantum system is described by a single ket (i.e. the system has a well-defined
many-body wavefunction), then one says that the system is in a pure state. If, how-
ever, the system of interest is a subsystem of a larger isolated system, or a macro-
scopic system in thermodynamic equilibrium with a particle and/or energy reservoir,
then the number of electron can fluctuate and in general the system is in a mixed
state. By mixed state, we mean that there is a probability distribution pi over ac-
cessible pure states with well defined normalized kets |ψi〉, for which the density
operator is written as

Γ̂=∑
i

pi|ψi〉〈ψi| with finitely many pi
�� ��2.6

It is important to note that the kets |ψi〉 can correspond to different total number of
electrons in the system. Since all the wavefunctions appearing in 2.6 are normalized,
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and that we want the pi to represent a probability distribution over those normalized
accessible kets |ψi〉, we impose the following conditions onto the pi ’s

pi ≥ 0 and
∑

i
pi = 1

�� ��2.7

In a quantum description based on density operators rather than kets, the expecta-
tion value for operator Â is given by

〈Â〉 =∑
i

pi〈ψi|Â|ψi〉
�� ��2.8

In particular the expectation value of the external potential is given by

〈V̂ 〉 =
∫
T3

V (⃗x)n(⃗x)dx⃗

just like equation 2.3 with the electron density given by

n(⃗x)=∑
i

pini (⃗x)
�� ��2.9

where ni is the electron density associated with the normalized ket |ψi〉. In the case
of density operators, the total number of electron is expressed as

N =
∫
T3

n(⃗x)dx⃗ =∑
i

piNi

where Ni is the number of electrons in a system described by the ket |ψi〉. Even
though all the Ni ’s are integer numbers, N has no reason to be. It is in general a
non-negative real number. This fundamental difference between a wavefunction-
based description, where N is an integer, and a density operator-based description,
where N is any non-negative real number, is of paramount importance for a proper
description of a grand canonical state.

2.2 Functional Spaces for Densities and External Po-
tentials

Density Functional Theory uses the electron density as its basic variable. Now that
we know how to compute that density from the knowledge of the many-body wave-
function or the density operator, let us see what are the mathematical constraints
on such an admissible density. We first consider a quantum system described by a
many-body wavefunction ψ. We go back to equation 2.4 and write

n(⃗x)= M
∫
T3(M−1)

ψ(⃗x, x⃗2, ..., x⃗M)ψ∗(⃗x, x⃗2, ..., x⃗M)dx⃗2...dx⃗M
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Every constraint that we can find on n(⃗x) will then necessarily come from constraints
on ψ. What are those constraints ? Well we can a priori state two things

• ψ is normalized :
∫
T3M ψ(⃗x1, ..., x⃗M)ψ∗(⃗x1, ..., x⃗M)dx⃗1...dx⃗M = 1

• ψ has finite kinetic energy : 〈T̂〉 <+∞
The first constraint clearly leads us to∫

T3
n(⃗x)dx⃗ = M

�� ��2.10

This simply tells us that n(⃗x) ∈L1(T3). In order to exploit the other constraint, we
first realize that equation 2.4 tells that for a fixed vector x⃗, the expression for the
density is nothing but a scalar product of ψ with itself. Let us denote that scalar
product by 〈ψ|ψ〉′ to emphasize that x⃗ is kept fixed. Then the density can be written
as n(⃗x)= M〈ψ|ψ〉′ . taking the gradient of n(⃗x), the rule of differentiation of a product
gives

∇⃗n(⃗x)= M
(
〈⃗∇ψ|ψ〉′ +〈ψ|⃗∇ψ〉′

)
= 2M Re(〈⃗∇ψ|ψ〉′)

From which we deduce the following inequality for the square (the square modulus
of the real part of a complex number being less or equal than the square modulus of
the complex number) [⃗

∇n(⃗x)
]2 ≤ 4M2|〈⃗∇ψ|ψ〉′ |2

Using a theorem from mathematics, known as the Schwartz inequality, we find
|〈⃗∇ψ|ψ〉′ |2 ≤ 〈⃗∇ψ|⃗∇ψ〉′〈ψ|ψ〉′ and so we arrive at[⃗

∇n(⃗x)
]2 ≤ 4M2〈⃗∇ψ|⃗∇ψ〉′〈ψ|ψ〉′

Inserting the definition for n(⃗x), we simplify the result to[⃗
∇n(⃗x)

]2 ≤ 4Mn(⃗x)〈⃗∇ψ|⃗∇ψ〉′

We are almost finished now. We just need to consider the following integral∫
T3

[⃗
∇

√
n(⃗x)

]2
dx⃗ =

∫
T3

1
4

[⃗
∇n(⃗x)

]2 1
n(⃗x)

dx⃗

and use the previous inequality to arrive at∫
T3

[⃗
∇

√
n(⃗x)

]2
dx⃗ ≤

∫
T3
〈⃗∇ψ|⃗∇ψ〉′dx⃗

This is where the constraint of finite kinetic energy allows us to conclude. The integ-
ral on the right-hand side in the previous inequality is the expectation value of the
kinetic energy 〈T̂〉. All in all ∫

T3

[⃗
∇

√
n(⃗x)

]2
dx⃗ ≤ 〈T̂〉

�� ��2.11
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So if the kinetic energy is finite when the system is in state ψ, then the integral on
the left-hand side of equation 2.11 is finite as well. Another general inequality due
to Sobolev [62] (see Gagliardo-Nirenberg-Sobolev inequality) is(∫

T3
|u(⃗x)|6dx⃗

) 1
3 ≤ C

∫
T3

|⃗∇u(⃗x)|2dx⃗

with C = 1
3

( 2
π

) 4
3 . Plugging u(⃗x)=

√
n(⃗x) into the above inequality we find

(∫
T3

|n(⃗x)|3dx⃗
) 1

3 ≤ C
∫
T3

|⃗∇
√

n(⃗x)|2dx⃗ ≤ C〈T̂〉

This last inequality tells us that n(⃗x) ∈ L3(T3). All in all, a proper set of admissible
densities is

RN = {n|n(⃗x)≥ 0,
∫
T3

n(⃗x)dx⃗ = N,n ∈ L3(T3)}
�� ��2.12

Having gone this far a question arises immediately : what happens when we move
from a wavefunction-based description to a density operator-based description ? The
answer is nothing! The fundamental reason is that an admissible density coming
from a density operator is just a convex combination of densities coming from wave-
functions (see equation 2.9). Then if for each wavefunction ψi, we have ni ∈ RNi ,
then one can show that n ∈ RN with N = ∑

i piNi. A last but important property of
RN is its convexity. Indeed if two admissible densities n1 and n2 are considered,
then any convex combination αn1 + (1−α)n2 (α ∈ [0,1]) is also an admissible density.

To define the space of admissible external potentials, let us go back to the only
term in the expectation value of the Hamiltonian that involves that external poten-
tial, namely

〈V̂ 〉 =
∫
T3

V (⃗x)n(⃗x)dx⃗

Since we want that integral to be finite for all admissible densities n, we are led to
consider the dual space of admissible densities as our appropriate space for admiss-
ible external potentials. But what is the dual space of L1(T3)∩L3(T3) ? A result of
functional analysis gives us the answer

V = {V =V1+V2|V1 ∈ L3/2(T3) and V2 ∈ L∞(T3)}
�� ��2.13

Admissible external potentials have to be written as a sum of two potentials, the first
of which satisfies (∫

T3
|V1(⃗x)|3/2dx⃗

)2/3
<+∞

and the second is bounded over T3. We mention at this point that similarly to the
case of RN , the space of admissible potentials V is convex. Despite its unappealing
nature, let us show that the Coulomb potential belongs to that space. To see this, just
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write
1
|⃗x| =

θ(|⃗x|)
|⃗x| + 1−θ(|⃗x|)

|⃗x|
with θ(|⃗x|)= 1 for |⃗x| ≤ 1 and θ(|⃗x|)= 0 for |⃗x| > 1. It is then easy to verify, by switching
to spherical coordinates, that the first term on the right-hand side is in L3/2(T3) and
the second is a bounded potential.

To conclude, we indicate that thanks to our choice for the functional spaces of
admissible densities and external potentials, for any ket |ψ〉 or any density operator
Γ̂, one can show that the expectation values for the kinetic energy, external potential
energy and electron-electron repulsion energy are all finite. As a consequence, 〈Ĥ〉 is
always well-defined and finite.

2.3 The Density Functional and the Variational Prin-
ciple

Having all the required ingredients, we can at last move to the heart of Density
Functional Theory and establish two important theorems. The first will deal with the
existence of a universal functional of the electron density. The second will introduce
a variational principle allowing us to compute the ground state total energy of a
quantum system from the knowledge of the universal functional.

2.3.1 The Universal Functional

The starting point of the whole business of Density Functional Theory is the Rayleigh-
Ritz variation principle of Quantum Mechanics extended to the case of density oper-
ators. The variational principle reads

E0[V , N] = inf
Γ̂

[
tr(ĤΓ̂)= 〈Ĥ〉|tr(N̂Γ̂)= 〈N̂〉 = N

]
= inf

{pi}

[∑
i

pi〈ψi|Ĥ|ψi〉|
∑

i
piNi = N

] �� ��2.14

This principle1 tells in substance that in order to find the ground state energy of a
quantum system with an average number of electrons equal to N, one needs to min-
imize the expectation value of the Hamiltonian over all possible density operators,
given the constraint that the expectation value of the number of electrons is N. As
one can see, we made explicit the dependence of the ground state energy with respect
to the external potential V and the total number of electrons N. As a consequence,
the ground state energy is a function of N and a functional of V . We will now prove
two very important properties of the ground state energy.

1In theory the infimum may not exist for a general electron-electron interaction. Nevertheless, for
repulsive interactions (like the Coulomb interaction), one can prove that the ground state energy is
always bounded from below and so the infimum always exists.
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• E0[V , N] is a convex function of N for a fixed potential V

• E0[V , N] is a concave functional of V for a fixed electron number N

Let us start with the convexity. We fix an external potential and consider two
electron numbers N1 and N2, with a scalar α ∈ [0,1]. E0[V , N1] and E0[V , N2] being
energy infima over all density operators for respectively N1 and N2, there exist two
sequences of density operators Γ̂

j
1 and Γ̂

j
2 such that tr(N̂Γ̂

j
1) = N1 and tr(N̂Γ̂

j
2) = N2

with lim j→+∞ tr(ĤΓ̂
j
1) = E0[V , N1] and lim j→+∞ tr(ĤΓ̂

j
2) = E0[V , N2]. Let us consider

the following sequence of density operator Γ̂ j = αΓ̂
j
1 + (1−α)Γ̂ j

2. By linearity of the
trace, we have tr(N̂Γ̂ j) = αtr(N̂Γ̂

j
1)+ (1−α)tr(N̂Γ̂

j
2) = αN1 + (1−α)N2. In the same

spirit, we also have tr(ĤΓ̂ j) = αtr(ĤΓ̂
j
1)+ (1−α)tr(ĤΓ̂

j
2). Hence, that sequence is

composed of admissible density operators for a total number of electrons equal to
αN1 + (1−α)N2. By definition of the infimum we have for all j that E0[V ,αN1 + (1−
α)N2] ≤ αtr(ĤΓ̂

j
1)+ (1−α)tr(ĤΓ̂

j
2). Letting j go to infinity we arrive at the desired

convex inequality

E0[V ,αN1 + (1−α)N2]≤αE0[V , N1]+ (1−α)E0[V , N2]
�� ��2.15

Now we move on to prove the concavity. Let us fix an electron number N. We
introduce two potentials V1 and V2 along with a scalar α ∈ [0,1]. Given the linear
dependence of the Hamiltonian with the external potential, it is easy to find that
〈Ĥ[αV1 + (1−α)V2]〉 = α〈Ĥ[V1]〉+ (1−α)〈Ĥ[V2]〉. By definition of the infimum, this
expression is bounded below by αE0[V1, N]+ (1−α)E0[V2, N]. Finally, we remember
that the infimum is also the largest lower bound and so in particular we have

E0[αV1+ (1−α)V2, N]≥αE0[V1, N]+ (1−α)E0[V2, N]
�� ��2.16

QED.

On top of the above properties, one can prove that E0[V , N] seen as a functional of
the external potential V is lower semi-continuous [29]. We now come to the universal
functional. We define the Universal Functional of the density as

H[n, N]= sup
V∈V

[
E0[V , N]−

∫
T3

V (⃗x)n(⃗x)dx⃗|
∫
T3

n(⃗x)dx⃗ = N
] �� ��2.17

As one can readily observe, the above functional does not depend on the external
potential since we compute a supremum over the space of external potentials. It is
nothing else than the Legendre transform of the energy functional −E0[V , N] (which
is a convex functional in V ). The basic variable of the universal functional is the
electron density n. There is also an N dependence to the functional through the
constraint on n to integrate to the total number of electrons.
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2.3.2 The Hohenberg-Kohn Variational Principle
Having proven the convexity of −E0[V , N] and mentioned its lower semi-continuity,
we now use theorem 1.6.1 to prove the existence of the following Variational Prin-
ciple (that we will call the Hohenberg-Kohn Variational Principle in honor of the
pioneers of Density Functional Theory [41])

E0[V , N]= inf
n∈RN

[
H[n, N]+

∫
T3

V (⃗x)n(⃗x)dx⃗
] �� ��2.18

This completes our presentation of the foundations of

Pierre Hohenberg (1934-)

Density Functional Theory. We succeeded in replacing
the original Rayleigh-Ritz variational principle (in which
the basic variable is either the many-body wavefunction
or the density operator) with a variational principle whose
basic variable is the electron density n.
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3
Practical Density Functional Theory

The previous chapter was an attempt to present the field of Density Functional The-
ory in all its glory. The conceptual change introduced by DFT was fundamental
and beautiful in its simplicity. It is a new way of looking at solving the Schrödinger
equation that is, in theory, much easier to deal with than the original Rayleigh-Ritz
variational principle. Nevertheless, the universal functional is elusive and its defini-
tion in equation 2.17 is hardly illuminating. We need a way to tackle the challenge of
finding that functional. This is where the Kohn-Sham [52] approach really changed
everything for practical DFT.

3.1 Total Energy for a Non-Interacting System

The breakthrough by Kohn and Sham came about from a simple observation. If the
Hohenberg-Kohn universal functional exists and is exact for all possible electron-
electron interactions, it also holds for no interaction at all. Let us then go back to the
definition of the total energy in equation 2.14

Eni
0 [V , N] = inf

Γ̂

[
tr((T̂ + V̂ )Γ̂)|tr(N̂Γ̂)= 〈N̂〉 = N

]
= inf

{pi}

[∑
i

pi〈ψi|T̂ + V̂ |ψi〉|
∑

i
piNi = N

]

where the superscript ni refers to the fact that the electron-electron interaction has
been “switched-off”. What is remarkable in this expression is the fact that one
can compute all the terms in the expectation value of the Hamiltonian Ĥ0 = T̂ + V̂
from the sole knowledge of the one body reduced density matrix γ(⃗x, x⃗′) (1-RDM).
What is this 1-RDM ? it is simply a generalization of the electron density

γ(⃗x, x⃗′) =
∫
T3

ψ(⃗x, x⃗2, ..., x⃗M)ψ∗(⃗x′, x⃗2, ..., x⃗M)dx⃗2...dx⃗M
�� ��3.1

or

γ(⃗x, x⃗′) = ∑
i

pi

∫
T3

ψi (⃗x, x⃗2, ..., x⃗Ni )ψ
∗
i (⃗x′, x⃗2, ..., x⃗Ni )dx⃗2...dx⃗Ni

depending on whether one decides to describe the system using wavefunctions or
density operators. The “diagonal” of that “matrix” is nothing else than the electron



3.2. THE N-REPRESENTABILITY OF 1-RDM

density γ(⃗x, x⃗) = n(⃗x). The mathematical expressions for the kinetic energy and the
external potential in terms of the 1-RDM are

〈T̂〉 =−1
2

∫
T3

∇⃗2
x⃗γ(⃗x, x⃗′)|⃗x′=⃗xdx⃗

and
〈V̂ 〉 =

∫
T3

V (⃗x)γ(⃗x, x⃗)dx⃗

The first expression concerning the kinetic energy can be read as follows : first take
the second partial derivative of the function γ(⃗x, x⃗′) with respect to the variable x⃗.
Second, in the final expression substitute all the x⃗′ for x⃗. What have we gained from
all this ? After all, we just replaced a search over the space of density operators by a
search over the space of 1-RDM coming from a density operator. In the next section
we will see how we can exactly represent a 1-RDM in terms of orthonormal orbitals
and occupations numbers. That representation is always exact, even when we deal
with non zero electron-electron interactions. This will allow us to introduce a much
more tractable but entirely equivalent variational principle.

3.2 The N-representability of 1-RDM

Having spent time reformulating the non-interacting problem in terms of the one-
body reduced density matrix, we will now introduce a crucial representation result
allowing us to translate the problem at hand from a search over the space of 1-RDM
to a search over a set of much more tractable objects. Indeed a theorem due to Cole-
man [15] states how one can completely represent a one-body reduced density matrix
(1-RDM) coming from a density operator, in terms of an infinite set of orthonormal
single particle orbitals ϕi (⃗x) and occupation numbers f i. In short, this theorem states
that an admissible 1-RDM can be written as

γ(⃗x, x⃗′)=
∑

i
f iϕi (⃗x)ϕ∗

i (⃗x′)
�� ��3.2

with
0≤ f i ≤ 1∫
T3

ϕi (⃗x)ϕ∗
j (⃗x)dx⃗ = δi j

Using theorem 3.2, we are now in a position to practically compute the total energy
of a non-interacting system using the following optimization statement which refor-
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mulates equation 2.14

Eni
0 [V , N]= inf

{ϕi , f i}

[
1
2

∑
i

f i

∫
T3

|⃗∇ϕi (⃗x)|2dx⃗+
∫
T3

V (⃗x)n(⃗x)dx⃗ |

n(⃗x)=∑
i

f i|ϕi (⃗x)|2,

f i ∈ [0,1],∑
i

f i = N,∫
T3

ϕi (⃗x)ϕ∗
j (⃗x)dx⃗ = δi j

]
The above optimization problem is particularly amenable to numerical calculations.
So far of course we have been dealing with non-interacting systems, but we will see
shortly how that knowledge can guide us in splitting the Universal Functional of
equation 2.17 into terms that we know and that are all functionals of the electron
density.

3.3 Kohn-Sham Density Functional Theory

The fundamental idea by Kohn and Sham [52] was to postulate that the kinetic en-
ergy of an interacting system is well approximated by the non-interacting one.

What’s more, the classical Coulomb electrostatic energy

Lu Sham

is a fair guess at the electron-electron interaction energy
and it has the advantage of being a natural functional of
the electron density. Last but not least the external poten-
tial energy is exactly known as a functional of the electron
density. The approach then consists in introducing the Le-
gendre transform to the total energy of a non-interacting
system TJ[n, N], that we will call the Janak [31] kinetic en-
ergy functional

TJ[n, N]= sup
V∈V

[
Eni

0 [V , N]−
∫
T3

V (⃗x)n(⃗x)dx⃗|
∫
T3

n(⃗x)dx⃗ = N
]
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Using theorem 3.2 one can prove that the previous expression is equivalent to the
more tractable one

TJ[n, N]= inf
{ϕi , f i}

[
1
2

∑
i

f i

∫
T3

|⃗∇ϕi (⃗x)|2dx⃗ |

n(⃗x)=∑
i

f i|ϕi (⃗x)|2,

f i ∈ [0,1],
�� ��3.3∑

i
f i = N,∫

T3
ϕi (⃗x)ϕ∗

j (⃗x)dx⃗ = δi j

]
The classical Coulomb electrostatic energy associated with a charge density ρ(⃗x) =
−en(⃗x) is

J[n]= e2

2

∫
T3×T3

n(⃗x)n(⃗x′)
|⃗x− x⃗′| dx⃗dx⃗′

�� ��3.4

and the external potential energy is just∫
T3

V (⃗x)n(⃗x)dx⃗
�� ��3.5

Kohn and Sham finally chose to define the exchange and correlation functional
EXC[n] as

H[n, N]= TJ[n, N]+ J[n]+EXC[n]
�� ��3.6

This, in essence, constitutes what many call the “Kohn-Sham trick”. But it is im-
portant to realize that it is absolutely exact in principle. It is merely a translation
of our ignorance about the Universal Functional into that of the Exchange and Cor-
relation Functional. Hopefully, the made explicit functionals are already accounting
for a large part of the total energy and in fact they do. Now that we have our Uni-
versal Functional, we use theorem 3.2 and plug everything into the Hohenberg-Kohn
Variational Principle in 2.18 to find

E0[V , N]= inf
{ϕi , f i}

[
1
2

∑
i

f i

∫
T3

|⃗∇ϕi (⃗x)|2dx⃗+
∫
T3

V (⃗x)n(⃗x)dx⃗

+ e2

2

∫
T3×T3

n(⃗x)n(⃗x′)
|⃗x− x⃗′| dx⃗dx⃗′+EXC[n] |

n(⃗x)=
∑

i
f i|ϕi (⃗x)|2,

f i ∈ [0,1],
�� ��3.7∑

i
f i = N,∫

T3
ϕi (⃗x)ϕ∗

j (⃗x)dx⃗ = δi j

]
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We then introduce the following energy functional, whose basic variables are the real
numbers f i and complex-valued orbitals ϕi (⃗x) and ϕ∗

i (⃗x)

E[{ f i}, {ϕi (⃗x)}, {ϕ∗
i (⃗x)}] = 1

2

∑
i

f i

∫
T3

|⃗∇ϕi (⃗x)|2dx⃗+
∫
T3

V (⃗x)n(⃗x)dx⃗
�� ��3.8

+ e2

2

∫
T3×T3

n(⃗x)n(⃗x′)
|⃗x− x⃗′| dx⃗dx⃗′+EXC[n]

= H[n, N]+
∫
T3

V (⃗x)n(⃗x)dx⃗

It is important not to confuse the total energy function, E0[V , N], which delivers a
number which is the true total energy of the system for a fixed external potential V (⃗x)
and fixed total electron number N, from the energy functional, E[{ f i}, {ϕi (⃗x)}, {ϕ∗

i (⃗x)}],
which is a mathematical function and not a physical observable.

3.4 The Kohn-Sham Equations

The last section left us with a workable variational principle in which the basic vari-
ables are single particle orthonormal orbitals ϕi and non-negative occupation num-
bers f i. From the mathematical point of view, we are facing a non-linear optimiz-
ation problem with equality constraints. In order to move forward we first need to
ask ourselves if the Universal Functional is differentiable.That question has been
answered in the affirmative by Englisch and Englisch [28]. Recently Eschrig [30]
proved the existence of functional derivatives for the Universal Functional even in
the case of finite temperature and non-collinear magnetism. Finally, in practice, all
the approximations to the Exchange-Correlation functional are differentiable [31].

In order to solve the variational problem, we will use the method of Lagrange
multipliers outlined in section 1.7. We introduce the following alternative Functional

F[n, N]= H[n, N] +
∫
T3

V (⃗x)n(⃗x)dx⃗
�� ��3.9

− ϵF

(∑
i

f i −N

)

− ∑
i j
λi j

(∫
T3

ϕi (⃗x)ϕ∗
j (⃗x)dx⃗−δi j

)

3.4.1 Extremality Conditions
Using the newly defined functional (F[n, N]), we will now write the Euler-Lagrange
equations. Those equations will then give us a lot of information concerning the
extrema of the functional. Since the variables over which we minimize the functional
are f i, ϕi and ϕ∗

i (here ϕi and ϕ∗
i have to be considered “independent” variables since

the orbitals are complex functions), we will write 3 Euler-Lagrange equations. For
this we use what we learned about functional derivatives in section 1.5.
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3.4. THE KOHN-SHAM EQUATIONS

The first Euler-Lagrange equation is δF
δϕi (⃗x) = 0. At this point we will make an

assumption about the functional dependence of the Exchange-Correlation part EXC.
We will only consider functionals that depend on the single orbital densities ρ i (⃗x) =
f iϕi (⃗x)ϕ∗

i (⃗x). In particular, a functional of the total electron density is one such func-
tional because it depends only on n(⃗x) = ∑

i ρ i (⃗x). More general functionals also fall
into that category, and we will be more interested in the ones that naturally come
out of Self-Interaction correction schemes. Given that hypothesis we now express
the functional derivative of the Exchange-Correlation part as

For a functional of the electron density n(⃗x) :
δEXC

δϕi (⃗x)
=

∫
T3

δEXC

δn(⃗x′)
δn(⃗x′)
δϕi (⃗x)

dx⃗′
�� ��3.10

For a functional of the orbital densities ρ i (⃗x) :
δEXC

δϕi (⃗x)
=

∫
T3

δEXC

δρ i (⃗x′)
δρ i (⃗x′)
δϕi (⃗x)

dx⃗′

In the following we will give the results for the functional derivatives of the Exchange-
Correlation functional for both cases at the same time in parenthesis.

Since n(⃗x)=∑
i ρ i (⃗x) and ρ i (⃗x)= f iϕi (⃗x)ϕ∗

i (⃗x), we simply have

δn(⃗x′)
δϕi (⃗x)

= δρ i (⃗x′)
δϕi (⃗x)

= f iϕ
∗
i (⃗x)δ(⃗x− x⃗′)

Using the functional derivatives of section 1.5, the first Euler-Lagrange equation
reads

f i

[
−1

2
∇⃗2ϕ∗

i (⃗x) + V (⃗x)ϕ∗
i (⃗x)+ e2

∫
T3

n(⃗x′)
|⃗x− x⃗′|dx⃗′ϕ∗

i (⃗x)
�� ��3.11

+


δEXC

δn(⃗x)
δEXC

δρ i (⃗x)

 ϕ∗
i (⃗x)

]=∑
j
λi jϕ

∗
j (⃗x)

The second Euler-Lagrange equation δF
δϕ∗

i (⃗x) = 0 is basically almost equivalent to
the preceding one. The reason being that the functionals only depend on the electron
densities ρ i which are symmetric functions in ϕi and ϕ∗

i . We then directly give the
second Euler-Lagrange equation

f i

[
−1

2
∇⃗2ϕi (⃗x) + V (⃗x)ϕi (⃗x)+ e2

∫
T3

n(⃗x′)
|⃗x− x⃗′|dx⃗′ϕi (⃗x)

�� ��3.12

+


δEXC

δn(⃗x)
δEXC

δρ i (⃗x)

 ϕi (⃗x)
]=∑

j
λ jiϕ j (⃗x)
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Note that the right-hand side of equation 3.12 uses the transpose of the λ matrix as
opposed to the right-hand side of equation 3.11 that uses the λ matrix directly.

The third Euler-Lagrange equation has to do with the variation with respect to f i.
Of course the f i are constraint to be within 0 and 1. To write the variation with f i in
an unconstrained way we use the following trick. We will write f i = sin2(θi) so that
θi is free to vary in the whole of R. The third Euler-Lagrange equation is then δF

δθi
= 0.

Using the analytical expression for f i in terms of θi, we obtain δF
δθi

= δF
δ f i

∂ f i
∂θi

= 0. The
Euler-Lagrange equation is then[

1
2

∫
T3

|⃗∇ϕi (⃗x)|2 +
∫
T3

V (⃗x)|ϕi (⃗x)|2 + e2
∫
T3×T3

n(⃗x′)
|⃗x− x⃗′| |ϕi (⃗x)|2dx⃗′dx⃗

+
∫
T3


δEXC

δn(⃗x)
δEXC

δρ i (⃗x)

 |ϕi (⃗x)|2dx⃗−ϵF
]
sin(2θi)= 0

�� ��3.13

3.4.2 Constraints on f i and λi j

From equations 3.13, 3.11 and 3.12 we can deduce many interesting properties con-
cerning the λ matrix. Indeed if one takes the complex conjugate of equation 3.12 and
compares that equation to 3.11, one readily obtains∑

j
λi jϕ j (⃗x)=∑

j
λ∗

jiϕ j (⃗x) ∀⃗x

Using the orthonormality constraints, we can easily deduce the hermiticity of the λ

matrix
λ∗

ji =λi j
�� ��3.14

Moreover, multiplying equation 3.12 by ϕ∗
i and integrating over x⃗ leads us to the

following expression for the diagonal elements of λ

f i

[
1
2

∫
T3

|⃗∇ϕi (⃗x)|2 +
∫
T3

V (⃗x)|ϕi (⃗x)|2+ e2
∫
T3×T3

n(⃗x′)
|⃗x− x⃗′| |ϕi (⃗x)|2dx⃗′dx⃗

+
∫
T3


δEXC

δn(⃗x)
δEXC

δρ i (⃗x)

 |ϕi (⃗x)|2dx⃗
]=λii

�� ��3.15

Concerning f i, equation 3.13 tells us that

• Either sin(2θi)= 0 and then 2θi = 0 [π] so f i = 0 or f i = 1

• Or sin(2θi) ̸= 0 and then f i ∈]0,1[ and the second term is 0
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In the second case (strict fractional occupation of orbital ϕi), using equation 3.15
simplifies the constraint to

λii

f i
= ϵF −→λii = f iϵF

�� ��3.16

In the case where f i = 0, equation 3.11 reduces to∑
j
λi jϕ

∗
j (⃗x)= 0 ∀⃗x

which, when using the orthonormality constraints, gives

λi j = 0 ∀ j when f i = 0

The hermiticity of λ makes us conclude that only occupied orbitals (full occupation
1, or fractional occupation f i ∈]0,1[) couple to each other.

3.4.3 Expression for the Total Energy

We give here an explicit expression for the total energy of a quantum system. For
this we go back to the definition of the total energy in terms of the single particle
orbitals and occupation numbers in equation 3.7 and use equation 3.15 to find

If EXC only depends on n(⃗x)
�� ��3.17

E0[V , N]=∑
i
λii − e2

2

∫
T3×T3

n(⃗x′)n(⃗x)
|⃗x− x⃗′| dx⃗′dx⃗

+ EXC[n]−
∫
T3

δEXC

δn(⃗x)
n(⃗x)dx⃗

If EXC depends on each ρ i (⃗x)
�� ��3.18

E0[V , N]=∑
i
λii − e2

2

∫
T3×T3

n(⃗x′)n(⃗x)
|⃗x− x⃗′| dx⃗′dx⃗

+ EXC[n]−∑
i

∫
T3

δEXC

δρ i (⃗x)
f i|ϕi (⃗x)|2dx⃗

3.4.4 Further Constraints Due to Minimality

So far, we have not used the fact that the extremum is actually a minimum. If it
is the case, then an Aufbau Principle can be established. Indeed, let us start out
from the minimum with given occupation numbers f i and orbitals ϕi. Let us imagine
that we slightly perturb our system by depleting a fully occupied orbital f i = 1 and
at the same time filling a partially occupied or empty orbital 0 ≤ f j < 1. Since the
perturbation must be number conserving (indeed

∑
k fk always equals N), we must

have δ f i =−δ f j =−δ f with δ f > 0. The change in total energy must then be positive
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because we started from the minimum state. The energy change can be written as

δE0 = ∂E
∂ f i

δ f i + ∂E
∂ f j

δ f j =
(
∂E
∂ f j

− ∂E
∂ f i

)
δ f

Using equations 3.13 and 3.15 we can simplify the above to

δE0 =
(〈ϕ j|Ĥ jϕ j〉−〈ϕi|Ĥiϕi〉

)
δ f > 0

This result is very important. It states that fully occupied orbitals have an orbital
energy 〈ϕi|Ĥiϕi〉 less or equal than the orbital energies of fractionally occupied states
and empty states. Using a similar reasoning one can also prove that fractionally
occupied states (for which the orbital energy is equal to the Fermi energy because of
equation 3.13) have their orbital energies below the ones of the empty states. It is
worth noting that if the frontier orbitals have full occupation then their orbital energy
is not necessarily equal to the Fermi energy. Only if fractional occupations exist, do
we have the Fermi energy equal to one of the orbital energy at least. We also see that,
unless some states are fractionally occupied (and at the top of the “Fermi sea”), then
all occupations are 1.

As a consequence, we can arrange the occupied orbitals in ascending value of
〈ϕi|Ĥiϕi〉, which means that we have an Aufbau Principle. We will see later on that
this principle is of paramount importance to give a proper physical meaning to the
Fermi energy ϵF .

3.5 Defining the Kohn-Sham “Hamiltonian”

Let us define the following family of operators

Ĥi =−1
2
∇⃗2 +V (⃗x)+ e2

∫
T3

n(⃗x′)
|⃗x− x⃗′|dx⃗′+


δEXC

δn(⃗x)
δEXC

δρ i (⃗x)

 �� ��3.19

If we go back to equation 3.11, we see that when one multiplies to the left by ϕ∗
j (⃗x)

and integrate over x⃗, then using the orthonormality condition, one can easily arrive
at

λ ji = f i〈ϕ j|Ĥiϕi〉
�� ��3.20

Now using 3.14, we find

f i〈ϕ j|Ĥiϕi〉 =
(
f j〈ϕi|Ĥ jϕ j〉

)∗ �� ��3.21

In all generality, it is the λ matrix which is hermitian at the extremum of the func-
tional. In the case where the functional only depends on the electron density n(⃗x),
we will introduce an hamiltonian ĥKS that will not depend directly on occupation
numbers. When the functional is orbital dependent, the result will be similar only
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when all occupation numbers are unity.

3.5.1 Case where EXC only depends on n(⃗x)

Let us suppose that the Exchange and Correlation functional does not depend on each
electron densities ρ i (⃗x)= f i|ϕi (⃗x)|2 but rather on the total electron density alone n(⃗x).
This situation is by far the most common in practice. Then equation 3.19 demon-
strates that Ĥi is the same for all the orbitals. What’s more, this operator (seen
as an operator that takes a wavefunction ϕi (⃗x) and returns another wavefunction
Ĥϕi (⃗x)) is self-adjoint. This implies the following identity

〈ϕ j|Ĥϕi〉 = 〈ϕi|Ĥϕ j〉∗

which, coupled to equation 3.21, leads to

( f i − f j)〈ϕ j|Ĥ|ϕi〉 = 0 for all i and j
�� ��3.22

Equation 3.22, coupled with the Aufbau principle, teaches us that if some states are
fractionally occupied, then those are decoupled from the fully occupied states. More
generally, if we group the orbitals in subsets with identical occupation numbers, then
those subsets are decoupled to each other whenever the occupations are distinct. In
all cases, we can define the Kohn-Sham hamiltonian to be

ĥKS =
∑
i j
|ϕi〉hi j〈ϕ j| with hi j = 〈ϕi|Ĥ|ϕ j〉

�� ��3.23

An example of a Kohn-Sham hamiltonian for a system with 5 fully occupied orbitals,
1 orbital with fractional occupation f and 2 orbitals with equal fractional occupation
f ′ ̸= f is shown below

ĥKS =



∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0
0 0 0 0 0 ∗ 0 0
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗ ∗


Let us introduce a unitary transformation that brings any subset of equally occu-

pied minimizing orbitals ϕi to another set of orbitals ψk = ∑
l Uklϕl that spans the

same vector space. We can prove that both the charge density and the total energy are
unaffected1 by this change of basis. Indeed, the contribution of any subset of orbitals

1By “unaffected” we mean that the mathematical expressions for the density and the total energy
are covariant.

47



CHAPTER 3. PRACTICAL DENSITY FUNCTIONAL THEORY

to the charge density can be written as

n′(⃗x)=∑
i
|ϕi (⃗x)|2 =∑

i
ϕ∗

i (⃗x)ϕi (⃗x)

for i in the prescribed subset. Using the inverse relation ϕi = ∑
k U−1

ik ψk, the above
equality becomes

n′(⃗x)=∑
i

(∑
k

[U−1
ik ]∗ψ∗

k (⃗x)

)(∑
l

U−1
il ψl (⃗x)

)
=∑

k,l
ψ∗

k (⃗x)

(∑
i

[U−1
ik ]∗U−1

il

)
ψl (⃗x)

now since the U matrix is unitary we have U−1 =U† = [UT]∗. So [U−1
ik ]∗ =Uki. Going

back to the expression for the charge density we arrive at

n′(⃗x)=∑
k,l

ψ∗
k (⃗x)

(∑
i

[U−1
ik ]∗U−1

il

)
ψl (⃗x)=∑

k,l
ψ∗

k (⃗x)δklψl (⃗x)

which simplifies into
n′(⃗x)=∑

k
|ψk (⃗x)|2

We observe that inside any subset of orbitals with equal occupations, we can change
basis at will, without modifying the contribution to the charge density. Let us now
look at the total energy in equation 3.17. Its expression only depends on the total
charge density and on the trace of the lambda matrix. We already realized that
the charge density will be unchanged by rotating the basis inside every subset, so is
there some invariance of the trace of the lambda matrix with an arbitrary rotation of
the subsets ? The answer is of course yes. To see this, let us express the trace of the
lambda matrix

tr(λ)=
∑

i
λii =

∑
subset G

fG
∑
j∈G

〈ϕ j|Ĥ|ϕ j〉

where G is a generic subset of orbitals ϕ j with equal occupation numbers f j = fG ∀ j.
We can of course replace

∑
j∈G〈ϕ j|Ĥ|ϕ j〉 with the trace over the subset G. But since

the trace is invariant by a change of basis we see that in the end the trace of λ is also
unchanged by a change of basis in each subset.

All in all, we see that from the point of view of mathematics, any set that is
equivalent in each subset (up to a unitary rotation) to the set of minimizing orbitals,
can be used as a valid description of the Kohn-Sham system. In particular, we may
choose to take some unitary rotations that diagonalize the sub-blocks of ĥKS. In this
case we end up with a set of optimality conditions (equations 3.11 and 3.12) in which
the right-hand side reduces to ϵiϕi (⃗x) and ϵiϕ

∗
i (⃗x) respectively. Those equations are

generally called canonical Kohn-Sham equations. In that basis the Kohn-Sham
hamiltonian, as we defined it, is diagonal and does not explicitly depend on the occu-
pation numbers. With this choice we also observe that the orbital energies 〈ϕi|Ĥ|ϕi〉
correspond to the eigenvalues of the Kohn-Sham hamiltonian.

48



3.5. DEFINING THE KOHN-SHAM “HAMILTONIAN”

3.5.2 Case where EXC is orbital-dependent
In the case where the functional is orbital dependent, we cannot duplicate the results
of the previous section. If at the minimum all the occupation numbers are unity, then
the matrix

〈ϕi|Ĥ j|ϕ j〉
is hermitian and we can define the Kohn-Sham hamiltonian to correspond to that
matrix. If some of the orbitals are fractionally occupied, then for those, the diagonal
element of the above matrix is equal to the Fermi energy

〈ϕi|Ĥi|ϕi〉 = ϵF
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Part II

The basic tools in Electronic
Structure Theory



4
Translation Symmetry and its

Consequences

4.1 Introduction

If one tries to encapsulate the whole idea of Density Functional Theory in just a few
words, one could argue that the most important consequence of the Hohenberg and
Kohn theorems and the Kohn-Sham method has been to transform the original many-
body Schrödinger equation into an effective one-body equation. From the Kohn-Sham
equations, we have seen previously that we can extract a Kohn-Sham hamiltonian
in its matrix representation. What’s more, we have seen that what we really care
about at the end of the calculation, is to find the eigenvalues and eigenvectors of that
matrix.

In this part, we will assume that the Kohn-Sham hamiltonian matrix is a given.
We will also assume some translational symmetries for the system to further simplify
the search for the eigenvalues and eigenvectors of that matrix. In doing so we will
introduce powerful tools used in electronic structure theory that are of very wide
applicability. This part can be considered as a short review of Band Theory [9].

Whenever we will need an operational form for the Kohn-Sham hamiltonian, we
will use the following real-space representation

ĥKS =−1
2
∇⃗2 +V (⃗x) with V (⃗x) periodic in space

�� ��4.1

4.2 The Fundamental Translation Symmetry

There are two main reasons why we would want to study systems with inherent
translational symmetries. The first reason has to do with the fact that we are, in
practice, very interested in studying crystalline solids like Silicon, diamond or car-
bon nanotubes. The second reason has to do with the very fabric of most Density
Functional Theory computer codes that embed systems in a box and assume peri-
odic boundary conditions. This seemingly simple property, the one of translational
symmetry, is of tremendous consequences for the Quantum Mechanics of a single
particle. We will start by describing the notions of direct lattice and reciprocal lattice.
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Then we will move on to the main result, called Bloch’s Theorem and discuss its
consequences in terms of labeling of the eigenstates of the system.

4.2.1 Direct and Reciprocal Lattices

A periodic system is characterized by a fundamental unit, called the elementary unit
cell or unit cell for short, that is repeated identically in one, two, or three dimensions
depending on the dimensionality of the system. We show examples of 1D periodic
structures on figure 4-1. One can entirely characterize a periodic system if one knows

Figure 4-1: Some examples of periodic systems. Here a Silicon Nanowire (top) and
a carbon nanotube (bottom) are displayed in both side view and cross sectional view.
It is easy to identify the fundamental unit of translation (called the elementary unit
cell) that repeats itself ad infinitum.

2 fundamental objects [46] : the elementary unit cell and the Bravais lattice. The
Bravais lattice is just the collection of points in space that are images of a seed point
by all possible translations compatible with the system’s symmetries. The set of all
such compatible translations is characterized by 1, 2, or 3 “basis vectors” depending
on the dimensionality of the system. We will generically use the notation a⃗1, a⃗2
and a⃗3 to specify those basis vectors and the notation R⃗ to denote a generic vector
representing one of the compatible translation. The fundamental property of those
translation vectors R⃗ is to have a unique decomposition in the basis (a⃗1, a⃗2, a⃗3) with
integer coordinates

R⃗ = r1a⃗1+ r2a⃗2 + r3a⃗3 with (r1, r2, r3) ∈Z3
�� ��4.2
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When referring to basis vectors or the Bravais lattice or translation vectors, we will
generically use the word direct space to describe the space in which all those ele-
ments “live”.

We now introduce another Bravais lattice, called the reciprocal lattice that is
defined in such a way that its “basis vectors” (the analogous to a⃗1, a⃗2, and a⃗3) verify

b⃗i .⃗a j = 2πδi j
�� ��4.3

where δi j is the Kronecker symbol (which equals 1 if i = j and 0 otherwise). From
equation 4.3, one can easily arrive at the following formulas for the reciprocal basis
vectors expressed in the (a⃗1, a⃗2, a⃗3) basis

For the 1D case:
�� ��4.4

b⃗1 = 2π
||⃗a1||2

a⃗1

For the 2D case:

b⃗1 = 2π
||⃗a1||2||⃗a2||2− (a⃗1 .⃗a2)2

(||⃗a2||2a⃗1 − (a⃗1 .⃗a2) a⃗2
)

b⃗2 = 2π
||⃗a1||2||⃗a2||2− (a⃗1 .⃗a2)2

(−(a⃗1 .⃗a2) a⃗1+||⃗a1||2a⃗2
)

For the 3D case:

b⃗1 = 2π
a⃗2× a⃗3

a⃗1.(a⃗2 × a⃗3)

b⃗2 = 2π
a⃗3× a⃗1

a⃗1.(a⃗2 × a⃗3)

b⃗3 = 2π
a⃗1× a⃗2

a⃗1.(a⃗2 × a⃗3)

where the dot . means scalar product and the cross × means vectorial product. Any
point in the reciprocal Bravais lattice can be generated from a seed point and one
of the reciprocal vectors G⃗ whose coordinates in the (⃗b1, b⃗2, b⃗3) basis are integer
numbers

G⃗ = g1b⃗1+ g2b⃗2 + g3b⃗3 with (g1, g2, g3) ∈Z3
�� ��4.5

In a similar manner as we introduced the word direct space, we will introduce the
word reciprocal space to describe the space in which the reciprocal Bravais lattice,
the reciprocal basis vectors and the reciprocal vectors “live”.

To motivate the reason for introducing a reciprocal space, let us look at a rep-
resentative function that will be periodic when the system is periodic, namely the
electron density n(⃗x). If a function is such that

n(⃗x+ R⃗)= n(⃗x) for all R⃗
�� ��4.6

(since the R⃗ vectors are naturally expressed in the (a⃗1, a⃗2, a⃗3) basis, we will do the
same for x⃗. The coordinates x, y, z of x⃗ will refer to the (a⃗1, a⃗2, a⃗3) basis), then we
know from the Theory of Fourier Series [96], that we can expand n(⃗x) in a series of
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plane waves

For the 1D case:
�� ��4.7

n(x) =
∑
λ

nλe2πi(xλ)

For the 2D case:
n(x, y) = ∑

λµ

nλµe2πi(xλ+yµ)

For the 3D case:
n(x, y, z) =

∑
λµν

nλµνe2πi(xλ+yµ+zν)

where (λ,µ,ν) ∈ Z3. Because of equation 4.3, we see that we can introduce the re-
ciprocal vectors G⃗ = λ⃗b1 + µ⃗b2 + ν⃗b3 (with equivalent expressions in 1D and 2D) and
simplify the expression of the argument in the complex exponential

2πi(xλ+ yµ+ zν)= iG⃗ x⃗

The above equation is the reason for introducing the concept of reciprocal space. It is
the natural space in which to express the Fourier components of a periodic function
in the direct space. With such a simplification, we can introduce a generic notation
for the Fourier Series of a periodic function that will replace equation 4.7

n(⃗x)=∑
G⃗

nG⃗ eiG⃗ x⃗
�� ��4.8

Integrating equation 4.8 over the elementary unit cell (characterized by the collection
of all the points x⃗ for which the coordinates in the (a⃗1, a⃗2, a⃗3) basis are between 0 and
1), we find the expression for the Fourier coefficients

nG⃗ = 1
Ω

∫
Ω

n(⃗x)e−iG⃗ x⃗dx⃗
�� ��4.9

where Ω is the volume of the elementary unit cell which is nothing else than Ω =
a⃗1.(a⃗2×a⃗3). So far, we have been focusing on functions (like the electron density) that
are periodic in direct space. In full analogy, any function f (⃗k) which will be periodic
in reciprocal space, will have a Fourier Series expansion analogous to equation 4.8.
In this case the series reads

f (⃗k)=∑
R⃗

fR⃗ e i⃗kR⃗
�� ��4.10

and the equivalent of equation 4.9 will be

fR⃗ = 1
ΩB

∫
ΩB

f (⃗k)e− i⃗kR⃗dk⃗
�� ��4.11

where ΩB is the volume of the elementary unit cell in reciprocal space called the
Brillouin Zone. The volume can be worked out from the expression for reciprocal
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basis vectors (equation 4.4) and give

ΩB = (2π)d

Ω
, d is the dimensionality

�� ��4.12

4.2.2 Translation Operators TR⃗

Let us introduce the linear translation operators, TR⃗ , whose action on a function
of space f (⃗x) is simply

[TR⃗ f ](⃗x)= f (⃗x+ R⃗) where R⃗ is a translation vector
�� ��4.13

Straight from the definition, it is easy to establish that every operator TR⃗ has an
inverse operator, which is simply given by

T−1
R⃗

= T−R⃗

�� ��4.14

We also have the following property

TR⃗1
TR⃗2

= TR⃗1+R⃗2

�� ��4.15

What’s more, the translation operators commute with each other

TR⃗1
TR⃗2

= TR⃗2
TR⃗1

�� ��4.16

In order to see this we just apply the definition

TR⃗1
TR⃗2

f (⃗x)= TR⃗1
( f (⃗x+ R⃗2)) = f (⃗x+ R⃗2 + R⃗1)

= f (⃗x+ R⃗1 + R⃗2)= TR⃗2
( f (⃗x+ R⃗1))= TR⃗2

TR⃗1
f (⃗x)

We can also prove that the translation operators commute with the hamiltonian in
equation 4.1. Indeed let us look first at the potential term

TR⃗(V (⃗x) f (⃗x))=V (⃗x+ R⃗) f (⃗x+ R⃗)=V (⃗x) f (⃗x+ R⃗)=V (⃗x)(TR⃗ f (⃗x))

in the above equation, we used the fact that the potential is periodic V (⃗x+ R⃗)=V (⃗x).
Now we move on to prove that translation operators commute with the following
derivative operator px = ∂

∂x . Indeed we see that

TR⃗(px f (⃗x))= TR⃗(
∂ f
∂x

(⃗x))= ∂ f
∂x

(⃗x+ R⃗)

On the other hand, the reverse reads

px(TR⃗ f (⃗x))= ∂

∂x
( f (⃗x+ R⃗))= ∂

∂x
( f (h(⃗x)))
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where we defined h as the function h : x⃗ 7→ x⃗+R⃗. Now we conclude by using the chain
rule formula

px(TR⃗ f (⃗x))=∑
i

∂ f
∂xi

(h(⃗x)).
∂hi

∂x

where xi is a generic name for x, y and z. Of course here only ∂h1
∂x = 1 and all the

other terms are zero such that the final expression is

px(TR⃗ f (⃗x))= ∂ f
∂x

(h(⃗x))= ∂ f
∂x

(⃗x+ R⃗)

The above expression is identical to the one we obtained previously. This proves the
commutativity of px and TR⃗ . The same line of arguments can be used to prove the
commutativity of py and pz with TR⃗ . Since the Laplacian operator in equation 4.1 is
simply

−1
2
∇⃗2 =−1

2
(p2

x + p2
y + p2

z)

it is a simple matter of verification to prove the commutativity of that latter operator
with the translation operator TR⃗ . Gathering all the results we finally arrived at

TR⃗(ĥKS f (⃗x))= TR⃗

([
−1

2
∇⃗2 +V (⃗x)

]
f (⃗x)

)
= [−1

2
∇⃗2+V (⃗x)](TR⃗ f (⃗x))

which is the desired result.

4.2.3 Bloch’s Theorem
So far, we have proved that any translation operator TR⃗ commutes with the Kohn-
Sham hamiltonian and commutes with any other translation operator. We will now
introduce two fundamental Theorems that will allow us to label all the distinct in-
variant subspaces of ĥKS. What does this mean ?

In short, it says that, once we have a way to label

Felix Bloch (1905-1983)

the distinct eigenvalues of all the translation oper-
ators (we will use k⃗ to label those), we will be able
to use the same label to separate all the invariant
subspaces of ĥKS (an invariant subspace is a vec-
tor space such that if ψ belongs to that subspace,
then so does ĥKSψ). A very detailed yet accessible
presentation of all the following results can be found
in the excellent book by Altmann [6].

Theorem 4.2.1. (Irreducible representations of the Space Group) The set of all the
eigenvalues (λk⃗) of the translation operators (TR⃗) allows for the complete labeling of
all the invariant subspaces of the Kohn-Sham hamiltonian ĥKS.

Theorem 4.2.2. (Simultaneous Diagonalization of Commuting Operators) We can
choose the eigenfunctions of the Kohn-Sham hamiltonian (ĥKS) to be simultaneously
eigenfunctions of the translation operators (TR⃗)
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Thanks to theorems 4.2.1 and 4.2.2, we can tackle the problem of finding the
eigenvalues and eigenfunctions of the Kohn-Sham hamiltonian by looking at the ei-
genvalues and eigenvectors of the (much easier to deal with) translation operators.
For this we will introduce the Born Von-Karman periodic boundary conditions.

The Born Von-Karman periodic boundary conditions allow in practice to treat an
infinite system (and most importantly crystals) by imposing that any wavefunction
be periodic over a supercell. This condition is reminiscent of Part 1 and the replace-
ment of the whole space R3 with a periodic “large box” T3. The Born Von-Karman
conditions are exactly doing that. Let us set the stage and choose the supercell to be
made of Ni elementary unit cells in direction a⃗i. In total, the supercell will contain
N = ∏

i Ni elementary unit cells. The total volume of the supercell will be V = NΩ,
where we recall that Ω is the volume of the elementary unit cell. Let us now take any
wavefunction ψ(⃗x). The Born Von-Karman periodic boundary conditions can then be
written as

∀i, ψ(⃗x+Ni a⃗i)=ψ(⃗x)
�� ��4.17

Let us suppose that ψ(⃗x) is now an eigenfunction of all the TR⃗ ’s. We can find such an
eigenfunction because of theorem 4.2.2. Then there must be some number λR⃗ such
that

TR⃗ψ(⃗x)=λR⃗ψ(⃗x), ∀R⃗
�� ��4.18

Using equation 4.15 we have

TR⃗1
T−R⃗1

ψ(⃗x)=λR⃗1
λ−R⃗1

ψ(⃗x)=ψ(⃗x)

So we find that
λ−R⃗1

= 1
λR⃗1

�� ��4.19

Another use of equation 4.15 leads to the following result

λR⃗1+R⃗2
=λR⃗1

λR⃗2

�� ��4.20

Introducing the following definitions

λ1 =λa⃗1 , λ2 =λa⃗2 , λ3 =λa⃗3

�� ��4.21

it is easy to combine those definitions with equations 4.19, 4.20 and 4.2 to prove that

λR⃗ =λ
r1
1 λ

r2
2 λ

r3
3

�� ��4.22

The numbers introduced in equation 4.21 are a priori complex numbers. We can
choose to use an exponential representation for those numbers and write them in the
following way

λ j = ei2πα j , with α j ∈C

Introducing that new representation into equation 4.22, we arrive at

λR⃗ = ei2π(α1r1+α2r2+α3r3)
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The final trick consists in defining the following complex vector

k⃗ =α1b⃗1+α2b⃗2 +α3b⃗3

With that final definition we can rewrite equation 4.22 into a more suggestive one

λR⃗ = e i⃗kR⃗
�� ��4.23

Of course all of the above steps are not answering the question of what the α’s are.
This is the point at which the Born Von-Karman periodic boundary conditions come
in handy in order to address that issue.

Indeed equations 4.17, 4.18 and 4.23 lead us to

ei2πα j N j =
(
ei2πα j

)N j = 1, ∀ j

z j = ei2πα j is then a N j-th root of unity. It is a simple result of mathematics to find
all the N j-th root of unity. Those are simply

z j = e
i2π p

N j for p ∈ [0, ..., N j −1] ⇐⇒ α j = p
N j

for p ∈ [0, ..., N j −1]

Going back to the expression for k⃗, we see that k⃗ is now a real vector. What’s more, all
the allowed values for k⃗ span the entire elementary unit cell of reciprocal space. That
elementary cell is called the Brillouin Zone. Retrospectively, we observe that the
introduction of the k⃗ parametrization in labeling the eigenvalues of the translation
operators was the right thing to do.

We just made explicit all the eigenvalues of the translation operators. Let us now
focus our attention on the analytical structure of their eigenfunctions. For this we
use equation 4.23 along with equation 4.18

TR⃗ψ(⃗x)= e i⃗kR⃗ψ(⃗x)

Since for different values of k⃗ we end up with a different eigenvalues, we see that
the eigenfunction ψ(⃗x) needs to also depend on k⃗. We then introduce the notation
ψk⃗ (⃗x) to denote one such eigenfunction. Because of the above equation, the following
function

uk⃗ (⃗x)= e− i⃗k⃗xψk⃗ (⃗x)

can be shown to be periodic. Indeed we have

uk⃗ (⃗x+ R⃗)= e− i⃗k(⃗x+R⃗)ψk⃗ (⃗x+ R⃗)= e− i⃗k(⃗x+R⃗)e i⃗kR⃗ψk⃗ (⃗x)= uk⃗ (⃗x)

So inverting the relationship between ψk⃗ (⃗x) and uk⃗ (⃗x), we arrive at

ψk⃗ (⃗x)= e i⃗k⃗xu x⃗ (⃗x) with uk⃗ (⃗x+ R⃗)= uk⃗ (⃗x)
�� ��4.24
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HAMILTONIAN

The above equation is often called Bloch’s Theorem. And Theorem 4.2.2 proves
that the eigenfunctions of the Kohn-Sham hamiltonian can be taken to satisfy Bloch’s
Theorem.

4.3 Eigenfunctions and Eigenvalues of the Kohn-Sham
hamiltonian

We have been working quite hard to find a way to label the eigenvalues and eigen-
vectors of the translation operators. But all this work was not in vain. Indeed we now
have huge insight into the analytical structure of the eigenfunctions inside every
invariant subspace of the Kohn-Sham hamiltonian through Bloch’s Theorem. But
knowing about the invariant subspaces is not knowing the whole spectrum. We will
now move on and introduce another label, the band index, that will help us find all
the eigenvalues and eigenfunctions of ĥKS.

4.3.1 Existence of bands
To proceed we use 4.24 and inject the analytical expression inside the differential
equation for ψk⃗ (⃗x) [

−1
2
∇⃗2 +V (⃗x)

]
ψk⃗ (⃗x)= E(⃗k)ψk⃗ (⃗x)

to find [
−1

2

(⃗
∇+ i⃗k

)2 +V (⃗x)
]

uk⃗ (⃗x)= E(⃗k)uk⃗ (⃗x)
�� ��4.25

Equation 4.25 is a linear partial differential equation for the eigenvalues and ei-

genvectors of the k⃗ dependent Kohn-Sham hamiltonian ĥKS (⃗k) =−1
2

(⃗
∇+ i⃗k

)2 +V (⃗x).
Since uk⃗ (⃗x) is periodic over the elementary unit cell, it is sufficient to solve that differ-
ential equation over the “home” unit cell (for which R⃗ = 0⃗). But that region of space
is bounded, so a result of functional analysis [43] states the following

Theorem 4.3.1. (Spectral Theorem for k̂KS (⃗k)) The spectrum of all the Bloch Hamilto-
nians ĥKS (⃗k) consist in discrete eigenvalues En (⃗k), indexed by an integer number n,
with a finite multiplicity (only a finite number of eigenvectors for each En (⃗k))

Theorem 4.3.1 proves the existence of “energy bands” for any periodic system.
Since we have a new index for the eigenvalues, we must also introduce a new index
for the eigenfunctions. We will finally use the following notation for the eigenfunc-
tions and eigenvalues of the Kohn-Sham hamiltonian

Eigenfunctions and Eigenvalues of ĥKS :
�� ��4.26

ψnk⃗ (⃗x)= e i⃗k⃗xunk⃗ (⃗x) and En (⃗k)

In the next section, we will explicit a most useful property of the energy bands.
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4.3.2 A Useful result concerning the Energy Bands

Let us take a closer look at equation 4.25. If we take the complex conjugate of that
equation we end up with[

−1
2

(⃗
∇− i⃗k

)2 +V (⃗x)
]

vk⃗ (⃗x)= E(⃗k)vk⃗ (⃗x)

where vk⃗ (⃗x)= u∗
k⃗
(⃗x). But the above equation is nothing else than the equation for the

wavevector −k⃗. So we see that once we know the eigenfunctions and eigenvalues for
k⃗, we also know them for −k⃗. We can then decide to take u−k⃗ (⃗x) = u∗

k⃗
(⃗x) and so we

end up with the following property for En (⃗k)

En(−k⃗)= En (⃗k)
�� ��4.27

4.3.3 Electronic Structure in the Eigenfunction basis

We would like to finish this review by collecting a list of very important and use-
ful formulas concerning the set of eigenfunctions and the Kohn-Sham hamiltonian.
We will make an effort to differentiate the formulas in the discrete case (i.e. when
considering a finite supercell) from the continuous case. That latter case does not ac-
tually correspond to a “mathematically” infinite solid (which is something that does
not exist in nature!), but rather a solid of macroscopic volume. In that case the sums
over the k⃗ vectors can be turned into Riemann integrals. Indeed, using a discrete
approximation to a Riemann integral we have

∑
k⃗∈BZ

f (⃗k)∆k⃗ ≈
∫

BZ
dk⃗ f (⃗k)

where BZ stands for the Brillouin Zone and f (⃗k) is an arbitrary function. The ele-
mentary volume in k⃗-space, ∆k⃗, corresponds to the volume taken up by one k⃗ vector.
We saw earlier that the Born Von-Karman periodic boundary conditions were intro-
ducing a uniform grid a k⃗ points over the Brillouin Zone, with exactly N points in it
(N being the number of elementary unit cells in the supercell). Since the volume of
the Brillouin Zone is given by equation 4.12, we conclude that

∆k⃗ = ΩB

N
= (2π)d

V

where V is the total volume of the supercell. All in all, we observe that, whenever we
want to go for the continuous limit, we will have to use the following substitution

∑
k⃗∈BZ

= V
(2π)d

∫
BZ

dk⃗
�� ��4.28
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The first formula is concerned with the completeness relation

In the discrete case
�� ��4.29∑

n

∑
k⃗∈BZ

|ψnk⃗〉〈ψnk⃗| = 1

In the continuous case∑
n

V
(2π)d

∫
BZ

dk⃗|ψnk⃗〉〈ψnk⃗| = 1

Here we use the Dirac notation for “bra”s and “ket”s [12] which is a most useful
notation in Quantum Mechanics. |ψnk⃗〉〈ψnk⃗| is geometrically interpreted as being
the projector operator onto the subspace corresponding to the eigenfunction ψnk⃗ (⃗x).
1 is simply the identity operator.

The second formula has to do with the orthonormality of the eigenfunction basis.
Indeed we have

〈ψnk⃗|ψn′⃗k′〉 =
∫

V
ψ∗

nk⃗
(⃗x)ψn′⃗k′ (⃗x)dx⃗ =∑

R⃗

∫
Ω
ψ∗

nk⃗
(⃗x+ R⃗)ψn′⃗k′ (⃗x+ R⃗)dx⃗

where R⃗ runs over all the elementary unit cells in the supercell and Ω corresponds
to the “home” unit cell (i.e. R⃗ = 0⃗). Now we use Bloch’s Theorem (equation 4.24) to
simplify that integral

〈ψnk⃗|ψn′⃗k′〉 =
∑
R⃗

ei(⃗k′−k⃗)R⃗
∫
Ω
ψ∗

nk⃗
(⃗x)ψn′⃗k′ (⃗x)dx⃗

we then realize that the integral on the right-hand side is independant of R⃗ and we
move it to the left

〈ψnk⃗|ψn′⃗k′〉 =
(∫

Ω
ψ∗

nk⃗
(⃗x)ψn′⃗k′ (⃗x)dx⃗

)∑
R⃗

ei(⃗k′−k⃗)R⃗

now we compute the sum on the far right by remembering that k⃗′− k⃗ has to be a
vector inside the Brillouin Zone. First the allowed R⃗ vectors are going to be given by
R⃗ =∑

j r j a⃗ j with r j in [0, ..., N j −1]. What’s more, if we call q⃗ = k⃗′− k⃗, then given the
allowed values for q⃗, that latter vector can be written as q⃗ = ∑

l
ql
Nl

b⃗l . Those results
lead to ∑

R⃗

ei(⃗k′−k⃗)R⃗ =∏
l

Nl−1∑
j=0

(
ei2π

ql
Nl

) j

The above sums are simple geometrical sums. We can easily compute them and
arrive at ∑

R⃗

ei(⃗k′−k⃗)R⃗ =∏
l

ei2πql −1

ei2π
ql
Nl −1

ql being an integer number we see that, unless ql is zero for all l, the above will
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vanish. The case q⃗ = 0⃗, which amounts to saying that k⃗ = k⃗′, leads to
∑

R⃗ ei(⃗k′−k⃗)R⃗ = N
(where N is the number of elementary unit cells in the supercell). All in all, the
orthonormality condition, using the convention that the eigenfunctions are normal-
ized over the supercell, reads

〈ψnk⃗|ψn′⃗k′〉 =
∫

V
ψ∗

nk⃗
(⃗x)ψn′⃗k′ (⃗x)dx⃗ = δnn′δk⃗k⃗′

�� ��4.30

The case n ̸= n′ when k⃗ = k⃗′ corresponds to two eigenfunctions from the same invari-
ant subspace (same k⃗) with different band indices. In that latter case, one can easily
prove that the eigenfunctions are orthogonal.

The final formula gives a representation of the Kohn-Sham hamiltonian in terms
of the projectors defined in equation 4.29

In the discrete case
�� ��4.31

ĥKS =∑
n

∑
k⃗∈BZ

En (⃗k)|ψnk⃗〉〈ψnk⃗|

In the continuous case

ĥKS =∑
n

V
(2π)d

∫
BZ

dk⃗En (⃗k)|ψnk⃗〉〈ψnk⃗|
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5
Wannier Functions

5.1 Motivation for introducing Wannier Functions

In 1937, Gregory Wannier introduced a set of orthonormal orbitals that spans the
same Hilbert space as the eigenfunctions of the Kohn-Sham hamiltonian. The motiv-
ation for such an alternative set was to be able to describe the electronic structure of a
solid in terms of localized orthonormal orbitals much like what happens in Quantum
Chemistry when one describes the molecular states in terms of atomic orbitals.

In order to convince oneself that such a set ex-

Gregory Wannier (1911-1983)

ists, we follow Wannier [102] and consider an ex-
tremely simple system, namely a free electron, in
a periodic solid. Using Bloch’s Theorem we see that
the eigenfunctions ψnk⃗ (⃗x) can be written as

ψnk⃗ (⃗x)= ane i⃗k⃗x, an ∈C

Let us focus on a single electronic band n. The intu-
ition for constructing a set of “localized” functions draws on our knowledge of Fourier
analysis. Indeed we “know” that when a function is really delocalized in space (like
a Bloch function), then its Fourier transform generally exhibits some strong degree
of localization. So we naturally define a set of functions, which depend on R⃗, as

wnR⃗ = 1p
N

∑
k⃗∈BZ

ψnk⃗ (⃗x)e− i⃗kR⃗

We then insert the analytical expression for ψnk⃗ (⃗x) and after some easy calculations
we find

wnR⃗ (⃗x)= anp
N

d∏
j=1

ei(1− 1
N )⃗b j (⃗x−R⃗)

sin
(

1
2 b⃗ j (⃗x− R⃗)

)
sin

(
1

2N b⃗ j (⃗x− R⃗)
)
 �� ��5.1

Despite its not-so-appealing look, equation 5.1 demonstrates the “localized” character
of the Wannier functions, as one can see on figure 5-1.

Though the idea of using a Fourier transform to generate a set of localized Wan-
nier functions from the set of delocalized Bloch functions is straightforward, there re-
mains some arbitrariness in the Bloch function phases which leads to a non-uniqueness
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Figure 5-1: Illustration of the “localized” character of Wannier functions. The above
plot shows the behavior of the square modulus of a normalized 1D version of a Wan-
nier Function given by equation 5.1. The “crystal” consists in 7 elementary cells in
the Born Von-Karman supercell, and the Wannier function is centered around the
middle unit cell.

in the Wannier functions. Indeed if one performs the following transformation

ψnk⃗ (⃗x) 7−→ eiαnk⃗ψnk⃗ (⃗x), αnk⃗ ∈R

onto the set of Bloch functions, then the Kohn-Sham hamiltonian is left unchanged
(see 4.31 where |ψnk⃗〉 is transformed into eiαnk⃗ |ψnk⃗〉 and 〈ψnk⃗| into 〈ψnk⃗|e−iαnk⃗ ). As
a consequence, the physics of the system is equally well described by this new set
of Bloch functions. However, if one multiplies each Bloch function by a different
phase factor, the set of Wannier functions is obviously changed. This indeterminacy
has been a major draw back against a wide adoption of Wannier functions in solid
state physics until very recently [65]. We will see in the next section that this non-
uniqueness problem can be circumvented by actually using the phase indeterminacy
of the Bloch functions to our advantage.
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5.2 Maximally Localized Wannier Functions

Because of Bloch functions’ phase indeterminacy (and more generally that the en-
ergy functional is mathematically invariant under a general unitary transformation
of the occupied Bloch functions1), let us introduce the following most general trans-
formation

For the discrete case
�� ��5.2

|wnR⃗〉 =
1p
N

∑
k⃗∈BZ

[∑
m

U k⃗
mn|ψmk⃗〉

]
e− i⃗kR⃗

For the continuous case

|wnR⃗〉 =
1p
N

V
(2π)d

∫
BZ

dk⃗
[∑

m
U k⃗

mn|ψmk⃗〉
]

e− i⃗kR⃗

If the Bloch functions are normalized over the whole supercell (volume V ), then one
can easily prove from the orthonormality of the Bloch basis (equation 4.30) and the
unitarity of the k⃗-dependent matrices U k⃗

mn that the Wannier functions so defined are
orthonormal

〈wnR⃗ |wn′R⃗′〉 =
∫

V
dx⃗ w∗

nR⃗
(⃗x) wn′R⃗′ (⃗x)= δnn′δR⃗R⃗′

�� ��5.3

The inverse relation is given by

|ψnk⃗〉 =
1p
N

∑
R⃗

[∑
m

(
U k⃗

mn

)−1
|wmR⃗〉

]
e i⃗kR⃗

�� ��5.4

where R⃗ runs over all the elementary unit cells inside the supercell. Equation 5.2
can be understood as a two-step process. In the first step, we define a new set of Bloch
functions through

|ϕnk⃗〉 =
∑
m

U k⃗
mn|ψmk⃗〉

�� ��5.5

that we Fourier transform in a second step

|wnR⃗〉 =
1p
N

∑
k⃗∈BZ

|ϕnk⃗〉e− i⃗kR⃗

The k⃗-dependent matrices can of course be chosen completely arbitrarily, so that
for each given set of matrices we obtain a different set of Wannier functions. In order
to define a unique set of Wannier functions, we will follow Marzari and Vanderbilt

1This statement is obviously not true if the functional is orbital-dependent. However, in that latter
case, since we are only interested in the eigenvalues of the Kohn-Sham hamiltonian, we can go from
the Bloch basis to any other basis. The reason comes from basic linear algebra. Indeed if A is a
matrix, the eigenvalues can formally be computed by solving the secular equation det(A−λI)= 0. Now
if we perform a change of basis, then A become B =U−1 AU where U is any invertible matrix. From
there we have det(B−λI) = det(U−1 AU −λU−1U), which simplifies to det(B−λI) = det(U−1)det(A −
λI)det(U)= det(A−λI). This proves that the eigenvalues of B are the same as the ones of A
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[65] and find the special set of k⃗-dependent matrices for which the Wannier func-
tions are maximally localized. By maximal locality we mean that the set of Wannier
functions will minimize the sum of their mean square spread

Ω=∑
n

[〈⃗r2〉n −〈⃗r〉2
n
]=∑

n

[〈wn⃗0|r2|wn⃗0〉−〈wn⃗0 |⃗r|wn⃗0〉2] �� ��5.6

In the above, we defined Ω as the spread functional and one should not be confused
with Ω the elementary unit cell volume. For a given transformation (i.e. given U k⃗

mn
matrices), the required matrix elements of the position operator in the Wannier func-
tion basis are given in terms of the periodic part of the Bloch functions in equation
5.5 [9]2

〈⃗r〉n = i
∑

k⃗∈BZ

〈unk⃗ |⃗∇k⃗|unk⃗〉 = i
V

(2π)d

∫
BZ

dk⃗〈unk⃗ |⃗∇k⃗|unk⃗〉
�� ��5.7

〈⃗r2〉n =−
∑

k⃗∈BZ

〈unk⃗ |⃗∇2
k⃗
|unk⃗〉 =− V

(2π)d

∫
BZ

dk⃗〈unk⃗ |⃗∇2
k⃗
|unk⃗〉

The Wannier functions that minimize the spread functional of equation 5.6 are called
Maximally Localized Wannier functions (MLWF). The algorithm to compute the
MLWFs generally proceeds in two steps. The first step, called the disentanglement
procedure, takes a certain amount of initial Bloch functions (M×N if M is the num-
ber of bands computed at each k⃗ vector in the Brillouin Zone and N is the number
of k⃗ such vectors) and extracts an optimally smooth sub-manifold of M′× N Bloch
functions (where M′ ≤ M). The disentanglement procedure has been designed to be
able to deal with metallic systems for which no energy gap separates the occupied
manifold of Bloch functions from the unoccupied manifold. The second step, gener-
ally called the wannierisation procedure, starts from the optimal sub-manifold
of Bloch states and determines the set of k⃗-dependent matrices that minimizes the
spread functional Ω. The procedure is iterative in nature and uses both steepest-
descent and conjugate-gradient techniques [4]. A detailed description of both proced-
ures (disentanglement and wannierisation) and more can be found in reference [70].
We end up this short introduction to MLWFs by stating some of the most import-
ant properties of those functions that triggered their wide adoption in the solid state
physics community

• The set of MLWF is unique

2We mention here in passing that the expressions for the matrix elements of the position operator
(equation 5.7) are very non-trivial. Indeed the position operator x̂ (or ŷ or ẑ) seen simply as a mul-
tiplicative operator (i.e. an operator that takes a wavefunction ψ(⃗x) and returns xψ(⃗x)) cannot be a
proper operator because it is incompatible with periodic boundary conditions. Defining proper expect-
ation values for the position operator in periodic boundary conditions is very difficult. The interested
reader is invited to look at R. Resta’s paper on the subject [83]. It is quite captivating to discover that
the recent developments in our understanding of the phenomenon of polarization in periodic systems
is very much related to those issues concerning the position operator. Despite the beautiful and mind-
boggling mathematical and physical aspects of polarization, we will not venture into that field in this
thesis.
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• MLWFs are orthonormal orbitals

• In insulators MLWFs can be shown to be exponentially localized [10]

• If the spread functional Ω has a unique minimum, the MLWFs are real at that
minimum [10]

• MLWFs can be interpreted in terms of bonding and anti-bonding local orbitals

• MLWFs are central in the modern theory of polarization [99]

• MLWFs are central to building model Hamiltonians (more on this later) [61]

• MLWFs are the fundamental basis functions in many O (N) computer codes

5.3 Electronic Structure in a MLWF basis

It is now time to look at how to represent the Kohn-Sham hamiltonian in the MLWF
basis. For this, we simply use equation 4.31 and inject the expression for |ψnk⃗〉 of
equation 5.4 to find

ĥKS = ∑
R⃗,R⃗′

∑
m,m′

Hmm′(R⃗− R⃗′)|wmR⃗〉〈wm′R⃗′ |
�� ��5.8

with

In the discrete case
�� ��5.9

Hmm′(R⃗)= 1
N

∑
k⃗∈BZ

Hmm′ (⃗k)e i⃗kR⃗

In the continuous case

Hmm′(R⃗)= Ω

(2π)d

∫
BZ

Hmm′ (⃗k)e i⃗kR⃗

and
Hmm′ (⃗k)=

∑
n

(
U k⃗

mn

)−1
En (⃗k)U k⃗

nm′
�� ��5.10

As a remainder, N is the total number of elementary unit cells inside the Born Von-
Karman supercell (which equals the number of k⃗ points in the Brillouin Zone) and Ω

is the volume of the elementary unit cell. Equation 5.10 is nothing else than a change
of basis from the basis of the eigenfunctions of ĥKS to the basis of the quasi-Bloch
states of equation 5.5 applied to the following diagonal matrix

E1(⃗k) 0 . . .

0 E2(⃗k) 0 . . .
. . . 0 E3(⃗k) 0

. . . 0 . . .
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5.3.1 Band Structure from the Real-Space Matrices

Equations 5.9 and 5.10 allows us to devise a way of computing the band structure of
a periodic solid whenever we know the real-space representation of the Kohn-Sham
hamiltonian, i.e. we know all the H(R⃗) matrices. Indeed, we just have to do two
things

1. For a given k⃗ in the Brillouin Zone, we compute the k⃗-dependent matrix H (⃗k)

2. then we diagonalize that matrix to obtain the band energies for that k⃗

Using equation 5.9 we can easily prove the following inversion formula for H (⃗k)

Hmm′ (⃗k)=∑
R⃗

Hmm′(R⃗)e− i⃗kR⃗
�� ��5.11

So we see that all we have to do in order to compute the band structure is to sum
up all the H(R⃗) matrices, modulating the sum by complex exponential factors e− i⃗kR⃗ ,
and diagonalize the so-obtained matrix.

5.3.2 A Practical Algorithm

In the last section, we realized that computing the band structure from the real-space
representation of the Kohn-Sham hamiltonian is pretty straightforward. But some
subtleties are implied when one wants to implement the algorithm in practice.

The first subtlety has to do with the fact that one needs to be able to properly
extract the block H(R⃗) corresponding to the proper unit cell R⃗. This requires an
algorithm capable of telling which are the “first nearest neighbor” cells, which are
the “second nearest neighbor” cells and so forth.

The second subtlety has to do with the order of Wannier functions in each ele-
mentary unit cell. In theory, the Wannier functions belonging to any unit cell can be
ordered in any random fashion. But here we choose a consistent order among unit
cells. We will see, in the transport part of this thesis, that a consistent order is of
paramount importance in practice and leads to a greater transferability of hamilto-
nian matrices.

The very last practical subtlety has to do with the phase uncertainty of Wannier
functions. Just like Bloch functions, Wannier functions can be multiplied by an ar-
bitrary phase. As a consequence, Wannier functions tend to arise with no predefined
relative phases. When the functions are real, there is no predefined relatives signs.
In practice though, we impose a given sign pattern.3

Using all of the above, we implemented a general-purpose algorithm into Wan-
nier904, a computer code implementing the procedure of Marzari et al. for computing

3The detailed description of how one can impose a relative sign pattern and how one can sort
Wannier functions will be explained in the transport part of the thesis.

4http://www.wannier.org
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MLWFs. The code starts from a set of Bloch functions computed onto a Born Von-
Karman supercell and proceeds by computing the MLWFs of that supercell. From
the MLWF centers, our algorithm goes through the following steps'

&

$

%

Real-Space Matrices Extraction Algorithm

1. Use the first Wannier function as seed and build an elementary unit cell
around that function. Then find all the Wannier functions belonging to
that unit cell.

2. Compute the maximum distance L between Wannier function centers
from the size of the supercell. That distance is half the smallest distance
one can go in any of the supercell’s directions before the periodicity of
the supercell gets us back where we started.

3. Compute the maximum number of nearest neighbors that we can extract
from the supercell. For this use L and the elementary cell basis vectors
(a⃗1 and/or a⃗2 and/or a⃗3).

4. Extract the “home” elementary cell matrix H (⃗0).

5. Use the Wannier function basis in the “home” cell as a reference for both
the order and signs of the Wannier functions so as to extract consistent
nearest neighbor matrices H(R⃗).

6. Store the nearest neighbor matrices in file.

Required from the user are

• The elementary unit cell basis vectors a⃗1 and/or a⃗2 and/or a⃗3

• The number of Wannier functions per elementary unit cell

• Three logical values telling the code which of the basis vector to use internally
(those logical values basically sets the dimensionality of the underlying periodic
system, hence allowing to deal with strictly 1D, 2D or fully 3D systems.)

From the elementary cell matrices H(R⃗) we can directly use equation 5.11 and com-
pute H (⃗k) for a given set of k⃗ vectors inside the Brillouin Zone and diagonalize each
matrix to find the band energies. This technique is an alternative to the classic
method for computing band structures from the Bloch eigenfunctions, as implemen-
ted in most ab-initio computer codes like Quantum-Espresso5, VASP6 or SIESTA7.
In terms of efficiency, this technique has the obvious drawback of requiring a calcula-
tion for a supercell instead of a single unit cell which, given the cubic scaling of most
ab-initio codes with the number of electrons, precludes its use on large 3D systems.

5http://www.quantum-espresso.org/
6http://cms.mpi.univie.ac.at/vasp/
7http://www.icmab.es/siesta/
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However, if we are interested in computing band structures using Self-Interaction
functionals, we will later see that this technique is the only one available in practice.

We illustrate the agreement between the supercell technique and the Bloch func-
tion technique by computing the band structure of graphene using the Local Density
Approximation (LDA) with a kinetic energy cutoff of 45 Rydbergs and a charge dens-
ity cutoff of 180 Rydbergs. We used a Martins-Trouiller Norm-Conserving pseudopo-
tential obtained from an all-electron calculation with the Perdew-Wang 1992 para-
metrization of the LDA functional. The bands obtained for the Bloch function tech-
nique were converged using a 20×20 k⃗ mesh in the Brillouin Zone. By contrast, we
only used a 6×6 supercell of graphene to compute the bands in the supercell tech-
nique case. Figure 5-2 basically validates our supercell technique when computing
band structures of periodic systems.
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Figure 5-2: Graphene bands as computed from the supercell technique (blue solid
line) and the Bloch function technique (red circles). We basically see an excellent
agreement all throughout the Brillouin Zone.
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Part III

Non-Koopman correction to Density
Functional Theory
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6
Fundamental Issues of Approximate

Density Functionals

In this introduction, we would like to outline some of the most urging issues associ-
ated with common local and semi-local Approximate Density Functionals (ADF). In
doing so we will present both qualitative failures in predicting physical properties
of quantum systems and what the community considers to be the reasons for those
failures. In the next chapter, we will propose a methodology for addressing some of
these issues.

6.1 Local and Semi-Local Density Functionals

Before to say anything about the failures of commonly used Density Functionals, it is
necessary to first show what those Functionals are in some details. Roughly speaking
there are two types of “simple” functionals used in practice1. The simplest functional,
called the Local (Spin) Density Approximation - L(S)DA, was already suggested by
Kohn and Sham in their fundamental paper [52]. The LDA, as we will see, is actually
uniquely defined. This is not the case, however, for the second class of functionals,
namely the Generalized Gradient Approximations - GGA.

6.1.1 The Local Density Approximation
The main idea underlying the construction of the LDA functional is very simple. In
a system, the electron density, n(⃗x), is a well-defined positive function of space. In an
infinitesimal volume of size dx⃗, the number of electrons in that volume is n(⃗x)dx⃗. The
local density approximation proceeds by computing the total exchange-correlation
energy of a system by summing up all the infinitesimal volumes containing n(⃗x)dx⃗
electrons for which the contribution to the energy is n(⃗x)ϵLDA

xc (n(⃗x))dx⃗. ϵLDA
xc (n(⃗x)) is

the exchange-correlation energy per electron of an interacting homogeneous electron

1In this chapter we will be focusing mostly on Local and Semi-local functionals. In particular we
will not say anything concerning so-called “hybrid” functionals. The reason is that although some of
the deficiencies of local and semi-local functionals are remedied by hybrids, those also fail on many
of the important issues mentioned in this chapter. Their mathematical expressions are on the other
hand more complex than local and semi-local functionals. As a consequence, we will simplify the
discussion by focusing solely on those latter functionals.
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gas of constant density n0 = n(⃗x) equal to that of the system at point x⃗. By using that
approximation, the total Exchange and Correlation energy EXC[n] can be written as

ELDA
XC [n]=

∫
T3

n(⃗x)ϵLDA
xc (n(⃗x))dx⃗

�� ��6.1

In appendix A, we give the analytical expression for ϵLDA
xc (n) as parametrized by Per-

dew and Wang in 1992 [80]. By construction, the LDA is exact for a system of con-
stant electron density, namely the homogeneous electron gas. As a consequence,
the exchange-correlation energy per electron, ϵLDA

xc (n), corresponds to an actual phys-
ical (although probably not experimentally realizable) and unique system. This func-
tional is then also unique.

6.1.2 Generalized Gradient Approximations

In order to improve upon the LDA, we first present a general formal expression
for the exchange-correlation energy and introduce the exchange-correlation hole
hxc (⃗x, x⃗′). Indeed, one can justify [40] the mathematical expression in equation 6.1

EXC[n]=
∫
T3

n(⃗x)ϵxc(n(⃗x))dx⃗
�� ��6.2

where the exact exchange-correlation energy per electron is

ϵxc (⃗x)= 1
2

∫
T3

hxc (⃗x, x⃗′)
|⃗x− x⃗′| dx⃗′

�� ��6.3

Simply said, the exchange-correlation hole hxc (⃗x, x⃗′) is the probability to find a “hole”
(lack of an electron) at x⃗′ knowing that an electron is at x⃗. The hole can be split into
an exchange-only part, hx (⃗x, x⃗′), and a correlation-only part, hc (⃗x, x⃗′). Then we have
the further following exact properties∫

T3
hx (⃗x, x⃗′)dx⃗′ =−1, ∀ x⃗

�� ��6.4

and ∫
T3

hc (⃗x, x⃗′)dx⃗′ = 0, ∀ x⃗
�� ��6.5

In building Generalized Gradient Approximations, the idea is to expand the exchange-
correlation hole in the limit of slowly varying densities. So we would write

ϵexact
xc (n)≈ ϵLDA

xc (n)+ f1(n)|⃗∇n|+ ...
�� ��6.6

If one uses such an expansion, the quality of the exchange-correlation functional is
actually worsened compared to LDA. The fundamental reason behind this is the fact
that the sum rules 6.4 and 6.5 for the exchange and correlation holes are not satisfied
anymore, along with other known limits [76]. As a result, one needs to introduce a
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“generalized” notion of gradient expansion. One then writes

EGGA
XC [n]=

∫
T3

n(⃗x) f (n(⃗x),∇⃗n(⃗x))dx⃗
�� ��6.7

The goal is then to recover the exact slowly varying expansion in 6.6 while still sat-
isfying as much sum rules and known limits of the exchange-correlation hole as pos-
sible. The detail of the function f (n(⃗x),∇⃗n(⃗x)) is given in appendix A for a popular
GGA functional by Perdew, Burke and Ernzerhof.

6.2 Important Results in Exact DFT

In this section, we would like to review and prove some very fundamental results of
exact DFT. After doing that, we will be in a unique position to assess the accuracy
of common local and semi-local functionals by directly comparing their predictions to
expected results or trends from exact DFT.

6.2.1 The One Electron Limit
A first obvious but nevertheless important limit, is the one of a system with a single
electron. Indeed in this latter case, Hartree, exchange and correlations are by defin-
ition absent. This leads us to conclude that the Hartree, exchange and correlation
terms for both the energy functional and the Kohn-sham equation should cancel each
other exactly. That this should be so is simple to realize, since in the case of a single
electron, the Hohenberg-Kohn functional should reduce to the Rayleigh-Ritz func-
tional and the Kohn-Sham equation should reduce to the Schrödinger equation. An
example of mean-field theory that get this limit right is provided by Hartree-Fock
theory. Indeed in the limit of a single electron, the Slater determinant ansatz of
Hartree-Fock theory for the wavefunction of the system is exact. As a consequence,
the Hartree-Fock functional and the Hartree-Fock equation reduce respectively to the
Rayleigh-Ritz functional and Schrödinger equation. Let us summarize those findings
in equations

for one electron systems with density n(⃗x)
�� ��6.8

EH[n(⃗x)] + EXC[n(⃗x)]= 0
VH[n](⃗x) + VXC[n](⃗x)= 0

6.2.2 Linearity of Ground State Energy with Electron Number
In 1982, Perdew, Parr, Levy and Balduz [79] proved a most important property of
the ground state energy, seen as a function of the total electron number N. In short
this theorem states that the exact ground state energy of a system with a fractional
number of electrons N, between integer values M −1 and M, is nothing else than a
linear interpolation of the exact energies E0(M −1) and E0(M). Mathematically,
the result reads
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Theorem 6.2.1. (Linearity of Total Energy with N) If N is a fractional number of
electrons between integer numbers M − 1 and M, i.e. N = (1−ω)(M − 1)+ωM (for
ω ∈]0,1[), then the exact total energy of the system is given by E0(N) = (1−ω)E0(M −
1)+ωE0(M)

We will prove the above theorem by using the full formalism of part I. We start
from the very definition of what the ground state energy of a quantum system with
N electrons is. According to equation 2.14, the ground state energy is obtained when
one searches over all the admissible density operators Γ̂=∑

i piΓ̂i for the lowest value
of average energy tr(ĤΓ̂). Let us then consider one such admissible density operator
Γ̂. This operator will be admissible if and only if the average number of electron is
given by N. But we can easily compute this average number since we have

〈N̂〉 = tr(N̂Γ̂)=
∑

i
pitr(N̂Γ̂i)=

∑
i

piNi

where Ni is the (integer) number of electrons associated with the density operator
Γ̂i. Any convex combination of operators Γ̂i with integer number of electrons Ni,
for which the average

∑
i piNi is N is then allowed. In particular, the following

combination is valid
Γ̂= (1−ω)Γ̂M−1 +ωΓ̂M

where Γ̂M−1 and Γ̂M are respectively the minimizing density operator for the system
with M−1 and M electrons. Using the linearity of the Trace, we end up with

tr(ĤΓ̂)= (1−ω)tr(ĤΓ̂M−1)+ωtr(ĤΓ̂M)

Of course the right-hand side of the above equation is nothing else than (1−ω)E0(M−
1)+ωE0(M) because of our choice of Γ̂M−1 and Γ̂M . Since (1−ω)E0(M −1)+ωE0(M)
is independant of Γ̂, we see that the above right-hand side is a lower bound to the
energy E0(N), which by definition is the highest lower bound to tr(ĤΓ̂). We deduce
the first inequality

E0(N)≥ (1−ω)E0(M−1)+ωE0(M)

With the above inequality, it is then easy to conclude the proof. Indeed, we proved in
part I that E0(N) was a convex function of N (see equation 2.15). So we have

E0(N)= E0 ((1−ω)(M−1)+ωM)≤ (1−ω)E0(M−1)+ωE0(M)

We now conclude from the two inequalities that

E0(N)= (1−ω)E0(M−1)+ωE0(M)
�� ��6.9

QED.
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6.2.3 Derivative of Ground State Energy with Electron Num-
ber

In the previous section, we established a very general property of the ground state
energy. That property is generally true, whether we place ourselves in the frame-
work of DFT or not. In this section we would like to establish another fundamental
property of the total energy and related it to some key quantity appearing in the
framework of DFT. More precisely, we will establish a connection between the deriv-
ative of the ground state energy with respect to the total number of electron N, with
the Fermi energy, ϵF , that we introduced as a Lagrange multiplier associated with
the conservation of the number of electrons in the system.

In order to avoid confusion, let us stress again that the ground state energy for a
given number of electrons is E0(N), and the energy functional is E. From equation
3.7, we see that there exists some set of orbitals ϕi, ϕ∗

i and occupation numbers f i,
for which the ground state energy is calculated

E0(N)= E(ϕi(N),ϕ∗
i (N), f i(N))

Assuming some smoothness of the optimal parameters (ϕi, ϕ∗
i and f i) with N, we

can write down the derivative of the ground state energy with N using the chain rule
(the derivative is computed from the optimal point corresponding to N electrons in
the system)

dE0

dN
=∑

i

∫
T3

[
δE

δϕi (⃗x)
∂ϕi

∂N
+ δE
δϕ∗

i (⃗x)
∂ϕ∗

i

∂N

]
+∑

i

∂E
∂ f i

∂ f i

∂N

To move forward, we now invoke the three optimality conditions, equations 3.11, 3.12
and 3.13 and simplify the above equation to

dE0

dN
=∑

i

∫
T3

[∑
j
λi jϕ

∗
j
∂ϕi

∂N
+∑

j
λ jiϕ j

∂ϕ∗
i

∂N

]
+∑

i

∂E
∂ f i

∂ f i

∂N

We remember that the orthonormality condition is always satisfied for the orbitals.
As a consequence we have

∂

∂N

[∫
T3

ϕ∗
i (⃗x)ϕ j (⃗x)dx⃗

]
= ∂

∂N
[
δi j

]= 0

The above equation then leads to∫
T3

ϕ j
∂ϕ∗

i

∂N
dx⃗ =−

∫
T3

∂ϕ j

∂N
ϕ∗

i dx⃗

Using this result, we arrive at

dE0

dN
=∑

i j

∫
T3

[
λi jϕ

∗
j
∂ϕi

∂N

]
−∑

ji

∫
T3

[
λ jiϕ

∗
i
∂ϕ j

∂N

]
+∑

i

∂E
∂ f i

∂ f i

∂N
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The two terms on the left of the right-hand side naturally cancel each other, which
simplifies the whole expression to

dE0

dN
=∑

i

∂E
∂ f i

∂ f i

∂N

�� ��6.10

The last step consists in invoking the Aufbau principle of section 3.4.4. We know in-
deed, that for the optimal values of f i (the ones leading to a minimum of the energy
functional), all the occupations of the orbitals below the Fermi level are 1 and only
the orbitals the closest to the Fermi level can have fractional occupation. As a con-
sequence of this, we realize that only the orbitals with fractional occupations
can lead to a variation of f i with N as we change the total number of electrons. The
direct corollary of that is the fact that only the orbitals with fractional occupation
numbers enter the sum in equation 6.10. But if that is the case, then equations 3.13
and 3.16 lead to

∂E
∂ f i

= ϵF , ∀i such that f i ∈]0,1[

That final result lets us conclude that

dE0

dN
= ϵF

�� ��6.11

since
∑

i
∂E
∂ f i

∂ f i
∂N = ϵF

∑
i
∂ f i
∂N = ϵF

∂
∂N (

∑
i f i). This result is quite interesting because it

tells us that we can compute the true derivative of the total energy of the system upon
removal of a fraction of electron. And that derivative is nothing else than the Fermi
level, which computationally speaking is the Lagrange multiplier to the constraint
of electron number conservation.

6.2.4 Exact Ionization of the System in DFT

The two previous section allow us to establish a truly remarkable theorem in exact
DFT. Indeed, if we couple the linearity of the ground state energy (equation 6.9) with
the expression for its derivative (equation 6.11), we see that for a fractional number
of electron N between integer values M−1 and M, the Fermi energy is independant
of N

ϵF (N) is constant for N between M−1 and M

Now we imagine a process by which we go from N = M to N = M−1. Then the total
energy change in the ground state is given by

E0(M−1)−E0(M)=
∫ M−1

M

∂E0

∂N
dN =

∫ M−1

M
ϵF dN =−ϵF

But the above energy is nothing else than the exact ionization of the system. So
the exact ionization of the M-electron system is given by the opposite to the Fermi
energy

IM =−ϵF
�� ��6.12
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As we can see, in exact DFT, the Fermi energy ϵF is endowed with a clear physical
meaning. This result has been known in DFT ever since the work of Perdew et al.
[79], but the above proof is also true if the functional is explicitly orbital-dependent
as long as it is the exact one. It is important to note that Almbladh and Von Barth [5]
also linked the exact ionization of the system to the energy of the highest occupied
orbital in the case of Kohn-Sham theory for a unitary invariant functional.

6.2.5 Asymptotics of the Exact Exchange-Correlation Poten-
tial

In exact DFT, the exchange and correlation potential VXC of a finite system (or away
from a surface for a solid) can be shown to have the following asymptotics [5]

VXC (⃗x)∼− 1
|⃗x|

�� ��6.13

More precisely there exists a split in the exchange-correlation potential between an
exchange only term and correlation only term. And we know what the asymptotics
for each term is [97]. It reads

VX (⃗x)∼− 1
|⃗x|

�� ��6.14

and
VC (⃗x) decays faster than a Coulombic potential

�� ��6.15

Let us motivate equation 6.13 with some simple physical argument. When a single
electron ventures away from the system (at large distance from the nucleus or nuclei
and all the other electrons), a net positive charge is left behind. As a consequence,
at large distance, this electron should experience a Coulombic interaction potential
− 1

|⃗x| . Now, because of the form of the Kohn-sham potential, this Coulomb interaction
is the net effect of three terms, namely the ionic Coulomb interaction of the nuclei,
the Hartree potential (which depends upon the whole charge density n(⃗x)), and the
exchange-correlation potential. The asymptotics of the first two terms is given by
Gauss’s theorem

Vion ∼− Z
|⃗x| , VH ∼ Z

|⃗x|
We then see that the ionic and Hartree terms cancel each other out. So the net result
is that the exchange-correlation potential should be decaying as − 1

|⃗x| .

6.3 Qualitative Failures of ADF

We are now ready to explicit some of the most important qualitative failures of ap-
proximate density functionals (ADF) used in practice. Here we will focus on the
so-called “orbital self-interaction”, the “lack of binding” and the “band gap” problems.
We will try to find both, the origin of the problem, and the consequences of it in terms
of predictions.
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6.3.1 Orbital Self-Interaction Effects
Going back to the one-electron limit mentioned earlier (equation 6.8), we would
like to assess whether for a one-electron density n(⃗x) the Hartree and exchange-
correlation energies cancel each other out. A simple way of visualizing this on a
restricted set of single electron densities is to look at a family of Gaussian densities
for which we have the freedom to change the “size” of the density cloud through a
change of its Gaussian spread σ. This simplified view, although not representative
of every possible single electron densities, should nevertheless teach us a great deal
about the inaccuracies of common density functional approximations. For each width
σ, the single electron density nσ(⃗x) is given by

nσ(⃗x)=
(

1p
2πσ2

)3
e−

|⃗x|2
2σ2

�� ��6.16

Using that family of single-electron densities, Körzdörfer [53] computed the sum of
the Hartree and exchange-correlation energies given by the Local Density Approxim-
ation. The result of that calculation is shown on figure 6-1. Since for a single electron

0 5 10 15 20

Gaussian spread � (�A)

�0.06

�0.04

�0.02

0.00

0.02

0.04

0.06

S
e
lf
-I

n
te

ra
ct

io
n
 E

n
e
rg

y
 (

e
V

)

I II III

EH[n�] +ELDA
XC [n�]

Figure 6-1: Visualization of the relationship between the degree of localization of
an orbital and the strength of the orbital self-interaction as given by the sum of the
Hartree and exchange-correlation energies. Adapted from Körzdörfer [53].

system the density is given by n(⃗x) = f |ϕ(⃗x)|2, we see that the degree of localization
of the orbital is directly related to the degree of localization of the density. In fact if
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σϕ is the “typical spread” of the orbital, then

σϕ =
p

2σ
�� ��6.17

Now we can start analyzing figure 6-1. We see that for localized orbitals, with
typical spread of less than

p
2×1.3 ≈ 1.85Å (in region I on figure 6-1), the orbital

self-energy in LDA is positive. The consequence is that those localized orbitals will
tend to be energetically unfavored by LDA, leading to too small orbital energies. On
the contrary, we see that for larger spreads (regions II and III of figure 6-1), the
orbital self-interaction makes the total energy decrease. However, the difference in
behavior is quite drastic between localized and delocalized orbitals. Indeed, when
one expects localized orbitals to be strongly unfavored, we observe that over a very
large span of spreads (roughly from 2.5Å to more than 20Å), the (negative) orbital
self-interaction is pretty constant. This will, in turn, induce a quite homogeneous
rigid shift of the orbital energies of delocalized orbitals making a comparison with
experiment possible. Localized orbitals on the other hand, will see their orbital en-
ergies shifted up in energy. A perfect illustration of that phenomena is provided by
the work of Dori et al. [21]. The focus of the work was to compare theory and ex-
periment on a prototypical molecule used in the synthesis of organic molecular semi-
conductors : 3,4,9,10-perylene tetracarboxylic acid dianhydride or PTCDA (shown on
figure 6-2). When compared to experiment, the eigenvalue spectrum given by LDA

Figure 6-2: top view of 3,4,9,10-perylene tetracarboxylic acid dianhydride or PTCDA
as studied by Dori et al. The extremal anhydride groups are strong electron attract-
ors which leads to some localized molecular orbitals like A, A’, B and B’ (see [21]) and
table 6.1)

and GGA functionals seem completely off. But a careful analysis of the situation
on an orbital-by-orbital basis, confirms the trends discussed above. Table 6.1 gives
the orbital energies of the computed six highest states of PTCDA compared to the
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GW spectrum and experiment. What’s obvious from this table is the large energy

State Experiment GW LDA GGA

HOMO 0 0 0 0

A ∼ -1.5 -1.54 -0.59 -0.58

A’ ∼ -1.5 -1.54 -0.59 -0.58

B ∼ -2.2 -2.24 -1.21 -1.20

B’ ∼ -2.2 -2.24 -1.21 -1.20

C ∼ -1.5 -1.43 -1.34 -1.34

Table 6.1: Comparing orbital energies (in eV) in theory and experiment for the
PTCDA molecule. The probability density corresponding to each molecular orbital
is shown on the right-hand side. The difference in localization of the orbitals is then
obvious. Adapted from Dori et al. [21]

renormalization of the four localized orbitals (A, A’, B and B’) compared to the two
delocalized ones (HOMO and C). This is a very prototypical illustration of the fact
that the “orbital self-interaction” in LDA and GGA affect much more localized orbit-
als than delocalized ones. As a consequence, whenever the physics of the system is
driven by some interaction between localized and delocalized orbitals (like the inter-
action of d bands with s bands in transition metal compounds), then LDA and GGA
might be qualitatively wrong in their predictions.

6.3.2 Lack of “Binding” in LDA and GGA
By “lack of binding”, it is generally implied that LDA and GGA tend to predict negat-
ive ions to be unstable in contradiction with experiment [1]. The fundamental reason
for this qualitatively wrong prediction has been linked to the lack of proper asymp-
totic behavior of the exchange-correlation potential. Remembering equation 6.13, we
know that this potential should fall off as − 1

|⃗x| far away from any finite system (in
a region where the density is exponentially suppressed). Looking at the analytical
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expression of the exchange-correlation energy in appendix A, we can prove that the
exchange-correlation potential in LDA and GGA has the following asymptotic beha-
vior

V LDA
XC ∼ e−α|⃗x|, α> 0

and

V GGA
XC ∼ e−α|⃗x|, α> 0 or − 1

|⃗x|2

For the PBE functional, the asymptotics is exponential, while some GGA functionals
by Becke [7] achieve a slower decay in − 1

|⃗x|2 . Despite a slower decay of the exchange-
correlation potential for some GGA’s, it has been shown [27] that a potential in − 1

|⃗x|
is actually necessary for a Rydberg series2 to exist, which itself is a requirement for
a system to bind an extra electron and hence lead to stable anions. At this point,
we would like to mention that the asymptotic behavior of the exchange-correlation
potential displays Coulomb-like behavior only for neutral systems, for which the net
charge is zero. In conclusion, we observe that LDA and GGA’s cannot bind extra
electrons and hence lead to stable anions.

6.3.3 The “Band Gap” Problem and Derivative Discontinuities

Fundamentally, the “band gap” (or “charge gap” or “quasi-particle gap”) is a measure
of how different a system reacts to an ionization process or the addition of an extra
electron. In fact, the definition of the gap is straightforward. It is exactly the sum of
the energy it takes to add an electron to the system and the energy it takes to remove
an electron from the system. If IN denotes the ionization energy of the N-electron
system and AN is the electron affinity of the N-electron system, then the gap Eg is
given by

Eg = (E0(N −1)−E0(N))+ (E0(N +1)−E0(N))= IN − AN
�� ��6.18

where E0(N) is the ground state energy of the N-electron system.
In DFT, the ionization theorem of equation 6.12 allows us to express the gap as a

difference in Fermi energies for respectively the N+1-electron system and N-electron
system

Eg = ϵF (N +1)−ϵF (N)

where ϵF (N) is the Fermi energy of the N-electron system. In order to relate that
gap to the Kohn-Sham band structure gap, we just have to be careful of the precise
definition of the latter. Indeed, when one computes the “band structure gap” in DFT,
one looks at the energy difference of the lowest unoccupied state of the N-electron
system (the LUMO) with the highest occupied state of the same N-electron system.
That latter state, the HOMO, is nothing else than the Fermi level. So inserting

2A Rydberg Series is a collection of electronic exited states in finite systems like atoms of molecules
that get closer and closer in energy as the states get closer to an ionization limit. This is reminiscent
to the Rydberg series of the hydrogen atom for which the energy difference between states goes as 1

n2 .
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ϵLUMO(N) into the previous equation allows us to re-write the gap as

Eg = ϵF (N +1)−ϵLUMO(N)+ϵLUMO(N)−ϵF (N)=∆+EDFT
g

�� ��6.19

We observe that the true gap, Eg, is never equal to the DFT gap, EDFT
g , unless the

constant ∆= ϵF (N+1)−ϵLUMO(N)= ϵHOMO(N+1)−ϵLUMO(N) is zero. Of course what
matters in practice is how much does the two terms in 6.19 contribute to the true gap.
If the term ∆ is negligible, then we are confident that we can estimate accurately the
true gap from the DFT gap. If not, then even with the exact functional, we would
still need to add ∆ to the DFT gap to get the true gap. The problem being that we
don’t really know how to compute ∆ other than through a combination of equations
6.19 and 6.18. But these equations require us to compute total energies of systems
with N −1, N and N +1 electrons which, for solids, is practically impossible.

The relative importance of ∆ and EDFT
g has been thoroughly investigated by Sham

and Schluter [89] and Sham, Schluter and Godby [36]. Their conclusion is that both
term have very similar contributions to the true gap. Table 6.2 shows that relative
importance for some common semiconductors. From the table, it is quite clear that

Material ∆ EDFT
g EDFT/LDA

g Eg (exp.)

Si 0.58 0.66 0.52 1.17
GaAs 0.67 0.91 0.67 1.63
AlAs 0.63 1.55 1.37 2.32
C (diamond) 1.12 4.21 3.90 5.48

Table 6.2: Values in eV of ∆, EDFT
g , EDFT/LDA

g and Eg for some common semiconduct-
ors. As one can readily see, the ∆ term is not at all negligible in all cases. What’s
more, the LDA band gap is found to be quite close to the exact DFT band gap. Adap-
ted from [36].

the LDA band gap is far from the true band gap, but the question is why? For this, we
have to go back to the fundamental equations of DFT (equations 2.18 and 3.6). With
the splitting of the universal functional in “non-interacting kinetic”, “Hartree” and
“exchange-correlation” terms, one can apply the variational principle directly using
the method of Lagrange multipliers and arrive at the general equation

δTJ

δn(⃗x)
+V (⃗x)+VH (⃗x)+ δEXC

δn(⃗x)
= ϵF

where TJ is the kinetic energy functional, V (⃗x) is the external potential, VH (⃗x) is
the Hartree potential, δEXC

δn(⃗x) the exchange-correlation potential, and ϵF the Fermi en-
ergy (which is the Lagrange multiplier associated to the conservation of the electron
number). Because of the continuity of the electron density, the Hartree potential and
the external potential, when one goes from N −δ electrons to N +δ electrons in the
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system (0< δ≪ 1), one can prove that the true gap can be expressed as [75]

Eg = δTJ

δn(⃗x)

∣∣∣∣N+δ

N−δ
+ δEXC

δn(⃗x)

∣∣∣∣N+δ

N−δ

�� ��6.20

In the limit of a large system, the discontinuity in the kinetic energy term can be
directly related to the DFT band structure gap EDFT

g [89]. This, in turn, proves that
the ∆ term that was mentioned earlier (see equation 6.19), was nothing else than the
derivative discontinuity of the exchange-correlation potential.

Now we can understand why the LDA and GGA band gaps are far from exper-
iment. Indeed we observe in equation 6.20 that the exchange-correlation potential
should be discontinuous when one goes through an integer number of electrons in
the system. But since the electron density is continuous when one adds a fraction
of electron to the system, and that the analytical expressions of the LDA and GGA
exchange-correlation energies are themselves continuous in n(⃗x), we see that there
can be no discontinuity in the exchange-correlation potential. This is a serious
issue, and in order to improve upon the LDA and GGA’s, one needs to include a “nat-
ural” discontinuity of the exchange-correlation energy functional with the number of
electrons.
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7
Non-Koopman Correction to ADF

Time has come to present in detail what our new correction to approximate density
functionals looks like. For this we will first digress and present the most influential
correction, the one of Perdew and Zunger [77]. We will outline the idea behind it
and show how that scheme performs on atomic and molecular systems. We will then
build upon that scheme and introduce a substantial improvement over it, the one
of Non-Koopman corrections [16]. The presentation will first introduce the scheme
with its physical motivations and mathematical details, and then move on to show
extensive applications for some important atomic, molecular and solid properties. In
particular, we will present some new fully self-consistent band structure calculations
of periodic solids using our real-space technique of section 5.3.

7.1 The Perdew-Zunger correction scheme

In a landmark paper [77], Perdew and Zunger introduced a correction scheme to
approximate density functionals with a view to correct the spurious residual self-
interaction. For this they chose to correct any functional on an orbital-to-orbital
basis, building upon an insight given by the one-electron limit seen earlier in section
6.2.1. In this limit, we know that the sum of the Hartree and exchange-correlation
energies should vanish.

EH[n(⃗x)]+EXC[n(⃗x)]= 0

Since the charge density formally looks like the addition of one-electron densities

n(⃗x)=∑
i
ρ i (⃗x)=∑

i
f i|ϕi (⃗x)|2

the idea is that one can try to correct the energy functional by simply removing
the “self-interaction” terms corresponding to every single electron densities ρ i on
an orbital-by-orbital basis. If EADF[n(⃗x)] is the energy functional of an approximate
density functional (ADF), then the Perdew-Zunger corrected functional is simply

EPZ[{ρ i (⃗x)}]= EADF[n(⃗x)]−
∑

i
EADF

HXC[ρ i (⃗x)]
�� ��7.1
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where EADF
HXC is the Hartree and exchange-correlation part of the approximate func-

tional EADF. Two important observations can be drawn from the Perdew-Zunger
correction scheme

• The Perdew-Zunger scheme is general, in the sense that any approximate dens-
ity functional can be corrected (it is not bound to one particular form of approx-
imate density functional)

• The Perdew-Zunger scheme is orbital dependent. The corrected Perdew-Zunger
functional is now a functional of all the ρ i, not just n(⃗x).

A question then arises : is the Perdew-Zunger functional a density functional ? This
question is fundamental indeed, because if the Perdew-Zunger scheme is not a dens-
ity functional anymore, then we are pushed away from the DFT formalism and all
the results known in that area are lost. Fortunately, since the basic ingredients of
DFT are the single particle orbitals ϕi and occupation numbers f i, the scheme still
falls into the realm of the Hohenberg-Kohn theorem and hence is a density functional
[77]. However, that scheme does not belong to the Kohn-Sham paradigm [75].

7.1.1 PZ hamiltonian and implementation
Given the Perdew-Zunger functional of equation 7.1, one can right away derive the
orbital-dependent hamiltonian similar to the one of equation 3.12 from the general
formalism of chapter 3

ĥPZ
i = ĥADF −VH[ρ i]−V ADF

XC [ρ i]
�� ��7.2

where ĥADF is the Kohn-Sham hamiltonian corresponding to the Approximate Dens-
ity Functional (ADF), VH[ρ i] is the Hartree potential calculated at an electron dens-
ity equal to ρ i, and V ADF

XC [ρ i] is the approximate exchange-correlation potential of the
ADF calculated for an electron density equal to ρ i.

When a functional is not orbital-dependent, we have seen in section 3.5.1 that
one can directly work with a diagonal matrix of Lagrange multipliers ({λii}), and
solve for the orbitals ϕi and orbital energies ϵi =λii directly by iteratively diagonaliz-
ing the orbital-independent Kohn-Sham hamiltonian ĥADF. Unfortunately, when the
functional does depend on the orbitals, such a diagonalization scheme is impossible,
just because there are no hamiltonian to diagonalize. In implementing such schemes
(like Perdew-Zunger and later Non-Koopman), one needs to introduce a matrix of
Lagrange multipliers λi j to make sure that the single electron orbitals ϕi stay or-
thogonal to each other. What’s more, one can only use a direct minimization of the
functional. The Car-Parrinello method [13] is one such technique that directly at-
tacks the problem of minimizing the functional without resorting to diagonalization
techniques. As a consequence, the Perdew-Zunger scheme (and subsequently the
Non-Koopman scheme) was introduced into the Car-Parrinello code of the Quantum
Espresso1 distribution.

1 visit the homepage at http://www.quantum-espresso.org
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7.1.2 General trends of PZ
A comprehensive study of the predictive power of the Perdew-Zunger scheme on
atomic and molecular systems has been performed by Vydrov [101]. We will review
some general trends of the Perdew-Zunger scheme for some physical and chemical
properties and then move on to the next section on Non-Koopman corrections.

We first take a look at atomic ionization potentials and electron affinities using
a ∆SCF technique, which means that those quantities are computed as total energy
differences

IP= E(X+)−E(X ) and EA= E(X )−E(X−)
�� ��7.3

where X is any atom or molecule, X+ is the singly charged cation and X− the singly
charged anion. Results are given in table 7.1. We can observe an improvement in

Functional IPs (MAD) EAs (MAD)
LDA (LSDA) 0.30 0.29
PBE 0.15 0.13
PZ-LDA 0.24 0.18
PZ-PBE 0.39 0.57

Table 7.1: Computed Mean Absolute Deviation (MAD) from experiment of atomic
ionization potentials (IP) and electron affinities (EA) for all atoms of the periodic
table from H to Ar. IPs and EAs have been computed from ∆SCF calculations using
the 6-311++G* basis set. Energies are in eV. Adapted from Vydrov [101].

the calculated IPs and EAs when going from LDA to PZ-LDA (i.e. Perdew-Zunger
correction on top of LDA). But we can also see that a typical GGA (like PBE) per-
forms even better than PZ-LDA. What’s more, when the Perdew-Zunger correction
is applied to functionals other than LDA (Vydrov explicitly tried PBE, BLYP, PBE0
and even TPSS) the results are worsened.

Moving on to molecular systems, the picture is very similar, except that this time,
the PZ corrected functionals are worse in their predictions than the original approx-
imate functionals as can be seen from table 7.2. As we can see, the Perdew-Zunger

Functional IPs (MAD) EAs (MAD)
LDA (LSDA) 0.20 0.21
PBE 0.20 0.10
PZ-LDA 0.25 0.21
PZ-PBE 0.42 0.60

Table 7.2: Computed Mean Absolute Deviation (MAD) from experiment of 44 molecu-
lar ionization potentials (IP) and 32 electron affinities (EA). IPs and EAs have been
computed from ∆SCF calculations using the 6-311+G(3df,2p) basis set. Energies are
in eV. Adapted from Vydrov [101].
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correction, when it comes to predict total energy differences, does not improve pre-
dictions. In Vydrov’s own words : "It seems that PZ-SIC overcorrects many-electron
systems and overcorrection intensifies with increase in system size". This conclu-
sion is in sharp contrast with the original Perdew-Zunger paper, where the focus was
mostly on atomic systems and some approximations (for example the sphericalization
of the charge density and the use of only diagonal lagrange multipliers) were used.
Of course, since the Perdew-Zunger correction is exact for one electron systems, there
must be some properties that are predicted correctly. We give here a rough summary
of the general trends of the Perdew-Zunger correction scheme

• PZ improves the description of transition states in chemical reactions and also
the dissociation curves of odd-electron systems [45, 73, 38]

• PZ does not improve reaction energies [37]

• PZ predicts too short bonds in molecular systems [37, 45]

7.2 The Non-Koopman correction scheme

We first present a fundamental observation from exact DFT to motivate the intro-
duction of the Non-Koopman scheme. We then move on to the mathematics and
implementation of that scheme in both “unrelaxed” and “relaxed” cases.

7.2.1 Origin and Motivation for Koopman’s condition
We will motivate the introduction of the Non-Koopman correction scheme by first
looking at what happens in exact DFT to the highest occupied orbital energy, namely
the Fermi energy. As we saw in sections 6.2.3 and 6.2.4, for any of the highest occu-
pied states, for which the frontier orbital is generically written |ϕ f 〉, we have

dE0

dN
= dE0

dx f
= 〈ϕ f |Ĥ f ϕ f 〉 = ϵF

�� ��7.4

The above equation is strictly true only when we have fractional occupations x f for
those frontier orbitals. Let us imagine to go from M electrons in the system to M−1
by depleting the frontier orbital |ϕ f 〉2 from full occupancy x f = 1 to zero occupancy
x f = 0. When we do so, we allow all the orbitals to relax so as to keep the energy equal
to the ground state energy for a total number of electron equal to N ∈]M −1, M[ or
equivalently a fractional occupation of the frontier orbital between 0 and 1, x f ∈]0,1[.
Using the linearity of the total energy established in section 6.2.2, we observe that
in exact DFT, the orbital energy 〈ϕ f |Ĥ f ϕ f 〉 is independent of the orbital’s occupation
x f

〈ϕ f |Ĥ f ϕ f 〉(x f )= ϵF ∀x f ∈]0,1[
�� ��7.5

2we consider the Fermi level to be non-degenerate here for clarity
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The consequence being that we can interpret that orbital energy as a true ionization
of the system

〈ϕ f |Ĥ f ϕ f 〉 = ϵF = E0(x f = 1)−E0(x f = 0)

The Non-Koopman scheme consists in imposing the same property to not only
frontier orbitals but all occupied orbitals in the system. The fundamental key equa-
tion in the formalism is what we call the Koopman’s condition

∂

∂ f i

[〈ϕi|Ĥiϕi〉
]= 0 ∀i and ∀ f i ∈]0,1[

�� ��7.6

Let’s clarify the exact meaning of the above equation. The interpretation goes as
follow. If one depletes orbital ϕi from f i = f 0

i (its original occupation at the exact min-
imum of the functional) to f i = 0, while keeping all other occupations intact but allow-
ing for a re-optimization of all the orbitals, then the orbital energy 〈ϕi|Ĥiϕi〉 should
not change at all during that process. Equation 7.6 is the mathematical translation
of it. Imposing that condition allows for an interpretation of the orbital energies,
from now on denoted by ϵi = 〈ϕi|Ĥiϕi〉, in terms of electron removal energies. To see
this, we define the following constraint energy function

E i
0 = inf

{ϕ j ,ϕ∗
j }

E[ f j, {ϕ j}, {ϕ∗
j }]

�� ��7.7

In the above function, all the occupations f j, except the one for orbital i, are un-
changed with respect to the configuration minimizing the total energy functional for
N = M electrons. Only f i is changed (as a parameter), and for every chosen value
of f i, the energy functional is minimized for the orbital degrees of freedom. Using a
technique similar to the one we used in section 6.2.3, we can prove that the expres-
sion for the derivative of the constraint energy E i

0 with the occupation f i is given
by

dE i
0

d f i
= 〈ϕi|Ĥiϕi〉 = ϵi( f i)

�� ��7.8

This result is sometimes known as the Hellmann-Feynman theorem, and it is notable
to see that it derives straightforwardly from optimization theory. Using equation 7.8
and the fundamental theorem of integration we arrive at

E i
0( f i = 0)−E i

0( f i = f 0
i )=

∫ 0

f 0
i

dE i
0

d f i
d f i =

∫ 0

f 0
i

ϵi( f i)d f i
�� ��7.9

Imposing the Koopman’s condition of equation 7.6, we end up with

E i
0( f i = 0)−E i

0( f i = f 0
i )=−ϵi

The above equation tells us that −ϵi is exactly the electron removal energy in a re-
laxed vertical ionization process. Indeed we start from the exact ground state energy
with N = M electrons, E0(M)= E i

0( f i = f 0
i ), and deplete only orbital i ( f i goes from f 0

i
to 0) letting the orbitals re-optimize along the way.
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7.2.2 Non-Koopman Correction Scheme

Now that we made Koopman’s condition explicit through equation 7.6, let us use it
to devise a way to correct ADF so as to reintroduce physical meaning into the orbital
energies. In general, orbital energies obtained from an ADF vary with the orbital’s
occupation

ϵi( f i) function of f i

As a consequence, for a given ADF, the electron removal energy reads

E i
0( f i = 0)−E i

0( f i = f 0
i )=

∫ 0

f 0
i

dE i
0

d f i
d f i =

∫ 0

f 0
i

ϵi( f i)d f i

If the functional would satisfy equation 7.6, then the above equation would reduce to

E i
0( f i = 0)−E i

0( f i = f 0
i )=

∫ 0

f 0
i

dE i
0

d f i
d f i =− f 0

i ϵi( f ref
i )

for some reference occupation f ref
i between 0 and f 0

i . We are then led to the definition
of “Non-Koopman” terms as the difference of what we have to what we would want
to have, namely

Πi( f ref
i , f 0

i )= E i
0( f i = 0)−E i

0( f i = f 0
i )− (− f 0

i ϵi( f ref
i ))=

∫ f 0
i

0

(
ϵi( f ref

i )−ϵi( f )
)
d f

�� ��7.10

In order to move forward and start correcting ADFs, we place ourselves in a con-
straint situation, where it is easier to find the appropriate way to correct the func-
tional. This restricted situation corresponds to the unrelaxed case, for which the
orbitals and occupation numbers are left unchanged and only the occupation of or-
bital i is allowed to change. In this case, we introduce some functions δi( f ) such that
the corrected functional looks like

EADF/K = EADF +∑
i
δi( f i)

The superscript in EADF/K acknowledges the fact that we want the corrected func-
tional to satisfy the unrelaxed Koopman’s condition. When the functional is com-
puted at the equilibrium occupation f i = f 0

i , then the energy is

EADF/K( f 0
j , f 0

i )= EADF( f 0
j , f 0

i )+δi( f 0
i )+∑

j ̸=i
δ j( f 0

j )

When we go through our unrelaxed vertical ionization process, we end up with a
depleted i-th orbital, and the total energy becomes

EADF/K( f 0
j , f i = 0)= EADF( f 0

j , f i = 0)+δi(0)+∑
j ̸=i

δ j( f 0
j )
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7.2. THE NON-KOOPMAN CORRECTION SCHEME

Since we want the corrected functional to have the proper Koopman’s behavior, we
then wish to have (in the following we drop the dependence on other occupations f j
for clarity)

EADF/K( f i = 0)−EADF/K( f 0
i )= EADF( f i = 0)−EADF( f 0

i )+δi(0)−δi( f 0
i )=− f 0

i ϵi( fref)

On the other hand we can generally express the first difference on the right-hand
side as

EADF( f i = 0)−EADF( f 0
i )=

∫ 0

f 0
i

ϵi( f )d f

So we see that the correction δi(0)−δi( f 0
i ) needs to satisfy

δi(0)−δi( f 0
i )=− f 0

i ϵi( fref)−
∫ 0

f 0
i

ϵi( f )d f =−Πu
i ( f ref

i , f 0
i )

the last equality comes from the definition of Πi in equation 7.10 and the superscript
u is here to remind us of the “frozen-orbital” approximation (or unrelaxed approxima-
tion) that we made. We then choose the function δi( f ) such that δi(0)= 0, and finally
arrive at

δi( f )=Πu
i ( f ref

i , f )

From this analysis, it is quite clear that the proper definition of the unrelaxed Non-
Koopman corrected functional is

ENK = EADF+∑
i
Πu

i ( f ref
i , f i)

�� ��7.11

Similarly to the Perdew-Zunger scheme, we find that

• The Non-Koopman scheme is general, in the sense that any approximate dens-
ity functional can be corrected (it is not bound to one particular form of approx-
imate density functional)

• The Non-Koopman scheme is orbital dependent. The corrected Non-Koopman
functional is now a functional of all the ρ i, not just n(⃗x).

7.2.3 Implementation of the Non-Koopman Scheme

Given the expression of the corrected functional in equation 7.11, we can derive a
variational scheme to find the extrema of the corrected functional. For this, we need
to compute the functional derivative of 7.11 with respect to ϕi and ϕ∗

i . Another way to
find an expression for the Non-Koopman orbital dependent hamiltonian is to directly
compute the functional derivative of the energy functional with respect to the single
electron density ρ iσ = f i|ϕiσ|2 (as a matter of generality we now also explicitly include
the spin dependence σ). The Non-Koopman corrective terms can be recast into the
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explicit functional form3

Π
u,LSD
iσ ( fref) = f iσ(2 fref− f iσ)EH [niσ]−ELSD

xc [ρ]+ELSD
xc [ρ−ρ iσ]

�� ��7.12

+
∫

drρ iσ(r)vLSD
xc,σ (r; [ρref

iσ ])dr

where niσ(r) = |ϕiσ|2(r) and ρ iσ(r) = f iσniσ(r). Here, the electronic density ρref
iσ (r)

stands for the reference transition-state density

ρref
iσ (r) = frefniσ(r)+ ∑

jσ′ ̸=iσ
f jσ′n jσ′(r)

�� ��7.13

= ρ(r)+ ( fref − f iσ)niσ(r)
�� ��7.14

The expression of the functional derivatives reads

δΠ
u,LSD
iσ

δρ iσ(r)
= ( fref − f iσ)vH(r; [niσ])+vLSD

xc,σ (r; [ρref
iσ ])−vLSD

xc,σ (r; [ρ])+wLSD
ref,iσ(r)

�� ��7.15

In Eq. (7.15), the potential wLSD
ref,iσ denotes

wLSD
ref,iσ(r) = fref

[∫
dr′ f LSD

Hxc,σσ(r,r′; [ρref
iσ ])niσ(r′)

−
∫

dr′dr′′ f LSD
Hxc,σσ(r′,r′′; [ρref

iσ ])niσ(r′)niσ(r′′)
] �� ��7.16

where f LSD
Hxc,σσ′(r,r′) = δ2(EH +ELSD

xc )/δρσ(r)δρσ′(r′) is the second-order functional de-
rivative of the LSD energy. Focusing then on the cross derivatives, we obtain

δΠ
u,LSD
jσ′

δρ iσ(r)
= vLSD

xc,σ (r; [ρ−ρ jσ′])−vLSD
xc,σ (r; [ρ])+

∫
dr′ f LSD

xc,σσ′(r,r′; [ρref
jσ′])ρ jσ′(r′)

�� ��7.17

where f LSD
xc,σσ′(r,r′) is the exchange-correlation contribution to f LSD

Hxc,σσ′(r,r′). As a final
result, the orbital-dependent NK Hamiltonian can be cast into the form

ĥNK
iσ = ĥLSD[ρref

iσ ]+ ŵLSD
ref,iσ+ ŵLSD

xd,iσ,
�� ��7.18

where wLSD
xd,iσ stands for the cross-derivative potential

wLSD
xd,iσ(r)= ∑

jσ′ ̸=iσ

δΠ
u,LSD
jσ′

δρ iσ(r)
.

�� ��7.19

3in the rest of this thesis we will focus exclusively on the LSD functional (Local Spin Density
Approximation). Of course the Non-Koopman correction scheme works on any ADF.
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In a nutshell, the NK Hamiltonian consists of the uncorrected LSD Hamiltonian
calculated at the reference density ĥLSD[ρref

iσ ] with the addition of two variational
potentials. The first additional term ŵLSD

ref,iσ results from the variation of the ref-
erence density as a function of ρ iσ while the second term ŵLSD

xd,iσ springs from the
cross-dependence of the non-Koopmans corrective terms. The effect of the ŵLSD

ref,iσ and
ŵLSD

xd,iσ contributions that arise as by-products of variationality is analyzed in the next
section.

7.2.4 Assessing the Non-Koopman Correction

In this section, we assess the performance of the NK self-interaction correction, par-
ticularly focusing on the effect of variational terms on the accuracy of NK orbital
predictions (i.e., on the cancellation of the unrelaxed frozen-orbital self-interaction
measure Π

u,NK
iσ ( f )).

One simple and probably the most direct way to evaluate the influence of ŵLSD
ref,iσ

and ŵLSD
xd,iσ is to introduce a non-variational orbital-energy scheme, the NK0 method,

that consists of freezing the dependence of the reference transition-state densities
and the cross-dependence of corrective energy terms, thereby eliminating ŵLSD

ref,iσ and
ŵLSD

xd,iσ contributions to the effective potential. Computed NK and NK0 orbital levels
can then be compared for the direct assessment of ŵLSD

ref,iσ and ŵLSD
xd,iσ errors. Explicitly,

the NK0 Hamiltonian can be written as

ĥNK0
iσ = ĥLSD[ρ]+ δΠ

u,LSD
iσ

δρ̂ iσ

∣∣∣∣∣
ρref

iσ=cst

,
�� ��7.20

ĥNK0
iσ = ĥLSD[ρref

iσ ].
�� ��7.21

In the NK0 optimization scheme, the Hamiltonian given by Eq. (7.21) is employed to
propagate orbital degrees of freedom at fixed ρref

iσ . Reference transition-state dens-
ities are then updated according to Eq. (7.13). The procedure is iterated until self-
consistency.

Due to the loss of variationality, the obvious practical limitation of the non vari-
ational NK0 orbital-energy method is that it cannot provide total energies and in-
teratomic forces. However, NK0 is of great utility in evaluating the intrinsic perform-
ance of the NK correction. In itself, the NK0 formulation is also useful in determining
orbital energy properties that are particularly affected by ŵLSD

ref,iσ and ŵLSD
xd,iσ errors.

Focusing now on computational predictions, the occupation dependencies of the
LSD, HF, PZ, and NK unrelaxed orbital energies

ϵu
iσ( f )= dEu

iσ( f ′)
d f ′

∣∣∣∣∣
f ′= f

�� ��7.22

of the highest atomic orbital of carbon are depicted in Figs. 7-1 and 7-2(a). The sali-
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ent feature of the LSD graph is the large variation of the orbital energy from −19.40
to −6.15 eV, reflecting the strong nonlinearity of the corresponding unrelaxed ioniz-
ation curve. The PZ variation is found to be twice lower than for LSD. In contrast,
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Figure 7-1: LSD, PZ, and HF unrelaxed orbital energies and residual unrelaxed non-
Koopmans errors of the highest occupied state of carbon. The black arrow highlights
the zero value for the non-Koopmans error scale.

the HF unrelaxed ionization curve exhibits a perfectly linear behavior (i.e., the un-
relaxed orbital energy remains constant). This trend is closely reproduced by the
NK functional [Fig. 7-2(a)]; on the scale of LSD residual non-Koopmans errors, the
eye can barely distinguish any deviation of the NK unrelaxed orbital energies as a
function of f iσ regardless of the value of the reference occupation.

The above observation is due to the fact that the variational contribution ŵLSD
ref,iσ

affects the orbital energy ϵNK
iσ indirectly, i.e., only through the self-consistent response

of the orbital densities since 〈ϕiσ|ŵLSD
ref,iσ|ϕiσ〉 = 0 at self-consistency. Furthermore, a

Taylor series expansion of ŵLSD
xd,iσ reveals that 〈ϕiσ|ŵLSD

xd,iσ|ϕiσ〉 does not cause notable
departure from the linear Koopmans behavior. In quantitative terms, the dominant
term in the expansion of the residual NK Non-Koopman’s error is of the fourth order
in orbital densities:

Π
u,NK
iσ ( f ) = 1

4

∑
jσ′ ̸=iσ

f jσ′(2 fref − f jσ′)(2 f − f iσ) f iσ×

×
∫

dr1234 f (4),LSD
xc,σσ′σ′σ(r1234; [ρref

jσ′])niσ(r1)n jσ′(r2)n jσ′(r3)niσ(r4)+·· ·

(where f (n),LSD
xc,σ12···n(r12···n) denotes the nth order functional derivative of the LSD ex-

change correlation energy), whereas the PZ correction is found to be less accurate
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Figure 7-2: Non-Koopmans unrelaxed orbital energies and residual unrelaxed non-
Koopmans errors of the highest occupied state of carbon for select arbitrary values
of the reference occupation ( fref = 1

4 , 1
2 , and 3

4 ) using (a) the NK total-energy method
and (b) the NK0 orbital-energy method. The black arrow highlights the zero value
for the non-Koopmans error scale.

in minimizing the Non-Koopman’s error by one order of precision:

Π
u,PZ
iσ ( f )= ∑

j ̸=i

2 f − f iσ

2
f iσ f jσ

∫
dr123 f (3),LSD

xc,σσσ (r123; [ρ−ρ iσ])niσ(r1)niσ(r2)n jσ(r3)+·· ·
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Despite the very good accuracy of the NK correction, direct confrontation with NK0
results (for which the non-Koopmans measure Π

u,NK0
iσ ( f ) [Eq. (7.10)] is obviously can-

celed for any value of f ) reveals that NK tends to underestimate orbital energies
with deviations of 0.5 to 1.5 eV that gradually increase with fref [Fig. 7-2(a,b)].

As a conclusion of this preliminary performance evaluation, the NK frozen-orbital
correction results in a considerable reduction of residual errors Π

u,NK
iσ ( f ), bringing

density-functional approximations in nearly exact agreement with the frozen-orbital
linear trend while exhibiting a slight tendency to underestimate orbital energies. In
the next section, we present an extension of the NK correction beyond the frozen-
orbital paradigm.

7.2.5 Screened Non-Koopman scheme
So far, we have been focusing on imposing a constant behavior of the orbital energies
in the “frozen orbital” approximation. Of course when one goes through the self-
consistent cycle, the relaxed orbital energies will not necessarily stay constant as we
change their occupations f iσ and re-optimize for the orbitals ϕiσ. Can we go beyond
the “frozen orbital” paradigm and try to shoot for a Koopman’s condition with orbital
relaxation ? In order to address that issue we will look at the difference between
differential ionizations and affinities and total ionizations and affinities in DFT.

By differential ionization/affinity, we mean to compute the ionization/affinity of
the system by looking at the highest occupied or lowest unoccupied orbital energies.
Indeed we know from section 7.2.1 that the highest occupied orbital is related to
the change of the total energy with the total number of electrons of the M-electron
system

ϵHOMO = dE0

dN
We can draw a similar conclusion for the lowest unoccupied orbital of the M − 1-
electron system. On the other hand, we can compute a total ionization/affinity by
simply computing the total energy difference between the M-electron system and
M−1-electron system. But since the total energy function E0(N) is known to be piece-
wise linear from section 6.2.2, we see that in exact DFT, we should have a complete
agreement between differential ionizations/affinities and total ionizations/affinities.
It is an empirical fact, that most if not all of ADFs are pretty good in computing
ionizations/affinities through the total ionization/affinity method (as one can see in
tables 7.1 and 7.2) but extremely poor at computing the same quantity through the
differential ionization/affinity method. The fundamental reason for that behavior is
generally related to the convex behavior of E0(N) for ADFs. To illustrate that point,
we show in figure 7-3 the computed total energy with the total electron number for
two molecules, namely methane CH4 and ammonia NH3, in contact with an electron
reservoir.

What we observe is a confirmation of the convex behavior of the total energy in
the LDA case. This behavior explains the discrepancy between total and partial ion-
izations. The derivatives of the total energy at N=7 electrons (to the right) and N=8
electrons (to the left) are respectively lower and greater than the total ionization
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Figure 7-3: Behavior of the total energy E0(N) with the total number of electron
N as computed by the LDA and NK functionals. Other semilocal and even hybrid
functionals would exhibit identical trends to LDA. We show in dashed line what the
exact DFT result looks like. The top plot corresponds to a methane molecule CH4
in contact with an electron reservoir, while the bottom plot corresponds to a similar
setup but for an ammonia molecule NH3. We observe a clear convex behavior for LDA
whereas the NK curve is concave. A mix of the two functionals with α≈ 0.7 leads to
an almost linear behavior of the total energy.
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energy represented by the slope of the exact curve (in dashed line). What’s more,
because of the convexity property, we see that the differential affinity — correspond-
ing to the LUMO of the M −1-electron system —will be lower than the differential
ionization — corresponding to the HOMO of the M-electron system —. We stress
that in exact DFT, these two orbital energies should agree. Looking at the NK total
energy, we see that the curve is concave, so that the results discussed in the LDA
case are inverted. Using that fact, we can envision to mix some part of the LDA func-
tional with some part of the NK functional so as to make sure that the differential
ionization and the differential affinity agree (which also leads to an almost linear be-
havior of the total energy with electron number). Let us then introduce the following
functional

EαNK = ELSD +α
(
ENK −ELSD

) �� ��7.23

The fact that we can find an α for which the differential ionization/affinity energies
agree is illustrated for a Carbon atom in figure 7-4. The inclusion of the α parameter
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in the Non-Koopman scheme is an attempt to deal with orbital relaxation effects
and get closer to the relaxed Koopman’s condition of equation 7.6. One could think
that the introduction of α destroys the ab-initio nature of the Non-Koopman method,
but as we saw earlier, α is not arbitrary. It is the coefficient for which the LUMO
energy of the M−1-electron system agrees with the HOMO energy of the M-electron
system. α can be seen as a screening coefficient that helps us taking into account the
relaxation of the system when one goes from M to M−1 electrons. Assuming a linear
behavior of the frontier orbital energies with α, we can compute its approximate
value through the following formula

α≈ ϵLSD
LUMO(M−1)−ϵLSD

HOMO(M)(
ϵLSD

LUMO(M−1)−ϵLSD
HOMO(M)

)− (
ϵNK

LUMO(M−1)−ϵNK
HOMO(M)

) .
�� ��7.24

To give further support to the interpretation of α as a screening coefficient, we calcu-
lated that self-consistent coefficient (αNK) for the first five rows of the periodic table
(from Hydrogen, H, to Xenon, Xe). The results are shown in figure 7-5. As readily
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Figure 7-5: Non-Koopmans screening coefficient α for the elements of the first five
rows of the periodic table.

seen from the histogram, the elements with a single electron outside of otherwise
complete shells (like Hydrogen, Lithium, Sodium, Potassium and Rubidium) are the
least affected by the orbitals reconfiguration, and so their screening coefficient is very
close to 1 (for example αNK(Na)=0.99). At the other extreme, some of the most sens-
itive elements to orbital reconfiguration are the noble gases. It is now time to give
the final expression of the screened Non-Koopman functional. We will not dwell into
the details of why choosing a reference occupation of one half is optimal. We direct
the interested reader to section II.F of the reference paper [16] to find out more. The
explicit expression of the screened αNK functional with fref = 1

2 reads

EαNK = ELSD + αNK ∑
iσ

[
f iσ(1− f iσ)EH [niσ]+ELSD

xc [ρ−ρ iσ]
�� ��7.25

+
∫

drvLSD
xc,σ

(
r;

[
ρ+ (

1
2
− f iσ)niσ

])
ρ iσ(r)−ELSD

xc [ρ]
]
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CHAPTER 7. NON-KOOPMAN CORRECTION TO ADF

In the next section, we will apply the Non-Koopman and screened Non-Koopman
schemes to the calculation of many atomic, molecular and solid-state properties.

7.3 Predictive Power of the Non-Koopman Correc-
tion

In this section, we will present some extensive atomic, molecular and solid-state
calculations with the aim of assessing the predictive power of the Non-Koopman
correction scheme. We will try to systematically compare NK (in its NK, NK0, αNK
and αNK0 forms) with LSD, PZ and sometimes HF or higher order schemes like GW
when appropriate. Also, whenever possible, we will include experimental results.

7.3.1 Atomic Ionizations and Affinities
We start our exploration of NK’s performance by calculating the electron removal en-
ergies of a complete range of atomic elements, from hydrogen to xenon, using the all-
electron LD1 code of the QUANTUM-ESPRESSO distribution. The LD1 code proceeds
by iterative integration of the spherically symmetric electronic-structure problem on
logarithmic grids.

we compare αNK differential electron affinity predictions4 with LSD and exper-
iment in Fig. 7-6. The comparison demonstrates the predictive ability of the αNK
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Figure 7-6: LSD and αNK differential electron affinities AN−1 (i.e., opposite energy
of the lowest unoccupied orbital of the ionized atom X+) compared with experiment
for the elements of the five first periods.

method, which brings partial electron removal energies AN−1 in very close agree-
ment with experimental total electron removal energies Aexp

N−1, whereas LSD is found
to considerably overestimate AN−1. In quantitative terms, the differential LSD en-
ergy A LSD

N−1 is overestimated by more than 4 eV with a standard deviation of 1.85 eV.
Comparable deviations to LSD are obtained with the PZ self-interaction correction.
The HF energy A HF

N−1 are instead underestimated by a smaller margin of 1.48 eV.

4as opposite to the LUMO energy of the singly charged cation
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Affinities AN−1 Ionizations IN
LSD HF PZ αNK αNK0 LSD HF PZ αNK αNK0

MD 4.26 -1.48 4.08 0.11 -0.43 -3.62 -0.48 -0.06 0.19 -0.36
MAD 4.26 1.48 4.08 0.31 0.44 3.62 0.78 0.34 0.34 0.38
RMS 1.85 0.83 1.74 0.46 0.33 1.49 1.01 0.48 0.46 0.31

Table 7.3: Deviations from experiment of the computed differential affinities and
ionizations for the first five periods (from Hydrogen to Xenon). Errors are given in
eV.

The αNK correction results in substantial improvement in the calculation of partial
electron removal energies, reducing the error to 0.31 eV. Here, it is quite interesting
to note that the αNK variational contributions counterbalance the slight tendency
of the αNK0 correction to underestimate electron removal energies within LSD. A
marked difference with the differential electron affinity results is the enhanced accur-
acy of the HF and PZ theories for differential ionizations. The improved performance
in predicting atomic ionization potentials results from the fact that orbital relaxation
compensates the absence of correlation contributions in HF and cancels residual non-
Koopmans errors in PZ [77]. Nevertheless, even with beneficial error cancellation in
favor of HF and PZ, the αNK deviation is still the lowest, approximately equal to
the PZ mean absolute error of 0.34 eV. Table 7.3 summarizes the mean deviation,
mean absolute deviation and root mean square deviation from experimental electron
removal energies of differential affinities and ionizations for the first five periods as
computed by LSD, HF, PZ, αNK and αNK0.

7.3.2 Molecular Ionizations and Affinities
In this section, we focus on the study of molecular systems. For this purpose, we
have implemented the HF, PZ, and αNK methods in the plane-wave pseudopotential
CP (Car-Parrinello) code of the QUANTUM-ESPRESSO distribution [35]. In this code,
orbital optimization proceeds via fictitious Newtonian damped electronic dynamics.

The main difficulty in the CP implementation of the HF, PZ, and αNK function-
als is the correction of periodic-image errors that arise from the use of the supercell
approximation [74]. Such numerical errors preclude the accurate evaluation of ex-
change terms and orbital electrostatic potentials. To eliminate periodic-image errors
in the plane-wave evaluation of exchange and electrostatic two-electron integrals, we
employ countercharge correction techniques [17]. In addition to this difficulty, expli-
cit orthogonality constraints must be considered for the accurate calculation of the
gradient of the orbital-dependent PZ and αNK functionals [37]. To incorporate these
additional constraints, we use the efficient iterative orthogonalization cycle imple-
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Table 7.4: LSD, HF, PZ, αNK, and αNK0 differential molecular electron removal
energies compared with experimental vertical electron removal energies. Mean de-
viations (MD), mean absolute deviations (MAD), and root mean squared deviations
of the error (RMS) in absolute and relative terms are also reported. The adiabatic
ionization lower bound is given when the experimental vertical ionization energy is
not available. Energies are in eV.

LSD HF PZ αNK αNK0 Exp.1

AN−1 IN AN−1 IN AN−1 IN AN−1 IN AN−1 IN

H2 18.84 10.16 14.78 16.24 19.01 16.99 14.79 14.83 15.74 15.69 >15.43
N2 20.85 10.37 12.77 17.15 21.55 17.78 16.14 16.20 15.38 15.52 >15.58
O2 18.94 7.20 9.27 14.71 18.11 15.43 13.85 13.99 13.04 12.51 12.30
P2 14.28 7.26 8.56 10.84 14.40 11.53 10.86 10.85 10.35 10.35 10.62
S2 13.28 5.81 7.49 10.49 13.05 11.06 10.17 10.19 9.59 9.54 9.55
PH 13.92 5.81 8.39 10.25 13.81 10.84 9.94 10.02 9.68 9.68 >10.15
HCl 17.81 8.11 10.33 13.05 17.58 13.82 13.09 13.17 12.30 12.32 >12.75
CO 18.70 9.14 11.03 15.06 18.45 15.40 14.15 14.24 13.68 13.74 14.01
CS 15.20 7.42 7.30 12.83 14.53 13.29 11.63 11.76 10.83 10.89 >11.33
H2O 18.97 7.33 8.97 13.81 18.50 14.77 13.17 13.45 11.75 11.94 >12.62
H2S 14.87 6.39 8.17 10.55 14.70 11.52 10.77 10.86 10.15 10.17 10.50
NH3 16.07 6.23 7.61 11.55 15.75 12.50 11.15 11.40 10.18 10.31 10.82
PH3 14.50 6.84 8.29 10.46 14.15 11.45 10.77 10.83 10.41 10.41 10.59
CH4 18.69 9.46 11.95 14.92 18.98 16.20 14.46 14.51 13.91 13.86 13.60
SiH4 15.86 8.50 10.84 13.26 16.46 14.35 12.67 12.68 12.53 12.40 12.30
C2H2 16.19 7.40 8.79 11.40 16.19 12.97 12.05 12.14 11.11 11.15 11.49
C2H4 15.12 7.01 7.91 10.43 15.07 12.62 11.43 11.53 10.50 10.54 10.68

MD 4.57 –4.35 –2.46 0.75 4.47 1.66 0.40 0.49 –0.19 –0.19 —
38.5% –36.4% –21.0% 5.9% 37.4% 13.7% 3.4% 4.2% –1.7% –1.7% —

MAD 4.57 4.35 2.46 0.80 4.47 1.66 0.50 0.58 0.38 0.29 —
38.5% 36.4% 21.0% 6.4% 37.4% 13.7% 4.1% 4.8% 3.2% 2.5% —

RMS 0.95 0.63 0.83 0.73 0.89 0.66 0.46 0.48 0.40 0.28 —
7.7% 4.0% 7.4% 5.9% 6.3% 5.0% 3.7% 3.9% 3.3% 2.4% —

1Reference http://cccbdb.nist.gov/.

mented in the original CP code [55]. In terms of computational performance, the cost
of αNK calculations is here only 40% higher than that of PZ and lower than that of
HF. In Table 7.4, we compare LSD, HF, PZ, and NK partial electron removal energy
predictions for a representative set of molecules. In each case, molecular geometries
are fully relaxed (the accuracy of equilibrium geometry predictions will be examined
in Sec. 7.3.3). To perform our calculations, we employ LSD norm-conserving pseudo-
potentials [2] with an energy cutoff of 60 Ry for the plane-wave expansion of the
electronic wavefunctions. With this calculation parameter, we verify that AN−1 and
IN are converged to within less than 50 meV. More details can be found in appendix
B.

It is frequently argued that substituting LSD pseudopotentials for their HF, PZ,
and NK counterparts has minor effect on the predicted energy differences [37]. Com-
paring our pseudopotential calculations with all-electron atomic results (see Sec.
7.3.1), we actually found that the use of LSD pseudopotentials yields HF, PZ, and
NK electron removal energies with a typical error of 0.1 to 0.2 eV. However, since
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these moderate deviations affect HF, PZ, and NK predictions in identical manner,
the pseudopotential substitution does not alter the validity of the present comparat-
ive analysis.

As expected, one conspicuous feature in Table 7.4 is the poor performance of LSD
that predicts molecular partial electron removal energies with an average error of
±40%. As was the case for atoms, the PZ self-interaction correction reduces the error
in predicting IN to less than 14%, which corresponds to an average deviation of 1.68
eV, whereas AN−1 predictions are not improved. In comparison, αNK partial ioniza-
tion energies are predicted with a remarkable precision of 0.50 eV (4.1%) and 0.58 eV
(4.8%) for AN−1 and IN , respectively. The αNK accuracy in predicting molecular ver-
tical ionization energies compares favorably (arguably, even more accurately) with
that of recently published fully self-consistent GW many-body perturbation theory
calculations [84].

7.3.3 Equilibrium Molecular Structure Prediction
The accuracy of common local and semi-local density functionals in predicting equi-
librium molecular structures has been one of the main success of DFT. If one wish
to correct ADFs for some deficiencies, one should not impair the already established
qualities of the functionals. Unfortunately, it is not easy to know ahead of time if
a correction scheme will leave established properties unchanged. For example, we
have seen that the Perdew-Zunger correction scheme had a substantial impact on
the quality of equilibrium structures. As a test of the new methodology, we compared
LSD, PZ, and αNK structural predictions to experimental bond lengths in Fig. 7-7
and we present LSD, HF, PZ, and αNK errors in table 7.5

The first important observation is the very good accuracy of LSD predictions with
a mean absolute relative error of 1.1% for the seventeen molecules listed in Table 7.4.
PZ bond lengths are instead sensibly underestimated with a mean uncertainty of
2.8%. In contrast with PZ calculations, αNK results deviate from experiment by a re-
lative error margin of 0.8%, which is lower than that of LSD, demonstrating that the
αNK self-interaction correction does not deteriorate and even improves LSD struc-
tural predictions, at variance with the conventional PZ self-interaction correction.
These results illustrate the tendency of PZ to overbind molecular structures, and

Bond length deviation (%)
MD MAD RMS

LSD 0.7% 1.1% 1.1%
HF -1.4% 1.4% 0.8%
PZ -2.8% 2.8% 0.8%
αNK 0.3% 0.8% 1.0%

Table 7.5: Deviation of predicted equilibrium bond lengths from experiment for LSD,
HF, PZ and αNK for the 17 molecules in table 7.4.

confirm the systematic improvement brought about by the αNK correction.
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Figure 7-7: LSD, PZ, and αNK molecular bond lengths compared with experiment
(Ref. CRC Handbook of Physics and Chemistry (2009)).

Figure 7-8: The equilibrium structure of Benzene as computed from LDA, Non-
Koopman (NK) and Perdew-Zunger (PZ). γ is the average internal angle between
three neighboring carbon atoms and |d−d′|

d measures the degree of dimerization of
the carbon-carbon bonds in the structure.

We also performed a high accuracy calculation on a benzene molecule to see if NK
could properly deal with delocalized π systems. The result is shown on figure 7-8.
We observe that, because of the greater freedom in their orbital potentials, orbital-
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Table 7.6: LSD, HF, PZ, and αNK0 orbital energies of benzene compared with ex-
perimental photoemission energies. Relative mean absolute deviations (MAD) with
respect to experimental photo ionization results are also reported. Energies are in
eV.

LSD HF PZ αNK αNK0 Exp.

e1g 6.59 9.18 9.43 10.39 9.39 9.3
e2g 8.28 13.54 15.46 12.66 12.48 11.8
a2u 9.43 13.64 12.99 13.25 12.60 12.5
e1u 10.33 16.02 17.67 14.75 14.56 14.0
b2u 11.02 16.95 18.40 15.46 15.15 14.9
b1u 11.26 17.51 18.82 15.65 15.69 15.5
a1g 13.10 19.26 20.60 17.58 17.30 17.0
e2g 14.85 22.39 22.72 19.27 19.34 19.2

MAD 26.1% 12.0% 18.4% 4.9% 2.1% —

dependent functionals can lead to symmetry breaking, as seen by the non-zero degree
of dimerization in figure 7-8. Nevertheless, even in this challenging case, NK predicts
geometries in excellent agreement with LDA. PZ on the other hand, strongly favors
the broken symmetry geometry (with a dimerization 6 times greater than NK one).

7.3.4 Molecular Spectroscopy
In section 7.2.1, we showed how the Non-Koopman correction was based on a con-
struction that tries to re-establish physical meaning to orbital energies. In this sec-
tion we will review some benchmark calculations made on Benzene and C60 in order
to assess the accuracy of NK and NK0 in predicting vertical ionization energies from
orbital energies. Table 7.6 shows the computed Photoemission spectrum of Benzene
compared to experiment [81] while Table 7.7 displays the same type of data for C60.
In those molecular photoemission calculations, we use the CP code with the compu-
tational procedure described in Sec. 7.3.2. We employ fully relaxed geometries for
benzene and the LSD atomic structure of C60, which is found to be in excellent agree-
ment with the NMR experimental geometry. [32]

Focusing first on benzene, we observe that LSD underestimates electron binding
energies with errors as large as 4.35 eV for low-lying states. In contrast to LSD, the
HF theory provides overestimated photoemission energies with absolute deviations
that increase gradually from 0.12 to 3.19 eV when approaching the bottom of the PES.
Similar trends are observed for PZ with the difference that the errors do not system-
atically increase with increasing photoemission energies, leading in particular to the
incorrect ordering of the e2g and a2u levels. In contrast, αNK restores the correct
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Table 7.7: LSD, HF, PZ, and αNK orbital energies of fullerene C60 compared with con-
strained LSD total energy differences (∆cLSD) [94] and experimental photoemission
energy bands [3]. Energies are in eV.

band LSD HF PZ αNK ∆cLSD Exp.

I hu 5.84 hu 7.49 hu 8.77 hu 7.45 hu 7.61 7.60

II gg 7.03 hg 9.42 gg 9.80 gg 8.64 gg 8.78 8.95
hg 7.15 gg 9.64 hg 10.48 hg 8.75 hg 8.90

III hu 8.72 gu 12.42 gu 12.21 hu 10.31 hu 10.47 10.82–11.59
gu 8.74 tu 12.99 tu 12.69 gu 10.35 gu 10.50
hg 9.03 hu 13.08 hg 10.64 hg 10.79
tu 9.28 tu 10.91 tu 11.03

IV gu 10.05 hg 13.46 hu 14.13 gu 11.66 gu 11.79 12.43–13.82
tg 10.52 gu 15.06 tg 15.41 tg 12.12 tg 12.28
hg 10.59 tg 15.20 hg 15.81 hg 12.20 hg 12.33

hg 15.66

relative peak positions and yields slightly overestimated electron binding energies
with an absolute precision of 4.9%. The slight tendency of αNK to overestimate elec-
tron binding energies is here again due to the influence of variational contributions,
as directly confirmed by the performance of the αNK0 orbital-energy method, which
predicts photoemission energies in remarkable agreement with experiment.

Similarly to benzene, LSD energy predictions for fullerene are significantly un-
derestimated. However, since the dispersion of the errors is much narrower than in
the case of benzene, a simple shift of LSD photoemission bands, equal to the differ-
ence between the theoretical and experimental HOMO levels, can bring the predicted
PES in close agreement with experiment [32]. Despite the excellent precision of HF
in the top region of the spectrum, HF photoemission energies are largely overestim-
ated for low-lying states. In addition, HF inverts the hg and gg states in the second
photoemission band although it predicts the correct peak ordering in the third and
fourth bands [94]. The performance of PZ is found to be slightly worse than that
of HF with significant qualitative errors in the grouping and ordering of the states.
In contrast, αNK correctly shifts the spectrum and brings photoemission energies in
very good agreement with experiment. Predicted αNK binding energies are also in
excellent agreement with constrained LSD total energy differences, [94] providing
a further validation of the performance of the αNK correction in bringing physical
meaning to orbital energies — i.e., in identifying orbital energies as opposite total
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Table 7.8: αNK0 self consistent orbital energies compared to LDA, GGA (PBE) and
GW for the HOMO and HOMO-1 levels of the PTCDA molecule. We observe that
αNK0 properly predicts the C state to correspond to the HOMO-1 level consistent
with GW predictions and at variance with the LDA and GGA predictions, which
assign state A to be the HOMO-1 level (the A and C denominations refer to the ones
in table 6.1). Energies are in eV.

Method HOMO energy HOMO-1 energy HOMO-1 symmetry

GW 0.0 -1.43 C
LDA 0.0 -0.59 A,A’
GGA 0.0 -0.58 A,A’
αNK0 0.0 -1.25 C

electron removal energies.
We finish our exploration of the predictive power of the Non-Koopman formalism

in describing photoemission spectra by going back to the PTCDA molecule introduced
in section 6.3.1. For this molecule we saw that the LDA and GGA functionals wrongly
predict the second delocalized state (state C) to be the HOMO-5 level, whereas GW
predicts it to be the HOMO-1 level. What’s more, the energy of the HOMO-1 state
in LDA and GGA is largely overestimated. We would like to know what the Non-
Koopman correction brings about in this difficult case. For this, we performed a full
self-consistent αNK0 calculation of the PTCDA molecule with α= 0.665 (using equa-
tion 7.24 to determine α). The results are shown in table 7.8. As can be seen from
the table, αNK0 re-establishes the C state to be the correct HOMO-1 level agreeing
with the GW results, while LDA and GGA systematically predict the A and A’ states
to be the HOMO-1 levels. The orbital energy is also very much improved with less
than 0.2 eV deviation from GW results. Another important prediction of αNK0 is
the absolute value of the HOMO level. As we saw earlier the absolute HOMO orbital
energy is expected to be quite close to the exact ionization of the system and indeed it
is. The predicted HOMO absolute energy is -8.5 eV whereas the actual experimental
first ionization of PTCDA is found at about -8.2 eV [21]. These results are strongly
supporting the interpretation of NK’s orbital energies as total removal energies.

7.3.5 Band Structure of Crystalline Solids

This section will outline an application of the Non-Koopman correction scheme to
fully periodic systems. In this latter case, it is often argued that the correction goes
to zero because of the delocalized nature of the minimizing orbitals. Indeed if we
make the assumption that orbitals delocalize all over the system, then since the
single particle densities ρ iσ become locally small in value (it will typically scale as
1
V where V is the system’s volume), we see that the correction terms in either Non-

107



CHAPTER 7. NON-KOOPMAN CORRECTION TO ADF

Koopman or Perdew-Zunger (which look like EH[ρ iσ] and EXC[ρ iσ]) will go to zero as
shown on figure 6-1. But such a reasoning implicitly assumes delocalized minimizing
orbitals ϕiσ. Here we will show that empirically this is not the case.

Figure 7-9: An illustration of the localized character of the minimizing orbitals in
Non-Koopman. Top to bottom clockwise : a σ bond between Nitrogen and Hydro-
gen in Ammonia NH3, a lone pair in di-Oxygen O2, and a π-like bonding orbital in
ethylene C2H4.

In all our calculations done so far, the minimizing orbitals have always been
found to be localized. In fact, in accordance with Vydrov’s conclusion [101] concerning
Perdew-Zunger’s ability to localize orbitals, we confirm that Non-Koopman’s minim-
izing orbitals always look like Boys’ localized orbitals [34] in molecular systems and
Maximally Localized Wannier Functions in the case of periodic solids. To illustrate
that point we show some typical minimizing orbitals of molecular and periodic sys-
tems in figures 7-9 and 7-10. NK’s strength to localize orbitals is actually quite large,

Figure 7-10: Another illustration of the localized character of the minimizing orbitals
in Non-Koopman. Here a 〈110〉 Silicon nanowire along with some of its minimizing
orbitals at NK0 self consistency.

since localization even happens in the case of metals or semi-metals like graphene,
as shown on figure 7-11. Because of the localized nature of the minimizing orbitals

108



7.3. PREDICTIVE POWER OF THE NON-KOOPMAN CORRECTION

Figure 7-11: Even for metallic systems, the NK orbital dependent potential still local-
izes the minimizing orbitals. Here we illustrate our claim by displaying some typical
σ-like and π-like minimizing orbitals of graphene.

at self-consistency, we expect the Non-Koopman correction to carry through in the
case of crystalline solids.

Owing to the good overall prediction of photoemission spectra by NK and NK0, we
decided to investigate the effects of those corrections onto the band structure of crys-
talline solids. The computational procedure consisted first in introducing a supercell
of crystalline solid (just like in figure 7-11), and compute the NK or NK0 ground state.
In a second step, the minimizing orbitals (and sometimes some of the empty states)
were unitarily transformed into an equivalent basis of Maximally Localized Wannier
Functions. From there, we used the computational procedure introduced in section
5.3 to extract the hopping parameters and compute the band structure from a Wan-
nier function interpolation. Even though we proved in section 5.3 that the “supercell
method” works for computing band structures, we wish to present a test case, where
we can observe the rate of convergence of the band structure with the system size. In
figure 7-12 we show the convergence of the valence bands of graphane (a modern day
most important 2D material for potential nanoelectronic applications [25]).

The most striking feature of figure 7-12 is the relatively small supercell size re-
quired to converge the bands. In quantitative terms, the deviation in band energies
of the 6×6 supercell with respect to the 8×8 supercell has a maximum value of 0.09
eV, a minimum value of -0.01 eV, a mean value of 0.04 eV and a standard deviation of
0.018 eV. This demonstrates that a 6×6 supercell is enough to converge band energies
to about 40 meV. All the calculated band structures in this thesis have been checked
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Figure 7-12: Convergence of Graphane’s valence bands with supercell size as com-
puted by NK0. The fundamental building block for the supercell consisted in a cubic
cell containing two of Graphane’s elementary cell.

against supercell size convergence with similar accuracy reached for the band ener-
gies. What’s more, because NK predicts equilibrium geometries very close to the LDA
ones (see section 7.3.3), we fully relaxed all our crystal structures at the LDA level.

7.3.5.1 1D periodic systems

As a prototypical example of a one dimensional periodic solid, we chose to study the
all-trans polyethylene polymer. The main reason for choosing that system had to
do with the availability of ARPES5 measurements for the valence bands and a good
knowledge of the experimental band gap. Figure 7-13 displays the calculated valence
bands of all-trans polyethylene as computed by LDA, NK, NK0 and PZ. We also add
on top of the plots the experimental data from reference [88].

Despite the fact that the experimental uncertainty is at times quite large (up to
1eV), we see that the best agreement with experiment is realized for the NK0 and PZ
methods. It is quite satisfying to see that NK0 improves upon valence bandwidths
and more generally shifts the bands in the right direction with respect to experiment.

5Angle Resolved PhotoEmission Spectroscopy is a delicate but powerful experimental tool to invest-
igate the band structure of periodic solids for fully occupied bands.
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Figure 7-13: Computed valence bands of all-trans polyethylene. Four different meth-
ods were used : LDA, NK, NK0 and PZ. The experimental data (squares and circles)
are from Ref. [88].

In particular, NK0 preserves the LDA good description of the upper bands whereas
it improves the description of the lower bands, where LDA is too high in energy. Be-
sides the valence band structure, we computed the band gap (which lies at the Γ

point) for the same methods. The result is shown in table 7.9. We observe a large

Table 7.9: Calculated Band Gap of polyethylene for LDA, NK, NK0 and PZ compared
to experiment. Values are in eV

Method Band Gap (eV)
LDA 6.13
NK 15.12
NK0 13.18
PZ 12.88
Exp. 8.8

systematic overcorrection of the band gap with every orbital-dependent method. This
overcorrection comes mostly from a lowering of the valence bands compared to the
vacuum level, because empty states are almost left untouched by those methods. Des-
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pite the large overcorrection, it is important to note that introducing the α parameter
will certainly improve on the description of the band gap because the LDA band gap
is lower than the experimental one, while the NK and NK0 are systematically lar-
ger. We give in table 7.10 the values of the calculated gap in αNK and αNK0. The
optimal α value for aligning the computed band gap and the experimental one are
respectively αNK ≈ 0.30 for NK and αNK0 ≈ 0.38 for NK0.

Table 7.10: Calculated Band Gap of polyethylene for different values of the α para-
meter in NK and NK0 corrections. Values are in eV

NK NK0
α Band Gap (eV) α Band Gap (eV)

0.00 6.13 0.00 6.13
0.05 6.58 0.05 6.48
0.10 7.04 0.10 6.84
0.15 7.49 0.15 7.19
0.20 7.95 0.20 7.54
0.25 8.40 0.25 7.90
0.30 8.85 0.30 8.25
0.35 9.30 0.35 8.60
0.40 9.75 0.40 8.95
0.45 10.20 0.45 9.30
0.50 10.65 0.50 9.66
0.55 11.10 0.55 10.01
0.60 11.55 0.60 10.36
0.65 11.98 0.65 10.71
0.70 12.45 0.70 11.05
0.75 12.90 0.75 11.49
0.80 13.34 0.80 11.85
0.85 13.79 0.85 12.18
0.90 14.23 0.90 12.45
0.95 14.68 0.95 12.80
1.00 15.12 1.00 13.18

As the next stage of complexity, we studied the valence bands of a quasi one-
dimensional system, namely a 〈110〉 silicon nanowire. The computed band structure
is shown on figure 7-14. Similarly to the case of polyethylene, the Non-Koopman
correction introduces a non-uniform scaling of the valence manifold which leads to
larger bandwidths.

We note in passing that a proper description of the bands seem to require the use
of electrostatic correction techniques. We demonstrate this by showing side-by-side
the computed band structures at the LDA and NK0 level with and without electro-
static corrections. Figure 7-15 summarizes the findings. As evident from the plots,
noticeable changes in the bands topology happens both around -3 to -5 eV and -7 to
-9 eV. Specifically, the location of the band crossings in the Brillouin Zone are clearly
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Figure 7-14: Computed valence bands of the smallest 〈110〉 silicon nanowire (dia-
meter of about 7.8 Å). Two different methods were used : LDA, and NK0. Similarly
to the case of polyethylene, we can observe an increase in the valence bandwidth
which results from a non-homogeneous scaling of the bands.

displaced.

7.3.5.2 A 2D periodic system

Increasing the dimensionality of the system, we decided to focus our attention onto a
promising two dimensional material for nanoelectronic applications, namely graphane.
We computed the valence bands of graphane, and systematically compared our pre-
dicted valence manifold to recent GW calculations [57]. The results are shown in
figure 7-16. We observe an overall excellent improvement of the bands with a partic-
ularly good description of the lower levels. NK0 also predicts a larger bandwidth but
apparently does not correct much of the higher energy bands. As regard to the Band
Gap, NK0 once again overestimates it with a value of 8.6 eV, while LDA underestim-
ates it with a value of 3.6 eV. The reference Gap is taken to be the GW result from
ref [57] with a 5.4 eV direct band Gap.

7.3.5.3 A 3D periodic system

As a final test of the accuracy of NK’s band structure prediction, we computed the full
valence manifold of bulk diamond and summarized our findings on figure 7-17. The
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Figure 7-15: Computed valence bands of the smallest 〈110〉 silicon nanowire (dia-
meter of about 7.8 Å). Two different methods were used : LDA, and NK0. As can
clearly be seen from the plots, the use of electrostatic corrections is critical when it
comes to band alignments and band crossing points. Important change in bandwidth
can be seen around -3 to -5 eV.

figure also displays the experimentally determined valence bandwidth [44]. What
we see is yet another enlargement of the bandwidth by NK0 so as to almost match
experiment.

The Gap at Γ6 was determined and compared to experiment and GW calculations.
The results are shown in table 7.11.

As a conclusion we can generally say that in the case of semi-conducting and insulat-
ing materials, it seems that Non-Koopman corrections have mainly two effects. The
first is to non-homogeneously stretch the bands and so increase the bandwidth of the
valence manifold, typically improving the agreement with experimentally determ-
ined bandwidths. The second major effect is to overcorrect the band gap. A way to
alleviate the overcorrection would be to determine the proper self-consistent α para-
meter in the Non-Koopman scheme. Since LDA always underestimates the band gap
and NK always overestimates it, there should be an α for which the agreement with
experiment is ensured. The obvious problem with such an α is the arbitrariness of

6This Gap does not correspond to the minimum gap of 5.48 eV of diamond, which sits elsewhere in
the Brillouin Zone.
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Figure 7-16: Computed NK0 valence bands of graphane compared to LDA and GW
from ref [57]. We observe a substantial improvement of the description all throughout
the Brillouin Zone with, in particular, a correct bandwidth. For the higher bands, the
NK0 correction is somehow too weak.

the choice, contrary to the self-consistent α that can be determined on some physical
ground (see section 7.2.5). What’s more, reducing the value of α from 1 (in the NK
and NK0 case) to some number between 0 and 1 can only decrease the bandwidth,
such that a balance needs to be reached between the accuracy of the bandwidth and
the one of the band gap.

Table 7.11: Calculated Band Gap at Γ and valence bandwidth of diamond for LDA,
NK0 and GW compared to experiment. Exp. is from [44] and GW from [42]. Values
are in eV.

Method Band Gap at Γ (eV) Valence Bandwidth (eV)
LDA 4.12 21.63
NK0 9.94 23.22
GW 7.38 23.0
Exp. 7.3 23.0
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Figure 7-17: Computed valence bands of diamond in LDA, NK and NK0. As usual the
NK0 correction increases the valence bandwidth so as to almost match experiment
(as depicted by the two crosses from Ref. [44]).

7.3.6 Dissociations of Homonuclear Diatomic Cations
In continuing our assessment of the predictive power of the NK scheme, we now
enter a generally dangerous territory for DFT, namely the dissociation of homonuc-
lear diatomic cations. The reasons for the difficulty of the theory to properly treat
those systems have to do with the fact those dissociation processes involve sensit-
ive charge transfers as the nuclei are separated from each other and a competition
between ionic and covalent ground states [38]. But let us jump in and compute the po-
tential energy curves of two diatomic cations, H+

2 and He+2 . Figure 7-18 displays the
potential energy curves of H+

2 and He+2 as computed from LSD, NK, PZ and NKPZ
(Non-Koopmans corrections on top of the Perdew-Zunger functional). We also give
the exact potential energy curves as computed by us for the H+

2 case (see appendix D)
and extracted from Ref. [47] for the He+2 case. As we can see, LSD but also NK are
quite off from the exact result. Not only the equilibrium separation is wrong (LSD
predicts 1.158Å for H+

2 and 1.192Å for He+2 , while NK predicts 1.134Å for H+
2 and

1.189Å for He+2 compared to exact values of 1.055Å for H+
2 and 1.081Å for He+2 ), but

the dissociation energy (i.e. depth of the potential well) also is too small.
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Figure 7-18: Calculated potential energy curves for the dissociations of H+
2 and He+2

from LSD, NK, PZ and NKPZ. The energies are given in Hartrees and are “absolute”
energies with a zero reference corresponding to the exact energy of the system in
the infinite dissociation limit. Those graphs were obtained by computing the total
energy at different separation distances R in D∞h symmetry. In the region 2-3 Å, the
computed energies were wrongly overestimated as shown in [14], and so we used a
spline interpolation of the curves.
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In the case of He+2 , the cation is even predicted to be metastable in LSD and NK !
In contrast, the PZ and NKPZ are clearly predicting both the equilibrium separation
and the dissociation energies (i.e. the depth of the potential wells). Is this surprising
at all ? Actually it is not. Indeed, those two systems, are really one-electron systems
in disguise. In the case of H+

2 it is literally true, while for He+2 , two of the electrons
are fully saturating the 1s orbital, with a remaining 2s electron free to move around.
This fact explains the excellent accuracy of PZ which is a correction designed to work
exactly for one electron systems. We also observe that if we impose Non-Koopman
corrections on top of Perdew-Zunger, the predictions are still excellent. This is a very
strong validation of the non-destructive character of the Non-Koopman methodology.
Whenever a functional gets a limit right, NK keeps most of the accuracy intact, while
correcting the functional in other limits for which the NK methodology has been
designed to work.

Despite the impressive accuracy of PZ and NKPZ to predict a proper dissociation
curve, we prove here, that not everything is perfectly predicted. For this we look at
the total energies of split charge configurations, for which the exact theory predicts
a constant energy. By split charge we mean to split the positive charge in fractions
q and 1− q on each atom in the infinite separation limit. If q is the positive charge
on one of the atoms, then 1− q should be the net charge on the remaining atom. In
the infinite separation limit, the total energy of the system is then E(A+q)+E(A1−q).
Quantum Mechanics predicts that since the A.. .A+ and A+ . . .A states are degenerate
ground states, then any linear combination of those states are also ground states with
the same total energy. This means that all of the above mentioned split charge states
with a charge q on one atom and 1−q on the other should also have the same energy.
By this analysis, we expect the following result

E(A+q)+E(A1−q)− (
E(A)+E(A+)

)= 0
�� ��7.26

To verify that claim, we calculated the energies in equation 7.26 for Hydrogen and
Helium at the LSD, NK, PZ and NKPZ levels. The results are shown on figure 7-19.
The most striking feature of those graphs, is the systematic overstabilization of the
1/2 split charge configuration with respect to any other. This is very counterintuitive
especially in the PZ and NKPZ cases. Indeed we saw earlier than the dissociation
limit was right. But here, we see that even those methods, wrongly favor the 1/2
split charge configuration compared to the A...A+ configuration. This just proves
that even though the description of systems with integer numbers of electrons can
be right, the systems with fractional number of electrons are imperfectly described.
This tendency of any functional to overstabilize or over-destabilize (in the Hartree-
Fock case for example not shown here) split-charge configurations comes from the
non-linear behavior of the total energy of the system with the electron number.

As a consolation, we observe that orbital dependent corrections reduce by a factor
of 3 to 4 the unphysical overstabilization of split charge configurations.
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Figure 7-19: Test of the validity of equation 7.26 at the LSD, NK, PZ and NKPZ levels.
We observe that none of the functionals satisfy the exact condition of equation 7.26,
and that split charge configurations with fractional charges q and 1− q are always
systematically overstabilized.
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7.3.7 Description of Reaction Barriers
In this final section, we wish to compare the predictive power of LSD, NK, PZ and
NKPZ on estimating the forward and reverse reaction barriers of a chemical reaction.
We choose to study the following chemical reaction

H+SH2 �H2 +SH
�� ��7.27

Very accurate high-level quantum chemistry data are available for that reaction in
terms of equilibrium structures, structure of the activated complex and total energies
of the reactants and products [64]. The total energies of the different molecules were
computed so as to extract the forward and reverse reaction barriers. The results are
summarized in table 7.12.

Table 7.12: Calculated forward and reverse reaction barriers for the chemical reac-
tion of equation 7.27 at the LSD, NK, PZ and NKPZ levels. Accurate Coupled Cluster
CCSD(T) calculations of reference [64] are also shown. Values are in eV.

Forward Barrier (eV) Reverse Barrier (eV)
LDA -0.247 0.002
NK -0.005 0.257
PZ 0.104 0.444
NKPZ 0.269 0.581
CCSD(T) 0.156 0.790

Once again, we observe that LSD and NK are not accurate at all for these del-
icate charge transfer reactions. This is mostly due to the activated complex, which,
as a transition state, lies in a regime of atomic separation where LSD and NK are
inaccurate (see the dissociation plots of figure 7-18). At variance with those, PZ cor-
rectly predicts the activated complex to be of higher energy than the reactants and
products. What’s more, the products are also predicted to be more stable than the re-
actants. NKPZ even improves upon PZ’s description and brings the reaction barriers
to about 0.1-0.2 eV of the practically exact results of CCSD(T). This provides further
support to the conclusion that the NK methodology improves already established
properties of approximate functionals.
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8
Basics of Coherent Transport

In this chapter, we will present a somehow thorough introduction to the Landauer-
Buttiker formalism for coherent transport. In a first section, our focus will be to
outline some fundamental results in one-body Green’s function theory, illustrating
the power of the Green’s function approach. We will also introduce a general ex-
pression for the current operator in a localized basis representation, allowing us to
compute the electron flow in the system. In a second section, we will take advant-
age of the general setup for Lead-Conductor-Lead (or two-probe) systems – typical in
quantum transport experiments – in order to derive a very general expression for the
electron current. This relation, often called the Fisher-Lee formula [33], is of central
importance in the whole field of mesoscopic transport. The Fisher-Lee formula gives
a constructive approach to the calculation of the transmission function of the system,
and leads naturally to the Landauer formula. In appendix C, we propose an altern-
ative way of deriving the Landauer formula, based on a simple real-space approach.
Unfortunately, that latter approach does not tell us what the transmission function
is, and this is why the Fisher-Lee formula is superior in that respect. But before to
jump in, let us speak a little about the validity range of coherent transport and when
this regime matters in practice.

8.1 Coherent Transport and Density Functional The-
ory

The purpose of this short introduction is to give the reader an idea of what coherent
transport is. We will not dwell in much details onto the different transport regimes
and we refer to excellent reviews like [54] and chapter 3 of [90]. Coherent trans-
port is characterized by the existence of a “phase coherence length”, Lϕ, which gives
the average distance between two inelastic scattering events. An inelastic scattering
event is characterized by a change of the electron’s energy, E, as it interacts with
another particle (electron or phonon for example). The existence of a phase coher-
ent regime has been confirmed experimentally by direct observation of a quantized
conductance in semiconducting and metallic samples of nanometric dimensions [98].
Typical experimental coherence lengths range from 39 nm @ 4K to 136 nm @ 50mK in
2D Silicon samples [85] and up to 3 to 5 µm in graphene @ 260mK [69]. A theoretical
treatment of coherent transport must then try to deal with such spatial dimensions
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for the systems of interest while keeping a full quantum mechanical description of
electrons in order to describe wave interference effects. What’s more, in the coherent
transport regime, the electron’s energy is conserved and so is a good quantum num-
ber. This tells us that the electron’s wavefunction must then be an eigenstate of the
system’s Hamiltonian. In the following chapters, we will present an attempt to com-
pute the eigenstates of the system using Density Functional Theory, and then use
the Landauer-Buttiker formalism to compute the electronic current flowing through
the system.

There has much debate as to whether static Density Functional Theory is in a po-
sition to properly describe transport phenomena like coherent transport. A somehow
comprehensive discussion is presented in the book by Di Ventra [20]. More recently,
it has been suggested that as long as the leads transporting the electrons from the
reservoirs to the central conductor1 support a single conducting channel, then exact
static Kohn-Sham DFT is predicted to be quite accurate [67]. Notwithstanding all
those concerns, we will use DFT to compute the real-space Hamiltonian matrix of
typical Lead-Conductor-Lead systems, and then use that matrix along with the form-
alism about to be described, in order to compute the current intensity. The typical
work flow for a DFT-Landauer calculation is shown on figure 8-1. In the following,

Figure 8-1: A flow diagram depicting the key steps in a typical DFT-Landauer
Quantum Conductance calculation. We start with an ab-initio DFT calculation for
the Ground state of the system. Then we perform a unitary transformation so as to
construct the Wannier functions and express the Hamiltonian matrix in this basis
(matrix H(R)). In a final step, we use the real-space Hamiltonian matrix to compute
the Transmission function T(E) of the system, which is the central quantity in Land-
auer transport.

we will assume that the first two steps in figure 8-1 have been performed and so we
end up with a matrix H expressed in a localized basis of Wannier functions.

1we will give a precise meaning to all those terms shortly
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8.2 A Primer on Green’s Functions

Before to move on to the calculation of electron current, we first need to digress to
a short review of Green’s function theory applied to one-body quantum systems. We
will mostly follow Economou [23] and present an abstract representation of Green’s
functions which, as such, will be independent of the basis in which operators and
vectors are expressed (e.g. a localized Wannier basis or delocalized Bloch basis). For
this, we will make heavy use of Dirac’s “bra”-“ket” notation 2.

8.2.1 General Linear Partial Differential Equation

Green’s functions are fundamentally bound to partial differential equations. Those
“functions“ – or operators as we will see – are defined to be the solution of linear
partial differential equation with an elementary (or ”impulse“) source term δ(⃗x− x⃗′).
We then define a linear operator that we will assume hermitian3, H (⃗x), and write

(z−H (⃗x))G (⃗x, x⃗′, z)= δ(⃗x− x⃗′)
�� ��8.1

In the above equation, z is a complex number (z ∈ C), and the partial differential
equation is solved over a definite volume Ω with clearly defined boundary condition
on ∂Ω. The Green’s function is assumed to satisfy those boundary conditions. Since
H (⃗x) is taken hermitian, we know that there exists a complete and orthonormal set
of eigenvectors in which any function defined over the volume Ω can be expanded.
We will denote by ϕn (⃗x) or simply ϕn, those eigenfunctions and by λn the associated
eigenvalue. We then have

H (⃗x)ϕn (⃗x)=λnϕn (⃗x)
�� ��8.2

The spectrum of H (⃗x) can be discrete, continuous or both. In the continuous case, λn
will vary in a given interval [λmin,λmax].

8.2.2 Abstract Green’s Functions

Let us now introduce Dirac’s notation. In Dirac’s bracket language, an eigenfunction
ϕn (⃗x) is nothing else than the scalar product of the abstract vector |ϕn〉, or ”ket“, with
the linear form 〈⃗x|, or ”bra“

ϕn (⃗x)= 〈⃗x|ϕn〉

2A thorough introduction to Dirac’s notation can be found in Cohen-Tannoudji [12].
3we will only treat stationary systems here since the time-dependent Green’s functions can be

computed from the knowledge of the stationary Green’s functions. What’s more, we are only interested
in steady-state currents so we only need the stationary Schrödinger equation.
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bras are hermitian conjugates to kets, so
(|ϕn〉

)† = 〈ϕn|, where † denotes hermitian
conjugation. In the same spirit we have the following properties∫

Ω
|⃗x〉〈⃗x|dx⃗ = 1∑

n
|ϕn〉〈ϕn| = 1

〈ϕn|ϕm〉 = δnm

〈⃗x|⃗x′〉 = δ(⃗x− x⃗′)
G (⃗x, x⃗′, z) = 〈⃗x|G(z)|⃗x′〉

H (⃗x) = δ(⃗x− x⃗′)〈⃗x|H |⃗x′〉

The first two equations express the completeness relation of basis {|⃗x〉} and {|ϕn〉},
while the third and fourth are the orthonormality relations of those basis. The last
two equations tell us that G(z) and H are operators and that G (⃗x, x⃗′, z) and H (⃗x) are
nothing else than their matrix elements in the {|⃗x〉} basis. We see in particular that
the operator H is diagonal in the {|⃗x〉} basis. Using that notation we can easily arrive
at the operator equation

(z−H)G(z)= 1
�� ��8.3

Expressing the Green operator G(z) in the eigenfunction basis {|ϕn〉} as

G(z)=
∑
nm

αnm|ϕn〉〈ϕm|

and injecting into equation 8.3, remembering that, by definition of the eigenfunction
basis H =∑

nλn|ϕn〉〈ϕn|, we easily arrive at

G(z)=∑
n

1
z−λn

|ϕn〉〈ϕn|
�� ��8.4

In particular, we can go back to the {|⃗x〉} basis by computing the matrix element of
G(z) between 〈⃗x| and |⃗x′〉 to find

G (⃗x, x⃗′, z)= 〈⃗x|G(z)|⃗x′〉 =∑
n

1
z−λn

〈⃗x|ϕn〉〈ϕn |⃗x′〉 =
∑
n

1
z−λn

ϕn (⃗x)ϕ∗
n (⃗x′)

8.2.3 Some General Properties of Green’s Functions

Looking at equation 8.3, we immediately see that G(z) is in general an analytic func-
tion of z for all z with a non-zero imaginary part. This is just a consequence of the fact
that λn is real for all n because H is hermitian. For the discrete part of the spectrum,
we see that G(z) has a simple pole at z = λn, which implies that G(z) is not defined
at those points. We realize that the knowledge of the eigenfunctions and eigenvalues
of H leads to a complete knowledge of G(z). Vice versa, a knowledge of G(z) allows
us to find the discrete eigenvalues by using a most important theorem of complex
analysis known as the Residue Theorem. What’s more, the interval of continuous
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eigenvalues form a branch cut for G(z), which means that we also have access to the
continuous eigenvalues through the knowledge of the branch cut of G(z). Just like
the case of the discrete eigenvalues we see that G(z) is, a priori, not well defined for
z = λn in the continuous spectrum. In general though, if the continuous spectrum is
associated with delocalized states, like Bloch states for periodic systems, then one
can define two limits of most important value as we will see later. Namely one can
take the limit of G(z) when z is approached from above the real axis or from below
and define respectively the retarded and advanced Green’s functions

G±(λ)= lim
s→0+G(λ± is)

�� ��8.5

Those two functions are actually not independent from each other. This comes from
the fact that G†(z)=G(z∗), as can be easily verified on equation 8.4. With this we see
that

G−(λ)= lim
s→0+G(λ− is)= lim

s→0+ (G(λ+ is))† =G†(λ)

Using a well-known identity from the theory of generalized functions

lim
y→0+

1
x± i y

=P

(
1
x

)
∓ iπδ(x)

where P
(1

x
)

denotes the Cauchy principal value, we see that

G+(E)−G−(E)= lim
s→0+

∑
n

[
1

E−λn + is
− 1

E−λn − is

]
|ϕn〉〈ϕn| =

∑
n
−2iπδ(E−λn)|ϕn〉〈ϕn|

which leads to the definition of the spectral density A(E)

A(E)= i
[
G+(E)−G−(E)

]= i
[
G+(E)− (

G+(E)
)†

]
= 2π

∑
n
δ(E−λn)|ϕn〉〈ϕn|

�� ��8.6

A(E) is of central importance in Quantum Physics. Indeed, if one takes the diagonal
matrix element of A(E) in the {|⃗x〉} basis we see that

〈⃗x|A(E)|⃗x〉 =∑
n
δ(E−λn)|ϕn (⃗x)|2

which is the density of states per unit volume of the system. Integrating that quantity
over the entire volume Ω leads to the total density of states∫

Ω
dx⃗〈⃗x|A(E)|⃗x〉 =Tr[A(E)]=∑

n
δ(E−λn)= ρ(E)

where use has been made of the orthonormality of the eigenfunctions. One can also
easily verify that the total density of states can be obtained from G+(E) or G−(E)
alone through

ρ(E)=∑
n
δ(E−λn)=∓1

π
Im

(
Tr

[
G±(E)

])
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8.2.4 Use of Green’s Functions
Let us show how the Green’s function can be used to easily find solutions to inhomo-
geneous partial differential equations. Indeed if one is facing an equation similar to
this

(z−H (⃗x))u(⃗x)= f (⃗x)

and one also knows about the Green’s function G (⃗x, x⃗′, z), then the solution u(⃗x) is
readily given by

u(⃗x)=
{∫

ΩG (⃗x, x⃗′, z) f (⃗x′)dx⃗′, if z ̸=λn in the discrete spectra∫
ΩG+(⃗x, x⃗′, z) f (⃗x′)dx⃗′+ϕ(⃗x), if z = E in the continuous spectra

where in the second case, ϕ(⃗x) is a general solution to the homogeneous equation,
which itself is a general linear combination of eigenfunctions of H corresponding to
the eigenvalue E. In an abstract space, the solution reads

|u〉 =
{

G(z)| f 〉, if z ̸=λn in the discrete spectra
G+(z)| f 〉+ |ϕ〉, if z = E in the continuous spectra

8.2.5 Green’s Functions and Perturbation Theory
In this last section on Green’s functions, we would like to look at how one can relate
the Green’s function of two operators H0 and H = H0+V . The goal here is to compute
the Green’s function of H from the knowledge of V and the Green’s function of H0.
We start from the definition of G and G0

(z−H0)G0(z)= 1 and (z−H)G(z)= 1

which easily gives
(G0(z)−1 −V )G(z)= 1

so we finally arrive at

G(z)= 1
1−G0(z)V

G0(z)=G0(z)+G0(z)VG0(z)+G0(z)VG0(z)VG0(z)+ . . .
�� ��8.7

where we used the infinite expansion of 1
1−x = 1+x+x2+. . . . Introducing the so-called

T-matrix defined by

T(z)=V +VG0(z)V +VG0(z)VG0(z)V + . . .
�� ��8.8

we see that the total Green’s function can be obtained from the knowledge of T(z)

G(z)=G0(z)+G0(z)T(z)G0(z)

Despite the academic looking matrix manipulations, and a priori arbitrary defini-
tions mentioned above, we stress that in practice, switching from G(z) to T(z) allows
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us to focus on the perturbation part, which quite often, is a local perturbation in
real-space (like for example the perturbation coming from an isolated defect in an
otherwise perfect carbon nanotube). Pretty much in all situations of interest, the
operators G(z) and G0(z) in their matrix representation in some localized basis are
infinite dimensional, whereas V is finite dimensional. As a consequence, equation
8.8 tells us that the T-matrix is also finite dimensional with the same dimensionality
as V. Because G(z) and T(z) share the same spectral properties, we see that know-
ledge of one readily gives the other. But in practice trying to compute T(z) is much
more tractable than directly attacking G(z) from 8.7.

Let us now imagine that we know T(z) (or G(z) which is equivalent). Then one
can prove [23] that if H0 and H share the same continuous eigenvalues (i.e. G0(z)
and G(z) have the same continuous eigenvalue spectrum), then one can relate in
a one-to-one fashion, the proper scattering states of H from the knowledge of the
scattering states of H0. If |ψn〉 is a (causal) scattering state of H originating from
|ϕn〉, scattering state of H0, then

|ψn〉 = |ϕn〉+G+
0 (E)T+(E)|ϕn〉

�� ��8.9
= |ϕn〉+G+(E)V |ϕn〉
= |ϕn〉+G+

0 (E)V |ψn〉

In particular, the first two equations relate |ϕn〉 to |ψn〉 directly through a linear
transformation. The last equation is often referred to as the Lippmann-Schwinger
equation [63].

8.3 The Fisher-Lee Formula for Lead-Conductor-Lead
Systems

In this section, we will first introduce the general setup of Lead-Conductor-Lead
systems, and then move on to prove a general expression for the current operator
in a localized basis. In the last part, a proof of the Fisher-Lee formula [33] is given.
Working out a proof will teach us a great deal about the assumptions underlying the
theory along with offering a deep understanding of the physics involved.

8.3.1 The LCR Setup

The so-called Lead-Conductor-Lead setup is a theoretical idealization of an experi-
mental two-probe junction, in which a small system – the conductor – is sandwiched
between two semi-infinite leads which themselves are connected ”at infinity“ to mac-
roscopic electron reservoirs. Those reservoirs impose their own chemical potential
and temperature to the leads. We sketch the situation on figure 8-2. The leads
are semi-infinite systems with perfect periodicity in the elongated direction. As a
consequence, their real-space Hamiltonian matrix has some symmetries. Because
we choose to express Hamiltonian matrices in a localized basis (like for example the
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Figure 8-2: Typical LCR setup for Quantum Conductance calculations in quasi-one
dimensional systems. The left lead (L) is connected at −∞ to an electron reservoir
with chemical potential µL and temperature T. In the same way, the right lead
(R) is connected at +∞ with an electron reservoir with chemical potential µR and
temperature T. The temperatures of the two reservoir could also be different in
general.

Wannier basis), we know that the matrix elements will be localized around each basis
function. For the leads, we can hence define a principal layer, which consists of an
agglomeration of a certain amount of lead unit cells, such that the interaction among
principal layers is restricted to nearest neighbors. We illustrate the fundamental
concept of a principal layer in figure 8-3. This figure features a simple semi-infinite
linear chain of periodically repeated atoms so as to represent a model of right lead
from figure 8-2. A single Wannier function wn is attached to each atom n, and the loc-
alization of those Wannier functions is such that only the nearest and second nearest
neighbors can interact through hopping integrals

〈wn|H|wn+1〉 = 〈wn|H|wn−1〉 = t1 and 〈wn|H|wn+2〉 = 〈wn|H|wn−2〉 = t2

respectively. The on-site matrix elements of the Hamiltonian are 〈wn|H|wn〉 = ϵ. We
then observe on the Hamiltonian matrix that if the basis of Wannier functions is
properly arranged (or sorted as we will say from now on) so as to reflect the real-
space symmetry of the system, two fundamental building blocks emerge, namely
the Principal Layer H00 and the coupling between adjacent Principal Layers H01.
Those blocks repeat themselves ad infinitum to form the Hamiltonian matrix of the
right lead. With the splitting of the system into left lead, conductor and right lead,
along with the assumed periodicity of the leads, we can write quite generally the
Hamiltonian of the LCR system in a sorted localized basis as

H =



. . . ...
...

...
...

... ...
· · · H00

L H01
L 0 0 0 · · ·

· · · H01†
L H00

L HLC 0 0 · · ·
· · · 0 H†

LC HC HCR 0 · · ·
· · · 0 0 H†

CR H00
R H01

R · · ·
· · · 0 0 0 H01†

R H00
R · · ·

... ...
...

...
...

... . . .


�� ��8.10
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Figure 8-3: The concept of the Principal Layer (PL) is illustrated on a semi-infinite
one-dimensional linear chain emulating a semi-infinite right lead. In this model
an electron on a site n can hop onto the nearest and second nearest neighbor sites
through hopping integrals t1 and t2. Moreover the on-site matrix elements are given
by ϵ. When the Wannier basis (or any localized basis for that matter) is arranged
so as to reflect the intrinsic periodicity of the system, we see that the Hamiltonian
matrix is fundamentally the repetition of two basic blocks. The first block is centered
on the main diagonal and called the Principal Layer H00, while the second block
represents the interaction between two principal layers H01.

This form for the Hamiltonian of the full LCR system will be our starting point for
the rest of the chapter.

8.3.2 A General Expression for the Current Operator

In order to compute the electronic current in the system, we obviously need a work-
able expression for the current operator. For this we will use our physical intuition
for what that current should be. We start off from the time-dependent Schrödinger
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equation

i~
d|ψ(t)〉

dt
= H|ψ(t)〉

from which, in theory, we can obtain the state vector at time t, |ψ(t)〉. If we want to
know what is the probability to find an electron in the right lead at time t, all we
need to do is compute the expectation value of the right-lead projector operator for a
state vector |ψ(t)〉

ρR(t)= 〈ψ(t)|PR |ψ(t)〉
There is no magic in the above formula. In terms of matrices, PR is the identity
matrix restricted to the right lead subspace only. If state vectors are normalized, we
know that we are sure to find an electron in the system, and so in general

ρsystem(t)= 〈ψ(t)|PL +PC +PR |ψ(t)〉 = 1

ρR(t) then, just tells us what is the fraction of electron found in the right lead.
The algebraic probability current into the right lead is then simply the time de-

rivative of ρR(t). This results from a simple argument of conservation of charge. Let
us then calculate the electron current into the right lead from the expression for
ρR(t) (the electron current is simply −e times the probability current, where e is the
absolute value of the electron charge)

jR(t)=−e
dρR(t)

dt
=−e

d〈ψ(t)|
dt

|PR |ψ(t)〉− e〈ψ(t)|PR |d|ψ(t)〉
dt

Using the Schrödinger equation, we arrive at

jR(t)= (−e)
(−i~〈ψ(t)|HPR |ψ(t)〉+〈ψ(t)|PR |i~H|ψ(t)〉)

so, introducing the commutator [A,B]= AB−BA we finally end up with

jR(t)=−e
i
~
〈ψ(t)|[H,PR]|ψ(t)〉

which directly leads to the expression for the current operator JR

JR =−e
i
~

[H,PR]
�� ��8.11

To close the discussion, let us use the matrix in equation 8.10 to express the
current operator in terms of the fundamental blocks of H. Using equation 8.11, and
performing the appropriate matrix multiplications, we easily arrive at a most useful
formula for the current operator

JR =−e
i
~

(
HCR −H†

CR

) �� ��8.12

From this formula, it is obvious that if the coupling between the central conductor
and the right lead is zero, then no current can flow into the right lead, which makes
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intuitive sense.

8.3.3 Modeling the Physics of Electron Flow

We are now ready to discuss how we will tackle the problem of computing the net
current flowing from the left lead to the right lead through the conductor. This de-
rivation is inspired in part from an insightful discussion by Janne Viljas [100]. The
first assumption used is that the electron reservoirs are thermalized with their own
temperature T and chemical potential µ. Moreover, the contacts between the leads
and the reservoirs are such that when an electron is injected into the reservoirs from
the leads, no reflection of the electron is possible. This fact is the consequence of the
great disparity of available electronic states between the macroscopic reservoirs and
the nanoscopic leads, which basically sets the probability for an incoming electron
to be reflected back into the lead to zero. Because of the thermal equilibrium of the
electron reservoirs, the probability for an electron to be injected into one eigenstate
of the leads with an energy E is given by the Fermi function

fX (E)= 1

1+ e
E−µX
kBT

, where X = L,R
�� ��8.13

Let us consider the Hamiltonian matrix of the LCR system of equation 8.10 to be
given (that matrix generally comes from step 2 in figure 8-1). We will split that mat-
rix into two parts. The first part, the ”unperturbed“ Hamiltonian H0, will correspond
to the full matrix without the coupling matrices HLC and HCR

H0 =



. . . ...
...

...
...

... ...
· · · H00

L H01
L 0 0 0 · · ·

· · · H01†
L H00

L 0 0 0 · · ·
· · · 0 0 HC 0 0 · · ·
· · · 0 0 0 H00

R H01
R · · ·

· · · 0 0 0 H01†
R H00

R · · ·
... ...

...
...

...
... . . .


�� ��8.14

while the ”perturbation“ matrix V will be

V =



. . . ...
...

...
...

... ...
· · · 0 0 0 0 0 · · ·
· · · 0 0 HLC 0 0 · · ·
· · · 0 H†

LC 0 HCR 0 · · ·
· · · 0 0 H†

CR 0 0 · · ·
· · · 0 0 0 0 0 · · ·

... ...
...

...
...

... . . .


�� ��8.15

We observe in particular that H0 does not couple the leads to the conductor. The
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spectrum of the ”unperturbed“ hamiltonian then consists of isolated eigenvalues cor-
responding to the eigenstates of HC, along with a continuous set of eigenvalues cor-
responding to the eigenstates of the leads HL and HR . When the perturbation is
added, the qualitative picture is kept for the full Hamiltonian matrix. In particular
the localized eigenstates in the conductor will be perturbed but will keep their local-
ized nature. On the other hand, the continuous spectrum of the full Hamiltonian will
correspond to the continuous spectrum of H0. Let us denote the leads eigenstates by
|ϕn〉, where n is a continuous quantum number labeling the states. In the rest of
the chapter, we will be focusing on the scattering eigenstates of the full LCR system
arising as a perturbation of the eigenstates of the left lead. The situation being form-
ally equivalent for the right lead, we will just state the result. Using the one-to-one
mapping mentioned earlier in section 8.2, we can write the scattering eigenstates of
the full system, |ψn〉 (corresponding to an eigenvalue λn = E) as

|ψn〉 = |ϕn〉+G+
0 (E)V |ψn〉

�� ��8.16

where G+
0 (E) is the retarded Green’s function of the ”unperturbed“ system.

In order to compute the electron current we will then simply compute the ele-
mentary current carried by each eigenstate |ψn〉 and sum them all up for all quantum
numbers n compatible with the given energy E. The Landauer formula then proceeds
by weighting those currents by the probability for the electron’s energy to equate E
(simply given by the Fermi function) and integrate over all possible energy values
(typically from −∞ to +∞).

8.3.4 An Expression for the Conductor’s Green’s Function

Before to compute the electron current, let us prove a very useful expression for the
conductor part of the full system’s Green’s function. We start from the definition of
the Green’s function G(z) and write

(z−H)G(z)=

 z−HL −HLC 0
−H†

LC z−Hc −HCR

0 −H†
CR z−HR


 GL GLC GLR

GCL GC GCR
GRL GRC GR

=
 1 0 0

0 1 0
0 0 1


From the block matrix multiplications, we isolate at least 3 interesting relations

−H†
LCGLC + (z−HC)GC −HCRGRC = 1

(z−HL)GLC −HLCGC = 0
−H†

CRGC + (z−HR)GRC = 0

The first equation correspond the central diagonal blocks of (z−H)G(z), whereas the
last two are respectively the middle upper block and middle lower block. From the
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last two equations, we easily find

−HCRGRC = −HCR
1

z−HR
H†

CRGC

−H†
LCGLC = −H†

LC
1

z−HL
HLCGC

which once injected into the first of the previous set of equations, leads to

GC = 1

z−
[
HC +HCR

1
z−HR

H†
CR +H†

LC
1

z−HL
HLC

] �� ��8.17

The formula in equation 8.17 is interesting for at least two reasons. The first is
the fact that one can express the conductor part of the Green’s function GC from
multiplications and inversions of finite matrices. Indeed, despite the fact that G0

L(z)=
1

z−HL
and G0

R(z) = 1
z−HR

are infinite matrices, the finiteness of HLC and HCR implies
that only a finite part of G0

L(z) and G0
R(z) really matters. The submatrices from

G0
L(z) and G0

R(z) that couple to HLC and HCR are called surface Green’s functions.
A very robust and highly convergent scheme has been devised by Lopez-Sancho et
al. in order to compute those surface Green’s functions. We refer the interested
reader to the appropriate literature [86]. The second reason for finding equation
8.17 interesting has to do with the fact that the coupling matrices naturally add two
extra terms that can be seen as a ”renormalization“ of the conductor Hamiltonian
HC. Those terms are called the lead self-energies. To simplify the algebra of the
next section, and at the same time conform to established rules, we will introduce
the following notations

ΣL(E) = H†
LC

1
E−HL + i0+ HLC

�� ��8.18

ΣR(E) = HCR
1

E−HR + i0+ H†
CR

ΓL(E) = i
(
ΣL −Σ†

L

)
ΓR(E) = i

(
ΣR −Σ†

R

)
where i0+ is here to indicate a very small but positive imaginary part.

8.3.5 The Fisher-Lee Formula

We finally arrive at the last step where we will compute the current flowing through
the LCR system from the left lead to the right lead. As we saw earlier, the proper
scattering eigenstate of the LCR system corresponding to an electron originating
from the left lead and going through the conductor into the right lead is given by

|ψn〉 = |ϕn〉+G+
0 (E)V |ϕn〉
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where G+
0 (E) is the retarded Green’s function of the unperturbed Hamiltonian H0

and for a given energy E. Using equation 8.12 for the current operator, we compute
the elementary current as

jn(E)= 〈ψn|JR |ψn〉 =−e
i
~
〈ψn|HCR −H†

CR |ψn〉 =−e
i
~
〈ψn|HCRPR −PRH†

CR |ψn〉

with PR as the projector onto the right lead. Using the Lippmann-Schwinger equa-
tion 8.9 and the fact that the scattering state |ϕn〉 only lives in the left lead subspace
4 such that PR |ϕn〉 = 0, we find

PR |ψn〉 = PRG+
0 (E)V |ψn〉 =

(
G0

R
)+

(E)H†
CR |ψn〉

where
(
G0

R

)+ (E) is the right lead part of the retarded Green’s function for the un-
perturbed Hamiltonian H0. To convince oneself that the above is true the reader is
invited to perform the block matrix multiplications. Injecting that expression into
the elementary current we end up with

jn(E)=−e
i
~
〈ψn|HCR

(
G0

R
)+

(E)H†
CR −HCR

[(
G0

R
)+

(E)
]†

H†
CR |ψn〉

which, given the definition of ΓR(E) in equation 8.18 reduces to

jn(E)=− e
~
〈ψn|ΓR(E)|ψn〉

�� ��8.19

Having the elementary current corresponding to a single scattering eigenstate,
we find the total contribution to the current at energy E by summing over all the
scattering eigenstates for which the quantum number n is compatible with that en-
ergy. We find

j(E)=∑
n
δ(E−λn) jn(E)

where the delta function is here to ensure that we only select scattering eigenstates
with a proper quantum number n such that λn = E. From equation 8.19 we expand
to

j(E)=− e
~

∑
n
δ(E−λn)〈ψn|ΓR(E)|ψn〉

The fundamental observation at this point is to realize that ΓR(E) is a matrix that
lives in the conductor subspace. As a consequence we can replace it by PCΓR(E)PC
and also introduce the completeness relation for that subspace

∑
c |c〉〈c|. The result

reads
j(E)=− e

~
∑
c
〈c|PCΓR(E)PC

(∑
n
δ(E−λn)|ψn〉〈ψn|

)
|c〉

4remember that |ϕn〉 is the unperturbed scattering state in the left lead. So in particular, that state
does not ”spill over“ onto the conductor or the right lead
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or equivalently

j(E)=− e
~

Trc

[
PCΓR(E)PC

(∑
n
δ(E−λn)|ψn〉〈ψn|

)]
with Trc being the trace over the conductor subspace.

The final touch consists in expressing
∑

nδ(E−λn)|ψn〉〈ψn| from known quantities.
Actually, we only need the projection of that quantity onto the conductor subspace,
namely PC

∑
nδ(E −λn)|ψn〉〈ψn|PC since by invariance of the trace with cyclic per-

mutations we have

Trc

[
PCΓR(E)PC

(∑
n
δ(E−λn)|ψn〉〈ψn|

)]
=Trc

[
ΓR(E)PC

(∑
n
δ(E−λn)|ψn〉〈ψn|

)
PC

]
We use the second form of equation 8.9 and the fact that PC|ϕn〉 = 0, where |ϕn〉 is a
scattering eigenstate of the left lead and compute

PC
∑
n
δ(E−λn)|ψn〉〈ψn|PC = ∑

n
δ(E−λn)PC|ψn〉〈ψn|PC

= ∑
n
δ(E−λn)PCG+(E)V |ϕn〉〈ϕn|V † [

G+(E)
]† PC

= ∑
n
δ(E−λn)G+

C(E)H†
LC|ϕn〉〈ϕn|HLC

[
G+

C(E)
]†

= G+
C(E)H†

LC

(∑
n
δ(E−λn)|ϕn〉〈ϕn|

)
HLC

[
G+

C(E)
]†

= G+
C(E)H†

LC
AL(E)

2π
HLC

[
G+

C(E)
]†

where use has been made of the expression for the spectral density in 8.6 for the left
lead. We now use the definition of the spectral density and write

AL(E)
2π

= i
2π

[(
G0

L(E)
)+−[(

G0
L(E)

)+]†
]

which once injected into the previous expression leads to

PC
∑
n
δ(E−λn)|ψn〉〈ψn|PC = 1

2π
G+

C(E)H†
LC

[(
G0

L(E)
)+−[(

G0
L(E)

)+]†
]

HLC
[
G+

C(E)
]†

The definition of ΓL(E) lets us conclude that

PC
∑
n
δ(E−λn)|ψn〉〈ψn|PC = 1

2π
G+

C(E)ΓL(E)
[
G+

C(E)
]†

All in all, the final expression for the current is

j(E)=− e
~

1
2π

Trc

[
ΓR(E)G+

C(E)ΓL(E)
[
G+

C(E)
]†

]
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which, once re-arranged through cyclic permutations of the operators leads the Fisher-
Lee formula

j(E)=− e
h

Trc

[
G+

C(E)ΓL(E)
[
G+

C(E)
]†
ΓR(E)

] �� ��8.20

8.3.6 General Landauer Formula for LCR Systems
From the Fisher-Lee formula, it is a piece of cake to find the Landauer formula for
the total current. Indeed, equation 8.20 gives us the total current at energy E coming
from the left lead into the right lead. We know that the probability for an electron
to be injected by the left reservoir into the left lead with an energy E is given by
the Fermi function fL(E). To compute the total current through the system we just
need to subtract from that current the current coming from the right lead into the
left lead for which the expression in 8.20 is identical up to a minus sign in front. The
total current is then the integrated value of the net total currents at energy E. The
Landauer formula then reads

I =− e
h

∫ +∞

−∞
dE ( fL(E)− fR(E))Trc

[
G+

C(E)ΓL(E)
[
G+

C(E)
]†
ΓR(E)

] �� ��8.21

from which we can define the transmission function of the LCR system to be

T (E)=Trc

[
G+

C(E)ΓL(E)
[
G+

C(E)
]†
ΓR(E)

] �� ��8.22

This last equation concludes our overview of the fundamentals of Quantum Trans-
port.
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Automated Large Scale Quantum

Conductance Calculations

In this chapter, we intend to present some details of the practical challenges and al-
gorithmic solutions to those challenges in actual quantum conductance calculations.
In a first section, we will compare the ideal theoretical LCR system to practical LCR
systems in order to identify some challenges to be overcome if one wish to predict
quantum conductances from first principles. In a second section, we will outline our
algorithmic solutions. In a last section, an approach to the problem of tackling exper-
imentally relevant sizes for LCR systems is put forward building on the results from
section two. A detailed exposition of the problematic of this chapter can be found in
[71].

9.1 Theory versus Practice

The theoretical derivations of the previous chapter left us with the impression that
implementing a workable scheme for computing the quantum conductance of LCR
systems is a simple matter of coding. In this section, we will outline the implicit
assumptions of the theory and a comparison with practical limitations will allow us
to arrive at the formulation of a set of problems that need solutions if we ever want
to compute quantum conductances in practice.

9.1.1 LCR Systems and Periodic Boundary Conditions

The theoretical LCR system of figure 8-2 is intrinsically an aperiodic system, in which
two semi-infinite leads, with perfect periodicity, are connected to a central conductor
with no a priori periodicity. In practice however, periodic boundary conditions are
most often used for the calculation of the electronic ground state of any system. One
of the main reason has to do with the use of a plane wave basis set for which efficient
algorithms for the calculation of the ground state energy are available [74]. The first
consequence of periodicity is to impose a similar nature for the left and right leads,
which is a constraint that was not necessary in the theoretical derivation. Using
then a left and right lead consisting of the same material, we still observe on figure
9-1 that we can’t actually simulate semi-infinite leads. A solution may be found by
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using an appropriate supercell size that will include a sufficient amount of leads in
order to recover the lead’s ”bulk“ limit around the midpoint region between two ad-
jacent conductors. This idea is illustrated on figure 9-1. The length of the supercell
is increased until the electronic structure at the midpoint recovers its ”bulk“ value
corresponding to an infinite lead. The key question of course is how fast does the elec-

Figure 9-1: A simulated LCR system consists of the repetition of a motif because
of periodic boundary conditions. The dashed vertical lines denote the limits of the
computational cell (or supercell). In order to approach the limit of semi-infinite leads
one may increase the amount of leads to be put inside the supercell. The goal is to
converge the electronic structure in the leads so as to recover the ”bulk“ limit of an
infinite pristine lead.

tronic structure converges with the supercell size. If we use a Bloch basis (or equi-
valently a plane wave basis since the Bloch functions are expanded in a plane wave
basis), then it seems difficult to estimate when the Bloch function recovers its ”bulk“
value, considering that those functions are delocalized over the entire system. At
variance with Bloch functions, Maximally Localized Wannier Functions (MLWF) are
extremely well suited to this kind of situation. It has been shown quite extensively
[60] that MLWFs recover their bulk values quite rapidly. In fact, in most situations,
the recovery is exponential, signifying that only a few unit cells of lead are actually
necessary to separate a conductor region from its periodic images. To put some num-
bers in perspective, we find empirically that about 3 unit cells of leads on each side
of the conductor region are sufficient to recover ”bulk“ matrix elements in the leads
for typical Armchair Carbon nanotubes1. We will come back to this idea of electronic
nearsightedness in the MLWF basis in section 9.3. We arrive to the conclusion that
using a supercell for the ground state DFT calculation, followed by a transformation
to a MLWF basis seem an appropriate way to deal with periodic boundary conditions
while extracting an Hamiltonian matrix suitable to mimic an aperiodic infinite sys-
tem. Still left unsolved is the question of how best to choose the supercell geometry.
This will constitute our first challenge.

1Those numbers are even more impressive when one considers that Armchair nanotubes are metal-
lic, which means that electrons close to the Fermi level are free to roam about the system.
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9.1.2 Sorted basis and Parity Consistence

A set of two other very important assumptions have been made in the theoretical
derivation of chapter 8. The first assumption pertains to the very fact that we could
partition the Hamiltonian matrix in five submatrices, namely HL, HLC, HC, HCR
and HR and enforce the lead matrices HL and HR to be periodic. For all this to be
true, we obviously need the basis of MLWF to be sorted in space. Yet another as-
sumption, more subtle but at least as important in practice, was that the hopping
matrix elements were taken to be consistent in their signs from one unit cell of lead
to another. Both issues are illustrated on figure 9-2. The featured system is a simple

Figure 9-2: illustration of the sorting and parity issues on a simple linear chain of
atoms each with a unique pz-like Wannier function.
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linear chain of atoms for which each atom has a unique pz-like Wannier function
attached to it. We take the onsite matrix element of the Hamiltonian to be ϵ, while
the nearest neighbor interaction between two adjacent Wannier functions with a con-
sistent sign pattern2 is t. The vertical dashed lines denote once more the boundary
of the computational supercell. The sketch at the top, displays a typical output from
a Wannier function calculation. The basis of Wannier functions bears no particular
relation to the real-space periodic symmetry of the system. What’s more, the Wan-
nier function parities (or overall sign) are given randomly. As a consequence, the
Hamiltonian matrix, which in general is sparse because of the localized nature of
the Wannier functions, has its matrix elements scattered all over. Moreover, some of
the hopping parameters are positive while others are negative because of the parity
inconsistency from one Wannier function to another. In contrast, the lower sketch
shows the same system for which the basis has been sorted and the parities have
been fixed. We then observe that the Hamiltonian matrix looks exactly like what
we assumed in the previous chapter. The sorting of the basis and the enforcement
of a consistent parity pattern constitute two more challenges that we will need to
overcome.

9.2 Practical Algorithms for Quantum Transport

In the preceding section, we raised three fundamental challenges. Time has come to
give details about our algorithmic strategies to address those issues.

9.2.1 The Single Supercell Geometry
The first challenge was to find a proper choice for the LCR supercell in order to
unambiguously partition the full Hamiltonian matrix into critical submatrices. Our
approach consists in using a principal layer of lead for both the left and right leads,
along with a conductor consisting of two buffer layers on both side of the defected
region. Only a single k point in the Brillouin Zone must be used (Γ point in the center
of the Brillouin Zone) so as to make sure that the periodicity of the supercell put the
right principal layer (PL2) immediately to the left of the left principal layer (PL1).
We call such a supercell the single supercell geometry or SSG for short. The structure
of the SSG is illustrated on figure 9-3. Depicted by vertical dashed segments are
the boundary of the supercell. The different submatrices needed for the transport
calculation are obtained as follows

• The left lead matrix HL consists of two submatrices. The principal layer matrix
H00

L , and the coupling matrix H01
L . The first is obtained by extraction of the

Hamiltonian matrix elements for the Wannier functions in PL1. The second
2In general Wannier functions are complex-valued, but in our approach described in the next sec-

tion, we enforce those Wannier functions to be real. What’s more we saw in chapter II that in general,
the set of Wannier functions corresponding to the global minimum of the spread functional are real if
the minimum is unique. Using real Wannier functions, we see that the unknown phase becomes an
unknown sign. This is that overall sign that we will call parity from now on
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Figure 9-3: illustration of the concept of single supercell geometry.

matrix is obtained from matrix elements between Wannier functions in PL2
and Wannier functions in PL1. The right lead matrix is similarly extracted
from PL2 for H00

R and the same coupling matrix as for the left lead.

• The conductor matrix HC consists of the Hamiltonian matrix elements for the
Wannier functions in the central part plus the two buffer layers. The role of the
buffer layers is to confine the defected region to the central part and ensure a
clean connection of the conductor with the leads.

• At last the coupling matrices of the conductor with the leads are given by the
matrix elements between Wannier functions in PL1 and B1 and between Wan-
nier functions in B2 and PL2 for respectively HLC and HCR

9.2.2 Sorting the MLWF
The Hamiltonian sub-matrices attained from partitioning the total Hamiltonian re-
quire a number of operations performed on them before they can be input into trans-
port calculations. First, we need to re-order the MLWFs in real-space so that every
unit cell in PL1, PL2, B1 and B2 has a consistent sequence of MLWFs. This is be-
cause the Hamiltonian corresponding to the semi-infinite leads is constructed from
sub-matrices extracted from the SSG Hamiltonian in the MLWF basis. As we said
earlier, the coupling matrix H01

L is constructed from the Hamiltonian matrix ele-
ments between MLWFs in PL1 and the periodic image of PL2, whereas H00

L is con-
structed from PL1 only. These two matrices are then duplicated along the block
off-diagonal and block diagonal, respectively, of the Hamiltonian of equation 8.10. In
doing so, the implicit assumption is that the sequence of MLWFs in the rows and
columns of the Hamiltonian sub-blocks are the same, which in general is not true.
To overcome this problem we use the positions of the MLWF centers in real-space to
order the elements of the Hamiltonian sub-matrices: the MLWFs in each unit cell
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of lead are arranged first according to their position along one direction perpendicu-
lar to the transport direction, then in the other perpendicular direction, and finally
along the transport direction itself. This ensures that the sub-matrices can be used
consistently to build the Hamiltonian of equation 8.10.

The shape of MLWFs are often chemically intuitive and display atomic-like or
bonding/anti-bonding orbitals. Thus if more than one MLWF exists with precisely
the same center, as may happen with d-like MLWFs on a transition metal site, a
second level of ordering based on the orbital character of the MLWF is performed,
employing a technique we have developed using spatially-dependent integrals to de-
duce a unique signature for each MLWF (see Appendix E).

9.2.3 Imposing a Consistent Parity Pattern
As with the issue of ordering the MLWFs, the procedure of building the Hamilto-
nian from sub-matrices implicitly assumes that the MLWFs in PL2 have the same
parity pattern as those in PL1, which in general is not true. To address this issue,
we enforce a consistent parity pattern at the level of the unit cell of lead onto the
ordered Hamiltonian sub-matrices (PL1, B1, B2 and PL2). The parities of the ML-
WFs in the leftmost unit cell of lead in the SSG supercell are used as a template. By
assessing the relative parity of MLWFs in this unit cell compared to translationally
equivalent MLWFs in the other unit cells of the PLs and buffer regions, the pattern is
enforced throughout by multiplying by ±1, as appropriate. The relative parities are
determined by using the unique signature associated with each MLWF explained in
Appendix E.

We outline three caveats that apply to the current implementation of the SSG
method:

• the Bloch states used as input for determining the MLWF basis in the SSG are
calculated at the Γ-point only

• the lattice vectors of the SSG must form a orthorhombic set and the direction
of conduction must be in the x, y or z direction.

• the system under investigation must be quasi-one-dimensional

To conclude this section, we present on figure 9-4 a detailed work flow of the
different steps involved in a quantum conductance calculation.
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Figure 9-4: Full work flow of a quantum conductance calculation.
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9.3 Large Scale Quantum Transport

Moving from a Bloch to a Wannier representation is not only a way to represent
electronic structures in a very compact manner. It also opens the possibility to exploit
the real-space nature of the basis to build very large systems. Systems so large in
fact, that a conventional DFT calculation would be intractable.

The fact that electronic nearsightedness becomes explicitly manifest in the MLWF
basis, as demonstrated in figure 9-5, allows them to be used to build the Hamiltonian
matrix of a large structure from the smaller Hamiltonian matrices of its constitutive
sub-systems.

Figure 9-5: Illustration of the inherent electronic nearsightedness in a (3,3) carbon
nanotube functionalized with a single hydrogen atom. The white-gray spheres rep-
resent the atoms of the structure while the colored spheres represent the deviations
from the “bulk" values of the on-site Hamiltonian matrix elements for each MLWF.
The size of colored spheres is another indication of the deviation of the matrix ele-
ment from its “bulk" value. The smaller the sphere, the smaller the deviation. We
observe a very rapid decay of the deviations indicating a very local perturbation of
the Wannier functions from the defected region.

In order to illustrate the method, consider the schematic lead-conductor-lead sys-
tem shown in figure 9-6 in which the conductor region has two identical defects sep-
arated by a region of lead material in the form of a buffer (B2 and B’1). We could
calculate the QC of this structure by making a SSG with the whole conductor (re-
gions corresponding to matrices HX and HX ′). In that case, the full conductor matrix
would look something like

HC =
(

HX HX X ′

H†
X X ′ HX ′

) �� ��9.1

where X , X ′ and X X ′ represent blocks of Hamiltonian matrix elements among ML-
WFs in region X , among MLWFs in region X ′, and between MLWFs in these two
regions, respectively. However, we may exploit the nearsightedness of the MLWF
basis to find a more computationally efficient approach. If the effect of the defects
are localized (in the sense that the local electronic structure and geometry at the
junction between B2 and B’1 is sufficiently similar to that seen in the leads), then
we may construct the Hamiltonian for the system with two defects (figure 9-6) from
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Figure 9-6: Schematic for a SSG with a conductor containing two identical defects.
We identify two regions in the conductor, X and X ′.

information gathered from only one SSG calculation containing just a single defect
(see figure 9-7). Since this system is smaller, there is a clear advantage in terms of
computational cost for the initial DFT calculation. Given the geometry of the system,

Figure 9-7: Schematic for a SSG with a conductor X ′′ containing one defect.

and the nearsightedness of the electronic structure, blocks HX and HX ′ should be
quite close in terms of their matrix elements. Moreover, because of the constraint
that a buffer is at least as large as a lead principal layer, we expect the non-zero
matrix elements of HX X ′ to correspond closely to the overlaps between the two adja-
cent principal layers. This observation stems from the very definition of a principal
layer. As a consequence, we can construct a close approximation to HC by using the
matrices extracted from a SSG calculation of the structure shown in figure 9-7. In
this approximation, blocks HX and HX ′ are replaced with HX ′′ , and HX X ′ is replaced
by the overlap matrix between two principal layers of lead (namely H01

L from the
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overlap between PL2 and PL1 in figure 9-7).

HC ≃
(

HX ′′ H01
L(

H01
L

)† HX ′′

)
.

�� ��9.2

The approach described above is general and may be applied to any number of
isolated defects in the conductor region. In this way, Hamiltonians for systems of
arbitrary size may be constructed with first-principles accuracy from one DFT cal-
culation in a SSG with a single defect. We note in passing the importance that the
MLWFs parities are consistent between different regions of the system. As men-
tioned in section 9.2, the parities need to be checked and made consistent to allow
seamless connections between Hamiltonian sub-matrices, a task that is automatic in
the present approach. Furthermore, the Hamiltonian of a conductor with more than
one type of defect may be constructed by combining matrix elements from separate
SSG calculations. In this latter case, care must be taken in order to align the Fermi
energies of the two or more distinct calculations. This is the consequence of the lack
of an absolute reference for the electrostatics in periodic boundary conditions, which
can lead to Fermi energies that are shifted by a constant.

As an illustration of the excellent accuracy of the Large Scale methodology com-
pared to the “brute force” approach of a single LCR automated calculation, we com-
pare on figure 9-8 the predicted quantum conductance of a defected Silicon Nanowire
as computed by the “direct” and “multiple defect” approaches. The observed near
perfect agreement of the two curves constitutes a strong validation of the proposed
methodology. A more involved application is presented in the next chapter.
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Figure 9-8: Top: Si nanowire with two Ge heterostructure defects. The system is
investigated by either manipulating the Hamiltonian of a single defect (multiple de-
fect method) or directly using a SSG. Red, cyan and magenta atoms are H, Si and
Ge respectively. Bottom: Comparison of QC for the two methods, showing excellent
agreement.
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An Application of the Formalism

The goal of this chapter is to present an application of the formalism of Large Scale
Quantum Transport in a “real life” situation. The problematic is related to the world
of carbon nanotubes (CNTs), and more precisely the control of metallic nanotubes’
conductance as a path to molecular size switch for nanoelectronic applications. We
will start with an introduction to functionalized carbon nanotubes as a relevant field
with endless possibilities for technological applications. We will then move on to
briefly describe the fundamental competition between the strain energy of carbon
nanotubes and the degree of periconjugation of organic addends leading to a possible
direct control of metallic nanotubes’ quantum conductance. In the last part, we will
give ample details concerning the quantum conductance calculations of randomly
functionalized metallic nanotubes that allowed us to demonstrate the reality of the
switching mechanism. A detailed account of the work outlined in this chapter can be
found in [26].

10.1 Functionalized CNTs

Single-walled carbon nanotubes (SWNTs) have been investigated for manifold ap-
plications due to their special structural, mechanical and electronic properties [18].
Chemical functionalizations of carbon nanotubes can add to their versatility serving
different purposes in chemical sensing, modify the surface properties and solubilities,
and facilitate the assembly, separation and purification of CNTs [11, 93, 82]. Cova-
lent chemical functionalizations [91, 22] are especially relevant to manipulating the
electronic properties of CNTs in nanoscale electric devices, such as molecular diodes
or single molecular transistors.

In all of these studies, it appears that a molecular switch with the capability of
controlling CNT conductance in response to an external optical, chemical or electrical
stimulus is highly desirable, and could have applications for molecular devices, chem-
ical sensors, and imaging. Recent theoretical studies have revealed the possibility of
tuning bond-cleavage chemistry of [1+2] cycloadditions on CNTs through the orient-
ation of the unsaturated π bonds of the addend with respect to the CNT surface [59].
In previous study on the model system of dinitrocarbene-functionalized CNTs, wit
was found that the bond-closed configuration is greatly stabilized when the plane of
the addend π system bisects the base of the cyclopropane ring moiety. This stabiliza-
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tion effect was originally attributed to the enhanced interaction between the addend
π and the cyclopropane Walsh orbitals, which weakens the anti-bonding interaction
of the sidewall bond [87]. The bridgehead carbon atoms can reversibly rehybridize
from sp2 to sp3 in response to addend π orientation, implying a switch-like beha-
vior. However, for dinitrocarbene-functionalized CNTs the bond-closed configuration
is unstable. The addend prefers to rotate out of cyclopropane conjugation, resulting
in only one stable open configuration that is impossible to manipulate. An isoelec-
tronic carboxyl group was suggested to control bond-cleavage by the intramolecular
hydrogen bond, [59] but the hydrogen bond strength is too weak to offer bistability.
Our calculations have actually shown that the closed-bond configuration is a saddle
point rather than a local minimum.

10.2 Switching Mechanisms in CNTs

10.2.1 Experimental and Theoretical Background

Previous studies[58, 59] have shown that simple carbenes or nitrenes bearing only
saturated moieties give an open sidewall bond, leaving very little room to maneuver
for switching purposes. Here we focus mostly on the interaction between unsaturated
addends and the CNT surface, and more specifically on the closed-bond stabilization
offered by unsaturated addends in the perpendicular orientation. When considering
only the cyclopropane moiety on the functionalized armchair carbon nanotubes, the
simplest rationalization for closed-bond stabilization comes from the through-bond σ-
π interaction [87] (see figure 10-1) which withdraws electron density form the HOMO
of cyclopropane to the LUMO of acetylenes, causing a decrease in the bond length of
the cyclopropane base but an increase for the lateral bond lengths. However, the
bond variation in substituted cyclopropane is typically smaller than 0.05 Å, suggest-
ing this might be a less significant effect. On the other hand, a CNT is certainly a lot
more complex than a cyclopropane. The sidewall bond-breaking chemistry of func-
tionalized armchair carbon nanotubes is reminiscent of the valence tautomerism of
1,6-methano[10]annulene and the even more relevant methanofullerenes. During
the search for improved electron-accepting organofullerens for photovoltaic applic-
ations, it was found that the quinone-type methanofullerenes or fluorenefullerenes
that contain unsaturated moieties perpendicular to the surface of the fullerenes have
a less negative first reduction potential than the parent C60 or other type of meth-
anofullerenes by as much as 70 mV. The peak positions can be further tuned by
electron donating or withdrawing groups attached to the addend. This phenomenon
was ascribed to a through space π-π interaction which was called "periconjugation"
[24, 49, 51]. The intramolecular electronic interaction between the π orbitals of
quinone and nearby carbon atoms of C60, separated by a spiro carbon atom, results in
more extended conjugation, which possibly improves its electron accepting ability. As
shown by the X-ray crystal structure, fullerene has an essentially [5]radialene-type
electronic structure, i.e. the [6,6] bonds possess more double bond character while the
[5,6] bonds are more single-bond like. The fact that the isolated fluorenefullerenes
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Figure 10-1: Two possible contributing effects for closed CNT sidewall bond stabil-
ization: (a) through bond σ-π interaction in cyclopropane and (b) through space π-π
periconjugation in quinone-type methanofullerene

were exclusively [6,6] fullerenes rather than [5,6] fulleroids also implies the existence
of this stablizing interaction. As a relevant digression here, it is worth mentioning
that unlike carbon nanotubes in which the sidewall bond lengths are largely affected
by the addend identity, CNT curvature and chirality, in organofullerenes it is well
known that experimentally only the kinetic [5,6]-open and the thermodynamic [6,6]-
closed adducts were observed in most cases, whereas [5,6]-closed and [6,6]-open coun-
terparts are almost never found due to the unfavorable endocyclic pentagon double
bond conjugation [19]. This might be the reason why dinitrocarbene substituent does
not have the same rotational bond-cleavage effect in fullerenes as in CNTs [59].

10.2.2 Periconjugation Effects for Closed Bond Stabilization

We demonstrated [26] that through-space π−π conjugation effects are some of the
most powerful electronic means by which to close the carbon-carbon bond on the
sidewall of carbon nanotubes. As a demonstration, we plot the potential energy curve
as a function of the carbon-carbon backbone distance (d16) for different addends that
functionalize some model naphtalene and pyrene backbone. Results are shown on
figure 10-2. As can be seen clearly from the figure, for both naphtalene and pyrene
backbones, the closed configuration is stabilized more when the addend π system
spans longer and leans toward the aromatic plane. The stabilization strength goes in
the order of C5O2H4-diketone > C5O2H4-dienol > C5H4 diene, much greater than the
saturated C5H8 or CH2. For the case of pyrene, the closed configuration is stabilized
significantly more when X=C5O2H4-diketone than when X=C5H4 by as much as 0.7
eV. This is a strong validation for the existence of the periconjugation effect as these
substitutional groups are highly similar in structural motif and electronegativities.
Any kind of inductive effect, if it exists, shall only differ slightly and shall not cause
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Figure 10-2: Potential energy surface as a function of d16 for (a) naphtalene (b)
pyrene functionalized with ring substituents. The zeros are set at d16=2.20 Å to
mark the release of roughly the same strain energy. We observe a switch for the equi-
librium carbon-carbon distance (d16) from about 2.20 Å for saturated addends like
CH2 or C5H8 to about 1.55 Å for strong periconjugated groups like C5O2H4 di-ketone
group. In the case of a CNT backbone, the “open” conformation (for which d16 ≈2.20
Å) leads to a high conductance while the “closed” conformation (for which d16 ≈1.55
Å) leads to a much reduced conductance as we will see in section 10.3

such a dramatic stabilization. For more ample details of why periconjugation works
so well we refer to [26].

10.2.3 Curvature Effects for Open Bond Stabilization

Periconjugation is a through space effect that exists between two separated π sys-
tems. As a consequence, organic addends with strong periconjugation effects will ob-
viously interact much with the delocalized π network of carbon nanotubes, leading to
a favored closed-bond configuration of the sidewall carbon atoms directly connected
to the addend. However, the tautomerization between the bond-open and bond-closed
form depends largely on the chirality and curvature of the CNT. In the case of zigzag
and armchair CNTs, two types of C-C bonds exist: the "axial" bonds A (the C-C bonds
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that are more "parallel" to the tube axis) and the "orthogonal" bonds O (the C-C bonds
that lie more "perpendicular" to the tube axis). For both types of tubes, computa-
tional studies have shown that the A bond forms a closed-bond three-membered ring
upon carbene cycloaddition and the O bond undergoes a sidewall bond opening upon
carbene insertion [58, 8]. The reaction energy defined as ∆E = ECNT-func−ECNT−Efunc
increases linearly as the curvature increases for both modes of addition reactions, but
the functionalized CNT is always more stable in the open O bond configuation due
to release of strain than the closed A bond configuration. For the orthogonal bonds
in armchair CNTs, the open bond configuration is favored in high curvature CNTs
so as to release the strain, but as the tube grows larger and the curvature decreases,
the closed bond configuration is gradually lowered in energy and eventually becomes
more stable (for tubes larger than an (18,18)-CNT [58]). For small tubes, however,
the competition between periconjugation and the curvature effect will determine the
equilibrium between a closed and an open sidewall bond. We managed to identify
some classes of addend pairs for which a bistability exists even on small tubes with
large curvatures. In the next section we choose to study the influence of a diketone–
diol pair on the conductance properties of (6,6) CNTs. We illustrate the equilibrium
geometries of a (6,6) CNT functionalized with the two different addends in figure
10-3.

Figure 10-3: Relaxed structures of a functionalized (6,6) CNT with diketone and diol
addends. The CNT sidewall bond is closed with the diketone substituent, and is open
with the diol addend.

10.3 Details of Large Scale Transport Calculations

The conductivity of the proposed switches in the on and off states on CNTs were
investigated. All calculations are performed using density-functional theory in the
Perdew-Burke-Ernzerhof generalized-gradient approximation (PBE-GGA, see appendix
A) with a plane wave basis set, periodic boundary conditions and Vanderbilt ultrasoft
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pseudopotentials as implemented in the Quantum-ESPRESSO package. 30 Ry and
240 Ry cutoffs or higher were chosen for the wave functions and the charge density,
respectively. The supercell included 5 principal layers of carbon atoms for a given
(6,6) CNT plus the functional group(s). Each principal layer was an agglomeration
of three (6,6) CNT unit cells. Structural optimization of the conductor part of the
LCR supercell was performed at Γ with a cold smearing of 0.03 Ry. All components
of all forces were converged to within 10−3 Ry/bohr, corresponding to less than 0.026
eV/Å in a relaxation calculation. The quantum conductance (or more precisely the
transmission function T(E)) at zero bias is calculated using the Landauer formalism
discussed in chapter 8 which has been fully implemented into Wannier901. Figure
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Figure 10-4: Quantum conductance of an infinitely long (6,6) carbon nanotube with
a single functionalization. The solid lines correspond to the lactone/acid addend pair
and the dashed lines correspond to the diketone/diol addend pair. The red color are
for the "open" (acid and diol) and the black color are for the "closed" (lactone and
diketone) conformations. The quantum conductance of the pristine tube is also given
in the brown dashed line as a reference. The quantum conductance depends more on
the "open" or "closed" conformations rather than on the specific addend identity in a
wide energy range around the Fermi energy.

10-4 shows the quantum conductance of a singly functionalized (6,6) carbon nanotube
with either lactone/acid or the diketone/diol addend pairs mentioned in the previous
section. While the conductances for the "open" configurations (the acid and the diol)
are negligibly affected and can hardly be distinguished from the pristine conductance
around the Fermi level, the conductances of the "closed" configurations (the lactone

1code url : http://www.wannier.org
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10.3. DETAILS OF LARGE SCALE TRANSPORT CALCULATIONS

and the diketone) are lower. Nevertheless, the conductances at the Fermi level for
both cases remain close.

However, the difference is greatly magnified in multiply functionalized CNTs. Fig-
ure 10-5 shows the quantum conductance of a 22 nm, 47 nm or 67 nm-long (6,6) CNT
functionalized with 10, 20, or 30 addends, respectively, for the diketone/diol switch
pair. The strong scattering of the π electrons in a window of about 2 eV around
the Fermi energy in the "closed" conformation is evidenced by the increasing drop
in quantum conductance with the degree of functionalization. The quantum con-
ductance is reduced by about 13% from 1 to 10 addends, another 23% from 10 to 20
and at last another 29% from 20 to 30 addends in the "closed" (diketone) case. On
the contrary, the "open" (diol) case shows only a 2% reduction from 1 to 10 addends,
another 3% from 10 to 20, and another 3% from 20 to 30 addends. The average
quantum conductance at the Fermi level functionalized with 30 addends in “closed”
conformation drops to about 0.87 whereas it remains at about 1.84 in the “open” case.
The fundamental origin of this strikingly different behavior goes back to the earliest
prediction: the sidewall bond breakage in the "open" configuration preserves the π

network, while in the "closed" conformation only a σ-like Wannier function is left,
destroying locally the π conjugation.
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Figure 10-5: Average quantum conductance (in units of 2e2/h) of 20 randomly func-
tionalized (6,6) carbon nanotubes with 10, 20 or 30 addends. Both types of addends
are considered (ketone in black and diol in red). Inside a given set of conductance
curves (black or red), the highest curve represents 10 addends and the lowest curve
represents 30 addends. The quantum conductance of a pristine (6,6) carbon nanotube
is given in dashed line as a reference.
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11
Conclusions and Future Prospect

Taking the deliberate choice of presenting Density Functional Theory in a rather
mathematically abstract way allowed us to naturally extend many of the known res-
ults of exact DFT to the case where the fundamental functional is orbital-dependent.
This led to a clean formalism in which our novel correction scheme could find a
natural place. We demonstrated both theoretically and numerically the much im-
proved predictive power of the scheme on a wealth of physical properties, from mo-
lecular spectra and crystalline solids band structures to equilibrium conformations
and chemical reaction barriers. A most important property of the correction has been
to re-establish physical meaning into the Kohn-Sham orbital energies, without at the
same time destroying the quality of the underlying functional on established proper-
ties. A new algorithm designed to extract ordered real-space Hamiltonian matrices
allowed us for the first time to compute accurate full band structures of periodic solids
from a self-consistent treatment of self-interaction correction. Although used for com-
puting band structures and transmission functions, the obtained ordered real-space
hamiltonian matrices could be used to compute Fermi energies, Fermi surfaces, or
even more subtle properties like magnetic circular dichroism and more generally any
physical property that one can obtain directly from the Hamiltonian matrix [103].

In a second part, we introduced novel algorithms and implementations leading
to fully automated quantum conductance calculations within the Landauer formal-
ism of coherent transport. We demonstrated the unique advantage of using a basis of
Maximally Localized Wannier Functions for maximum transferability of hamiltonian
matrices. This fact led to the development of a new package of computer codes allow-
ing easy “virtual synthesis” of random or custom made model Hamiltonians of large
scale complex systems. The goal here was to be able to break the fundamental “size
barrier” of DFT inherent to its algorithmic cubic scaling in the number of electrons.
Once again, despite the fact that those model Hamiltonians were only used for com-
puting transmission functions, one should really see those as “exact tight-binding”
mappings. Even more interesting is the prospect of merging the two approaches of
self consistent Non-Koopman correction and large scale quantum transport to dir-
ectly investigate the role of self-interaction correction on transport like in the case
of molecular junctions [95]. The author has already started work in this exciting
direction.
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A
Analytical Expression for LDA and PBE

functionals

We give the analytical expression for the Exchange and Correlation energy of two
representative functionals. The first is the Local Density Approximation (LDA) in its
parametrization given by Perdew and Wang in 1992 [80]. The second is a Generalized
Gradient Approximation (GGA) by Perdew, Burke and Ernzerhof from 1996 [78]. All
of the energies will be given in Hartree atomic units (~ = 1, e2 = 1, m = 1), which
means that lengths are measured in bohrs and energies in Hartrees.

A.1 LDA functional in the Perdew-Wang paramet-
rization

The exchange and correlation energy naturally splits into an exchange term only and
a correlation term only. In the most general case, the “variables” entering the expres-
sion of the functionals are the spin densities, n↑ and n↓. We will then introduce two
useful parameters, namely rs and ζ, defined by

rs =
(

3
4π(n↑+n↓)

)1/3
, ζ= n↑−n↓

n↑+n↓
�
 �	A.1

Along with those parameters, we define two convenient functions

f (ζ)= 2g(ζ)−2
24/3 −2

, g(ζ)= (1+ζ)4/3 + (1−ζ)4/3

2

Now we can easily express the exchange energy

ELDA
X [n↑,n↓]=

∫
T3

(
n↑(⃗x)+n↓(⃗x)

)
ϵLDA

x (n↑(⃗x),n↓(⃗x))dx⃗

with

ϵLDA
x (n↑,n↓)=− 3

4πrs

(
9π
4

)1/3
g(ζ)



A.2. PERDEW-BURKE-ERNZERHOF (PBE) FUNCTIONAL

The correlation energy has a much more complicated expression. The energy reads

ELDA
C [n↑,n↓]=

∫
T3

(
n↑(⃗x)+n↓(⃗x)

)
ϵLDA

c (n↑(⃗x),n↓(⃗x))dx⃗

with

ϵLDA
c (n↑,n↓)= ϵLDA

c (rs,ζ)= ϵLDA
c (rs,0)+αc(rs)

f (ζ)
f ′′(0)

(1−ζ4)+ [ϵc(rs,1)−ϵc(rs,0)] f (ζ)ζ4

In the above equation, f
′′
(0) ≈ 1.709921 while the functions ϵLDA

c (rs,0), ϵLDA
c (rs,1)

and αc(rs) are all of the following functional form

hA,α,β1,β2,β3,β4(rs)=−2A(1+αrs) log

[
1+ 1

2A
(
β1r1/2

s +β2rs +β3r3/2
s +β4r2

s
)]

The values of the parameters A,α,β1,β2,β3,β4 are given in table A.1.

ϵLDA
c (rs,0) ϵLDA

c (rs,1) -αc(rs)

A 0.031091 0.015545 0.016887
α 0.21370 0.20548 0.11125
β1 7.5957 14.1189 10.3570
β2 3.5876 6.1977 3.6231
β3 1.6382 3.3662 0.88026
β4 0.49294 0.62517 0.49671

Table A.1: Values of the parameters in the functional form for ϵLDA
c (rs,0), ϵLDA

c (rs,1)
and αc(rs)

A.2 Perdew-Burke-Ernzerhof (PBE) functional

The Perdew Burke Ernzerhof functional (known as PBE in the community) builds
upon the LDA functional to include some known behavior of the interacting electron
gas [78]. Fundamentally, the PBE functional introduces an explicit dependence of
the exchange and correlation functional with respect to not only the spin densities
but also their gradients in space. We then introduce the following supplementary
“variables”

t = |⃗∇(n↑+n↓)|
2ϕ(ζ)ks(n↑+n↓)

, s = |⃗∇(n↑+n↓)|
2kF (n↑+n↓)

We also define

kF =
(
3π2(n↑+n↓)

)1/3
, ks =

(
4kF

π

)1/2
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APPENDIX A. ANALYTICAL EXPRESSION FOR LDA AND PBE
FUNCTIONALS

and the function

ϕ(ζ)= (1+ζ)2/3 + (1−ζ)2/3

2
Finally we have the constants

β= 0.066725, γ= 0.0310907

With all of the above, the correlation energy reads

EPBE
C [n↑,n↓]=

∫
T3

(
n↑(⃗x)+n↓(⃗x)

)[
ϵLDA

c (rs,ζ)+H(rs,ζ, t)
]

dx⃗

The function H has the following analytical form

H(rs,ζ, t)= γϕ(ζ)3 log
[
1+ β

γ
t2

(
1+ At2

1+ At2 + A2t4

)]
where

A = β

γ

1

e
− ϵLDA

c (rs ,ζ)
γϕ(ζ)3 −1

Now we move on to the exchange energy which has the following form

EPBE
X [n↑,n↓]=

∫
T3

(
n↑(⃗x)+n↓(⃗x)

)
ϵLDA

x (rs,ζ)Fx(s)dx⃗

where Fx(s) is
Fx(s)= 1+κ− κ

1+µs2/κ

along with the constants κ= 0.804 and µ= 0.21951.
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B
Converged Parameters for all DFT

calculations

In this appendix, we will present all of the convergence tests that have been run in
order to come up with a set of optimal parameters in practical calculations.

B.1 Convergence with Cutoff Parameters

In this section, we show the result of some benchmark calculations on 3 molecules,
namely hydrogen H2, methane CH4 and ammonia NH3 and a bulk solid, Gold.
The pseudopotentials used in the molecular calculations were standard and already
tested Norm-Conserving pseudopotentials from the Quantum-Espresso distribu-
tion : H.pz-vbc.UPF, C.pz-vbc.UPF and N.pz-vbc.UPF. pz stands for the Perdew-
Zunger LDA parametrization while vbc stands for the type of Norm-Conserving
pseudopotential, here VonBarth-Car type. UPF is a generic common format for stor-
age of all pseudopotentials in Quantum-Espresso. In this thesis, except for quantum
conductance calculations on functionalized carbon nanotubes where we used Ultra-
soft pseudopotentials in rrkj format, all other calculations were performed with
either the vbc type or the fhi type of Norm-Conserving pseudopotentials (fhi stands
for Fritz Haber Institute). For all convergence analysis, we systematically tried to
take each molecule in two different conformations in order to test the convergence
in energy differences (which is what we care about in practice). Also we looked at
orbital energies and sometimes lattice parameters for Gold. Molecules were inserted
in a cubic supercell with a lateral size of 6 Å and we used full electrostatic corrections
for both the energy and the potential [17] to simulate open boundary conditions. We
used Γ sampling in this case. In the Bulk Gold case, we used a 12×12×12 k⃗ mesh to
converge all the energies.

B.1.1 Hydrogen Molecule

Table B.1 summarizes the result for the Hydrogen molecule H2. As we can see, en-
ergy differences are converged to within 1 meV for a kinetic energy cutoff of about 60
Ryd (Rydbergs). For that same cutoff, the orbital energy is converged to 10 meV. The
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APPENDIX B. CONVERGED PARAMETERS FOR ALL DFT
CALCULATIONS

Cutoff (Ryd) Orbital energy ϵi (eV) Energy difference ∆E (eV)

10 -16.60 -0.038
15 -16.80 -0.004
20 -16.93 -0.003
25 -17.01 -0.002
30 -17.06 0.003
35 -17.09 0.010
40 -17.12 0.016
45 -17.13 0.020
50 -17.14 0.022
55 -17.15 0.024
60 -17.15 0.025
65 -17.16 0.026
70 -17.16 0.026

Table B.1: Convergence of energy differences and orbital energies with the kinetic
energy cutoff for H2

converged kinetic and charge density cutoffs for hydrogen are then

For hydrogen :
Ekinetic = 60 Ryd

�
 �	B.1
Echarge = 4×60 Ryd= 240 Ryd

The reason for choosing a charge density cutoff 4 times greater than the kinetic en-
ergy cutoff is based on the fact that for a given number of plane waves used to expand
the wavefunctions ϕi (⃗x) (that number being given by the kinetic energy cutoff), the
charge density needs twice as many plane waves. Indeed if one writes a wavefunction
in its plane wave expansion

ϕ j (⃗x)=∑
G⃗

c j
G⃗

eiG⃗ x⃗

then the charge density becomes

n(⃗x)=∑
j
|ϕ j (⃗x)|2 =∑

j

∑
G⃗G⃗′

(
c j

G⃗

)∗
cG⃗′ ei(G⃗′−G⃗ )⃗x

Now because of the term G⃗′− G⃗ appearing in the charge density expression, we see
that we need twice as many plane waves in its expansion. Going back to the definition
of the kinetic energy cutoff

|G⃗|2 ≤ Ekinetic
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B.1. CONVERGENCE WITH CUTOFF PARAMETERS

we see that if we double the number of plane waves for the charge density G⃗ 7−→ 2G⃗,
then the charge density cutoff have to be 4 times the kinetic energy cutoff (because
of the square on G⃗ in the above equation).

B.1.2 Methane Molecule
Now that we have a good idea of a decent kinetic energy cutoff for hydrogen, let
us see what happens when we also have some carbon in the system. For this we
benchmarked the same physical quantities as before (energy difference and orbital
energies) for a methane molecule. The results are shown in table B.2. Similarly to

Cutoff (Ryd) Orbital energies ϵi (eV) Energy difference ∆E (eV)

10 -25.41 -16.34 -16.32 -16.31 0.044
15 -24.95 -16.55 -16.54 -16.54 0.032
20 -24.70 -16.72 -16.71 -16.71 0.031
25 -24.60 -16.82 -16.81 -16.80 0.026
30 -24.56 -16.86 -16.85 -16.85 0.016
35 -24.54 -16.88 -16.87 -16.87 0.009
40 -24.52 -16.89 -16.89 -16.88 0.006
45 -24.51 -16.91 -16.90 -16.90 0.005
50 -24.49 -16.92 -16.91 -16.91 0.006
55 -24.48 -16.93 -16.92 -16.92 0.006
60 -24.47 -16.93 -16.93 -16.92 0.006
65 -24.47 -16.94 -16.93 -16.93 0.005
70 -24.47 -16.94 -16.93 -16.93 0.005

Table B.2: Convergence of energy differences and orbital energies with the kinetic
energy cutoff for CH4

the case of hydrogen, we realize that total energy differences are converged to within
1 meV at 60 Ryd and orbital energies are converged to within 10 meV. We deduce the
following for the converged parameters of carbon

For carbon :
Ekinetic = 60 Ryd

�
 �	B.2
Echarge = 4×60 Ryd= 240 Ryd

B.1.3 Ammonia Molecule
In order to close this little convergence analysis, we also looked at another type of
atom, namely nitrogen. We then used the ammonia molecule for benchmark. The res-
ults are shown in table B.3 The conclusions are here similar to the case of hydrogen
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APPENDIX B. CONVERGED PARAMETERS FOR ALL DFT
CALCULATIONS

Cutoff (Ryd) Orbital energies ϵi (eV) Energy difference ∆E (eV)

10 -33.70 -18.74 -18.73 -13.41 -0.123
15 -32.13 -19.01 -19.01 -13.57 -0.069
20 -31.17 -19.25 -19.23 -13.76 -0.069
25 -30.64 -19.40 -19.39 -13.86 -0.056
30 -30.30 -19.49 -19.49 -13.92 -0.035
35 -30.03 -19.55 -19.55 -13.96 -0.010
40 -29.83 -19.58 -19.58 -14.00 0.007
45 -29.69 -19.60 -19.60 -14.03 0.012
50 -29.58 -19.62 -19.61 -14.05 0.013
55 -29.50 -19.63 -19.63 -14.07 0.013
60 -29.45 -19.64 -19.64 -14.08 0.013
65 -29.41 -19.65 -19.65 -14.09 0.013
70 -29.39 -19.65 -19.65 -14.09 0.014

Table B.3: Convergence of energy differences and orbital energies with the kinetic
energy cutoff for NH3

and carbon. Once again, energy differences are within 1 meV and orbital energies
to within 10 meV (except for the deepest state at about 50 meV) for a kinetic energy
cutoff of 60 Ryd. The parameters for nitrogen are again

For nitrogen :
Ekinetic = 60 Ryd

�
 �	B.3
Echarge = 4×60 Ryd= 240 Ryd

B.1.4 Gold Convergence

Since we used Gold for one of our transport calculation we decided to compare the
accuracy of our Norm-Conserving pseudopotential Au.LDA.fhi.UPF to a well tested
Ultrasoft pseudopotential Au.pz-d-rrkjus.UPF. We looked at the convergence of the
Fermi level, total energy and orbital energies for the two pseudopotentials. The res-
ults are gathered in tables B.4 and B.5. The Ultrasoft pseudopotential converges
energies and orbital energies to within 6 meV for a kinetic energy cutoff of 35 Ryd.
We mention at this point that we used a charge density cutoff of 9 times the kinetic
energy cutoff in the Ultrasoft case. The Norm-Conserving pseudopotential leads us
to use a kinetic energy cutoff of about 45 Ryd to obtain the same accuracy

For Gold :
Ekinetic = 45 Ryd

�
 �	B.4
Echarge = 4×45 Ryd= 180 Ryd

164



B.1. CONVERGENCE WITH CUTOFF PARAMETERS

Cutoff (Ryd) Fermi Level (eV) Total energy (eV) Orbital energies (eV)

20 -5.0629 -907.41097320 -12.225 -7.201 -7.201 -6.919
25 -5.0624 -907.43464671 -12.223 -7.203 -7.203 -6.916
30 -5.0622 -907.46617628 -12.221 -7.204 -7.204 -6.914
35 -5.0624 -907.47146958 -12.221 -7.204 -7.204 -6.915
40 -5.0624 -907.47299179 -12.221 -7.204 -7.204 -6.915
45 -5.0624 -907.47534788 -12.221 -7.204 -7.204 -6.914
50 -5.0624 -907.47624708 -12.221 -7.204 -7.204 -6.914
55 -5.0624 -907.47635076 -12.221 -7.204 -7.204 -6.914
60 -5.0624 -907.47666859 -12.221 -7.204 -7.204 -6.914
65 -5.0624 -907.47699281 -12.221 -7.204 -7.204 -6.914

Table B.4: Convergence of Fermi level, total energy and orbital energies with the
kinetic energy cutoff for a Gold chain with our reference Ultrasoft pseudopotential

Cutoff (Ryd) Fermi Level (eV) Total energy (eV) Orbital energies (eV)

15 -5.1905 -844.64252248 -13.593 -7.886 -6.918 -6.498
20 -5.0169 -883.04302239 -12.424 -7.160 -7.114 -7.073
25 -5.0557 -895.43530307 -12.376 -7.279 -7.275 -6.977
30 -5.0587 -898.46992749 -12.242 -7.248 -7.243 -6.891
35 -5.0513 -899.02505821 -12.224 -7.247 -7.247 -6.879
40 -5.0502 -899.09104693 -12.223 -7.246 -7.246 -6.878
45 -5.0502 -899.09335174 -12.223 -7.246 -7.246 -6.878
50 -5.0502 -899.09596362 -12.223 -7.246 -7.246 -6.878
55 -5.0502 -899.10057378 -12.223 -7.246 -7.246 -6.878
60 -5.0502 -899.10463576 -12.223 -7.246 -7.246 -6.878
65 -5.0502 -899.10745690 -12.223 -7.246 -7.246 -6.877
70 -5.0502 -899.10920414 -12.222 -7.246 -7.246 -6.877
75 -5.0502 -899.11021546 -12.222 -7.246 -7.246 -6.877
80 -5.0501 -899.11074213 -12.222 -7.246 -7.246 -6.877

Table B.5: Convergence of Fermi level, total energy and orbital energies with the
kinetic energy cutoff for a Gold chain with our Norm-Conserving pseudopotential

We also observe an excellent match between the two pseudopotentials with compar-
able Fermi levels and orbital energies to within 40 meV. In a last test, we compared
the prediction in the equilibrium lattice parameter of Bulk Gold (fcc bravais lattice)
with experiment. The results are shown on figure B-1.
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Figure B-1: Comparing the pseudopotential’s equilibrium lattice parameter for fcc
Gold to experiment. We observe an excellent agreement to within 0.01 Å for both
pseudopotentials.

The prediction is very robust in both cases (4.070 Å in the Ultrasoft case and 4.075
Å in the Norm-Conserving case compared to 4.080 Å in experiment). This validates
the use of our Norm-Conserving pseudopotential in all our calculations.

B.1.5 Conclusion
In conclusion, we would like to mention that we ran some more tests on CH2S, SO2
and CO2. Those tests confirmed the validity of a 60 Ryd cutoff for the kinetic energy
in converging energy differences to within 5 meV and orbital energies to within 40
meV. We can then believe that those uncertainties in the energies correspond to our
numerical uncertainty in all subsequent calculations.

B.2 Convergence with Supercell Size

Satisfied with our findings on cutoff ’s convergence, we investigated the importance
of using electrostatic corrections, for a good prediction of orbital energies. To that
end, we used a simple linear chain of hydrogen atoms as a test system. The results
are shown on figure B-2. The conclusion is that, whenever one wants to compute
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B.2. CONVERGENCE WITH SUPERCELL SIZE

4 6 8 10 12

Cubic cell lateral size (Å)

-20

-18

-16

-14

-12

-10

O
rb

ita
l E

ne
rg

ie
s 

(e
V

)

Electrostatic Corrections
No Electrostatic Corrections

Figure B-2: Convergence of the orbital energies with the size of the cubic super-
cell. We observe a strikingly fast convergence when one uses electrostatic corrections,
whereas in the alternative case, the energies are still not converged for a cubic cell of
12 Å.

some accurate orbitals energies, and so in particular some band structures with the
supercell method of section 5.3, one needs to use electrostatic corrections. All band
structures of quasi-one dimensional systems computed in this thesis made use of
electrostatic corrections.
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C
A pedestrian view of the Landauer

formula

Behind its apparent simplicity, the Landauer formula [56] hides a number of amaz-
ing properties. In this appendix, we would like to explore these properties by first
rediscovering the formula on simple exactly solvable models of quasi-one dimensional
systems. Secondly we will generalize the formula to a generic quasi-one dimensional
periodic system. In the last part we will introduce a central region with a disordered
potential to model defects and see how the formula is transformed.

C.1 The fundamental approximations in Landauer
theory

The Landauer formula has been established in the framework of “independant elec-
tron” theory or “mean-field” theory. This means that one describes the electron-
electron interactions (and any two-body interactions for that matter) by the introduc-
tion of a mean-field one-body potential in the Schrödinger equation. Many “mean-
field” theories have emerged over the span of the 20th century like Hartree theory
1, Hartree-Fock theory [92], band theory [50] and later Density Functional Theory
[41]. A generalization to the Landauer formula that takes into account the full two-
body electron-electron interaction and more has been established by Y. Meir and N.
S. Wingreen [66].

The fundamental interpretation of Landauer con-

Rolf Landauer (1927-1999)

duction goes as follows. A quasi-one dimensional sys-
tem consists of two semi-infinite periodic sub-systems
called “leads” and a central region to which the two
leads are connected. This central region will be called
“conductor”. The other end of the leads (the one not con-
nected to the conductor) is connected “at infinity” to a
macroscale “reservoir” at thermodynamic equilibrium
with a given chemical potential µ and temperature T.
The basic setup for this “lead-conductor-lead” system



C.2. A SIMPLE MODEL OF QUASI-ONE DIMENSIONAL LEAD

Figure C-1: The basic setup for a typical “lead-conductor-lead” quasi-one dimensional
system.

is shown on figure C-1. Given this setup, electrons are supposed to be injected at one
end of the system by one of the reservoir with a given energy E. The probability for
an electron to be injected with energy E into the quasi-one dimensional system by
the left lead is given by equation C.1.

probability of injection at energy E by left lead = 1

1+ e
E−µL

kT

�
 �	C.1

where µL is the chemical potential of the left reservoir. A similar equation holds for
the right lead. Once injected, electrons propagate without any inelastic scattering
event, which means that they keep their energy unchanged. As a consequence, the
wavefunction of the electron is an eigenstate of the whole system for energy E. The
central region introduces elastic scattering in the sense that an electron may be par-
tially reflected and partially transmitted through that region, but nevertheless keeps
its energy E unchanged. The net current flowing through the system is then just the
algebraic sum of the currents carried by electrons moving from one reservoir to the
other.

We will show in the next sections, how one can compute this net current and
then move on to generalize the formula to a generic quasi-one dimensional system as
shown on figure C-1.

C.2 A simple model of quasi-one dimensional lead

C.2.1 Description of the model

Let us here consider the simplest possible lead we can imagine. It will consist of a
waveguide with rectangular cross section in the (x,y) plane of dimensions a and b
respectively, and a long dimension L (a ≪ L,b ≪ L) in the z direction as shown on fig-
ure C-2. We impose a confinement potential in the x and y directions, such that the
electron is free to move inside the waveguide, and the wavefunction vanishes outside
it. In the extended direction (z), the electron is free to move and the overall wavefunc-
tion will be normalized over the volume of the waveguide. We will choose the origin
of the coordinate system at the center of the (x,y) cross section. The Schrödinger

1Earliest work by Douglas R. Hartree on his now famous Hartree equations dates back to 1927.
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Figure C-2: A simple quasi-one dimensional waveguide. The electron’s wavefunc-
tion is supposed to vanish outside the waveguide (in the x and y directions), and is
unconstrained in the z direction.

equation to solve is then :

− ~2

2me
∇⃗ψ(⃗x)= Eψ(⃗x)

�
 �	C.2

In choosing our eigensolutions, we will be guided by our physical intuition. In
particular, actual physical solutions should represent propagating electron waves.
This in turn, directs us to choose eigensolutions that are also eigenfunctions of the
momentum operator in the z direction : p̂z.

C.2.2 Mathematical solution to the model

With the above mentioned hypotheses, one can easily solve for the mathematics of
the problem. The boundary conditions introduce a set of 3 quantum numbers (n, m
and kz), where n and m are strictly positive integers, and kz is a real number. The
eigen-energies and eigen-functions are given by :

Eigen-energies
�
 �	C.3

En,m,kz =
~2

2me

(
n2π

2

a2 +m2π
2

b2 +k2
z

)
with (n,m) ∈N2,kz ∈R

Eigen-functions
�
 �	C.4

ψn,m,kz (x, y, z)= 1p
L

fn,m(x, y)eikz z

with :

fn,m(x, y)=



2p
ab

cos(nπ x
a )cos(mπ

y
b ) if n and m are even

2p
ab

cos(nπ x
a )sin(mπ

y
b ) if n is even and m odd

2p
ab

sin(nπ x
a )cos(mπ

y
b ) if n is odd and m even

2p
ab

sin(nπ x
a )sin(mπ

y
b ) if n and m are odd

�
 �	C.5
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The above eigenfunctions clearly represent normalized wavefunctions of right mov-
ing and left moving electrons. The solutions for which kz > 0 represent right moving
electrons while the corresponding kz < 0 solutions represent left moving electrons.
This can easily be verified by computing the action of the z component of the mo-
mentum operator onto those eigensolutions. We have :

p̂zψn,m,kz (x, y, z)= ~kzψn,m,kz (x, y, z)

C.2.3 Elementary current carried by eigenfunctions

Now that we have the analytical expression for the eigenfunctions, it is an easy mat-
ter to determine the current density carried by electrons. Using the basic quantum
mechanics formula for the probability current operator 2, the current density is :

j⃗ψn,m,kz (x, y, z)=−e
~

2ime

(
ψ∗

n,m,kz
(x, y, z)⃗∇ψn,m,kz (x, y, z)

−ψn,m,kz (x, y, z)⃗∇ψ∗
n,m,kz

(x, y, z)
) �
 �	C.6

Inserting the expression for the eigensolution into equation C.6 leads us to :

j⃗ψn,m,kz (x, y, z)=− e~kz

me

1
L

 0
0

| fn,m(x, y)|2


which, when integrated in the x and y directions, gives us the total current :

j⃗ψn,m,kz (x, y, z)= −e
L

~kz

me

 0
0
1

 �
 �	C.7

It is quite interesting at this point to realize that absolutely no approximations have
been made to arrive at that result. Moreover the formula can easily be interpreted in
terms of classical observables like velocity and charge density. Indeed equation C.7
basically says that the elementary quantum mechanical total current is nothing but
the linear charge density −e

L multiplied by the z-component of the velocity ~kz
me

.

C.2.4 Counting the number of eigenstates at energy E

If one wants to compute the total current that can be carried through the waveguide
around a given energy E, then basically two ingredients are required. One is the ele-
mentary current carried by one eigenstate (determined in the previous section), and
the second is the number of eigenstates that the waveguide can support between
energies E and E+dE. In order to determine that latter, one needs to know how
many possible triplets of quantum numbers (n,m,kz) have an energy E (given by

2Look for example at http://en.wikipedia.org/wiki/Probability_current
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~2

2me

(
n2 π2

a2 +m2 π2

b2 +k2
z

)
) that sits between E and E+dE. Given the lateral confinement

of the waveguide, only the last quantum number, kz, can be continuous. Using bound-
ary conditions compatible with propagating electron waves (here periodic boundary
conditions), one can determine the allowed values for kz.

Allowed kz values are such that eikzL = 1
�
 �	C.8

which shows that kz = 0,±2π
L ,±4π

L ,±6π
L , .... What this result teaches us is that neigh-

boring kz quantum numbers are separated by a distance 2π
L in k space. Now if we go

back to equation C.3, we see that kz and E are related through :

E = En,m + ~2k2
z

2me
with En,m = ~2

2me

(
n2π

2

a2 +m2π
2

b2

)
Taking E and kz to be continuous variables leads us to :

dE = ~2

me
kzdkz for all allowed quantum numbers (n,m)

We end up with a direct relationship between an infinitesimal amount of energy dE
and an infinitesimal amount of wavevector dkz. By “allowed“ quantum numbers
(n,m), we mean all (n,m) such that there exist a kz for which E = En,m + ~2k2

z
2me

. Re-
membering that we established the “distance” between two kz quantum numbers to
be given by 2π

L , we then arrive at the desired number of possible states in the energy
window dE :

number of states between E and E+dE, N(E)dE = |dkz|
2π
L

= Lme

2π~2
dE
|kz|

for all allowed quantum numbers (n,m)
�
 �	C.9

C.2.5 Total current between E and E+dE

Using the results of the two previous sections, it is quite easy to compute the total
contribution to the current from electrons with an energy between E and E+dE. All
one needs to do is to multiply the number of possible allowed states by the elementary
contribution to the current by one eigenstate. All in all, the current is :

J⃗(E)dE = ∑
allowed (n,m)

− e~kz

me

 0
0
1

 Lme

2π~2
dE
|kz|
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After simple algebraic manipulations, the above expression reduces to :

J⃗(E)dE = ∑
allowed (n,m)

− e
h

 0
0
1

sign(kz)dE
�
 �	C.10

What a remarkably simple formula! It says in substance, that for a given energy
window dE, the total current is given by the number of allowed transverse quantum
states (indexed by (n,m)) multiplied by the same current contribution − e

hsign(kz)dE.

C.2.6 Landauer formula for the simple waveguide

With the result of the previous section, it is now an easy task to compute the total
net current flowing through the system. We just have to algebraically add the total
current carried by electrons with energy E and coming from the left reservoir with
probability fL(E) and the total current carried by electrons with energy E and coming
from the right reservoir with probability fR(E). The result reads

J =
∫ +∞

−∞

[
fL(E)J⃗L(E)+ fR(E)J⃗R(E)

]
dE = e

h

∫ +∞

−∞
[ fR(E)− fL(E)] N(E)dE

�
 �	C.11

where N(E) is the total number of “open channels” at energy E in the waveguide
(i.e. the number of allowed transverse quantum states at energy E in the waveguide).
This beautifully simple formula is called the Landauer formula, in honor of Rolf
Landauer who first arrived at it back in the 1970s. The interpretation of that formula
goes as follow. For an energy E, there is N(E) quantum states that the waveguide
can carry. So the net current will be given by that number multiplied by the net
probability for an electron to go through the system given solely by the difference in
Fermi functions of the two macroscopic reservoirs.

C.3 A general quasi-one dimensional lead

In building up the complexity of the lead, we now introduce a general quasi-one
dimensional lead instead of the simple waveguide of the previous section. To picture
such a lead, just think of a general Silicon nanowire or a Carbon nanotube. In this
case the system still possesses some translation symmetry in the z direction. But
the confinement potential is not constant anymore. Instead we introduce a general
potential function V (⃗x) that satisfies the z-periodicity condition

V (⃗x+Maẑ)=V (⃗x), with M ∈Z and a the periodicity in z

Since we have a periodic potential function, we know from Part II that the eigenfunc-
tions of the quasi-one dimensional lead can be written as

ψnmpkz (⃗x)= ξnmpkz (x, y, z)eikz z
�
 �	C.12
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where ξnmpkz (⃗x) is a periodic function in z. n and m are the two quantum numbers
associated with the transverse quantum states3, while p is the band index labeling
the Bloch states for a given value of kz in the Brillouin Zone ]− π

a , πa ]. Associated
with those eigenfunctions we have a set of eigenenergies Enmp(kz) which satisfy the
Schrödinger equation

Ĥψnmpkz (⃗x)= Enmp(kz)ψnmpkz (⃗x)

with Ĥ =− ~2

2m ∇⃗2+V (⃗x) and the periodic part of the Bloch functions ξnmpkz satisfy the
kz-dependent equation

Ĥkzξnmpkz (⃗x)= Enmp(kz)ξnmpkz (⃗x)
�
 �	C.13

where Ĥkz is the following hamiltonian

Ĥkz =− ~2

2m

(⃗
∇+ ikz ẑ

)2 +V (⃗x)

C.3.1 Conservation of the current
Since we are dealing with a system in steady state (i.e. independent of time), then a
simple theorem of Quantum Mechanics tells us that the current j⃗ verifies the follow-
ing identity

∇⃗.⃗ j = 0

This equation is true for any current computed from an eigenfunction of the system
with a definite (eigen)energy E. Using the divergence theorem4, we can integrate the
above differential equation over a volume V that represents a cylinder of radius R
much greater than the diameter of the quasi-one dimensional system and of length
∆z in the z direction. ∫

V
∇⃗.⃗ j =

∫
S

j⃗.dS⃗ = 0

Knowing that any eigenfunction of the system will decay exponentially at large dis-
tance from the system’s axis we see that the contribution to S that comes from the
lateral surface of the cylinder will vanish. The consequence of that, is that we can
prove the following identity

Iz =
∫
R2

jzdxd y does not depend on z

What have we proved here? We just proved that the current intensity5 in the z
direction is independent of z. This seems indeed quite intuitive since the system is
stationary and quasi-one dimensional in nature.

3since the system is confined in the x and y directions, there exists two integer quantum numbers
that characterize the localized transverse states. See Messiah for a proof [68].

4see for example http://en.wikipedia.org/wiki/Divergence_theorem
5integrated in the x and y directions, i.e. the transverse directions of the waveguide.
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C.3.2 Current and group velocity

From that observation, we will first express the current intensity in z in terms of a
matrix element of the z component of the momentum operator p̂. For this we simply
use the mathematical expression for the z component of the current and find

Iz = 1
2m

∫
R2

[
ψ∗~

i
d
dz

ψ−ψ
~
i

d
dz

ψ∗
]

dxd y

where ψ is an eigenfunction of the lead with a definite energy E. Now we use the fact
that Iz is independent of z to replace it by its mean value

Iz = 1
L

∫ L

0
Izdz = 1

L

∫ L

0

1
2m

∫
R2

[
ψ∗~

i
d
dz

ψ+
(
ψ∗~

i
d
dz

ψ

)∗]
dxd ydz

But the volume [0,L]×R2 is nothing else than the normalization volume for our wave-
functions, so we see that since ~

i
d
dz is the z component of the momentum operator, we

end up with

Iz = 1
mL

〈ψ| p̂z|ψ〉
�
 �	C.14

Let us now turn to an a priori totally different quantity, namely the group velocity
of the band electrons. By group velocity we simply mean the kz derivative of the
band energy Enmp(kz). Using the Hellmann-Feynman theorem, it is straightforward
to prove the following identity

1
~

dEnmp

dkz
= 1
~
〈ξnmpkz |

∂Ĥkz

∂kx
|ξnmpkz〉

Using equation C.13 we arrive at

∂Ĥkz

∂kx
= ~

m

(~
i

d
dz

+kz

)
Injecting the expression for ξnmpkz in terms of ψnmpkz , we can prove the following
final expression for the group velocity

1
~

dEnmp

dkz
= 1

m
〈ψnmpkz | p̂z|ψnmpkz〉

�
 �	C.15

Equations C.14 and C.15 give finally

Inmpkz
z = 1

~L
dEnmp

dkz

So the contribution to the total current in the z direction due to the eigenfunction
ψnmpkz is nothing else than the group velocity of band (nmp).
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C.3.3 Total current between E and E+dE
At this point we are in a position to compute the total current between energy E and
E+dE in the same way we did in the previous section. We simply have to multiply
the contribution to the current at energy E by the density of states at that energy.
For this we use a classic result of solid state physics that gives the expression of the
density of states in a 1D system as a function of the band energies

Dnmpkz (E)dE = L
2π

1

|dEnmp
dkz

|
dE

With this expression, the total current between E and E+dE is

J⃗(E).ẑdE =−e
∑

allowed nmp
Inmpkz

z Dnmpkz (E)dE =− e
h

∑
allowed nmp

dE

This is quite unexpected and amazingly simple. Just like in the case of the simple
model of waveguide seen before, the total current between E and E+dE is simply
proportional to the number of “open channels” at that energy multiplied by a funda-
mental constant.

C.3.4 Landauer formula for the general waveguide
The Landauer formula is then left unchanged compared to the one we obtained using
a very simple model

J =
∫ +∞

−∞

[
fL(E)J⃗L(E)+ fR(E)J⃗R(E)

]
dE = e

h

∫ +∞

−∞
[ fR(E)− fL(E)] N(E)dE

where N(E) is just the number of “open channels” at energy E in the quasi-one di-
mensional system. We need to pause a little bit to realize how general the result is.
It says in substance that for any quasi-one dimensional lead, as long as the system is
periodic in the direction of propagation, the total current flowing from one reservoir
to the other is basically driven by the difference in Fermi functions of the two reser-
voirs. We see that the key step here is the fact that the elementary contribution to
the current from states (nmp) is exactly compensated by the density of states of the
corresponding band. The only direct influence of the waveguide is to tell how many
channels (i.e. how many quantum transverse states and how many bands for each
transverse state) are open at a given energy E.

C.4 Introducing a central disordered region

Having established the Landauer formula for a general quasi-one dimensional sys-
tem, we now move up the scale of complexity and introduce a finite central region in
the waveguide that will in general break the translation symmetry, just like in figure
C-1. In this case, we separate the system in a left lead, the central region and a right
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lead. The fundamental observation, which comes from basic mathematics on second
order linear differential equations, is that one can expand any general eigenfunction
of the whole system, in terms of two linearly independent solution for a given energy
E. So we see that in the left lead and the right lead, the eigenfunction of the system
(i.e. the leads plus the central region) can be written as

|ψ(E)〉 = A+|ψ+(E)〉+ A−|ψ−(E)〉

where |ψ+(E)〉 and |ψ−(E)〉 are respectively the right moving eigenfunction of the
lead and left moving eigenfunction of the lead. We actually computed those functions
in the previous section on the general waveguide. Those are nothing else than the
eigenfunctions of equation C.12 with kz > 0 and kz < 0 respectively.

In order to choose the appropriate physical solution, we use our physical intuition
and decide to study an incoming wave coming from the left reservoir. Physically that
wave will be scattered by the conductor and so we expect the eigenfunction of the
system in the left lead to look like this

|ψ(E)〉 = A+|ψ+(E)〉+ A+r|ψ−(E)〉
�
 �	C.16

where we introduced the coefficient of reflexion r and the incoming wave amplitude
A+, that will be set to 1 in the following as a convention 6. In the right lead, no wave
is coming from the right reservoir (by construction) and so only a right moving wave
should be present

|ψ(E)〉 = A+t|ψ+(E)〉
�
 �	C.17

with a transmission coefficient t. Symmetrically we can construct a similar solution
for an incoming wave from the right reservoir. Since the mathematics will be similar
we will not explicitly compute the current for that solution but just state what the
answer is.

C.4.1 Conservation of the current

Just like in the previous section, the system is stationary, so this means that the res-
ult of equation C.14 is still perfectly valid for any eigenfunction |ψ〉 at a given energy
E. What’s more, for the perfect waveguide, equation C.14 is true for any eigenfunction
of the waveguide. So in particular, the linear combination

|ψ(E)〉 = a|ψ+(E)〉+b|ψ−(E)〉

verifies
Iz = 1

mL
〈ψ(E)| p̂z|ψ(E)〉

6This convention is arbitrary of course and we could totally continue our derivations keeping A+
everywhere. The net result will be that A+ will factor out in front of every expression and will in
particular give the unit of electron flux in the system. So this is why we set it to 1 here for convenience.
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for every choice of (a,b) with Iz being the constant intensity of equation C.14. From
this we can demonstrate the following identities (that will become useful later on)

〈ψ+(E)| p̂z|ψ+(E)〉 = 〈ψ−(E)| p̂z|ψ−(E)〉 = mLIz
�
 �	C.18

and
〈ψ+(E)|p̂z|ψ−(E)〉 = 〈ψ−(E)|p̂z|ψ+(E)〉 = 0

�
 �	C.19

C.4.2 Total current through the system

We are now ready to compute the total current carried by an eigenfunction of the
system. We just have to plug the expressions for the general solution in equations
C.16 and C.17 into the formula for the current C.14 and find

Inmp+
z = 1

mL
〈ψ(E)| p̂z|ψ(E)〉 = 1

mL
(〈ψ+(E)|p̂z|ψ+(E)〉+ |r|2〈ψ−(E)| p̂z|ψ−(E)〉)

= 1
mL

|t|2〈ψ+(E)| p̂z|ψ+(E)〉

from which we deduce the conservation of the current 1+|r|2 = |t|2. In the above use
has been made of equations C.18 and C.19. Of course the reflexion and transmission
coefficients are specific to the eigenfunction of energy E and so these are in general
functions of the energy E. The number of states at that energy in each lead is still
the same as for the perfect waveguide. All in all, we see that the total contribution
to the current from states between E and E+dE is given by

J⃗(E).ẑdE =−e
∑

allowed nmp
Inmp+

z Dnmpkz (E)dE =− e
h

∑
allowed nmp

|t(E)|2dE

Once again, the wonderful cancellation of the density of states and the current of an
eigenfunction makes the result extremely simple and intuitive. The interpretation
goes as follows. Because of the disordered conductor, an incoming wave |ψ+(E)〉 that
would normally be an eigenfunction of the system is not anymore. As a consequence,
some part of that wave is being reflected off the conductor. This explains the need for
a reflexion coefficient r. In the right lead, some of the wave can survive and so there is
in general a transmission coefficient t. The net result is that instead of transmitting
the full wave, the system only transmits |t(E)|2 of it. We also wish to add that in
general, the reflexion and transmission coefficients depend on the quantum numbers
nmp.

C.4.3 General Landauer formula with a conductor

All the hard work has now been done. We just need to algebraically sum up the
different currents, to arrive at the celebrated Landauer formula

J =
∫ +∞

−∞

[
fL(E)J⃗L(E)+ fR(E)J⃗R(E)

]
dE = e

h

∫ +∞

−∞
[ fR(E)− fL(E)]T (E)dE

�
 �	C.20
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where T (E)=∑
allowed nmp |t(E)|2 is called the transmission function of the conductor.

This concludes our presentation of a “scattering” approach to the Landauer formula.
We saw that the results given by a simple model of lead (i.e. the simple waveguide)
actually carry through all the way to a general quasi-one dimensional lead with a
general band structure and a general transverse lateral confinement potential. Then
the introduction of a conductor that breaks the translation symmetry only results in
a slight modification of the Landauer formula through the introduction of an energy
dependent transmission function T(E). The key results that allowed us to establish
the formula are :

• The quasi-one dimensional nature of the leads that introduces a density of
states inversely proportional to the gradient of the band energies

• The stationarity condition that allows us to prove the z independence of the z
component of the current density integrated in the x and y directions

• The finite influence of the conductor on the leads, i.e. sufficiently far from
the conductor, we recover the solutions of the perfect lead which allows us to
expand the general eigenfunction of the full system in terms of eigenfunctions
of the leads.

• Of course, a major approximation has been to describe the electronic structure
of the full system by a mean-field theory, i.e. by an independent electron model.

179



D
Exact Solution for the Ground State of

H+
2

We present an exact solution to the calculation of the Ground State of the hydrogen
molecular ion H+

2 . A detailed and modern introduction to the exact study of this
fundamental molecular model can be found in ref [39].

D.1 Adimensional equation

The hydrogen molecular ion (H+
2 ) is the probably the simplest molecule in the Uni-

verse ! Indeed it consists in two protons, H+, separated by a distance R and bound
together by a unique electron. The two protons are taken to be on the z-axis symmet-
rically positioned above and below the origin at positions z =−R

2 and z =+R
2 . In the

Born-Oppenheimer approximation, the Hamiltonian Ĥ of the system can be written
as

Ĥ =− ~2

2m
∇⃗2 − e2

4πϵ0

1
r1

− e2

4πϵ0

1
r2

+ e2

4πϵ0

1
R

�
 �	D.1

where r1 is the distance between the first proton and the electron, and r2 is the dis-
tance between the second proton and the electron. The first term on the right-hand
side is the electron’s kinetic energy. The next two terms are the Coulomb attraction
from the two protons onto the electron. At last the final term is the Coulomb repul-
sion of the two protons. The stationary Schrödinger equation can be written for the
electron wavefunction ψ(⃗x)

Ĥψ(⃗x)= Eψ(⃗x)

To simplify the equation, we introduce the Bohr-Hartree atomic units. For this we

write the total energy E as E = E0Ẽ, where E0 = m
(

e2

4πϵ0~

)2
is the Hartree energy, and

the position as x⃗ = a0⃗r, where a0 = 4πϵ0~2

me2 is the Bohr radius. Injecting the expressions
for E and x⃗ in terms of Ẽ and r⃗, we arrive at[

−1
2
∇⃗2 − 1

r̃1
− 1

r̃2

]
ψ(⃗r)= ϵψ(⃗r)

where ϵ= Ẽ− R̃ (R̃ = R/a0, r̃1 = r1/a0 and r̃2 = r2/a0).



D.2. CONFOCAL ELLIPTICAL COORDINATES

D.2 Confocal Elliptical Coordinates

The “trick” to solve the equation is to use a coordinate system that will naturally
“separate” the partial differential equation (equation over 3 variables at the same
time, r⃗) into three ordinary differential equations (equation over a single variable).
The “magic” coordinate system is given by the confocal Elliptical coordinates. This
system is defined with respect to the Cartesian coordinates by

x = R̃
2

√
(ξ2 −1)(1−η2)cos(ϕ)

�
 �	D.2

y= R̃
2

√
(ξ2−1)(1−η2)sin(ϕ)

z = R̃
2
ξη

In this coordinate system, the Lapalcian operator ∇⃗2 becomes

∇⃗2 = 1(
R̃
2

)
(ξ2−η2)

[
∂

∂ξ

(
(ξ2 −1)

∂

∂ξ

)

+ ∂

∂η

(
(1−η2)

∂

∂η

)
+ ξ2−η2

(ξ2 −1)(1−η2)
∂2

∂ϕ2

]
The Coulomb interaction of the two protons onto the electron then becomes

− 1
r̃1

− 1
r̃2

=− 2
R̃

2ξ
ξ2−η2

The intervals in which the coordinates vary are

• ξ ∈ [1,+∞[

• η ∈ [−1,1]

• ϕ ∈ [0,2π[

D.3 Using the Symmetries

In order to find what the analytical expression for the wavefunction looks like we will
use the basic rotational symmetry of the system. About the z-axis, the system pos-
sesses a rotational symmetry. This means that the Hamiltonian Ĥ commutes with
the z-component of the angular momentum operator L̂z = ~

i
∂
∂ϕ

. As a consequence, the
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wavefunction can be chosen to be an eigenfunction of L̂z as well. So we end up with

ψm(ξ,η,ϕ)= f (ξ,η)
eimϕ

p
2π

�
 �	D.3

where m is an integer number 0,±1,±2, .... Injecting the expression for the wavefunc-
tion of equation D.3 into the Schrödinger equation, we can naturally separate the
equation over ξ and η into two separate equations over ξ only and η only by introdu-
cing a “separation constant” γ.

D.4 Solution

After splitting the wavefunction into a product of functions over ξ and η ( f (ξ,η) =
g(ξ)h(η)), the two separate equations are

∂

∂ξ

(
(ξ2 −1)

∂g(ξ)
∂ξ

)
−

[
m2

ξ2 −1
−ϵ′ξ2 −γ−2R̃ξ

]
g(ξ)= 0

�
 �	D.4

∂

∂η

(
(1−η2)

∂h(η)
∂η

)
−

[
m2

1−η2 +ϵ′η2+γ

]
h(η)= 0

where ϵ′ = 1
2 R̃2ϵ.

The second equation in D.4 is quite well-known and is called the Spheroidal wave
equation. This equation is completely equivalent to the θ part of the Schrödinger
equation in the case of the Hydrogen atom. It is the generalization of the θ equation
to the “angular” equation of the confocal elliptical coordinate system. Knowing that,
we impose on physical grounds that h(η) should be finite for all values of η ∈ [−1,1].
This finiteness condition imposes some strict conditions onto the allowed values for
the separation constants γ and ϵ′. For a given m, we introduce an infinite series of n
values such that γ and ϵ′ are related through

γmn =−
(
ϵ′mn +S[m,n,±

√
ϵ′mn]

) �
 �	D.5

S[m,n, z] being a function that gives the n-th eigenvalue of the Spheroidal equation
for a given m and ϵ′. In Mathematicar, this function is called SpheroidalEigenvalue.

With this first relation between γ and ϵ′, we now move on to the “radial” equation
(i.e. the equation in ξ). From an analysis of the behavior of the differential equation
for ξ≈ 1 and ξ−→+∞, we can write down the analytical expression for g(ξ) as

g(ξ)= (ξ2−1)
m
2 (ξ+1)σe−

p−ϵ′ξy
(
ξ−1
ξ+1

)
where σ= R̃p−ϵ′ −m−1 and y(u) is a smooth function of u ∈ [0,1[. The advantage of in-
troducing this a priori obscure change of function is that we can get rid of all “patho-
logical” behaviors in g(ξ) and end up with a differential equation for y(u) which is
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well-behaved (and so in particular much more amenable to numerical computations).
The next step consists in solving for y(u) by the method of power series. We write

y(u)=
+∞∑
t=0

ytut

Injecting the power series solution into the differential equation for y(u) (that we
don’t give here), we can obtain a 3-term recurrence relation for the coefficients yt

αt yt+1−βt yt +δt yt−1 = 0
with

αt = (t+1)(t+m+1)
βt = 2t2+ (4

p
−ϵ′−2σ)t−γ−ϵ′−2σ

p
−ϵ′− (m+1)(m+σ)

δt = (t−1−σ)(t−1−σ−m)

Introducing Ft = yt+1
yt

, we can find a recurrence for Ft

Ft−1 = δt

βt −αtFt

which, given that y−1 = 0, gives us a continued fraction expression for F0 = y1
y0

= β0
α0

F0 = β0

α0
= δ1

β1 −α1
δ2

β2−α2
δ3

β3−α3...

�
 �	D.6

Let us finally reduce the problem to the search for the Ground State total energy.
The Ground state being characterized by m = 0 = n, we can simplify the continued
fraction and use equation D.5 to find an equation for z = p−ϵ′ only. The continued
fraction then gives us an equation that, once truncated to a certain given depth in the
fraction tree, lets us numerically solve for ϵ′ which directly gives us the Ground State
energy. This is the technique that we used to find the exact Ground State potential
energy curve used in section 7.3.6.
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E
Definition of the MLWF Signatures

Here we detail the set of spatially-dependent integrals that we use to determine a
signature for each MLWF. These signatures are used for two purposes. First, they
enable a sorting algorithm to distinguish between MLWFs of different shapes with
similar centers. Thus MLWFs may be ordered consistently between unit cells, a key
requirement for our approach to automated transport. Secondly, signatures are used
to determine the relative parity of MLWFs so that a consistent parity-pattern may
also be enforced.

We begin with the integral

In(q⃗)= 1
V

∫
V

wn (⃗x)eiq⃗(⃗x−⃗xc)dx⃗
�
 �	E.1

where V is the volume of the supercell, q⃗ is a vector in reciprocal space and x⃗c is the
center of Wannier function wn (⃗x) (we assume sampling at Γ-point only). One may
write wn (⃗x) = ∑

m Umnum (⃗x), where um (⃗x) is the periodic part of the Bloch wavefunc-
tion at band m. Umn is the unitary matrix that links the Bloch basis to the Wannier
basis that minimizes the spread functional. um (⃗x) can be written in terms of its dis-
crete Fourier transform ũm(G⃗), um (⃗x)=∑

G⃗ ũm(G⃗)eiG⃗ x⃗. Thus, the integral in equation
E.1 may be written as

In(q⃗)= ei q⃗⃗xc
∑
m

Umnũ∗
m(q⃗),

�
 �	E.2

where q⃗ is a G⃗-vector of the form lb⃗1 +mb⃗2 +nb⃗3, where {l,m,n} ∈Z3 and {⃗b1, b⃗2, b⃗3}
are the reciprocal lattice vectors. Equating real and imaginary parts of equation E.1
and equation E.2, one may write

IRe
n (q⃗)= 1

V

∫
V

wn (⃗x)cos(q⃗(⃗x− x⃗c))dx⃗

=Re
[

ei q⃗⃗xc
∑
m

Umnũ∗
m(q⃗)

]
,

�
 �	E.3



and

IIm
n (q⃗)= 1

V

∫
V

wn (⃗x)sin(q⃗(⃗x− x⃗c))dx⃗

= Im
[

ei q⃗⃗xc
∑
m

Umnũ∗
m(q⃗)

]
.

�
 �	E.4

Since most DFT codes compute ũm(G⃗), obtaining any set of In incurs negligible com-
putational expense.

The set of integrals that are used to determine a signature are given by

In = 1
V

∫
V

wn (⃗x)sinα

(
2π
Lx

(x− xc)
)
sinβ

(
2π
L y

(y− yc)
)
sinγ

(
2π
Lz

(z− zc)
)

dx⃗
�
 �	E.5

where x⃗c = (xc, yc, zc), V = LxL yLz, α,β,γ ∈ {0,1,2,3} and α+β+γ ≤ 3. Each of the
resulting 20 integrals may be written as linear combinations of those outlined in
equations E.3 and E.4. The signature of the MLWF is thus given by the 20-element
unit vector of these integrals. Dot products between two MLWFs’ signatures reveal
in a compact form their relative shape and parity.
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