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ABSTRACT

Two areas in the theory of delay systems are studied: structural
properties and their applications to feedback control, and optimal
linear and nonlinear estimation. First, we study the concepts of
controllability, stabilizability, observability and detectability.
The property of pointwise degeneracy of linear time-invariant delay
systems is then considered. Necessary and sufficient conditions for
three dimensional linear systems to be made pointwise degenerate by
delay feedback are obtained, while sufficient conditions for this to
be possible are given for higher dimensional linear systems. These
results are then applied to obtain solvability conditions for the
minimum time output zeroing control problem by delay feedback. Next,
we turn our attention to optimal linear and nonlinear estimation. A
representation theorem is given for conditional moment functionals
of general nonlinear stochastic delay systems. From this, stochastic
differential equations are derived for conditional moment functionals
satisfying certain smoothness properties. We then give a complete
solution to the estimation problem for general linear delay systems.
Stability properties of the infinite-time linear optimal control
system with quadratic cost and the optimal linear filter for systems
without delays in the observations are studied. When appropriate
structural properties hold, the optimal control system and the optimal
filter are both shown to be asymptotically stable. Finally, the cas-
cade of the optimal filter and the optimal control system is shown to
be asymptotically stable as well.
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CHAPTER 1

INTRODUCTION

1.1 Mathematical Description of Delay Systems

The research reported in this thesis deals with certain aspects in

the theory of delay systems. Delay systems constitute a class of

hereditary systems, dynamical systems whose future behavior depends

on past events in a fundamental way. Mathematically, the simplest

delay system can be described by the following differential equation

x(t) = flx(t), x(t-T), t] (1-1)

where x(t) c Rn, and T, a positive constant, is a delay. A moment's

reflection shows that in order to determine the behavior of the system

for t > t , one must specify not only x(t 0 ), but the function x(O) on

the interval [t0 -T, t]. If we define the function

x : [-T, 0] + Rn

by xt () = x(t+6) 06[-T, 0] (1.2)

we see that knowledge of the function xa is necessary and sufficient

to determine the behavior of the system for t >g. Thus xt is the true

state of the system (1.1), and being an element of some function space

defined on the interval [-T, 0], it is infinite dimensional. This is

a fundamental difference between delay systems and finite dimensional

ordinary differential systems. By a slight abuse of language, we shall

still call x(t) the "state" of the system (1.1), and call xt the

"complete state."
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Equation (1.1) is often called a differential-difference equation

of retarded type [1]. From the control theory point of view, we can

have a controlled delay differential equation

x(t) = f[x(t), x(t-TC), u(t), u(t-T),' t] (1.3)

If the system trajectory is not directly measured, but is observed

through output variables z(t), one can have systems with delays in the

observations

z(t) = h[x(t), x(t-T), t] (1.4)

In actual applications, a combination of the above basic types of

equations may, of course, arise. Furthermore, these equations can also

be generalized to include systems with several delays T., with time-

varying delays T(t), or with delays T(x(t)) depending on the state.

So far, we have described delay systems which have a finite

number of delays. A more general type of controlled delay systems is

described by the retarded functional differential equation [2]

x(t) = f[xt, u(t), t] (1.5)

where xt is defined by (1.2). This includes differential equations

with point delays (1.1) and equations with distributed delays

/0=kt f f [x(t+G)]Ide + u(t) (1.6)

-T

While even more general types of delay systems can be defined [3],

they will not play a role in this thesis and hence will not be discussed.
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Finally, delay systems may also be subject to random disturbances.

One formulation of a stochastic delay equation is given by

dx(t) = f[x(t), x(t-T), t]dt + dw(t) (1.7)

where w(t) is a Wiener process, and the equation is understood in the

Ito sense. Usually associated with the stochastic delay equation (1.7)

is an observation process

dz(t) = h[x(t), x(t-T), t]dt + dv(t) (1.8)

As in the deterministic case, the function xt plays an important role

in the theory of stochastic delay systems.

1.2 Dynamical Processes Modeled by Delay Systems

Euler was the first mathematician to study delay differential

equations [4]. While there were a number of mathematical investiga-

tions of such equations after Euler, notably Volterra [5], the basic

mathematical foundations for delay systems were established in the

nineteen forties, fifties and early sixties [1], [6]. Since then,

the theory of delay systems and, more generally, that of hereditary

systems have been the subject of intensive investigation. While it

has long been known by control theorists that delay systems are the

appropriate models for a wide variety of process control systems [7],

recent applications of system theory have shown that some biological,

ecological, economical and social processes also take the form of

delay systems [8], [9]. This has generated a great deal of interest
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in various aspects of the theory of delay systems in the control as

well as mathematical community. We shall discuss some examples of

such processes.

Example 1. Chemical Control Processes

A basic configuration in many chemical process control systems is the

following [10]:

u r-,ChemicalT

reactor T

Recycle loop

Here u usually represents a control of the feed rate of raw materials,

T represents a transformation which changes the relative composition

of the reactants. A typical example in refineries is that T is

composed of a cascade of a reaction cooler, a decanter, and a dis-

tillation column. The recycle loop feeds back a certain percentage

of the raw materials and some byproducts of the chemical reaction.

This recycling introduces a significant time delay, often of the order

of a few minutes, into the system. To build a suitable mathematical

model for the analysis of such chemical control plants, a delay system

must be used.

Example 2. Estimation in Radar-Sonar Problems

We consider the simplest model of a radar system [11]:

-9-



Transmitter

Target

Signal+

processor Returns of other targets

Addite-EExternal noise
receiver noise fields

Because of the distance of the target, the received signal is a delayed

(possibly distorted) version of the transmitted signal. If we assume

the target is a slowly fluctuating point target, the reflection is

linear, and there are K interfering targets, the received signal can

be written in the form [11]

Kjo).t jo
r(t) = v Re ([5 f if(t-T.)e 1 + ni(t)]e c

i=O

where f(t) is the complex envelope of the transmitted signal, Et the

energy of the signal, c the carrier frequency, n(t) the complex

representation of an additive Gaussian noise process, and for the ith

target, b. summarizes the amplitude information, T. is the round trip
11

delay time, and wo. is the Doppler shift frequency. These multiple-

target situations are often referred to as communication over multi-

path channels. A basic estimation problem for these radar-sonar

systems is to find optimal estimates for the quantities T. and w.,1 1

i = 0,..., K, since these give useful information about the ranges

and velocities of the various targets. This is clearly an important

application of the estimation theory of stochastic delay systems.
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Example 3. Modeling of Epidemics

Delay differential equations have often been used in the modeling of

epidemics. Let x1 (t), x2 (t), x3(t), and xY(t) denote the number of

susceptible but unexposed individuals; infective individuals, removed

individuals, and exposed but not infective individuals respectively.

Since the infective individuals are those who were infected some time

earlier, this introduces delays in the dynamics. The following equa-

tion has been proposed for the spread of measles [12]:

x1 (t) = -(t)x 1 (t)[2y + x1 (t-14) - x1 (t-12)] + y

where (t) is a proportionality coefficient that is seasonally

dependent, y is the (constant) rate at which individuals enter the

population, and a unit of time is a day.

A more complex model of controlled epidemics has also been

proposed [13]. Letting u1 represent active immunization, u2 passive

immunization, the model proposed is

x1 (t) = - x1 (t)x2(t) - x1 (t)u1 (t-T) - x1 (t)u2 (t)

2 (t) = a(t) - r(t) - x2 t)u 2 (t)

3 (t) = r(t)

i4 (t) = k(t) Sxl(t)x 2(t)

Here is an "effective contact" rate, a(t) the normalized arrival rate

of infectives, r(t) the normalized removal rate of infectives, and T is

a delay time.
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Many more examples of processes modeled by delay, or more

generally, hereditary systems can be found in [8] and [9].

1.3 Outline of Thesis

From the above discussion, it is clear that delay systems arise

in many practical applications. This provides ample justification

for studying the theory of delay systems in depth. There is a large

literature on the existence and uniqueness of solutions to delay

differential equations without control and their qualitative properties

[2], [14]. However, from the system theory point of view, a large

number of system-theoretic concepts remain to be explored and examined.

In this thesis, we study two areas of interest: structural properties

of delay systems and their applications, and the estimation of sto-

chastic delay systems. In the first area, we are interested in seeing

what are the roles played by the structural properties in control and

estimation problems, and how properties peculiar to linear delay

systems can be exploited to solve control problems not handled by

finite dimensional linear systems. In the second area, we are motivated

by the desire to develop an estimation theory suitable for multipath

communication problems such as that described in Example 2 of this

chapter. Of course, these by no means exhaust the theoretical im-

plications or the practical applications of the ideas and results

developed in our work. An outline of the thesis is given below.

In Chapter 2, we study the concepts of controllability, sta-

bilizability, observability, and detectability in connection with
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delay systems. These are properties of great interest in any study

of dynamical systems. While they merit an in-depth study in their

own right, our interest in them stems mainly from their relevance to

the stability properties of the linear optimal control system with

quadratic cost and the linear optimal filter. The various notions

of controllability and observability are therefore examined and

compared from the standpoint of these two problems. The results in

this chapter will be used in a crucial way in Chapter 6.

While Chapter 2 deals with standard system-theoretic concepts,

in Chapter 3 we study a property which is peculiar to delay systems:

the notion of pointwise degeneracy. This property has been studied

previously by various authors [15] - [20] as an interesting aspect

in the theory of delay systems. Our viewpoint, on the other hand,

is to apply it to the control of linear systems. This motivates the

development of a useful characterization of systems which can be made

pointwise degenerate by delay feedback. These results serve as the

foundation for the construction of delay feedback controllers.

In Chapter 4, we discuss the potential applications of the

pointwise degeneracy property in delay feedback control for the

minimum time output zeroing problem for linear systems. The results

of Chapter 3 are then applied to obtain conditions under which the

control problem can be solved. The sensitivity of such a control

system under perturbations of its parameters is also studied.
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Starting with Chapter 5, we turn our attention to the filtering

problem for stochastic delay systems. We first give a general dis-

cussion and show how previous results are inadequate for solving the

filtering problem for delay systems. We next give a representation

theorem for conditional moment functionals of nonlinear stochastic

delay systems. Under suitable conditions, stochastic differential

equations for the conditional moment functionals can be derived from

the representation theorem. We then specialize these results to

linear systems and give a complete solution to the filtering problem

in this case. The similarities as well as differences between the

optimal linear filter for delay systems and that for ordinary dif-

ferential systems are discussed.

In Chapter 6, we study the stability properties of the linear

optimal delay system with quadratic cost and the linear optimal

filter. When appropriate system-theoretic properties of control-

lability, stabilizability, observability, and detectability hold,

asymptotic stability of these optimal systems can be established.

The striking duality between control and estimation is also demon-

strated. This gives what we believe is the first instance other

than the ordinary linear differential systems case where the control

and the filtering problems can both be satisfactorily solved.

Finally, we summarize our findings in Chapter 7 and suggest

some directions for future research. We shall see that many more

theoretical problems associated with delay systems remain to be

-14-



solved. It is hoped that the research reported in this thesis will

serve as a useful step in establishing a full-fledged theory for

these systems.
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CHAPTER 2

STRUCTURAL PROPERTIES OF LINEAR TIME-INVARIANT DELAY SYSTEMS

2.1 Introduction

In this chapter, we study four of the basic structural properties

of linear time-invariant delay systems: controllability, stabilizability,

observability, and detectability. In contrast to finite dimensional

linear time-invariant systems, where simple necessary and sufficient

for these properties to hold are known [21], [22], the situation in

delay systems is considerably more complicated. For example, there is

more than one meaningful notion of controllability or observability,

and the one that is more appropriate depends on the application we have

in mind. The property that has been studied most extensively is that

of pointwise controllability [23] - [28] (also known as relative con-

trollability or Euclidean space controllability). Necessary and

sufficient conditions have been given for this property to hold, and

various algebraic criteria have been devised [23] - [28]. Stabiliza-

bility and functional controllability have also been studied by some

authors [23], [25], [29] - [34], but the results are far from complete.

On the other hand, observability and detectability have hardly been

touched upon in the literature [29]. Our motivation in studying

these properties is to see how they can be utilized to solve the

stability problems for the linear optimal control system and linear

optimal filter (see Chapter 6). The appropriate notions of con-

trollability and observability for these problems turn out to be

different from previously given definitions, and we shall explore

-16-



the relations of these various notions. We make no claim to complete-

ness or depth of our investigations here. In fact, a great deal of

work is needed before these structural properties of delay systems

can be clarified.

2.2 Controllability

We shall be concerned with the controllability properties of

the system

x(t) = Ax(t) + Bx(t-T) + Cu(t)

x(e) = $(M 66[-T,0] (2.1)

where A, B, C are nxn, nxn, and nxm matrices respectively. We shall

denote the solution to (2.1) by x(t,$,u). We shall also write x t(,u)

for the complete state of the system (2.1) due to the control u, and

it is defined by

xt (,u)(6) = x(t+6,$,u) 6e[-T,0].

As indicated in Chapter 1, the state space of a delay system is a

function space. Several choices for the state space are possible.

The most common one is the space of continuous functions C([-T,0];Rn)

equipped with the sup norm which we will abbreviate by W[2]. Other

2 n 2 (1)
choices are M (which is isomorphic to R xL ) [29] and W , the

Sobolev space of absolutely continuous function on [-T,0] with

derivatives in L2 [-T,O] [33]. Each has its own advantages and dis-

advantages. For a discussion of this, see [35]. In this thesis,

we will usually take W as our state space. Occasionally, we will

discuss other spaces when W proves to be inappropriate for the

-17-



problem at hand or when other choices shed light on the problem under

consideration.

Since the state space is a function space, there are more than

one notion of controllability that makes sense. The first systematic

study of controllability for delay systems is that by Kirillova and

Churakova [23] and is concerned with pointwise controllability. For

simplicity, we will take our set of admissible controls U to be all

R -valued piecewise continuous functions on some interval [0,T], which

we shall denote by PC([O,T]; Rm). The same basic arguments can be

used for U = L2([O,T]; Rm), the space of Rm-valued square integrable

functions on [0,T].

Definition 2.1 The delay system (2.1) is called pointwise controllable

n
if for any $ and any x1 £ R , there exists a time T and an admissible

control u on [0,T] such that x(T,$,u) = x . We also speak of point-

wise controllability on [0,T] or at time T if the terminal time T is

fixed.

By the variation of constants formula [2], [36], the solution to

(2.1) can be written as

x(t,$,u) = @(tO)$(O)+ f0 @(t,s+T)B$(s)ds+ ft @(t,s)Cu(s)ds

0 (2.2)

where 0(t,s) is the fundamental matrix associated with (2.1) and

satisfies

-18-



d (t,s) = AG(t,s) + BO(t-T,s)
dt

(s s),= I

O(ts) 0 t < s (2.3)

We will also write (2.2) as

x(t,$,u) = x(t,$,0) + Ft u

where for any fixed t > 0, Ft: U -+ Rn

Ftu = f @(t,s)Cu(s)ds
A straightforward argument shows that the following is true

[37], [26].

Lemma 2.1 System (2.1) is pointwise controllable if and only if

there exists a time T such that M(F T) = Rn wherek(X) of an operator

X denotes the range. An equivalent condition is

T
rank f @(T,s)CC'@'(T,s)ds = n (2.4)

0

In contrast to finite dimensional linear differential systems,

the fundamental matrix 0(t,s) defined by (2.3) can be singular [17],

[35]. Furthermore, pointwise controllability to any point in Rn is

n
not equivalent to pointwise controllability to the null vector in R

To distinguish these cases, we make the following

Definition 2.2 The delay system (2.1) is called pointwise null

controllable if for any $, there exists a time T and an admissible

-19-



control u on [0,T] such that x(T,$,u) = 0.

It is clear that pointwise controllability implies pointwise

null controllability. The converse, however, is not true. To

discuss necessary and sufficient conditions for pointwise null

controllability, we need the notions of pointwise completeness

and pointwise degeneracy.

Definition 2.3 System (2.1) is said to be pointwise complete if

t
for each t, there exists a set of initial functions $. E, i = 1,...,n

1

such that the vectors x(t,$ ,0) i = 1,...n form a basis for R if
1

the system is not pointwise complete, i.e., if there exists a proper

n
subspace V of R such that at some time t, x(t,$,O) - V for all

$ EW, the system is said to be pointwise degenerate (at time t).

The relevance of these notions is shown by (see [26])

Lemma 2.2 If the system (2.1) is pointwise complete, then the

condition

T
rank J 1(T,s)CC'@(T,s)ds = n

0

is necessary and sufficient for pointwise null controllability at

time T.

The point is that if the system is pointwise degenerate, we do

not need R(F ) = Rn for pointwise null controllability at T. We

only need R(FT) D {x(T,$,0): $ EW}, which is a proper subspace of

n
R . The notion of pointwise degeneracy has other useful applications,

-20-



and we shall be studying it in much more depth in Chapters 3 and 4.

The condition (2.4) can be replaced by a number of algebraic

criteria [23], [26], [28]. These can be thought of as generalizations

of the well-known controllability results for finite dimensional

linear systems. While pointwise controllability is useful in linear

control problems with target sets in Euclidean space [35], [38], it

is too weak for other problems. For control problems with target

sets in function space, we need a much stronger notion of control-

lability. Here, following Banks et al., [33], we adopt the space W2

as our state space and L2 as our set of admissible controls U. The

reason for switching the state space to W2 (1) is that for u E L2

and # E W2 (1), eq. (2.1) implies that x(t) - L2. Hence W2 (1) is a

natural choice for the state space when the control space is L2 '

For further discussions on this point, see [33].

Definition 2.4 The system (2.1) is said to be functionally con-

trollable if for any functions $ and $ E W2  , there exists a time

T and a control u E L2 [0,T] such that xT($,u) = $. If the terminal

time T is fixed, we say that the system is functionally controllable

on [0,T].

The following result of Banks, et al., [33] shows that functional

controllability on [0,T] where T > T imposes extremely stringent con-

ditions on the system which are rarely met in practice.

Lemma 2.3 The system (2.1) is functionally controllable on [0,T]

where T > T if and only if rank C = n.

-21-



Functional controllability is too strong for many control

problems of interest, for example, the stability properties of

linear optimal feedback systems and linear optimal filters. We

now develop a new notion of controllability which is applicable

to these problems. We revert to ?? and piecewise continuous functions

as our state space and control space.

Let us first define the function

W T : PC([0,T]; C([T-T,T]; Rn

by
T

(WTv)(t) = c(t,s)v(s)ds t e [T-T,T]

0

Similarly, define

WTC: U(= PC([O,T]; Rm)) + C([T-T,T]; Rn)

by

T

(WT u)(t) = f (t,s)Cu(s)ds te[T-T,T]

0

Let us denote the space of all Rn-valued functions $ on [t,t+T],

which are of bounded variation on [t,t+T] and continuous from the

left on (t,t+T), by B0([t,t+T]; Rn). We equip B0 ([t,t+T]; Rn)

with the total variation norm on [t,t+T], denoted by Var . For

[t,t+T]

$ B ([tt+T]; R n), # E C([t-Tt]; Rn), define the bilinear form

<$,$>t by (see [2])

t

<, = $'( )$(t) + f $ (s+T)B#(s)ds (2.5)

-22-
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We shall refer to <$k,$>t as the hereditary product at time t.

We adopt the following

Definition 2.5 The system (2.1) is said to be controllable on

[0,T] if there exists no $ E B ([T,T+T]; Rn) such that <,>T 0

for all $ c 5(WT C), but that <$,$1>T / 0, for some $1 e 1(WT).

This definition of controllability may not be very well-

motivated at the moment since PC([0,T]; Rn) is not the space of con-

trols. It is obtained strictly as the dual notion of observability,

which we will discuss in section 2.4. The physical meaning ofR(WT C)

is clear and corresponds to functions which can be attained at T by

suitable control. On the other hand, it is not clear to whatR(W T)

corresponds. However, this definition of controllability is easily

seen to be stronger than pointwise controllability and weaker than

functional controllability. For if we take t = T, and take $, to be

such that $(T) 4 0, $(s) = 0, T < s < T + T, we get that

<$,$>T = $'(T)#(T)

Controllability then says that there exists no $(T) such that

Tn
ik'(T) f 4)(T,s)v(s)ds # 0, for some v c PC(IIO,TJ; R ) , but that

0

T
$'(T) f $(T,s)Cu(s)ds = 0,

for all u £ PC([0,T]; Rm). Since @(T,s) = eA(T-s) for s c [T-T,T],

for arbitrary x1 C Rn, we can define

A'(T-t) T A(T-t) A'(T-t) -
v(t) = e[ e e dt] x tc[T-T,T]

T-T

= 0 tE[O,T-T)

-23-



TT
This yields $)(T,s)v(s)ds xI and shows that {fD(T~s)v(s)ds:

0 0

v E PC([O,T]; Rn)} = Rn If {J $(T,s)Cu(s)ds: u E PC([O,T]; Rm

is a proper subspace of Rn, then we can find $(T) such that

T

$'(T) $)(T,s)Cu(s)ds = 0,

f0

for all u c PC([O,T]; Rm). Choosing v such that f (T,s)v(s)ds = $(T)

0

we see that system (2.1) will not be controllable. Hence controllability

implies R(FT) = Rn which is precisely pointwise controllability. On the

other hand, if rank C = n, then R(WT) is clearly the same as M(WT C), from

which controllability follows. Hence functional controllability implies

controllability.

Finally, there is a fourth notion of controllability, that of

approximate functional controllability.

Definition 2.6 System (2.1) is called approximately functionally

controllable if for any $ and $' c e, there exists a time T and a

sequence {un } in U such that xT(,u n) converges to $.

Again approximate functional controllability is weaker than

functional controllability, but stronger than pointwise controllability.

Its relation to our definition of controllability is not known at

present. Its use in delay system problems seems to be rather limited.

However, it is one of the standard notions of controllability in in-

finite dimensional linear systems [39], and we have stated it for

completeness.
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2.3 Stabilizability

We start with the definitions of stability and asymptotic stability

of unforced delay systems.

Consider the system

x(t) = Ax(t) + Bx(t-T)

x(e) = $(O) 6 e[-T,0] (2.6)

where $ 6 V.

We shall denote the solution to (2.6) by x(t,$) and the complete state

of (2.6) by x '().

Definition 2.7 System (2.6) is said to be stable if for every c > 0,

there exists a 6(c) > 0 such that $ < 6 implies the solution of (2.6)

satisfies |xt| < c, for all t > 0.

Definition 2.8 System (2.6) is said to be asymptotically stable if

it is stable, and there is a 6 such that I$l < 6 implies the

solution of (2.6) satisfies limlxt($)! = 0.
t-+Co

It is known that asymptotic stability of linear delay systems is

equivalent to exponential stability [2], [36]. In other words, (2.6)

is asymptotically stable if and only if there are positive constants

K and a such that Ixt($)I < Keat|$|, t > 0, for all # c V.

We are now ready to give the definition of stabilizability.
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Definition 2.9 System (2.1) is said to be stabilizable if there

exists a matrix function L: [-TO] + Rxn, of bounded variation on

[-T,O], such that the closed-loop system

0
x(t) = Ax(t) +Bx(t-T) + C 3 dL(O)x(t+G) (2.7)

is asymptotically stable. We also say (A,B,C) is stabilizable to mean

this definition.

As in the control of finite dimensional linear systems, stabiliz-

ability is crucial for the well-posedness of infinite-time control

problems for delay systems (see Chapter 6). Necessary and sufficient

conditions for stabilizability can be given in terms of controllability

of a finite dimensional system obtained by projecting the complete

state xt onto the generalized eigenspaces associated with the eigen-

values with nonnegative real parts [30], [31]. This result is

difficult to use, however, because it is necessary to compute the

eigenvalues and find a basis for the generalized eigenspaces assoc-

iated with them. One would like to have conditions expressed

explicitly in terms of the system parameters A, B and C. Since the

decomposition of the complete state xt has been given in detail by

Hale [2], this appears to be a hopeful, but still open task.

In finite dimensional systems, controllability is a sufficient

condition for stabilizability. Since the controllability condition

is very easy to check, this is an extremely useful sufficient con-

dition. It is important to see, therefore, if some notion of con-

trollability implies stabilizability in infinite dimensional linear
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systems. This is an aspect of the theory of infinite dimensional

linear systems that has received quite a bit of attention recently

[40], [41]. We have seen in the above that for delay systems, there

is indeed a notion of controllability that is necessary and suf-

ficient for stabilizability. This notion, however, does not cor-

respond to any of those discussed in section 2.2. It is worthwhile

to give a few remarks concerning the relationships between those

notions and that of stabilizability.

It is clear that functional controllability is sufficient for

stabilizability, since functional controllability enables us to move

xt to the zero function in finite time. Approximate functional con-

trollability is also sufficient since this certainly implies that

finite dimensional projections are controllable. On the other hand,

pointwise controllability is not sufficient for stabilizability.

An example illustrating this has been given by Morse [42]. The

relationship between controllability in the sense of Definition

2.5 and stabilizability is not known.

2.4 Observability

Here we are concerned with the system

x(t) = Ax(t) + Bx(t-T)

x(e) = $6 [-T,O] (2.8)

z(t) Cx(t) t > 0 (2.9)

We would like to know when it is possible to deduce the trajectory of

the system x(t), 0 < t < T, from the observations z(t), 0 < t < T.
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In contrast to controllability, pointwise observability has very

little meaning. This is because knowledge of x(G) is in general

not sufficient in determining the evolution of the system for

t > a. We shall define two notions of observability.

Definition 2.10 The system (2,8) - (2.9) is said to be observable

if for any $, z(t) = 0, t > 0, implies x(t) = 0, t > 0. It is

observable on [0,T] if z(t) = 0, 0 < t < T, implies x(t) = 0,

0 < t < T.

Since (2.8) - (2.9) are time-invariant, an equivalent definition

is: z(t) = 0, t > s, implies x(t) = 0, t > s, any s > 0. It is useful

to rephrase Definition 2.10 in terms of the initial function $.

Definition 2.10' The system (2.8) - (2.9) is said to be observable

if there exists no function # c V such that z(t) = 0, t > 0, and such

that x(t) is not identically zero for t > 0.

Let us express Definition 2.10' in terms of certain operators.

By the variation of constants formula

z(t) = CO(t,0)$(0) + 0C(t,s+T)B$(s)ds (2.10)

-T

Define the operator MT :W + PC([0,T]; Rn) by

0

(My ) (t) = (t ,0) (0) + J $(t,s+T)B$(s)ds (2.11)

-T

for any t c [0,T]. Similarly, define CMT:W+ PC([0,T]; Rm) by

0

(CMT$)(t) = C@(t,0)# (0) + f C4(t,s+T)B$(s)ds (2.12)

-T
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for any t c [0,T]. Then the system (2.8) - (2.9) is observable on

[0,T] if and only if

N(MT) = N(CMT) (2.13)

where N(X) of an operator X denotes the nullspace of X. We will now

prove the following duality result which relates the notions of con-

trollability and observability.

Theorem 2.1 The delay system

x(t) = Ax(t) + Bx(t-T) + Cu(t)

x(6) = $(6) 6 E:[-T,O] (2.14)

is controllable on [0,T] if and only if its hereditary adjoint system [2], [36]

y(t) = -A'y(t) - B'y(t+T)

y(8) = $i()

z(t) = C'y(t)

is observable on [0,T].

o E[T,T+T], $EB ([T,T+T]; Rn)

Remark We shall usually simply say (2.15) - (2.16) is the adjoint or

dual system to (2.14). Of course, the adjoint system (2.15) evolves

backwards in time starting at t = T.

Proof: Applying the variation of constants formula to the adjoint

system [2], [36], we obtain, for t c [0,T]

T+T

y(t) = '(T,t)$(T) + f '(s-Tt)B'$(s)ds

T

= (HT$)(t)' (2.17)
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Hence observability of the adjoint system is equivalent to

N(C'H ) = N(Hg)

Relative to the hereditary product, the adjoint of H4 is given by

HT: PC([0,T]; Rn) R+ C([T-TT]; R)

<H$, v>PC = <$, HTv T, where <u,v> P
u' (t)v(t)dt.

We calculate

<H*, v>pc =P
fT '(T)ID(T , t) v(t) dt

T T+T

+ $'(s)BO(s -T, t) v(t)ds dt

0O T

'(T) TQ(Tt)v(t)dt + f $T+TI(s)B fT(s-T,t)v(t)dtds

ST 0

= <$, HTv>T

T
Hence (HTV) (t) = f@4)(t, s) v(s) ds tE[T-T,T]

The reader may note here that HT = WT, with WT defined in section 2.2.

Similarly, the adjoint of C'Hq is given by

H TC: PC([O,T]; Rm) + C([T-T,T]; Rn)

T

(HTCv) (t) = f Q (t,s)Cy(s)ds tce[T-T,T]

(Note that HTC = WTC). Now $ E N(H*) if and only if

= 0 for all v 6 PC([0,T]; Rn),
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i.e., $ is in the annihilator of R(HT) relative to the hereditary

product. Hence the condition N(Hg) = N(C'H*) says that there exists

no $ such that

< ,$>T = 0 V $ cs (HTC)

but <$, $ >T 0 0 for some $l e

which is precisely the condition required for controllability of the

original system.

This duality result will be used in a crucial way in Chapter 6.

Since it is based on the use of the hereditary product, it is not

the same as the functional analytic duality between the various

operators and spaces involved. It would be interesting to see what

duality result would be obtained if we use functional analytic ad-

joints for delay systems, as expounded in Hale [2].

Another definition of observability which is stronger than

Definition 2.10 is that of strong observability.

Definition 2.11 The system (2.8) - (2.9) is said to be strongly

observable if z(t) = 0, t > 0 implies the initial function # = 0.

Clearly, if the system is strongly observable, it is observable.

The converse is not true. Indeed, the matrix B must necessarily be

nonsingular if strong observability is to hold. Otherwise we can

choose an initial function # c%' such that $(0) 0 and 0 # $(s) c N(B),

s E [-T,0). This yields z(t) = 0, t > 0, but # 0.
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By exactly the same arguments as in Theorem 2.1, we can show that

the dual of strong observability is the following notion of control-

lability: there exists no $ 6 B ([T,T+T]; Rn) such that <$, 5(HTC)>T = 0.

Again B must necessarily be nonsingular. This may be taken as still

another notion of controllability if desired.

2.5 Detectability

As in finite dimensional linear systems, this is basically the

dual notion of stabilizability.

Definition 2.12 The system (2.8) - (2.9) is said to be detectable

nxm
if there exists a matrix function K: [-T,0] + R , of bounded variation

on [-T,0], such that

0
x(t) = Ax(t) + Bx(t-T) + f dK(O)z(t+O) (2.18)

is asymptotically stable.

Theorem 2.2 The delay system (2.8) - (2.9) is detectable if and

only if the adjoint system

y(t) = 'A'y(t) - B'y(t+T) - C'u(t) (2.19)

is stabilizable (again this system runs backward in time).

Proof: Stabilizability of (2.19) requires the existence of a matrix

function K': [-T,0] + Rmxn, of bounded variation on [-T,0], such that

0
-y(t) = A'y(t) + B'y(t+T) + C' dK'(6)y(t-6) (2.20)

-T

is asymptotically stable. The right hand side of (2.20) defines a

Stieltjes integral of the form
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f
f0dnl'(6)y(t-e)

C'K'(6) 6 > 0

where Ti'(6) = -A'+C'K'(6) -T < 6 < 0

-A'-B'-C'K'(6) 6 < -T

The hereditary adjoint system to (2.20) is given by [2]

0
x(t) = d (6) x (t+6) (2.21)

Substituting for I(6), we get that (2.21) is

0
x(t) = Ax(t) + Bu(t-T) + dK(6)Cx(t+6)

0
= Ax(t) + Bx(t-T) + dK(6)z(t+6) (2.22)

-T

Since the stability properties of the adjoint system are the same as

those for the original system [2], stability of (2.20) is equivalent

to stability of (2.22). Hence the theorem follows.

The remarks following the proof of Theorem 2.1 concerning the use

of adjoint systems also applies to this case.

Analogous to the situation for stabilizability, it would be

interesting to see what notion of observability implies detectability.

Presumably this would be the dual of that notion of controllability

which implies stabilizability.

From the above discussion, it is clear that a great deal of

work remains to be done in studying the concepts of controllability,

stabilizability, observability, and detectability. We have merely
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formulated definitions which appear to be useful in control and esti-

mation problems, and pointed out some of the relationships between

these concepts. Our discussion has not even exhausted the definitions

of controllability and observability which have appeared in the lit-

erature. Motivated by the algebraic approach to finite dimensional

linear systems, Kamen and Morse [42], [43] have given some algebraic

definitions of controllability and observability which are useful in

realization theory for delay systems. It is not clear what the

physical interpretations of these definitions are, or what their

relationships to our definitions are. We shall leave this entire

area as a subject for future research.
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CHAPTER 3

POINTWISE DEGENERACY OF LINEAR DELAY SYSTEMS

3.1 Introduction

In Chapter 2, we studied some structural properties of linear

delay systems and introduced the concept of pointwise degeneracy.

In this chapter, we shall study the degeneracy property in much more

depth, with a view towards applying it to feedback control. The

degeneracy property of delay systems has recently attracted the

attention of many researchers [15] - [20], partly because of its

connections with other system-theoretic concepts (see Chapter 2),

and partly because it is peculiar to delay equations and has no

counterpart in ordinary differential equations. Popov [15] is the

first to make a systematic study of the subject. His fundamental

results have laid the foundations from which our results are de-

veloped. Since the publication of his paper, many other results

have been obtained on pointwise degeneracy. It is fair to say,

however, that this peculiar property is still far from being

completely understood. Our viewpoint differs somewhat from these

previous investigations in that we are primarily interested in

applying the property in the construction of delay feedback controls.

We do not therefore study pointwise degeneracy as an intrinsic

property of delay systems. Rather, we study conditions under which

a linear system can be made pointwise degenerate by delay feedback.

Since we rely heavily on the techniques developed by Popov, in
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Section 3.2, we shall first review his results and others which are

germaine to our subsequent development. In Section 3.3, we give a

characterization of systems which can be made pointwise degenerate

by delay feedback. We shall then explore some of the implications

of this characterization. This will prepare the way for the dis-

cussions in Chapter 4 where these results are used to obtain delay

feedback controls for certain problems in linear system theory.

3.2 Some Existing Results on the Pointwise Degeneracy of
Linear Delay Systems

We shall be concerned primarily with linear, constant delay

systems of the form

x(t) = Ax(t) + Bx(t-T) (3.1)

with an initial function E V . We first give an alternative de-

finition of pointwise degeneracy of Eq. (3.1).

Definition 3.1 The linear delay system (3.1) is called pointwise

degenerate if there exist an n-vector q # 0 and a number t1 > 0

such that every continuous function x: [-T, t1 ] + Rn satisfying

(3.1) in the open interval (0, t1 ) satisfies also q'x(t1 ) = 0.

If the system is not pointwise degenerate, it is called pointwise

complete.

Notation. We will abbreviate pointwise degenerate by p.d. and

pointwise complete by p.c. We will also say (A, B, q, T) is p.d.

at t1 or (A, B, T) is p.c. to mean the above definition. If the
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time of pointwise degeneracy is of no concern, we will drop the

qualification "at t 1 " from our statements.

Definition 3.1 is readily seen to be equivalent to Definition

2.3 of pointwise degeneracy. However, Definition 3.1 has proved

to be much more useful in obtaining results. We will adopt this

definition of pointwise degeneracy from now on.

Let us note the following important consequence of Definition

3.1:

If (A, B, q, T) is p.d. at t, then it will be p.d. on an interval

of the form [tl, co), which we will call the degeneracy interval. To

see this, take any number t2 > t . For any continuous function

x: [-T, t2 ] + Rn satisfying (3.1) on (0, t2 ), define the shifted

function 3i: [-T, t1 ] + Rn by i(t) = x(t + t2 - t1 ). Then i is con-

tinuous and satisfies (3.1) in (0, t1). Hence q'R(t1) = q'x(t2  0

and x is p.d. at t2 also.

This simple fact is of central importance in the application of

the p.d. property in delay feedback control, as will be explained

later. In fact, a stronger result holds for the structure of the

degeneracy interval. This will be given in Theorem 3.1.

Definition 3.1 admits a simple geometric interpretation. For

each initial function $, there corresponds a solution of (3.1),

which we will denote by x(t, $). Then pointwise degeneracy means

that there is a fixed vector q such that the solutions x(t, #) evolve
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in a space perpendicular to q, for any choice of p E is.

Space of

The first example of a p.d. system was given by Popov [15],

which has

0

A = 0

B=
0

B =1

0

q'=L1

0

-11

-l]

and T = 1 with a degeneracy interval of [2, oo). This example sparked

a surge of interest in the p.d. property. By now, much more is known

about this example. We shall return to it in Chapter 4.
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Most of the basic results concerning pointwise degeneracy have

been given by Popov. The following theorems are fundamental.

Theorem 3.1 (Popov [15]). Assume that (3.1) is p.d. for the vector

q. Then the largest set of points t at which (3.1) is p.d. for q

is the interval [fT, 0o), where k is the smallest integer with the

property

q'S(c) = 0 (3.2)

and S(C) is the nxn polynomial matrix given by

(fl-A)S(a) = B det(GI-A)

Moreover, 2 < k < n-l

Theorem 3.2 (Popov [15]). The delay system (3.1) is p.d. for q at

time t1 > 0 if and only if there exist an integer m > 0, k matrices

P , mxn (k is the largest integer such that kT < t1 ), an mxm matrix

V, and an m-vector v such that

P1B = 0 (3.3)

P.A + P B = VP. j = 1,2.. .k-l (3.4)

PkA = VP (3.5)

v'e P 1 = 0 (3.6)

Ve T -v'P. = 0 j = 1,2....,k-1 (3.7)

V'Pk = q' (3.8)
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Moreover, if the above quantities exist, one can always choose them

so that rank (P1 ... Pk m.

From these theorems, one can deduce the following corollaries,

some of which were obtained by other authors.

Corollary 3.1 (Popov [15]). System (3.1) is p.c. if rank B = 1.

Corollary 3.2. System (3.1) is p.c. if rank B = n.

Proof: If rank B = n, (3.3) implies P1 = 0. Using (3.4) repeatedly,

we immediately see that P2' ' Pk are all equal to zero, and the

corollary follows.

This result was apparently established earlier by E.B. Lee.

Corollary 3.3. System (3.1) is p.c. if n < 2.

Proof: If n = 1, Corollary 3.1 immediately shows that (3.1) is p.c.

Assume therefore n = 2. In this case, rank B is either 1 or 2. But

then Corollary 3.1 and 3.2 together imply (3.1) is p.c.

This result was apparently established earlier by J.A. Yorke and

J. Kato.

Although in the proof of Theorem 3.2, Popov gave a constructive

procedure for finding the matrices P1,..., Pk' V, and the vector v,

it is so complicated that in applications, Theorem 3.2 will be difficult

to use. However, Popov was able to isolate a class of p.d. systems

which have a remarkably simple structure. These are the so-called
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regular pointwise degenerate (r.p.d.) systems.

Definition 3.2. A p.d. system of the form (3.1) is called "regular"

if the pair (A, B) is completely controllable and there exists an

n-vector q such that the pair (q', A) is completely observable, and

(3.1) is p.d. for q in the interval [2T, co).

For such systems, the following theorem is true.

Theorem 3.3 (Popov [15]). Suppose (3.1) is r.p.d. with respect to q.

Then there exists an nxn matrix Z such that

ZAZ = Z 2A (3.9)

q'Z2 = 0 (3.10)

q'Z = q'eAT (3.11)

Equation (3.1) then takes the form

x(t) = Ax(t) + (AZ-ZA)x(t-T) (3.12)

(that is, AZ-ZA = B). Conversely, every equation of the form (3.12),

in which Z satisfies (3.9) - (3.11), is p.d. for q in [2T, o) (even

though the other conditions for regularity may not be satisfied).

The following corollary can be deduced from Theorem 3.3.

Corollary 3.4. (Popov [15]). If B can be written as AZ-ZA where Z

is given by

Z = rqeAT (3.13)

and r is the solution to the equations
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q'r = 1 (3.14)

q'eATr 0 (3.15)

q'eATAr = 0 (3.16)

then (A,B,q,T) is p.d. on [2T, oo).

Finally, Popov [15] has proved the following important result

for 3 dimensional p.d. systems.

Theorem 3.4. Any 3 dimensional p.d. system is regular and can be

written in the form. (3.12) with Z given by (3.13) - (3.16).

For later reference, we emphasize here that our results on

pointwise degeneracy and delay feedback are heavily based on Corollary

3.4 and Theorem 3.4. It is also worth pointing out that while (3.13) -

(3.16) are considerably simpler than (3.3) - (3.8), they still involve

the calculation of matrix exponentials. Given a triple (A,q,T) it

is not obvious from (3.14) to (3.16) when a solution for r will exist.

Our results given in section 3.3 will be concerned precisely with

simple conditions on (A,q,T) under which a solution r to (3.14) -

(3.16) exists.

Some additional properties of r.p.d. systems can be deduced from

(3.9) - (3.12). For example, the Z matrix is in fact unique for

regular p.d. systems. To see this, suppose Z1 and Z2 both satisfy

(3.9) - (3.12). Then

q'(Z 1- Z 2 ) = 0
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Also

q'AZ = q' (Z1A + B) = q'Z 1 A + q'B

= q'eATA + q'B

this implies

q'A(Z1 - Z2  0

Similarly, it can be shown that

q'A (Z1 - Z2 ) = 0 i =0,...,n-1

By observability of (q', A), Z, = Z2 and uniqueness follows. It can

also be shown that Z n- = 0 and Bn = 0 for r.p.d. systems. The sig-

nificance of these properties are not known at the present time and

we shall not pursue them further here.

We have summarized in the above some known results on pointwise

degeneracy. We will apply these in our investigations in the next

section.

3.3 A Criterion for Pointwise Degeneracy for Linear Delay Systems

Let us motivate our investigations by the following control problem

(see also Popov [44]). Consider the linear control system

x(t) = Ax(t) + u(t) (3.17)

y(t) = q'x(t) (3.18)

The objective is to find a linear state feedback law, possibly delayed

with a fixed delay time T > 0, to drive the output y(t) to zero in
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minimum time for all initial conditions, remaining zero thereafter.

We shall call this minimum time output zeroing by delay feedback.

It is obvious that this problem cannot be solved by using in-

stantaneous state feedback

u(t) = Kx(t)

However, if we can find a matrix B such that (A,B,q,T) is p.d. at

2T, then by definition of the p.d. property, y(t) = 0 for t > 2T.

Furthermore, since 2T is the smallest instant at which a delay

system can be p.d. (see Theorem 3.1), this matrix B will be the

solution to our minimum time control problem.

The first question to be examined concerning this approach is

to find conditions on the matrix A, the vector q, and the delay time

T, such that a matrix B will exist with the desired properties.

Corollary 3.4 tells us that if we can find a solution r to (3.14) -

(3.16), then on constructing the Z matrix as in (3.13) and setting

B = AZ - ZA, we will obtain a p.d. system with degeneracy interval

[2T, oo). Furthermore, Theorem 3.4 shows that for 3 dimensional

systems, the above construction gives the unique B. Therefore, for

3 dimensional systems an equivalent problem is to find conditions

on A, q, and T such that (3.14) - (3.16) admit a solution. We will

exploit this in the proof of the following theorem.

Theorem 3.5. Given a 3x3 matrix A with eigenvalues XA, X2 ' 3, a

3-vector q, and a number T > 0, a matrix B with the property that
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(A,B,q,T) is p.d. exists if and only if the following conditions

are satisfied:

(i) The geometric multiplicity [45] of each distinct eigenvalue

of A is one;

(ii) If there is a pair of complex eigenvalues, say A2  3 ,

A1 real, then

+ e l(TsinET - Ecos(T) 0 0

where X = A - Re2, Im2'

(iii) (q',A) is observable.

Before proving Theorem 3.5, we first state a lemma which is

completely obvious. This lemma is not restricted to 3 dimensions.

Lemma 3.1. Suppose (A,B,q,T) is p.d. then for any nonsingular matrix

F, (FAF~1, FBF , F'~lq, T) is also p.d.

Lemma 3.1 implies that if we are free to choose B such that

(A,B,q,T) is p.d., there is no loss of generality in assuming A

to be in Jordan form. We exploit this in

Proof of Theorem 3.5: Let q' = [q1 q2 q3]. We will apply the p.d.

criterion established in Theorem 3.4. By the above remarks, we may

assume, without loss of generality, that A is in Jordan form. Since

n=3, the possible Jordan forms are as follows:
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(I)
S1A 0 0

J= 0 X 2 0

0 0 A3

A.'s may not be distinct, and there can only be a pair of complex
1

eigenvalues.

(II)

j 0J = [0l

0

0
or

0

0
0
2]

0
12
A

A1, A2 may not be distinct, but they are necessarily real.

(III) -K

A is necessarily real.

We first note that if there exists a solution r to (3.14) - (3.16),

the vectors q', q'eAT, and q'eATA are necessarily linearly independent

(cf. Popov [15], p. 559). Theorem 3.4 then requires that

det q'e A det W # 0

q' J0
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We consider each of these cases separately.

Case I. We require

AlT q 2 q 3
det W = det ee 23

lX X 2 T 3T

gy~e 2 24 3 34 -1

q1q2 q 3[ 3-2 2 3  +(X1 -X3 3 )e+(X 2 1 1 2 ] 0

Clearly if any q. = 0, then det W = 0 and (3.1) cannot possibly be

degenerate for this q. We must also not have

X e(X 2+;k3 )T (X 1+ 3 )T (X 1+X 2 )T
(X3- 2 2e +(X -X 3 e +(X 2 -X1  = 0

(3.20)

Dividing throughout by e 2 3 , (3.20) becomes

(A3 )2  1 1 2 + (X2 X 1 3 = 0 (3.21)

Let y = X1-X 2 ' 2 = X1 X 3, and let

f(yY 2 ) = (y 1-y2) + y2 e
1  e Y2  (3.22)

Our problem now is reduced to finding conditions under which f(y1 ,y2) # 0.

We first consider the case where all the A's are real (so that y and y2

are also real). Without loss of generality, we may assume yj > 0

(i.e., Al 1 !Y) If = 0, we have immediately f(yy 2 ) = 0. Suppose

TY > 0 is fixed. We plot y 2 (e -1) and y1 (e 2 -1) as functions of y2 '

f(ySY~2 ) = 0 at the points where these two functions are equal. Note

that at y2 = 0, both functions are zero, and at y2 y1, they are equal.
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d yi(e e1

dy 2 2

and d [y (e 2 1e 2

In the region where Y2 < 0, Y Te 2
Y T

e 1-1, f or y.

this region, therefore

Y2 (e - 1 (e 2_)

We can now see that the graphs of the two functions look like

Y2 (e -1I)
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The functions can only intersect at two points. But we already know

that they do intersect at y2 = 0 and y2 y1. Hence these are the

only two points at which they can be equal. So in the region y1 > 0,

f(Y1 ,Y2) = 0 if and only if y2 1 or y2 = 0. We can now conclude

that if all the X 's are real, f(y1 ,Y2) = 0 if and only if y = 0,

or y2 = 0, or y - Y 2. In other words, det W = 0 if and only if

either X = X2, or ' 2 3, or X3 1, or any of the q 's = 0.

Next we consider the case when there is a pair of complex

eigenvalues, say,2 = X 3*. This implies X1, A2, and X3 are neces-

sarily distinct. With y and y2 defined as before, we have that

Y= - Y2 Define n = A1 - ReX 2, -IMX 2 (i.e., y1 = T1 + M .

Then

f(Y1 ,y2) = 2ig + (q-ig)e -(n+ig)e

= 2i + e -{ (nf-iE)(cosET + isinET) - (n+i)(cosET- isinET)}

2i[E+eT (TsinET - EcosET) ] (3.23)

f(YY 2) 0 if and only if E+eTIT(rsinET- EcosET) = 0. Thus, if there is

a pair of complex eigenvalues, we require precisely condition (ii) of

Theorem 3.5, in addition to no q. = 0. This completes the consideration

of Case I.

Case II. Since the same arguments hold for either

A 1 0 A0 0

J= 0 Xi 0 or 0 XA2 1

0 0 X 2 0 0 X 2
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we only discuss the former situation. In this case,

AT 1
Te 0

AlT
e 01

0 eX2

e

JT W

det W = det ATT(q 1 T+q 2 e

(ql+qA 1Tlq 2 Y1 e

[q

qe

fi1 1 e

2 1 2 1
= q2 q3  [A2 T-- 1T)e +e ]

after some calculations. Hence

det W # 0 if and only if g# 0, q3# 0

and (A2 -l- 1T)e 2 e1 0.

Lety=A - Then
1 21

X2 1
(A 2T-l-A 1T)e +e =0

if and only if

YT + 1 = eYT (3.24)

The only real solution to (3.24) is y = 0. Hence det W # 0 if and only

if g 1 0, q3 # 0, and A1  A2. The same arguments show that if

[A 0 0

J= 0 x212

0O 0 x 2
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det W # 0 if and only if q# 0, q2 # 0 and X1 4 N2. This completes

the consideration of Case II.

Case III. In this

[T
e

J 0

e = 0O

case

NT
Te

NT
e

0

1 2 NT
-' e

TXT

e

det W = det

qi

NT
q e

LqiXe 
X-

q2

NT
(q 1T+q2) e

(q1+q 1T+q 2 ) e

q 3 2

(q1 2 + q 2 T+q3)e

2 + 2
(1T+q2+Aq-- +Nq2T+q N)e

3 T 2NT
=qi - eq1 -2e

Thus det W 1 0 if and only if q, # 0.

If we now combine all three cases, it is clear that the eigenvalues

N. are required to satisfy conditions (i) and (ii) of Theorem 3.5.

Furthermore, if a pair (q', A) is observable, then (q'T~ , TAT 1) is

also observable for any nonsingular T. Take T such that

TAT- J

It is known that for observability of (q'T~, TAT~), the components of

q'T~ must satisfy precisely the same conditions imposed on the q 's in

the above discussion [46]. Hence observability of (q', A) is also re-
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quired for the solution of (3.14) - (3.16). Since conditions (i),

(ii) and (iii) of Theorem 3.5 are necessary and sufficient for the

solvability of (3.14) - (3.16), they are also necessary and sufficient

for the existence of the matrix B. The proof is finished.

As an easy corollary of Theorem 3.5, we have

Corollary 3.5. Suppose n > 3. Given an nxn matrix A, an n-vector q,

and a number T > 0, if at least three of the eigenvalues satisfy con-

ditions (i) and (ii) of Theorem 3.5, and if (q', A) is observable, then

there exists a B such that (A,B,q,T) is p.d. on [2T, co).

Proof: Without loss of generality, we may assume that A is in Jordan

form and in fact the first three eigenvalues satisfy conditions (i)

and (ii) of Theorem 3.5. By observability of (q', A), the first three

components of q satisfy the conditions imposed in the proof of Theorem

3.5. If we now consider a solution r to (3.14) - (3.16) in the form of

r 1

r 2

r= r 3  (3.25)

0

0

a little thought shows that the equations to be satisfied for the

solvability of r1 , r2, and r3 are precisely the same as those in

Theorem 3.5. By that theorem, we can solve for r1 , r2, and r3 with

the assumptions in this corollary. Thus a solution to (3.14) - (3.16)

exists in the form (3.25) and the corollary follows.

-52-



We make several remarks to clarify the contents of Theorem 3.5

and Corollary 3.5.

Remark 3.1. In contrast to Theorem 3.5, Corollary 3.5 gives only a

set of sufficient conditions for the existence of the desired B matrix.

The reason for this is that for n > 3, solvability of (3.14) - (3.16)

constitutes only a set of sufficient conditions, generally not necessary,

for the existence of the B matrix. To obtain necessary and sufficient

conditions in the style of Theorem 3.5 for n > 3 seems to be rather

difficult and remains an open problem. Nevertheless, it is worthwhile

to make a few comments on how Corollary 3.5 can be extended. For

example, if A is 4x4 and has two distinct pairs of complex eigenvalues,

A = X2 3 = X *, then condition (ii) of Theorem 3.5 cannot be

satisfied since there are no real eigenvalues. However, in this case,

the modified condition

E' + e T1,T(T'sinE'T-E'cos('T) 0 0

where E' = ReX1 - ReX3, 1' = ImX1 - ImX3, can be used instead. We can

also relax the requirement that (q', A) be observable. On the other

hand, Corollary 3.5 is easy to state and apply, and is sufficient for

our purposes later in Chapter 4. We shall therefore be contented with

giving Corollary 3.5 as it stands.

Remark 3.2. Theorem 3.5 and Corollary 3.5 can be given the following

interpretation:

Given A, q, and T, and n > 3, there "almost always" exists a B

such that (A,B,q,T) is p.d. on [2T, co). This is because observability
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of (q', A) is a generic property of a pair (q', A) [47] (conditions

(i) and (ii) are also generic properties of square matrices). Thus,

while pointwise degeneracy of the delay system (3.1) is a singular

property, the existence of a B for which (A,B,q,T) is p.d. on [2T, co)

is a generic property of A, q, and T.

Remark 3.3. The singular cases where no B exists are basically

related to the eigenvalues of A. For example, if in the 3x3 case,

A is symmetric and has two equal eigenvalues, then no B exists

regardless of what q and T are. Furthermore, if B is obtained as

in Corollary 3.4, it will depend on the eigenvalues of A. This

remark will be very useful when we apply Theorem 3.5 and Corollary

3.5 to construct delay feedback controllers in the next chapter.

Remark 3.4. If the matrix B is obtained in the manner described in

Corollary 3.4, the eigenvalues associated with the delay equation

(3.1), i.e., those values of A such that

det(XI-A-e B) = 0 (3.26)

are precisely the same as the eigenvalues of A. To see this, first

2
note that (3.14) - (3.16) imply Z = ZAZ = 0. We obtain successively

det(AI-A-e A-B) = det[XI-A-e (AZ-ZA)]

= det[AI-A-e AZ+e ZA+e- 2TZAZ)

= det[AI+(e Z-I)A(e Z+I)]

= det(I-e Z)(AI-A)(I+e Z)

= det(AI-A)
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By a result of Henry [48], the spectrum of the infinitesimal generator

of the semigroup for the delay equation is finite, and the range of

the semigroup is finite dimensional. Kappel [20] has proved a number of

interesting results for this class of p.d. systems.

Remark 3.5. The peculiar condition (ii) in Theorem 3.5 relates the

2r
eigenvalues of A to the delay time T. Indeed, if n = 0, - ,T

E + e (nisinET-EcosET) = 0. This suggests that for degeneracy to

occur, the period of the natural frequency of A should not "match up"

with the delay time. A more precise interpretation of (ii) is not

known.

Theorem 3.5 and Corollary 3.5 give relatively simple and trans-

parent conditions for the existence of the B matrix. Only simple

calculations are necessary to check the conditions. More important,

they give us a hold on when singular situations will arise. As such,

they form the basis for the development of delay feedback controllers

investigated in the next chapter.
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CHAPTER 4

DELAY FEEDBACK CONTROL OF LINEAR SYSTEMS

4.1 Introduction

In the previous chapter, we developed a theorem which allows us,

under certain conditions, to assert the existence of a matrix B such

that (A,B,q,T) is pointwise degenerate. This was motivated by the

control problem described at the beginning of section 3.3. In this

chapter, we would like to generalize the formulation of the control

problem to include an input matrix C. Specifically, we would like

to solve the problem of minimum time output zeroing by delay feed-

back for the linear system

x(t) = Ax(t) + Cu(t) (4.1)

y(t) = q'x(t) (4.2)

Let us consider the 3 dimensional case. If we just use delay feedback

of the form

u(t) = Lx(t-T)

Theorem 3.5 will impose certain conditions on A, q and T for the

existence of a suitable matrix L. Furthermore, if we construct a

matrix B for which (A,B,q,T) is p.d., we must also have the range

of B included in the range of C in order for L to exist. These

are rather severe restrictions. On the other hand, since the

eigenvalues of A play such an important role (see remark 3.3), we

may be able to solve the problem of minimum time output zeroing if

we can modify the eigenvalues of A. This suggests using a feedback

law of the form
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u(t) = Kx(t) + Lx(t-T)

We shall see that this choice of the feedback law enables us to solve

the minimum time output zeroing problem for (4.1) and (4.2) under

rather mild conditions. We first study the 3 dimensional case, as

the required notation is relatively simple, and the techniques used

can be readily extended to higher dimensions. In section 4.2, we

establish the form of the matrix B for which (A,B,q,T) is p.d. in

terms of the parameters A, q and T. We then prove a theorem in

section 4.3 which gives necessary and sufficient conditions for the

solvability of the minimum time output zeroing problem in 3 dimensions.

In fact, the proof of the theorem gives a constructive procedure for

finding the desired matrices K and L. For greater clarity and com-

pleteness, a summary of the algorithm is given after the proof of

the theorem. Next, the techniques are adapted to obtain a solution

to the control problem in higher dimensions. Again, we summarize

the algorithm for this case at the end of section 4.4. In section

4.5, we study the properties of the feedback control system under

perturbation of its parameters. Finally, we give some examples which

illustrate the theory.

4.2 Construttion of the Matrix B in 3 Dimensional
Pointwise Degenerate Systems

In the development of delay feedback control using the p.d.

property, it is very useful to know the explicit form of B. We

shall carry out the necessary calculations in this section. Using

these results, we show that in Popov's example (see section 3.2),
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degeneracy in fact occurs for a unique T and a unique q (up to

scalar multiples).

Notation. Since all our p.d. systems will be constructed using

Corollary 3.4, they will have a degeneracy interval of [2T,oo).

From now on, the term p.d. will mean p.d. on the interval [2T,co).

As in section 3.3, we consider three cases:

(I) A has three real distinct eigenvalues

(II) A has two repeated eigenvalues

and has a Jordan form

XA1 1 0

J= 0 Al 0
L0 0 XA2

A and A2 are distinct and necessarily real.

(III) A has three repeated real eigenvalues and has a Jordan form

N 1 0

J= 0 X 1
0 0 A1

Throughout this section, we assume (q',A) to be observable. By

Theorem 3.5, we know that there exists a B such that (A,B,q,T) is

p.d.

Case I: Let T be the matrix which diagonalizes A, i.e.,

TAT 0 0
T1 AT = 0 XA 0 =A

L0 0 X 3-
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with X 's real and distinct. Equations (3.14) to (3.16) can be

rewritten as

q'TT' r =

q'Te T 1r = 0

q'Te AT r = (

Letting a' = q'T, q = T r, we obtain

a'I = 1

a'eAT-n = 0

a eATAn = 0

Letting . = aTI, i = 1,2,3, we can write (4.8) - (4.10) as

1 + 2 + 3

1 e + 2 2 + 3 =
1 e + 2e + 3e 0

1 1 e 1 + 32x 2 e
2 + 3 x3 e

3
= 0

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

Solving for K, S2, and 3, we obtain

(2-X3)e ex28D

(X3 x 1) XiT

2 D

(X1-IX2 X3)T(XA-X2~ 3

AeT 2where D = (A3-l) (e 1-e 2) + (A1-A2 e

(X2 -x 3 )X
1
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Note that D is always nonzero since the A s are real and distinct

(see section 3.3).

Next, we construct a matrix Z.

( = i T

(X2 -A3 )e

a 2XT

D (X-X) - eD 3 12 2

a (2X1+2 3
(X1-X 2- e

0 (XX e2X -

2~ 3 2

(X3-X1)e 1

a 2 (X1+2X2-X 3)
1 2 a 3

(X2 +X3 )

3 1T
3 -X 1 ) a 2

(X1-X 2)e

And B = AZ - ZA

0

a

a.2 21 3 1

a 33 1 1 2
3

a2 2X 2 T

lA1-2 2 3e

2' T

(2 X1+X -X )T a2(2 . 2~ 3 2 )
a33 2 1 2

a6
3

a11 3 2 3

a63

a2 (X2 X) (X3 -X e

( 1+22X 3-

(4.19)

Now Z is related to the original system parameters by

Z = la'e -= T1rq'TT 1e ATT

= T~1ZT

and B =AZ-ZA

= T1 ATT1 ZT-T1 ZTT AT

= T 1BT
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Thus the desired matrix B is given by

- - 1
B = TBT

We note that the range space of B is spanned by the vectors

0

a2 -2X 3 )T

. 3 .

and 0
-- X e -X3)

. 3

Case II: Let T be the matrix which brings A to its Jordan form, i.e.,

T 1AT = J =

X 1 0
0 X1 0

0 0 X2-

Completely analogous arguments show that the desired matrix B is given by

[I12 (a 1 T-+a 2 )-T 1 1 e1

X IT

X2T

(X1-X2 2 3e 2

(A2X 1 ) 3a 1e 1

(4.22)

where a' = q'T and the T1.'s satisfy

a2 2
(A2 l 2 1 -~
[( 2- 1 )T 2 D

a ID
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(4.21)

X2 1

B = T

n l = (4.23)

[ X2X 1)-3 (t1 T+t2)- 3a 1 e 1



A2T

-A 1

=e
3 a D

wih D 3

2 1
with D = (A2 ~A1 )Te + e

2
- e

The range space of B is spanned by the vectors.

I2

01
(A2-1 3

A
0

.0

and

Case III: Let T be the transformation matrix such that

T1 AT = J =

10

A

0 .

12 a 1e [n2(c 1 T-a2 )fl 1 1]e A

T3 Oe [n3 (a 1T+a2 )-n2a 1]e

2 1 2 2 3 1 a 2

2
3 12 AT 2 1

0 -T3a1e -TI 3 (a 1 T+Ca2 ) e

(4.28)

where a' = q'T and the ni's satisfy
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(4.25)

(4.26)

1

TI3

(4.27)

B= T



a T + 2aa2T +2a2 - 2ata3
= 1 12 2 13 (4.29)

1

-2(a 1T + a2
a = (4.30)

2 a2 T2

2
T3 2 (4.31)
13 a1T2

The range space of B is spanned by the vectors

[113 and [1 2 (4.32)

_0 JLn3j

It is important to note that the transformation matrix T will in

general depend on A. Thus the expressions for B given above do not

show B as an explicit function of A. However, the form that B must

assume will be useful in our subsequent analysis.

As an application of the above construction, let us re-examine

Popov's example. Using the uniqueness of B, straightforward cal-

culations show that for degeneracy to occur, T must be 1, and the q

vector must be such that q2 = -2ql, q3 = -q1 . We can therefore

conclude that Popov's example will be p.d. for a unique vector q,

up to scalar multiples, and a unique T.
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4.3 Delay Feedback Control of 3 Dimensional
Linear Systems

In this section, we apply the results developed in sections 3.3

and 4.2 to obtain the solution of the minimum time output zeroing

problem using the feedback law (4.3) for the system defined by (4.1)

and (4.2). We shall assume throughout this section that the system

(4.1) is 3 dimensional. As in every theorem related to pointwise

degeneracy, the result is simple and elegant in three dimensions.

Theorem 4.1 For matrices K and L to exist such that the closed-

loop system

x(t) = (A + CK)x(t) + CLx(t-T) (4.33)

satisfies q'x(t) = 0, t > 2T, for all initial conditions, it is

necessary and sufficient that rank C > 2, and (A,C) be controllable.

It is helpful to discuss the conditions of Theorem 4.1 before

the proof. This will help to motivate the construction given below.

Rank C > 2 is clearly necessary since otherwise rank CL < 1 and by

Corollary 3.1, (4.33) is always p.c. Controllability of (A,C) is

introduced so that we can choose K to shift the eigenvalues of A

arbitrarily (of course, it is necessary for another reason; see the

necessity proof of Theorem 4.1 below). This enables us to avoid the

singular situations described in Theorem 3.5. For example, if C is

3x3 and of full rank, then obviously we can find a matrix K such that

the conditions of Theorem 3.5 are satisfied. Furthermore, if we con-

struct a matrix B such that (A+CK,B,q,T) is p.d., then since C is

nonsingular, there always exists a matrix L such that B = CL. Of
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more interest is the case where rank C = 2. We can still choose K

such that (A+CK) has eigenvalues which satisfy conditions (i) and

(ii) of Theorem 3.5. However, it is not clear a priori that there

will always exist L such that B = CL, where B is such that (A+CK,B,q,T)

is p.d. Indeed, most of the work involved in proving Theorem 4.1 is

to show we can choose the eigenvalues of A+CK in such a way that the

matrix B, constructed as in section 4.2, always lie in the range space

of C.

We shall need the following lemmas whose proofs are given in

Appendix A.

Lemma 4.1 Let al, a2, a3 be real numbers with the property

a2  a3 > 0. Then the function f(X) = (a + a2 a32 )e Xfor2 (a31 + 2X a3X) fo

X real has one maximum and one minimum. Furthermore there exist

straight lines of the form g(X) = y,(X-) and g(X) = w each of which

intersect f(X) at three real distinct points, none of which is a zero

of f(X). Here t is a finite real number not equal to any of the zeros

of f(X), y is some real number dependent on 3, and w is some real

constant.

Lemma 4.2 Suppose we are given a 3-vector q, a 3x3 matrix A, and

a 3x2 matrix C of full rank, with (A,C) controllable. Suppose q'c. # 0
1

where c. is the ith column of C. Then there exist matrices K and P

such that P (A+CK)P is in companion form, q'P = (a1 a2 a3) is such that

2 -1 th
a2 - 4aa > 0, and that P C has as its i column

~0

0

13
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Furthermore, if the other column can be written as

[12

L 3J

with K # 0, then P can be chosen such that '- is not a zero of

A 2

12= a1+a2X + a3 *

Proof of Theorem 4.1 (Necessity) That rank C > 2 is necessary has

already been discussed above. If (A,C) is not controllable, (A+CK,C)

is also not controllable for any K since constant state feedback has

no effect on controllability. Noting that

(CL ACL..., An-1CL) = (C AC..., An-lC)L

we see that (A+CK,CL) is also not controllable for any L. Since by

Theorem 3.4, all 3 dimensional p.d. systems are regular, this implies

that the feedback system (4.33) is p.c. for any K and L. Thus con-

trollability of (A,C) is necessary.

(Sufficiency) By the discussion following the statement of Theorem

4.1, it suffices to consider the case where C is a 3x2 matrix of full

rank. We give a constructive procedure for finding the matrices K and L.

Step 1: We may assume, without loss of generality, that q'c1 # 0. We

choose matrices K1 and P1 such that P 1 (A+CK1 )P1 is in companion form,

P1 C is of the form
1

0 10 2
1 -36
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and q'P = ( 23) with a2 - 4at 3 > 0. By Lemma 4.2, such

matrices exist (see the proof of Lemma 4.2 in Appendix A for the

constructive procedure for K1 and P1 ).

Step 2: Choose a matrix K2 such that the matrix

A - -1 (A+CK )P + P CK
2 1' 1 1 1 2

has three real distinct eigenvalues X, X and X The Xs are not1' 2' 3

arbitrary. Their specification will be given later.

Step 3: Use the Vandemonde matrix

11
3

2
3

to diagonalize A2, i.e.,

-X [ 1  0
P1 A P =A 02 2 2 2

0 0

-1 -1l
If we define z(t) = P2  P 1 x(t),

that

0
0

X3.J

-1
v(t) = u(t)-(K1 +K2P 1 )x(t), we see

P2t P 1 [A + C (K +K2P 1) 1P 2z(t)+P~ P-1 Cv(t)

-l -1
= Az(t) + P2 Pl Cv(t)

2 1
(4.34)

Step 4: We now restrict A, X2' X3 to be such that they are not

solutions of the equation
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a 1 + a2X + a3 2= 0 (4.35)

l 2 3

This implies q'P P2  1 2 3), where ni = a,+ a2 i + 2 , has

components all nonzero. By Theorem 3.5, we can construct a matrix

B such that (A,B,qP 1P2,T) is p.d. In fact, the results in section

4.2 show that B is given by

0
12 2X 2T 3  2 X3

(X1-X 2) (X2-X 3)e 1 3) (X 2-X 3 )e

1 111 2X T
B- T1 (X1 X1 (M -X1)e 2
D 2 1 1 3 1

T1

'( 3 A1  1 2
3

T13 Gk1 +X3)

T1 2 3) (X 3- 1 e
2

(2A 1+X2- 3)T 2 ( 1 +2X 2 -X 3)

3 -3 2 1 2

AT A2
where D = (A3-l) (e -e ) + (A -2

(A2 -A 3 ) 1 e 2T

Step 5: We now show that there exists a 2x3 matrix L such that

-1 -1
P2 P CL = B. We know from section 4.2 that OR(B), the range space

of B, is spanned by the vectors

F o -1 7 1I

2 2- 3 )T
- e

T13

and

1 1-A 3
- - e
T3

A necessary and sufficient condition for the existence of L is that
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,W(B) C R(P 1  C). Since dimWR(B) = dimR(P2 1  C) = 22
221

exists if W(B) =M(P2  p 1 C).

nonsingular matrix

11 12

L2

k 21 £22

Thus we only need to find a 2x2

such that

,n2 2 -X 3 T
-e

I1  (X1 -X 3)T- - e
T3

of L is then given by

r -k 1 1

1 41 2X1 T
D D 2 1

2 e 21

., The second column of L1 is

given by

1 TI2 2X 2

D Tj1( 1 2 )X2- 3 )e

12
£ 22 I . The last column of L is

given by

1 3I )
D H2 2 3 3 1)e

l +X2 

£12

1 H3  2 X 3

+D rl 1 3 2 3
2 3 L£22..
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-1
Using the particular forms of P 1and P 2we obtain

1 21

2 21

11 3 21

1 22

2 k 22

12 3 22

''2
1- ---

13

1I2 
2 -X 3)

2 3 I3

2 2 2  A2 -X 3)
2 3 1I3

1n 1
1-3

1 3

1 1( 3X -X ' 1e(X1X3
1 3 T]3

2 2 1i (X1 -X 3
1 3

(4.36)

We consider three cases

Case A. 3 = 0.

This requires

12
1 I- 

and

(X2 -X 3)

1 - e (X1 -X 3 )T
'n I

These can be rewritten as

AT
T 1e = 12 e

A 3T3
=1 3e (.7

Since a 2 - 4a a3 > 0, by Lemma 4.1,
2 13

constant W such that the line X

we conclude that there exists a

intersects (a 1+a 2X + a3 2 )eAT
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at three real distinct points A, A2, and A3. These will be the

eigenvalues that we choose. We can solve for k1 , 212' 21, and k22

from (4.36) explicitly by

X2~X 3

21 2

22 " 2

2 2
11 2 3 3 21

P 2  2 
-

12 1 3 3 22

Case B. 2 =0

This requires

A1 T 2 3

1 X 2 X (4.38)

1 2 3

By appealing to Lemma 4.1, we conclude that real and distinct A, A2

and A3 satisfying (4.38) exist. With the eigenvalues thus chosen, the

matrix L2 can be obtained from (4.36).

Case C. f35,f2 both nonzero.

Completely analogous considerations show that we must have

2 e j 2) e - A 2 e (4.39)

Appealing to Lemma 4.1 once again, we conclude that desired eigenvalues

A., i = 1,2,3 exist, and the matrix L2 can be evaluated from (4.36).
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We have now constructed a p.d. system of the form

z(t) = Az(t) + P~ 1 CL z(t-T) (4.40)

with q'P 1P2 z (t) = 0 t > 2T

In terms of the original coordinate system, we have

= [A+C(K +K2P 1 )]x(t) + CL 1P1 P 1 x(t-T) (4.41)

is p.d. for q. The desired feedback matrices are thus K = 1+K2 P
1

-1 -1
and L = L1P2 P 1 The theorem is proved.

For greater clarity and completeness, we summarize the algorithm

for constructing the matrices K and L in the three dimensional case.

We assume, without loss of generality, that q'c1 # 0.

(i) Construct, as in the proof of Lemma 4.2 in Appendix A, P

suh-1 -l
Ky such that P 1 (A + CK1)P is in companion form, P 1 C is of the form

0 
1

0 62 *

1 3

2
and q'P1 = a 2 a3' with a2 - 4a 3 >0.

(ii) Let (X) = a + a2 X+ 3
2. I 3 i = 0, choose three real

and distinct numbers X. X 2, and A3 such that rn(X) # 0, i=1,2,3,
1' 2 3

and that (X 1)e -(X2 )e (x3)e 3 . If 2 = 0, choose real

and distinct A, A2, and A3 such that A(X) # 0, i=1,2,3, and
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1(2 )eenT2 2 3 3

1 X2 3

If B and 32 are both nonzero, choose real and distinct A, A2' 3

such that in(A) # 0, i=1,2,3, and

Sn( = (2 ) n ) (3 ( )

(iii) Once A, A2' 3 are chosen, choose a matrix K2 such that

the matrix P 1 (A + CK 1)P1 + P 1CK2 has as its eigenvalues A, A2, and A3'

(iv) Compute the Vandemonde matrix

1' 1 1

P2 1 2 3

2 2 2
1 2 3

(v) Calculate the matrix L as in step 5 of the proof. In

other words, find L such that (P2 1 (A + CK- + CKPP 1 2'
1 2 1 (A+C 1 + C 2 1 ) 1 2'

P~1 P_1 CL P1 PT q, T) is p.d. The choice of A, A and X3 in2 1 1' 2 1 1' 2'

(ii) guarantees that L exists.

(vi) Finally, the desired feedback matrices are given by

K = K + K 1_
1 2 1

and L= LP P
1 2 1

Note that once the eigenvalues A, A2, and A3 are chosen, the cal-

culations involved in steps (iii) to (vi) are completely explicit
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and straightforward. The calculations involved in step (i) are

detailed in the proof of Lemma 4.2 in Appendix A. They are all

explicit excepting perhaps the choice of f 1 and f 2 . The numbers f1
2d2

and f are chosen to satisfy a2 - 4aca3 > 0 and d not being a
2 2 2 13 d1

21
zero of a' + o2 X + a3 X A simple search procedure will enable us1 2 3

to find an appropriate f and f . As for step (ii), we need to find

eigenvalues X. A2' 3 which satisfy (4.37), or (4.38), or (4.39).

One way of doing this is to plot, as in the proof of Lemma 4.1 in

Appendix A, the function f(A) and draw the appropriate straight

line to intersect f(A) at three real distinct points. While other

methods for solving (4.37) - (4.39) can probably be devised, the

computations involved in step (ii) will, unfortunately, be nonexplicit.

Remark 4.1 The proof of Theorem 4.1 is rather clumsy and involved.

Since we only assume controllability of (A,C) we only have freedom

in assigning the eigenvalues. The lengthy construction shows that

we can find a suitable set of eigenvalues so that the matrix B we

constructed necessarily lies in the range space of the input matrix

C. Certainly a simpler and more elegant proof is desirable. However,

because of the nonlinear nature of the problem, a substantial simpli-

fication may not be possible.

Remark 4.2 Remark 3.4 shows that the eigenvalues of the delay feedback

-1
system (4.41) are precisely those of [A + C(K1 + K2P1 )], and these

satisfy (4.44) or (4.45) or (4.46). In general, there are many

solutions to these equations (see Appendix A). If we can choose the

eigenvalues so that they are negative, we will have obtained an
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asymptotically stable p.d. system. We have not been able to show as

yet that such a choice is always possible. Thus, the closed-loop

p.d. system (4.41) may be unstable.

Remark 4.3 We have assumed that the delay time T is prescribed in

advance and not available as a design parameter. However, if it is

to be designed, the smaller T is, the larger the elements of the B

matrix will be (see eqs. (4.19) and (4.17)). Hence we have a tradeoff

in this situation. We shall not investigate this point further.

4.4 Delay Feedback Control of Higher Dimensional
Linear Systems

Our goal in this section is to extend the feedback control results

for 3 dimensional systems to higher dimensions n > 3. The method of

proof is substantially the same as that of Theorem 4.1. Notationally

however, it is much more involved.

Theorem 4.2 For matrices K and L to exist such that the closed-loop

system

= (A + CK)x(t) + CLx(t-T)

satisfies q'x(t) = 0, t > 2T, for all initial conditions, it is

sufficient that rank C > 3, and (A,C) be controllable.

Proof: Consider the equations

q'r = 1 (4.42)

qe A = 0 (4.43)
q Ie r

q'eATAr = 0 (4.44)
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where q' = (q, q2 ... n

0 . . .. . . .. 0

A U
. .... n-1

0 0 . . n

Suppose at least three of the eigenvalues X are real and distinct

w.ith the corresponding q. 's nonzero. Without loss of generality,

we may take X1, x2, and 3 to be these eigenvalues with ql, q2 ' q3

nonzero. Under these conditions, (4.42) - (4.44) can be solved to

give

1
- q 3 w3

)e n

-- q w r

-e )i=4

r2  2 1  e +

q2 (e 2 -e

n X.T X T
q ir i(e -e

i=3

n
ry = 1- qr1l1 q~r,

i=2

(. )e (e 2 12 1

w - 2 1

e -e

(4.45)

(4.46)

(4.47)

(4.48)
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Thus r1 , r2 and r3 are completely determined in terms of the 2n-3

"free" variables Al' A2 '''' n, and r , r5,...,rn. Constructing

- AT - - -

Z = rq'e and B = AZ - ZA we obtain

0

r2 (A2-A 1 q1e

r1 ( 1-A2 q 2e
2T . . . r 1 (-An n

r3 (X 3-x 2 2

A T
rn-l (Xn-l- n )qne

rAn n 1 le 1

Note that B is of rank

Fo
r2 (A2 - 1 )

r (A-nA)

AT
r(A 22rn (Xn ,2)q2e

2, and its range space is spanned by the vectors

r1 (X1- x2 )

0

and r3 (A3 - 2)

rn n 2

We now proceed as in the proof of Theorem

consider the case where C is nx3 of full rank.

suchthat-l
and P such that P 1 (A + BK)P1 is in companion

eigenvalues, and

4.1. We need only to

Construct matrices K

form with distinct
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0 d12 d13

0
-1 .
11.

1 dn2 dn3

The restrictions on the eigenvalues will be given later. Next, we

-1
diagonalize P 1 (A + BK)P1 by a Vandemonde matrix

1 1. . . 1

1 2 n
P2

n-l n-l n-1
1 2 n

so that

A 0 . . . . . . 0

0 A2  0 . . . 0

-1 -l A
P2 P 1 (A + BK)P P . 0

0 0

0 0 . . .. 0 A
n

qwPiP2 l''' nn

with T1. a + a A. + ... + a A.~
i 1 2 i n i

and q'P = ... 0 an

We now impose the restriction that three of the eigenvalues, say A1,

A2 and A3 are real and distinct, and that the resulting fl, 112, and

13 are nonzero. Under these conditions, we may construct a matrix B
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such that ( ,B,q'P 1P2, ) is p.d. Analogous to step 5 of the proof of

Theorem 4.1, we see that we need to find a matrix L2 such that

F 0 r 1 (X1-X 2)

P-1 CL =P
1 2 2

r2 (X2 X 1)

r3 (X3 2)

rn (XnX 1 rn (Xn -X 2)

12

22

r. (A.- )
r ( -

r.(X- )

n-i

r A(X-X2

i#2

i#2
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P- CL =
2

d12 21 +d13 31

d22 21 +d23 31

dn-1,2 
9 21+dn-1,3 931

9, +d 9, +d ,
_11 n2 21 n3 31

We can solve for 9,1 and 9,12 independently.

that we can solve for Z21' k22' k3 and 932

equations

dj2 21+dj3 931= r.X 1 (X -X1)

ifl

dj2 2 2+dj3 3 2 = r r (X.-X 2)
i02

d12 22 +d13 32

d22 22 +d23 32

dn-1, 2 22+d

9, +d n9 +d 9,
12 n2 22 n3 32

Thus we only need to show

consistently from the

j=1,. .. ,n-1l

j=1,... ,n-1l

(4.50)

(4.51)

We now eliminate 21 22' 31' 32 from (4.50) and (4.51). Using the

fact that rank C = 3, a little thought shows that we will obtain 2n-6

equations relating X 1,.9.. Xn r, ...,r . Since the number of "free"

variables is 2n-3, we expect that it would be possible to choose the

X 's and r 's in such a way that all the requirements are fulfilled.

The simplest way to see this is to examine the special case where

dj2 = 0 for all j except j = m, and dj3 = 0 for all j except j = k.

This gives rise -to equations of the form

r.X. (X.-A 1 ) = 0

ill

j=l,. .. ,n-1 (4.52)

j m,k
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and r. X-( .- 2 ) = 0 j=1,... ,n-1 (4.53)E i i i- 2
i02 j#mk

If we take X, A2, and X3 as fixed real distinct constants, these give

rise to 2n-6 equations in the 2n-6 variables X , .9. . ,XAn , r ,..., rn.

Eliminate the variables r 4 ,...,rn in the above equations. This yields

n-3 equations in the variables X 4,..., A . Next we note that these

equations are invariant under permutation of the indices in A . Hence

if we reduce these n-3 equations into a single equation involving A.

for some i, say of the form f(A ) = 0, then f(A ) = 0, j=4,...n also.

However, the form of equations (4.52) and (4.53) implies that f is an

exponential polynomial [11 and it is known [l] that the zeros of

these functions are distributed symmetrically about the real axis with

asymptotic distribution separated at a certain distance. Since there

is an infinite number of zeros of these exponential polynomials, it

is possible to choose X ,..., An such that they form a symmetric set

with the properties (a +at X.+...+ a. ) # 0, A.'s distinct i=l,...,n,
1 2 i n i i

and A, A2' 3 real.

With such a choice, the conditions for the existence of the matrix

L2 are satisfied and we can construct, from L a matrix L such that

P2 Pl CL B. While we have only discussed the case where d = 0,
2 1 1j2

j = 1,..., n-l, j m and d j3= 0, j 1,..., n-1, j 0 k, the other

cases can be treated in exactly the same way. We can eliminate

variables from (4.50) and (4.51) in a similar fashion to that dis-

cussed above and show that the desired A, A 2'''''A exist. The

details are therefore omitted. The rest of the proof now proceeds
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in exactly the same way as that of Theorem 4.1.

We summarize here the algorithm for constructing the matrices

K and L in the higher dimensional case. Again, we assume q'c1 / 0.

(i) Choose P, K1 such

is of the form

that P1 (A + CK )P1 is in companion form,

0

dl dld12 d13

d22 d23

dn2 dn3_

, and q'P
1 - (ai a2... an

(ii) Choose eigenvalues X1, A2 ,'. n such that (4.50) - (4.51)

can be solved consistently for k £, i = 1,2,3, j = 1,2. Such a choice

is possible by the proof of Theorem 4.2.

-1 -1
(iii) Choose K such that the matrix P- (A + CK)P + P1 CK

2 1' (+CK 1  + 1 2

has as its eigenvalues A , 2 ''''n'

(iv) Compute the Vandemonde matrix

P2 
=

1 1

1 2

n-l n-l
1 2

n-l
n

(v) Calculate the matrix L from Z.., i = 1,2,3, j = 1,2 such that
1 1

-1 -1l1-1-
(P2 P1 (A + CK1 + CK2Pl 1 )PP 2 2j1 P 1 CL1 , PIP q,T) is p.d.
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(vi) The matrices K and L are given by

K = K + K Pl1 2 1

-1 -1
1 2 1

Except for step (ii), all the calculations involved in the

algorithm are explicit. To choose the appropriate eigenvalues

l', 2.'.' n in step (ii), we can first eliminate k21' k22' £31'

z323 r, r2 ... rn from (4.50) - (4.51). This elimination involves

only algebraic operations. We are then left with n-3 coupled trans-

cendental equations involving exponential polynomials in the variables

X1, X2 ''... n. For fixed, real and distinct X1 , X2 ' X3, an iterative

procedure is now needed to find the appropriate values for X4 , 4 5 ''.' An

We have not had time to investigate the numerical aspects involved in

solving these transcendental equations. However, quite a lot of work

has been done on the solutions of transcendental equations involving

exponential polynomials. The reader may, for example, consult [1] and

the references therein.

Remark 4.4 Theorem 4.2 gives only a sufficient condition for the

solvability of the feedback problem. It is not possible to obtain

necessary and sufficient conditions by our approach, since for n > 3,

solvability of (4.42) - (4.44) is not a necessary condition for p.d.

Remark 4.5 It may be possible to prove Theorem 4.2 under the assumption

that rank C > 2. A similar argument will then show that we have 2n-4

equations in 2n-3 variables. However, the algebraic difficulties in
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showing that these equations can be consistently solved for suitable

eigenvalues A ,..., A are much more formidable.
1n

4.5 Sensitivity of Pointwise Degenerate Systems

In the last two sections, we have given conditions under which a

delay feedback system will have its output identically zero after 2T

units of time. If these results are to be used in practice, we must

ensure that the feedback system will behave reasonably well under

perturbation of its parameters. Since we usually know which particular

combination of state variables serves as the output, it is reasonable

to assume that the output vector q is fixed, and we shall do so. There

are two questions of interest. Suppose for a fixed set of parameters

A 0 , C , T , there exist matrices K and L which give rise to a p.d.

system (A + C K , C L , q, T ). This yields a (nonunique) "design"

function f: (A, C, T) " (K,L), and a "performance" function g(t):

(A,C,T,f(A0, C , T0)) f-iq'x(t) for t > 2T. Continuity of f at

(A0, C , T ) implies that the delay feedback design procedure is well-

posed. Similarly, continuity of g(t) at (A0 , C, T0, K, L ) implies

that small variations in the parameter values give rise to a small

degradation in the system performance. Note that the continuity

properties of the functions f and g(t) are related to those of f1

and g1 (t), where f1 : (AT)-+ B with (A, B, q, T) p.d., and gl(t):

(A, T, f1(A , T0)) i-4q'x(t), for t > 2T. This is because in our

construction of the matrices K and L, we first construct a matrix B1

such that (A + CK, B1, q, T), is p.d., and then we construct a matrix L such

that B = CL. If C is the identity matrix and K can be taken to be
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zero, then the properties of the functions f and g(t) reduce to those

of f and g1(t). We shall only study the behavior of f and g (t).

This section contains some simple results in this direction.

For the study of fl, we will assume that A has distinct eigen-

values. This is the case of most interest to us since in our proof

of Theorems 4.1 and 4.2, we assign distinct eigenvalues to the matrix

A + CK. We shall concern ourselves only with perturbations of the

form A + EA1 = A(s) and T + ST1 =T(c). The following perturbation

result for matrices is known [49].

Lemma 4.3 If X is a simple eigenvalue of A, then for sufficiently

small |El, there is an eigenvalue X(c) of A(c) with a power series

expansion

A(s) = A + CX(l) + C2 (2) +

and there is a corresponding eigenvector x(c) with a power series

expansion

x(C) = x + EX +...

where x is the eigenvector of A corresponding to X.

A procedure for computing the Xis and xi's from A and A1

may be found in [49]. We can now state

Theorem 4.3 Suppose A has n distinct eigenvalues X11,..., X n. The

matrix B(C) = fl[A(C), T(E)] has a power series expansion in c for

sufficiently small 16l
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B(6) = B + EB 1 +...

where B = f 1 (A,T)

Proof: Since A has distinct eigenvalues, a transformation T that

diagonalizes A consists of the n eigenvectors of A. By Lemma 4.3,

the eigenvectors of A(s) can be expanded in a power series in 5 for

sufficiently small Ill. We can therefore also expand T(c) and T1 ()

in a power series. This implies q'T(s) can be expanded in a power

series. Equations (4.45) - (4.49) show that B(s) can again be ex-

-1
panded in a power series in c. Finally, since B(s) = T(s)B()T (6),

B(6) can also be expanded in a power series in c for sufficiently

small I6|.

Next, we consider the behavior of g1 (t) again under perturbations

of the form A(E) = A + sA1 , T(F) = T + ST 1 .

Theorem 4.4 Suppose the system

i(t) = Ax(t) + Bx(t-T) (4.54)

is p.d. with respect to q for t > 2T. Then the system

c (t) = A(c)x (t) + Bx (t-T(s)) (4.55)

will have, for each t > 2T,

q'x (t) = yE (t) = Ey1(t) + Ey2 (t)+

Proof: Let z(t) = P x (t-(k-l)T(s))+ ... + Pk x (t) where P ,..., Pk

satisfy Popov's condition (3.3) - (3.8). Then
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z(t) = PA(E)x (t-(k-1)T(E))+?1 Bx (t-kT())

+ ... + PkA (E)x (t) + PkBx (t-T(E))

= Vz(t) + P A x (t-(k-l)T(E))+ ... +E P A x (t)

Thus,

v'z(t) = v'e z(t-T(E))

+ t V(t-s) {P A 1x (s-(k-1)T(S))

t-T(

Using equations

+ ... + PkA x (s) }ds

A Ve z(t-T()) + EY (t)

(3.6) -- (3.8) in Chapter 3,

(4.56)

v'z(t) - v'eVT(E) z(t-T(E))

= v'z(t)-v'e Vz(t-T())-v'(e -e )z(t-T(E))

(4.57)= (t)-v' (e VT() )z(-())

Combining (4.61) and (4.62), we get

q'x (t) = V'(e -e )z(t-T (E)) + Ey (t) (4.58)

The right hand side of (4.58) is precisely of the form Ey1 (t) + E 2Y(t)+. .

proving the theorem.
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Remark 4.6 Theorem 4.4 does not give any estimate of the magnitudes

of y1 (t), Y2 (t), etc. Furthermore, no claim is made on the uniform

behavior in t of the output y (t). In fact, if the system (4.55)

is unstable, Y1 (t),Y 2 (t), etc., which are really derived from x (t),

can become large as t gets large. However, if the original system

(4.54) is asymptotically stable, then for small enough IEl, the

perturbed system (4.55) is also asymptotically stable [2]. In that

case, y1 (t), Y 2 (t), etc., will go to zero as t gets large.

To a certain extent, the above remark limits the applicability

of the delay feedback approach we have explored so far. If the

parameters of the system are perturbed, the errors in the output may

grow, and hence the performance may become unacceptable after some

time. However, if in the proofs of Theorems 4.1 and 4.2, we can

choose the A 's such thatWeX. < 0, then the resulting feedback p.d.

system will be asymptotically stable. In that case, the above

mentioned problem does not arise. Whether we can always find feed-

back matrices K and L such that the resulting closed-loop system is

asymptotically stable in addition to being p.d. remains an open

problem.

4.6 Some Examples

We give two examples which illustrate the use of delay feedback

in certain problems in linear system theory.

Example 1: "Deadbeat" output control.

Consider the system
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x(t) = Ax(t) + Cu(t)

where

1 1
A = 0 1

0 0

0 0

C = 0 1

1 0

y(t)= q'x(t)

with q' = (2 -2 1)

The problem is

control of the

to drive y(t) to zero in minimum time by delay feedback

form

u(t) = Kx(t) + Lx(t-1)

Let us note that (A,C) is controllable and rank C = 2. Also A

violates condition (i) of Theorem 4.1. Thus we cannot solve this

problem by using only delay feedback control (i.e., K = 0).

One convenient

K [
choice for K is0

then

A + CK = 0
0

0
0

1J

0
1J
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and a suitable B is

0 0 0

B= 2e 0 0

0 -2e 0

0 -2e 0
If we takeL =

2e 0 0

we see that CL = B.

With these choices, one can easily verify that (A + CK, CL, q, 1)

is p.d. The output y(t) has been controlled to zero and will remain

zero for all t > 2.

The problem that is in a sense "dual" to the deadbeat control

problem is that of a "deadbeat" observer. Consider the system

x(t) = Ax(t)

y(t) = Cx(t)

We would like to reconstruct the state of the system. The usual

approach is, under the assumption of observability, to construct

an observer of the form

x(t) = AZ(t) + K[y(t) - CR(t)]

such that the estimation error e(t) = x(t) - 9(t) goes to zero

asymptotically. The theory developed here suggests the use of

a delay observer of the form
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x(t) = AR(t) + K[y(t)-CR"(t)] + L[y(t-T)-CA(t-T)]

such that a linear combination of the error, q'e(t), is driven to

zero in minimum time. If we can observe all but one component of

the error, q'e(t), is driven to zero in minimum time. If we can

observe all but one component of the error vector, this will enable

us to reconstruct the estimation error and hence the state of the

system in finite time. While finding necessary and sufficient con-

ditions for the existence of such a delay observer is an open problem

at the present, we can give an example illustrating the technique

involved.

Example 2: "Deadbeat" observer.

Consider the system

k(t) = Ax(t)

y(t) = Cx(t)

where

-1 2 0

A= 2 -2 -1
1 2 0

1 0 0
C=

0 2 0

(A,C) is observable and rank C = 2. Since x1 and x2 are directly

observed, we need only estimate x3. Using the usual reduced order

observer, we can asymptotically reconstruct the state by a 1 di-

mensional observer.
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Here we shall use delay feedback. Consider an. observer of the

form

x(t) = Al(t) - K[y(t)-C2(t)] - L[y(t-1) - C2(t-1)] (4.59)

Then the estimation error e(t) = x(t) - 2(t) satisfies

(t) = (A + KC)e(t) + LCe(t-1) (4.60)

We want to find K and L such that (4.60) is p.d. One such choice is

1 0

K= -2 1
-1 -l

0 0L= 1 0
0 1

Then

0 2 0

A + KC = 0 0 -1

L0 0 0

0 0 0

LC= 1 0 0
0 2 0

Equation (4.60) becomes precisely Popov's example, and it satisfies

e1 (t) - 2e2 (t) - e 3 (t) = 0 t > 2
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But x 3 (t) = $ 3 (t) + e 3 (t)

= 3 (t) + e1 (t) - 2e2 (t) for t > 2

= 9 3 (t) + y 1(t) - x 1 (t) - [y2 t) - 2X2 (t)] for t > 2

We know X1 (t), ^x2 (t), and 3̂ (t) from the solution of the observer

equation (4.59). Hence x3 (t) is reconstructed after 2 units of time.

The tradeoff between using the delay feedback observer (4.59) and

the usual reduced order observer is clear. Delay feedback allows us

to determine the state exactly after 2 units of time. However, the

delay feedback observer must be 3 dimensional.
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CHAPTER 5

OPTIMAL FILTERING OF LINEAR AND NONLINEAR
STOCHASTIC DELAY SYSTEMS

5.1 Introduction

After studying various deterministic aspects of the theory of

delay systems in the previous chapters, we turn our attention to

stochastic problems. In this chapter, we study the filtering problem

for stochastic delay systems of the form

dx(t) = f(xtt)dt + H'(t)dwl(t)

x(e) = x o() 66[-T,0] (5.1)

dz(t) = h(xt ,t)dt + N(t)dw2 (t)

z(s) = w 2 (s) = 0 s < 0 (5.2)

We assume the reader to be familiar with the basic elements of stochastic

processes [50], and we simply collect the basic definitions here for

future reference. All stochastic processes are defined relative to a

given probability space (0,9,P) and on an interval of the form [0,T].

The system process x(t) takes values in Rn, the observation process

z(t) in R . For simplicity, we take w1 (t) and w 2(t) to be standard

Wiener processes in R7 and Rp respectively, completely independent of

each other. The initial function x is taken to be some random function

on [-T,0], completely independent of w1 (t) and w2 (t). The maps f and h

are functionals, possibly nonlinear, defined on Vx[O,T]. H(t) and N(t)

are mxn and pxp matrix-valued continuous functions respectively. Further-

more N(t) is assumed to be symmetric and positive definite.
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We shall write dw(t) = H'(t)dw1 (t) and dv(t) = N(t)dw 2(t).

Define Q(t) = H'(t)H(t), R(t) = N (t). With this notation, w(t)

is an "unnormalized" Wiener process in Rn, with

min(t,s)
cov[w(t); w(s)] = Q(u)du

0

Similarly, v(t) is an "unnormalized" Wiener process in R , with

cov[v(t); v(s)] = R(u)du. This notation will be used

0

throughout this chapter.

The basic filtering problem is to estimate some function $ of

x(t) given the observations z(s), 0 < s < t. It is well-known that

the optimal estimate with respect to a large class of criteria, for

example minimum mean square error, is the conditional expectation

E{$[x(t)]Jzt}, where zt denotes the J-algebra generated by the ob-

servations z(s), 0 < s < t. We shall also write E{#(x(t))Iz t} as

t
$[x(t)] or E $4[x(t)]}. Our objective in this chapter is to obtain

formulas for $[x(t)] in the case of delay systems.

The nonlinear filtering problem has been extensively studied

by many authors. In particular, Fujisaki, et al., [51] have given

a stochastic differential equation for the evolution of $[x(t)]

for rather general stochastic systems, which includes our delay

model. Specifically they showed that for the delay system (5.1)

and (5.2)

-95-



d@[x(t)] = 9 $[x(t)]dt + [ [x(t)]h'(x ,t)-$[x(t)]1'(xt,t)]

R 1(t) [dz (t) -h (xt .t)dt] (5.3)

where 9Y is a differential operator. If there are no delays in the

system, the unknown terms on the right hand side of (5.3) are of the

form $[x(t)]h[x(t),t] and, assuming suitable differentiability con-

ditions, one can write another stochastic differential equation for

, leading, in general, to a countably infinite-order

system of moment equations. While there is no known method of analyzing

this infinite set of equations, at least the way in which they arise is

clear. One can thus use approximation techniques to study these

equations, and develop suboptimal filtering schemes.

Unfortunately, when there are delays in the system, the above

procedure does not go through. The reason is that one of the terms

on the right hand side of (5.3) is I[x(t)]h(xt , and since h is a

functional on the segment xt, it is not clear how one can develop a

stochastic differential equation for qdx(t)]h(x ,t using (5.3).

These difficulties motivated the development of a representation

theorem for a functional of xt. Using this representation, we derive

stochastic differential equations for certain functionals f and h.

The linear case with Gaussian distributions is then studied in detail.

Stochastic differential equations generating the conditional mean as

well as partial differential equations for the conditional covariance

are derived. This will prepare the way for the filter stability

discussions in the next chapter. We will also discuss some of the

basic difficulties in deriving stochastic differential equations for

general nonlinear functionals $(x .
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5.2 Existence, Uniqueness and Other Properties of Solutions

of Stochastic Functional Differential Equations

In order for our estimation problem to be well-defined, we need

conditions which guarantee existence and uniqueness of solutions to

the functional stochastic differential equations (5.1) and (5.2).

Since (5.1) can be solved independently of (5.2), we shall be mainly

concerned with conditions to be imposed on (5.1). Conditions on (5.2)

will be stated at the end of this section.

Existence and uniqueness of solutions to stochastic functional

differential equations of the type (5.1) have been studied by Ito and

Nisio [521, and Fleming and Nisio [53]. We state their results here.

Assume

(A.1) f($,t) is measurable and continuous on ix[O,T];

(A.2) there exists a bounded measure F on [-T,O] and a positive

constant K such that

0

If(,t)-f(',t)| < K $ I(s)-$(s)IdF(s)
-T

(A.3) on the interval [-'r,O], x(t) is continuous w.p.1 with

Elx(6)| < 0, -T < 6 < 0.

Proposition 5.2.1 Assume (A.1) to (A.3) are satisfied. Then there

exists a unique solution to (5.1) which is continuous w.p.1 and has

bounded second moment, and

EIx(t)| 4 < yeyt for some positive y < o.

Furthermore xt is a Markov process.
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The proof of Proposition 5.2.1 can be found in Ito and Nisio [52],

or Fleming and Nisio [53], and Kushner [54].

Let us now study some of the properties of linear functional

stochastic differential equations which are relevant to our later

investigations. We consider the equation

dx(t) = a(x t )dt + dw(t) (5.4)

here a(x ,t) is given by the Stieltjes integral

0
a(x t ) = J d0A(t,6)x(t+)

Here, A(t,e) is a function on RxR, jointly measurable in (t,e),

continuous in t, of bounded variation in 0 for each t, with

Var A(t,-) < m(t), a locally integrable function on Rn, where Var

[-T,0] [-T,0]

means the total variation in [-T,O]. Furthermore, A(t,6) = 0 for 6 > 0,

A(t,O) =A(t,-T) for e < -T, and it is continuous from the left in 0 on

(-T,0). We shall prove a type of variation of constants formula for

(5.4). We first prove a lemma which will be used later and may be of

some independent interest.

Lemma 5.2.1 Let G(t,s) be a deterministic function on RxR such that
T

G(t,s)| ds < m, for all ts[t ,T], G(t,s) is continuously differ-

to T T

entiable in t, and that G(ts) dt ds < co(U(t,s) = G(t,s

to to

Then the Wiener integral g(t) f G(t,s)dw(s) has a differential

[t ,T] to

on
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t
dg(t) 

= f0
O(t,s)dw(s)dt + G(t,t)dw(t)

Proof: Proving (5.5) is equivalent to proving that for any ti, t2 in

[t ,0T],

g(t 2 ) - g(t 1 ) = G(t,s)dw(s)dt + t2 G(t,t)dw(t)

t t 

t

(5.6)

By the assumption of square integrability of G(t,s), the Fubini type

theorem for Wiener and Lebesgue integrals [50], is valid, and so

Jt2t G(t,s)dw(s)dt = f f2  G(t,s)dt dw(s)
t to to t1

+ tf t2 G2 (t,s)dt dw(s)

1 s

= t G(t2 ,s)dw(s) - G(t ,s)dw(s) + 52
t t t 1

- t 2  G(s,s)dw(s)

t

The right hand side of (5.6) now yields

ft 2  G(t 2 ,s)dw(s) - Jt G(t1 ,s)dw(s)

t 0t0

G(t2 ,s)dw(s)

which is precisely the left hand side of (5.6).

Using Lemma 5.2.1, we can easily obtain a variation of constants

formula for (5.4). Let G(t,s) be the fundamental matrix associated
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with (5.4), i.e., that unique matrix which is absolutely continuous in

t, essentially bounded in s, and such that

3@(t,s) - 0IT
0

d6A(t,e)@(t+,s)

for s-T < t<s

t > s

t=s

A discussion of the properties of @(t,s) may be found in Hale [2).

Theorem 5.2.1 The solution x(t) of (5.4) can be written as

0 T t

x(t) = @)(t,)x0(0)+ d @d(ts)A(sf-s)ds x () + f (ts)dw(s)

T 0

(5.7)

Proof: The fundamental matrix Q(t,s) satisfies the conditions required

in Lemma 5.2.1. We may therefore apply Lemma 5.2.1 to the right hand

side of (5.7) to obtain

0
dx(t) J deA(t,6)(t+G,0)x0 (0)dt

+ f dif dA(t,6)(t+,s)A(s,6-s)ds x 0()

t 0
+ J I d6A(t,6)@(t+6,s)dw(s)dt + dw(t)

Applying the unsymmetric Fubini theorem of Cameron and Martin [55], we

obtain
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0

dx(t) = f d6A(t,6)x(t+6)dt + dw(t)

so that (5.7) is indeed a solution of (5.4).

Remark 5.2.1 Similar variation of constants formula for linear

stochastic functional differential equations have been obtained by

Lindquist [56]. All are related to the representation of solutions

of linear functional differential equations given by Banks [57].

The mean of x(t), x(t), can easily be seen to satisfy

d _ 0
dt x(t) = d6A(t,6)x(t+6)

x(O) = x0 () 0e[-T,0] (5.8)

whose solution is given by

0 T
x(t) = O(tO)x (0)+ f d oj (ts)A(s,6-s)ds x() (5.9)

As for the covariance associated with the solution of (5.6), we

shall be interested not only in the covariance of x(t), i.e.,

E{[x(t)-x(t)][x(t)-x(t)]'}, but also in the covariance "operator"

Z(t,6,) = E{[x(t+6)-x(t+O)][x(t+E)-x(t+()]'}, --T < 6, ( < 0.

Heuristically, this corresponds to the covariance of xt. We first

compute it and then give it a more precise interpretation in terms

of the characteristic functional of the Se-valued random variable xt'

Let e(t) = x(t)-x(t) then from (5.7) and (5.9), and using the

fact that N(t,s) = 0, t < s, we get that
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e(t+e) = @(t,0)e(0) + f d (t+6,s)A(s, -s)ds e(S) + o(t+6,s)dw(s)
T 00

Using the independence of x and w(t), we get

0

= $I(t,0)(0,0,0)@'(t,0)+ f d6J (t+e,s)A(s,6-s)da

-+(0,6,0) '(t,0)

0 T

+ f-T@(t , 0)d E0 (0,0,6)A'(s,6-s)@'(t+ ,s)ds

+ da d (t+6,s)A(s,6-s)ds d(0,$ a)
T -T 0

- A' (s,r1-s) ' (t+E,s)ds

+ to(t+6,s)Q(s)@'(t+ ,s)ds (5.10)

0

If we view xt as a W-valued random variable, then its character-

istic functional $(y,x t) is defined by

(y,x t) = E exp i <y, xt>

where y is an element of W*, the dual space of W, which is the space

of functions of bounded variations on [-T ,0] with y(O) = 0, and <,>

is the pairing between W* and e defined by

<ysx> = 0 dy(O)x(O)

-T
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0
Recognizing that for each t, <y, xt> = f dy(6)x(t+) is a Gaussian

random variable, we can easily evaluate

iyxt 't>- 1/2 Q (y)5.11)

where xt is given by (5.9) and Q t(y) is a quadratic form in y given by

0
Qt(y) = f JT dy(6)Z(t,6, )dy'(E) (5.12)

The form of $(y,x t) implies that we may interpret xt as a S-valued

Gaussian random variable for eact t, with E(t,O,E) as its covariance

operator. These considerations will be useful later in section 5.5

when we study the linear filtering problem for delay systems.

We now state conditions concerning eq. (5.2).

(A.4) h($,t) is measurable and continuous on Wx[0,T].

T
(A.5) f E[h(xt,t)'h(xtt)]dt < o

0

We note that (A.1) - (A.5) are not the weakest assumptions for which

our results are valid. However, we have not striven for more gener-

ality because this will only introduce technical complications without

adding insight into the optimal filter structure for delay systems.

From now on, (A.1) to (A.5) will be assumed to hold.

5.3 A Representation Theorem for Conditional Moment
Functionals

In this section, we derive a representation theorem for the

conditional expectation of functionals of the form $(x ) given the
t
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observations z(s), 0 < s < t. As before, we shall denote a{z(s), 0 < s < t}

by zt, and we shall call objects of the form E{#(xt 1zt} conditional

moment functionals. Our approach makes use of the Girsanov measure

transformation technique as given in Wong [58]. Using the represent-

ation theorem so derived, stochastic differential equations can be

obtained for suitably smooth functionals $, f, and h.

We first note that we can rewrite (5.2) as

N1 (t)dz(t) = N1 (t)h(xt,t)dt + dw2 (t) (5.13)

t

Clearly z(s), O < s < t and f N 1 (a)dz(a) A z1(s), O < s < t

generate the same a-algebra. Define h1 (xtt) = N 1(t)h(xtt).

In deriving the representation theorem, we shall use (5.13), i.e.,

z (t) and h1 t(xt), rather than (5.2). The reason for introducing

z1(t) and h1 (xt ) is that the absolute continuity results given

in Lemma 5.3.1 are phrased in terms of standard Wiener processes.

Define a new measure P on (,f) by the formula

dP ~ T 1
= exp [ h(x, t)dw2 (t) - h (xt,t)'h (x t)dt]

dP f 13  2 j
0 0

(5.14)

Lemma 5.3.1 P is a probability measure with the following properties:
0

(a) Under P, z1 (s), 0 < s < T has components that are in-

dependent standard Wiener processes.

(b) Under P0, the processes z (t) 0 < t < T and x(t), 0 < t < T

are independent.

(c) The restriction of P to c{x(s), -T < s < T is the same as
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the corresponding restriction of P.

(d) P << P and

dP =exp h (xt)'dz (t) - h (xt,t)ht(x ,t)dt]dP f e1 it 1 1 1 T t

0 0

(5.15)

Proof: The conditions imposed on the processes involved give rise to

a virtually identical situation to that of Proposition 5.1, Chapter 6

of Wong [58]. The proof there applies without change to our case.

Let us denote integration with respect to P and P by the ex-

pectation operators E and E0, respectively. The reader should note

that the true measure relevant to our estimation problem is P. The measure P0

is strictly a device for obtaining the representation theorem.

Let us write ,t for the least a-algebra containing G{z(s), 0 < s < t}
t

and a{x(s), -T < s < t}. It is well-known [59] that the function L
- - t

defined by

Lt = exp[ h'(x ,s)dz (s)- h{(x ,s)h(xs,s)ds]

0 0

= exp[ h'(xs)R 1 (s)dz(s) - h'(x,s)R 1 (s)h(x,s)ds]

(5.16)

is a (?jtP ) martingale. Let # be a real-valued measurable function
t 0

on W, with the property that E $(xt)I < C0. Then we have the following

(compare [60])

Lemma 5.3.2 The conditional expectation of #(x ) given z can be

written as
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E[4( )Iz] =E [$(xt)Ltlzt]
E[t(x t _ o E Lt zt] a.s. P (5.17)

t E 0 [Ltzt

Proof: Since = LT, it is known [61] that
dP T

0

E[4(x )Izt] = E [$(x )LT zt]
t Eo [L zt]

Using the properties of conditional expectations and the fact that

L is a (t P) martingale, we can write
t Ot' 0,P

E O[t)L Tz t] = E{E0(xt)LT.t]lz t}

= E{P(xt)E0[L t] Izt

= E0{4(xt)Lt~zt}

Similarly, E [LT Izt] = E o[Ltz t], and the lemma follows.

In what follows, we shall omit the qualification of almost sure

equality for conditional expectations. Such qualifications will

always be considered understood when conditional expectations are

involved.

An application of the exponential formula [59] to the functional

Lt yields

Lt = 1+ t Lsh'(xss)R 1(s)dz(s) (5.18)

We shall recast the numerator of (5.17) into a more convenient form

for later calculations. To that end, we make one more assumption:

(A.6) f E1$(xt)h(xt,t)! 2dt < 00.

0
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From now on,

Lemma 5.3.3

(A.6) will be assumed to hold. We then have

E[ t
E 

O

= t E0 t(xt)Lsh'(xs,s)Izt]R~1(s)dz(s)

(5.19)

Proof: An almost identical lemma is proved in Zakai [62]. His proof

can be adapted to our case without difficulty.

Lemma 5.3.4 We can then write the numerator of (5.17) as

E [O(xt)Lt I = E [WX t)] + E0{E (xt )IXs]Lsh'(xs,s)Izs}R 1(s)dz(s)

(5.20)

Proof: Applying (5.18), we can write

E [ (xt)L t z] = E t)(1+ t

= E [(x )Izt ]+E [0 t' 0

Lsh'(x ,s)R 1 (s)dz(s))|z tl

J t )L h' (xs, s)R1(s)dz (s) Iz
O 5 5.21)

Since under P , x(t) and z(t) are completely independent,

EO[$(xt)]. Combined with (5.19), we get

] = E [ (t )]+

E o[t(x)Izt] =

E0[$(xt)Ls (xs)I zt]R 1(s)dz(s)

t -
Now 3 E ( t)L h'(x s)I zt ]R 1(s) dz (s)

0

= 
t

0

Ef{E [f(x )L h'(x ,s)zt VxS z t}R (s)dz(s)
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= ft E {E [$(xt )Iztvxs]Lsh(xs ,s) Izt}R 1(s)dz(s) (5.22)

since L sh' (x ,s) is measurable with respect to the CT-algebra z vx , the

smallest C-algebra containing z and a{x(t), -T < t < s}. Using the

Markov property of xt and the independence of x(t) and z(t) under P ,

we get

t E0{E [(xt)z
t vxs]Lsh'(xs,s)|z

t}R 1(s)dz(s)

= ft E {E [(xt)x s]Lsh'(xs)zt}R~1(s)dz(s)

=f E 0(E 01Vt ) s ]L sh'(x s s)|Z s}R 1(s)dz(s)

(5.23)

The lemma follows from (5.21), (5.22) and (5.23).

In order to get the representation for the conditional expectation

E[$(xt)Iz t ], we need to evaluate the denominator of (5.17). This is

done in the following lemma.

Lemma 5.3.5 E (Lt izt 1- ft E0(LSz ) 1 E[h'(x ,s)Iz ]R 1 (s)dv(s)

0 (5.24)

t
where v(t) = z(t) - E[h(xss)Iz s ]ds is the innovations.

Proof: Since Lt = 1 + t Lsh'(xs s)R~1(s)dz(s) Lemma 5.3.3 yields

0

Eo (Ltzt) = 1 + ft E[L sh'(xs,s)|zs ]R~1(s)dz(s)

0
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Applying the Ito differential rule to the function Eo(Ltiz t)-1 gives

dE0(Ltzt -l =-E0 (Ltzt -2 E0(Lth(xt,t)|z1)R~1(t)dz(t)

+ Eo(Ltizt)-3E0[Lth'(xt,t)zt]R 1(t)E 0[L th' (xt,t)zt ]dt

= - E (Lt Iz t) E[h(x ttzt]dz(t)

+ E (Lt t -lE[h'(xtt)zt]R 1(t)E[h(x ,t)Izt]dt

= - E (Lt zt) -lE[h(x tt)|zt]R 1 (t)dv(t) (5.25)

Since (5.25) is equivalent to (5.24), the lemma is proved.

From Lemma 5.3.2, we know that E[#(xt )Izt] is given by the product

of the right hand sides of (5.20) and (5.24). In order not to complicate

the computations too much, we evaluate one of the terms separately and

state it as a lemma.

Lemma 5.3.6 E 0(Ltzt)-1 ft E0{E O xt xs ]Lsh' (x s,s)I z}R1(s)dz(s)

0

- t Es{E [<(xt) s][h'(xs,s)-h'(xs)]}R~1 (s)dv(s)

t

+ E0(L z ) E [$X )]h'(x s,s)R (s)dv(s)

(5.2

Proof: For convenience, define the functions
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p(t,s) = E0{E [#(xt)Ix s]Lsh'(x s,s)zsIR1 (S)

q(s) = E (L sIzs)-1(x ,s)R 1S)

Using (5.24), we can write the left hand side of (5.26) as

I t
0

p(t,s)dz(s) - J t p(t,s)dz(s) I t
0

q(s)dv (s)

By properties of Ito integrals

It0

[63], (5.27) can be rewritten as

ft 
fsp(t,s)dz(s) - p(t,u)dz (u)q(s)dv(s)

sp(t,s) f q(u)dv(u)dz(s) - I t
0

p(t,s)q' (s)ds

= t E (L z ) 1p(t,s)dz(s) - I t
0

- f p(t,u)dz(u)q(s)dv(s)

(where we have used Lemma 5.3.5)

E (Lszs - 1p(t,s)dv(s) - t fs
0 0

p(t,s)q' (s)ds

p(t,u)dz(u)q(s)dv(s)

(5.28)

-110-

(5.27)

- f

= t
0



p(t,u)dz(u)q(s)dV(s)

{E $(xt)] +

t

+ f
0

J s0 p (t,u)dz (u) }q(s)dv(s)

E0 [ t)]q(s)dV(s)

{E0[E (4 xt s) S) +fE0[E[E((xt xsvxu xu

SL uh' (xu u) I zu]R (u) dz (u) }q(s)dV(s)

+
0

E 0Mx t)]q(s)dv(s)

(where we have used the smoothing property of conditional expectations)

{E0[E (4(xt) x + SE[ [ E (xt )x s u]Luh

0
(s ,u) Izu

*R~1 (u)dz(u)}q(s)dv(s)

+ E0LI(xt)]q(s)dv (s)

0

(using the Markov property of x t

Es[5E0(t s)]ES[h'(x ,s)

lt

+ t
0

E0(LsI s )

IR 1(s)dv(s)

E0 (xt )h s(x ,s)R 1(s)dv(s)

(5.29)
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(where we have successively used Lemma 5.3.4, the definition of q(s),

and Lemma 5.3.2). Combining (5.28) and (5.29) gives the conclusion of

the lemma.

We are now ready to state the representation theorem for the

conditional moment functionals.

Theorem 5.3.1 Suppose $: W + R is such that El$(xt)I < oo, and (A.1) -

(A.6) hold. Then we have the following representation for the con-

ditional expectation of $ given zt.

St
$(x) = E O[Pt)] + Es{E [$(xt)x s][h'(x ,s)-h'(xs ,s)]}'

-R 1(s)dv(s) (5.30)

Proof: From Lemmas 5.3.2 and 5.3.4, we know that

$(xt) E 0[(t )]o0(L tz) + f E 0{E O t )xs ]L sh'(xs 9s)z}

0

R 1(s)dz(s)E0(Lt zt)-

(5.31)

From Lemma 5.3.5, we conclude that

E WX t)]Eo(Ltlz
t -

= EOM t] t E0 t(x)]E0(L zs)l'(x, s )R 1(s)dv(s)

(5.32)

Substituting (5.32) and (5.26) into (5.31) gives (5.30). The proof is

completed.
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Corollary 5.3.1 The smoothed estimate E [x(t+6)], -T < e < 0, is

given by

Et [x(t+O)] = Et+8 [x(t+G)]+ t

t+6

Es{E [x(t+O) IxsI

[h'(x s,s)-h' (x s,s)]}R (s)dV(s)

(5.33)

Proof: Using Theorem 5.3.1,

Et [x(t+O)] = E [x(t+6)]+
0

= E [x(t+O)]+

+ fL

t+e

ftEs(E 0[x(t+e)lxs ][h(x s,s)-h'(x s )]}R1(s)dv(s)

T Es{E [xt+)x]h(ss-'xs]}
0

.R1 (s)dv(s)

E5 {E [x(t+G)!x ][h'(x ,S)-h'(xS)]}R 1(s)dv(s)
0 s s

SEt+6 [x(t+6)]+

1t+e
Es{E [x(t+6)x s][h'(x ,s)-h'(x,,s)]}-

*R 1(s)dv(s)

which is precisely (5.33).

Remark 5.3.1 Theorem 5.3.1 is a generalization of the corresponding

representation results for nonlinear filtering of stochastic systems

without time delays. While the measure transformation techniques

employed here has been used before in connection with systems without

delays [58], [62], the present form of the representation appears to

be novel even when specialized to systems without delays. The reason
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for this is that in [58] and [62], the authors were interested in

deriving equations for the unnormalized conditional density. They

did not, therefore, give explicit formulas for the true conditional

moments. In our case, conditional densities for the xt process do

not even make sense. This motivated us to derive the Representation

Theorem 5.3.1 for conditional moment functionals. We feel that the

present form of the representation is much more convenient to use

when we derive stochastic differential equations for conditional

moment functionals. Furthermore, it shows clearly the role played

by the infinitesimal generator of the Markov process xt. In the

next two sections, we shall apply Theorem 5.3.1 to derive stochastic

differential equations for the nonlinear and linear filtering problems.

5.4 Stochastic Differential Equations for Nonlinear
Filtering of Delay Systems

While Theorem 5.3.1 can be thought of as solving our nonlinear

filtering problem abstractly, it does not give a recursive solution.

That is, for any fixed t, formula (5.30) is valid. However, knowledge

of E[#(xt )Izt] and the observations z(s), t < s < t + A, is not

sufficient to determine E[#(x t+A)z t+A]. In fact, we must completely

re-process our past observations. For implementation purposes, one

would like to obtain a stochastic differential equation for the

evolution of E[#(x )Izt]. As is expected, this will require certain

smoothness conditions on the functional #. In this section, we shall

investigate the following question: under what conditions on # can we

obtain a stochastic differential equation for E[#(xt) zt ]?
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Let us first make a few preliminary calculations. Let C > 0 be

fixed and let h(x ,s) = E[h(x ,s)jzs]. Then

E[#(xt+£)izt+E ] - E[$(xt)Izt

t+C
= E95t+c x t )]+ f E{E0 It+: s][h(xs s)-(x s) ] z}

-R 1(s)dv(s)

- ft E{E (x t )x][h(x ,s)-h(xs,s)]'Izs}R~ (s)dv(s)

0

= xt+C t)]+ [E{Etxt+ (x t f s

[h(x Ss)-h(xs s)]' }R~1(s)dv(s)

t+E

+ ftE{E 0(t+c s [h(x s)-h(x ,s)] zs}R~(s)dv(s)
t

(5.34)

We will be primarily interested in the limit as £ -+ 0. The last term

in (5.34) is straightforward to evaluate in that case. The difficult

calculation is that of evaluating terms of the form

E 0 (xt+E) t(xt)x s

= E {E 0 X t+ )p(xt )IxtvxsIx s

= E {E [MXt+E -( xt )Ix t Ix

where we have used the Markov property of xt. The evaluation of

E 0 [xt+C )-( t )xt ] corresponds to the determination of the in-

finitesimal generator of the Markov process xt'
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Let us assume for the time being that the functional # is in

the domain of the generator, dt of the Markov process xt. Then it

is true (see Dynkin [64 ]) that

E [PX )I Ix - (x ) =ft Eo[.4(x )lx]du (5.35)E0$(t s s) = E u u s ]u(.5
s

In this case, we have the following

Theorem 5.4.1 Let $ satisfy the conditions of Theorem 5.3.1. In

addition, let $(x t) be in the domain of the infinitesimal generator

d of x and suppose that
t

E [d $(xt)]h(xt,t)I 2dt

0

Then the functional $(x t) satisfies the stochastic differential equation

At At -1
d$(xt) = E[z (xt) ]dt + E[$(x )(h(x ,t)-h(x,t))'jz ]R~ (t)dv(t)t t t t tt

(5.36)

Proof: We start with (5.34). For simplicity, let eh(t) = h(xt,t)-h(x tt).

Then

E{E [$xt+ t4x sle'(s) zs}R- 1(s)dv(s)

= t E{E {E[(x+ )-(x)Xlx }e'(s) lzs}R 1 (s)dv(s)
0

to 0 t+

= E{E{ Eo Wut(x )x]dulxs}el(s)lzs}R~A (s)dv(s)

t
fot 0t+c

= f E{ t+EEoLu u(x )lxs]el(s)lzs}duR~l(s)dv(s)

0 ft
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f t+E t
t 0

E{E[,/u(x) IX ]e (s) zS}R 1 (s)dv(s)du (5.37)

using Lemma 5.3.3.

Next,

E{E M )t+E Ix]e (s) Izs }R (s)dv(s)
t +-

tE

E{[$(xs)+ t

t

-JELP(x )e'(s) 1z ]R1 (s)dv(s)

t

t+E t+6
+ EfE s)Ix]e(s)zs}R (s)dv(s)

+t s (5.38)
Finally

= E{E L~xt+6) - t(X dIxt]

= E0{ ft+Er[ $(xu Ixt]du}

t+E

ft+6E 
ux u) ]du

t

= J E [d@ (x zu ] du-
t

t+s u

Jt 0E{Eo u(u)s ]e'h(s)jz}R (s)dv(s)du

(5.39)
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using the representation in Theorem 5.3.1. Adding (5.37) - (5.39),

we get

E[#(x t+E)zt+E] - E[(xt Izt]

= E[jt+ $(xu) zu]du+ f E[#(x )e(u)Izu]R 1 (u)dv(u)
t t

+ t+Et+E{E (e4(x )Ix ]e'(s)zs}duR 1(s)dv(s)
f fo u u sh

t s

- E{Eo[t4$(xu)Is]e'(s)Iz }R~ (s)dv(s)du
t f(5.40)

Another application of Lemma 5.3.3 shows that the last two terms of

(5.40) add to zero. The proof is completed.

Theorem 5.4.1 is a generalization to systems with delays of the

usual formula for conditional moments of ordinary diffusion processes.

While the form of the stochastic differential equation is exactly the

same as that for diffusion processes, there is a subtle difference.

In the diffusion process case, x(t) itself is a Markov process. In

the delay case, while x(t) still satisfies a stochastic differential

equation, it is no longer a Markov process. This special structure

of stochastic delay systems is clearly shown in (5.36), where the

infinitesimal generator of xt plays a crucial role. Thus, in
t

order to apply Theorem 5.4.1, we need to characterize the domain

of the infinitesimal generator of the Markov process xt. These are

functionals for which the limit
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lim {E[$(xt+h )Ixt ) (5.41)
h + 0 (5'41)

necessarily exists. This immediately rules out functionals of the

form $(x ) = q[x(t+O)] for some e E (-T,O). For in this case,

E[$(xt+h)xt] = E{$[x(t+6+h)]Ix t

= $[x(t+6+h)]

whenever -T < 0 + h < 0. Since the sample path x(t) is not differ-

entiable, the limit in (5.41) does not exist. It is not possible

therefore, to derive a stochastic differential equation for a

functional of the form $[x(t+6)] using Theorem 5.4.1.

There are certain special classes of functionals $ which are

in the domain of the generator.ft. These are those considered by
t

Kushner [54]. We shall simply state these results.

Case 1: Suppose the functional $(x) $= [x(t)], and is twice con-

tinuously differentiable in its argument, then

oIt[x(t)] = f(xtt)'$ [x(t)] + tr Q(t)$ (x(t))t t x 2 xx

where is the n-vector whose i th

whr component is 9 [x(t)] Sub-
x9x

stituting into (5.36) gives

t
d@[x(t)] = E {f(xt [x(t)]+ tr Q(t)$[x(t)]}dt

-1
+ Et {[x(t)][h' (xtt) -h'(xt ,t)]}R (t)dv(t)

(5.42)
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This is precisely the formula derived in Fujisaki et al., [51]

using a different technique. We shall denote the operatord4
t

in this special case by Y . In particular, the conditional mean

ix(t) satisfies

t tlx~)} -1 (~vdx(t) = E [f(xt,t)]dt + Et{x(t)[h'(x tt)-h'(xt)])R (t)dv(t)

(5.43)

Equation (5.43) and the formula for the smoothed estimate, (5.33),

will be useful in discussing the optimal linear filter.

O
Case 2: Let $(xt) = $(e)gx(t+6), x(t)ldO where $ is continuously

differentiable on [-T,0] and g is twice continuously differentiable

in its second argument. Then

r/t t(x) = $(O)g[x(t),x(t)]-$(-u)g[x(t-T),x(t)]

0
5- $(6)g[x(t+6),x(t)]d6+ $(e)Jtg[x(t+6),x(t)]d6

~T j- (5.44)

where 2 is the operator defined in Case 1 and acts on g as a function
t

of x(t) only.

Case 3: Let $(xt) = D[F(x t)] where D is a twice continuously dif-

ferentiable real-valued function, and F(xt) = $(6)g[x(t+6), x(t)]de

is the type of functional described in Case 2. Then

,d4 ) (a) ,d F (xt 2 - D (a)0-t t a=F(xt ) a t 2 a I=F (xt
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where
0 0

G = j $ (6)(1) g [x(t+6),x(t)]g [x(t+),x(t)]Q. .(t)d6dT1
T J-T i~j Oi Oj

and g denotes partial differentiation of g with respect to the i h

component of the second argument.

From the above special cases, we can see that basically we need

twice continuous differentiability of $ with respect to the dependence

on x(t), and Frechet differentiability with respect to the dependence

on the piece of the trajectory xt. As discussed before, this rules

out functionals of the form $[x(t+O)],Q c [-T,0). Hence for nonlinear

systems with point delays, any attempt in deriving stochastic differ-

ential equations for conditional moment functionals will have to face

the difficulty of functionals not being in the domain of the generator

of the Markov process xt. For example, as in the multipath communica-

tion problem mentioned in Chapter 1, if the observation process is of

the form

dz(t) = {h1 [x(t)]+h 2 [x(t-T)]}dt + dv(t)

then for a twice continuously differentiable $[x(t)], we get

d5[x(t)] = + [(\x + (~hx

-$(x(t))h (x(t)) - $(x(t))h 2 (x(t-T))]'R
1 (t)dv(t)

(5.45)

If we try to write stochastic differential equations for the unknown

quantities on the right hand side of (5.45), we see that this cannot
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be done for all the unknowns, since $(x(t))h 2(x(t-T)) does not lie

in the domain of.d. Of course, there are many physical problems
t

(for example, radar problems with spread targets [11]) where the

observations are of the form h(xt) = fP()H[x(t+6),x(t)]d6.

-0

Moreover, one can approximate point delays by distributed delays of

the above form. This will allow us to write a stochastic differ-

ential equation for .[x(t)]h(x) However, we will then get the

tt
unknown gf~ ()Ij in our e quat ion f or x.)]~ If $(-T ) # 0 ,

olt$[x(t)]h(xt) will contain a term with point delay (see Case 2 above),

and we are faced with the same problem as before. In general, if

the functionals involved are in the domain ofd 1, i = 1,.. .n, we can
t

write n coupled stochastic differential equations involving the

moment functionals, just.as in the diffusion process case. It should

be clear from the above discussion that this puts rather severe re-

strictions on the functionals involved. Thus, the study of approx-

imations to the optimal nonlinear filter for delay system remains an

important and open problem.

There is, however, one special case where the optimal filter can

be completely specified even when there are point delays in the system.

This is the linear case with Gaussian distributions and will be treated

next.

5.5 Optimal Filtering of Linear Stochastic Delay Systems

We consider the system defined by
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dx(t) = a(x ,t)dt + dw(t)

x(e) = x (e) e £ [-T,0] (5.46)

dz(t) = c(x tt)dt + dv(t) (5.47)

Here a: Vox[0,T] + R

c: Wx[0,T] + R

are continuous linear functionals given by

0
a(xtt) = d6A(tG)x(t+6)

0
c(xt ,t) = f0 d0C(t,0)x(t+e)

-T

where A(t,e) and C(t,e) satisfy the same conditions as those imposed

on such functions in section 5.2. Also, we take x to be a Gaussian

process on [-T,0] with sup Elx0(8)1 < oo. By a similar argument to

the case without delays [56], it is readily seen that the conditional

distributions of x(t+e), for any 0 6[-T,01, given z(s), 0 < s < t,

is Gaussian. For greater clarity in the subsequent exposition, we

shall write x(tIt) = E(x(t)Iz t } and ^(t+6|t) = E{x(t+e|z t }, 6[-T,0].

Using (5.43), we immediately obtain the following stochastic differ-

ential equation for the conditional mean

0
dx(tIt) = .10 deA(t,e) (t+It)dt

0
+[ fTE t(x(t ) x'(t+6|It))d 0C'(t,6)

-- T

-(t t)x'(t+0|t)deC'(t,0)]R (t)dv(t)

(5.48)
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Here the innovations prccess v(t) is given by z(t)- JJ d C(s,e)R(s+ Is)ds

0 -T

and hence depends, in general, on the smoothed estimates i(s+6es),

-T < e < 0, 0 < s < t. Define the "smoothed" conditional error co-

variance as

P(t,6,) = Et{[x t+6)-2(t+t)][x(t+ )-2(t+ it)]}}

Then (5.48) can be rewritten as

0

d'X(tlt) = fTd6aA(t ,6e) X'(t+6|it)dt
-T

+ 0 P(t-,)dec'(t,1)R (t)d(t) (5.49)

fT

To evaluate the unknown terms on the right side of (5.49), we use

(5.44) to write the smoothed estimate as

$(t+6|t) = i(t+G|t+)+ f Es{x(t+G)[c'(x ss)-c'(x ss)]}R (s)dv(s)

t+6

= x(t+|t+)+ f P(s,t+6-s,E)d C(s,Q)'R 1 (s)dv(s)

t+6 -T
(5.50)

for e E[-T,01.

An inspection of (5.49) and (5.50) shows that the optimal linear filter

is completely characterized by X(t+6|t), -T < 6 < 0, and the "smoothed"

error covariance function P(t,8, ). It remains only to derive ap-

propriate equations for P(t,6,). Since the derivations are quite

lengthy, we will present them in Appendix B, and state the final

result here as
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Theorem 5.5.1 The optimal. filter for the system (5.46), (5.47) is

characterized by the following sets of equations:

(i) Generation of the condition mean x(tIt):

0

d2(tdt) = dA (t,6)i2(t+6|t)dt

-T

+ J P(tO,6)d6C'(t,e)R (t)dv(t) (5.51)

(ii) Generation of the smoothed estimate i(t+6|t), -T < 6 < 0:

4(t+it) = 2(t+6It+6)+ ft f P(s,t+O-s, )d C(s,)'R' (s)dv(s)

t+6 -T (5.52)

(iii) Generation of the smoothed error covariance P(t,e,F§):

d 0 .0
dt P(t,0,0)= P(t,0,e)d A'(t,6)+ d6A(t,6)P(t,6,0)

-T -T

- J0 0 P(t,0,6)d6C'(t,6)R 1 (t)d C(tE)P(t,E,0)+Q(t)

(5.53)

0
P (t,6,0)= P (t ,6,)d A' (t ,E)

-T

- I I P(t, ,)d C'(t,5)R 1(t)d C(ta)P(ta,0)

T T (5.54)

/7 P (t,6,)= - P(t,6,6)dGC'(t,3)R (t)d C(ta)P(ta,)

~T (5.55)

where r is the unit vector in the (1,-i) direction, a is the unit

vector in the (1,-l,-1) direction, and P (t,6,O) and P (t,6,E) are
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the directional derivatives of P(t,G,O) and P(t,8, ) in the directions

n and a respectively. The initfal conditions are given by

x(0|0) = x (0), x(6|0) = x (0) 6 E[-T,0)
0 0

P(0,6,5) = E (6,) = E{[x o(6)-xo(6)][xo()-xo(]'

(5.56)

A few comments about Theorem 5.5.1 is in order. Notice the great

similarity as well as the striking differences in the form of the

solution to the filtering problem for linear delay systems with

Gaussian distributions and the corresponding solution for linear

systems without delays. In our case, we need to characterize not only the

conditional mean 2(tlt) (as in the non-delay case), but also the

smoothed estimate 9(t+6|t), not only the estimation error covariance

P(t,0,0), but also the smoothed error covariance function P(t,O,E).

The complexity of the solution is clearly considerably increased when

there are delays in the system. It is hoped, however, that the results

presented in this and the next chapter will provide a theoretical

foundation for the study of implementable filters for delay systems.

Note that our development only shows that P(t,6,E) is continuous

and has directional derivatives. Of course, if P(t,6,E) were actually

differentiable in (t,6,C), we could rewrite

72 P (t,6,0)=( - P(t,6,)

and 3 P (t,,0)=

We would then obtain partial differential equations for P(t,O,E).
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Theorem 5.5.1 completely solves the filtering problem for general

linear stochastic delay systems. Notice that although functionals of

the form $(x t) = x(t+O), -T < 0 < 0, do not lie in the domain of the

generator of xt, we are still able to calculate the directional de-

rivatives of the covariances. This is a consequence of the linearity

and Gaussian assumptions.

Let us make a few remarks on the relationship of our work to past

investigations. The linear filtering problem for systems with only

point delays was first considered by Kwakernaak [65], whose results

are similar to those presented in this section. He restricted his

attention to linear filters and followed the approach of Kalman and

Bucy [66], and his derivations were formal. In particular, he used

partial derivatives liberally when these were not defined. His

"proofs", therefore, were far from satisfactory. Lindquist also

considered the linear filtering problem in [56]. However, he only

gave a complicated integral equation for the filter gain, and did

not derive equations for the covariances. His results are thus in-

complete and do not display the structure of the filter equations.

In particular, they are not suitable for the filter stability in-

vestigations that we pursue in Chapter 6. Recently, Mitter and

Vinter [67] have studied the linear filtering problem from the

viewpoint of stochastic evolution equations. While they did take

in account some of the special features of delay systems, they had

to exclude point delays from their observation model, an unsatis-

factory restriction from various points of view. Furthermore,

their derivation of the optimal filtering equations proceeds via a
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dual control problem. As such, their approach cannot be extended

to the nonlinear situation. By contrast, our approach enables us

to allow a very general model for the stochastic delay system under

consideration, including distributed as well as point delays. Co-

variance equations have been derived rigorously and the structure

of the optimal filter is clearly displayed. We feel, therefore,

that our results on linear filtering are the most complete and

satisfactory to date.

In the special case where x 0 0, a(x ,t) = Ax(t) + Bx(t-T),

c(x t ) = Cx(t),Q, R constant matrices, it can be shown by exploiting

the connection between linear optimal filtering and optimal control

with quadratic criterion that P(tGe) are in fact continuously

differentiable in (t,6,E). When we compare the solutions to the

linear optimal control and optimal linear filtering problems in

Chapter 6, it will be helpful to use the notation

P (t) = P(t,0,0) (5.57)

Pl(t,6) = P(tO,0) (5.58)

P2(,e) = P(t,, ) (5.59)

In this case the optimal filter is given by the equations

dx(tlt)=A"(tlt)+B'(t-Tt)+P0 (t)C'R [dz(t)-C$(tjt)dt] (5.60)

t 2-(st-T-s,0)C'R^1[dz(s)-C(sls)ds]

T 
(5.61)

^(6|0) = 0 -T < < 0
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dP(t) = AP (t)+P (t)A'-P (t)C'R 1CP (t)+Q+BP (t,-T)+P'(t,-T)B'
dt00 00 0 1 1

(5.62)

- P,(t,6) = Pl(t,)[A-C'R 1 CP0(t)]+P 2 (t,,-T)B' (5.63)

-tP2(t,8,/)2= -P (t,e)C'R~ CP'(t,E) (5.64)

with P (0) =P 1 (0,8) = P 2 (01M) = 0 -T < < 0

P (t,0 = P0(t)

P 2(t,,0) = P 1 (t,8)

P (t) = P' (t), P2(t,8,5) = P (t,6,) (5.65)
o o 2 2

We shall be using these equations extensively in the next chapter.

Notice that in this special case, x(t t) depends only on

X(s S), t-T < s < t, and from (5.60) and (5.61), we can obtain

an explicit delay equation for 'x(tIt). This is because we have

no delays in the observations. If c(xt,t) were of the form

C x(t) + C x(t-T), then we would have the following equations

d'x(tlt)=A^X(tit)+B"X(t-T t)+[P (t)C'+Pl(t,-T)C ]R~1
o 1

- [dz (t )-C x(tit ) dt-C x(t-T t )dt ] (5.66)

^X(t-Tlt)=^X(t-Tlt-T)+ tP 2(s,t-T-s,0)C'+P2(s,t-T-s,-T)C ]R~-

t -T

[dz(s)-C 0x(sls)ds-C X(S-sds (5.67)
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If we substitute (5.67) into (5.66), we see that 9(tlt) depends not

only on ix(sjs), t-T < s < t, but also on delayed smoothed estimates

x(s-Tls), t-T < s < t. The presence of the delayed smoothed

estimates prevents us from obtaining a delay equation for 2(tlt).

The additional complications which delayed observations introduce

will be discussed further in section 6.7.

It is Worth pointing out that in the case where x 0 0,

x(t+6|t), -T < e < 0,can be expressed as a Wiener integral with

respect to the observations z(s), 0 < s < t, i.e.,

t
x (t+6|t) = JK(t,O,s)dz(s) (5.66)

0

for some kernel K(t,O,s). To see this, note that x(t) is a Gaussian

process. Hence the orthogonal projection of x(t+O) onto the Hilbert

space spanned by the observations z(s), 0 < s < t is the same as the

conditional mean. Since the orthogonal projections can be expressed

in the form of the right hand side of (5.66), so can 9(t+O|t). This

fact will be used in Chapter 6.

So far, we have studied optimal filtering for stochastic delay

systems on a finite time interval. To make the filtering theory of

delay systems more complete, we shall study the asymptotic behavior

and stability properties of the optimal linear filter in the next

chapter.
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CHAPTER 6

STABILITY OF LINEAR OPTIMAL FILTERS AND CONTROL SYSTEMS

6.1 Introduction

In the previous chapter, we derived optimal filter equations for

linear and nonlinear stochastic delay differential systems. In this

chapter, we study the stability of the linear optimal filter for delay

systems. We shall concern ourselves primarily with stochastic systems

with delays in the system dynamics, but no delays in the observations.

Extensions to the general case, including delays in the observations,

will also be discussed. In proving the stability results, we make

essential use of the duality between optimal filtering of linear

stochastic delay systems and optimal control of linear delay systems

with quadratic cost. We shall therefore begin the development with a

summary of the known results for optimal control of linear delay systems

with quadratic cost, and give some new results on the asymptotic sta-

bility of the optimal closed-loop control system. This brings into

focus the role played by the concepts of stabilizability and observa-

bility. Next, we give a duality theorem which establishes the connection

between optimal linear filtering and optimal control of linear delay

systems. This enables us to identify the gains of the optimal linear

filter with the gains of a "dual" control system in an appropriate

way. We can therefore exploit the known convergence of the control

gains to infer the convergence of the filter gains. The stability of

the optimal filter is then established by constructing a Lyapunov

functional. Once the stability of the optimal linear filter has been
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established, it is relatively straightforward to prove the asymptotic

stability of the optimal linear stochastic control system, drawing

upon known results on the separation theorem for stochastic delay

systems [56], [68].

6.2 Optimal Control of Linear Delay Systems with
Quadratic Cost

The problem of optimal control of linear delay systems with

quadratic cost has received considerable attention in recent years.

Various methods [69] - [73] have been devised for solving this problem.

The simplest version of the problem can be formulated as follows:

We are given a linear constant delay system of the form

dx(t) Ax(t) + Bx(t-T) + Cu(t)
dt

x(6) 6 6 [-T, 0] (6.1)

Our choice of function space will be W, although basically the same

results hold for other choices, such as M [29] , [73]. The admis-

m
sible control set U is the set of R -valued L2 functions on [0, T].

The cost functional is given by

T

JT(u,) =f [x'(t)Qx(t) + u'(t)Ru(t)]dt

0

where Q and R are symmetric matrices of appropriate dimensions, Q > 0,

R > 0. The objective is to find a control u e U such that JT(u, ) is

minimized. The cases when T is finite or infinite have been studied.

We shall briefly survey the known results and then give some extensions.
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We start with the case when T < oo. Then it is well-known [69] -

[73] that the optimal control can be expressed in feedback form by

u*(t) = -R 1C'K (t)x(t) - R 1C' J o
-T

K (t,e)x(t+6)dO (6.2)

The feedback gains satisfy the following coupled set of partial dif-

ferential equations

d K (t) = -A'K (t) - K (t)A + K (t)CR 1C'K (t) - Q - K (tO) - K'(tO)
dt o o o o o

(6.3)

- K(t,e) = -[A'-K (t)CR 1C']Ky(t,e) - K2(','6)

hKe K(tc)CR1 C'K (t 

The boundary conditions are

(6.4)

(6.5)

K (T) = K 1(T,0) = K2 (T,6,e) = 0

K (t,-T) = K (t)B

K 2(t,-TO) = B'K (t,6)

-T < 6, C < 0

(6.6)

Furthermore,

K (t) = K' (t)
0 0

K2(t,,) = K;(t, ,6)
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The optimal cost can be expressed as

= $'(O)K (0)$(O) + f '(0)K (0,6)$(O)d6

-T

+ f t,() K'(0, e) t(0) dO
-T

+ f J $'(e)K2 (o,6,)$()d~d (6.8)

-T -T

The integral term in Eq. (6.2) represents the effects of the delay on

the optimal control. Thus the optimal control is seen to be given by

a linear map K operating on the complete state xt. Similarly, the

optimal cost can be thought of as a generalized quadratic form.

We now discuss the infinite-time control problem, i.e., T = x.

For the control problem to be meaningful, we need some condition to

ensure that the optimal cost will be finite. It turns out that the

system-theoretic concepts of stabilizability and observability intro-

duced in Chapter 2 play a crucial role. The following is the basic

result on the convergence of the optimal control law and control

gains for the infinite-time problem [32], [72].

Proposition 6.2.1 Assume that system (6.1) is stabilizable. Then

the gains K0(t), K1 (t,G) and K2 (t,8,), for t < T, converge uniformly

in t to K0, K1 (6), and K2(O,) respectively as T -+ o. The optimal

control law for the infinite-time control problem withi quadratic cost

is given by
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u*(t) = -R1 C'K x(t) - f R 1C'K1 (6)x(t+6)dO (6.10)

where K0 , 1K1(6) and K2(0,0 satisfy the following set of equations

A'K + K A-K CR~1C'K +Q+K'(O)+K (0) = 0

d -l 0 1

K (6) = [A'-K CR 1C']K (6) + K2(0,M)

+ K2(6,5) = -K'(e)CR 1C'K(()

(6.11)

(6.12)

(6.13)

with boundary conditions

K 1 (-T) = K B

K2(6, -T) = K{(6)B

and symmetry conditions

K = K'
0 0

(6.14)

(6.15)
K2(6,() = K(,)

The optimal cost is given by

0

J = $' (O)K$(0) + f $'(0)K (6)$(6)de

-T

+ f 4'(6)K{(6)$(0)d6 + $' (e)K (6,)$(E) d6dE

-T -T -T

(6.16)

Asymptotic stability of the closed-loop system have also been

studied previously by Datko (72], and Delfour et al., [32]. In both

papers, the assumption that Q > 0 was made. Here we relax the assumption

to observability.
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Let Q = H'H and let x(t) denote the optimal trajectory corres-

ponding to the optimal control u*(t), i.e., x(t) satisfies

x(t) = (A-CR~1C'K )x(t) + Bx(t-T)- JCR 1C'KI ()x(t+)d

-T

(6.17)

We then have

Theorem 6.2.1 Assume (A,B,C) is stabilizable and (A,B,H) is observable.

Then the optimal control for the infinite time problem is given by (6.10)

and the optimal closed-loop system (6.17) is asymptotically stable.

Proof: The first part of the theorem is just Proposition 6.2.1. To

prove asymptotic stability of the closed-loop system, consider the

Lyapunov functional

0
V(xt) = x'(t)K0x(t) + f x'(t)K1 (6)x(t+)d

-T

+ f x'(t+)K'(6)x(t)d6 + x'(t+)K2 (6,E)xt+E)d6d5

-T -T -T

(6.18)

This, however, precisely corresponds to the optimal cost for the infinite-

time problem starting at time t with initial function xt. Thus we can

write

V(xt) f [x'(s)Qx(s) + u*'(s)Ru*(s)]ds

t

V(x t) is clearly nonnegative. We claim that V(x ) 0 implies x(t) = 0:
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V(x t) = 0 if and only if

u(s) =0 s > t

and x'(s)Qx(s) = x'(s)H'Hx(s) = 0 s > t

By observability of (A,B,H), this implies

x(s) = 0 s > t

Let U= {$: V(#) < kj. Then for some k£ > 0, xt E U k implies

Ix(t)I < K for some nonnegative constant K. Since V(xt >0 and

V(x t) = -[x'(t)Qx(t) + u*'(t)Ru*(t)] < 0 we can apply the invariance

principle for functional differential equations [74] to conclude

that the solutions of (6.17) xt tends to M, the largest invariant set

contained in the set

S = {$: $(#) = 0}

Since V(x ) - [x' (t)Qx(t) + u*'(t)Ru*(t)]

V(x) =0 )Hx(t) = 0

By observability, the largest invariant set M in S are those solutions of

(6.17) for which jx(t)| = 0 for - o < t < o. Hence M = {0}, and the

asymptotic stability of (6.17) is proved.

Remark 6.2.1 It is known that asymptCtic stability of autonomous

linear functional differential equations is equivalent to exponential

stability [2]. Hence the optimal closed-loop system for the infinite-

time problem is globally asymptotically stable under the conditions of

stabilizability and observability.
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Corollary 6.2.1 Assume (A,B,C) is stabilizable and Q > 0. Then the

optimal closed-loop system (6.17) is asymptotically stable. Since Q > 0

implies Ql/2 = H > 0, we immediately have that (A,B,H) is observable and

we may invoke Theorem 6.2.1.

Remark 6.2.2 Corollary 6.2.1 was proved earlier by Datko [72] and

Delfour et al., [32] using somewhat different techniques.

Corollary 6.2.2 If (A,B,C) is stabilizable and (A,B,H) is strongly

observable, then (6.17) is asymptotically stable.

Proof: Follows from Theorem 6.2.1 since strong observability implies

observability.

In proving asymptotic stability of the optimal filter, the same

basic technique will be used: construction of a suitable Lyapunov

functional and an appeal to the invariance principle. The system-

theoretic concepts of detectability and controllability are exploited

there in a natural way. Before proceeding on that route, we shall

first study the duality between optimal estimation and control for

linear delay systems.

6.3 Duality Between Estimation and Control for Linear
Delay Systems

In this section, we extend the duality principle between estimation

and control for linear ordinary differential systems to linear delay

differential systems. We shall exploit this duality in proving the

convergence of the optimal filter gains in the next section. Similar

results on duality are given by Lindquist [75], and Mitter and Vinter [67].
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Consider the optimal filtering problem (in the minimum mean

square error sense) for the stochastic delay system

dx(t) = [Ax(t) + Bx(t-T)]dt + dw(t)

x(6) = 0 e < 0 (6.19)

dz(t) = [C x(t) + C x(t-T)]dt + dv(t) (6.20)
01

where w(t) and v(t) are independent Wiener processes with cov[w(t); w(s)] =

Qmin(t,s), cov[v(t); v(s)] = Rmin(t,s), Q > 0, and R > 0. We know from

Chapter 5 that for any vector b, the optimal estimate for b'x(t) can be
t

expressed as k'(s)dz(s) for some function k (s). We define the
0f t

"dual" control problem to the optimal filtering problem to be:

T
minimize JT (b,u) = [y'(t)Qy(t)+u'(t)Ru(t)]dt (6.21)

0

subject to the constraint

y(t) = -A'y(t)-B'y(t+T)-Cu (t) -C1 u(t+T) (6.22)

with the boundary conditions

y(T) = b

y(s) = 0 s > T

u(s) = 0 s > T

As in section 6.2, the admissible controls are L 2 functions on [0, T].

The following duality theorem holds.

Theorem 6.3.1 Consider the optimal estimation of the quantity b'x(T)

in the system (6.19) - (6.20). Let the optimal estimate for b'x(T) be

b'x(TIT) and let the optimal control for the dual problem (6.21) - (6.22)
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be uT. Then b'x(T IT) is related to uT by

bxTI T) = -T u'(s)dz (s)

0

Proof: Consider the function

j (y x A
(y x 3t) =y, (t) x(t) +

t

t-T

y' (s+T)Bx(s)ds

where y(t) and x(t) are solutions of (6.22) and (6.19) respectively.

Applying Ito's differential rule, we see that

d.iW(y,x,t) = -[y'(t)A+y'(t+T)B+u'(t)c +u' (t+T)C 1 ]x(t)dt

+ y' (t) {[Ax(t)+Bx(t-T) ]dt+dw(t)}

+ y'(t+T)Bx(t)dt-y'(t)Bx(t-T)dt

= -[u'(t)C x(t)+u'(t+T)c 1 x(t)]dt+y'(t)dw(t)

= -u'(t)[dz(t)-C 1x(t-T)dt-dv(t)]-u'(t+T)C1 x(t)dt+y'(t)dw(t)

In view of the boundary conditions for (6.19) and (6.22), we obtain

yx, T) -(y, x,b0)

= y ' (T) x(T) = b 'x (T)

u' (t)dz(t) +

y'(t)dw(t) +

u'(t)dz(t) +

T

0

T

0
T

u' (t)dv(t)

U' (t)C 1 x(t-T)

u'(t)dv(t) +

dt - u'(t+T)C 1x(t)dt
0

T

T y'(t)dw(t)

0
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Hence
TT

E{b'x(T) + f u'(t)dz(t)} 2  , [Y'(t)Qy(t) + u'(t)Ru(t)]dt

0 0

Minimizing the mean square estimation error is thus the same problem as

the dual optimal control problem, and the theorem follows.

Remark 6.3.1 The duality theorem can be extended to more general delay

systems such as those with multiple or distributed delays. However, as

we shall not need such generality in subsequent developments, we shall

not pursue them here. The restriction of x(O) = 0, for e < 0, is

imposed because we want the dual control problem to be one whose

solution is known explicitly. If we allow a zero-mean random initial

function x , with E[x (0)x'()] = z (0,), -T < 0, < 0, similar
0 0 0 0

arguments show that the dual control problem is to minimize

J' (bu) = y' (0)EZ (0,0)y (0) + f y'(6+T)BE0(6,0)dey(0)

100

+ y'I(0)E 0(0,6)B'y(6+T)d6+ fy'(6+T)BE 0(6, )B'y(E+T)d6d

T T

+ f y'(t)Qy(t)dt + f u'(t)Ru(t)dt

0 0

In order to use the duality theorem, we would have to first solve the

control problem for the cost J'(b,u). These are additional complications
T

which do not require any new concepts. To avoid obscuring the main

points of our development, we have opted to concentrate on the case

x(e) = 0, e < 0.
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We will now restrict our attention to the case where C, = 0.

Denoting C by C, the system now under consideration is
0

dx(t) = [Ax(t) + Bx(t-T)]It + dw(t)
(6.24)

x(8) = 0 -T < 6 < 0

dz(t) = Cx(t)dt + dv(t) (6.25)

The case where C # 0 will be discussed at the end of this chapter

since additional difficulties arise. We first recall from Chapter 5

the optimal filter equations for the system defined by (6.24) - (6.25).

d/(t t) = [A-P (t)C'R 1C]x(tjt) + BA(t-Tjt-T)

-B P 2 (t-T,6)C'R 1Cx(t+6It+6)de + P (t)C'R 1dz(t)

-T

+B P 2(s,t-T-sO)C'R~1 dz(s)dt (6.26)

t-T

-(010) = 0 -T < e < 0

By the variation of constants formula from Chapter 5, we can write the

solution to (6.26) as

x(TIT) = f (T,s)P 0(s)C'R 1 dz(s)

0

T ,s
+ D(T,s)B J P2 (u,s-T-u,0)C'R dz(u)ds

0 s-T

(6.27)

where @(t,s) is the fundamental matrix associated with (6.26), and

satisfies the matrix differential equation
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3@ t,s) = [A-P (t)C'R~'C]#(t,s) + B4D(t-T,s)
-B 0

-B f F 2 (t,-Tj,O)C'R -1C'((t+0 s) dO

-T

(6.28)

(s,s) = I, $(t's) = 0 t < s

Applying a Fubini-type theorem for Lebesgue and Wiener integrals to

(6.27) [50], we can write

f (Ts)B f P2 (us-T-u,O)C'R' dz(u)ds

0 s-T

T u+T

f T J'T 4(T,s)BP2 (u,s-T-u,0)C'R
1 dsdz(u)

-T u

tT T -
SJ (T,u+e)BP (u, 6-T) C' R d6dz (u)

0o 0

using the definitions of P 2,B,) and P (t,6), and the fact that z(u) = 0

u < 0. Hence

x(TIT) = {@(T ,s)P0(s)C'R 1 + f$(T,.s+)BP (se-T)C'R~de}dz(s)

0 0
(6.29)

This gives an explicit representation of x(TIT) in the form

x(TIT) = K(T,s)dz(s)

0

On the other hand, Theorem 6.3.1 gives a representation of b'x(TIT)

in the form
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b'x(TIT) = - u'(s)dz(s) (6.30)

0

We can therefore compare the representations in (6.29) and (6.30) and

identify the control and filter gains appropriately. This will enable

us to exploit the known convergence properties of the optimal control

gains. We shall do this in the next section and also prove the asymptotic

stability of the optimal linear filter.

6.4 Stability of the Optimal Filter for Linear Systems with
Delays in the Dynamics

In this section, we shall put together the results developed in

the previous sections and prove the asymptotic stability of the optimal

filter. It is worth noting here that our proof of the convergence of

the filter gains is rather indirect, being based on the convergence of

the optimal control gains for the dual control problem. However, it is

not obvious how a direct argument can be used. Indeed, variational

arguments for proving convergence of the control gains do not as yet

have a probabilistic interpretation in the filtering context for delay

systems. At the present state of our knowledge, it appears that the

indirect approach has to be adopted.

We begin now our investigations on the stability of the optimal

filter. We first adapt the solution of the optimal control problem

for linear delay systems with quadratic cost to solve the dual control

problem posed in Eq. (6.21) - (6.22) in the previous section. Through-

out this section, we will only consider the case where C, = 0, C = C.
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We make the change of variables s = T-t (s will be defined this

way until further notice). Then Eq. (6.22) becomes

-a- y(T-s) = -A'y(T-s)-B'y(T-s+T)-C'u(T-s) (6.31)

Define y(s) = y(T-s) = y(t)

u(s) = u(T-s) = u(t)

(6.31) becomes

d y(s) = A'y(s)+B'y(s-T)+C'u(s)

(6.32)

y(O) = b, y() = 0, -T < 6 < 0

(Although the initial function here is not continuous, the results in

section 6.2 can be readily extended to cover this case as well [35].)

The cost functional JT(b,u) can be written as

JT(b,u) = [y(s)'Qy(s) + u'(s)Ru(s)]ds (6.33)

0

The dual control problem has now been cast into the standard form, and

the results of section 6.2 can be applied. We can therefore state that

the optimal control u*(s) is given by

- 1 0 _- _
u*(s) = -R CK (s)y (s)-f R CK (s,6)y(s+6)de (6.34)

-- l

where K (s) = -K (s)A'-AK (s) + K (s)C'R CK (s)-Q-K (s,0)-K{(sO)
0 0 0 00

(6. 35)
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- Z K,(s,6) -= -[A-K(0 s)C'R C]K1 (s,6)-K2 (s,0,6)

- - - K2(s,6,) = K' (s,6)C'R CK (s,)w b d/t 2

with boundary, conditions

K(T) = K 1 (T,e) = K2 (T,6,5e) = 0

K (s,-T) = K 0(s)B'

-T < 6, E < 0

(6.38)

K2(s,-,6) = BK 1 (s,6)

and symmetry conditions

K (s) = K'(s), K2(s,6,5) K(s,,0)
0 022

(6.39)

The closed-loop optimal system is given by

dy(s) = [A'-C'R 1CK (s)]y(s) + B'y(s-T)

-Io C'R1CK 1 (s,6)y(s+6)dG (6.40)

Using the variation of constants formula and the fact that y(s) = 0

-T < s < 0, we get that

y(s) = c(s,0)b (6.41)

where T(s,r) is the fundamental matrix associated with (6.40). Now

define

K (t) = K (s) = K 0(T-t)

K (tO) = K = K1(T-t,-6)
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2 2t,6,) = K2 2(T-t,-O,-5)

The following lemma is now immediate and summarizes the solution of

the dual control problem.

Lemma 6.4.1 The optimal control for the problem (6.21) - (6.22) is

given by

u*(t) = -R~1CK (t)y(t)- R~1CK 1 (t,-6)y(t-O)dO

0T

K (t) = AK (t) + K (t)A'-K (t)C'R~1 CK (t) +Q+K (t,0) + K (t,0)
0 0 0 0 0 1

(6.43)

- K (te) = [A-K (t)C'R 1C]K (tO) + K2 (t,0,6)

- K2(t,6,5) = -K'(t,6)C'R~1 CK1 (tl)

(6.44)

(6.45)

K0(0) = K1(Oe) = K2(0,8,E) = 0 0 < e, < T

K1 (t,T) = K0(t)B'

K2(t,T,5) = BK1 (tl)

and K (t) = K'(t), K,(t,6, ) = K (t,,)

Furthermore, the optimal closed-loop system satisfies
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dt y(t) = -[A'-C'R 1CK (t)]y(t) - B'y(t+T)
dt0

+ f C'R~1CK1 (t,6)y(t+6)d6

0

y(T) = b

y(t) = 0 t > T (6.47)

Let the fundamental matrix associated with (6.47) be Y(t,r). We

then have the f ollowing:

Lemma 6.4.2 Y(t,r) is related to the matrix T(s,r) introduced in

(6.41) by

Y(t,T-r) = I(sr) (6.48)

Proof: By straightforward verification, the above two matrices satisfy

the same delay equation as well as boundary conditions. Uniqueness then

yields (6.48).

Combining Lemmas 6.4.1 and 6.4.2 and using (6.41), we obtain an

alternative formula for the optimal control

u*(t) = -[R~1 CK 0(t)Y(t,T) + f R- 1 CK 1(t,-6)Y(t-6,T)d6]b

-T

= -[R 1CK (t)Y(tT) + R 1CK1(t,6)Y(t+6,T)d6]b

0 (6.49)

Substituting (6.49) into (6.30) gives

b'c(TIT) = b' Y'(tT)K (t)C'R 1dz(t)

0

+ T Y(t+6,T)'Kj(t,6)C'R dedz(t)
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Since b is arbitrary, we obtain

Lemma 6.4.3 The optimal estimate 9:(T|T) for the stochastic delay

system (6.24) - (6.25) can be written as

x(TIT) = Y'(tT)K (t)C'R~+ Y(t+8,T)'K (t,8)C'R~d8)dz(t)

0 0o

(6.50)

We are now in a position to compare (6.50) and (6.29). First note

that they are of exactly the same form, with 5, P , BP1 occurring at

the same positions as Y, K , and K . One suspects therefore, that

@(Tt) = Y(t,T)'

P (t) = K 0(t)

and BP (tG-T) = K'(t,8)

We proceed to confirm this. Define

2(t,8,5) = BP 2 (t,8-T, -T)B'

(t,e) = P'(t,8-T)B'

Po(t) = PO(t)

and recall that P (t), P 1 (t,8), and P2 (t,8,§) satisfy (5.62) - (5.65).

Then it is straightforward to verify that P (t), P1 (t,e), and 2(t,8,()

satisfy exactly the same equations and boundary conditions as K (t),

K (t,e), and K2 (t,8,5). By uniqueness of the optimal control and

optimal filter, we may identify
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P (t) = K (t)

P'(t,6-T)B' = K (t,8)
1 1

B? (t O-T, -T)B' = K 2(t,650

O<t<T ,I 0 < 8, < T

It remains to prove that Y(t,T)' = P(T,t). Using (6.54), we see

that

K 1 (t,-8) = P (t,-6-T)B'

(6.55)

(6.54), (6.55) and (6.47) imply that Y(t,r) is the fundamental matrix of

d y(t) = -[A'-C'R 1CP (t)]y(t)-B'y(t+T)
dt 0

0

-T

C'R CP2 (t-6,-TG)'B'y(t-8)d6 (6.56)

But (6.56) is precisely the adjoint equation to

x(t) = [A-P (t)C'R 1C]x(t) + Bx(t-T)
dt o

- 0 BP2 (t,-T,)C'R1Cx(t+6)dO
-T

and it is known [2], [57] that

Y(t,r) = @(r,t)'

We summarize this development in

Lemma 6.4.4 The optimal filter gains for (6.19) - (6.20) are related

to the optimal control gains for the dual problem (6.21) - (6.22) by
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P 0(t) = K (t)

P'(t,6-T)B' = K1 (t,6)

BP 2 (t,6-T,&-T)B' = K2 (t, ,)

0 < t < T , 0 < OE <T

The fundamental matrix (t,r) associated with the optimal filter (6.26)

is related to that of the optimal control system (6.47) by

D(t,r) = Y(r,t)'

We are now ready to prove asymptotic stability of the optimal

filter for (6.19) - (6.20). Let Q = H'H.

Theorem 6.4.1 Suppose (A,B,C) is detectable and (A,B,H') is con-

trollable. Then the gains of the optimal filter converge, and the

steady state optimal filter is asymptotically stable.

Proof: From the results of Chapter 2, we know that our hypothesis

implies that (A',B',C') is stabilizable and (A',B',H) is observable.

By stabilizability, Proposition 6.2.1 shows that the optimal gains

for the dual control problem K (s), K1(s,6) and K 2(s,6,E) converge to

matrices K0, K1(6) and K2 6, ) respectively as T + co. The definitions

of K0(t), Ky(t,G) and K2 (t,e, ) now imply that these converge to K0 ,

K1 (8), K2( , ) respectively as t -* c. By Lemma 6.4.4, we can conclude that

P (t) + P0

BP1 (te) + BP1 (O) as t + o

BP2 (t,6,5)B' + BP2 (6,)B'

where (see also section 6.2)
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AP +P A'-P C'R CP +Q+BP (-T)+P' (-T)B' = 0 (6.57)
00 0 0 1

dBP1() = -BP1(6)[A'-C'R ]CP ]-BP 2 (O,-T)B' (6.58)

+ BP2 (0,)B' = BP (e)C'R 1CP{( )B' (6.59)

with P 1 (0) = P

P 2(0,O) = P1 (e)

P = , P2 (,5) = P;(5,6) (6.60)

Stability of the steady state filter is then governed by the stability

of the equation

x(t) = [A-P C'R C)x(t) + Bx(t-T)
dt 0

-B P2 (-T,G)C'R 1Cx(t+O)de (6.61)

-T

Using Lemma 6.4.4 and (6.47), we see that the adjoint to the undriven

steady-state filter equation (6.61) is given by

d y(t) = -[A'-C'R CP ]y(t) - B'y(t+T)

+ fTC'R~CP(-T)B'y(t+e)d6 (6.62)

0

Let s = -t, y(s) = y(-s) = y(t). Then

y(s) = (A-C'R 1 CP )y(s) + B'y(s-T)

- C'R 1CP?(6-T)B'y(s-6)dO (6.63)

0
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We prove that (6.63) is asymptotically stable. Introduce the

Lyapunov functional

V(yS) = y' (s)P y(s) + y' (s) P' (6-T)B'y(s-6)dG

0

+ y' (s-6)BP1(6-T)y(s)de + y'(s-e)BP 2 (8-T, -T)B'

o 0 0

-y(s-C)ded (6.64)

Some standard computations show that

a1- - -1 - 1V(y) = - y'(s)Qy(s) + [R CPoy(s) + R CP(6-T)B'y(s -e)de]'R

0

'[R~1CP Y(s)+ R 1CP (-T)By(s-)do] (6.65)
001

Comparing (6.64) and (6.65) with the situation in Theorem 6.2.1, we see

that they are completely analogous. By the same arguments and the ob-

servability of (A',B',H), we conclude that (6.63) is asymptotically

stable. Let the fundamental matrices associated with (6.61), (6.62)

and (6.63) be 0(tr), Y (t,r) and Y (t,r) respectively. Then it is

easy to see that Y0 (t,r) = Y (-t,-r). It is known [2] that asymptotic

stability of (6.63) is equivalent to the existence of constants c > 0,

M > 1 such that

1Y0(s,r)|I < Me-a(s-r)

Thus |Y9 (t,r)|I = ||Y0(-t,-r)|| < Me-a(r-t)

Since $D(tr) = Y'(r,t),. I|9(tr)|I < Me-a(t-r)
0 0
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The proof of the theorem is now complete.

Remark 6.4.1 It should be pointed out that the convergence of the

filter gains P0(t), BP1 (t,) and BP2 (t,,5)B' do not provide as yet

the convergence of the "smoothed" error covariance P2 (t,8,5). Of

course, if B is nonsingular, BP2 (t,8,E)B' converging will imply that

P2 (t,8,E). It is interesting to note that the nonsingularity of B

seems to be related to many questions in the theory of delay equations.

For example, it is related to the solution semigroup T(t) being one-

to-one [2], the completeness of exponential solutions [76], and the

convergence of projection series [77].

Instead of identifying P (t), BP 1(t,G), and BP2 (t,e,E)B' with the

corresponding control gains as in Lemma 6.4.4, one can directly identify

Po(t), P (t,), and P2 (t,6,) with the Fredholm kernel P c(t,8,O) intro-

duced by Manitius in the optimal control with quadratic cost [71].

The details are straightforward and are left as an amusement for the

reader.

6.5 Convergence of Estimation Error Covariance Operator

The results of the last section show that under suitable detect-

ability and controllability conditions, the estimation error covariance

P0 (t) converges. Our objective in this section is to prove the con-

vergence of the error covariance operator for the steady state optimal

filter. If we express the estimation error e(tlt) = x(t) - ^x(t~t) in

terms of a stochastic delay equation, its solutions define a trajectory

in the space of continuous functions. By the error covariance operator
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we mean the function

E(t,6,5) = E{e(t+| It+9)e' (t+ I t+ ) }, -T < 6, E < 0.

Of course E(t,0,0) = P (t). However, E(t,6,O) # P1 (t,O), and

E (t,6,) # P2 (t,6,E). This is because E(t,6,O) and Z(t,6,5) are co-

variances of the filtering estimation error, whereas P1 (t,6) and

P (t,6,) are covariances of the smoothing estimation error. While
2

we can show that .7(t,6,) converges to a steady-state operator

E,(e,), we have not been able to show the convergence of P(t,6,),

unless B is invertible (see Remark 6.4.1).

It is easy to see that e(tjt) satisfies the stochastic differ-

ential equation

de(tjt) = [(A-P C'R~1 C)e(tlt) + Be(t-Tlt-T)]dt

+ f BP2 (-T,6)C'R 1Ce(t+G|t+6)d6dt + dw(t)

-T

- POC'R 1 dv(t)-B J P2 (-T,6)C'R~
1d v(t+6)dt

-T

(6.66)

Note that for any fixed t, v(t+6) 6e[-T,0] is a Brownian motion, and

hence the last stochastic integral is well-defined. Again, let D (t,s)

be the fundamental matrix associated with (6.66). Since (6.66) is an

autonomous equation 0(ts) = D0(t-sO) = D1 (t-s). Then the variation

of constants formula gives
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e(tjt) = t G1 (t-s)dw(s) - t 1 (t-s)P 0 C'R 1dv(s)

0 0

- ft 1(t-s)B f0 P2(-T,&)C'R 1dev(s+6)ds
0 -T

(6.67)

Using a Fubini-type theorem in Doob [50], the last term in (6.67) can

be written as

It 1(t-s)
0

s T2(-T,-s)dv(a)ds
s-T

t f- min ((7+T[, t)

=ftf min (t-aT

0

(6.68)

where we have used v(t) = 0,

L(t-s) = (D1(t-s)P0C'R~1+

t < 0. For convenience, we define

min(t-s,T)

0D1(t-s- )P2
0

If we now compute the characteristic functional of the W-valued random

variable et t t t(e) = e(t+OIt+G)),then by exactly the same arguments

as in Chapter 5, we get, for y e V*,

$(y,et ) = E expi < y,et t

= E expii dy'(r) [f 1 (t+r-s)dw(s)- L(t+r-s)dv(s)
-T 0 0
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using D (t-s) = 0, t < S.

Since for each fixed t, the exponent is a sum of Gaussian random

variables, and w(t) and v(t) are completely independent, we can evaluate

the expectation as

exp - 0 dy'(r) ft (t+r-s)QV (t+a-s)dsdy(a)
0

+ J dy(r) L(t+r-s)RL'(t+-s)dsdy() (6.69)
+-fT -T 0ot

Therefore, the covariance operator is given by

)= ft (t+O-s)QD' (t+(-s)ds

0

+ ft L(t+6-s)RL' (t+E-s)ds

= t1(-+s)Q((+s) + L(6+s)RL'( +s)]ds (6.70)

The convergence of the covariance operator E(t,e,) is given by

Theorem 6.5.1 The covariance operator E(t,6,E) for the optimal

estimation error converges pointwise in 6 and to a stationary

covariance operator E,(6,5), with
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E(6,) =f D1(6+s)Q ((+s)ds
0

OO

+ f[D 1 G G0RC min(+s, T)

+ fmin(6+s)T) (C'R+S-)P2 (-T,- )d (]ds (6.71)

0

Proof: From (6.70), it is clear that E(t,6,5) is a symmetric operator,

monotonically increasing in t. (See Remark 6.5.1 following the proof.)

Since the optimal filter is asymptotically stable, |I@1 (t-s)I| < Me-a(t-s)

for some a > 0, M > 1. We can therefore make the estimate

t (8+s)Q%((+s)dsI
0

< t (+s)Q 1 (+s) ds

0

Q MH2 f -t (+s) -a(+s)ds
0

I I -a(+) ( e 2at

which converges as t -+ o. By a similar argument, the second term in

(6.70) is also uniformly bounded in t for each fixed 6 and E. We can

now apply a theorem on the convergence of monotone symmetric operators
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[78] to conclude that

lim Z(t,6,e) = ZC (6,)

exists pointwise in 6 and (, and is given by (6.71).

Remark 6.5.1 The filtering error covariance operator E(t,6,5) is

monotonically increasing in t because we have zero initial estimation

error (i.e., the initial condition for the system is deterministic

and known, taken to be zero in our formulation). If we have a random

initial condition, we may still be able to prove (although we have

not done so) that the resulting Z(t,e, ) converges to ZE(e,E), since

initial conditions are usually "forgotten" as t -+ o. We may note

that analogous situations also arise in the filtering problem for

systems without delays.

6.6 Stochastic Control of Linear Delay Systems
and Stability

The preceding development in the stability of the optimal closed-

loop control system and the stability of the optimal linear filter

suggests that by putting the two together, asymptotic stability of

the closed-loop stochastic control system can be obtained. This is

of course the case in linear stochastic system without delays. In

this section, we examine the corresponding stochastic control system

for delay systems and prove a similar result.

We shall first discuss the separation theorem for delay systems

as proved by Lindquist [56]. Again we consider the following linear
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stochastic delay system

dx(t) = [Ax(t) + Bx(t-T) + Gu(t)]dt + M'dw1 (t)

(6.72)
x(6) = $(6) 6E[-T,0]

dz(t) = Cx(t)dt + Ndw 2(t) (6.73)

w1 , w 2 are standard Wiener processes, completely independent of each

other, and independent of the initial function $, which is a Gaussian

process. The matrix N is assumed to be positive definite. The ob-

jective is to choose a control law u in a suitable set of admissible

controls such that the cost functional

T

JT(u,$) = E [x'(t)Qx(t) + u'(t)Ru(t)]dt (6.74)

0

is minimized, where T< o.

Before we define the set of admissible controls, we establish

some notation. By the variation of constants formula, we obtain

z(t) = Cft (s 0)$(0)ds+ f C4(s ,(+T)B$ (a)dads

0 0 -T

t t

+1 t~s -r jGsa u~)dd ftf ,(sG)M'dw(G)ds±NIw 2t

A (t) + ft f5 @(sa)Gu(a)dads (6.75)

0

Define the set U consisting of the class of processes u(t) satisfying

the following conditions:
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(i) u(t) is measurable with respect to F{z(s), 0 < s < t}

for each t;

(ii) For each u E U , there exist unique solutions to (6.72) and
0

(6.73);

(iii) fIE u(t)|12dt < co

0

(iv) For each u E U, {z(s), 0 < s < t} = G{z (s), 0 < s < t}.

In words, (iv) means that by using a control law -u £ U0 ,

we cannot gain, from the resulting outputs, more information

about the system than that obtained by using no control at all.

We shall take U to be the set of admissible controls. The following
0

theorem has been proved by Lindquist [56].

Proposition 6.6.1 The problem of determining u C U so as to minimize

(6.74) has the following solution

u*(t) =-R 1G'K (t)x(t t)-R 1G' K 1 (t,6)2(t+elt)dO (6.76)

-T

where K0 (t) and K 1 (t,6) are the optimal gains for the deterministic

optimal control problem (section 6.2), and ^(s t), t-T < s < t is the

conditional expectation of x(s) given z(a), 0 < a < t (section 5..5).

Remark 6.6.1 A few comments on the choice of U as the set of ad-
0

missible controls arc in order. Let us define the set U to be the

class of processes u(t) that are measurable with respect to

C{z(s), 0 < s < t} for each t, such that for each u C U, there exist
T

unique solutions to (6.72) and (6.73), and for which f Etu(t)I 2dt < o.

0
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Clearly U C U. The basic difference between the sets U and U0 is

that the requirement a{z(s), 0 < s < t} = c{z (s), 0 < s < t} is

not imposed on U. However, if we examine the proof of Proposition

6.6.1 in [56], we see that the requirement of a{z(s), 0 < s < t} =

cy{z (s), 0 < s < t}, for any u in the set of admissible laws, is

crucial. One would really like to prove that the separation theorem

holds also for the set U (which is equivalent to showing UO = U) but

the truth or falsehood of this is not known at present. We may note

that in the separation theorem without delays [79], the conditions

(i) to (iv) satisfied by all u E U are obtained by requiring the

control laws to be Lipschitz functionals of the past observations.

Even in the case without delays, it has not been established that

U = U.
0

The expression for the optimal cost is given in

Lemma 6.6.1 Corresponding to the optimal control (6.76), the optimal

cost J* associated with the stochastic control problem (6.72) - (6.74)

is given by

T

J* = EV(x0) + trM'MK0(t)dt

0

+ f tr{K (t)GR~G'K (t)P (t)+0 K'C(t,)GR~1G'K (t)P'(t,6)de

0 -T

+ 0 K0(t)GR~1G'K (t ,)P (te)d6+ fK'(t e)GR~1G'K(t,5)-

-T -T -T

'P2 (tE,6)d6dE}dt (6.77)
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0
where V(xt) = x' (t)K 0(t)x(t)+ 5 x'(t)K 1 (t,6)x(t+6)dG

- T

+ f x' (t+e)K' (t , 8)x(t ) d &tx'(t+8)K2 (t , , Qx(t+ ) ded+o fO 2O

-T -T -T

(6.78)
Proof: See Appendix C.

Remark 6.6.2 Lemma 6.6.1 shows that the optimal cost in the delay case

has the same structure as the case without delays: there is a term due

to initial conditions, a term due to the noise in the system dynamics,

and a term due to the estimation error.

We turn our attention now to the stochastic control system defined

by using the steady state version of (6.76):

u(t) = -R~G'K 0:(tlt)-R 1G'f K1 (6)(t+It)de (6.79)

-T

where x(tIt) is generated by the steady state optimal filter. Heuristi-

cally, this law is the optimal one for the functional

00

E [x' (t)Qx(t) + u' (t) Ru(t) ]dt (6.80)

0

with observations started back at -co, except that it would give rise to

an infinite J*. One must therefore modify the control problem to be

one of minimizing

1 , T

lim E [x' (t)Qx(t) + u' (t)Ru(t) ]dt}
T+ 

0
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or lim j [x'(t)Qx(t) + u'(t)Ru(t)]dt
T+ o0

This introduces notions of ergodicity and invariant measures into the

discussion. Even in the case without delays, the infinite problem has

not really been completely resolved. We therefore content ourselves

with simply the result on asymptotic stability of the closed-loop

system under the law (6.79).

Theorem 6.6.1 Let Q = H'H. Assume (A,B,G) is stabilizable, (A,B,M')

is controllable, (A,B,C) is detectable, and (A,B,H) is observable.

Then the control law

u(t) = -R 1G'K0x(tjt)-R 1 G' K 1 (6)x(t+e(t)d,

where x(tIt) is generated by the steady state filter of Theorem 6.4.1,

and K, K1(e) are generated by the deterministic stationary control

law of Theorem 6.2.1, gives rise to an asymptotically stable closed-

loop system.

Proof: Stabilizability of (A,B,G) ensures that K0 , K(1(e), and K2(6,0 )

are well-defined. Observability of (A,B,H) then guarantees that

solutions of the system

x(t) = (A-GR 1 G'K )x(t)+Bx(t-T) - GR~1G'K1 ()x(t+6)dG

-T
(6.81)

are asymptotically stable (see Theorem 6.2.1). Detectability of

(A,B,C) ensures that the steady state filter is well-defined, and con-

trollability of (A,B,M') guarantees that the steady state filter is

asymptotically stable. The closed-loop system is defined by the

coupled set of equations
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dx(t) = Ax(t)dt + Bx(t-T)dt-GR 1G'K (t It)

- 0 GR~1 G'KI(e)*(t+8|t)de + dw(t) (6.82)

-T

di(tlt) = AA(tlt)dt + Bi"(t-Tlt-T)dt

+B ft P2 (-T,s-t)C'(NN')~l[dz(s)-Ci(sis)ds]dt
t-T

+P0C'(NN') 1[dz(t) - C^X(tjt)dt] (6.83)

Expressing x(tlt) = x(t) - e(tjt), we get

dx(t) = (A-GR G'K )x(t)dt + Bx(t-T)dt

- f GR~1G'K1 ()x(t+)dO + dw(t)

-T

+GR 'G'K0e(tjt)+ f0 GR 1G'K1 ()e(t+lt)dO (6.84)

-T

and de(tlt) = [A-P C'(NN')~1C]e(tlt)dt + Be(t-Tlt-T)dt

+ J BP2( -T,8)C'(NN') 1Ce(t+jt+8)dedt

-T

+ dw(t)-P0C'R~1dv(t) - B f P2 (-T,8)C'R d v(t+)dt

-T

(6.85)
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Since (6.85) is decoupled from (6.84), the stability properties of

the closed-loop system are precisely those of (6.81) and the steady

state optimal filter. Since both of these are asymptotically stable

as a consequence of our assumptions, the closed-loop stochastic control

system is asymptotically stable as well.

Remark 6.6.3 When the control law (6.79) is applied to the problem

of minimizing

1 T
J = lim - E [x' (t)Qx(t) + u' (t)Ru(t) ]dt

0

Lemma 6.6.1 shows

J = trM'MK
r o

+ tr{K GR 1G'( P + f K'()GR 1 G'K P'(O)dO
0 0 0 j1 o

-T

0 0 0-
+ K GR1 G'K (6)P (6)d6+ K (8)GR~G'K (O2(&d~d6}

-T fT - ) 1T 2

This can be thought of as the cost rate associated with the control

law (6.79).

6.7 Filter Stability for Systems with Delays in

The Observations

In the previous sections, we have discussed the stability properties

of the optimal filter and control system rather thoroughly for linear

stochastic systems with a single delay in the system dynamics. It is

relatively straightforward to extend the duality theorem of section 6.3
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to cover situations with multiple delays in the state dynamics.

Combining this with the results of Delfour, McCalla, and Mitter [32]

on optimal control, it should not be difficult to extend our stability

results to these systems. What is more interesting is the case in

which there are delays in the observations. Since similar difficulties

arise for distributed delays as well as point delays, we shall, for

convenience, consider systems of the form

dx(t) = [Ax(t) + Bx(t-T)]dt + dw(t) (6.86)

x(6) = 0 -T < e < 0

dz(t) = [C0x(t) + C1x(t-T)]dt + dv(t) (6.87)

From the results of Chapter 5, we know that the optimal filter is given

by the equations

di^(tlt) = [A^(tlt) + BR(t-Tlt)]dt

+ [P (t)C'R 1 + P (t,0,-T)C{R 1]0 0 2

-[dz(t) - C 0(tlt)dt - C1 2(t-Tlt)dt]

(6.88)

t
x(t+elt) = *(t+6|t+O)+ [P2 (st+O-s,0)C' + P2 (st+6-s,-T)C']R 1

t+e

'[dz(s) - C0 (sls)ds - C1 (s-Tls)ds]

(6.89)

If we apply the same technique as that of section 6.4 to (6.88) - (6.89),

we see that
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d2(tIt) = [A^(t t) + B2(t-TIt-T)]dt

+ B [P 2 (st-T-s,0)C' + P2 (s.t-T-s,-T)C ]R 1

t-T

[dz(s) - C 0(sls)ds - C1 (s-TJs)ds]dt

+ [P (t)C' + P2 (t,0,-T)C]R
1

'[dz(t) - C02(tJt)dt - C x(t-Tlt)dt]

(6.90)

which is not a stochastic delay equation in x^(tlt). Indeed, it is not

possible to express 2(t-T~t) solely in terms of 2(sIs), t - T < s < t.

Without this, the technique presented in section 6.4 cannot be applied.

The situation is very similar in the dual control problem, which

is to minimize:
T

JT(bu) = [y'(t)Qy(t) + u'(t)Ru(t)]dt

0

subject to the constraint

y(t) = -A'y(t) - B'y(t+T) - Cu (t) - C1u(t+T)

y(T) = b

y(s) = 0 s > T

u(s) = 0 s > T

Theorem 6.3.1 shows that the optimal estimate of b'x(T) for (6.86) - (6.87)
T

is given by u'(s)dz(s), where u (t) is the optimal control to the

f Tuw 
he e T

dual problem.
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By the time reversal technique of section 6.4, we see that the

above control problem is equivalent to an optimal control problem

for systems with delays in the control as well as in the state. It

is known [80] that this problem is much more complex than the optimal

control problem with delays in the state only. To understand the

structure of the optimal filter when there are delays in the observa-

tions, it is worthwhile to discuss briefly the control problem with

delays in both the state and control.

Consider the system

c(t) = Ax(t) + Bx(t-T) + C0u(t) + C1 u(t-T)

x(e) = $)6 E [-T,0]

u(e) = 0 6 £ [-T,0) (6.91)

The problem is to find a control u such that the cost functional

JT(u,$) = [x' (t)Qx(t) + u' (t)Ru(t) ]dt

0

is minimized. The solution to this problem is given in [80]:

u(t) = -R~lC'[P (t,t,t)x(t)+ I P (t,s+T,t)Bx(s)ds
0 c J c

t-T

t

+ f Pc(t,s+T,t)C u(s)ds
-T

-y(t)R-1 C'[Pc(t+T ,tgt)x(t)+ t c(t+T[,s+,T,t)Bx(s)ds

t

+ Pc(t+Ts+T,t)C1 u(s)ds] (6.92)

-169-



where y(t) = if t e [T-T,T]

1 otherwise

and P c(t,s,r) is a type of Fredholm kernel introduced by Manitius [71]

and satisfies appropriate partial differential equations.

The optimal control u(t) is not expressed solely in terms of xt

but also in terms of u(s), t-T < s < t. In order to express u(t)

solely in terms of x, we can regard (6.92) as an integral equation in

u(t). In fact, if we write

q(t) = -R'C'[P (t,t,t)x(t)+ tP (t,s+T,t)Bx(s)ds]
t-T

-y(t)R 1C' [P (t+T,t,t)x(t)+ Pc(t+T,s+T,t)Bx(s)ds]
lc fJ_

t-T

and N(ts) = -[R~ 1 C'P (t,s+Tt)C1 + Y(t)R 
1 C{Pc(t+Ts+T,t)C]

(6.93)

we get

u(t) = q(t) + ft N(t,s)u(s)ds (6.94)

t-T

The properties of Pc (t,s,r) [80] clearly implies that N(t,s) is a

Volterra L 2-kernel. Substituting (6.94) into itself, we obtain
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t
u(t) = q(t) + N(t,s)q(s)ds

t-T

+ f N(ts) JSN(s,r)u(r)drds

t-T s-T

t

= q(t) + f N(t,s)q(s)ds+

t-T

+ ft min(r+T,t) N(ts)N(s,r)dsu(r)dr

By induction, it is easily seen that in fact u(t) satisfies a Volterra

integral equation of the form

t
u(t) = q(t) + f M(t,s)u(s)ds

with M(t,s) an L2-kernel. The solution for the optimal control u in

state feedback form can therefore be expressed as

t
u(t) = q(t) + f R(t,s)q(s)ds

t
= ft dsF(t,s)x(s) (6.95)

where F(t,s) is an L 2-kernel of bounded variation in s. Notice that

in state feedback form, the entire past of the state trajectory must

be used.
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There are two ways to study the stability of the closed-loop system.

We can either study the system defined by (6.91) and (6.94) as system of

coupled differential and integral equations, or we can substitute (6.95)

into (6.91) and study the resulting integrodifferential equation. In any

case, the situation is considerably more complex than that without delays

in the control. Stability properties of the optimal system are left as

a subject for future research.

One can see that a similar situation happens in the optimal filter

for systems with delays in the observations. Defining

W(ts) = [P2 (s,t-T-sO)C' + P2 (st-T-s,-T)C']R~
1 ,

t
x(t-T~t) = $(t-TIt-T) + W(t,s)[dz(s)-C0 (sis)ds]

t-T

- I W(ts)C i(s-T s)ds (6.96)
t-T

One can view (6.96) as an integral equation in *(t-Tlt). Again the

kernel W(t,s)C is a deterministic L2-kernel. As before, we can solve

$(t-Tt) in terms of 2(sls), 0 < s < t. The stability of the optimal

filter can thus be studied from either an integrodifferential equation

or from a coupled set of differential and integral equations. In view

of the duality theorem between estimation and control, the stability of

the dual control system should be intimately related to the stability of

the optimal filter, in the same sense as the connection discussed in

section 6.4.
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6.8 Perspective

In this chapter, we have studied the stability of the optimal

linear control system and the optimal linear filter for systems with

delays only in the state dynamics. Since the main results are inter-

connected in a rather complicated way, it seems worthwhile to recapitu-

late the various steps involved and put our results in perspective.

We first showed that under the conditions of stabilizability and

observability, the infinite-time optimal linear control system with

quadratic cost is asymptotically stable. This result not only extends

previous work by other investigators, but also shows the important

role played by system-theoretic concepts.

In section 6.3, we established a duality theorem which relates

the solution of the optimal linear filtering problem to the solution

of a dual optimal control problem. This result was motivated by the

work of Lindquist [75], and Mitter and Vinter [67], and paved the way

for exploiting the results of section 6.2 in studying the stability of

the optimal linear filter.

Theorem 6.4.1 in section 6.4 contains the central results of

this chapter, and combines the results of Chapter 2 with those of

sections 6.2 and 6.3. First, we used the duality theorem to give

the precise formulas relating the optimal gains and the fundamental

matrix of the optimal filter to those of the corresponding dual

optimal control system. This is the content of Lemmas 6.4.1 through

6.4.4. Next, we used the duality results of Chapter 2 to assert that
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detectability and controllability of the original system corresponds

to stabilizability and observability of the dual system. Thus, under

the assumptions of detectability and controllability of the original

system, we were able to invoke the stability result of section 6.2 to

conclude asymptotic stability of the dual optimal control system.

Finally, the formulas relating the optimal filter and the dual optimal

control system allowed us to conclude asymptotic stability of the

optimal filter from that of the dual control system. Once these

results were established, it was straightforward to prove, in section

6.5, that the closed-loop stochastic control system is also asymptotically

stable. While the analogs of these results for ordinary differential

systems are well-known, they are new for linear delay systems, and

constitute the first complete extension of the finite dimensional

linear-quadratic-Gaussian theory. Furthermore, they bring into focus

the importance of the structural properties and duality relations in

control and estimation problems for linear delay systems. While our

results deal only with a special class of delay systems, we feel that

the ideas and techniques will be fundamental to the development of a

complete linear-quadratic-Gaussian theory for more general delay

systems. We hope that the work reported in this thesis will serve

as a stimulus to the development of such a theory.
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis, we have studied two areas in the theory of delay

systems: structural properties and their applications to control in

linear time-invariant delay systems, and optimal linear and nonlinear

filtering for stochastic delay systems. We summarize our findings

here and indicate what we feel are the main contributions of the

thesis.

In Chapter 2, we discussed the various notions of controllability,

stabilizability, observability, and detectability in connection with

linear delay systems. New definitions of controllability and obser-

vability were given and some duality results established. While we

have not conducted an in-depth study of these concepts, the ideas

presented have proved to be very useful in connection with linear

optimal control with quadratic cost and optimal linear filtering.

In Chapter 3, we studied the concept of pointwise degeneracy.

We completely characterized 3 dimensional systems which can be made

pointwise degenerate by delay feedback, and gave sufficient con-

ditions for this to be possible in higher dimensional systems. The

conditions obtained are felt to be much simpler and more intuitive

than previous results obtained by other investigators.

In Chapter 4, we applied the pointwise degeneracy property to

the control of linear systems. A complete solution to the minimum
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time output zeroing problem by delay feedback was given for 3 dimen-

sional linear systems, while sufficient conditions were given for

the solvability of the problem in higher dimensions. The solvability

conditions are again very simple, although the actual construction of

the feedback controllers is rather complicated. Sensitivity of the

control system under perturbations of its parameters was also studied

and it was shown that "small" perturbations give rise to "small"

degradation in the system performance. Some examples were then given

to illustrate the theory. All these results are new and show that

the concept of delay feedback has potential applications in linear

system theory which are worth exploring further.

We began the study of the optimal filtering problem in Chapter

5. The general nonlinear filtering problem was first studied, and

a representation theorem for conditional moment functionals derived.

The form of the representation is new even when specialized to

ordinary differential systems, and can be thought of as solving the

nonlinear filtering problem abstractly. We then showed that if the

moment functionals were suitably "smooth," stochastic differential

equations could be derived. When these results were specialized to

the linear case, we obtained a complete solution to the optimal linear

filtering problem, generalizing previously known results.

In Chapter 6, we studied the stability properties of the optimal

linear filter. The special case where the observations do not in-

volve any delay terms was considered. We showed that there is a

duality relation between optimal control with quadratic cost and
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optimal linear filtering. Under the hypothesis of stabilizability

and observability, we showed that the optimal closed-loop system

for the infinite time control problem is asymptotically stable.

Under the hypothesis of detectability and controllability, we

showed that the optimal linear filter is asymptotically stable.

Finally, the closed-loop stochastic control system using the deter-

ministic optimal control law and the optimal filter estimate was

also shown to be asymptotically stable. This we feel is the first

complete extension of the familiar linear-quadratic-Gaussian theory

for ordinary differential systems. On the one hand, almost complete

analogs of the finite dimensional results have been obtained: the

linear feedback nature of the solutions for the optimal control and

filtering problems, the Riccati-type partial differential equations,

the duality between control and filtering, and the stability results

based on system-theoretic concepts. On the other hand, the additional

complications due to the presence of delays are also clearly demon-

strated by the form of the solutions. These similarities and differ-

ences between the finite dimensional theory and the theory developed

in this work give a lot of insight into the behavior of linear delay

systems.

The results obtained in this thesis suggest that further in-

vestigations in the following topics would be fruitful.

1. Study in greater depth the relations between the various

notions of controllability, stabilizability, observability,

and detectability for delay systems. In particular, algebraic
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conditions for checking these properties would be very

useful. In addition to the notions discussed in Chapter

2, there are other algebraic formulations of the notions

of controllability and observability [42], [43]. It would

be very worthwhile to relate these various approaches and

obtain a unified theory. This is very much an open area

of research.

2. Extend the applications of the pointwise degeneracy property

to the construction of delay observers. We have given an

example of a "deadbeat" observer. The general theory,

however, is lacking, and it would be interesting to see

what precise conditions are required. It is suspected that

this problem will be related to the properties of the adjoint

system.

3. In studying the nonlinear filtering problem, we have shown

that in order to derive stochastic differential equations,

moment functionals must be in the domain of the infinitesimal

generator of the Markov process xt. The characterization of

this operator is important in its own right as well as in

applying the results of Chapter 5. It is hoped that a de-

tailed characterization of this operator will pave the way

for useful approximations to the optimal nonlinear filter.

4. Extend the stability results of Chapter 6 to cover more

general models, for example, those with delays in the

observations. As discussed in Chapter 6, this will be
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intimately related to the control problem with delays in

the control. It is not clear what techniques are suitable

for this problem. In fact, it is not clear whether the

controllability and observability concepts which have

proved fruitful need to be reformulated or not. Since

many practical systems have delays in the observations,

this is an important practical as well as theoretical

problem.
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APPENDIX A

PROOF OF LEMMAS 4.1 AND 4.2

We refer the reader to Chapter 4 for the statement of these

lemmas.

Proof of Lemma 4.1: The extrema of the function f(X) = (ao2 +c 3 2 XT

occur at

2 2
-(a2T+2a 3  + a2_C +4a3 4a32X t2a3

2a3

Since a22-4 a3 > 0, there are two real extrema for f(X). Also, the

zeros of f(X) occur at the zeros of a1+a2 X3 2, and these are at

-a2+ a 2-4a1 a3
2a3

2

Again, since a 2 2-4a1 a 3 > 0, these give two real zeros of f(X). Let

-2 a o22-bia3
s+ 2a32a3

_- 2 13-a 2 ~, 2-4a 1a 3
s2 

2a 3

Let us perturb X by some number c and let

i (s) = a 3 (si +)2 2 s +)+a1

= E(a 3E+2s a3 +a2 )
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Hence
T (s ) = (aYe+ 4 -4a2

T1 (s 2 8(a~8-~ 4 1ca3Thi s yies3

This yields

1n (s ) > 0

< 0

> 0

< 0

if 6 > 0, and ca 3

if c > 0, and ca 3

if c < 0, and ca3

if s < 0, and a 3

Similarly,

n (s2) > 0

< 0

> 0

< 0

if E > 0, and ca 3

if c > 0, and Ea 3

if E < 0,

if c < 0, and ca3

a22-4aya2 3

- c2-4. a

- 7-4ala

2

22-4aa3
a 42 1

< P2 14t3

an d E2 4 a a
3 1 4.3

22-4ata3

Let us now examine the graph of the function f(X). There are

eight cases, depending on the signs of the a 's.

Case I: a1 > 0, a2 > 0, a3 > 0. In this case s1 and s2 are both negative.

If 8 > 0, n (s ) > 0, and if

- 22-aa
< E < 0, (s) < 0.

2 3

A little thought now shows that the graph of f (X) is of the form
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f(X)

S2  S

It is obvious that for any finite real 3 # s1 or s2, there exists a

y, such that the line y,(X-6) intersects f(X) at three real distinct

values of X, none of which equals s1 or s2. There also exists a

constant O(w > 0 in this case) such that the line X=o intersects f(X)

at three real distinct points.

For the other seven cases, entirely similar arguments show that

f(A) must have one positive maximum and one negative minimum, and

hence the required straight lines exist. We shall omit the details.

The lemma is now proved.

Proof of Lemma 4.2: Since C is of full rank, we may assume, without

loss of generality, that q'c 1 = a3 0 0, where ci is the ith column of

C. Since (A,C) is controllable, we have the following possibilities:

(i) {c1 , Acl, c2} are linearly independent

or (ii) {c, c2, Ac 2 } are linearly independent
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Case (i): {cl, Acl, c } linearly independent.

Construct a matrix K 1 as follows:

K 1 = [0 e2 0][cl Ac1 c2

where e2 is the second natural Euclidean basis vector in 2 dimensions,

and 0 is the null vector. Then

(A + CK )c1 = Ac1

(A + CK ) = A2c1 + c2

and (A1,c1 ) is controllable, where A1 = (A + CK1).

Let the characteristic polynomial of A1 be p(s) = s +p2 2+p1s+p.

We can then write

c2 1 (A 1
2c1+p2A 1c1+p1 c 1 ) + 2 (A1c1+p2c1 ) + 63c1

for some Bl, 32, and 3. The independence of c1 , Ac1 , and c2 implies

13 1 0. The transformation

1 0 0

P = [A1
2 c1 A 1 c1 c] p2

p1 p2 1

gives P1 A 1P in companion form and

0 1P -C [0 62
1 B3
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Let q'P = ('1'2' ). Then

2
= q'(A c1+c2 ) + p2q'Ac 1 +p1 'a3

a2 = q'Ac1+p2a3

2 32 2
If a 2-4aU3 > 0, and is not a zero of n(X) = +a 2 32 , we

are done. If not, take a matrix F of the form

-f0  -f -f2
F= 

0 0 0

then P1 (A+CK1)P + P CF

P1(A+CK +CFP )P p- P1A2P

0 1 0

0 2 1-p [i p i -p~
with p! = p +f..

I 1 I
Define a matrix P1 by

P = p~1[A 2 c1 A2 c1 c ]

A -1
= P P2

1
p

p

0 0

1 0

p1
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Then P 1P~1 A2PP1 P 1A2 2

0 1 0

-0 0 1

L -P{ -P~

Furthermore P 1 P 1C = P C =1 2

0 d1 21
0 d22
1 d 3 2 -

, for some d
12 d22' d32

Now A2c = (A+CK1)c +CFP c1

= Ac 1+C [02] = Ac -f 2c

Similarly A c = A c+c2 2Ac 22 2 2 1)c1

Choose f0, fl, and f2 to satisfy the properties

(a) a 2 , > 0, where

ac = a 3 qvc

a = q'A 2c1  3 = q'Ac -f2 q'c + (p2+f 2) 3  a

and a = q'A2
2c +p q'A2 c+ 3

= q' (A2 c 1+c2)+p2q'Ac1+(f2 -2 2 2 +p1+2f 1 3

and

(b) is not a zero of (X) =a +a 3
12123
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A little algebra shows that in fact dl2 :1, d =22 and

d132 11 3 21f1+2p2 f 2'

Some reflection now shows that appropriate choices for fo, fl,

and f2 exist. This completes the consideration of case (i).

Case (ii): {c1 , c2, Ac2} linearly independent.

We construct a matrix K2 as follows

K2  [ i 2 OOH-][cl c2 Ac2 ]'

Let A = A+CK Then A3c = Ac +c2 and A 32c = A 2c+Ac2+CK2Ac .

Let the characteristic polynomial of A3 be p(s) = s 3+p2s 2+p1s+po.

We can write

c 2 = l[A3 2 c 1p2 A3 c 1+pic I ]2 [A 3c +2 cy 1 +3c 1

2 is clearly nonzero. If Bl 1 0, we carry out the constructions in

exactly the same fashion as in case (i). This shows that we can again

find appropriate matrices P and K such that P1 (A+CK)P, q'P, and P1 C

have the required structure. The proof of the lemma is completed.
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APPENDIX B

DERIVATION OF EQUATIONS (5.53) - (5.55)

To derive

consider three

the appropriate equations for P(t,8,E), we have to

cases:

(i) 0 < t < T,

(ii) O < t < T,

-T < 8 < 0,

-T : < 0,

-T < E < 0

= 0

(this also covers the case 0 < t < T, e = 0, -T < C < 0,

since clearly P(t,8,O) = P'(t, ,8)).

(iii) O < t < T, e = C = 0.

Since the derivations are somewhat tedious, we shall give details only

for the equation satisfied by P(t,8,E) for 0 < t < T, -T < 0 < 0,

-T < < 0. To avoid notational complications (since P(t,8,E) is a

matrix, to use Theorem 5.3.1 requires the calculation of P.. (t,eE), 1
1J

< i,j < n), we will assume everything is scalar. For convenience we

shall write ec (x ss) = c(x ss) - c(x ss)

We appeal to Theorem 5.3.1 and (5.50) to write

P(t,8,E) = Et {x(t+8)x(t+E)}-^(t+8It) (t+cjt)

= Eo{x(t+0)x(t+E)}+ Es{E0[x(t+)x(t+)Ixs ec (x s,s)]}

-R1 (s)dv(s)
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-[X(t+e|t+6)+ t+6Esfx(t+6)ec (xss)}R (s)dv(s)]

+ t Es{x(t+E)eC s ,s)}R~ (s)dv(s)]

= E [x(t+6)x(t+)] - 2(t+e|t+e)2(t+ |t+)

+ t E {E [x(t+e)x(t+Qxs c(x ss)}R1 (s)dv(s)

0

Es{x(t+)ec s,s)}R 1 (s)dv(s)

-2(t+|It+) f t
t+6

Es{x(t+e)ec ss)}R' (s)dv(s)

t 0 E x (t+ )e ( s ,s)}R (s )d (s)

It is readily seen from (B.1)

t Es{x(t+ )ec (x ss)}R (s)dv(s)

(B.1)

that P(t,6,) is continuous in (t,e,§).

Similarly for c in (0,T) such that -T < e + C < 0,

P(t-E, e+E, E+E)

= E {x(t+6)x(tf()}-2(t+eit+6)R(t+Elt+()

-T < + C < 0,

t-E -
+ f Es {E0[x(t+6)x(t+)jxs]ec(xss)}R~1(s)dv(s)

0

fc(t+Gf|t+6) Es{x(t+E)ec s ,s)}R 1(s)dv(s)
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ES{x(t+6)ec xs,s)}R^(s)dv(s)

t+6

Es{x(t+e)ec (x s )}R (s)dv(s) Et-S {x(t+Qec ss) }R
., t+(;

Hence P(t,6,) - P(t-E, G+c, +E )

= E [x(t+e)x"t+)Ix jec (xs)}R 1(s)dv(s)

-X(t+e|t+6) E {x(t+ )e sS)}R (s)dv(s)

ft-E

tJ Es{x t+e)ec (s,s)
t-E

IR "(s)dv(s)

- Es {x(t+e)ec (s ,s)R1(s)dv(s)

J t+6 J E f{x(t+cftt+C

)e(x ss)}R (s)dv(s)

t -E
+ E{x(t+)ec (s,s)}R 1(s)dv(s)J

t-E

t
t+E

The last two terms of (B.2) can be written as

- t Es{x(t+6)e C (xS,s)}R 1(s)dv(s)

-l
Es {x(t+ec (x s,s)}R (s)dv(s)

(B. 2)

E{x(t+)ec (x ,s)}R (s)dv(S)

Es{x(t+O)ec s,s)}R 1(s)dv(s)
t

st-c

Es{x(t+)e (x s, s)}R (s)dv(s)
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t-E

t-E
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t

-t

t+e

Es{x(t+6)ec (x ss)}R (s)dv(s)

Es{x(t+6)ec s ,s)}R (s)dv(s)

Es{x(t+e)e (x ,s)}R (s)do(s)
C S

Substituting (B.3) 4nto (B.2) and using properties of Ito integrals,

we get

P(t,6,) - P(t-E, 0+E, +E)

t Es{E0 [x(t+e)x(t+)x lc (xs,s)}R~1(s)dv(s)

ft-E

Es {x(t+ )e (xs)}R (s)dv(s)

t-E-

t Es{x(t+6)ec (x ss)}R 1(s)dv(s)

It-E

- t Es{x(t+6)ec (xs,s)}R (s)

t-ES

u

St-EEu{x(t+()e c uu) }R1(u)dv(u)dv(s)

- t s Eu{ (t+e)ec u u)}R (u)Es{x(t+)ec (x,s)}R7'(s)dv(u)d\(s)

t-E Jt-E
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-X(t+ |t-E)

t
t-E

t+

t

it-

Es{x(t+()ec (x ss)}R 1(s)dv(s)

E{x(t+)c (xsjs)}R (s)dv(s)

Esx(t+)e (xs, s)}R (s)dv(s)

(B.3)



- t Es{x(t+6)ec (x ss)}R 1(s)Estx(t+ )ec (x ss)}ds

Jt-c

et -

= Es{E [x(t+6)x(t+()|x ]e (x ,s)}R 1(s)dv(s)

t-E

- x(t+ |s)Es{x(t+6)e c Ss)}R 1(s)d\)(s)

t-E

- I '^(t+ s)Es{x (t+)ec (xs ,s)}R (s)dv(s)

t -E

( E,x(t+6)ec ss)}R (s)Es {x(t+E)ec (x s,s)}ds (B.4)

Since for each es[-T,0], x(t+G) given zt is Gaussian, the first three

terms of (B.4) add to zero, being the third central moment of a

Gaussian process. Hence

P(t,6,e) - P(t-E, 8+E, C+E)

= - Es{x(t+e)e (x ,s)}R 1 (s)Es{x(t+E)e (x ,s)}ds (B.5)

Jt-C

Note that there are no random terms in (B.5). Since (B.5) holds for

arbitrary E in (0,T) with -T < 0 + £ < 0, -T < E + C < 0, we can

divide by and let E go to 0. If we let a be the unit vector in

the direction (1, -1, -1), then the directional derivative, P (tG,)

of P(t,O, ) in the direction a is given by
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v3 Pa (t,eI) = -E t {x(t+8)e c (t,t)}JR 1 (t)Et {x t+ )e c (xt t)}

Equation (B.6) is the desired equation for P(t,O,), 0 < t < T,

-T < 6 < 0, -T < ( < 0. The same technique can be applied to the

derivation of the equation for P(t,8,0), 0 < t < T, -T < 6 < 0, and

that for P(t,0,0). We only sketch the steps, omitting the details.

By Theorem 5.3.1,

P(t,0,0) = E [x(t+e)x(t)] + f t E5{E0[x(t+6)x(t)xes ec ( s)}R (s)dv(s)

(B.7)

(B.7) implies that P(t,8,0) is continuous in (t,8). Some calculations

yield, for E in (0,T) such that -T < e + < 0, P(t,8,0) - P(t-c, O+E, 0)

= Es x(t+8)a(x s,s)}ds + f Es{x(t+8)x(s)ec (xs)}R 1(s)dv(s)

e(t+ | t)te(tm o t)+f((t+) t-Ec)nb(t-E t- ) (B. 8)
The last two terms of (B.8) can be evaluated to give

-X(t+6 t)'X(tit)+2(t+8 t-E)X^(t-E It-E-)

t

= (t+8js)a(xs,s)ds-
J- S

f t

I (t+8|s)Es{x s)ec
-E£

(x ss)}R 1(s)dv(s)

Es{x(t+8)2(sls)e c ss)}R 1(s)dv(s)

Es{x(t+8)ec (x ss)}R 1 (s)E5 {x(s)ec (x ,s)}ds
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- tt-E
-t

(B.9)

-(t+8|t)-(tlt)



Substituting (B.9) into (B.8) and using again the Gaussian property,

we see that

P(t,6,O) - P(t-E, O+,O)

t
= E{x(t+8)e a(x , s)}ds- f Es{x(t+e)e c(x , s)}R (s)'

t--E t-E

-Es{x(s)e (xs)}ds (B.10)

Again there are no random terms so that P(tO,0) has a directional

derivative in the (1,-i) direction. Denoting the unit vector in the

(1,-l) direction by n, we obtain

2 P (teo) = Et{x(t+e)ea (x,t)

E {x t+ )e c }t c t )E {x (t )e c tx t) }(B .l )

Finally, similar calculations (or using (5.42)) show that P(t,0,0)

has a derivative and satisfies

P(tO,O) = Et{x(t)e (x ,t)}+ Et{e (xt,t)x(t)}
dt at' at

-Et{x(t)ec tt)}R 1(t)E{ec (x t,t)x(t)} + Q(t)

(B.12)

In the vector case, equations identical to those of (3.6), (B.11), and

(B.12) hold for P(t,OE), P(t,6,0), and P(t,0,0). This completes the

derivation of equations (5.53) - (5.55). The initial conditions (5.56)

follow immediately from the properties of conditional expectations.
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APPENDIX C

PROOF OF LEMMA 6.6.1

We apply the Ito differential rule to the function V(x t) defined

in (6.78). We calculate the first and second terms to illustrate the

computations involved.

dx'(t)K (t)x(t) = [dx'(t)]K (t)x(t)dt

+x'(t)[dK (t)]x(t)dt+x'(t)K (t)[dx(t)]dt+trM'MK (t)dt

= x'(t-T)B'K (t)x(t)dt+u'(t)G'K0(t)x(t)dt

+dw'(t)K 0(t)x(t)dt+x'(t)K 0(t)Bx(t-Tc)dt+x'(t)K 0(t)Gu(t)dt

+x'(t)K (t)dw(t)-x'(t)Qx(t)dt+x'(t)K0(t)GR~1G'K0(t)x(t)dt

-x'(t)K'(t,0)x(t)dt-x'(t)K(t,)x(t)dt+trM'MK (t)dt
00

d t ltOx(t)t1 (t ,e)x(t+6)td(

t

= dt x( K1 (t,a-t)x(a)da]

0

= {[x'(t)A'+x'(t-T)B'+u'(t)G']dt+dw'(t)}f K1 (t,6)x(t+6)de

+x'(t)K 1 (t,O)x(t)dt-x' (t)K 1 (t,-T)x(t-T)dt

t
+X' (t) tK1(t a-t)x(a)dadt

t-T
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0
= [x'(t)A'+x'(t-T)B'+u'(t)G'] ] K 1 (t,G)x(t+6)dedt

0
+dw'(t) J K1 (t ,e)x(t+O) d6+x' (t)K1 (t,O)x(t)dt

-x't)K~t-T)x(t-Tc)dt+x' (t) [ t6]xt6dd

-T

Similar calculations on the last two terms on the right hand side of

(6.78) yields the following expression

dV(xt v 1 (t)dt+dw'(t)K0 (t)x(t)+x'(t)K (t)dw(t)

0

+trM'MK0 (t)dt+dw' (t) K (t ,)x(t+O)d

0

+ x' (t+6)K' (tO)dedw(t)
-T1

-x' (t)Qx(t)dt-u' (t)Ru(t)dt (C.1)

where V (t) = [u(t)+R 1G'K (t)x(t)+ J R 1 G'K1 (t,)x(t+)d6]'

-T

-R[u(t)+R~'G'K (t)x(t)+ 0 R 1G'K (t,5)x(t+)d]

(C.2)

Using the boundary conditions at T for K0 (t), K 1 (t,G), and K2(t,6,0),

we see that V(xT) = 0. Therefore
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J [x' (t)Qx(t)+u'(t)Ru(t)]dt

V(x ) + V1(t)dt + trM'MK (t)dt

0 0

+ 2 f x'(t)K0(t)dw(t) + 2 ff x'(t+6)K (t,6)d6dw(t)

Taking expectations, we get

T
E [x'(t)Qx(t)+u'(t)Ru(t)]dt

= EV(x ) + Ef V1 (t)dt + f trM'MK0(t)dt (C.3)

0 0

T T
Now E V (t)dt = EV1 (t)dt

0 0

= T E{E[V1 (t)jzt ]}dt

using Fubini's theorem and properties of conditional expectations.

Substituting the control law in (6.76) into (C.2) we get that

E[V 1 (t)Iz t] = E{[R 1G'K0(t)e(tlt)+ f10 R 1 G'K1 (t,6)e(t+jt)d]'

T

-R[R 1G'K 0(t)e(tft)+ f R1 G'K1 (t,8)e(t+|t)d]Izt

-T
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which is precisely

tr{K (tGR- 1G'K (t)P (t)+ K'(t,8)GR~-1G'K (t)P (t,6)d6

-T

+ 0  0 K{(tO)GR~1G'K (t,5DP2(t, ,e)ded } (C.4)

-T -T11 
2

E{V 1 (t)lz t} is now seen to be a deterministic function and hence

equal to EV1 (t). Substituting (C.4) into (C.3) yields the conclusion

of the lemma.
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