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Abstract

Life cycle assessment (LCA) has gained much interest in the field of product development and decision
making. The resource intensiveness of conducting an LCA has slowed more widespread adoption of the
methodology. Although some streamlined LCA methodology exists and are currently be applied, there
can be a lot of known and unknown uncertainties in the resulting analysis. These uncertainties could
sometimes render the LCA results useless for any decision making activities. Thus this thesis proposes
the evaluation of probabilistic underspecification in streamlining LCA and estimating a product's life
cycle impact to both reduce LCA efforts and increase certainty in the results.

This thesis focuses the development and application of probabilistic underspecification in estimating the
materials impact of a product. In order to account for the uncertain with the degree of underspecificity,
we propose structuring of a classification system that will help associate materials specificity, uncertainty
in the materials impact, and the degree of effort to retrieve that information. This will serve as the bases
for probabilistic methodology to determine what part of product is important to characterize and invest
effort in order to reduce uncertainty in the LCA results with less effort than traditional LCA.

Mass can be a key indicator of impact. Therefore, several case studies were conducted comparing the
viability of probabilistic underspecification for calculating materials impact value for these products of
varied mass compositional characteristics or the degree of mass uniformity. The compositional uniformity
was measured by adapting the Herfindahl index used in economics but applied to component-mass share.
Despite the difference in the mass uniformity, the methodology significantly and consistently reduced the
number of components that needed to be well specified, while retaining a relatively high confidence in the
resulting estimates.

Probabilistic underspecification shows promise in both reducing LCA efforts and increasing the
significance in the material impact assessment of the case studies in this thesis. This process also allows
the leveraging of uncertainty and probability to reduce the effort and may help improve the rate at which
life cycle assessment may be conducted. With faster LCA, the move towards a sustainable and
environmentally responsible growth economy may be sooner realized.

Thesis Co-Advisors: Randolph E. Kirchain & Joel P. Clark
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1 INTRODUCTION

Life cycle assessment (LCA) is a technique to assess the environmental impact of

products, processes, or materials. Recently, its importance as a decision-making tool to help

evaluate current product inventories and innovation of environmentally responsible products has

grown. The market has become more aware of the value of environmentally conscious materials

selection and product development, as is evident in the proliferation of consumer-conscious

"green" labels on products ranging from groceries to consumer electronics. As such, there has

been an increased interest in standardizing LCA-based carbon footprinting techniques, like the

guidelines developed by the International Organization for Standardization (ISO) and the Society

of Environmental Toxicology and Chemistry (SETAC), which has helped to further the acceptance

of LCA by a broader community (Reap, Roman et al. 2008). However, the cost of conducting a

complete LCA continues to inhibit its use, potentially delaying the development of eco-conscious

products.

LCA's main cost driver is the large amount of information needed to completely assess a

product's impact while conducting its life cycle inventory (LCI). Because a complete LCA

considers all inputs and outputs of all phases of a product's life cycle, collecting complete LCI

information for even the simplest commodity may require significant time and resources. A survey

of LCA practitioners showed that time and resource requirements for data collection hamper a

broader application of LCA. For rapidly-evolving industries, such as information technology, the

time to complete an extensive LCA may limit its relevance (Cooper and Fava 2006). A quick and

conclusive assessment is important for LCA especially in the development of eco-innovative

products, especially those where only limited information can be determined about the product's

supply chain and life cycle (Chen and Wai-Kit 2003). Given the barriers to obtaining primary

information, are there ways to reduce the effort, or streamline, the LCA process?

Since the outset of LCA methodological development, myriad effort-reducing strategies

have been considered to accelerate the pace and reduce the cost of LCA. Qualitative and

quantitative approaches have reduced the effort required to gather information, thereby allowing

for "streamlined" LCA results. Most LCA techniques conducted span the spectrum from purely

qualitative to purely quantitative, often varying in their degree of streamlining. Qualitative LCA is

a form of streamlined LCA that requires significantly less data gathering than a complete

quantitative LCA. Qualitative LCAs are useful because they can provide a quick assessment of

products or processes where hard numbers are difficult to obtain. Matrix-type and pattern-based



LCAs are examples of qualitative streamlined LCAs. They have been helpful for rough

estimations of impact even during developmental phases of a product (Chen and Wai-Kit 2003).

Meanwhile, due to the increased importance of applications requiring quantitative impact

values, such as labeling and benchmarking initiatives, there is an increased interest in quantitative

streamlined-LCA. Quantitative LCA is fundamentally more difficult to streamline because it

requires more data gathering than qualitative LCA. Therefore, semi-qualitative (using both

qualitative and quantitative rules) or quantitative streamlining methods have been developed to

ease the data burden for quantitative LCA. For example, one approach uses previously conducted

LCAs or experiences as guides to identify the relevant parts of the LCA to quantify. Essentially,

past experience is used as high pass filter to identify high-impact life cycle activities that are

important to quantify for a meaningful assessment. Tightly defining the goal and scope of a

project is another streamlining technique; it confines the analysis to a more narrow area of interest

that is relevant specifically to the question the analysis poses (Weitz and Sharma 1998). For

example, instead of broadly assessing the impact of an entire product, we may only want to know

the manufacturing energy demand. However, this technique does not satisfy situations requiring

full quantitative LCA. In those cases, are there ways to reduce the data burden?

One of the most widely applied streamlining approaches is using previously gathered

information from LCA databases to build a product's LCI. Instead of gathering first-hand LCI

information about the system, standard database values are substituted for primary data. However,

in building a quantitative impact model of a product using surrogate or proxy data, the model may

not accurately represent the actual impact of the product. Detailed life cycle inventories that

constitute the information in databases like ecoinvent 2.0 and United States Life Cycle Inventory

(USLCI) contain information on the life cycle activities within select geographic locations at

certain points in time. Completely analogous activities may not be available for the product of

interest, or the LCA practitioner may not be able to discern the best proxy. Therefore, at best, the

models can only be approximations of the real system. Different sources of uncertainties could

quickly compound, creating large inaccuracies in an LCA that could spoil its potential use for

decision making.

Although these streamlining methodologies reduce the time and effort of conducting LCA

by lessening the data gathering burden, they introduce variability and uncertainty into the results.

A review by Hunt et al. discovered that half of the streamlining methodologies assessed arrived at

different results when compared to a full LCA (Hunt, Boguski et al. 1998). Stakeholders cannot



confidently make the best decisions if the LCA results are too uncertain. Given that uncertainty

exists in streamlined LCA methodology, does it undermine our ability to streamline? This thesis

explores the question by systematically evaluating the effectiveness of streamlining approaches at

several different levels of data uncertainty. This is done in the context of a number of case studies.

These studies specifically evaluate the impact of materials production and use in common

consumer products. Materials are frequently the dominant driver of life-cycle impact for products

that don't consume significant energy during use.

2 DISCUSSION

Sustainability and environmental responsibility are becoming increasingly important

factors in business decisions. Consumers are pushing for more environmentally friendly products,

urging companies to explore low impact materials and processes to manufacture their goods

(Borland and Wallace 1999; Finster, Eagan et al. 2001; Gaustad, Olivetti et al. 2010). An MIT

Sloan School of Management survey of 1,500 global executives and managers and in-depth

interviews of over 50 thought leaders revealed that sustainability could affect every short-term and

long-term value-creation lever of a company (Berns, Townend et al. 2009). For example, Wal-

Mart, the world's largest retailer by revenue in 2010, has responded to market demands by

working with The Sustainability Consortium to develop a Sustainability Index for their products.

However, lack of information is one of the three top-cited barriers to corporate action to address

sustainability. LCA has been developed precisely to produce information crucial in driving more

sustainable actions.

complete

streamlined

qualitative quantitative

Figure 2-1 Spectrum of LCA methodology with respect to qualitative/quantitative degree and
completeness.



LCA can also be a useful decision-making tool in analyzing and developing environmental

policies (Ross, Evans et al. 2003). Some governments are already using LCA to help set

environmental policy and to make decisions (Hofstetter, Baumgartner et al. 2000; Troge and

Schmitz 2000; Blengini and Di Carlo 2010). Regulatory pressures have contributed to increased

demand for LCA results. For example, after the European Commission passed the Energy-using

Product, or EuP, Directives on efficient home lighting, a comprehensive LCA helped confirm the

policy's environmental benefits (Welz, Hischier et al. 2010). Although LCA results are becoming

more important, they remain costly to obtain due to the effort required to gather the LCI data

needed for a complete analysis. In some cases, LCI data may be unobtainable due to proprietary

information that companies cannot afford to divulge (Todd and Curran 1999).

To lessen the information gathering burden in conducting LCA, numerous streamlining

methods have been proposed over the years. Streamlining methodologies tend to fall along a

spectrum between qualitative and quantitative approaches. Examples of methodologies on the

qualitative end of the spectrum are the matrix-type LCA formalized by Graedel and Allenby

(Graedel 1998) and pattern-based LCA (Chen and Wai-Kit 2003). In a matrix-type assessment, a

predefined impact scoring list combines with estimated LCI information to reach a rough

conclusion about the product. This streamlined process is generally used for the development

phase of a product (Weinberg 1998; Chen and Wai-Kit 2003). The pattern-based qualitative LCA

is useful in product development as well (Chen and Wai-Kit 2003). The pattern-based approach

uses previously conducted LCA to map out a product's characteristics and environmental impact.

This method assumes that a product being developed with similar characteristics as a previously

studied product would have a similar environmental impact. This methodology is also used to

help make product-development decisions (Chen and Wai-Kit 2003; Myeon-Gyu, Hyo-Won et al.

2010). Although useful, most purely qualitative streamlined LCA lack the quantitative impact

outputs necessary for certain applications. Therefore, qualitative streamlining has also been used to

help derive quantitative outputs as well. For example, a methodology developed by Sousa (Sousa,

Wallace et al. 2000; Sousa and Wallace 2006) uses the inference-based LCA to arrive at a

quantitative result. Furthermore, due to an increase in information and computational power,

rather than relying on human judgment, Sousa applied neural network classification systems to

take advantage of previous product LCA experiences in helping assess a product's impact (Sousa,

Wallace et al. 2000; Sousa and Wallace 2006).



SETAC's 1999 streamlined LCA report describes the advantages and disadvantages of a

number of other quantitative streamlining LCA methods. These methods and their application

procedures are summarized in the Table 2-1. Goal and scope definition was cited as one of the

main ways in which an LCA practitioner can reduce the data burden. Identifying goals will

determine the specific types of analysis needed and how to present the data, and defining the scope

will allow the practitioner to limit the details and information quality of the LCI (Weitz and

Sharma 1998).

Table 2-1 Streamlining approaches as
workgroup in 1999.

Streamlining approach

Removing upstream components

Partially removing upstream components

Removing downstream components

Removing up- and downstream components

Using "showstoppers" or "knockout criteria"

Limiting raw materials

recognized by the SETAC North America Streamlined LCA

Application procedure

All processes prior to final material manufacture are excluded.
Includes fabrication into finished product, consumer use, and post-
consumer waste management.

All processes prior to final material manufacture are excluded, with
the exception of the step just preceding final material manufacture.
Includes raw materials extraction and precombustion processes for
fuels used to extract raw materials.

All processes after final material manufacture are excluded.

Only primary material manufacture is included, as well as any
precombustion processes for fuels used in manufacturing. Sometimes
referred to as a "gate-to-gate" analysis.

Criteria are established that, if encountered during the study, can result
in an immediate decision.

Raw materials comprising less than 10% by mass of the LCI totals are
excluded. This
approach was repeated using a 30% limit.

Selected processes are replaced with apparently similar processes
Using surrogate process data based on physical,

chemical, or functional similarity to the datasets being replaced.

Only dominant values within each of 6 process groups (raw materials
acquisition, intermediate material manufacture, primary material and

Using qualitative or less accurate data product manufacture, consumer use, waste management, and ancillary
materials) are used; other values are excluded, as are areas where data
can be qualitative, or otherwise of high uncertainty.

Selected entries are used to approximate results in each of 24 impact
Using specific entries to respresent impact categories, based on mass and subjective decisions; other entries

within each category are excluded.

Another semi-qualitative and quantitative LCA approach is to complete a qualitative

overview of the life cycle of the product in order to identify the life cycle activities that comprise



of a set of interest (SOI). Then, a more in-depth quantitative LCA is conducted on the SOI (Ong,

Koh et al. 1999). However, the qualitative LCA overview still requires a significant amount of

expertise to judge the importance of activities to refine with quantitative data gathering. This

barrier prevents widespread application. An alternate method requiring less expertise is to use

publically available data as a surrogate for primary data, which also serves to reduce the cost of

data collection (Todd and Curran 1999; Weckenmann and Schwan 2001; Hochschorner and

Finnveden 2003). The acceptance of this methodology is demonstrated by the wide use of

commercial software suites such as SimaPro and Gabi, which rely on secondary data sources like

the U.S. LCI Database and ecoinvent for LCA calculations. The advantage of this method is that

the resulting output may provide quantitative impact values similar to a full LCA.

Although streamlining techniques could significantly reduce the effort required to conduct

an LCA, the results from streamlined LCA studies are not as accurate as full LCA results. A study

comparing streamlining methods, such as removing upstream/downstream life cycle components,

revealed that over half of the streamlined LCA results arrived at a different conclusion than the

complete LCA study (Hunt, Boguski et al. 1998). Although surrogate data is widely used, any use

of proxy data increases the uncertainty in the LCA results because the previously collected data is

regionally and/or temporally specific. The use of surrogate data requires the practitioner to use his

or her expertise to select the best proxy. A 2011 survey conducted by Vee Subramanian of

Arizona State University revealed that LCA experts may not be significantly better than non-

experts at choosing surrogate data from databases that reflected a reasonable approximation of the

real system (Subramanian, Williams et al. 2011). Furthermore, by using proxy data as point

Table 2-2 Classification of uncertainties according to several authors reproduced from Heijungs and
Huijbregts 2004.

Bevington & Robinson (1992) Morgan & Henrion (1990) Huijbregts (2001)
Hofstetter (1998)

systematic errors statistical variation parameter uncertainty
random errors subjective judgment model uncertainty

linguistic imprecision uncertainty due to choices
variability spatial variability
inherent randomness temporal variability
disagreement variability between sources and
approximation objects

Funtowicz & Ravetz (1990) Bedford & Cooke (2001) US-EPA (1989)
data uncertainty aleatory uncertainty scenario uncertainty
model uncertainty epistemic uncertainty parameter uncertainty
completeness uncertainty parameter uncertainty model uncertainty

data uncertainty
model uncertainty
ambiguity
volitional uncertainty



estimates of actual LCI data, one may have false confidence in the resulting LCA report.

Therefore, uncertainty in streamlined LCA, especially with the use of surrogate data, must be

understood for the streamlined LCA results to be useful for decision making (Heijungs and

Huijbregts 2004).

Academics have acknowledged and extensively discussed uncertainty in LCA. In Table

2-2, Heijungs and Huijbregts review various ways in which authors in the field have classified and

discussed uncertainty in LCA studies (Heijungs and Huijbregts 2004). These sources of

uncertainties are not limited to streamlined LCA but are pervasive in "complete" LCAs as well.

Although acknowledged in literature, LCA practitioners often fail to address properly the issue of

uncertainty in their reports. In a 2002 report by Ross et al. (Ross, Evans et al. 2002), of 30 LCA

studies surveyed, fourteen mentioned uncertainty, three conducted qualitative uncertainty analysis,

and only one quantified the uncertainty in the LCA results (Ross, Evans et al. 2002). The reason

many fail to address uncertainty may be due to the additional data required and the complicated

calculations necessary to report statistical values like confidence intervals and significance levels

(Bedford and Cooke 2001; Heijungs and Huijbregts 2004). Moreover, reporting uncertainties

associated with the LCA report might overshadow the report's results (Heijungs 1996; Ross,

Evans et al. 2002). However, despite the lack of implementation, it is very important to quantify

the uncertainty in LCA results because uncertainties can be significantly large (de Koning,

Schowanek et al. 2010). Not knowing about the uncertainty does not shield the LCA report user

from the uncertainty in the product's impact and non-optimal decision-making that could result.

Numerous reports discuss ways in which LCA practitioners are addressing the issue of

uncertainty (Heijungs 1996; Bjbrklund 2002; Finnveden, Hauschild et al. 2009). A recent review

of current trends in LCA recognizes three major ways LCA uncertainty is being dealt with:

scientifically, socially, and statistically (Finnveden, Hauschild et al. 2009). Techniques for dealing

with uncertainty scientifically include finding more accurate data or building better models to

reduce uncertainties (Heijungs 1996). Although this approach can lead to more accurate LCA

results, it is also more costly than other streamlining methods due to the increased research and

model refinement needed to conduct LCI, efforts that may not be feasible due to time or cost

restrictions. Addressing uncertainty through social means involves reconciling the issue of data

and choices with stakeholders. Under this approach, the LCA community must agree on specific

rules on how to conduct LCA and deal with certain situations. This may also include relying on

authoritative bodies like the ISO and United States Environmental Protection Agency (USEPA) to



regulate standard or guidelines to make LCA more consistent. An approach that falls along this

vein is the LCIA method Used for a Canadian-Specific context (LUCAS) model (Bulle, Godin et

al. 2007). The LUCAS authors propose a standard method to deal with data gaps by transforming

them using normalization factors to make the values more relevant to Canada. Tools for Reduction

and Assessment of Chemical and other environmental Impact (TRACI) is an analogous

methodology for the United States (Bare 2002).

In contrast to these methods, the statistical approach to dealing with uncertainty focuses on

incorporating uncertainties into the analytical procedures of LCA and quantifying the uncertainties

in the analysis instead of mitigating them. Statistical approaches include methods like sensitivity

analysis by parameter variation, scenario analysis (Bj6rklund 2002; Tan, Culaba et al. 2004),

Monte Carlo simulation (Hung and Ma 2009), stochastic processes, and other sampling methods

(Kennedy, Montgomery et al. 1996; Hertwich, McKone et al. 2000; Huijbregts 2002; Lo, Ma et al.

2005; Bojaci and Schrevens 2010), first order error propagation, Bayesian analysis (Lo, Ma et al.

2005) and fuzzy set theory (Weckenmann and Schwan 2001; Tan, Briones et al. 2007).

The statistical approach to dealing with uncertainty acknowledges that a range of values

that can attribute to the impact of a product exists. This range of values could stem from the

sources of uncertainties described in Table 2. The size of this range will vary according to the

amount of information known about the system or its degree of underspecificity. Here, a

component is underspecified if further specific information could be obtained about the product for

a more accurate impact assessment. For example, in the case of surrogate data, the range of values

would be quite different if we only knew that a component is made out of a generic metal as

opposed to a specific nickel-titanium alloy. The ability to conduct a conclusive LCA with only the

information that a component is made out of metal rather than a specific nickel-titanium alloy, for

example, can lead to considerable streamlining.

Although many studies describe ways to incorporate uncertainty, they do not explore the

effect of the amount of knowledge or level of underspecification on the resulting LCA's

uncertainty. This information can prove crucial to the ability to mitigate uncertainty and

streamline LCA. For example, Heijungs 1996 proposes an iterative statistical screening method

that identifies SOI contributing the most uncertainty to the LCA results to be resolved at higher

resolution (Heijungs 1996). The author, however, reveals that the problem with this approach is

the lack of knowledge of the uncertainty to begin the analysis. In the study, a margin of error of

5% was assumed on all the figures used in the analysis. A more recent article by the same author



suggests using the widest reasonable range based on expert judgments or measurable data

(Huijbregts, Gilijamse et al. 2003).

In the end, while there has been considerable work both proposing streamlining methods

and on characterizing the role and impact of uncertainty in life-cycle assessment, there appears to

be little to no work exploring how these two issues affect one another. The next chapter details a

set of specific research questions that this thesis will explore in order to gain insights into this

interaction.



3 THESIS QUESTION

To address this issue systematically, we propose to carefully characterize uncertainty in

the information within a life-cycle assessment through structured underspecification of the

parameters of the life cycle activities. This exercise will be carried out across a range of different

levels or degrees of underspecification. Higher degrees of underspecification will correspond to a

larger range of possible parameter values (higher uncertainty). Lower degrees of

underspecification will correspond to a smaller range of possible parameter values (lower

uncertainty). For the purposes of this thesis, this exercise will be limited to the impacts associated

with materials. For example, say that one wanted to know the life-cycle impact associated with a

given component X. For the purpose of discussion, let's assume that X is made of aluminum

produced in a specific location using a specific process, but that the life-cycle analyst does not

have access to that information or, even if he or she does, the available databases do not contain

process inventory data that matches the specific provenance of X. In such a case, the analyst must

either utilize expensive resources to collect more information about X and its processing or carry

out the analysis using proxy data. Using the analytical approach that will be described later, X

could be (under)specified simply as a metal, further specified (albeit still clearly underspecified) as

a non-ferrous metal, or even (if sufficient information were available) as a generic aluminum alloy.

Each of these options would have clear impact on the uncertainty in the impact of component X.

Examining each of these alternative ways of specifying the materials within a life-cycle allows us

to determine objectively and systematically the possible range and distribution of values for the

projected impact of a product based on how much we know about that product-system.

To help advance the field of streamlined LCA, we propose a methodology that

incorporates structured underspecification of life cycle activities to leverage the fact that, in many

cases, only some activities must be well specified. Where uncertainty comes from underspecifying

a product life cycle, it should be possible to reduce result uncertainty through better information.

Such information gathering is expensive and is the very activity that streamlining aims to avoid.

Fortunately, some evidence suggests that it should be possible to prioritize targets of that data

collection. This prioritization concept was explored by Huijbregts and others by qualitatively and

quantitatively identifying the SOI. We propose identifying the SOI with a statistical ranking

system based on the probability that the life cycle activity contributes to the impact and

uncertainty of the product. Then, the SOI would be further specified to a greater resolution to

obtain an LCA result with minimal effort to resolve the LCI and with minimal uncertainty. By



probabilistically underspecifying parts of the life cycle activity we hope to reduce the effort of

conducting the LCA.

This thesis explores the viability of probabilistic underspecification in streamlined LCA

and mitigating uncertainty in the LCA results. As the proof of concept, this thesis focuses on

streamlining the materials impact assessment portion of the life cycle. This thesis will address the

following questions:

1. How does structured underspecification of raw materials affect the precision of the estimate of

product environmental performance?

2. How efficient and effective is structured underspecification analysis for identifying the SOI

and reducing residual uncertainty in the results given:

" The degree of confidence

" The degree of streamlining

* A specific ranking criteria

3. How much residual variation remains in an evaluation based on a partially specified, partially

underspecified analysis?



4 METHODOLOGY

Although the practice often goes unremarked, effectively all life cycle assessment today

relies upon the use of secondary data or proxy data. That is data that the facilities, processes,

users, or other operators within the life-cycle under study did not collect. This practice is

necessary to make life-cycle assessment feasible because primary data for complete LCA, as

diagramed in Figure 4-1, may not be readily available.

Primary Data Collection

Figure 4-1 Diagram of primary data gathering for a complete LCA of a product. This is not often conducted
because it is very resource intensive to investigate and obtain primary data for all necessary impact factors.

Multiple methods to select or characterize this proxy exist. The most common approach

appears to be to select data associated with an activity that is similar or analogous to the relevant

activity. This selection generally comes from an available activities database. This process is

diagrammed in Figure 4-2. Ultimately, evaluating the appropriateness of similarity rests with the

analyst. As discussed by Weidema and Wesnos (Weidema and Wesnos 1996), the

Surrogate Activities Data Picking

rim
rM
rim

rim
rim

ra

rim
rM

rim

rim

rimrM
Figure 4-2 Streamlined LCA in which the practitioner uses experience and best judgment as a guide to
picking out representative activities in order to estimate the impact of a product.

Product A
Streamlined

surroutiue
activities dat a

Activity 3 Data
W



appropriateness or representativeness of this surrogate introduces another form of uncertainty into

the analysis. Also, Weidema and Wesnos (Weidema and Wesnaes 1996) have suggested that this

uncertainty can be estimated by using the pedigree matrix approach. Given that data on a

surrogate process probably will not mirror that of the process of interest, using that surrogate data

likely introduces bias into an analysis. Hopefully, analyst expertise mitigates this bias or at least

constructs a bias whose nature is conservative towards the goals of the analysis.

Using Proxy Activities Data
Accounting for Uncertainties

LCA uisin1

pr1oxy aIctmvtv

for n1certinty

Figure 4-3 Streamlined LCA with the use of proxy data while taking into account the uncertainty in the
surrogate data. A more general proxy impact range is taken into account for a range of possible impact
values rather than point estimates.

This thesis explores using an alternative to the use of surrogate data as an approach to

defining a data proxy. This methodology, referred to as underspecification, defines the proxy

based on the distribution of data associated with similar processes or activities. The distribution of

associated processes can be referred to as a class. This class should be broad enough to contain

several similar processes (i.e. candidate surrogates). The goal of the underspecification approach

is to remove the potential of statistical bias due to erroneous surrogate selection and to fully

capture, if not overestimate, the uncertainty associated with using proxy data of uncertain

representativeness. This final point is of particular relevance to this thesis. If streamlining

methods can be developed which are robust to high levels of uncertainty, it may be more



appropriate to overestimate rather than underestimate the uncertainty associated with data. The

next section describes the approach taken in this thesis to define classes of activities for

probabilistic underspecification.

4.1 Structured Underspecification

Structured underspecification is a way to categorize and to index materials information so

that LCA practitioners can understand the degree of uncertainty of different materials specificity

about a component. For example, assume a component is made of a specific sheet steel alloy.

However, the only certain information about the component is that it is a metal component. The

LCA model incorporating structured underspecification will assess the impact of that component

and of that product with the uncertainty factored in. Structured underspecification is implemented

in a database in which the most specific proxy data information is categorized into groups

according to different characteristics. For this thesis, the individual materials description and their

values for cumulative energy demand (CED) were extracted from the following databases:

ecoinvent 2.2 (Frischknecht, Editors et al. 2007), European Reference Life Cycle Data (ELCD)

(Wolf, Pennington et al. 2008), Industry Data 2.0 and United States Life Cycle Inventory

(USLCI). This information is then categorized into five levels of specificity, Level 1 (L1) to Level

5 (L5), with LI being the most underspecified and L5 as the most specified. The L5 level of

information consists of individual entries from the database. In our case, the individual entries are

the best estimate for surrogate data that the LCA practitioner would have to choose as the proxy

for the relevant component in impact assessment conducted using LCA software like Gabi or

SimaPro.

4.1.1 Why Do We Need Structured Underspecification?

Structuring the underspecification allows one to model the effort necessary to gather

information about a product and to assign a quantitative value to that effort. Additionally,

structuring underspecification provides the ability to estimate the uncertainty associated with each

level of specificity. This approach derives from the process in which streamlined LCA

practitioners specify what material a component is made from in order to decide which

representative proxy data to use in the impact assessment when primary information cannot be

readily obtained about the component. However, as the discussion chapter covered, it can be

challenging to identify the specific materials composition for a product. This uncertainty

translates to difficulty choosing the most representative proxy material from the database.

Structured underspecification will allow the LCA practitioner not to specify fully the materials



composition of a product and to account for the degree of uncertainty in the impact of whole

products and their components parts when modeling and conducting an LCA.

4.1.2 Materials Categorization

In terms of this thesis, structured underspecification begins with materials categorization.

As schematically demonstrated in Figure 4-4, each level of specificity is associated with a different

amount of information known about a component. The five levels of specificity include material

category, material property, material type, material processing and specific database entry. The

material category includes broad categorization type like metals, chemicals, minerals, and other

very general classifications of materials. In the material property level, the materials that were

sorted into their respective categories are then separated along different materials properties. For

example the metals category is divided into ferrous metals, non-ferrous metals, and metal alloys,

whereas the polymers category is divided into thermoplastics, thermosets, and elastomers. The

complete list of categorization scheme is available in APPENDIX A: Table of Database

Classification.

Material Material Material Material Specific
Category Property Type Processing Database Entry

Level 5-A
Level 4-A

Level 3-A Level 5-B

1. Level 5-C

LeelI M Level 2 Level 4-BILel5-

U-B Level 5-E
Level 4-C

Level 5-F

Level 5-G

Figure 4-4 Schematic example of the database information hierarchy for structuring underspecification.

When modeling the impact of a component, the number of possible proxy database entries

depends on the level of specificity. This fact allows us to account for the uncertainty of the

underspecified component. In the schematic example, a component identified at the L2 specificity

can be of any material from L5-A to L5-G. However, if the component is further specified to be

L3-A, the possible proxy entries from the database will now only consist of materials L5-A to

L5E. This will be statistically incorporated when the impact is modeled. The practitioner should



expect the degree of uncertainty of which proxy should be used to shrink as the component is less

underspecified and subsequently the resulting estimated impact value becomes more certain.

4.1.3 Level 5 Uncertainty Assumption

The most specific level in our analysis is L5, which contains information about the

specific material impact and the uncertainty around those values. Individual entries from databases

carry a degree of uncertainty because they are used to approximate measured data in first-hand

LCA. One has to account for factors such as temporal variation, measurement uncertainties,

geographic correlation, and several other factors that could cause the database value to diverge

from its proximity to the measured value it is trying to represent. The pedigree matrix discussed in

the ecoinvent documentation (Frischknecht, Editors et al. 2007) can be used to estimate the

uncertainty in the proxy data by assigning quantitative values to qualitative judgments on how

accurately the proxy data reflects the case being studied. Depending on the quality of the data in

six categories, the practitioner will assign an indicator score from one to five accordingly. The

qualitative observation and indicator score is summarized Table 4-1. For the case of this study we

will assume that the indicator score is three for all of the uncertainty factors. This will give the

entries a medium level of uncertainty on the quality of the proxy data.

Table 4-1 Pedigree matrix used to assess the quality of the data source. Derived from Pedersen
Weidema and Wesnaes 1996, reproduced from ecoinvent documentation.

Indicator score 1 2 3 4 5 Remarks
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Representative data from Representalve data fromRepresentatno fo >50% of the it relevant nl some sites ( %) Representative data fromness
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Less Man 3 years of Less than 6 yeas of Lessthan 10 years of Less tan 15 years of Age of data unknown or 1997 or er;

orl dlference to our reference dierence to our reference difference I our reference difference to our reference m 15 yers sce for processes wil ivestment cydes of
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Examples for different technology-
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The scores are then translated into a geometric standard deviation value with Equation

[4-1]. The geometric standard deviation value is the exponentiated value of the standard deviation

of the log transformed impact value.

SDg9 s = ogT2 
=

exp [V [ln(U1)]2 + [ln(U2 )]2 + [ln(U3 )]2 + [ln(U4 )] 2 + [ln(Us)]2 + [ln(U6)]2 + [ln(Ub)]2]

with:

[4-1]

U1 = uncertainty factor of realiability

U2 = uncertainty factor of completeness

U3 = uncertainty factor of temporal correlation

U4 = uncertainty factor of geographic correlation

Us = uncertainty factor of other technological correlation

U6 = uncertainty factor of sample size

Ub = basic uncertainty factor

4.2 Monte Carlo Impact Simulation

To estimate the impact value of each component of the product, Monte Carlo (MC)

simulations are used to produce possible impact values for each component of the product and,

ultimately, derive the impact value of the product itself. When gathering the materials information

for the LCI, the practitioner will gather a bill of materials (BOM), which consists of the

components weight and materials information. However, we will refer the BOM as the bill of

components (BOC) in this study because one of the questions we would like to answer is how

specific we need to be when describing the components in order to obtain credible LCA results,

especially as a specific material is not always associated with each component. The information

hierarchy provided by the structured underspecification will allow for the estimation of the

uncertainty in the impact value of the product as seen at different resolution of the BOC.



The BOC consists of the product components' mass and the materials specification of the

components at each level of specificity. The LCA simulation model then randomly chooses a

value using Excel's RANDBETWEEN function to choose an L5 proxy database entry from a list

of L5 proxy entries that belong under a materials designation at a given level of specificity. Once a

specific proxy is chosen, Oracle Crystal Ball is used to run MC simulation of the L5 proxy. This

generates an impact value for the component and then the impact value for the product can be

derived from the component impact values. The simulation is repeated 10,000 times to generate

10,000 unique possible impact profile of the BOC. The input into Crystal Ball requires arithmetic

mean (lia,), arithmetic standard deviation (qa,), and location (L) as input parameters. The

arithmetic mean pa, and standard deviations a, were transformed from the geometric standard

deviation as presented from the database according to [4-2] and [4-3]. The location parameter is

assumed to be zero for all cases.

log 2 
(Ug)

Par= .lg * e 2

[4-21

Uar = 2*ln( Lg) + In2(ag) * (eln 2(ag)

[4-3]

4.3 Streamlining: Selecting the Set of Interest

The set of interest (SOI) is the subset of components that are determined to be the highest

impacting items within the product. The goal of the methodology is to determine which SOI are

important to resolve to better characterize the impact, IA, of the product, A. More formally stated,

let SOI be defined as the smallest (in number) set of p components, the impact of which represents

at least some threshold fraction d of the total impact of the product A. This fractional contribution

d to the product's impact will depend on the LCA practitioner's goal and scope of the study. The

fractional contribution of the SOI is expressed mathematically in [4-4].

p
I -

d Xi such that Xi=
J=1[4

[4-4]



4.3.1 Ranking Criteria

As discussed in section 4.2, each MC run produces a possible detailed impact BOC for the

product. The SOI in one MC run may not include the same set of components as subsequent runs

due to the distribution of possible impact values and uncertainties associated with the

underspecified BOC. In order to account for the uncertainty due to underspecification

streamlining, we propose determining SOI that probabilistically satisfies the fractional

contribution criteria of the fully resolved product; identification of the SOI depends on the

probability of components in the SOI to contribute to the majority of the impact and conversely the

probability of the small contributors contributing insignificantly to the impact.

In this thesis the SOI is determined by ranking the components based on the percentile, 71,

of the percent contribution values of a component to the total impact of the product for x number

of MC trials with a specified level of confidence a. The percentile value is used because it does not

assume any prior knowledge of a probability distribution and is moderated against outlier values.

We may not assume that the data distribution in any particular category to be one type of

distribution, much less a normal distribution due to the agglomeration of multiple datasets into

materials category in the structured underspecification database. Results will be provided as to the

ranking scheme that will produce the optimal correct identification of the SOI, which is the SOI as

determined at L5.

4.3.2 Streamline Implementation: Two-Level Hybrid

Starting off with the identification or the SOI at LI, the SOI is then fully specified to L5

and the MC simulation is run again to produce an L1/L5 hybrid BOC. This approach will model

how well the LCA practitioner can perform by investing all the effort into fully specifying SOI

while leaving the rest of the BOC well underspecified at LI, and the ability of the initial Li

resolution of the BOC to offer sufficient information to identify the SOI. This methodology

represents a simplified model of reality in which the information about a product can be identified

at different levels of specificity. In actuality, the level specificity that can be quickly reached with

little resource investment is most likely somewhere between a fully specified BOC and a fully

underspecified BOC. The components in the BOC may be specified at L2, L3 or L5 to begin with;

however, for the academic analysis, we will look at the worst case scenario as viewed at the Li

underspecified level.



4.4 Assessing Effectiveness: Error Rate & Sensitivity Analysis

The SOI of the product with all its components viewed at L5, represented here as SOILS, is

determined in order to calculate the probabilistic underspecification performance. This set is used

to compare the SOI sets as established by different methods of identification of the SOI. The false

reject, or Type I, error rate as defined in equation [4-5] and the false accepts or Type II error rate,

are determined in equation [4-6]. These values will be established by varying the values of the

fractional contribution to the total, d, and the level of confidence, a, in order to determine the

sensitivity of the results to these parameters.

SOIL5 $ OL
Type 1 Error: SIS1 0L

Total # Components

[4-5]

Type II Error: SIX1 OL
Total # Components

[4-6]

4.5 Selecting Case Studies: Herfindahl Index

Selecting representative case studies to test the methodology is important in determining

the robustness of the approach; a method may seem to perform much better or much worse

depending on the case studies that one chooses. Since a product's impact is roughly related to its

mass, one needs to take into account the product's component mass uniformity when choosing

case studies. In other words, it is important to know how evenly is the product's mass is

distributed among its components. One way in which uniformity is quantified is through the

Herfindahl Index, which is traditionally used in economics to measure market uniformity for

antimonopoly cases, competition law, and technology management. The Herfindahl Index is the

sum of squares of the percentage market share, si, of the firms within a particular market [4-7]. In

our case, we have defined the percentage as mass percent contribution of each component to the

product.
N

H= s?

[4-7]



Due to the wide range of component numbers, we used the normalized Herfindahl, H*

[4-8] index to account for limit of the non-normalized Herfindahl that is 1/N.

H*=H - 11N
1 - 1/N

[4-8]

In order to more fully test out the methodology, a portfolio of products with fully specified BOC is

gathered from multiple studies that have been conducted at the Materials Systems Laboratory.

Their masses, number of components, and normalized Herfindahl indexes are summarized in

Table 4-2.

Table 4-2 Summary of the Portfolio of BOC that has been gathered to develop and test probabilistic
underspecification streamlining LCA.

Consumer Product 1 0.04 41 0.555
Consumer Product 2 15 17 0.348
Consumer Product 2 with Scrap 20 19 0.213and Packaging
Consumer Product 3 10 16 0.134
Desktop Computer 14 56 0.130
Consumer Product 3 with Scrap 15 18 0.110
and Packaging I

GREET Car 1310 90 0.071

The actual identities of some of these products may not be revealed due to confidentiality

agreements with the firms who have provided proprietary information about their product.

Consumer Product 1 is a disposable consumer product that is mainly composed of one component

and hence is reflected in the high normalized-Herfindahl Index. Consumer Product 2 and

Consumer Product 3 are two versions of functionally identical products made from different

materials. The analysis will also be run on these products to account for their packaging and scrap

material expended in the production of the components. The result is a range of Herfindahl indices

for very similar products. The desktop computer BOC was obtained using the ecoinvent

documentation of a desktop computer composition. The Greenhouse Gases, Regulated Emissions,

and Energy Use in Transportation Model or GREET 2.7 Model (2006) of a generic vehicle that

has been scaled to reflect the components and compositions of a generic US sedan. The scaling is



based on the LCA study by Sullivan of US sedans (Sullivan, Williams et al. 1998). In each case,

the L5 materials specification of the components is assumed to be representative of the best-known

information about the products. Their normalized Herfmdahl indexes are graphically summarized

below in Figure 4-5.

BOC Normalized Herfindahl
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Consumer Consumer Consumer Consumer Desktop Consumer GREET Car
Product 1 Product 2 Product 2 Product 3 Computer Product 3

with Scrap with Scrap
and and

Packaging Packaging

Product Portfolio

Figure 4-5 Portfolio of products with completely specified bill of components that will be used for
testing the methodology.



5 RESULTS AND ANALYSIS
The results of applying the streamlining methodology to a series of case studies are

outlined in the following chapter. First, the structured underspecification database is characterized

to explore the characteristics of the distribution of the expected impact values of a materials class,

as defined by the database developed for this thesis. Then the BOC of all the products is evaluated

at each level of underspecification to reveal the expected impact of the product as viewed from

differing levels of specificity. The values of the probabilistic streamlining methodology are

applied to the BOC of the GREET car with d (threshold fraction of total impact) = 75%

cumulative percent impact, a = 90% confidence with the ranking percentile criteria of R = 50%.

The error rate was determined and evaluated to be promising so the methodology was applied to

the rest of the products. The sensitivity of the size of the SOI was evaluated as a function of

cumulative percent impact, confidence level, and ranking percentile criteria.

5.1 Structured Underspecification Characterization

The materials specifications entries that are used in LCA simulation of the product case

studies were evaluated to determine the characteristic of the distribution of their expected impact

values. Monte Carlo outputs of the CED/kg of each of the materials specification entries for Levels
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Min Logistic 11%
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11% Gamma 9% Pareto
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Figure 5-1 Distribution Fits of the impact values of the groups of materials in each level of specificity.
L5 is all lognormal according to our model. 25



1-4 were generated. The results were grouped according to their Li specification in order to

compare how the expected impact distribution changes over the levels of specificity. For example,

the "Aluminum" specification at L3 will be grouped with the "Metals" specification at the LI level

of specificity. The statistics of the results were analyzed to determine the characteristics of their

distribution. Best-fit analysis was done on the data and it was determined that the majority of the

classes were not normally distributed and can be described by a number of skewed distributions as

shown in Figure 5-1.

Based on this result, mean and standard deviation values were not used to represent the

spread in the data. Instead, the variation in the output is presented using the median absolute

deviation (MAD) that is analogous to the standard deviation as it describes the spread in the data

while mitigating for outlier values. This value is the median of the absolute value of the residual of

the data set as described in the following equation [5-1]:

MAD = mediani (|Xi - median;(X;)|)

[5-1]

The MAD is used to derive the MAD-coefficient of variation (MAD-COV) value

represented in equation [5-2] as the ratio of the MAD over the median value of the dataset. This

value describes the median percent variation of the dataset from the median.

MAD COV = mediani(|Xi - medianj(X;)|)
median; (X;)

[5-2]

The MAD-COV plots of eight of the Li categories are presented in Figure 5-2. The sizes of the

circles in the plots represent the number of materials that have that designation at that particular

level of specificity. This represents the likelihood that a component composed of a material from

that Li category will exhibit that degree of variability at that particular level of specificity. The

materials classes that are in higher level of specificity tend to have smaller variations compared to

other materials classes that belong to the same L1 class but are at lower level of specificity. This

result was expected because as the materials class gets more specific, the expected impact range

should become narrower. The general trend is for a lower MAD-COV for all the LI categories of

materials; however, it is observed that there are cases where materials in more specific levels can



turn out to have higher variability than the lower specificity level from which they derive. For

example in the Glass category, one of the materials classes in L2 has a higher MAD-COV than the

Li specification. This is most likely due to the elimination of a group of materials that accounts for

the mid-values of the distribution as demonstrated in the schematic in Figure 5-3.
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Figure 5-2 The plots of MAD-COV of materials classes grouped by LI specifications and separated into levels
of specificity. The size of the circles represents the number of individual L5 entries that belong in that
particular class.
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Figure 5-3 Schematic of the probability distributions of a materials class. The variability
could widen or narrow depending on the impact values of the materials that are included in
the set.

As stated in Chapter 4, a goal of this thesis is understand whether it is feasible to identify

the SOI for a given life cycle when the activities within that life cycle have been structurally

underspecified. A further goal has been to understand what level of activity specification is

required for the approach to be effective and efficient. Implicit in the use of the "levels of

specificity" were that the levels serve well as a proxy for overall uncertainty in the underlying data

about a materials class; as specificity increases (i.e., moving from Level 1 to 5), data variability

would decline. While there is some trend towards lower variability with higher specificity, the

number of irregular cases within most of the materials classes suggests that, given the current

configuration of the database, this trend may not hold for any given case analysis. Nevertheless, it

is interesting to explore how well the method works and if the anticipated trend holds despite these

irregularities.



5.2 Impact Assessment of Portfolio

The total materials CED values at each level of specificity are generated for the case study

products' BOCs using the stochastic methods as described in the methodology section. The data is

analyzed in ten, one-thousand simulation groups taken from the ten thousand simulations run for

each product. The standard deviation, mean, median, ninetieth percentile, and tenth percentile

values for the ten sets of data are then averaged to generate the box and whisker plots shown

below in Figure 5-4 and Figure 5-5. The bottom-most edge of the box represents the 1st quartile or

Uncertainty in CED Value as a Function of BOC Resolution for Different Products
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Figure 5-4 Box and whisker plots showing the spread in total CED of three products. Notice the
difference in magnitude of the CED values due to the differences in products. Note the narrowing of the
spread in uncertainty as the BOC gets more specified.

60

50

40

30

20

10

0

L5



the 2 5' percentile. The line in between the edges of the box is the median value of the dataset,

while the upper edge of the box represents the 3rd quartile of the data, or the 75*' percentile of the

dataset. The edges of the upper and lower whiskers are the 90I and the 1 0 th percentile of the data

respectively. Notice that the CED values of the products are at different orders of magnitude as

noted by the y-axes. The average values of the CED for the computer and car do fall within the 3rd

quartile of the dataset, showing a somewhat more normal distribution when compared to

Consumer Product 1 (CP 1).

Uncertainty in CED Value as a Function of BOC Resolution for Different Products
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Figure 5-5 Box and whisker plots of Consumer Product 2 and Consumer Product 3 along
with the versions of the BOC that include scrap and packaging.

4

3

2

0

C

L2 L3 L4
Level of Specificity

mom



Consumer Product 2 (CP2), Consumer Product 2 with Scrap and Packaging (CP2SP),

Consumer Product 3 (CP3), and Consumer Product 3 with Scrap and Packaging (CP3SP) are

grouped together in Figure 5-5 because each represents the same functional product, however the

main structural component of CP3 is a polymer, while the main CP2 structural component can be

described as a metal in the most underspecified level. CP2SP and CP3SP demonstrate that

including the scrap and packaging associated with the product could lead to significantly different

expectation values for the CED. The most notable difference is in the impact of CP3. When the

packaging and scrap was included there was about an increase of around 200 kJ of energy per

product while CP2 did not show such an increase when scrap was taken into account. This

suggests that the scrap of CP3 may be more impactful or that there is a lot of scrap waste in the

production of CP3.

5.2.1 Absolute Deviation from the Best Estimate

Figure 5-6 shows the distribution of absolute deviations of the median (ADM) as the

measurement of how good the median is as the estimator of the impact of the product at the most

specified level (L5). The ADM calculation is described in equation [5-3]:

IMedian(CEDLx) - (Median CEDLS)I
(Median CEDLS)

[5-3]

Absolute Deviation of the Median CED compared to L5 Median Value
CED for case studies
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Figure 5-6 The absolute deviation of the median estimator for CED at each level of specification for all
case study products. The median gives good estimates but they have low confidence at low specificity.
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The ADM for all the products is below 50% deviation except for the Li and L2

estimations for the car. This suggests that the median give a fairly good estimate of the L5 CED

median value. The large uncertainty in the car case may be due to the majority of the car being

made up of one group of materials: metals. This group of material can have a large range of CED

impact values there is no data beyond the fact that the component is metal and the components'

weights. Although, as the car becomes better specified, it is observed that the ADM significantly

decreases. Even though the other case studies have only about 50% ADM starting at Li, the

confidence in the estimates may be quite low as demonstrated in the following subsection.

5.2.2 MAD-Coefficient of Variation

MAD-COV is calculated for the portfolio of products, shown below in Figure 5-7. The

general trend is that as the product gets better specified the variability in the expected impact

decreases, represented by the dashed blue line. This average MAD-COV derived from a simple

mean calculation of the MAD-COV of all the products for each level of specificity. There are

slight increases in the MAD-COV of CP1 and the computer going from Li to L2, whereas CP2,

CP2SP, and CP3SP all have higher MAD-COV values going from L2 to L3. This increase is only

slight and may be due to the phenomena described in Figure 5-3, where the materials that

contributed to mid-value impacts are taken out and the extreme values remain, leaving the higher

specified levels with larger uncertainties.

MAD-COV of the CED for case studies as a function of level o
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Figure 5-7 The MAD-COV of the impact of each product evaluated at different levels of
specificity. The blue dotted line is the average MAD-COV for the products.
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The AMD of the CED impact evaluation of the products suggests that it may be possible

to use the median as a fairly accurate estimate of the expected value of the product even with the

lowest level of the product's BOC. However, the MAD-COV, shown Figure 5-4 and Figure 5-5

demonstrate high level of uncertainty in the CED values at high underspecification. Thus, we do

not have much confidence in the median estimate value even though it has proximity to the L5

CED. If these materials impact calculations were going to be used for any decision making, it may

be necessary to further specify the BOC of the underspecified product to obtain a better confidence

level and resolve the uncertainty. The fact that this is possible leads to the exploration of the

application of the streamlining methodology to the GREET car in Section 5.3 to test out the

effectiveness of streamlining using probabilistic underspecification as a tool to arrive at an

accurate and precise estimate of the impact.

5.3 Methodology Training Case: GREET Car

The GREET Car was chosen as the methodology-training case study because it consists of

the largest number of components in our portfolio of BOCs and has the most uniform BOC

Cumulative percent contribution for example indivial trials and Cumulative
Probability Distribution of trials over 75% contribution for Car CED at Li
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70 Individual trials cumulative percent
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50% trials with at least 75% contribution to

40% 
total impact

30%

020%

a 10%
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Components Ranked Ordered by the 50th Percentile Percent Contribution to Total Impact

Figure 5-8 Cumulative percent contribution for each individual trials and cumulative probability distribution of
trials over 75% contribution for car CED at L1.

according to the normalized Herfindahl Index. These two factors make it the best candidate for

analysis among the product BOCs available to this thesis. The large number or components,

coupled with the uniformity in mass of the components, can potentially make it difficult for the



SOI to be determined. This difficulty could present itself as a large SOI or SOI that is inaccurate at

predicting the high impacting components.

The Ll CED Monte Carlo simulations were analyzed to probabilistically determine which

products were the most impactful contributors to CED, contributing to 75% of the product's

impact 90% of the time. Each component is ranked by their 50*th percentile total-trial percent

contribution for all the trials. Figure 5-8 represents the GREET car components that are ranked

ordered by the 50th percentile percent contribution to the total impact for all the trials.

The dashed blue line represents examples of the individual trials' cumulative percent

contribution to the total as more and more components' impacts are compiled according to the

rank order. The solid red curve represents the cumulative probability distribution of the

cumulative percent contribution, as the components are added up, to have at least 75%

contribution to the total impact of the particular trials. The yellow circle marks the point when the

cumulative probability graph passes the 90% threshold for confidence. Thus, all the components to

the left of the green arrow are determined to be the important components and constitute the SOI.

The SOI for the car under the parameters described here is 22 components, or 24% of the BOC.

The SOI is then further resolved to L5 resolution of specificity to see how much

improvement in fidelity of the impact estimate comes from resolving only the SOI. The resulting

spread in expected CED for the L1/L5 hybrid BOC is presented in Figure 5-9, comparing it to the

other levels of specificity. Notice that by only specifying 24% of the BOC, the accuracy of the

estimate can be significantly improved.

Uncertainty in CED Value as a Function of BOC Resolution: GREET Car
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Figure 5-9 The hybrid L1/L5 BOC CED is compared to the other pure levels of specificity. By only
specifying 24.4% of the BOC at LS, we were able to obtain significant resolution.
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5.3.1 Effectiveness of Strategy

One of the motivations for using the underspecified impact database to determine the SOI

is that it takes into account the range of impact values of the material. As briefly discussed, the

mass of a component is roughly related to its impact; however, there are examples where light

materials can have considerably higher impact compared to other materials of the same mass.

Precious metals are a prime example of where the environmental impact per weight is high.

Therefore, methods like using weight to rank components to determine the SOI may not perform

very well.

The value of probabilistic ranking using the 5 0 th percentile in the GREET car case study is

demonstrated in Figure 5-10. The components were ranked by their mass and by their median

Median Cumulative % Contribution to CED : Mass Ranking vs. 50th

100% Percentile Ranking of the Car Case

90%
80% -- Level 5 L5MCPC

: 70%
- Mass L5 MCPC60%

50% --- Level 1 L5MCPC
40%
30%
20%
10%

0%
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86

Number of Components Considered

Figure 5-10 Cumulative % CED curve comparing the mass ranking method to the 50th
Dercentile ranking method.

percent contribution to the product's impact at the Li level. The median percentile cumulative

percent contribution (MCPC) at L5 resolution were calculated for each methodology of ranking by

mass or Level 1 median percent contribution. The purple curve demonstrates how well mass

functions as an indicator of impact, which is referred to as Mass L5MCPC. The dashed blue curve

represents the ranking by median percent contribution of each component Li. These two curves

are compared to the green curve, Level 5 L5MCPC. This curve was derived by ranking the 50 h

percentile percent contribution of the components at L5 resolution (Level 5 L5MCPC). The curve

for Level 5 L5MCPC represents the correct ranking of materials in terms of contribution to impact.

Notice how the change in the slope of the line is negative for the entire curve, indicating

decreasing marginal contribution to the total. The mass MCPC does not present a compelling

decreasing marginal contribution curve. It is observed that the Level 1 L5MCPC is stochastically



dominant over the Mass L5 MCPC, suggesting that mass is less effective at correctly ranking the

most important components to impact contribution.

Error Rate and SOI of LI Level Streamlining Compared to L5 SOI
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Figure 5-11 The error rates and SOI for LI level of streamlining compared to the L5 SOI.

The error rates were also calculated to see how well the SOI determined at Li compared to

the SOI of L5 at capturing the high impacting components. The result of the Li streamlining is

diagramed in Figure 5-11. Only 24% of the BOC is determined by the probabilistic

underspecification methodology to need further specification to meet the criteria established in this

case study. However, some components that constitute the SOI are actually extraneous and

constitute Type 2 error or wasted effort. Meanwhile, the non-SOI portion of the BOC contains the

Type 1 error, or false rejection of importance. In this specific case, the methodology missed two

components of importance while incorporated seven unnecessary materials. Although both types

of errors are not ideal, in terms of risk mitigation, Type 1 avoidance is preferred while Type 2

error is can be more tolerated.

5.4 Case Study Results

The demonstrated efficacy of the application of the methodology to the car model

motivates the further application of the methodology to the rest of the case studies. The following

subsection presents the results of the methodology as applied to the products described in the

methodology section.



5.4.1 Effort Reduction: Case Studies

The goal of probabilistic streamlining is to decrease the effort necessary to conduct LCA.

Figure 5-12 shows the Li SOI as a fraction of the BOC. This is the portion of the BOC that is

determined to be important to invest additional research efforts to increase the precision of the

impact estimates. For all the case studies, the Li SOI constitutes less than half of the components

of the BOC. Notice that the products that have high SOI percentages also have low component

numbers (16-19 components) to begin with. Therefore considering the increase in resolution and

confidence the impact estimate, the methodology seems effective in reducing LCA effort assuming

that there is the same amount of effort to gain information for all components.

Li SOI Percent of BOC

U SOI M Non-SOI BOC Size
100% 100

90% 90

80% 80
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40% - 40
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0% 0
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Decreasing Number of Components -

Figure 5-12 Li SOI as a percentage of the products total BOC: the products are arranged in order of
decreasing BOC size.



5.4.2 Error Rate: Case Studies

The Type 1, or false rejections, from the SOI and Type 2, or false acceptances, to the SOI

were calculated comparing the LI SOI and the L5 SOI. Figure 5-13 displays the error rates of the

SOI as a percentage of the BOC. The red-hashed areas (Type 2) are the non-SOI parts of the

product that were identified to be part of the SOI. The green-hashed areas are the SOI parts that

were not identified as such. Clearly, for the cases that were examined, there are many more Type 2

errors than Type 1 errors. This suggest that the methodology that is applied has a bias for

incorporating more components than necessary for the SOI, while it rarely rejects the components

100% Error Rate of Li Streamlined Products

90%/o

80%

70%

060%

z 50% o Type 1

40% eType 2

30%

20%

10%

0%
CP1 GREET Car CP2 CP2SP CP3 CP3SP Computer

Products

Figure 5-13 Type 1 and Type 2 error rates for all the products as a percentage of the BOC. The green
parts are the non-SOI and the red parts are SOI. The striped areas are where the errors in those sets.

that are important and should be in the SOI. The only components with Type 1 errors are products

with the most number of components, in this case the computer and car. None of the consumer

product case studies showed any Type 1 errors, which may be due to their smaller number of

components. The CP2, CP2SP, CP3, and CP3SP case studies all have the highest percent SOI of

BOC. However, the Type 2 errors are among the lowest in the case study portfolio, except for the

CP2. The two products in which the Type 2 error is greater than 50% of the SOI is the CP1 and the

computer.

5.4.3 Impact Estimates

The same constraints were applied to both the case studies and the GREET car study.

Figure 5-14 compares the impact uncertainty for the L1, L5, and L1/L5 hybrid BOCs. The case



studies show similar ability for the Li level of specificity and uncertainty estimates to determine

an SOI for the product that significantly reduced the effort to obtain an accurate estimate of the L5

results with a lower level of uncertainty.
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Figure 5-14 The streamlined CED comparisons of L1, L5, and the hybrid L1/L5 resolution of
the BOCs. Notice the proximity of the streamlined results to the L5 results.
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5.4.4 ADM-Case Studies

The ADM values for the case studies, comparing the hybrid L1/L5 BOC median as

estimates for the L5 medians, show that an accurate estimate of the L5 value can be obtained by

well specifying a small portion of the BOC. The absolute variation away from the L5 median

ranges from 0.8% (Computer) to 7.9% (Car). Figure 5-15 compares the ADM for all the levels of

specificity with the L1/L5 hybrid BOC. Table 5-1 gives the numerical absolute percentage

deviation from the L5 median for each level of specificity including L1/L5.

Absolute Deviation of the Median CED compared to L5 Median Value CED
for case studies
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Figure 5-15 The ADM of the Case Studies
the other levels of uncertainty.

including the L1/L5 Hybrid BOC as comparison to L5 and

Table 5-1 Absolute Deviation from the L5 median CED of the median CED of other levels of specificity.

Absolute Deviation from
L5 Median LI L2 L3 L4 L5 L1/LS

CP1 5.0% 0.4% 16.5% 0.3% 0.0% 4.9%

GREET Car 250.6% 106.7% 44.7% 32.2% 0.0% 7.9%

CP2 17.6% 13.8% 35.6% 22.9% 0.0% 1.4%

CP2SP 31.6% 17.7% 35.7% 19.8% 0.0% 2.3%

CP3 13.1% 0.9% 9.3% 0.3% 0.0% 1.3%

CP3SP 23.4% 4,1% 12.6% 0.2% 0.0% 2.2%

Computer 7.3% 30.4% 23.0% 0.5% 0.0% 0.8%

Average ADM 49.8% 24.9% 25.3% 10.9% 0.0% 3.0%

L1I L1/L5



5.4.5 MAD-COV: Case Studies

The MAD-COV suggests that the hybrid BOCs resulting from probabilistic streamlining

are able to significantly reduce the spread and uncertainty in the CED output data in the other case

study products aside from the initial GREET Car example. Figure 5-16 is the MAD-COV plot of

the case studies with the L1/L5 hybrid MAD-COV values. Although these values are not as low as

the L5 MAD-COV values they are comparable and on average the Ll/L5 MAD-COV values are

lower than L4 level of specificity. The average MAD-COV values are represented by the dotted

line in Figure 5-16, the L5 to L1/L5 line is marked in red to indicate that it is not

MAD-COV of the CED for case studies as a function of level of
specificity
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Figure 5-16 MAD-COV of the CED for the case studies with the hybrid L1/L5 impact result for
comparison.

increasing in specificity. The median absolute deviations from the L5 median for the L1/L5

hybrids are around six per cent on average; this represents only a two per cent increase over the

average MAD-COV for the fully specified L5 results. The values of the MAD-COV for all the

levels and the hybrid BOCs are tabulated in Figure 5-16 along with the specificity level MAD-

COV.



Table 5-2 MAD-COV Values for the
and average MAD-COV

case studies with the L1/L5 streamlined hybrid BOC

MAD-COV Li L2 L3 L4 L5 L1/L5

CP1 41.4% 44.1% 16.0% 5.2% 5.1% 6.5%

GREET Car 38.6% 38.7% 31.5% 9.4% 1.9% 6.4%

CP2 40.2% 38.9% 38.8% 29.3% 4.3% 5.7%

CP2SP 35.4% 34.2% 34.7% 26.0% 3.8% 5.9%

CP3 22.4% 14.5% 13.9% 7.9% 3.5% 5.4%

CP3SP 21.3% 13.0% 14.0% 7.2% 3.3% 5.8%

Computer 38.9% 24.4% 14.5% 3.9% 3.9% 5.1%

Average MAD-COV 34.0% 29.7% 23.3% 12.7% 3.7% 5.8%

5.5 Sensitivities to Model Parameters

The robustness of the method is assessed by understanding the sensitivity of probabilistic

underspecification-based screening approach to changes in the parameters defining ranking

criteria, cumulative threshold, and confidence level. The performance in picking the SOI will be

measured by the magnitude of the Type1 and Type II errors because the size of the SOI does not

say much about its quality of the selection. The ideal parameter values would be the ones that will

minimize both types of errors.

5.5.1 Ranking Criteria

The components' importance ranking criteria used thus far in the case studies have been

by the 50 th percentile of the percent contribution by the particular component to the total impact

the product. The 5 0 th percentile of the percent contribution represents the median value of the

product's possible contribution to the BOC. It can be imagined that using a higher or lower

percentile contribution could lead to better results in terms of selecting the optimal SOI that will

match the top contributors at the most specified level. For example, by ranking components by

their 1 0 th percentile percent contribution, the methodology is considering which components are

contributing greatest at their 10 th percentile percent value. It can be expected that this would give a

conservative estimate of contribution, ranking the components with the largest 10 th percentile

values first. In essence, the ranking criterion asks: is it possible for a component to contribute a

higher impact at its 10 th percentile value than another component? If yes, then that particular

component is ranked ahead. The implicit assumption in this ranking scheme is that the distribution

of possible impact values does not change very much. On the other hand, if the components were



ranked according to its 90d percentile percent contribution, one is supposing that the actual

components may turn out to cluster around the higher values of the percent impact distributions.
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The results of the two types of error rate sensitivity on the percentile ranking while

keeping the cumulative threshold at 75% and confidence level at 90% are displayed in Figure 5-17

for all the case studies. To review, Type 1 error is the fraction of the non-SOI portion of the BOC

that is misclassified as not being important, while Type 2 error is fraction of the SOI that is

misclassified as being important. This number is presented as a fraction of the BOC that is getting

misclassified. Type 2 errors are more acceptable than large Type 1 errors because they merely

represent wasted effort but no loss in the accuracy of the results. However, if there were a high

Type 1 error, then the results would be less accurate because the components that are important to

the total contribution are being neglected.

For all case studies the Type 1 error rate is always lower than the Type 2 error rates for all

the ranking percentiles. The plateaus in the error rates around the 4 0 th percentile up to 70 th

percentile for most of the cases indicate relative insensitivities to varying the ranking percentile.

The error rates at the lower and higher percentile rankings increases for all the cases suggesting

that the extreme values lead to SOI classification errors. Ranking by higher percentiles seems to

always lead to higher Type 1 error starting from around 70 th percentile, except for the CP1 and

computer case. The increase in error rates towards the two extremes may be due to the inability to

predict which way the component's distribution of possible impact value will move as the product

gets more specified. Having the 50th percentile as the ranking criteria may allow for the mitigation

buffering of the risk of the component's impact distribution moving either up or down.

5.5.2 Cumulative Threshold

The cumulative threshold criterion serves as the cut-off point in determining the size of the

SOL. Depending on the goal of the LCA, the cumulative threshold criteria may vary. For

example, if the LCA is being conducted in the product development phase of a project, a lower

threshold of some value above 50% contribution would be enough. However, if there is a need to

reduce significantly the uncertainty in the final impact results, the cut-off cumulative threshold

criteria may be higher depending on the contribution to variance of each component. In Figure

5-18 and Figure 5-19, the sensitivities to cumulative threshold of the LI SOI percent of each BOC

are presented with their L5 SOI alongside the SOI size sensitivity.

For all the cases, as the cumulative threshold increases, so does the size of the SOI. This

makes intuitive sense because one would need to incorporate more components into the SOI to

account for a larger contribution to the product's total impact. Notice how the curve is smoother

for the L5 SOI sensitivity than for the LI SOI sensitivity as a function of the cumulative threshold.
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Figure 5-18 L1& L5 SOI and Type 1 & Type 2 Error sensitivity to cumulative threshold for the
three products among the case studies with the largest BOCs.

This is because the L5 ranking scheme is perfectly ranking the components in the order of greatest

to least percent contribution to impact, whereas the Li ranking of the components may be

positioning the components slightly out of order. It makes sense that the LI SOI will be larger than

the L5 SOI, and, in fact, this observed in all the case studies. Although there is an interesting cross



over point for the L 1SOI and L5SOI for the GREET car case Figure 5-18 . This is correlated with

the cross over Type 1 and Type 2 error rates at the cumulative threshold percentage of 96%. This

error is probably due to errors in the ranking of small-contributing components.

In Figure 5-18, the error rates seem to be relatively insensitive to ranking until reaching

the high cumulative threshold where the Type 2 errors seem to increase until a certain point

beyond 95% contribution, where the Type 2 error drops off. The exception to the relative

insensitivity seems to be the computer case study, where the Type 2 error rate increases quickly

starting at the 90 th cumulative threshold. However, the Type 2 error rate eventually drops off as

well. This is due to the fact that the components that were previously erroneously incorporated into

the SOI start to become part of the L5SOI and no longer constitute an error. The Type 1 errors for

all three cases were zero or close to zero over all cumulative threshold percentage.
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Figure 5-19 L1& L5 SOI and Type 1 & Type 2 Error sensitivity to cumulative threshold
for same functional products that are made out of different materials and with(out) scrap
and packaging consideration.

Considering the Figure 5-19 group of products, the general trends remain the same: the

stochastic dominance of LlSOI over L5SOI, the larger Type 2 errors than Type 1 errors, relative



insensitivities in Type 1 errors and Type 2 errors to the cumulative threshold, and the drop off in

the Type 2 errors above 95% cumulative threshold.

From the sensitivity analysis of the SOI size and the error rates, it seems that in terms of

choosing the cumulative threshold percentage, the LCA practitioner should be able to choose a

cumulative threshold percentage that makes sense for the application of the LCA results because

the error rates appear to be insensitive to this parameter. The dominant type of error is Type 2

error, with the Type 1 error for all the case studies being effectively zero except for the GREET

car case. This is encouraging because by having zero Type 1 error, the practitioner is not falsely

ignoring components which are actually important. However, it must be cautioned that the

cumulative threshold criteria should not be higher than 90% because this is around the point where

Type 2 error begins to increase. It also should be noted that the cumulative threshold criterion is

only used to determine the size of the SOI and is applied at the particular level where the BOC is

being viewed. After the resolution of the SOI to a higher level of specificity, it may be that the SOI

is contributing more to the cumulative threshold criterion that was being used to identify the

important components.

5.5.3 Confidence Level

The confidence level is another criterion that determines the size of the SOI. The SOI is

chosen such that, at a given cumulative threshold, the confidence-level percentage of the trials will

meet the cumulative threshold criterion. The size of the LlSOI is evaluated as a function of

cumulative threshold and confidence level. The confidence levels range from 40% to 99%. Lower

values are not explored because the SOI should be chosen such that the majority of the time, the

SOI will meet or exceed the cumulative threshold criterion. The plots of the LlSOI sensitivity

curves to the cumulative threshold at different confidence level are shown in Figure 5-20 and

Figure 5-21 along with their L5SOI curves. The black arrows in the graphs indicate plots of

increasing confidence level criterion.

For all the case studies, as the confidence level is increased, the Li SOI increases. This is

because as the confidence level parameter becomes more stringent, the model must include more

components into the SOI to contribute to the cumulative threshold. Notice that for most of the case

studies, the lowest LlSOI curve does not fall below the L5SOI curve as the confidence level

decreases. This phenomenon is only due to the fact that the lowest confidence level value is 40%.

As demonstrated by the GREET car case, the LlSOI sensitivity curve could be less than the

L5SOI. This is due to the overconfidence in the impact of the GREET car's Li components to



contribute to the total impact. In reality, the components that get ranked high and incorporated into

the SOI may not contribute as much as they should and the components that should be included do

not get included. This is illustrated in the increase in Type 1 error as the confidence level gets

lower, as shown in Figure 5-22.
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Figure 5-20 LISOI sensitivity to cumulative threshold for the three products among the case studies
with the largest BOCs at different confidence levels.
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Figure 5-21 L1SOI sensitivity to cumulative threshold at different confidence levels for same functional
products that are made out of different materials and with(out) scrap and packaging consideration.

When considering the size of the SOI, it is also necessary to consider the errors associated

with the separation of the important components and the non-important components. The plots of

the two error types at different confidence levels can be found in Figure 5-22 and Figure 5-23. The

50* percentile is used to rank the LI components and to determine the L I SOI in the analysis. The

Type 2 error again dominates the Type 1 error for all of the case studies for most of the cumulative

threshold values. This indicates that the current methodology does prove to be conservative at

selecting the SOI and, in the process, incorporates more components than necessary. For all the

case studies, there appears to be an almost exponential increase in the number of components at a

given cumulative threshold value as the confidence is monotonically increased. This can be clearly

observed in the computer case shown in Figure 5-22. Furthermore, the model seems to be good at
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mitigating Type 1 error. For the most part, the model is effective in not neglecting the important

components by leaving them out of the SOI. However, the Type 1 error rates do increase slightly

as the confidence level decreases. Although it should be noted that the car case does exhibit a

relatively high Type 1 error as the cumulative threshold percentage increases and the confidence

level is decreased.
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Figure 5-22 This is the plot of change of the magnitude of Typel and Type 2 errors as the confidence
level is varied for three product of the case studies that have 41-90 components. The arrows indicate the
direction the curves are moving as the confidence level is increased.

In the case studies group of smaller BOCs shown in Figure 5-23, the behavior of the

results do follow the case studies in Figure 5-22, however due to having a small number of

components in the BOC, the results are more discretized and harder to interpret. The observation

of low Type 1 error and higher Type 2 error holds. One interesting behavior to note is the increase

in Type 1 error as the scrap and packaging is considered in both the Consumer Product 2 and

Consumer Product 3 cases.
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Figure 5-23 The error rates of the case studies with smaller BOCs as a function of cumulative threshold
percentage and confidence level.

5.5.4 Herfindahl Trend

The products chosen for the case studies were picked from a range of mass uniformity

among the components to take into account the role of mass uniformity in the ability to streamline

LCA. However, from the case studies examined within this thesis, there seems to be no clear

relationship in the ability to streamline the mass uniformity of the BOC. A more clear distinction

seems to be that the ability to streamline more easily for the products with the most components.

These products all have a roughly 75% reduction in the number of components needed to specify

to L5 when the probabilistic underspecification is applied at Li specificity. On the other hand the

products with the smaller number of components only have a reduction of around 55% in the

number of components needed to specify. The insensitivity to streamlining of the mass uniformity



of the product is encouraging because it could indicate that the methodology may be robust against

this factor. Unfortunately this limited dataset is only suggestive and far from conclusive.



6 CONCLUSIONS

The analysis of the structured underspecification database suggests that there is a general

trend towards decreasing magnitude of variability as a product becomes less underspecified. When

the structured underspecification model is applied to the selected case studies, the precision of the

estimate of the product environmental performance is improved when compared to the estimate at

the lower levels of specification. Although the distance of the median estimate of the CED, as

measured by the absolute deviation of the median ADM, from Li to L4 ranges from 0.2% to 50%

for the range of products, it can go up to as high as 250% in the GREET car case. The proximity

of the estimates is overshadowed by the uncertainties in their value. The variability in the CED

values, as measured by the MAD-COV, decreases, on average, as the products' components

become better specified. Thus, it is demonstrated that when a product becomes better specified, the

uncertainty in the impact estimate decreases along with increase precision.

The probabilistic underspecification streamlining methodology is applied to several

studies to determine if an effective SOI can be chosen only by observing the product at reduced or

Li specificity in our case. The methodology is applied with the parameters of 50* percentile

ranking, 75% cumulative percentage impact threshold, and 90% confidence level. The SOI

identified from the Li impact data are less than 1/3 of the BOC for CP1, computer, and GREET

Car. These products have 41, 56, and 90 components respectively. While the other case study

products, CP2, CP2SP, CP3, and CP3SP, although have LlSOIs that are around 50% of the BOC,

they all have a small number of components in the BOC to begin with. Resolving the S01 to L5

specificity proved to yield significant improvements in the precision of the estimate for the

products' impacts when compared to L5. The residual variation in the L1/L5 hybrid estimate

compared to the L5 estimate is only on average 3%. The average confidence in that value

described by the average MAD-COV value for Li/15 impact results is 5.8%. This uncertainty is

lower than the average MAD-COV values for Li through L4 values for the case studies.

Another question this thesis attempts to answer is whether there is robustness of the

methodology under different conditions regarding the modeling parameters of ranking criteria,

cumulative threshold, and confidence level? The ranking criteria of 5 0 th percentile percentage

contribution afforded the lowest error rate in the sensitivity analysis. It is discovered that

cumulative threshold for cutting of the percentage contribution to the total impact of the product

was robust against Type 1 error and Type 2 errors. However, the cumulative threshold should not

be set above 90% because that will lead to higher rates of Type 2 error and decrease the degree of



streamlining. It is also demonstrated that the degree of streamlining will decrease with the increase

in the confidence level almost exponentially due to the increase in Type 2 error. It is also

promising that, for all the case studies, the confidence level is relatively robust to false rejections

of the important components.

6.1 Future Work

Although probabilistic underspecification methodology for streamlining LCA has proved

to be promising in the case studies in reducing LCA effort and increasing confidence in the LCA

estimate, this thesis work is only a preliminary exploration. In order to have confidence in this

streamlining approach, many more case studies will need to be analyzed using the proposed

methods. However, this could prove very labor intensive. Instead, a mock bill of components

could be developed to adequately map out the streamlining realm of possibilities for assessing

materials impact. It would also be interesting to extend the methodology to other life cycle impact

categories, such as global warming potential or toxicity, since it cannot be assumed that the ability

to tease out the SOI would be the same for other impact factors. Further, this thesis only

considered the materials production part of the life cycle. Future work should eventually extend to

the entire bill of activities of the life cycle. Finally, in this thesis SOI is taken to the level of

specificity of L5; however, it may also be interesting to see the effect of underspecifying the

components to L2, L3 or L4 to see how this affects the resolution of the estimate of the product's

impact.
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8 APPENDIX A: Table of Database Classification

Level 1 Level 2 Level 3 Level 4 Level 5

Construction Binders Cement Cement blast Blast furnace slag cement, at plant/CH U

Construction Binders Cement Cement mortar Cement mortar, at plant/CH U

Construction Binders Cement Cement unspecified Cement, unspecified, at plant/CH U

Construction Binders Cement Portland cement Portland calcareous cement, at plant/CH U

Portland cement (CEM I), CEMBUREAU technology
Construction Binders Cement Portland cement mix, CEMBUREAU production mix, at plant, EN 197-1

RER S

Construction Binders Cement Portland cement Portland cement, at plant/US

Construction Binders Cement Portland cement Portland cement, strength class Z 42.5, at plant/CH U

Construction Binders Cement Portland cement Portland cement, strength class Z 52.5, at plant/CH U

Construction Binders Cement Portland cement Portland slag sand cement, at plant/CH U

Construction Binders Mortar Mortar adhesive Adhesive mortar, at plant/CH U

Construction Binders Mortar Mortar light Light mortar, at plant/CH U

Construction Binders Mortar Mortar lime Lime mortar, at plant/CH U

Construction Binders Stucco Stucco-plant Stucco, at plant/CH U

Construction Bricks Brick 3 Brick generic Brick, at plant/RER U

Construction Bricks Brick 3 Brick light clay Light clay brick, at plant/DE U

Construction Bricks Brick 3 Brick-sand-lime Sand-lime brick, at plant/DE U

Construction Bricks Refractory Refractory basic Refractory, basic, packed, at plant/DE U

Construction Bricks Refractory Refractory fireclay Refractory, fireclay, packed, at plant/DE U

Construction Bricks Refractory Refractory high Refractory, high aluminium oxide, packed, at plant/DE
aluminium oxide U

Construction Cladding Cladding 3 Cladding crossbar- Cladding, crossbar-pole, aluminium, at plant/RER U
pole

Construction Concrete Concrete 3 Concrete extracting Concrete, exacting, at plant/CH U

Construction Concrete Concrete 3 Concrete exrcig Concrete, exacting, with de-icing salt contact, at
plant/CH U

Construction Concrete Concrete 3 Concrete normal Concrete, normal, at plant/CH U

Construction Concrete Concrete 3 Concrete sole plate Concrete, sole plate and foundation, at plant/CH U

Aerated concrete Aerated concrete block, mix of P2 04 and P4 05,
Construction Concrete Concrete Block block production mix, at plant, average density 433 kg/m3

RER S

Aerated concrete Aerated concrete block, type P4 05 reinforced,
Construction Concrete Concrete Block block production mix, at plant, average density 485 kg/m3

RER S

Construction Concrete Concrete Block Aerated concrete Autoclaved aerated concrete block, at plant/CH Ublock

Construction Concrete Concrete Block Cncrete block Concrete block, at plant/DE Ugeneric

Lightweight Lihwihcoceebokexaddcyasae
Construction Concrete Concrete Block concrete block- Ligheight concrete block, expandd clay as base

expanded clay



Level 1 Level 2 Level 3 Level 4 Level 5

Lightweight. Lgtegtcnrtblcepne rie a
Construction Concrete Concrete Block concrete block- Lanhteght concrete block, expanded perlite, at

expanded perlite

Lightweight

Construction Concrete Concrete Block concrete block- Lightweight concrete block, expanded vermiculite, at
expanded plant/CH U
vermiculite

Lightweight
Construction Concrete Concrete Block concrete block- Lightweight concrete block, polystyrene, at plant/CH U

polystyrene

Lightweight
Construction Concrete Concrete Block concrete block- Lightweight concrete block, pumice, at plant/DE U

pumice

Construction Concrete Poor concrete Poor concrete plant Poor concrete, at plant/CH U

Construction Concrete Precast concrete Precast concrete Pre-cast concrete, min. reinf., prod. mix, concrete type
min reinf C20/25, w/o consideration of casings RER S

Construction Covering Acrylic filler3 Acrylic filler plant Acrylic filler, at plant/RER U

Construction Covering Corrugated slab Corrugated slab Fibre cement corrugated slab, at plant/CH U
fiber cement

Construction Covering Cover coat Cover coat mineral Cover coat, mineral, at plant/CH U

Construction Covering Cover coat Cover coat organic Cover coat, organic, at plant/CH U

Construction Covering Fiberboard Fiberboard gypsum Gypsum fibre board, at plant/CH U

Construction Covering Plaster Plaster base Base plaster, at plant/CH U

Construction Covering Plaster Plaster cement cast Cement cast plaster floor, at plant/CH U

Construction Covering Plaster Plaster clay Clay plaster, at plant/CH U

Construction Covering Plaster Plaster gypsum Gypsum plaster (CaSO4 alpha hemihydrates) DE S

Construction Covering Plaster Plaster gypsum Gypsum plaster (CaSO4 beta hemihydrates) DE S

Construction Covering Plaster Plaster gypsum Gypsum plaster board, at plant/CH U

Construction Covering Plaster Plaster thermal Thermal plaster, at plant/CH U

Construction Covering Slate Slate fiber cement Fibre cement roof slate, at plant/CH U

Construction Covering Tile Tile ceramic Ceramic tiles, at regional storage/CH U

Construction Covering Tile Tile fiber cement Fibre cement facing tile, at plant/CH U

Construction Covering Tile Tile fiber cement Fibre cement facing tile, large format, at plant/CH U

Construction Covering Tile Tile fiber cement Fibre cement facing tile, small format, at plant/CH U

Construction Covering Tile Tile quarry Quarry tile, at plant/CH U

Construction Covering Tile Tile roof Roof tile, at plant/RER U

Construction Covering Tile Tile roof concrete Concrete roof tile, at plant/CH U

Construction Door Inner door Inner door glass- Door, inner, glass-wood, at plant/RER U
wood Door, inner, wood, at plant/RER U

Construction Door Inner door Inner door wood Door, inner, wood, at plant/RER U

Construction Door Outer door Outer door wood- Door, outer, wood-aluminium, at plant/RER Ualuminum

Construction Door Outer door Outer door wood- Door, outer, wood-glass, at plant/RER U
glass

Construction Insulation Elastomer Sealing Tube insulation Tube insulation, elastomere, at plant/DE U

Construction Insulation Glass Insulation Glass foam Foam glass, at plant/RER U



Level 1 Level 2 Level 3 Level 4 Level 5

Construction Insulation Glass Insulation Glass foam Foam glass, at regional storage/AT U

Construction Insulation Glass Insulation Glass foam Foam glass, at regional storage/CH U

Construction Insulation Glass Insulation Glass wool Glass wool mat, at plant/CH U

Construction Insulation Glass Insulation Glass wool Glass wool, fleece, production mix, at plant, density
between 10 to 100 kg/m3 RER S

Construction Insulation Organic Insulation Cellulose fiber Cellulose fibre, inclusive blowing in, at plant/CH U

Construction Insulation Organic Insulation Cork slab Cork slab, at plant/RER U

Construction Insulation Polystyrene Polystyrene Polystyrene, extruded (XPS) C02 blown, at plant/RER
extruded U

Construction Insulation Polystyrene Poltrene Polystyrene, extruded (XPS), at plant/RER U

Construction Insulation Polystyrene Polystyrene Polystyrene, extruded (XPS), HFC-134a blown, at
extruded plant/RER U

Construction Insulation Polystyrene Polystyrene Polystyrene, extruded (XPS), HFC-152a blown, at
extruded plant/RER U

Construction Insulation Polystyrene Polystyrene foam Polystyrene foam slab, 100% recycled, at plant/CH U
Construction Insulation Polystyrene slabym Polystyrene foam slab, 10% recycled, at plantCH U

Construction Insulation Polystyrene Polystyrene foam Polystyrene foam slab, 45% recycled, at plantCH Uslab

Construction Insulation Polystyrene Polystyrene foam Polystyrene foam slab, at plant/RER Uslab

Construction Insulation Rock wool Rock wool fleece Rock wool, fleece, production mix, at plant, density
between 30 to 180 kg/m3 RER S

Construction Insulation Rock wool Rock wool general Rock wool, at plant/CH U

Construction Insulation Rock wool Rock wool packed Rock wool, packed, at plant/CH U

Construction Insulation Urea formaldehyde UF in situ Urea formaldehyde foam, in situ foaming, at plant/CH U

Construction Insulation Urea formaldehyde UF slab Urea formaldehyde foam slab, hard, at plant/CH U

Construction Other Asphalt Mastic asphalt Mastic asphalt, at plant/CH U

Construction Other Cobwork 3 Cobwork Cobwork, at plant/CH U

Construction Other Floor Anhydrite floor Anhydrite floor, at plant/CH U

Construction Other Plate Plate cut Natural stone plate, cut, at regional storage/CH U

Construction Other Plate Plate grounded Natural stone plate, grounded, at regional storage/CH U

Construction Other Plate Plate polished Natural stone plate, polished, at regional storage/CH U

Construction Paint Alkyd piant Alkyd paint white Alkyd paint, white, 60% in H20, at plant/RER U

Construction Paint Alkyd piant Alkyd paint white Alkyd paint, white, 60% in solvent, at plant/RER U

Construction Paint Arylic varnish Actlic varnish 87.5 Acrylic varnish, 87.5% in H20, at plant/RER U

Construction Sealing Bitumen Bitumen adhesive Bitumen adhesive compound, cold, at plant/RER U

Construction Sealing Bitumen Bitumen adhesive Bitumen adhesive compound, hot, at plant/RER U

Construction Sealing Bitumen Bitumen-refinery Bitumen, at refinery/CH U

Construction Sealing Bitumen Bitumen-refinery Bitumen, at refinery/kg/US

Construction Sealing Bitumen Bitumen-refinery Bitumen, at refinery/RER U

Construction Sealing Bitumen Bitumen-sealing Bitumen sealing Alu80, at plant/RER U

Construction Sealing Bitumen Bitumen-sealing Bitumen sealing V60, at plant/RER U
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Construction Sealing Bitumen Bitumen-sealing Bitumen sealing VA4, at plant/RER U

Construction Sealing Bitumen Bitumen-sealing Bitumen sealing, polymer EP4 flame retardant, at
plant/RER U

Construction Sealing Elastomer Sealing Natural rubber Natural rubber based sealing, at plant/DE U
sealing

Construction Sealing Elastomer Sealing Polysulphide Polysulphide, sealing compound, at plant/RER U

Construction Ventilation Air distribution Air distribution Air distribution housing, steel, 120 m3/h, at plant/CH Usteel Air ditrbcenroun, 60 0 m3/h, at plantR U

Construction Ventilation Air filter Air filter central Air filter, central unit, 600 m3/h, at plant/RER Uunit

Construction Ventilation AirAir filter Air filter, decentralized unit, 180-250 m3/h, at
Contrutio Vetiltio Ai fiterdecentralize plant/RER U

Construction Ventilation Air filter deerlze Air filter, decentralized unit, 250 m3/h, at plant/RER U

Construction Ventilation Air filter Air filter exhaust Air filter, in exhaust air valve, at plant/RER Uvalve Arflei xas i ava lnIE

Construction Ventilation Air intake Air intake steel Outside air intake, stainless steel, DN 370, at plant/RER
U

Construction Ventilation Air intake Air intake steel Supply air inlet, steel/SS, DN 75, at plant/RER U

Construction Ventilation Connection piece Connection piece Connection piece, steel, 100x50 mm, at plant/RER Usteel

Construction Ventilation Control and wiring Control and wiring Control and wiring, central unit, at plant/RER Ucentral unit

Construction Ventilation Control and wiring Control and wiring Control and wiring, decentralized unit, at plant/RER Ug decentralized unit

Construction Ventilation Duct Duct corrugated Ventilation duct, PE corrugated tube, DN 75, at
tube plant/RER U

Construction Ventilation Duct Duct spiral seem Spiral-seam duct, steel, DN 125, at plant/RER U

Construction Ventilation Duct Duct spiral seem Spiral-seam duct, steel, DN 400, at plant/RER U

Construction Ventilation Duct Duct steel Ventilation duct, steel, 1 00x50 mm, at plant/RER U

Construction Ventilation Elbow Elbowsteel Elbow 900, steel, 100x50 mm, at plant/RER U

Construction Ventilation Exhaust Exhaust outlet Exhaust air outlet, steel/aluminum, 85x365 mm, at
plant/CH U

Construction Ventilation Exhaust Exhaust roofhood Exhaust air roof hood, steel, DN 400, at plant/CH U

Construction Ventilation Exhaust Exhaust valve Exhaust air valve, in-wall housing, plastic/steel, DN 125,
at plant/CH U

Construction Ventilation Flexible duct Flexible duct Flexible duct, aluminum/PET, DN of 125, at plant/RER
aluminum U

Construction Ventilation Heat exchanger Heat exchanger Ground heat exchanger, PE, DN 200, at plant/RER Uground

Construction Ventilation Insulation Insulation spiral Insulation spiral-seam duct, rockwool, DN 400, 30 mm,
seam at plant/RER U

Construction Ventilation Overflow element Overflow element Overflow element, steel, approx. 40 m3/h, at plant/RER
steel U

Construction Ventilation Sealing tape Sealing tape Sealing tape, aluminum/PE, 50 mm wide, at plant/RER
aluminum U

Construction Ventilation Silencer Silencer steel Silencer, steel, DN 125, at plant/CH U

Construction Ventilation Silencer Silencer steel Silencer, steel, DN 315, 50 mm, at plant/CH U

Construction Ventilation euilent equient avent Ventilation equipment, Avent E 97, at plant/RER U
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Construction Ventilation Ventilation Ventilation Ventilation equipment, central, 600-1200 m3/h, at
equipment equipment central plant/RER U

Ventilation Ventilation Ventilation equipment, decentralized, 180-250 m3/h, at
Construction Ventilation eqimn equipment ln/EU

decentralized

Construction Ventilation Ventilation Ventilation, GE 250 RH, at plant/CH U
Cntuto Vniai equipment equipment GE Ventilation equipment, GE 250, at plant/CE U

Construction Ventilation Ventilation Ventilation, KWL 20, at plant/RER U
Construction Ventilation equipment equipment KWL Ventilation equipment, k i 250, at plant/RER U

Construction Ventilation Ventilation Ventilation Ventilation equipment, Twl700, at plant/RER U
equipment equipment KWLC

Ventilation VentilationConstruction Ventilation equipment equipment storkair Ventilation equipment, Storkair G 90, at plant/RER U

Construction Ventilation eqientequimentio Ventilation equipment, Twl-700, at plant/RER U

Construction Window Window aluminium Window frame, aluminium, U=1.6 W/m2K, at
frame plant/RER U

Construction indow W indow frame 3 Window plastic Window frame, plastic (PVC), U=1.6 W/m2K, at
frame plant/RER U

Construction Window Window frame 3 Window wood Window frame, wood, U=1.5 W/m2K, at plant/RER U
frame

Construction indow W indow frame 3 Window wood- Window frame, wood-metal, U=1.6 W/m2K, at
frame metal plant/RER U

Electronics Components Anode Anode-lithium ion Anode, lithium-ion battery, graphite, at plant/CN U
battery

Electronics Components Backlight Backlight-LCD Backlight, LCD screen, at plant/GLO U
screen

Electronics Components Cable Cable printer Cable, printer cable, without plugs, at plant/GLO U

Electronics Components Cable Cable ribbon Cable, ribbon cable, 20-pin, with plugs, at plant/GLO U

Electronics Components Cable Cable three Cable, three-conductor cable, at plant/GLO U
conductor

Electronics Components Cable Cable-connector for Cable, connector for computer, without plugs, at
computer plant/GLO U

Electronics Components Cable Cable-data Cable, data cable in infrastructure, at plant/GLO U

Electronics Components Cable Cable-network cat 5 Cable, network cable, category 5, without plugs, at
plant/GLO U

Electronics Components Capacitor Capacitor film Capacitor, film, through-hole mounting, at plant/GLO
U

Electronics Components Capacitor Capacitor SMD Capacitor, SMD type, surface-mounting, at plant/GLO
type U

Electronics Components Capacitor Capacitor tantalum Capacitor, Tantalum-, through-hole mounting, at
plant/GLO U

Electronics Components Capacitor Capacitor Capacitor, electrolyte type, < 2cm height, at plant/GLO
electrolyte type U

Electronics Components Capacitor Capacitor Capacitor, electrolyte type, > 2cm height, at plant/GLO
electrolyte type U

Electronics Components Capacitor unspecfied Capacitor, unspecified, at plant/GLO U

Electronics Components Cathode Cathode-Lithium Cathode, lithium-ion battery, lithium manganese oxide,
ion battery at plant/CN U

Electronics Components CD/DVD drive CD/DVD drive CD-ROM/DVD-ROM drive, desktop computer, at
desktop plant/GLO U
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Electronics Components Connector Connector PCI bus Connector, PCI bus, at plant/GLO U

Electronics Components Connector Connector-clamp Connector, clamp connection, at plant/GLO U
connection

Electronics Components Connector Connector- Connector, computer, peripherical type, at plant/GLO Ucomputer

Electronics Components Diode Diode-glass Diode, glass-, SMD type, surface mounting, at
plant/GLO U

Electronics Components Diode Diode-glass Diode, glass-, through-hole mounting, at plant/GLO U

Electronics Components Diode Diode-unspecified Diode, unspecified, at plant/GLO U

Electronics Components Electrode Electrode-positive Electrode, positive, LaNi5, at plant/GLO U

Electronics Components Electrolyte Electrolyte-KOH Electrolyte, KOH, LiOH additive, at plant/GLO U

Electronics Components Electron gun Eletrogun-CRT tube Electron gun, for CRT tube production, at plant/GLO U

Electronics Components Electronic EC-active Electronic component, active, unspecified, at plant/GLO
Component U

Electronics Components Electronic EC-passive Electronic component, passive, unspecified, at
Component plant/GLO U

Electronics Components Component EC-unspecified Electronic component, unspecified, at plant/GLO U

Electronics Components Frit FritdR tube Frit, for CRT tube production, at plant/GLO U

Electronics Components Funnel glass Funnel glass-CRT Funnel glass, CRT screen, at plant/GLO Uscreen

Electronics Components Inductor nspecified Inductor, unspecified, at plant/GLO U

Electronics Components Inductor Inductor-low value Inductor, low value multilayer chip type, LMCI, at
multilayer chip plant/GLO U

Electronics Components Inductor Inductor-miniature Inductor, miniature RF chip type, MRFI, at plant/GLO
chip U

Electronics Components Inductor Inductor-ring core Inductor, ring core choke type, at plant/GLO Uchoke

Electronics Components Integrated circuit IC-logic type Integrated circuit, IC, logic type, at plant/GLO U

Electronics Components Integrated circuit IC-memory type Integrated circuit, IC, memory type, at plant/GLO U

Electronics Components LED LED-plant Light emitting diode, LED, at plant/GLO U

Electronics Components Panel components Panel component- Panel components, at plant/GLO Uplant

Electronics Components Panel glass Panel glass-CRT Panel glass, CRT screen, at plant/GLO U

Electronics Components Panel glass Panel glass-LCD LCD glass, at plant/GLO U

Electronics Components Plugs Plugs-computer Plugs, inlet and outlet, for computer cable, at plant/GLO
cable U

Electronics Components Plugs Plugs-network cable Plugs, inlet and outlet, for network cable, at plant/GLO

U

Electronics Components Plugs Plugs-printer cable Plugs, inlet and outlet, for printer cable, at plant/GLO U

Electronics Components Potentiometer Potentiometer- Potentiometer, unspecified, at plant/GLO Uunspecified

Electronics Components Power adapter Power adapter- Power adapter, for laptop, at plant/GLO U
laptop

Electronics Components Resistor Resistor-metal film Resistor, metal film type, through-hole mounting, at
plant/GLO U
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Electronics Components Resistor Resistor-SMD type Resistor, SMD type, surface mounting, at plant/GLO U

Electronics Components Resistor Resistor-unspecified Resistor, unspecified, at plant/GLO U

Electronics Components Resistor Resistor-wirewound Resistor, wirewound, through-hole mounting, at
plant/GLO U

Electronics Components Separator Separator-Lithium Separator, lithium-ion battery, at plant/CN U
ion battery

Electronics Components Switch Switch-toggle type Switch, toggle type, at plant/GLO U

Electronics Components Transformer Transformer-high Transformer, high voltage use, at plant/GLO Uvoltage

Electronics Components Transformer Transformer-low Transformer, low voltage use, at plant/GLO Uvoltage

Electronics Components Transistor Transistor-small Transistor, wired, small size, through-hole mounting, at
size plant/GLO U

Electronics Components Transistor Transistor-SMD Transistor, SMD type, surface mounting, at plant/GLO
type U

Electronics Components Transistor unsified Transistor, unspecified, at plant/GLO U

Electronics Components Transistor Transistor-wired big Transistor, wired, big size, through-hole mounting, at
plant/GLO U

Electronics Devices Computer Desktop-screenless Desktop computer, without screen, at plant/GLO U

Electronics Devices Computer Laptop Laptop computer, at plant/GLO U

Electronics Devices Keyboard Keyboard-standard Keyboard, standard version, at plant/GLO U

Electronics Devices Mouse Mouse-optical Mouse device, optical, with cable, at plant/GLO Uw/cable

Electronics Devices Network access NAD-internet Network access devices, internet, at user/CH/I Udevice

Electronics Devices Printer Printer-laser jet Printer, laser jet, b/w, at plant/GLO U

Electronics Devices Printer Printer-laser jet Printer, laser jet, colour, at plant/GLO U

Electronics Devices Router Router-IP network Router, IP network, at server/CH/I U

Electronics Devices Screen CRT-17in CRT screen, 17 inches, at plant/GLO U

Electronics Devices Screen LCD-flat-17in LCD flat screen, 17 inches, at plant/GLO U

Electronics Modules Battery Battery-lithium ion Single cell, lithium-ion battery, lithium manganese
oxide/graphite, at plant/CN U

Electronics Modules Battery chaeable Battery, LiIo, rechargeable, prismatic, at plant/GLO U

Electronics Modules Battery Battery- Battery, NiMH, rechargeable, prismatic, at plant/GLO Urechargeable

Electronics Modules Chassis Chassis network Chassis, network main devices/RER Umain devices

Electronics Modules CRT 3 CRT Cathode-ray tube, CRT screen, at plant/GLO U

Electronics Modules Electrode Electrode-negative Electrode, negative, LiC6, at plant/GLO U

Electronics Modules Electrode Electrode-negative Electrode, negative, Ni, at plant/GLO U

Electronics Modules Electrode Electrode-positive Electrode, positive, LiMn204, at plant/GLO U

Electronics Modules Fan Fan-plant Fan, at plant/GLO U

Electronics Modules HDD HDD-desktop HDD, desktop computer, at plant/GLO U

Electronics Modules HDD HDD-laptop HDD, laptop computer, at plant/GLO U

Electronics Modules ITO ITO-powder ITO powder, for target production, at plant/RER U
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Electronics Modules ITO ITO-sintered target ITO, sintered target, at plant/RER U

Electronics Modules Power supply unit Power supply unit- Power supply unit, at plant/CN Uplant

Electronics Modules Screen LCD module Assembly, LCD module/GLO U

Electronics Modules Screen LCD module LCD module, at plant/GLO U

Electronics Modules Screen LCD screen Assembly, LCD screen/GLO U

Electronics Modules Toner Toner-laser jet Toner module, laser jet, b/w, at plant/GLO U

Electronics Modules Toner Toner-laser jet Toner module, laser jet, colour, at plant/GLO U

Electronics Photovoltaic Metallization paste Metallization paste- Metallization paste, back side, aluminium, at plant/RER
backside U

Electronics Photovoltaic Metallization paste Metallization paste- Metallization paste, back side, at plant/RER Ubackside

Electronics Photovoltaic Metallization paste Metallization paste- Metallization paste, front side, at plant/RER U
frontside

Electronics Photovoltaic Photovoltaic Photocell-multi Si Photovoltaic cell, multi-Si, at plant/RER U

Electronics Photovoltaic Photovoltaic Photocell-ribbon Si Photovoltaic cell, ribbon-Si, at plant/RER U

Electronics Photovoltaic Photovoltaic Photocell-single Si Photovoltaic cell, single-Si, at plant/RER U

Electronics Photovoltaic Silicon Si-multi wafer Multi-Si wafer, at plant/RER U

Electronics Photovoltaic Silicon Si-multi wafer Multi-Si wafer, ribbon, at plant/RER U

Electronics Photovoltaic Silicon Si-single crystal- CZ single crystalline silicon, electronics, at plant/RER U
electronics

Electronics Photovoltaic Silicon Si-single crystal- Snl-iwfr lcrnca ln/Eelectronics Snl-iwfr lcrnca ln/E

Electronics Photovoltaic Silicon Si-single crystal- CZ single crystalline silicon, photovoltaics, at
photovoltaics plant/RER U

Electronics Photovoltaic Silicon Si-single crystal- Single-Si wafer, photovoltaics, at plant/RER U
______________photovoltaics

Elering Controc Controls Electronic Electronics for control units/RER U
Board

Printed PWB-mounted- Printed wiring board, mounted, Desktop PC mainboard,Electronics Wiring PWB-mounted Desktop PC at plant/GLO U
Board mainboard

Printed PWB-mounted- Printed wiring board, mounted, Desktop PC mainboard,
Electronics Wiring PWB-mounted Desktop PC Pb containing, at plant/GLO U

Board mainboard

Primnted PWB-mounted- Printed wiring board, mounted, Desktop PC mainboard,Electronics Wiring PWvB-mounted Desktop PC Pb free, at plant/GLO U
Board mainboard

Printed PWB-mounted- Printed wiring board, mounted, Laptop PC mainboard,
Electronics Wiring PWB-mounted Laptop PCBoard mainboard a ln/L

Printed PWVB-mounted- Printed wiring board, mounted, Laptop PC mainboard,
Electronics Wiring PWB-mounted Laptop PC Pb containing, at plant/GLO U

Board mainboard
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Printed
Electronics Wiring PWB-mounted PWB-mounted- Printed wiring board, mixed mounted, unspec., solder

Board unspecified mix, at plant/GLO U

Electronics Printed PWB-power PWB-power supply Printed wiring board, power supply unit desktop PC, Pb
Board supply unit unit desktop PC containing, at plant/GLO U

Printed PWB-power PWB-power supply Printed wiring board, power supply unit desktop PC, Pb

Board supply unit unit desktop PC free, at plant/GLO U

Printed PWB-power PWB-power supply Printed wiring board, power supply unit desktop PC,

Board supply unit unit desktop PC solder mix, at plant/GLO U

Printed PWB-surface PWB-surface Printed wiring board, surface mount, lead-containing

Board mount mount-lead surface, at plant/GLO U

Printed
Electronics Wiring PWB-surface PWB-surface Printed wiring board, surface mounted, unspec., Pb

Board mount mount-lead containing, at plant/GLO U

Printed PWB-surface PWB-surface Printed wiring board, surface mount, lead-free surface, at

Board mount mount-lead free plant/GLO U

Printed PWB-surface PWB-surface Printed wiring board, surface mounted, unspec., Pb free,Electronics Wirng mount mount-lead free at plant/GLO U

Electronics PWrintn m surface Pm tlace Printed wiring board, surface mount, at plant/GLO U
Board

Printed PWB-surface PWB-surface Printed wiring board, surface mounted, unspec., solder

Board mount mount-solder mix mix, at plant/GLO U

Electronicsne PWB-through-hole WB-through-hole- Printed wiring board, through-hole, at plant/GLO U
Board

Printed PWB-through-hole PWB-through-hole- Printed wiring board, through-hole mounted, unspec., Pb
Electronics Wiring mounted lead containing, at plant/GLO UBoard

Printed PWB-through-hole PWB-through-hole- Printed wiring board, through-hole, lead-containing
Electronics Wiring mounted lead surface, at plant/GLO UBoard

Printed PWB-through-hole PWB-through-hole- Printed wiring board, through-hole mounted, unspec., PbElectronics Wiring mounted lead free free, at plant/GLO U
Board

Printed PWB-through-hole PWB-through-hole- Printed wiring board, through-hole, lead-free surface, atElectronics Wiring mounted lead free plant/GLO U
_____________Board _________

Printed PWB-through-hole PWB-through-hole- Printed wiring board, through-hole mounted, unspec.,Electronics Wiring mounted solder mix solder mix, at plant/GLO UBoard

Electronics Silicons 2 General Silicon Silicon-electronic Silicon, electronic grade, at plant/DE Ugrade

Electronics Silicons 2 General Silicon Silicon-electronic Silicon, electronic grade, off-grade, at plant/DE U
________________grade

Electronics Silicons 2 General Silicon Silicon-MG MG-silicon, at plant/NO U

Electronics Silicons 2 General Silicon Silicon-multi Si Silicon, multi-Si, casted, at plant/RER U
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Electronics Silicons 2 General Silicon Silicon- Silicon, production mix, photovoltaics, at plant/GLO U
______________ _________ ______________photovoltaics Slcn rdcinmx htvlaca ln/L

Electronics Silicons 2 General Silicon Silicon- Silicon, solar grade, modified Siemens process, at
photovoltaics plant/RER U

Glass Construction Flat Glass Flat Glass coated Flat glass, coated, at plant/RER U
Glass

Glass Construction Flat Glass Flat Glass uncoated Flat glass, uncoated, at plant/RER UGlass

Glass Cnstruction Glass Fiber Glass Fiber plant Glass fibre, at plant/RER U

Glass Construction Glass Tube Glass tube Glass tube, borosilicate, at plant/DE UGlass borosilicate

Glass Construction Glass tube Glass tube solar w/ Solar collector glass tube, with silver mirror, at plant/DE
GGlass silver mirror U

Glass Cnstruction Glazing Glass Glazing Glass Glazing, double (2-IV), U<1. 1 W/m2K, at plant/RER U

Glass Construction Glazing Glass Glazing Glass Glazing, double (2-IV), U<1.1 W/m2K, laminated
Glass double safety glass, at plant/RER U

Glass Construction Glazing Glass Glazing Glass triple Glazing, triple (3-lV), U<0.5 W/m2K, at plant/RER U
Glass

Glass Construction Solar Glass Solar Glass low- Solar glass, low-iron, at regional storage/RER U
Glass asron

Glass Packaging PG-brown PG-brown plant Packaging glass, brown, at plant/CH S
Glass

Glass Packaging PG-brown PG-brown plant Packaging glass, brown, at plant/DE U
Glass

Glass Packaging PG-brown PG-brown plant Packaging glass, brown, at plant/RER U
Glass

Glass Packaging PG-brown PG-brown regional Packaging glass, brown, at regional storage/CH SGlass storage

Glass Packaging PG-green PG-green plant Packaging glass, green, at plant/CH S
Glass

Glasassain PG-green PG-green plant Packaging glass, green, at plant/DE U
GlassPakain

Glass Packaging PG-green PG-green plant Packaging glass, green, at plant/RER U

Glass Packaging PG-green PG-green regional Packaging glass, green, at regional storage/CH S
Glass storage

Glass Packaging PG-white PG-white plant Packaging glass, white, at plant/CH SGlass

Glass Packaging PG-white PG-white plant Packaging glass, white, at plantDE UGlass

Glass Packaging PG-white PG-white plant Packaging glass, white, at plant/RER U
Glass

Glass Packaging PG-white PG-white regional Packaging glass, white, at regional storage/CH SGlass storage

Glass Waste Glass Waste Glass 3 Glass cullet Glass cullets, sorted, at sorting plant/RER U

Glass Waste Glass Waste Glass 3 Glass from public Glass, from public collection, unsorted/RER U
unsorted

Metal Ferrous Iron Iron cast Cast iron, at plant/RER U
metals

Metal Ferrous Iron Iron cast Iron, sand casted/USmetalsIII
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Metal Ferrous Iron Iron pig Pig iron, at plant/GLO Umetals

Metal Ferrous Iron Iron4 Ferrite, at plant/GLO Umetals

Metal Ferrous Iron Iron4 Iron and steel, production mix/USmetals

Metal Feous Steel Steel Reinforcing steel, at plant/RER U

Metal Ferrous Steel Steel chromium Chromium steel 18/8, at plant/RER Umetals

Metal Ferrous Steel Steel coil Stainless steel hot rolled coil, annealed & pickled, elec.
metals arc furnace route, prod. mix, grade 304 RER S

Metal Ferrous Steel Steel coil Steel hot rolled coil, blast furnace route, prod. mix,
metals thickness 2-7 mm, width 600-2100 mm RER S

Metal Feous Steel Steel converter Steel, converter, chromium steel 18/8, at plant/RER U

Metal Ferrous Steel Steel converter Steel, converter, low-alloyed, at plant/RER Umetals

Metal Ferrous Steel Steel converter Steel, converter, unalloyed, at plant/RER Umetals

Metal Ferrous Steel Steel electric Steel, electric, chromium steel 18/8, at plant/RER Umetals

mea etals SelSteel electric Steel, electric, un- and low-alloyed, at plant/RER U

Metal Ferrous Steel Steel low alloyed Steel, low-alloyed, at plant/RER Umetals

Metal Ferrous Steel Steel rebar Steel rebar, blast furnace and electric arc furnace route,
metals production mix, at plant GLO S

Metal Ferrous Steel Steel section Steel hot rolled section, blast furnace and electric arc
metals furnace route, production mix, at plant GLO S

Metal Ferrous Steel Steel sheet Galvanized steel sheet, at plant/RNAmetals

Metal Ferrous Steel Steel sheet Hot rolled sheet, steel, at plant/RNAmetals

Metal Ferrous Steel Steel tin plated Tin plated chromium steel sheet, 2 mm, at plant/RER Umetals

Metal Metal Aluminum Alloy Aluminum alloy Aluminium alloy, AlMg3, at plant/RER U

Metal
Metal Alloys Ferrous Alloys Ferrochromium Ferrochromium, high-carbon, 68% Cr, at plant/GLO U

Metal Metal Ferrous Alloys Ferrochromium Ferrochromium, high-carbon, 68% Cr, at regional
Alloys storage/RER U

Metal Metal Ferrous Alloys Ferromanganese Ferromanganese, high-coal, 74.5% Mn, at regional
Alloys storage/RER U

Metal Metal Ferrous Alloys Ferronickel Ferronickel, 25% Ni, at plant/GLO UAlloy
Metal Metal Ferrous Alloys Iron-Nickel- Iron-nickel-chromium alloy, at plant/RER UAlloys Fesim Alloys Chromium

Metal Metal Magnesium Alloy Magnesium alloy 4 Magnesium-alloy, AZ91, at plant/RER UAlloys 3

Metal Metal Magnesium Alloy Magnesium alloy 4 Magnesium-alloy, A.Z9 1, diecasting, at plant/RER UAlloys 3

Metal Metal Solder Solder bar Solder, bar, Sn63Pb37, for electronics industry, at
Alloys S plant/GLO U
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Metal Metal Solder Solder bar Solder, bar, Sn95.5Ag3.9CuO.6, for electronics industry,
Alloys at plant/GLO U

Metal Metal Solder Solder cadmium Brazing solder, cadmium free, at plant/RER UAlloys free

Metal Metal Solder Solder paste Solder, paste, Sn63Pb37, for electronics industry, at
Alloys plant/GLO U

Metal Metal Solder Solder paste Solder, paste, Sn95.5Ag3.9CuO.6, for electronics
Alloys industry, at plant/GLO U

Metal Metal Solder Solder soft Soft solder, Sn97Cu3, at plant/RER U
Alloys
Non-

Metal Ferrous Aluminum Aluminum primary Aluminium, primary, at plant/RER U
metals
Non-

Metal Ferrous Aluminum Aluminum primary Aluminium, primary, liquid, at plant/RER U
metals
Non-

Metal Ferrous Aluminum Aluminum primary Aluminum, primary, ingot, at plant/RNA
metals
Non-

Metal Ferrous Aluminum Aluminum primary Aluminum, primary, smelt, at plant/RNA
metals

Non- Aluminum
Metal Ferrous Aluminum producIo mix Aluminium, production mix, at plant/RER U

metals productionmix

Non-
Metal Ferrous Aluminum Aluminum Aluminium, production mix, cast alloy, at plant/RER U

metals production mix

Non- Aluminum Aluminium, production mix, wrought alloy, at
Metal Ferrous Aluminum production mix plant/RER U

metals
Non- Aluminum Aluminium, secondary, from old scrap, at plant/RER U

Metalmerros Almnmsecondary
Metal Ferrous Aluminum uecnuar Alumninium, secondary, ingot l a, at plant/Rmetals

Non- Auiu
Metal Ferrous Aluminum ecomaiu Aluminum, secondary, ingot, at plant/RNA

metals
Non- Aluminum Aluminum, secondary, ingot, from automotive scrap, at

Metal Ferrous Aluminum secondary plant/RNA
metals
Non- Aluminum Aluminum, secondary, ingot, from beverage cans, at

Metal Ferrous Aluminum secondary plant/RNA
metals
Non-

Metal Ferrous Aluminumsecondary shaped Aluminum, secondary, extruded/RNA

metals scnaysae

Non- Aluminum
Metal Ferrous Aluminum secondary shaped Aluminum, secondary, rolledRNA

metals
Non- 

A i e i r p i u

Metal Ferrous Aluminum Aluminum sae eifnse he rdc E

mea etals Almnmsecondary shaped Aluminum, secondary, shape casted/RNA

metals

Non- Aluminium extrusion profile, primary prod., prod. mix,
Metal Ferrous Aluminum Aluminum shaped aluminium semi-finished extrusion product RER S

metals

Non- Aluminiumn sheet, primary prod., prod. mix, aluminium
Metal Ferrous Aluminum Aluminum shaped semi-finished sheet product RER S

metals
Non-

Metal Ferrous Aluminum Aluminum shaped Aluminum ingot, production mix, at plant/US
metals
Non-

Metal Ferrous Aluminum Aluminum shaped Aluminum, cast, lost foam, at plant/kg/UJS
Imetals I__________________________



Level 1 Level 2 Level 3 Level 4 Level 5
Non-

Metal Ferrous Aluminum Aluminum shaped Aluminum, cast, precision sand casting/kg/US
metals
Non-

Metal Ferrous Aluminum Aluminum shaped Aluminum, cast, semi-permanent mold (SPM), at
metals plant/kg/US
Non-

Metal Ferrous Brass Brass4 Brass, at plant/CH U
metals
Non-

Metal Ferrous Bronze Bronze4 Bronze, at plant/CH U
metals
Non-

Metal Ferrous Cadmium Cadmium chloride Cadmium chloride, semiconductor-grade, at plant/US U
metals
Non-

Metal Ferrous Cadmium Cadmium primary Cadmium, primary, at plant/GLO U
metals
Non-Camu

Metal errus Cadmium semiconductor grade Cadmium, semiconductor-grade, at plant/US U
metals
Non-

Metal Ferrous Cadmium Cadmium sulphide Cadmium sulphide, semiconductor-grade, at plant/US U
metals
Non-

Metal Ferrous Cadmium Cadmium telluride Cadmium telluride, semiconductor-grade, at plant/US U
metals
Non-

Metal Ferrous Chromium Chromium4 Chromium, at regional storage/RER U
metals
Non-

Metal Ferrous Cobalt Cobalt4 Cobalt, at plant/GLO U
metals
Non-

Metal Ferrous Copper Copper primary Copper, at regional storage/RER U
metals
Non-

Metal Ferrous Copper Copper primary Copper, blister-copper, at primary smelter/RER U
metals
Non-

Metal Ferrous Copper Copper primary Copper, from imported concentrates, at refinery/DE U
metals
Non-

Metal Ferrous Copper Copper primary Copper, primary, at refinery/GLO U
metals
Non-

Metal Ferrous Copper Copper primary Copper, primary, at refinery/ID U
metals
Non-

Metal Ferrous Copper Copper primary Copper, primary, at refinery/RAS U
metals
Non-

Metal Ferrous Copper Copper primary Copper, primary, at refinery/RER U
metals
Non-

Metal Ferrous Copper Copper primary Copper, primary, at refinery/RLA U
metals
Non-

Metal Ferrous Copper Copper primary Copper, primary, at refinery/RNA U
metals
Non- Copper primary Copper, from combined metal production, at

Metal Ferrous Copper CombineProd beneficiation/SE U
metals
Non- Copper primary Copper, from combined metal production, at refinery/SE

Metal Ferrous Copper CombineProd U
metals



Level 1 Level 2 Level 3 Level 4 Level 5
Non- Copper primary Copper, primary, from platinum group metal

Metal Ferrous Copper CombineProd production/RU U
metals

Non- Copper primary Copper, primary, from platinum group metal
Metal Ferrous Copper CombineProd production/ZA U

metals
Non- Copper sheet, technology mix, consumption mix, atMetal Ferrous Copper Copper processed plant, 0,6 mm thickness EU- 15 S
metals

Metal errous Copper Copper processed Copper telluride cement, from copper production/GLO

metals
Non- Copper tube, technology mix, consumption mix, at plant,Metal Ferrous Copper Copper processed diameter 15 mm, 1 mm thickness EU- 15 S
metals
Non- Copper wire, technology mix, consumption mix, at

Metal Ferrous Copper Copper processed plant, cross section 1 mm' EU-n15 S
metals
Non-

Metal Ferrous Copper Copper secondary Copper, secondary, at refinery/RER U
metals

MetaFerous Cope Copper solventMetal erus Copper extracted Copper, SX-EW, at refinery/GLO U
metals
Non- Gallium

Metal Ferrous Gallium semiconductor Gallium, semiconductor-grade, at plant/GLO U
metals grade

Metal Feronus Gallium semicoductor Gallium, semiconductor-grade, at regional storage/RER

metals grade

Metal enus Indiundium regional Indium, at regional storage/RER U
metals
Non- Lead combined Lead, from combined metal production, at

Metal Ferrous Lead production beneficiation/SE U
metals

Non-
Metal Ferrous Lead Lead combined

mea etals Ledproduction Lead, from combined metal production, at refinery/SE U

metalsNon-
Metal Ferrous Lead Lead primary Lead, primary, at plant/GLO U

metals

Non-
Metal Ferrous Lead Lead pnmary Lead, pnmary, consumption mix, at plant DE S

metals

Non-
Metal Ferrous Lead Ltai Lead, at regional storage/RER U

metals

Non-
Metal Ferrous Lead Lead secondary Lead, secondary, at plant/RER U

metals

Non-
Metal Ferrous Lithium Lithium4 Lithium, at plant/GLO U

metals

Non-
Metal Ferrous Magnesium 3 Magnesium 4 Magnesium, at plant/RER U

metals

Non- Manganese regional Mnaee trgoa trg/E
Metal Ferrous Manganese storage Mnaee trgoa trg/E

metals
Non-

Metal Ferrous Mercury Mercury4 Mercury, liquid, at plant/GLO U
________________metals __________

Non-
Metal Ferrous Mischmetal Mischmeta14 Mischmetal, primary, at plant/GLO U

metals I____________________________



Level 1 Level 2 Level 3 Level 4 Level 5
Non- Mlbeu

Metal errus Molybdenum r1gybdestorage Molybdenum, at regional storage/RER U
metals

rous NNickel, primary, from platinum group metalMetal Ferrous Nickel Nickel primary production/RU U
metals __________

Non-rous NNickel, primary, from platinum group metalMetal Ferrous Nickel Nickel primary production/ZA U
metals __________

Meta eNickel, secondary, from electronic and electric scrapMetal Ferrous Nickel Nickel secondary recycling, at refinery/SE U
metals
Non-

Metal Ferrous Nickel Nickel4 Nickel, 99.5%, at plant/GLO U
metals

Non- Tantalum, powder, capacitor-grade, at regional
Metal Ferrous Tantalum Tantalum powder storage/GLO U

metals
Non- Tellurium

Metal Ferrous Tellurium semiconductor Tellurium, semiconductor-grade, at plant/GLO U
metals grade
Non-

Metal Ferrous Tin Tin regional storage Tin, at regional storage/RER U
metals
Non- Titanium zinc plate, without pre-weathering, at plant/DEMetal Ferrous Titanium Titanium zinc plate U
metals
Non- Zinc combined Zinc, from combined metal production, atMetal Ferrous Zinc production beneficiation/SE Umetals
Non- Zinc combined Znfo obndmtlpoutoa eieyS

Metal Ferrous Zinc Zinchigh gd Sci high grad zinc, pr oduction, production
metals
Non- Special high grade zinc, primary production, production

Metal Ferrous Zinc Zinc high grade mix, at plant GLO S
metals
Non-

Metal Ferrous Zinc Zinc primary Zinc, primary, at regional storage/RER U
metals

Paper and Board Board Base Fiber Chipboard4 Whitelined chipboard, WLC, at plant/RER U

Paper and Board Board Core Board Core Board4 Core board, at plant/RER U

Paper and Board Board Liquid Board Liquid Board4 Liquid packaging board, at plant/RER U

Paper and Board Board Solid Board SB-Bleached Solid bleached board, SBB, at plant/RER U

Paper and Board Board Solid Board SB-Unbleached Solid unbleached board, SUB, at plant/RER U

Paper and Board Corrugated Base Fiber Kraftliner Corrugated board base paper, kraftliner, at plant/RER Uboard

Paper and Board Corrugated Base Fiber SemiChemFluting Corrugated board base paper, semichemical fluting, at
board plant/RER U

Paper and Board Corrugated Base Fiber Testliner Corrugated board base paper, testliner, at plant/RER Uboard

Paper and Board Corrugated Base Fiber Wellenstoff Corrugated board base paper, wellenstoff, at plant/RER
board U

Paper and Board Corrugated Double Wall Recycling Fiber- Corrugated board, recycling fibre, double wall, at
board DW plant/CH U

Paper and Board Corrugated Double Wall Recycling Fiber- Corrugated board, recycling fibre, double wall, at
board DW plant/RER U

Paper and Board Cormgated Single Wall Fresh Fiber Corrugated board, fresh fibre, single wall, at plant/CH U

Paper and Board orrugated Single Wall Fresh Fiber Corrugated board, fresh fibre, single wall, at plant/RER
board I U



Level 1 Level 2 Level 3 Level 4 Level 5

Paper and Board Corrugated Single Wall Mixed Fiber Corrugated board, mixed fibre, single wall, at plant/CH
board U

Paper and Board Corrugated Single Wall Mixed Fiber Corrugated board, mixed fibre, single wall, at plant/RER
board U

Paper and Board Corrugated Single Wall Recycling Fiber-SW Corrugated board, recycling fibre, single wall, at
board plant/CH U

Paper and Board Corrugated Single Wall Recycling Fiber-SW Corrugated board, recycling fibre, single wall, at
board plant/RER U

Paper and Board Graphic Graphic Recycling Deinking Paper, recycling, with deinking, at plant/RER U

Paper and Board Graphic Graphic Recycling No-Deinking Paper, recycling, no deinking, at plant/RER UPaper

Paper and Board Gaphic News Print DIP-Containing Paper, newsprint, DIP containing, at plant/RER U

Paper and Board Graphic News Print News Print-At Plant Paper, newsprint, 0% DIP, at plant/RER UPaper

Paper and Board Graphic News Print News Print-At Plant Paper, newsprint, at plant/CH U
______________Paper ________________________

Paper and Board Graphic News Print News Print- Paper, newsprint, at regional storage/CH UPaper Regional Storage __________________________

Paper and Board Grahic News Print- Paper, newsprint, at regional storage/RER UGaphiesrrn Regional Storage

Paper and Board Graphic Wood Containing WC-LWC Paper, wood-containing, LWC, at plant/RER UPaper

Paper and Board Graphic Wood Containing WC-LWC Paper, wood-containing, LWC, at regional storage/CH U
Paper

Paper and Board Graphic Wood Containing WC-LWC Paper, wood-containing, LWC, at regional storage/RER
Paper U

Paper and Board Graphic Wood Containing WC-SC Paper, woodcontaining, supercalendred (SC), at
Paper plant/RER U

Paper and Board Graphic Wood Containing WC-SC Paper, wood-containing, supercalendred (SC), at
Paper regional storage/CH U

Paper and Board Graphic Wood Containing WC-SC Paper, wood-containing, supercalendred (SC), at
Paper regional storage/RER U

Paper and Board Graphic Wood Free WF-Coated Paper, woodfree, coated, at integrated mill/RER UPaper

Paper and Board Graphic Wood Free WF-Coated Paper, woodfree, coated, at non-integrated mill/RER U
Paper

Paper and Board Graphic Wood Free WF-Coated Paper, woodfree, coated, at regional storage/CH U
Paper

Paper and Board Graphic Wood Free WF-Coated Paper, woodfree, coated, at regional storage/RER U
______________Paper

Paper and Board Graphic Wood Free WF-Uncoated Paper, woodfree, uncoated, at integrated mill/RER U
Paper

Paper and Board Graphic Wood Free WF-Uncoated Paper, woodfree, uncoated, at non-integrated mill/RER
Paper U

Paper and Board Graphic Wood Free WF-Uncoated Paper, woodfree, uncoated, at regional storage/CH U
Paper _________

Paper and Board Graphic Wood Free WF-Uncoated Paper, woodfree, uncoated, at regional storage/RER U
Paper

Paper and Board Packaging Corrugated Corrugated board, Packaging, corrugated board, mixed fibre, single wall, at
Paper mixed fiber plant/CH U

Paper and Board Packaging Corrugated Corrugated board, Packaging, corrugated board, mixed fibre, single wall, at
Paper mixed fiber plant/RER U



Level 1 Level 2 Level 3 Level 4 Level 5

Paper and Board Packaging Corrugated Corrugated boxes, Corrugated board boxes, technology mix, prod. mix,
Paper technology mix 16,6 % primary fibre, 83,4 % recycled fibre EU-25 S
Paper

Paper and Board ging Graphic Packaging Kraft-bleached Kraft paper, bleached, at plant/RER U

Paper
Paper and Board aig Graphic Packaging Kraft-unbleached Kraft paper, unbleached, at plant/RER U

Paper and Board Packaging Liquid Packing Liquid Packing 4 Production of liquid packaging board containers, at
Paper plant/RER U

Paper and Board Pulp Thennmech pulp Themmech pulp 4 Chemi-thermomechanical pulp, at plant/RER U

Paper and Board Pulp Sulphate pulp Sulphate pulp, Sulphate pulp, average, at regional storage/CH Uaverage

Paper and Board Pulp Sulphate pulp Sulphate pulp, Sulphate pulp, average, at regional storage/RER Uaverage

Paper and Board Pulp Sulphate pulp Sulphate pulp, ECF Sulphate pulp, ECF bleached, at plant/RER UbleachedSupaeplEFbeceapanRRU

Paper and Board Pulp Sulphate pulp Sulphate pulp, Sulphate pulp, from eucalyptus ssp. (SFM), unbleached,
eucalyptus at pulpmill/TH U

Paper and Board Pulp Sulphate pulp Sulphate pulp, Sulphate pulp, from eucalyptus ssp. (SFM), unbleached,
eucalyptus TH, at maritime harbour/RER U

Paper and Board Pulp Sulphate pulp bSulphate pulp, TCF Sulphate pulp, TCF bleached, at plant/RER U

Paper and Board Pulp Sulphate pulp Sulphate pulp, Sulphate pulp, unbleached, at plant/RER Uunbleached

Paper and Board Pulp Suphite pulp Sulphite pulp, Sulphite pulp, bleached, at plant/RER Ubleached

Paper and Board Pulp Themo-mechanical Thermo-mechanical Thermo-mechanical pulp, at plant/RER Upulp pulp4

Paper and Board Pulp Wood Pulp Stone Ground Stone groundwood pulp, SGW, at plant/RER U

PPaper and Board Waste WP-for further WP-mixed Waste paper, mixed, from public collection, for further
Paper treatment treatment/CH U

Paper and Board Waste WP-for further WP-mixed Waste paper, mixed, from public collection, for further
Paper treatment treatment/RER U

Paper and Board Waste WP-for further WP-sorted Waste paper, sorted, for further treatment/CH UPaper treatment

Paper and Board Waste for rther WP-sorted Waste paper, sorted, for further treatment/RER U

Plant Product Fruiting Fruit Fruit4 Harvesting, fresh fruit bunch, at farm/RNAproducts

Plant Product Fruiting Nuts Nuts4 Husked nuts harvesting, at farm/PH Uproducts

Plant Product Fruiting Palm Palm fruit Palm fruit bunches, at farm/MY Uproducts

Plant Product n Palm Palm kernel Palm kernel, at plant/RNA

Plant Product conaRape Seed Rae ial Rape seed conventional, at farm/DE U

Plant Product coona Rape Seed Rae ial Rape seed conventional, Barrois, at farm/FR U

Plant Product conaRape Seed Rae ial Rape seed conventional, Saxony-Anhalt, at farm/DE U

Plant Product Fruiting Rape Seed Rape Seed Rape seed extensive, at fam/CH Uproducts extensiveRaeseexesvtfamHU



Level 1 Level 2 Level 3 Level 4 Level 5

Plant Product Fruiting Rape Seed Rape Seed organic Rape seed, organic, at farm/CH Uproducts

Plant Product n Rape Seed Rape Seed4 Rape seed IP, at farm/CH U

Freut
Plant Product prunt Rape Seed Rape Seed4 Rape seed, at farm/kUS U

Frout
Plant Product prunt Rape Seed Rape Seed4 Rapeseed, at field/kg/US

Plant Product Fruiting Seeds Seeds4 Seedlings, at greenhouse, US PNW/USproducts

Plant Product prouts Seeds Seeds4 Seedlings, at greenhouse, US SE/US

Plant Product Grains Barley Barley grains Barley grains IP, at farm/CH U

Plant Product Grains Barley e ain Barley grains conventional, Barrois, at farm/FR U

Plant Product Grains Barley Barley grains Barley grains conventional, Castilla-y-Leon, at farm/ES
conventional U

Plant Product Grains Barley Barley grains Barley grains conventional, Saxony-Anhalt, at farm/DE
conventional U

Plant Product Grains Barley Barley grains Barley grains extensive, at farm/CH Uextensive

Plant Product Grains Barley Barley grains Barley grains organic, at farm/CH Uorganic

Plant Product Grains Corn Corn grain Grain maize IP, at farm/CH U

Plant Product Grains Corn Corn grain organic Grain maize organic, at farm/CH U

Plant Product Grains Corn Corn4 Corn, at farm/US U

Plant Product Grains Corn Corn4 Corn, at field/kg/US

Plant Product Grains Rice Rice grain Rice grain, at field/kg/US

Plant Product Grains Rice Rice4 Rice, at farm/US U

Plant Product Grains Rye Rye grain Rye grains IP, at farm/CH U

Plant Product Grains Rye nventional Rye grains conventional, at farm/RER U

Plant Product Grains Rye Rye grain extensive Rye grains extensive, at farm/CH U

Plant Product Grains Rye Rye grain organic Rye grains organic, at farm/CH U

Plant Product Grains Sorghum Sorghum grain Sweet sorghum grains, at farm/CN U

Plant Product Grains Wheat grain Wheat grain Wheat grains IP, at farm/CH U

Plant Product Grains Wheat grain Wheat grain Wheat grains, at farm/US U

Plant Product Grains Wheat grain Wheat grain Wheat grains, at field/kg/US

Plant Product Grains Wheat grain covent onal Wheat grains conventional, Barrois, at farm/FR U

Plant Product Grains Wheat grain Wheat grain Wheat grains conventional, Castilla-y-Leon, at farm/ES
conventional U

Plant Product Grains Wheat grain Wheat grain Wheat grains conventional, Saxony-Anhalt, at farm/DE
conventional U

Plant Product Grains Wheat grain Wheat grain Wheat grains extensive, at farm/CH U
extensive

Plant Product Grains Wheat grain Wheat grain organic Wheat grains organic, at farm/CH U

Plant Product Legume Fava beans Fava beans organic Fava beans organic, at farm/CH U
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Plant Product Legume Fava beans Fava beans4 Fava beans IP, at farm/CH U

Plant Product Legume Pea Pea protein Protein peas conventional, Barrois, at farm/FR Uconventional, ai , at farm/ U

Plant Product Legume Pea Pea protein PrtipescnetoaCtlay-oatfn/EU
conventional, Caxony-n, at farm/E U

Plant Product Legume Pea Pea protein Protein peas conventional, Saxony-Anhalt, at farm/DE U
conventional

Plant Product Legume Pea Pea protien Protein peas, lIP, at farm/CH U

Plant Product Legume Pea Pea protien organic Protein peas, organic, at farm/CH U

Plant Product Legume Soybean Soybean organic Soy beans organic, at farm/CH U

Plant Product Legume Soybean Soybean4 Soy beans TP, at farm/CU U

Plant Product Legume Soybean Soybean4 Soybean grains, at field/kg/US

Plant Product Legume Soybean Soybean4 Soybeans, at farm/BR U

Plant Product Legume Soybean Soybean4 Soybeans, at farm/US U

Plant Product Plant fibers Cotton Cotton fibers Cotton fibres, at farm/US U

Plant Product Plant fibers Cotton Cotton fibers Cotton fibres, ginned, at farm/CN U

Plant Product Plant fibers Cotton Cotton4 Cotton, at field/kg/US

Plant Product Plant fibers Fibers Jute fibers Jute fibres, irrigated system, at farm/IN U

Plant Product Plant fibers Fibers Jute fibers Jute fibres, rainfed system, at farm/IN U

Plant Product Plant fibers Fibers Kenaf fibers Kenaf fibres, at farm/IN U

Plant Product Plant matter Corn silage Corn silage Silage maize IP, at farm/CH U

Plant Product Plant matter Corn silage Corn silage organic Silage maize organic, at farm/CH U

Plant Product Plant matter Fertilizer Green Manure Green manure IP, until April/CH U

Plant Product Plant matter Fertilizer Green Manure Green manure IP, until February/CH U

Plant Product Plant matter Fertilizer Green Manure Green manure IP, until January/CH U

Plant Product Plant matter Fertilizer Green Manure Green manure IP, until march/CH U

Plant Product Plant matter Fertilizer Green Manure Green manure organic, until April/CH U
orgaiec

Plant Product Plant matter Fertilizer Green Manure Green manure organic, until February/CH U
organic

Plant Product Plant matter Fertilizer Green Manuremanure organic, until January/CH U
organimreeaueogniutlJnayC

Plant Product Plant matter Fertilizer Green Manure Green manure organic, until march/CH U
organic

Plant Product Plant matter Hay Hay extensive Hay extensive, at farm/CH U

Plant Product Plant matter Hay Hay intensive Hay intensive IP, at farm/CH U

Plant Product Plant matter Hay Hay intensive Hay intensive organic, at farm/CH U
orgamec

Plant Product Plant matter Stem Jute stalks Jute stalks, from fibre production, irrigated system, at
farm/IN U

Plant Product Plant matter Stem Jute stalks Jute stalks, from fibre production, rainfed system, at
farm/IN U

Plant Product Plant matter Stem Kenaf stalks Kenaf stalks, from fibre production, at farm/IN U

Plant Product Plant matter Stem Sorghum stem Sweet sorghum stem, at farm/CN U

Plant Product Plant matter Straw Barley Straw Barley straw extensive, at farm/CH U
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Plant Product Plant matter Straw Barley Straw Barley straw IP, at farm/CH U

Plant Product Plant matter Straw Barley Straw Barley straw organic, at farm/CH U

Plant Product Plant matter Straw Rye straw Rye straw IP, at farm/CH U

Plant Product Plant matter Straw Rye straw Rye straw conventional, at farm/RER Uconventional Rye straw extenie, at farm/H U

Plant Product Plant matter Straw Rye straw extensive Rye straw extensive, at farm/CH U

Plant Product Plant matter Straw Rye straw organic Rye straw organic, at farm/CH U

Plant Product Plant matter Straw Straw organic Straw organic, at farm/CH U

Plant Product Plant matter Straw Straw4 Straw IP, at fand/CH U

Plant Product Plant matter Straw Straw4 Straw, from straw areas, at field/CH U

Plant Product Plant matter Straw Wheat straw Wheat straw extensive, at farm/CH U

Plant Product Plant matter Straw Wheat straw Wheat straw TP, at farm/CH U

Wheat strawWhastaoraiafamCU
Plant Product Plant matter Straw organic Wetsrwognc tfnnC

Plant Product Plant matter Sugarcane Sugarcane4 Sugarcane, at farm/BR U

Plant Product Plant matter Sunflower coe Sunflower conventional, Castilla-y-Leon, at farm/ES U

Plant Product Plant matter Sunflower Sunflower4 Sunflower IP, at farm/CH U

Plant Product Processed Plant oil Coconut oil4 Crude coconut oil, at plant/PH U

Plant Product Processed Plant oil Palm oil4 Crude palm kernel oil, at plant/RNA

Plant Product Processed Plant oil Palm oil4 Palm kernel oil, at oil mill/MY U

Plant Product Processed Plant oil Palm oil4 Palm kernel oil, processed, at plant/RNA

Plant Product Processed Plant oil Palm oil4 Palm oil, at oil mill/MY U

Plant Product Processed Plant oil Rape Seed oil4 Rape oil, at oil mill/CH U

Plant Product Processed Plant oil Rape Seed oil4 Rape oil, at oil mill/RER U

Plant Product Processed Plant oil Rape Seed oil4 Rape oil, at regional storage/CH U

Plant Product Processed Plant oil Soybean oil4 Soya oil, at plant/RER U

Plant Product Processed Plant oil Soybean oil4 Soybean oil, at oil mill/BR U

Plant Product Processed Plant oil Soybean oil4 Soybean oil, at oil mill/US U

Plant Product Processed Starch Corn starch Maize starch, at plant/DE U

Plant Product Processed Starch Potato starch Potato starch, at plant/DE U

Plant Product Root Beet Beet fodder Fodder beets IP, at farm/CH U

Plant Product Root Beet Beet sugar Sugar beets IP, at farm/CH U

Plant Product Root Potato Potato organic Potatoes organic, at farm/CH U

Plant Product Root Potato Potato4 Potato, at field/kg/US

Plant Product Root Potato Potato4 Potatoes IP, at farm/CH U

Plant Product Root Potato Potato4 Potatoes, at farm/US U

Polymers Elastomer ABS ABS Copolymer Acrylonitrile-butadiene-styrene copolymer, ABS, at
plant/RER U

Polymers Elastomer ABS ABS Copolymer Acrylonitrile-butadiene-styrene granulate (ABS),
granulate production mix, at plant RER

Polymers Elastomer ABS ABS Copolymer Acrylonitrile-butadicnc-styrene copolymer resin, at
resin plant/RNA

Polymers Elastomer Bitumen Bitumen4 Bitumen sealing, at plant/RER U



Level 1 Level 2 Level 3 Level 4 Level 5

Polymers Elastomer Polybutadiene Polybutadiene Polybutadiene granulate (PB), production mix, at plant
granulate RER

Polymers Elastomer Polybutadiene Polybutadiene4 Polybutadiene E

Polymers Elastomer Polybutadiene Polybutadiene4 Polybutadiene, at plant/RER U

Polymers Elastomer Polybutadiene Polybutadiene4 Polybutadiene, at plant/RNA

Polymers Elastomer SAN SAN copolymer4 Styrene-acrylonitrile copolymer (SAN) E

Polymers Elastomer SAN SAN copolymer4 Styrene-acrylonitrile copolymer, SAN, at plant/RER U

Polymers Elastomer Synthetic rubber Synthetic rubber4 Synthetic rubber, at plant/RER U

Polymers Thermoplastic EVA EVA foil Ethylvinylacetate, foil, at plant/RER U

Polymers Thermoplastic EVA EVA4 Ethylene vinyl acetate copolymer, at plant/RER U

Polymers Thermoplastic Nylon Nylon 6 Nylon 6 + 30% glass fibre E

Polymers Thermoplastic Nylon Nylon 6 Nylon 6 E

Polymers Thermoplastic Nylon Nylon 6 Nylon 6 glass filled (PA 6 GF), production mix, at
plant RER

Polymers Thermoplastic Nylon Nylon 6 Nylon 6 granulate (PA 6), production mix, at plant

Polymers Thermoplastic Nylon Nylon 6 Nylon 6, at plant/RER U

Polymers Thermoplastic Nylon Nylon 6 Nylon 6, glass-filled, at plant/RER U

Polymers Thermoplastic Nylon Nylon 66 Nylon 66 E

Polymers Thermoplastic Nylon Nylon 66 Nylon 66 GF 30 compound (PA 66 GF 30), production
mix, at plant RER

Polymers Thermoplastic Nylon Nylon 66 Nylon 66 granulate (PA 66), production mix, at plant
PolyersThemopasti Nyon ylo 66RER

Polymers Thermoplastic Nylon Nylon 66 Nylon 66, at plant/RER U

Polymers Thermoplastic Nylon Nylon 66 Nylon 66, glass-filled, at plant/RER U

Polymers Thermoplastic Nylon Nylon 66 Nylon 66/glass fibre composite E

Polymers Thermoplastic PMMA PMMA beads PMMA beads E

Polymers Thermoplastic PMMA PMMA beads Polymethyl methacrylate (PMMA) beads, production
mix, at plant RER

Polymers Thermoplastic PMMA PMMA beads Polymethyl methacrylate, beads, at plant/RER U

Polymers Thermoplastic PMMA PMMA sheet PMMA sheet E

Polymers Thermoplastic PMMA PMMA sheet Polymethyl methacrylate, sheet, at plant/RER U

Polymers Thermoplastic Polyacrylonitrile AN Acrylonitrile E

Polymers Thermoplastic Polyacrylonitrile AN Acrylonitrile from Sohio process, at plant/RER U
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Polymers Thermoplastic Polyacrylonitrile PAN Polyacrylonitrile fibres (PAN), from acrylonitrile and
methacrylate, prod. mix, PAN w/o additives EU-27 S

Polymers Thermoplastic Polyamide Polyamide glass Glass fibre reinforced plastic, polyamide, injection
moulding, at plant/RER U

Polymers Thermoplastic Polyamide Polyamide4 Polyamide 6.6 fibres (PA 6.6), from adipic acid and
hexamethylene diamine (HMDA), prod. mix, EU-27 S

Polymers Thermoplastic Polycarbonate Polycarbonate Polycarbonate granulate (PC), production mix, at plant
granulate RER

Polymers Thermoplastic Polycarbonate Polycarbonate4 Polycarbonate E

Polymers Thermoplastic Polycarbonate Polycarbonate4 Polycarbonate, at plant/RER U

Polymers Thermoplastic Polyethylene HDPE HDPE bottles E

Polymers Thermoplastic Polyethylene HDPE HDPE pipes E

Polymers Thermoplastic Polyethylene HDPE HDPE resin E

Polymers Thermoplastic Polyethylene HDPE High density polyethylene resin, at plant/RNA

Polymers Thermoplastic Polyethylene HDPE Polyethylene high density granulate (PE-HD),
production mix, at plant RER

Polymers Thermoplastic Polyethylene HDPE Polyethylene, HDPE, granulate, at plant/RER U

Polymers Thermoplastic Polyethylene LDPE LDPE bottles E

Polymers Thermoplastic Polyethylene LDPE LDPE resin E

Polymers Thermoplastic Polyethylene LDPE Low density polyethylene resin, at plant/RNA

Polymers Thermoplastic Polyethylene LDPE Packaging film, LDPE, at plant/RER U

Polymers . Thermoplastic Polyethylene LDPE Polyethylene low density granulate (PE-LD),
production mix, at plant RER

Polymers Thermoplastic Polyethylene LDPE Polyethylene, LDPE, granulate, at plant/RER U

Polymers Thermoplastic Polyethylene LLDPE Linear low density polyethylene resin, at plant/RNA

Polymers Thermoplastic Polyethylene LLDPE LLDPE resin E

Polymers Thermoplastic Polyethylene LLDPE Polyethylene low linear density granulate (PE-LLD),
production mix, at plant RER

Polymers Thermoplastic Polyethylene LLDPE Polyethylene, LLDPE, granulate, at plant/RER U

Polymers Thermoplastic Polyethylene PET Fleece, polyethylene, at plant/RER U

Polymers Thermoplastic Polyethylene PET PET (amorphous) E

Polymers Thermoplastic Polyethylene PET PET (bottle grade) E

Polymers Thermoplastic Polyethylene PET PET bottles E
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Polymers Thermoplastic Polyethylene PET PET film (production only) E

Polymers Thermoplastic Polyethylene PET Polyethylene terephthalate (PET) granulate, production
mix, at plant, amorphous RER

Polymers Thermoplastic Polyethylene PE T Polyethylene terephthalate (PET) granulate, production
mix, at plant, bottle grade RER

Polymers Thermoplastic Polyethylene PET Polyethylene terephthalate fibres (PET), via dimethyl
terephthalate (DMT), prod. mix, EU-27 S

Polymers Thermoplastic Polyethylene PET Polyethylene terephthalate, granulate, amorphous, at
plant/RER U

Polymers Thermoplastic Polyethylene PET Polyethylene terephthalate, granulate, bottle grade, at
Polyers Theroplstic PolethyenePETplant/RER U

Polymers Thermoplastic Polyethylene Polyester glass Glass fibre reinforced plastic, polyester resin, hand lay-
up, at plant/RER U

Polymers Thermoplastic Polyethylene Polyester resin Alkyd resin, long oil, 70% in white spirit, at plant/RER
U

Polymers Thermoplastic Polyethylene Polyester resin Polyester resin, unsaturated, at plant/RER U

Polymers Thermoplastic Polyphenylene Polyphenylene Polyphenylene sulfide, at plant/GLO Usulfide sulfide4

Polymers Thermoplastic Polypropylene Polypropylene Polypropylene fibres (PP), crude oil based, production
fibers mix, at plant, PP granulate without additives EU-27 S

Polymers Thermoplastic Polypropylene Polypropylene film Oriented polypropylene film E

Polymers Thermoplastic Polypropylene Polypropylene Polypropylene granulate (PP), production mix, at plant
granulate RER

Polymers Thermoplastic Polypropylene Polypropylene Polypropylene, granulate, at plant/RER Ugranulate Polypropylene inet plng U

Polymers Thermoplastic Polypropylene Polypropylene Polypropylene ein Emolded Plpoyeeijcinmudn

Polymers Thermoplastic Polypropylene Polypropylene resin Polypropylene resin E

Polymers Thermoplastic Polypropylene Polypropylene resin Polypropylene resin, at plant/RNA

Polymers Thermoplastic Polystyrene EPS Expandable polystyrene (EPS) E

Polymers Thermoplastic Polystyrene EPS Polystyrene expandable granulate (EPS), production
mix, at plant RER

Polymers Thermoplastic Polystyrene EPS Polystyrene, expandable, at plant/RER U

Polymers Thermoplastic Polystyrene GPPS General purpose polystyrene, at plant/RNA

Polymers Thermoplastic Polystyrene GPPS Polystyrene (general purpose) granulate (GPPS), prod.
Polyers Theroplstic Polstyrne PPSmix, RER

Polymers Thermoplastic Polystyrene GPPS Polystyrene, general purpose, GPPS, at plant/RER U

Polymers Thermoplastic Polystyrene HIPS High impact polystyrene (HIPS) E

Polymers Thermoplastic Polystyrene HIPS High impact polystyrene granulate (HIPS), production
mix, at plant RER

Polymers Thermoplastic Polystyrene HIPS High impact polystyrene resin, at plant/RNA
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Polymers Thermoplastic Polystyrene HIPS Polystyrene, high impact, HIPS, at plant/RER U

Polymers Thermoplastic Polystyrene Polystyrene scrap Polystyrene scrap, old, at plant/CH U

Polystyrene
Polymers Thermoplastic Polystyrene thermoforming Polystyrene thermoforming E

Polymers Thermoplastic PVC PVC resin Polyvinyl chloride resin, at plant/RNA

Polymers Thermoplastic PVC PVC resin Polyvinylchloride resin (B-PVC), bulk polymerisation,
production mix, at plant RER

Polymers Thermoplastic PVC PVC resin Polyvinylchloride resin (E-PVC), emulsion
polymerisation, production mix, at plant RER

Polymers Thermoplastic PVC PVC resin Polyvinylchloride resin (S-PVC), suspension
polymerisation, production mix, at plant RER

Polymers Thermoplastic PVC PVC shaped PVC calendered sheet E

Polymers Thermoplastic PVC PVC shaped PVC film E

Polymers Thermoplastic PVC PVC shaped PVC injection moulding E

Polymers Thermoplastic PVC PVC shaped PVC pipe E

Polymers Thermoplastic PVC PVC4 Polyvinylchloride, at regional storage/RER U

Polymers Thermoplastic PVC PVC4 Polyvinylchloride, bulk polymerised, at plant/RER U

Polymers Thermoplastic PVC PVC4 Polyvinylchloride, emulsion polymerised, at plant/RER
U

Polymers Thermoplastic PVC PVC4 Polyvinylchloride, suspension polymerised, at
plant/RER U

Polymers Thermoplastic PVC PVC4 PVC (bulk polymerisation) E

Polymers Thermoplastic PVC PVC4 PVC (emulsion polyerisation) E

Polymers Thermoplastic PVC PVC4 PVC (suspension polymerisation) E

Polymers Thermoplastic PVC PVDC Polyvinylidenchloride, granulate, at plant/RER U

Polymers Thermoplastic PVC PVDC Polyvinylidene chloride (PVDC) E

Polymers Thermoplastic TFE TFE Film Tetrafluoroethylene film, on glass/RER U

Polymers Thermoplastic TFE TFE4 Tetrafluoroethylene, at plant/RER U

Polymers Thermoset Epoxy Epoxy resin Epoxy resin insulator (Al203), at plant/RER U

Polymers Thermoset Epoxy Epoxy resin Epoxy resin insulator (Si02), at plant/RER U

Polymers Thermoset Epoxy Epoxy resin liquid Epoxy resin, liquid, at plant/RER U

Polymers Thermoset Epoxy Epoxy resin liquid Epoxy resin, liquid, disaggregated data, at plant/RER U

Polymers Thermoset Epoxy Epoxy resin liquid Liquid epoxy resins E

Polymers Thermoset For aldehyde Ma -urea- Melamine formaldehyde resin, at plant/RER U
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Polymers Thermoset Formaldehyde Malamine-urea- Melamine-urea-formaldehyde hardener, at plant/US
resin formaldehyde

Polymers Thermoset Formaldehyde Malamine-urea- Melamine-urea-formaldehyde resin, at plant/US
resin formaldehyde

Polymers Thermoset Formaldehyde Urea formaldehyde Urea formaldehyde resin, at plant/RER U
resin resin

Polymers Thermoset Polymer resin Phenolic resin Phenolic resin, at plant/RER U

Polymers Thermoset Polymer resin Resin Resin size, at plant/RER U

Polymers Thermoset Polyurethane fliretfam Polyurethane flexible foam E

Polymers Thermoset Polyurethane fleiretfam Polyurethane, flexible foam, at plant/RER U

Polymers Thermoset Polyurethane Polyurethane rigid Polyurethane rigid foam E
foam

Polymers Thermoset Polyurethane Polyurethane rigid Polyurethane, rigid foam, at plant/RER U
foam

Precious Metals Precious Gold Gold combined Gold, from combined gold-silver production, at
metals 2 production refinery/CL U

Precious Metals Precious Gold Gold combined Gold, from combined gold-silver production, at
metals 2 production refinery/PE U

Precious Metals Precious Gold Gold combined Gold, from combined gold-silver production, at
metals 2 production refinery/PG U

Precious Metals Precious Gold Gold combined Gold, from combined metal production, at
metals 2 production beneficiation/SE U

Precious Metals mrecious Gold Gold combined Gold, from combined metal production, at refinery/SE UPrecios Gol production

Precious Metals Gold Gold primary Gold, primary, at refinery/GLO UPrecius Mtals metals 2

Precious Metals s Gold Gold refinery Gold, at refinery/AU U

Precious Metals Precious Gold Gold refinery Gold, at refinery/CA Umetals 2

Precious Metals Precious Gold Gold refinery Gold, at refinery/TZ Umetals 2

Precious Metals Precious Gold Gold refinery Gold, at refinery/US Umetals 2

Precious Metals Precious Gold Gold refinery Gold, at refinery/ZA Umetals 2

Precious Metals Precious Gold Gold regional Gold, at regional storage/RER Umetals 2 storage

Precious Metals Precious Gold Gold secondary Gold, secondary, at precious metal refinery/SE Umetals 2

Precious Metals s alladium Palladium primary Palladium, primary, at refinery/RU Umetals 2

Precious Metals Prcos Palladium Palladium primary Palladium, primary, at refinery/ZA U
metals 2

Precious Metals Prcos Palladium Palladium regional Palladium, at regional storage/RER Umetals 2 storage

Precious Metals Prcos Palladium Palladium Palduscnryatpeismtl fnr/SUmetals 2 secondary Palduscnayatpeiumelrfnr/SU

Precious Metals mretals2 Palladium PalladiumPalduscnryatefey/EU
metals___2 secondaryPalduscnayatrfey/RU

PeiuMetals Precious Platinum Platinum primary Platinum, primary, at refinery/RU UPrecious_____M metals 2 1___________________ T__________________________
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Precious Metals Precious metals 2 Platinum Platinum primary Platinum, primary, at refinery/ZA U

Precious Metals Precious metals 2 Platinum Platinum regional Platinum, at regional storage/RER Ustorage

Precious Metals Precious metals 2 Platinum Platinum secondary Platinum, secondary, at refinery/RER U

Precious Metals Precious metals 2 Rhodium Rhodium primary Rhodium, primary, at refinery/RU U

Precious Metals Precious metals 2 Rhodium Rhodium primary Rhodium, primary, at refinery/ZA U

Precious Metals Precious metals 2 Rhodium Rhodium regional Rhodium, at regional storage/RER Ustorage

Precious Metals Precious metals 2 Rhodium Rhodium secondary Rhodium, secondary, at refinery/RER U

Precious Metals Precious metals 2 Silver Silver combined Silver, from combined gold-silver production, at
production refinery/CL U

Precious Metals Precious metals 2 Silver Silver combined Silver, from combined gold-silver production, at
production refinery/GLO U

Precious Metals Precious metals 2 Silver Silver combined Silver, from combined gold-silver production, at
production refinery/PE U

Precious Metals Precious metals 2 Silver Silver combined Silver, from combined gold-silver production, at
production refinery/PG U

Precious Metals Precious metals 2 Silver Silver combined Silver, from combined metal production, at
production beneficiation/SE U

Precious Metals Precious metals 2 Silver Silver combined Silver, from combined metal production, at
production refinery/SE U

Precious Metals Precious metals 2 Silver Silver combined Silver, from copper production, at refinery/GLO Uproduction

Precious Metals Precious metals 2 Silver Silver combined Silver, from lead production, at refinery/GLO Uproduction

Precious Metals Precious metals 2 Silver Silver regional Silver, at regional storage/RER Ustorage

Precious Metals Precious metals 2 Silver Silver secondary Silver, secondary, at precious metal refinery/SE U

Wood Products Beam Beam glue Beam GL-plant Glue laminated beam, at plant, US PNW/kg/USlaminated BemG-an GlelmntdbaaplnUPN/gU

Wood Products Beam Fiberboard soft Fiberboard without Fibreboard soft, without adhesives, at plant
adhesive (u=7%)/CH U

Wood Products EUR EUR 3 EUR flat pallet EUR-flat pallet/RER U

Wood Products Fiberboard Fiberboard hard Fiberboard hard Fibreboard hard, at plant/RER Uplant

Wood Products Fiberboard Fiberboard Fiberboard medium Medium density fibreboard, at plant/RER Umedium density density-plant

Wood Products Fiberboard Fiberboard soft Fiberboard soft Firbadsotltebneatpnt(-7/CUlatex bonded Fbeor ot ae odd tpat(7)C

Wood Products Fiberboard Fiberboard soft Fiberboard soft Fibreboard soft, at plant (u=7%)/CH Uplant

Wood Products Laminatedboard Laminatedboard Laminatedboard Three layered laminated board, at plant/RER Uthree layer three layer at plant Cohree wod amit , at plant /kgU

Wood Products 1-joist Composite-I-joist Composite-l-joist- Composite wood I-joist, at plant, US PNW/kg/US
_______________________________________plant

Wood Products 1-joist Composite-i-joist Composite--jost Composite wood I-joist, at plant, US SE/kg/US
I____I___I_ planit
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Wood Products Log Conditioned Log Conditioned Log- Conditioned log, at plywood plant, US PNW/US
plywood

Wood Products Log Conditioned Log Conditioned Log Conditioned log, at plywood plant, US SE/US
WodPoucs Lme Lmer Lplywood

Wood Products Lumber Lumber Dry Lumber-DR-kiln Dry rough lumber, at kiln, US PNW/USRough

Wood Products Lumber Lumber Dry Lumber-DR-kiln Dry rough lumber, at kiln, US SE/USRough

Wood Products Lumber Lumber rough Lumber RG- Rough green lumber, at sawmill, US SE/kg/USgreen sawmill

Wood Products Lumber Lumber rough Lumber RG- Rough green lumber, softwood, at sawmill, US
green softwood PNW/kg/US

Wood Products Lumber Lumb surface LSD-planer mill Surfaced dried lumber, at planer mill, US PNW/kg/US

Wood Products Lumber Lumber surface LSD-planer mill Surfaced dried lumber, at planer mill, US SE/kg/USdried

Wood Products Lumber Lumber surface LSG-planer mill Surfaced green lumber, at planer mill, US PNW/kg/US
green

Wood Products Lumber Lumber veneer lumber veneer-plant Laminated veneer lumber, at plant, US PNW/kg/USlaminated

Wood Products Lumber Lumber veneer lumber veneer-plant Laminated veneer lumber, at plant, US SE/kg/USlaminated

Wood Products Particleboard Particleboard 3 Particleboard Particle board, cement bonded, at plant/RER Scement bonded Particle board, inone, at plantRER S

Wood Products Particleboard Particleboard 3 Particleboard indoor Particle board, indoor use, at plant/RER Uuse

Wood Products Particleboard Particleboard 3 Particleboard Particle board, outdoor use, at planmRER Uoutdoor use

Woo Prducs Prtilebard Paticebord PaticebordP2 Particle board, P2 (Standard FPY), production mix, at
WoodProuct Paticebord artilebard3 Prtilebardplant, 7,8% water content EU-27 S

WoodProucts Pariclboar Paticeboad 3 Paricleoar P5 Particle board, P5 (Vl100), production mix, at plant,
WoodProuct Pariclboad Prticebord Pariclboad ~7,8% water content EU-27 S

Wood Products Plywood Plywood 3 Plywood-indoor Plywood, indoor use, at plant/RER U

Wood Products Plywood Plywood 3 Plywood-outdoor Plywood, outdoor use, at plant/RER U

Wood Products Plywood Plywood 3 Plywood-plant Plywood, at plywood plant, US PNW/kg/US

Wood Products Plywood Plywood 3 Plywood-plant Plywood, at plywood plant, US SE/kg/US

Wood Products Plywood Plywood pressed Plywood PR-layup Pressed raw plywood, from lay-up, at plywood plant,
t oa Sraw US PNW/US

Wood Products Plywood Plywood pressed Plywood PR-layup Pressed raw plywood, from lay-up, at plywood plant,
raw US SE/US

Wood Products Strandboard Strandboard Strandboard Oriented strand board product, US SE/kg/US
oriented oriented 4

Wood Products Strandboard Strandboard Strandboard Oriented strand board, at plant/RER U
oriented oriented 4

WodPout Srnbad Strandboard Strandboard Oriented strand board, OSB III, production mix, at
oriented oriented OSB mix plant, 4,8% water content EU-27 S

Wood Products Timber Beam glue Beam GL-plant Glue laminated beam, at plant, US SE/kg/USlaminated

Wood Products Timber Timber e Timber GL-indoor Glued laminated timber, indoor use, at plant/RER Ulaminated use

Timber laminated Laminated timber element, transversally prestressed, forWood Products Timber Timber laminated transversally outdoor use, at plant/RER U
I prestressed
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Wood Products Timber Timber sawn TSH-parana pine Sawn timber, parani pine (SFM), kiln dried, u=15%, at
sawmill/BR U

Wood Products Timber Timber sawn TSH-parana pine Sawn timber, parani pine (SFM), u=15%, BR, at
maritime harbour/RER U

Wood Products Timber Timber sawn TSA-air dried Sawn timber (SFM), azobe, planed, air dried, u=15%,
azobe CM, at sawmill/RER U

Wood Products Timber Timber sawn TSH-planed kiln Sawn timber, hardwood, planed, air / kiln dried, u=10%,
hardwood dried at plant/RER U

Wood Products Timber Timber sawn TSH-planed kiln Sawn timber, hardwood, planed, kiln dried, u=10%, at
hardwood dried plant/RER U

Wood Products Timber Timber sawn TSH-raw air dried Sawn timber, hardwood, raw, air dried, u=20%, at
hardwood plant/RER U

Wood Products Timber Timber sawn TSH-raw kiln dried Sawn timber, hardwood, raw, air / kiln dried, u=10%, at
hardwood plant/RER U

Wood Products Timber Timber sawn TSH-raw kiln dried Sawn timber, hardwood, raw, kiln dried, u=10%, at
hardwood plant/RER U

Wood Products Timber Timber sawn TSH-raw plant Sawn timber, hardwood, raw, plant-debarked, u=70%, at
hardwood debarked plant/RER U

Wood Products Timber Timber sawn TSH-planed Sawn timber, softwood, planed, air dried, at plant/RER
softwood U

Wood Products Timber Timber sawn TSH-planed Sawn timber, softwood, planed, kiln dried, at plant/RER
softwood U

Wood Products Timber Timber sawn TSH-raw Sawn timber, softwood, raw, air dried, u=20%, at
softwood plant/RER U

Wood Products Timber Timber sawn TSH-raw Sawn timber, softwood, raw, forest-debarked, u=70%, at
softwood plant/RER U

Wood Products Timber Timber sawn TSH-raw Sawn timber, softwood, raw, kiln dried, u=10%, at
softwood plant/RER U

Wood Products Timber Timber sawn TSH-raw Sawn timber, softwood, raw, kiln dried, u=20%, at
softwood plant/RER U

Wood Products Timber Timber sawn TSH-raw Sawn timber, softwood, raw, plant-debarked, u=70%, at
softwood plant/RER U

Wood Products Timber Timber sawn TSH-Scandinavian Sawn timber, Scandinavian softwood, raw, plant-
softwood debarked, u=70%, at plant/NORDEL U

Wood Products Timber Timber Timber spruce- Spruce wood, timber, production mix, at saw mill, 40%
sprucewood production mix water content DE S

Wood Products Timber Timber-pine Timber-pine Pine wood, timber, production mix, at saw mill, 40%
production mix water content DE S

Wood Products Veneer Timber glue Timber GL-outdoor Glued laminated timber, outdoor use, at plant/RER Ulaminated useDry venat odont, t PW /RERS

Wood Products Veneer Veneer Dry Veneer Dry- Dry veneer, at plywood plant, US PNW/kgfUSplywood

Wood Products Veneer Veneer Dry Veneer Dry- Dry veneer, at plywood plant, US SE/US
plywood

Wood Products Veneer Veneer Dry Veneer Dry-sold Dry veneer, sold, at plywood plant, US PNW/kg/USplywood

Wood Products Veneer Veneer green Veneer green- Green veneer, at plywood plant, US PNW/kg/US
plywood

Wood Products Veneer Veneer green Veneer green- Green veneer, at plywood plant, US SE/kg/US
plywood

Wood Products Veneer Veneer green Veneer green-sold Green veneer, sold, at plywood plant, US PNW/kg/USplywood

Wood Products Veneer Veneer green Veneer green-sold Green veneer, sold, at plywood plant, US SE/kg/US
_____________plywoodF
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Wood Products Wood Wood pellet 3 Wood pellet Wood pellets, u=10%, at storehouse/RER Upellet Prdctoooooo _oo __ o storehouse

Wood Products Wood wool Wood wool 3 Wood wool cement Wood wool boards, cement bonded, at plant/RER Sbonded

Wood Products Wood wool IWood wool 3 Wood wool plant Wood wool, u=20%, at plant/RER U


