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Abstract

Life cycle assessment (LCA) has gained much interest in the field of product development and decision
making. The resource intensiveness of conducting an LCA has slowed more widespread adoption of the
methodology. Although some streamlined LCA methodology exists and are currently be applied, there
can be a lot of known and unknown uncertainties in the resulting analysis. These uncertainties could
sometimes render the LCA results useless for any decision making activities. Thus this thesis proposes
the evaluation of probabilistic underspecification in streamlining LCA and estimating a product’s life
cycle impact to both reduce LCA efforts and increase certainty in the results.

This thesis focuses the development and application of probabilistic underspecification in estimating the
materials impact of a product. In order to account for the uncertain with the degree of underspecificity,
we propose structuring of a classification system that will help associate materials specificity, uncertainty
in the materials impact, and the degree of effort to retrieve that information. This will serve as the bases
for probabilistic methodology to determine what part of product is important to characterize and invest
effort in order to reduce uncertainty in the LCA results with less effort than traditional LCA.

Mass can be a key indicator of impact. Therefore, several case studies were conducted comparing the
viability of probabilistic underspecification for calculating materials impact value for these products of
varied mass compositional characteristics or the degree of mass uniformity. The compositional uniformity
was measured by adapting the Herfindahl index used in economics but applied to component-mass share.
Despite the difference in the mass uniformity, the methodology significantly and consistently reduced the
number of components that needed to be well specified, while retaining a relatively high confidence in the
resulting estimates.

Probabilistic underspecification shows promise in both reducing LCA efforts and increasing the
significance in the material impact assessment of the case studies in this thesis. This process also allows
the leveraging of uncertainty and probability to reduce the effort and may help improve the rate at which
life cycle assessment may be conducted. With faster LCA, the move towards a sustainable and
environmentally responsible growth economy may be sooner realized.

Thesis Co-Advisors: Randolph E. Kirchain & Joel P. Clark
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1 INTRODUCTION

Life cycle assessment (LCA) is a technique to assess the environmental impact of
products, processes, or materials. Recently, its importance as a decision-making tool to help
evaluate current product inventories and innovation of environmentally responsible products has
grown. The market has become more aware of the value of environmentally conscious materials
selection and product development, as is evident in the proliferation of consumer-conscious
“green” labels on products ranging from groceries to consumer electronics. As such, there has
been an increased interest in standardizing LCA-based carbon footprinting techniques, like the
guidelines developed by the International Organization for Standardization (ISO) and the Society
of Environmental Toxicology and Chemistry (SETAC), which has helped to further the acceptance
of LCA by a broader community (Reap, Roman et al. 2008). However, the cost of conducting a
complete LCA continues to inhibit its use, potentially delaying the development of eco-conscious

products.

LCA’s main cost driver is the large amount of information needed to completely assess a
product’s impact while conducting its life cycle inventory (LCI). Because a complete LCA
considers all inputs and outputs of all phases of a product’s life cycle, collecting complete LCI
information for even the simplest commodity may require significant time and resources. A survey
of LCA practitioners showed that time and resource requirements for data collection hamper a
broader application of LCA. For rapidly-evolving industries, such as information technology, the
time to complete an extensive LCA may limit its relevance (Cooper and Fava 2006). A quick and
conclusive assessment is important for LCA especially in the development of eco-innovative
products, especially those where only limited information can be determined about the product’s
supply chain and life cycle (Chen and Wai-Kit 2003). Given the barriers to obtaining primary

information, are there ways to reduce the effort, or streamline, the LCA process?

Since the outset of LCA methodological development, myriad effort-reducing strategies
have been considered to accelerate the pace and reduce the cost of LCA. Qualitative and
quantitative approaches have reduced the effort required to gather information, thereby allowing
for “streamlined” LCA results. Most LCA techniques conducted span the spectrum from purely
qualitative to purely quantitative, often varying in their degree of streamlining. Qualitative LCA is
a form of streamlined LCA that requires significantly less data gathering than a complete
quantitative LCA. Qualitative LCAs are useful because they can provide a quick assessment of

products or processes where hard numbers are difficult to obtain. Matrix-type and pattern-based



LCAs are examples of qualitative streamlined LCAs. They have been helpful for rough

estimations of impact even during developmental phases of a product (Chen and Wai-Kit 2003).

Meanwhile, due to the increased importance of applications requiring quantitative impact
values, such as labeling and benchmarking initiatives, there is an increased interest in quantitative
streamlined-LCA. Quantitative LCA is fundamentally more difficult to streamline because it
requires more data gathering than qualitative LCA. Therefore, semi-qualitative (using both
qualitative and quantitative rules) or quantitative streamlining methods have been developed to
ease the data burden for quantitative LCA. For example, one approach uses previously conducted
LCAs or experiences as guides to identify the relevant parts of the LCA to quantify. Essentially,
past experience is used as high pass filter to identify high-impact life cycle activities that are
important to quantify for a meaningful assessment. Tightly defining the goal and scope of a
project is another streamlining technique; it confines the analysis to a more narrow area of interest
that is relevant specifically to the question the analysis poses (Weitz and Sharma 1998). For
example, instead of broadly assessing the impact of an entire product, we may only want to know
the manufacturing energy demand. However, this technique does not satisfy situations requiring

full quantitative LCA. In those cases, are there ways to reduce the data burden?

One of the most widely applied streamlining approaches is using previously gathered
information from LCA databases to build a product’s LCI. Instead of gathering first-hand LCI
information about the system, standard database values are substituted for primary data. However,
in building a quantitative impact model of a product using surrogate or proxy data, the model may
not accurately represent the actual impact of the product. Detailed life cycle inventories that
constitute the information in databases like ecoinvent 2.0 and United States Life Cycle Inventory
(USLCI) contain information on the life cycle activities within select geographic locations at
certain points in time. Completely analogous activities may not be available for the product of
interest, or the LCA practitioner may not be able to discern the best proxy. Therefore, at best, the
models can only be approximations of the real system. Different sources of uncertainties could
quickly compound, creating large inaccuracies in an LCA that could spoil its potential use for

decision making.

Although these streamlining methodologies reduce the time and effort of conducting LCA
by lessening the data gathering burden, they introduce variability and uncertainty into the results.
A review by Hunt et al. discovered that half of the streamlining methodologies assessed arrived at

different results when compared to a full LCA (Hunt, Boguski et al. 1998). Stakeholders cannot



confidently make the best decisions if the LCA results are too uncertain. Given that uncertainty
exists in streamlined LCA methodology, does it undermine our ability to streamline? This thesis
explores the question by systematically evaluating the effectiveness of streamlining approaches at
several different levels of data uncertainty. This is done in the context of a number of case studies.
These studies specifically evaluate the impact of materials production and use in common
consumer products. Materials are frequently the dominant driver of life-cycle impact for products

that don’t consume significant energy during use.

2 DISCUSSION

Sustainability and environmental responsibility are becoming increasingly important
factors in business decisions. Consumers are pushing for more environmentally friendly products,
urging companies to explore low impact materials and processes to manufacture their goods
(Borland and Wallace 1999; Finster, Eagan et al. 2001; Gaustad, Olivetti et al. 2010). An MIT
Sloan School of Management survey of 1,500 global executives and managers and in-depth
interviews of over 50 thought leaders revealed that sustainability could affect every short-term and
long-term value-creation lever of a company (Berns, Townend et al. 2009). For example, Wal-
Mart, the world’s largest retailer by revenue in 2010, has responded to market demands by
working with The Sustainability Consortium to develop a Sustainability Index for their products.
However, lack of information is one of the three top-cited barriers to corporate action to address
sustainability. LCA has been developed precisely to produce information crucial in driving more

sustainable actions.
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Figure 2-1 Spectrum of LCA methodology with respect to qualitative/quantitative degree and
completeness.



LCA can also be a useful decision-making tool in analyzing and developing environmental
policies (Ross, Evans et al. 2003). Some governments are already using LCA to help set
environmental policy and to make decisions (Hofstetter, Baumgartner et al. 2000; Troge and
Schmitz 2000; Blengini and Di Carlo 2010). Regulatory pressures have contributed to increased
demand for LCA results. For example, after the European Commission passed the Energy-using
Product, or EuP, Directives on efficient home lighting, a comprehensive LCA helped confirm the
policy’s environmental benefits (Welz, Hischier et al. 2010). Although LCA results are becoming
more important, they remain costly to obtain due to the effort required to gather the LCI data
needed for a complete analysis. In some cases, LCI data may be unobtainable due to proprietary

information that companies cannot afford to divulge (Todd and Curran 1999).

To lessen the information gathering burden in conducting LCA, numerous streamlining
methods have been proposed over the years. Streamlining methodologies tend to fall along a
spectrum between qualitative and quantitative approaches. Examples of methodologies on the
qualitative end of the spectrum are the matrix-type LCA formalized by Graedel and Allenby
(Graedel 1998) and pattern-based LCA (Chen and Wai-Kit 2003). In a matrix-type assessment, a
predefined impact scoring list combines with estimated LCI information to reach a rough
conclusion about the product. This streamlined process is generally used for the development
phase of a product (Weinberg 1998; Chen and Wai-Kit 2003). The pattern-based qualitative LCA
is useful in product development as well (Chen and Wai-Kit 2003). The pattern-based approach
uses previously conducted LCA to map out a product’s characteristics and environmental impact.
This method assumes that a product being developed with similar characteristics as a previously
studied product would have a similar environmental impact. This methodology is also used to
help make product-development decisions (Chen and Wai-Kit 2003; Myeon-Gyu, Hyo-Won et al.
2010). Although useful, most purely qualitative streamlined LCA lack the quantitative impact
outputs necessary for certain applications. Therefore, qualitative streamlining has also been used to
help derive quantitative outputs as well. For example, a methodology developed by Sousa (Sousa,
Wallace et al. 2000; Sousa and Wallace 2006) uses the inference-based LCA to arrive at a
quantitative result. Furthermore, due to an increase in information and computational power,
rather than relying on human judgment, Sousa applied neural network classification systems to
take advantage of previous product LCA experiences in helping assess a product’s impact (Sousa,
Wallace et al. 2000; Sousa and Wallace 2006).



SETAC’s 1999 streamlined LCA report describes the advantages and disadvantages of a

number of other quantitative streamlining LCA methods. These methods and their application

procedures are summarized in the Table 2-1. Goal and scope definition was cited as one of the

main ways in which an LCA practitioner can reduce the data burden. Identifying goals will

determine the specific types of analysis needed and how to present the data, and defining the scope

will allow the practitioner to limit the details and information quality of the LCI (Weitz and

Sharma 1998).

Table 2-1 Streamlining approaches as recognized by the SETAC North America Streamlined LCA

workgroup in 1999.

Streamlining approach

Application procedure

Removing upstream components

Partially removing upstream components

Removing downstream components

Scope Limiting

Removing up- and downstream components

Using "showstoppers" or "knockout criteria”

Limiting raw materials

All processes prior to final material manufacture are excluded.
Includes fabrication into finished product, consumer use, and post-
consumer waste management.

All processes prior to final material manufacture are excluded, with
the exception of the step just preceding final material manufacture.
Includes raw materials extraction and precombustion processes for
fuels used to extract raw materials.

All processes after final material manufacture are excluded.

Only primary material manufacture is included, as well as any
precombustion processes for fuels used in manufacturing. Sometimes
referred to as a “gate-to-gate” analysis.

Criteria are established that, if encountered during the study, can result
in an immediate decision.

Raw materials comprising less than 10% by mass of the LCI totals are
excluded. This
approach was repeated using a 30% limit.

Using surrogate process data

Using qualitative or less accurate data

Surrogate Data

Using specific entries to respresent impact

Selected processes are replaced with apparently similar processes
based on physical,
chemical, or functional similarity to the datasets being replaced.

Only dominant values within each of 6 process groups (raw materials
acquisition, intermediate material manufacture, primary material and
product manufacture, consumer use, waste management, and ancillary
materials) are used; other values are excluded, as are areas where data
can be qualitative, or otherwise of high uncertainty.

Selected entries are used to approximate results in each of 24 impact
categories, based on mass and subjective decisions; other entries
within each category are excluded.

Another semi-qualitative and quantitative LCA approach is to complete a qualitative

overview of the life cycle of the product in order to identify the life cycle activities that comprise




of a set of interest (SOI). Then, a more in-depth quantitative LCA is conducted on the SOI (Ong,
Koh et al. 1999). However, the qualitative LCA overview still requires a significant amount of
expertise to judge the importance of activities to refine with quantitative data gathering. This
barrier prevents widespread application. An alternate method requiring less expertise is to use
publically available data as a surrogate for primary data, which also serves to reduce the cost of
data collection (Todd and Curran 1999; Weckenmann and Schwan 2001; Hochschorner and
Finnveden 2003). The acceptance of this methodology is demonstrated by the wide use of
commercial software suites such as SimaPro and Gabi, which rely on secondary data sources like
the U.S. LCI Database and ecoinvent for LCA calculations. The advantage of this method is that

the resulting output may provide quantitative impact values similar to a full LCA.

Although streamlining techniques could significantly reduce the effort required to conduct
an LCA, the results from streamlined LCA studies are not as accurate as full LCA results. A study
comparing streamlining methods, such as removing upstream/downstream life cycle components,
revealed that over half of the streamlined LCA results arrived at a different conclusion than the
complete LCA study (Hunt, Boguski et al. 1998). Although surrogate data is widely used, any use
of proxy data increases the uncertainty in the LCA results because the previously collected data is
regionally and/or temporally specific. The use of surrogate data requires the practitioner to use his
or her expertise to select the best proxy. A 2011 survey conducted by Vee Subramanian of
Arizona State University revealed that LCA experts may not be significantly better than non-
experts at choosing surrogate data from databases that reflected a reasonable approximation of the
real system (Subramanian, Williams et al. 2011). Furthermore, by using proxy data as point

Table 2-2 Classification of uncertainties according to several authors reproduced from Heijungs and
Huijbregts 2004.

Bevington & Robinson (1992) Morgan & Henrion (1990) Huijbregts (2001)
Hofstetter (1998)
systematic errors statistical variation parameter uncertainty
random errors subjective judgment model uncertainty
linguistic imprecision uncertainty due to choices
variability spatial variability
inherent randomness temporal variability
disagreement variability between sources and
approximation objects
Funtowicz & Ravetz (1990) Bedford & Cooke (2001) US-EPA (1989)
data uncertainty aleatory uncertainty scenario uncertainty
model uncertainty epistemic uncertainty parameter uncertainty
completeness uncertainty parameter uncertainty model uncertainty
data uncertainty
model uncertainty
ambiguity
volitional uncertainty




estimates of actual LCI data, one may have false confidence in the resulting LCA report.
Therefore, uncertainty in streamlined LCA, especially with the use of surrogate data, must be
understood for the streamlined LCA results to be useful for decision making (Heijungs and
Huijbregts 2004).

Academics have acknowledged and extensively discussed uncertainty in LCA. In Table
2-2, Heijungs and Huijbregts review various ways in which authors in the field have classified and
discussed uncertainty in LCA studies (Heijungs and Huijbregts 2004). These sources of
uncertainties are not limited to streamlined LCA but are pervasive in “complete” LCAs as well.
Although acknowledged in literature, LCA practitioners often fail to address properly the issue of
uncertainty in their reports. In a 2002 report by Ross et al. (Ross, Evans et al. 2002), of 30 LCA
studies surveyed, fourteen mentioned uncertainty, three conducted qualitative uncertainty analysis,
and only one quantified the uncertainty in the LCA results (Ross, Evans et al. 2002). The reason
many fail to address uncertainty may be due to the additional data required and the complicated
calculations necessary to report statistical values like confidence intervals and significance levels
(Bedford and Cooke 2001; Heijungs and Huijbregts 2004). Moreover, reporting uncertainties
associated with the LCA report might overshadow the report’s results (Heijungs 1996; Ross,
Evans et al. 2002). However, despite the lack of implementation, it is very important to quantify
the uncertainty in LCA results because uncertainties can be significantly large (de Koning,
Schowanek et al. 2010). Not knowing about the uncertainty does not shield the LCA report user

from the uncertainty in the product’s impact and non-optimal decision-making that could result.

Numerous reports discuss ways in which LCA practitioners are addressing the issue of
uncertainty (Heijungs 1996; Bjorklund 2002; Finnveden, Hauschild et al. 2009). A recent review
of current trends in LCA recognizes three major ways LCA uncertainty is being dealt with:
scientifically, socially, and statistically (Finnveden, Hauschild et al. 2009). Techniques for dealing
with uncertainty scientifically include finding more accurate data or building better models to
reduce uncertainties (Heijungs 1996). Although this approach can lead to more accurate LCA
results, it is also more costly than other streamlining methods due to the increased research and
model refinement needed to conduct LCI, efforts that may not be feasible due to time or cost
restrictions. Addressing uncertainty through social means involves reconciling the issue of data
and choices with stakeholders. Under this approach, the LCA community must agree on specific
rules on how to conduct LCA and deal with certain situations. This may also include relying on

authoritative bodies like the ISO and United States Environmental Protection Agency (USEPA) to



regulate standard or guidelines to make LCA more consistent. An approach that falls along this
vein is the LCIA method Used for a Canadian-Specific context (LUCAS) model (Bulle, Godin et
al. 2007). The LUCAS authors propose a standard method to deal with data gaps by transforming
them using normalization factors to make the values more relevant to Canada. Tools for Reduction
and Assessment of Chemical and other environmental Impact (TRACI) is an analogous

methodology for the United States (Bare 2002).

In contrast to these methods, the statistical approach to dealing with uncertainty focuses on
incorporating uncertainties into the analytical procedures of LCA and quantifying the uncertainties
in the analysis instead of mitigating them. Statistical approaches include methods like sensitivity
analysis by parameter variation, scenario analysis (Bjorklund 2002; Tan, Culaba et al. 2004),
Monte Carlo simulation (Hung and Ma 2009), stochastic processes, and other sampling methods
(Kennedy, Montgomery et al. 1996; Hertwich, McKone et al. 2000; Huijbregts 2002; Lo, Ma et al.
2005; Bojaca and Schrevens 2010), first order error propagation, Bayesian analysis (Lo, Ma et al.
2005) and fuzzy set theory (Weckenmann and Schwan 2001; Tan, Briones et al. 2007).

The statistical approach to dealing with uncertainty acknowledges that a range of values
that can attribute to the impact of a product exists. This range of values could stem from the
sources of uncertainties described in Table 2. The size of this range will vary according to the
amount of information known about the system or its degree of underspecificity. Here, a
component is underspecified if further specific information could be obtained about the product for
a more accurate impact assessment. For example, in the case of surrogate data, the range of values
would be quite different if we only knew that a component is made out of a generic metal as
opposed to a specific nickel-titanium alloy. The ability to conduct a conclusive LCA with only the
information that a component is made out of metal rather than a specific nickel-titanium alloy, for

example, can lead to considerable streamlining.

Although many studies describe ways to incorporate uncertainty, they do not explore the
effect of the amount of knowledge or level of underspecification on the resulting LCA’s
uncertainty. This information can prove crucial to the ability to mitigate uncertainty and
streamline LCA. For example, Heijungs 1996 proposes an iterative statistical screening method
that identifies SOI contributing the most uncertainty to the LCA results to be resolved at higher
resolution (Heijungs 1996). The author, however, reveals that the problem with this approach is
the lack of knowledge of the uncertainty to begin the analysis. In the study, a margin of error of

5% was assumed on all the figures used in the analysis. A more recent article by the same author

10



suggests using the widest reasonable range based on expert judgments or measurable data

(Huijbregts, Gilijamse et al. 2003).

In the end, while there has been considerable work both proposing streamlining methods
and on characterizing the role and impact of uncertainty in life-cycle assessment, there appears to
be little to no work exploring how these two issues affect one another. The next chapter details a
set of specific research questions that this thesis will explore in order to gain insights into this

interaction.

11



3 THESIS QUESTION

To address this issue systematically, we propose to carefully characterize uncertainty in
the information within a life-cycle assessment through structured underspecification of the
parameters of the life cycle activities. This exercise will be carried out across a range of different
levels or degrees of underspecification. Higher degrees of underspecification will correspond to a
larger range of possible parameter values (higher uncertainty). Lower degrees of
underspecification will correspond to a smaller range of possible parameter values (lower
uncertainty). For the purposes of this thesis, this exercise will be limited to the impacts associated
with materials. For example, say that one wanted to know the life-cycle impact associated with a
given component X. For the purpose of discussion, let’s assume that X is made of aluminum
produced in a specific location using a specific process, but that the life-cycle analyst does not
have access to that information or, even if he or she does, the available databases do not contain
process inventory data that matches the specific provenance of X. In such a case, the analyst must
either utilize expensive resources to collect more information about X and its processing or carry
out the analysis using proxy data. Using the analytical approach that will be described later, X
could be (under)specified simply as a metal, further specified (albeit still clearly underspecified) as
a non-ferrous metal, or even (if sufficient information were available) as a generic aluminum alloy.
Each of these options would have clear impact on the uncertainty in the impact of component X.
Examining each of these alternative ways of specifying the materials within a life-cycle allows us
to determine objectively and systematically the possible range and distribution of values for the

projected impact of a product based on how much we know about that product-system.

To help advance the field of streamlined LCA, we propose a methodology that
incorporates structured underspecification of life cycle activities to leverage the fact that, in many
cases, only some activities must be well specified. Where uncertainty comes from underspecifying
a product life cycle, it should be possible to reduce result uncertainty through better information.
Such information gathering is expensive and is the very activity that streamlining aims to avoid.
Fortunately, some evidence suggests that it should be possible to prioritize targets of that data
collection. This prioritization concept was explored by Huijbregts and others by qualitatively and
quantitatively identifying the SOI. We propose identifying the SOI with a statistical ranking
system based on the probability that the life cycle activity contributes to the impact and
uncertainty of the product. Then, the SOI would be further specified to a greater resolution to

obtain an LCA result with minimal effort to resolve the LCI and with minimal uncertainty. By

12



probabilistically underspecifying parts of the life cycle activity we hope to reduce the effort of

conducting the LCA.

This thesis explores the viability of probabilistic underspecification in streamlined LCA

and mitigating uncertainty in the LCA results. As the proof of concept, this thesis focuses on

streamlining the materials impact assessment portion of the life cycle. This thesis will address the

following questions:

1.

How does structured underspecification of raw materials affect the precision of the estimate of
product environmental performance?

How efficient and effective is structured underspecification analysis for identifying the SOI
and reducing residual uncertainty in the results given:

e The degree of confidence

e The degree of streamlining

e A specific ranking criteria

How much residual variation remains in an evaluation based on a partially specified, partially

underspecified analysis?
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4 METHODOLOGY

Although the practice often goes unremarked, effectively all life cycle assessment today
relies upon the use of secondary data or proxy data. That is data that the facilities, processes,
users, or other operators within the life-cycle under study did not collect. This practice is
necessary to make life-cycle assessment feasible because primary data for complete LCA, as

diagramed in Figure 4-1, may not be readily available.

Primary Data Collection

Product A
Complete LCA

Activity 4 Data

Figure 4-1 Diagram of primary data gathering for a complete LCA of a product. This is not often conducted
because it is very resource intensive to investigate and obtain primary data for all necessary impact factors.

Multiple methods to select or characterize this proxy exist. The most common approach
appears to be to select data associated with an activity that is similar or analogous to the relevant
activity. This selection generally comes from an available activities database. This process is
diagrammed in Figure 4-2. Ultimately, evaluating the appropriateness of similarity rests with the

analyst. ~As discussed by Weidema and Wesnes (Weidema and Wesnes 1996), the

Surrogate Activities Data Picking

Activity 4 Data

Product A
Streamlined

LCA using

surrogate
activities data

Activity 3 Data

Figure 4-2 Streamlined LCA in which the practitioner uses experience and best judgment as a guide to
picking out representative activities in order to estimate the impact of a product.



appropriateness or representativeness of this surrogate introduces another form of uncertainty into
the analysis. Also, Weidema and Wesnas (Weidema and Wesnzas 1996) have suggested that this
uncertainty can be estimated by using the pedigree matrix approach. Given that data on a
surrogate process probably will not mirror that of the process of interest, using that surrogate data
likely introduces bias into an analysis. Hopefully, analyst expertise mitigates this bias or at least

constructs a bias whose nature is conservative towards the goals of the analysis.

Using Proxy Activities Data
Accounting for Uncertainties

Activity 4 Data

Product A
Streamlined
Activity 3 Data LLCA using
proxy activity
data accounting
for uncertainty

Figure 4-3 Streamlined LCA with the use of proxy data while taking into account the uncertainty in the
surrogate data. A more general proxy impact range is taken into account for a range of possible impact
values rather than point estimates.

This thesis explores using an alternative to the use of surrogate data as an approach to
defining a data proxy. This methodology, referred to as underspecification, defines the proxy
based on the distribution of data associated with similar processes or activities. The distribution of
associated processes can be referred to as a class. This class should be broad enough to contain
several similar processes (i.e. candidate surrogates). The goal of the underspecification approach
is to remove the potential of statistical bias due to erroneous surrogate selection and to fully
capture, if not overestimate, the uncertainty associated with using proxy data of uncertain
representativeness. This final point is of particular relevance to this thesis. If streamlining

methods can be developed which are robust to high levels of uncertainty, it may be more
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appropriate to overestimate rather than underestimate the uncertainty associated with data. The
next section describes the approach taken in this thesis to define classes of activities for

probabilistic underspecification.

4.1 Structured Underspecification

Structured underspecification is a way to categorize and to index materials information so
that LCA practitioners can understand the degree of uncertainty of different materials specificity
about a component. For example, assume a component is made of a specific sheet steel alloy.
However, the only certain information about the component is that it is a metal component. The
LCA model incorporating structured underspecification will assess the impact of that component
and of that product with the uncertainty factored in. Structured underspecification is implemented
in a database in which the most specific proxy data information is categorized into groups
according to different characteristics. For this thesis, the individual materials description and their
values for cumulative energy demand (CED) were extracted from the following databases:
ecoinvent 2.2 (Frischknecht, Editors et al. 2007), European Reference Life Cycle Data (ELCD)
(Wolf, Pennington et al. 2008), Industry Data 2.0 and United States Life Cycle Inventory
(USLCI). This information is then categorized into five levels of specificity, Level 1(L1) to Level
5 (L5), with L1 being the most underspecified and L5 as the most specified. The L5 level of -
information consists of individual entries from the database. In our case, the individual entries are
the best estimate for surrogate data that the LCA practitioner would have to choose as the proxy
for the relevant component in impact assessment conducted using LCA software like Gabi or

SimaPro.

4.1.1 Why Do We Need Structured Underspecification?

Structuring the underspecification allows one to model the effort necessary to gather
information about a product and to assign a quantitative value to that effort. Additionally,
structuring underspecification provides the ability to estimate the uncertainty associated with each
level of specificity. This approach derives from the process in which streamlined LCA
practitioners specify what material a component is made from in order to decide which
representative proxy data to use in the impact assessment when primary information cannot be
readily obtained about the component. However, as the discussion chapter covered, it can be
challenging to identify the specific materials composition for a product. This uncertainty
translates to difficulty choosing the most representative proxy material from the database.

Structured underspecification will allow the LCA practitioner not to specify fully the materials
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composition of a product and to account for the degree of uncertainty in the impact of whole

products and their components parts when modeling and conducting an LCA.

4.1.2 Materials Categorization

In terms of this thesis, structured underspecification begins with materials categorization.
As schematically demonstrated in Figure 4-4, each level of specificity is associated with a different
amount of information known about a component. The five levels of specificity include material
category, material property, material type, material processing and specific database entry. The
material category includes broad categorization type like metals, chemicals, minerals, and other
very general classifications of materials. In the material property level, the materials that were
sorted into their respective categories are then separated along different materials properties. For
example the metals category is divided into ferrous metals, non-ferrous metals, and metal alloys,
whereas the polymers category is divided into thermoplastics, thermosets, and elastomers. The

complete list of categorization scheme is available in APPENDIX A: Table of Database

Classification.
Material Material Material Material Specific
Category Property Type Processing Database Entry

Level 5-A

Level 4-A

Level 3-A Level 5-B

Level 5-C

Level 5-D

: Level 2 Level 4-B

Level 1
Level 5-E
Level 5-F

L3-B
Level 4-C
Level 5-G

Figure 4-4 Schematic example of the database information hierarchy for structuring underspecification.

When modeling the impact of a component, the number of possible proxy database entries
depends on the level of specificity. This fact allows us to account for the uncertainty of the
underspecified component. In the schematic example, a component identified at the L2 specificity
can be of any material from L5-A to L5-G. However, if the component is further specified to be
L3-A, the possible proxy entries from the database will now only consist of materials L5-A to

L5E. This will be statistically incorporated when the impact is modeled. The practitioner should
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expect the degree of uncertainty of which proxy should be used to shrink as the component is less

underspecified and subsequently the resulting estimated impact value becomes more certain.

4.1.3 Level 5 Uncertainty Assumption

The most specific level in our analysis is L5, which contains information about the

specific material impact and the uncertainty around those values. Individual entries from databases

carry a degree of uncertainty because they are used to approximate measured data in first-hand

LCA. One has to account for factors such as temporal variation, measurement uncertainties,

geographic correlation, and several other factors that could cause the database value to diverge

from its proximity to the measured value it is trying to represent. The pedigree matrix discussed in

the ecoinvent documentation (Frischknecht, Editors et al. 2007) can be used to estimate the

uncertainty in the proxy data by assigning quantitative values to qualitative judgments on how

accurately the proxy data reflects the case being studied. Depending on the quality of the data in

six categories, the practitioner will assign an indicator score from one to five accordingly. The

qualitative observation and indicator score is summarized Table 4-1. For the case of this study we

will assume that the indicator score is three for all of the uncertainty factors. This will give the

entries a medium level of uncertainty on the quality of the proxy data.

Table 4-1 Pedigree matrix used to assess the quality of the data source. Derived from Pedersen
Weidema and Wesnaes 1996, reproduced from ecoinvent documentation.

Indieator scors 1 2 3 4 5 Remarks
Quaiifiad estimate (&.g. by verified meana: published in public
— “‘:‘““:ﬂ“‘;’;’ﬂ"‘”’ Non-verifed datapartly [industrial expert); data itonmental reports of jes, offcial
Reiabilty m° hed :‘”‘m o0 ‘“m ;"“‘ based on qualfied derived from theoretieal | Non-quaiified estimate [statstics, et
ents estimates information (stoichiometry, unverified means: personal information by letter.
enthaipy, etc.) fax or e-mai
R ative data from Reprasentative data from  [Reprasentative data from Re ive data from )
nnm"relmntbrme >50% of the sites relevant [only some sites (<<50%) w:mmmr.'h'mem”m Representativeness
G PR over & for the market considered  |relevant for the market the market consh oR unknown or datafroma  |Length of adequate period depends on
P over an adequate period to |considered OR »50% of arad sl it from small number of sites AND hnology
: 2ven out normal sites but from shorter : from shorter periods
lout nomal fluctuations. H : periods
penods
less than 3 years means: data measured in
Age of data unknown or 1997 or later;
Less than 3 years of Less than 6 years of Less than 10 years of Less than 15 years of G
Temporal difference 10 our reference |difference o our reference |difference to our reference |difference 1o our reference ore than 15 years of smm;_mceuumnvewnevﬂwduoi
correlation 12000 2000 ar (2000) ar (2000) difference to our reference |<10 years;
pear ) yoar (2000) s ” year (2000) for other cases, scoring adjustments can be
made accordi
Similarity e xpressed in terms of enviommental
Data from unknown OR  {legislation. Suggestion for grouping:
5 hical Average data from larger  |Data from smaller area distinctly different area North America, Australia;
comrelation Data from area under study |area in which the area than area under study, or (north america instead of |European Union, Japan, South Africa;
under study is included from similar area middie east, OECD-Europe |South America, North and Central Africa and
instead of Russia) Middle East.
Russia, China, Far East Asia
Examples for different technology:
- Doaon reted processes | ;rmmummnmmprmmln
F Data from enterprises, or materials but same umuhhhn“ Er"“‘“ Data on related processes  emission facior B{alP for i i
processes and materials technology, OR or materials but on
technological o technology, OR data on lorry motor data
comsiation under study (Le. antca Data from processes and |, ey seale procasses |[20OTI07Y Scaie of dfferent - for related or materia
technology) er o S DU (and same tectnciogy [0 - data for tles instead of bricks production
- o - data of refinery infrastructure for chemical
plants infrastructure
>100, continous % . ;
¥ > 10, aggregated figure in sample size behind a figure reported in the
Sample size measurement, balance of  [>20 e, regort >=3 unknown [ination sourta

Ip d products

18




The scores are then translated into a geometric standard deviation value with Equation
[4-1]. The geometric standard deviation value is the exponentiated value of the standard deviation

of the log transformed impact value.

— 2 _
SDggs = O'g =

exp[y/[In(U)]? + [In(U)]? + [In(Us)]? + [In(U)2+ [In(Us)]? + [In(Ue) 12+ [In(Up))?]

with:
[4-1]

U, = uncertainty factor of realiability

U, = uncertainty factor of completeness

U; = uncertainty factor of temporal correlation

U, = uncertainty factor of geographic correlation

Us = uncertainty factor of other technological correlation
Ug = uncertainty factor of sample size

U, = basic uncertainty factor

4.2 Monte Carlo Impact Simulation

To estimate the impact value of each component of the product, Monte Carlo (MC)
simulations are used to produce possible impact values for each component of the product and,
ultimately, derive the impact value of the product itself. When gathering the materials information
for the LCI, the practitioner will gather a bill of materials (BOM), which consists of the
components weight and materials information. However, we will refer the BOM as the bill of
components (BOC) in this study because one of the questions we would like to answer is how
specific we need to be when describing the components in order to obtain credible LCA results,
especially as a specific material is not always associated with each component. The information
hierarchy provided by the structured underspecification will allow for the estimation of the

uncertainty in the impact value of the product as seen at different resolution of the BOC.
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The BOC consists of the product components’ mass and the materials specification of the
components at each level of specificity. The LCA simulation model then randomly chooses a
value using Excel’s RANDBETWEEN function to choose an L5 proxy database entry from a list
of L5 proxy entries that belong under a materials designation at a given level of specificity. Once a
specific proxy is chosen, Oracle Crystal Ball is used to run MC simulation of the L5 proxy. This
generates an impact value for the component and then the impact value for the product can be
derived from the component impact values. The simulation is repeated 10,000 times to generate
10,000 unique possible impact profile of the BOC. The input into Crystal Ball requires arithmetic
mean (u,), arithmetic standard deviation (o,), and location (L) as input parameters. The
arithmetic mean y, and standard deviations o,, were transformed from the geometric standard
deviation as presented from the database according to [4-2] and [4-3]. The location parameter is
assumed to be zero for all cases.

log?(og)
Har = Ug* € 2

[4-2]

Ogr = \/eZ*ln(ug) +1n2(og) (elnz(cg) _ 1)

[4-3]
4.3 Streamlining: Selecting the Set of Interest

The set of interest (SOI) is the subset of components that are determined to be the highest
impacting items within the product. The goal of the methodology is to determine which SOI are
important to resolve to better characterize the impact, 1,, of the product, 4. More formally stated,
let SOI be defined as the smallest (in number) set of p components, the impact of which represents
at least some threshold fraction d of the total impact of the product 4. This fractional contribution
d to the product’s impact will depend on the LCA practitioner’s goal and scope of the study. The

fractional contribution of the SOI is expressed mathematically in [4-4].

p
I
d< ZXi suchthat X; = N—l

[4-4]
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4.3.1 Ranking Criteria

As discussed in section 4.2, each MC run produces a possible detailed impact BOC for the
product. The SOI in one MC run may not include the same set of components as subsequent runs
due to the distribution of possible impact values and uncertainties associated with the
underspecified BOC. In order to account for the uncertainty due to underspecification
streamlining, we propose determining SOI that probabilistically satisfies the fractional
contribution criteria of the fully resolved product; identification of the SOI depends on the
probability of components in the SOI to contribute to the majority of the impact and conversely the

probability of the small contributors contributing insignificantly to the impact.

In this thesis the SOI is determined by ranking the components based on the percentile, «,
of the percent contribution values of a component to the total impact of the product for x number
of MC trials with a specified level of confidence a. The percentile value is used because it does not
assume any prior knowledge of a probability distribution and is moderated against outlier values.
We may not assume that the data distribution in any particular category to be one type of
distribution, much less a normal distribution due to the agglomeration of multiple datasets into
materials category in the structured underspecification database. Results will be provided as to the
ranking scheme that will produce the optimal correct identification of the SOI, which is the SOI as

determined at LS.

4.3.2 Streamline Implementation: Two-Level Hybrid

Starting off with the identification or the SOI at L1, the SOI is then fully specified to L5
and the MC simulation is run again to produce an L1/L5 hybrid BOC. This approach will model
how well the LCA practitioner can perform by investing all the effort into fully specifying SOI
while leaving the rest of the BOC well underspecified at L1, and the ability of the initial L1
resolution of the BOC to offer sufficient information to identify the SOIL This methodology
represents a simplified model of reality in which the information about a product can be identified
at different levels of specificity. In actuality, the level specificity that can be quickly reached with
little resource investment is most likely somewhere between a fully specified BOC and a fully
underspecified BOC. The components in the BOC may be specified at L2, L3 or LS to begin with;
however, for the academic analysis, we will look at the worst case scenario as viewed at the L1

underspecified level.
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4.4 Assessing Effectiveness: Error Rate & Sensitivity Analysis

The SOI of the product with all its components viewed at L5, represented here as SO, is
determined in order to calculate the probabilistic underspecification performance. This set is used
to compare the SOI sets as established by different methods of identification of the SOI. The false
reject, or Type I, error rate as defined in equation [4-5] and the false accepts or Type II error rate,
are determined in equation [4-6]. These values will be established by varying the values of the
fractional contribution to the total, d and the level of confidence, o, in order to determine the

sensitivity of the results to these parameters.

SO0l s ¢ SOILx
Total # Components

Type 1Error:

[4-5]

SOIy & SOls
Total # Components

Type Il Error:

[4-6]
4.5 Selecting Case Studies: Herfindahl Index

Selecting representative case studies to test the methodology is important in determining
the robustness of the approach; a method may seem to perform much better or much worse
depending on the case studies that one chooses. Since a product’s impact is roughly related to its
mass, one needs to take into account the product’s component mass uniformity when choosing
case studies. In other words, it is important to know how evenly is the product’s mass is
distributed among its components. One way in which uniformity is quantified is through the
Herfindahl Index, which is traditionally used in economics to measure market uniformity for
antimonopoly cases, competition law, and technology management. The Herfindahl Index is the
sum of squares of the percentage market share, s;, of the firms within a particular market [4-7]. In
our case, we have defined the percentage as mass percent contribution of each component to the

product.

H=Zsi2

N
i=1

[4-7]
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Due to the wide range of component numbers, we used the normalized Herfindahl, H*

[4-8] index to account for limit of the non-normalized Herfindahl that is 1/N.

[4-8]

In order to more fully test out the methodology, a portfolio of products with fully specified BOC is
gathered from multiple studies that have been conducted at the Materials Systems Laboratory.
Their masses, number of components, and normalized Herfindahl indexes are summarized in
Table 4-2.

Table 4-2 Summary of the Portfolio of BOC that has been gathered to develop and test probabilistic
underspecification streamlining LCA.

Number of Normalized
b
Product

Components Herfindahl

Consumer Product 1 0.04 41 0.555
Consumer Product 2 15 17 0.348
Consumer 'Product 2 with Scrap 20 19 0213
and Packaging

Consumer Product 3 10 16 0.134
Desktop Computer 14 56 0.130
Consumer 'Product 3 with Scrap 15 18 0.110
and Packaging

GREET Car 1310 90 0.071

The actual identities of some of these products may not be revealed due to confidentiality
agreements with the firms who have provided proprietary information about their product.
Consumer Product 1 is a disposable consumer product that is mainly composed of one component
and hence is reflected in the high normalized-Herfindahl Index. Consumer Product 2 and
Consumer Product 3 are two versions of functionally identical products made from different
materials. The analysis will also be run on these products to account for their packaging and scrap
material expended in the production of the components. The result is a range of Herfindahl indices
for very similar products. The desktop computer BOC was obtained using the ecoinvent
documentation of a desktop computer composition. The Greenhouse Gases, Regulated Emissions,
and Energy Use in Transportation Model or GREET 2.7 Model (2006) of a generic vehicle that

has been scaled to reflect the components and compositions of a generic US sedan. The scaling is
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based on the LCA study by Sullivan of US sedans (Sullivan, Williams et al. 1998). In each case,
the L5 materials specification of the components is assumed to be representative of the best-known
information about the products. Their normalized Herfindahl indexes are graphically summarized

below in Figure 4-5.

BOC Normalized Herfindahl
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Figure 4-5 Portfolio of products with completely specified bill of components that will be used for
testing the methodology.
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S RESULTS AND ANALYSIS

The results of applying the streamlining methodology to a series of case studies are
outlined in the following chapter. First, the structured underspecification database is characterized
to explore the characteristics of the distribution of the expected impact values of a materials class,
as defined by the database developed for this thesis. Then the BOC of all the products is evaluated
at each level of underspecification to reveal the expected impact of the product as viewed from
differing levels of specificity. The values of the probabilistic streamlining methodology are
applied to the BOC of the GREET car with d (threshold fraction of total impact) = 75%
cumulative percent impact, o = 90% confidence with the ranking percentile criteria of © = 50%.
The error rate was determined and evaluated to be promising so the methodology was applied to
the rest of the products. The sensitivity of the size of the SOI was evaluated as a function of

cumulative percent impact, confidence level, and ranking percentile criteria.

5.1 Structured Underspecification Characterization

The materials specifications entries that are used in LCA simulation of the product case
studies were evaluated to determine the characteristic of the distribution of their expected impact

values. Monte Carlo outputs of the CED/kg of each of the materials specification entries for Levels

L1 L2 Vo

Triangular
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Pareto
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Exponential
2%
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Extreme
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Logistic
Extreme £
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22% 7%
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. Triangular L3 Weibull 3% Weibull
Logistic 504, 5 1%
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Pareto 1%

3%

Logistic
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Pareto
4%
Max )
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Extreme Gamma 29,  Extreme Gamma
13% 15% 13% 14%

Figure 5-1 Distribution Fits of the impact values of the groups of materials in each level of specificity.
LS5 is all lognormal according to our model. 25



1-4 were generated. The results were grouped according to their L1 specification in order to
compare how the expected impact distribution changes over the levels of specificity. For example,
the “Aluminum” specification at L3 will be grouped with the “Metals” specification at the L1 level
of specificity. The statistics of the results were analyzed to determine the characteristics of their
distribution. Best-fit analysis was done on the data and it was determined that the majority of the
classes were not normally distributed and can be described by a number of skewed distributions as

shown in Figure 5-1.

Based on this result, mean and standard deviation values were not used to represent the
spread in the data. Instead, the variation in the output is presented using the median absolute
deviation (MAD) that is analogous to the standard deviation as it describes the spread in the data
while mitigating for outlier values. This value is the median of the absolute value of the residual of

the data set as described in the following equation [5-1]:
MAD = median;(|X; — median;(X;)|)

[5-1]
The MAD is used to derive the MAD-coefficient of variation (MAD-COV) value

represented in equation [5-2] as the ratio of the MAD over the median value of the dataset. This

value describes the median percent variation of the dataset from the median.

median;(|X; — median;(X;)|)

MAD COV =
median;(X;)

[5-2]
The MAD-COV plots of eight of the L1 categories are presented in Figure 5-2. The sizes of the
circles in the plots represent the number of materials that have that designation at that particular
level of specificity. This represents the likelihood that a component composed of a material from
that L1 category will exhibit that degree of variability at that particular level of specificity. The
materials classes that are in higher level of specificity tend to have smaller variations compared to
other materials classes that belong to the same L1 class but are at lower level of specificity. This
result was expected because as the materials class gets more specific, the expected impact range
should become narrower. The general trend is for a lower MAD-COYV for all the L1 categories of

materials; however, it is observed that there are cases where materials in more specific levels can
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turn out to have higher variability than the lower specificity level from which they derive. For

example in the Glass category, one of the materials classes in L2 has a higher MAD-COV than the

L1 specification. This is most likely due to the elimination of a group of materials that accounts for

the mid-values of the distribution as demonstrated in the schematic in Figure 5-3.
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Figure 5-2 The plots of MAD-COV of materials classes grouped by L1 specifications and separated into levels
of specificity. The size of the circles represents the number of individual L5 entries that belong in that
particular class.
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Figure 5-3 Schematic of the probability distributions of a materials class. The variability
could widen or narrow depending on the impact values of the materials that are included in
the set.

As stated in Chapter 4, a goal of this thesis is understand whether it is feasible to identify
the SOI for a given life cycle when the activities within that life cycle have been structurally
underspecified. A further goal has been to understand what level of activity specification is
required for the approach to be effective and efficient. Implicit in the use of the “levels of
specificity” were that the levels serve well as a proxy for overall uncertainty in the underlying data
about a materials class; as specificity increases (i.e., moving from Level 1 to 5), data variability
would decline. While there is some trend towards lower variability with higher specificity, the
number of irregular cases within most of the materials classes suggests that, given the current
configuration of the database, this trend may not hold for any given case analysis. Nevertheless, it
is interesting to explore how well the method works and if the anticipated trend holds despite these

irregularities.
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5.2 Impact Assessment of Portfolio

The total materials CED values at each level of specificity are generated for the case study
products’ BOCs using the stochastic methods as described in the methodology section. The data is
analyzed in ten, one-thousand simulation groups taken from the ten thousand simulations run for
each product. The standard deviation, mean, median, ninetieth percentile, and tenth percentile
values for the ten sets of data are then averaged to generate the box and whisker plots shown

below in Figure 5-4 and Figure 5-5. The bottom-most edge of the box represents the 1* quartile or

Uncertainty in CED Value as a Function of BOC Resolution for Different Products
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Figure 5-4 Box and whisker plots showing the spread in total CED of three products. Notice the
difference in magnitude of the CED values due to the differences in products. Note the narrowing of the
spread in uncertainty as the BOC gets more specified.
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the 25" percentile. The line in between the edges of the box is the median value of the dataset,

while the upper edge of the box represents the 3™ quartile of the data, or the 75" percentile of the

dataset. The edges of the upper and lower whiskers are the 90" and the 10™ percentile of the data

respectively. Notice that the CED values of the products are at different orders of magnitude as

noted by the y-axes. The average values of the CED for the computer and car do fall within the o

quartile of the dataset, showing a somewhat more normal distribution when compared to
Consumer Product 1 (CP1).

Uncertainty in CED Value as a Function of BOC Resolution for Different Products
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Figure 5-5 Box and whisker plots of Consumer Product 2 and Consumer Product 3 along
with the versions of the BOC that include scrap and packaging.
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Consumer Product 2 (CP2), Consumer Product 2 with Scrap and Packaging (CP2SP),
Consumer Product 3 (CP3), and Consumer Product 3 with Scrap and Packaging (CP3SP) are
grouped together in Figure 5-5 because each represents the same functional product, however the
main structural component of CP3 is a polymer, while the main CP2 structural component can be
described as a metal in the most underspecified level. CP2SP and CP3SP demonstrate that
including the scrap and packaging associated with the product could lead to significantly different
expectation values for the CED. The most notable difference is in the impact of CP3. When the
packaging and scrap was included there was about an increase of around 200 kJ of energy per
product while CP2 did not show such an increase when scrap was taken into account. This
suggests that the scrap of CP3 may be more impactful or that there is a lot of scrap waste in the

production of CP3.

5.2.1 Absolute Deviation from the Best Estimate
Figure 5-6 shows the distribution of absolute deviations of the median (ADM) as the
measurement of how good the median is as the estimator of the impact of the product at the most

specified level (L5). The ADM calculation is described in equation [5-3]:

|[Median(CED,x) — (Median CED;g)|

ADM =
(Median CED;5)

[5-3]

Absolute Deviation of the Median CED compared to L5 Median Value
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Figure 5-6 The absolute deviation of the median estimator for CED at each level of specification for all
case study products. The median gives good estimates but they have low confidence at low specificity.
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The ADM for all the products is below 50% deviation except for the L1 and L2
estimations for the car. This suggests that the median give a fairly good estimate of the L5 CED
median value. The large uncertainty in the car case may be due to the majority of the car being
made up of one group of materials: metals. This group of material can have a large range of CED
impact values there is no data beyond the fact that the component is metal and the components’
weights. Although, as the car becomes better specified, it is observed that the ADM significantly
decreases. Even though the other case studies have only about 50% ADM starting at L1, the

confidence in the estimates may be quite low as demonstrated in the following subsection.

5.2.2 MAD-Coefficient of Variation

MAD-COV is calculated for the portfolio of products, shown below in Figure 5-7. The
general trend is that as the product gets better specified the variability in the expected impact
decreases, represented by the dashed blue line. This average MAD-COV derived from a simple
mean calculation of the MAD-COV of all the products for each level of specificity. There are
slight increases in the MAD-COV of CP1 and the computer going from L1 to L2, whereas CP2,
CP2SP, and CP3SP all have higher MAD-COV values going from L2 to L3. This increase is only
slight and may be due to the phenomena described in Figure 5-3, where the materials that
contributed to mid-value impacts are taken out and the extreme values remain, leaving the higher

specified levels with larger uncertainties.

MAD-COYV of the CED for case studies as a function of level of specificity
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Figure 5-7 The MAD-COV of the impact of each product evaluated at different levels of
specificity. The blue dotted line is the average MAD-COV for the products.
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The AMD of the CED impact evaluation of the products suggests that it may be possible
to use the median as a fairly accurate estimate of the expected value of the product even with the
lowest level of the product’s BOC. However, the MAD-COV, shown Figure 5-4 and Figure 5-5
demonstrate high level of uncertainty in the CED values at high underspecification. Thus, we do
not have much confidence in the median estimate value even though it has proximity to the L35
CED. If these materials impact calculations were going to be used for any decision making, it may
be necessary to further specify the BOC of the underspecified product to obtain a better confidence
level and resolve the uncertainty. The fact that this is possible leads to the exploration of the
application of the streamlining methodology to the GREET car in Section 5.3 to test out the
effectiveness of streamlining using probabilistic underspecification as a tool to arrive at an

accurate and precise estimate of the impact.

5.3 Methodology Training Case: GREET Car

The GREET Car was chosen as the methodology-training case study because it consists of

the largest number of components in our portfolio of BOCs and has the most uniform BOC

Cumulative percent contribution for example indivial trials and Cumulative

L00% Probability Distribution of trials over 75% contribution for Car CED at L1
(] — e

90%
80% -
70%
60%
50%
40%
30%
20%
10%

0%

T i R ) M e
e =

Individual trials cumulative percent
contribution to total impact

Cumulative probability distribution of
trials with at least 75% contribution to
total impact

Cumulative Probability Distribution and
Cumulative Percent Contribution

Components Ranked Ordered by the 50th Percentile Percent Contribution to Total Impact |

Figure 5-8 Cumulative percent contribution for each individual trials and cumulative probability distribution of
trials over 75% contribution for car CED at L1.

according to the normalized Herfindahl Index. These two factors make it the best candidate for
analysis among the product BOCs available to this thesis. The large number or components,

coupled with the uniformity in mass of the components, can potentially make it difficult for the
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SOI to be determined. This difficulty could present itself as a large SOI or SOI that is inaccurate at

predicting the high impacting components.

The L1 CED Monte Carlo simulations were analyzed to probabilistically determine which
products were the most impactful contributors to CED, contributing to 75% of the product’s
impact 90% of the time. Each component is ranked by their 50" percentile total-trial percent
contribution for all the trials. Figure 5-8 represents the GREET car components that are ranked

ordered by the 50" percentile percent contribution to the total impact for all the trials.

The dashed blue line represents examples of the individual trials’ cumulative percent
contribution to the total as more and more components’ impacts are compiled according to the
rank order. The solid red curve represents the cumulative probability distribution of the
cumulative percent contribution, as the components are added up, to have at least 75%
contribution to the total impact of the particular trials. The yellow circle marks the point when the
cumulative probability graph passes the 90% threshold for confidence. Thus, all the components to
the left of the green arrow are determined to be the important components and constitute the SOL

The SOI for the car under the parameters described here is 22 components, or 24% of the BOC.

The SOI is then further resolved to L5 resolution of specificity to see how much
improvement in fidelity of the impact estimate comes from resolving only the SOI. The resulting
spread in expected CED for the L1/L5 hybrid BOC is presented in Figure 5-9, comparing it to the
other levels of specificity. Notice that by only specifying 24% of the BOC, the accuracy of the

estimate can be significantly improved.

Uncertainty in CED Value as a Function of BOC Resolution: GREET Car
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Figure 5-9 The hybrid L1/L5 BOC CED is compared to the other pure levels of specificity. By only
specifying 24.4% of the BOC at L5, we were able to obtain significant resolution.
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5.3.1 Effectiveness of Strategy

One of the motivations for using the underspecified impact database to determine the SOI
is that it takes into account the range of impact values of the material. As briefly discussed, the
mass of a component is roughly related to its impact; however, there are examples where light
materials can have considerably higher impact compared to other materials of the same mass.
Precious metals are a prime example of where the environmental impact per weight is high.
Therefore, methods like using weight to rank components to determine the SOI may not perform

very well.

The value of probabilistic ranking using the 50" percentile in the GREET car case study is

demonstrated in Figure 5-10. The components were ranked by their mass and by their median

Median Cumulative % Contribution to CED : Mass Ranking vs. 50th
Percentile Ranking of the Car Case
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Figure 5-10 Cumulative % CED curve comparing the mass ranking method to the 50th
percentile ranking method.

percent contribution to the product’s impact at the L1 level. The median percentile cumulative
percent contribution (MCPC) at L5 resolution were calculated for each methodology of ranking by
mass or Level 1 median percent contribution. The purple curve demonstrates how well mass
functions as an indicator of impact, which is referred to as Mass LSMCPC. The dashed blue curve
represents the ranking by median percent contribution of each component L1. These two curves
are compared to the green curve, Level 5 LSMCPC. This curve was derived by ranking the 50"
percentile percent contribution of the components at L5 resolution (Level 5 LSMCPC). The curve
for Level 5 LSMCPC represents the correct ranking of materials in terms of contribution to impact.
Notice how the change in the slope of the line is negative for the entire curve, indicating
decreasing marginal contribution to the total. The mass MCPC does not present a compelling

decreasing marginal contribution curve. It is observed that the Level 1 LSMCPC is stochastically
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dominant over the Mass L5 MCPC, suggesting that mass is less effective at correctly ranking the

most important components to impact contribution.

Error Rate and SOI of L1 Level Streamlining Compared to L5 SOI
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Figure 5-11 The error rates and SOI for L1 level of streamlining compared to the L5 SOL.

The error rates were also calculated to see how well the SOI determined at L1 compared to
the SOI of LS at capturing the high impacting components. The result of the L1 streamlining is
diagramed in Figure 5-11. Only 24% of the BOC is determined by the probabilistic
underspecification methodology to need further specification to meet the criteria established in this
case study. However, some components that constitute the SOI are actually extraneous and
constitute Type 2 error or wasted effort. Meanwhile, the non-SOI portion of the BOC contains the
Type 1 error, or false rejection of importance. In this specific case, the methodology missed two
components of importance while incorporated seven unnecessary materials. Although both types
of errors are not ideal, in terms of risk mitigation, Type 1 avoidance is preferred while Type 2

error is can be more tolerated.

5.4 Case Study Results

The demonstrated efficacy of the application of the methodology to the car model
motivates the further application of the methodology to the rest of the case studies. The following
subsection presents the results of the methodology as applied to the products described in the

methodology section.
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5.4.1 Effort Reduction: Case Studies

The goal of probabilistic streamlining is to decrease the effort necessary to conduct LCA.
Figure 5-12 shows the L1 SOI as a fraction of the BOC. This is the portion of the BOC that is
determined to be important to invest additional research efforts to increase the precision of the
impact estimates. For all the case studies, the L1 SOI constitutes less than half of the components
of the BOC. Notice that the products that have high SOI percentages also have low component
numbers (16-19 components) to begin with. Therefore considering the increase in resolution and
confidence the impact estimate, the methodology seems effective in reducing LCA effort assuming

that there is the same amount of effort to gain information for all components.
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Figure 5-12 L1 SOI as a percentage of the products total BOC: the products are arranged in order of
decreasing BOC size.
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5.4.2 Error Rate: Case Studies

The Type 1, or false rejections, from the SOI and Type 2, or false acceptances, to the SOI
were calculated comparing the L1 SOI and the L5 SOI. Figure 5-13 displays the error rates of the
SOI as a percentage of the BOC. The red-hashed areas (Type 2) are the non-SOI parts of the
product that were identified to be part of the SOL The green-hashed areas are the SOI parts that
were not identified as such. Clearly, for the cases that were examined, there are many more Type 2
errors than Type 1 errors. This suggest that the methodology that is applied has a bias for

incorporating more components than necessary for the SOL, while it rarely rejects the components

Error Rate of L1 Streamlined Products
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Figure 5-13 Type 1 and Type 2 error rates for all the products as a percentage of the BOC. The green
parts are the non-SOI and the red parts are SOI. The striped areas are where the errors in those sets.

that are important and should be in the SOIL The only components with Type 1 errors are products
with the most number of components, in this case the computer and car. None of the consumer
product case studies showed any Type 1 errors, which may be due to their smaller number of
components. The CP2, CP2SP, CP3, and CP3SP case studies all have the highest percent SOI of
BOC. However, the Type 2 errors are among the lowest in the case study portfolio, except for the
CP2. The two products in which the Type 2 error is greater than 50% of the SOI is the CP1 and the

computer.

5.4.3 Impact Estimates
The same constraints were applied to both the case studies and the GREET car study.

Figure 5-14 compares the impact uncertainty for the L1, L5, and L1/L5 hybrid BOCs. The case
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studies show similar ability for the L1 level of specificity and uncertainty estimates to determine

an SOI for the product that significantly reduced the effort to obtain an accurate estimate of the L5

results with a lower level of uncertainty.
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Figure 5-14 The streamlined CED comparisons of L1, L5, and the hybrid L1/L5 resolution of
the BOCs. Notice the proximity of the streamlined results to the L5 results.
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5.4.4 ADM-Case Studies

The ADM values for the case studies, comparing the hybrid L1/L5 BOC median as

estimates for the L5 medians, show that an accurate estimate of the L5 value can be obtained by

well specifying a small portion of the BOC. The absolute variation away from the L5 median

ranges from 0.8% (Computer) to 7.9% (Car). Figure 5-15 compares the ADM for all the levels of

specificity with the L1/L5 hybrid BOC. Table 5-1 gives the numerical absolute percentage

deviation from the L5 median for each level of specificity including L1/L5.
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Figure 5-15 The ADM of the Case Studies including the L1/L5 Hybrid BOC as comparison to L5 and
the other levels of uncertainty.

Table 5-1 Absolute Deviation from the L5 median CED of the median CED of other levels of specificity.

Absolute Deviation from
L5 Median L1 L2 L3 L4 L5 LI1/L5
CP1 5.0% 0.4% 16.5% 0.3% 0.0% 4.9%
GREET Car 250.6% 106.7% 44.7% 32.2% 0.0% 1.9%
CpP2 17.6% 13.8% 35.6% 22.9% 0.0% 1.4%
CP2SP 31.6% 17.7% 35.7% 19.8% 0.0% 2.3%
CP3 13.1% 0.9% 9.3% 0.3% 0.0% 1.3%
CP3sP 23.4% 4.1% 12.6% 0.2% 0.0% 2.2%
Computer 7.3% 30.4% 23.0% 0.5% 0.0% 0.8%
Average ADM 49.8% 24.9% 25.3% 10.9% 0.0% 3.0%
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545 MAD-COV: Case Studies

The MAD-COV suggests that the hybrid BOCs resulting from probabilistic streamlining
are able to significantly reduce the spread and uncertainty in the CED output data in the other case
study products aside from the initial GREET Car example. Figure 5-16 is the MAD-COV plot of
the case studies with the L1/L5 hybrid MAD-COV values. Although these values are not as low as
the LS MAD-COV values they are comparable and on average the L1/L5 MAD-COV values are
lower than L4 level of specificity. The average MAD-COV values are represented by the dotted
line in Figure 5-16, the L5 to L1/L5 line is marked in red to indicate that it is not
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Figure 5-16 MAD-COV of the CED for the case studies with the hybrid L1/L5 impact result for
comparison.

increasing in specificity. The median absolute deviations from the L5 median for the L1/L5
hybrids are around six per cent on average; this represents only a two per cent increase over the
average MAD-COV for the fully specified L5 results. The values of the MAD-COV for all the
levels and the hybrid BOCs are tabulated in Figure 5-16 along with the specificity level MAD-
COV.
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Table 5-2 MAD-COV Values for the case studies with the L1/LS streamlined hybrid BOC
and average MAD-COV

MAD-COV L1 L2 L3 L4 L5 LI/L5
CP1 41.4% 44.1% 16.0% 5.2% 5.1% 6.5%
GREET Car 38.6% 38.7% 31.5% 9.4% 1.9% 6.4%
CcrP2 40.2% 38.9% 38.8% 29.3% 4.3% 5.7%

CP2SP 35.4% 34.2% 34.7% 26.0% 3.8% 5.9%

CP3 22.4% 14.5% 13.9% 7.9% 3.5% 5.4%

CP3sP 21.3% 13.0% 14.0% 7.2% 3.3% 5.8%
Computer 38.9% 24.4% 14.5% 3.9% 3.9% 5.1%
Average MAD-COV 34.0% 29.7% 23.3% 12.7% 3.7% 5.8%

5.5 Sensitivities to Model Parameters

The robustness of the method is assessed by understanding the sensitivity of probabilistic
underspecification-based screening approach to changes in the parameters defining ranking
criteria, cumulative threshold, and confidence level. The performance in picking the SOI will be
measured by the magnitude of the Typel and Type II errors because the size of the SOI does not
say much about its quality of the selection. The ideal parameter values would be the ones that will

minimize both types of errors.

5.5.1 Ranking Criteria

The components’ importance ranking criteria used thus far in the case studies have been
by the 50™ percentile of the percent contribution by the particular component to the total impact
the product. The 50 percentile of the percent contribution represents the median value of the
product’s possible contribution to the BOC. It can be imagined that using a higher or lower
percentile contribution could lead to better results in terms of selecting the optimal SOI that will
match the top contributors at the most specified level. For example, by ranking components by
their 10" percentile percent contribution, the methodology is considering which components are
contributing greatest at their 10" percentile percent value. It can be expected that this would give a
conservative estimate of contribution, ranking the components with the largest 10" percentile
values first. In essence, the ranking criterion asks: is it possible for a component to contribute a
higher impact at its 10" percentile value than another component? If yes, then that particular
component is ranked ahead. The implicit assumption in this ranking scheme is that the distribution

of possible impact values does not change very much. On the other hand, if the components were
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ranked according to its 90” percentile percent contribution, one is supposing that the actual

components may turn out to cluster around the higher values of the percent impact distributions.
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Figure 5-17 Type 1 and Type 2 error sensitivity to ranking percentile for case studies.
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The results of the two types of error rate sensitivity on the percentile ranking while
keeping the cumulative threshold at 75% and confidence level at 90% are displayed in Figure 5-17
for all the case studies. To review, Type 1 error is the fraction of the non-SOI portion of the BOC
that is misclassified as not being important, while Type 2 error is fraction of the SOI that is
misclassified as being important. This number is presented as a fraction of the BOC that is getting
misclassified. Type 2 errors are more acceptable than large Type 1 errors because they merely
represent wasted effort but no loss in the accuracy of the results. However, if there were a high
Type 1 error, then the results would be less accurate because the components that are important to

the total contribution are being neglected.

For all case studies the Type 1 error rate is always lower than the Type 2 error rates for all
the ranking percentiles. The plateaus in the error rates around the 40™ percentile up to 70®
percentile for most of the cases indicate relative insensitivities to varying the ranking percentile.
The error rates at the lower and higher percentile rankings increases for all the cases suggesting
that the extreme values lead to SOI classification errors. Ranking by higher percentiles seems to
always lead to higher Type 1 error starting from around 70™ percentile, except for the CP1 and
computer case. The increase in error rates towards the two extremes may be due to the inability to
predict which way the component’s distribution of possible impact value will move as the product
gets more specified. Having the 50" percentile as the ranking criteria may allow for the mitigation

buffering of the risk of the component’s impact distribution moving either up or down.

5.5.2 Cumulative Threshold

The cumulative threshold criterion serves as the cut-off point in determining the size of the
SOL.  Depending on the goal of the LCA, the cumulative threshold criteria may vary. For
example, if the LCA is being conducted in the product development phase of a project, a lower
threshold of some value above 50% contribution would be enough. However, if there is a need to
reduce significantly the uncertainty in the final impact results, the cut-off cumulative threshold
criteria may be higher depending on the contribution to variance of each component. In Figure
5-18 and Figure 5-19, the sensitivities to cumulative threshold of the L1 SOI percent of each BOC
are presented with their L5 SOI alongside the SOI size sensitivity.

For all the cases, as the cumulative threshold increases, so does the size of the SOI. This
makes intuitive sense because one would need to incorporate more components into the SOI to
account for a larger contribution to the product’s total impact. Notice how the curve is smoother

for the L5 SOI sensitivity than for the L1 SOI sensitivity as a function of the cumulative threshold.
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Figure 5-18 L1& L5 SOI and Type 1 & Type 2 Error sensitivity to cumulative threshold for the
three products among the case studies with the largest BOCs.

This is because the L5 ranking scheme is perfectly ranking the components in the order of greatest
to least percent contribution to impact, whereas the L1 ranking of the components may be
positioning the components slightly out of order. It makes sense that the L1 SOI will be larger than
the L5 SOI, and, in fact, this observed in all the case studies. Although there is an interesting cross
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over point for the L1SOI and L5SOI for the GREET car case Figure 5-18 . This is correlated with
the cross over Type 1 and Type 2 error rates at the cumulative threshold percentage of 96%. This
error is probably due to errors in the ranking of small-contributing components.

In Figure 5-18, the error rates seem to be relatively insensitive to ranking until reaching
the high cumulative threshold where the Type 2 errors seem to increase until a certain point
beyond 95% contribution, where the Type 2 error drops off. The exception to the relative
insensitivity seems to be the computer case study, where the Type 2 error rate increases quickly
starting at the 90" cumulative threshold. However, the Type 2 error rate eventually drops off as
well. This is due to the fact that the components that were previously erroneously incorporated into
the SOI start to become part of the L5SOI and no longer constitute an error. The Type 1 errors for

all three cases were zero or close to zero over all cumulative threshold percentage.
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Figure 5-19 L1& L5 SOI and Type 1 & Type 2 Error sensitivity to cumulative threshold
for same functional products that are made out of different materials and with(out) scrap
and packaging consideration.

Considering the Figure 5-19 group of products, the general trends remain the same: the

stochastic dominance of L1SOI over L5SOI, the larger Type 2 errors than Type 1 errors, relative
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insensitivities in Type 1 errors and Type 2 errors to the cumulative threshold, and the drop off in

the Type 2 errors above 95% cumulative threshold.

From the sensitivity analysis of the SOI size and the error rates, it seems that in terms of
choosing the cumulative threshold percentage, the LCA practitioner should be able to choose a
cumulative threshold percentage that makes sense for the application of the LCA results because
the error rates appear to be insensitive to this parameter. The dominant type of error is Type 2
error, with the Type 1 error for all the case studies being effectively zero except for the GREET
car case. This is encouraging because by having zero Type 1 error, the practitioner is not falsely
ignoring components which are actually important. However, it must be cautioned that the
cumulative threshold criteria should not be higher than 90% because this is around the point where
Type 2 error begins to increase. It also should be noted that the cumulative threshold criterion is
only used to determine the size of the SOI and is applied at the particular level where the BOC is
being viewed. After the resolution of the SOI to a higher level of specificity, it may be that the SOI
is contributing more to the cumulative threshold criterion that was being used to identify the

important components.

5.5.3 Confidence Level

The confidence level is another criterion that determines the size of the SOIL The SOI is
chosen such that, at a given cumulative threshold, the confidence-level percentage of the trials will
meet the cumulative threshold criterion. The size of the L1SOI is evaluated as a function of
cumulative threshold and confidence level. The confidence levels range from 40% to 99%. Lower
values are not explored because the SOI should be chosen such that the majority of the time, the
SOI will meet or exceed the cumulative threshold criterion. The plots of the L1SOI sensitivity
curves to the cumulative threshold at different confidence level are shown in Figure 5-20 and
Figure 5-21 along with their L5SOI curves. The black arrows in the graphs indicate plots of

increasing confidence level criterion.

For all the case studies, as the confidence level is increased, the L1SOI increases. This is
because as the confidence level parameter becomes more stringent, the model must include more
components into the SOI to contribute to the cumulative threshold. Notice that for most of the case
studies, the lowest L1SOI curve does not fall below the L5SOI curve as the confidence level
decreases. This phenomenon is only due to the fact that the lowest confidence level value is 40%.
As demonstrated by the GREET car case, the L1SOI sensitivity curve could be less than the
L5SOI. This is due to the overconfidence in the impact of the GREET car’s L1 components to
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contribute to the total impact. In reality, the components that get ranked high and incorporated into

the SOI may not contribute as much as they should and the components that should be included do

not get included. This is illustrated in the increase in Type 1 error as the confidence level gets

lower, as shown in Figure 5-22.
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Figure 5-20 L1SOI sensitivity to cumulative threshold for the three products among the case studies
with the largest BOCs at different confidence levels.
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Figure 5-21 L1SOI sensitivity to cumulative threshold at different confidence levels for same functional
products that are made out of different materials and with(out) scrap and packaging consideration.

When considering the size of the SO, it is also necessary to consider the errors associated

with the separation of the important components and the non-important components. The plots of

the two error types at different confidence levels can be found in Figure 5-22 and Figure 5-23. The

50™ percentile is used to rank the L1 components and to determine the L1SOI in the analysis. The

Type 2 error again dominates the Type 1 error for all of the case studies for most of the cumulative

threshold values. This indicates that the current methodology does prove to be conservative at

selecting the SOI and, in the process, incorporates more components than necessary. For all the

case studies, there appears to be an almost exponential increase in the number of components at a

given cumulative threshold value as the confidence is monotonically increased. This can be clearly

observed in the computer case shown in Figure 5-22. Furthermore, the model seems to be good at




mitigating Type | error. For the most part, the model is effective in not neglecting the important
components by leaving them out of the SOL. However, the Type 1 error rates do increase slightly
as the confidence level decreases. Although it should be noted that the car case does exhibit a

relatively high Type 1 error as the cumulative threshold percentage increases and the confidence

level is decreased.
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Figure 5-22 This is the plot of change of the magnitude of Typel and Type 2 errors as the confidence
level is varied for three product of the case studies that have 41-90 components. The arrows indicate the
direction the curves are moving as the confidence level is increased.

In the case studies group of smaller BOCs shown in Figure 5-23, the behavior of the
results do follow the case studies in Figure 5-22, however due to having a small number of
components in the BOC, the results are more discretized and harder to interpret. The observation
of low Type 1 error and higher Type 2 error holds. One interesting behavior to note is the increase

in Type 1 error as the scrap and packaging is considered in both the Consumer Product 2 and

Consumer Product 3 cases.
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Figure 5-23 The error rates of the case studies with smaller BOCs as a function of cumulative threshold

percentage and confidence level.

5.5.4 Herfindahl Trend

The products chosen for the case studies were picked from a range of mass uniformity

among the components to take into account the role of mass uniformity in the ability to streamline

LCA. However, from the case studies examined within this thesis, there seems to be no clear

relationship in the ability to streamline the mass uniformity of the BOC. A more clear distinction

seems to be that the ability to streamline more easily for the products with the most components.

These products all have a roughly 75% reduction in the number of components needed to specify

to L5 when the probabilistic underspecification is applied at L1 specificity. On the other hand the

products with the smaller number of components only have a reduction of around 55% in the

number of components needed to specify. The insensitivity to streamlining of the mass uniformity
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of the product is encouraging because it could indicate that the methodology may be robust against

this factor. Unfortunately this limited dataset is only suggestive and far from conclusive.
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6 CONCLUSIONS

The analysis of the structured underspecification database suggests that there is a general
trend towards decreasing magnitude of variability as a product becomes less underspecified. When
the structured underspecification model is applied to the selected case studies, the precision of the
estimate of the product environmental performance is improved when compared to the estimate at
the lower levels of specification. Although the distance of the median estimate of the CED, as
measured by the absolute deviation of the median ADM, from L1 to L4 ranges from 0.2% to 50%
for the range of products, it can go up to as high as 250% in the GREET car case. The proximity
of the estimates is overshadowed by the uncertainties in their value. The variability in the CED
values, as measured by the MAD-COV, decreases, on average, as the products’ components
become better specified. Thus, it is demonstrated that when a product becomes better specified, the

uncertainty in the impact estimate decreases along with increase precision.

The probabilistic underspecification streamlining methodology is applied to several
studies to determine if an effective SOI can be chosen only by observing the product at reduced or
L1 specificity in our case. The methodology is applied with the parameters of 50" percentile
ranking, 75% cumulative percentage impact threshold, and 90% confidence level. The SOI
identified from the L1 impact data are less than 1/3 of the BOC for CP1, computer, and GREET
Car. These products have 41, 56, and 90 components respectively. While the other case study
products, CP2, CP2SP, CP3, and CP3SP, although have L1SOIs that are around 50% of the BOC,
they all have a small number of components in the BOC to begin with. Resolving the SOI to L5
specificity proved to yield significant improvements in the precision of the estimate for the
products’ impacts when compared to LS. The residual variation in the L1/L5 hybrid estimate
compared to the L5 estimate is only on average 3%. The average confidence in that value
described by the average MAD-COV value for L1/15 impact results is 5.8%. This uncertainty is
lower than the average MAD-COV values for L1 through L4 values for the case studies.

Another question this thesis attempts to answer is whether there is robustness of the
methodology under different conditions regarding the modeling parameters of ranking criteria,
cumulative threshold, and confidence level? The ranking criteria of 50" percentile percentage
contribution afforded the lowest error rate in the sensitivity analysis. It is discovered that
cumulative threshold for cutting of the percentage contribution to the total impact of the product
was robust against Type 1 error and Type 2 errors. However, the cumulative threshold should not

be set above 90% because that will lead to higher rates of Type 2 error and decrease the degree of
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streamlining. It is also demonstrated that the degree of streamlining will decrease with the increase
in the confidence level almost exponentially due to the increase in Type 2 error. It is also
promising that, for all the case studies, the confidence level is relatively robust to false rejections

of the important components.

6.1 Future Work

Although probabilistic underspecification methodology for streamlining LCA has proved
to be promising in the case studies in reducing LCA effort and increasing confidence in the LCA
estimate, this thesis work is only a preliminary exploration. In order to have confidence in this
streamlining approach, many more case studies will need to be analyzed using the proposed
methods. However, this could prove very labor intensive. Instead, a mock bill of components
could be developed to adequately map out the streamlining realm of possibilities for assessing
materials impact. It would also be interesting to extend the methodology to other life cycle impact
categories, such as global warming potential or toxicity, since it cannot be assumed that the ability
to tease out the SOI would be the same for other impact factors. Further, this thesis only
considered the materials production part of the life cycle. Future work should eventually extend to
the entire bill of activities of the life cycle. Finally, in this thesis SOI is taken to the level of
specificity of L5; however, it may also be interesting to see the effect of underspecifying the
components to L2, L3 or L4 to see how this affects the resolution of the estimate of the product’s

impact.
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8 APPENDIX A: Table of Database Classification

Level 1 Level 2 Level 3 Level 4 Level 5
Construction Binders Cement Cement blast Blast furnace slag cement, at plant/CH U
Construction Binders Cement Cement mortar Cement mortar, at plant/CH U
Construction Binders Cement Cement unspecified | Cement, unspecified, at plant/CH U
Construction Binders Cement Portland cement Portland calcareous cement, at plant/CH U
Portland cement (CEM I), CEMBUREAU technology
Construction Binders Cement Portland cement mix, CEMBUREAU production mix, at plant, EN 197-1
RER S
Construction Binders Cement Portland cement Portland cement, at plant/US
Construction Binders Cement Portland cement Portland cement, strength class Z 42.5, at plant/CH U
Construction Binders Cement Portland cement Portland cement, strength class Z 52.5, at plant/CH U
Construction Binders Cement Portland cement Portland slag sand cement, at plant/CH U
Construction Binders Mortar Mortar adhesive Adhesive mortar, at plant/CH U
Construction Binders Mortar Mortar light Light mortar, at plant/CH U
Construction Binders Mortar Mortar lime Lime mortar, at plant/CH U
Construction Binders Stucco Stucco-plant Stucco, at plant/CH U
Construction Bricks Brick 3 Brick generic Brick, at plant/RER U
Construction Bricks Brick 3 Brick light clay Light clay brick, at plant/DE U
Construction Bricks Brick 3 Brick-sand-lime Sand-lime brick, at plant/DE U
Construction Bricks Refractory Refractory basic Refractory, basic, packed, at plant/DE U
Construction Bricks Refractory Refractory fireclay Refractory, fireclay, packed, at plant/DE U
Construction Bricks Refractory Rcfm.ct‘ory hlgh Refractory, high aluminium oxide, packed, at plant/DE
aluminium oxide U
Construction Cladding Cladding 3 I(JD(I)T,Sdmg crossbar- Cladding, crossbar-pole, aluminium, at plant/RER U
Construction Concrete Concrete 3 Concrete extracting | Concrete, exacting, at plant/CH U
Construction Concrete Concrete 3 Concrete extracting Concrete, exacting, with de-icing salt contact, at
plant/CH U
Construction Concrete Concrete 3 Concrete normal Concrete, normal, at plant/CH U
Construction Concrete Concrete 3 Concrete sole plate Concrete, sole plate and foundation, at plant/CH U
Aerated concrete Aecrated concrete block, mix of P2 04 and P4 05,
Construction Concrete Concrete Block production mix, at plant, average density 433 kg/m3
block
RER S
Aerated concrete Aerated concrete block, type P4 05 reinforced,
Construction Concrete Concrete Block production mix, at plant, average density 485 kg/m3
block
RER S
Construction Concrete Concrete Block ﬁzﬁed concrete Autoclaved aerated concrete block, at plant/CH U
Construction Concrete Concrete Block g:;::;:te block Concrete block, at plant/DE U
Lightweight . .
Construction Concrete Concrete Block concrete block- nght\"velght concrete b.l ock, expanded clay as base
material, production mix, at plant RER S
expanded clay

60




Level 1 Level 2 Level 3 Level 4 Level 5
Construction Concrete Concrete Block géi};?;:l%klléck- Il;lif::/‘gggll}t conerete block, expanded perlite, at
expanded perlite
Lightweight . ) o
Construction Concrete Concrete Block ;c:;::jtzd block- lI::ll ag::/vg}:;g{l}t concrete block, expanded vermiculite, at
vermiculite
Lightweight
Construction Concrete Concrete Block concrete block- Lightweight concrete block, polystyrene, at plant/CH U
polystyrene
Lightweight
Construction Concrete Concrete Block concrete block- Lightweight concrete block, pumice, at plant/DE U
pumice
Construction Concrete Poor concrete Poor concrete plant  § Poor concrete, at plant/CH U
Cosicion | conrae | prcascone | Bt conme | Bt o i et prod i, cont e
Construction Covering Acrylic filler3 Acrylic filler plant Acrylic filler, at plant/RER U
Construction Covering Corrugated slab gger:u‘ia r;:ilflab Fibre cement corrugated slab, at plant/CH U
Construction Covering Cover coat Cover coat mineral Cover coat, mineral, at plant/CH U
Construction Covering Cover coat Cover coat organic Cover coat, organic, at plant/CH U
Construction Covering Fiberboard Fiberboard gypsum | Gypsum fibre board, at plant/CH U
Construction Covering Plaster Plaster base Base plaster, at plant/CH U
Construction Covering Plaster Plaster cement cast Cement cast plaster floor, at plant/CH U
Construction Covering Plaster Plaster clay Clay plaster, at plant/CH U
Construction Covering Plaster Plaster gypsum Gypsum plaster (CaSO4 alpha hemihydrates) DE S
Construction Covering Plaster Plaster gypsum Gypsum plaster (CaSO4 beta hemihydrates) DE S
Construction Covering Plaster Plaster gypsum Gypsum plaster board, at plant/CH U
Construction Covering Plaster Plaster thermal Thermal plaster, at plant/CH U
Construction Covering Slate Slate fiber cement Fibre cement roof slate, at plant/CH U
Construction Covering Tile Tile ceramic Ceramic tiles, at regional storage/CH U
Construction Covering Tile Tile fiber cement Fibre cement facing tile, at plant/CH U
Construction Covering Tile Tile fiber cement Fibre cement facing tile, large format, at plant/CH U
Construction Covering Tile Tile fiber cement Fibre cement facing tile, small format, at plant/CH U
Construction Covering Tile Tile quarry Quarry tile, at plant/CH U
Construction Covering Tile Tile roof Roof'tile, at plant/RER U
Construction Covering Tile Tile roof concrete Concrete roof tile, at plant/CH U
Construction Door Inner door 312;; door glass- Door, inner, glass-wood, at plant/RER U
Construction Door Inner door Inner door wood Door, inner, wood, at plant/RER U
Construction Door Outer door gﬁ:ﬁ;ﬂiﬁg wood- Door, outer, wood-aluminium, at plant/RER U
Construction Door Outer door (g)lggr door wood- Door, outer, wood-glass, at plant/RER U
Construction Insulation Elastomer Sealing Tube insulation Tube insulation, elastomere, at plant/DE U
Construction Insulation Glass Insulation Glass foam Foam glass, at plant/RER U
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Construction Insulation Glass Insulation Glass foam Foam glass, at regional storage/AT U
Construction Insulation Glass Insulation Glass foam Foam glass, at regional storage/CH U
Construction Insulation Glass Insulation Glass wool Glass wool mat, at plant/CH U

. . . Glass wool, fleece, production mix, at plant, density
Construction Insulation Glass Insulation Glass wool between 10 to 100 kg/m3 RER S
Construction Insulation Organic Insulation | Cellulose fiber Cellulose fibre, inclusive blowing in, at plant/CH U
Construction Insulation Organic Insulation | Cork slab Cork slab, at plant/RER U
Construction Insulation Polystyrene Polystyrene Polystyrene, extruded (XPS) CO2 blown, at plant/RER

extruded U

Construction Insulation Polystyrene ::()tlzuszzene Polystyrene, extruded (XPS), at plant/RER U

. . Polystyrene Polystyrene, extruded (XPS), HFC-134a blown, at
Construction Insulation Polystyrene extraded plant/RER U

. . Polystyrene Polystyrene, extruded (XPS), HFC-152a blown, at
Construction Insulation Polystyrene extruded plant/RER U
Construction Insulation Polystyrene ;zlgrstyrene foam Polystyrene foam slab, 100% recycled, at plant/CH U
Construction Insulation Polystyrene ;zlglstyrene foam Polystyrene foam slab, 45% recycled, at plant/CH U
Construction Insulation Polystyrene ;Z}g'styrene . Polystyrene foam slab, at plant/RER U

. . Rock wool, fleece, production mix, at plant, density
Construction Insulation Rock wool Rock wool fleece between 30 to 180 kg/m3 RER S
Construction Insulation Rock wool Rock wool general Rock wool, at plant/CH U
Construction Insulation Rock wool Rock wool packed Rock wool, packed, at plant/CH U
Construction Insulation Urea formaldehyde | UF in situ Urea formaldehyde foam, in situ foaming, at plant/CH U
Construction Insulation Urea formaldehyde | UF slab Urea formaldehyde foam slab, hard, at plant/CH U
Construction Other Asphalt Mastic asphalt Mastic asphalt, at plant/CH U
Construction Other Cobwork 3 Cobwork Cobwork, at plant/CH U
Construction Other Floor Anhydrite floor Anhydrite floor, at plant/CH U
Construction Other Plate Plate cut Natural stone plate, cut, at regional storage/CH U
Construction Other Plate Plate grounded Natural stone plate, grounded, at regional storage/CH U
Construction Other Plate Plate polished Natural stone plate, polished, at regional storage/CH U
Construction Paint Alkyd piant Alkyd paint white Alkyd paint, white, 60% in H2O, at plant/RER U
Construction Paint Alkyd piant Alkyd paint white Alkyd paint, white, 60% in solvent, at plant/RER U
Construction Paint Arylic varnish Actylic vamish 875 | Acrylic vamish, 87.5% in H20, at plan/RER U
Construction Sealing Bitumen Bitumen adhesive Bitumen adhesive compound, cold, at plant/RER U
Construction Sealing Bitumen Bitumen adhesive Bitumen adhesive compound, hot, at plant/RER U
Construction Sealing Bitumen Bitumen-refinery Bitumen, at refinery/CH U
Construction Sealing Bitumen Bitumen-refinery Bitumen, at refinery/kg/US
Construction Sealing Bitumen Bitumen-refinery Bitumen, at refinery/RER U
Construction Sealing Bitumen Bitumen-sealing Bitumen sealing Alu80, at plant/RER U
Construction Sealing Bitumen Bitumen-sealing Bitumen sealing V60, at plant/RER U

62




Level 1 Level 2 Level 3 Level 4 Level 5
Construction Sealing Bitumen Bitumen-sealing Bitumen sealing VA4, at plant/RER U
. . . . conli Bitumen sealing, polymer EP4 flame retardant, at
Construction Sealing Bitumen Bitumen-sealing plant/RER U
Construction Sealing Elastomer Sealing Isiztl?;zl rubber Natural rubber based sealing, at plant/DE U
Construction Sealing Elastomer Sealing | Polysulphide Polysulphide, sealing compound, at plant/RER U
Construction Ventilation | Air distribution 3:;? istribution Air distribution housing, steel, 120 m3/h, at plant/CH U
Construction Ventilation | Air filter ;\rll;ﬁlter central Air filter, central unit, 600 m3/h, at plant/RER U
. o . Air filter Alr filter, decentralized unit, 180-250 m3/h, at
Construction Ventilation | Air filter decentralize plant/RER U
. o . Air filter . . .
Construction Ventilation | Air filter . Air filter, decentralized unit, 250 m3/h, at plant/RER U
decentralize
Construction Ventilation | Air filter :]X;;vf:lter exhaust Alr filter, in exhaust air valve, at plant/RER U
Construction Ventilation Air intake Air intake steel 8ut51de air intake, stainless steel, DN 370, at plan/RER
Construction Ventilation | Airintake Air intake steel Supply air inlet, steel/SS, DN 75, at plant/RER U
Construction Ventilation | Connection piece gz:lnccnon piece Connection piece, steel, 100x50 mm, at plant/RER U
Construction Ventilation | Control and wiring Control ar}d wiring Control and wiring, central unit, at plant/RER U
central unit
Construction Ventilation | Control and wiring Control apd wiring Control and wiring, decentralized unit, at plant/RER U
decentralized unit
. . Duct corrugated Ventilation duct, PE corrugated tube, DN 75, at
Construction Ventilation | Duct tube plant/RER U
Construction Ventilation | Duct Duct spiral seem Spiral-seam duct, steel, DN 125, at plant/RER U
Construction Ventilation | Duct Duct spiral seem Spiral-seam duct, steel, DN 400, at plant/RER U
Construction Ventilation | Duct Duct steel Ventilation duct, steel, 100x50 mm, at plant/RER U
Construction Ventilation | Elbow Elbowsteel Elbow 90°, steel, 100x50 mm, at plant/RER U
Construction Ventilation | Exhaust Exhaust outlet Exhaust air outlet, steel/aluminum, 85x365 mm, at
plant/CHU
Construction Ventilation | Exhaust Exhaust roofthood Exhaust air roof hood, steel, DN 400, at plant/CH U
Construction Ventilation | Exhaust Exhaust valve Exhaust air valve, in-wall housing, plastic/steel, DN 125,
at plant/CH U
Construction Ventilation Flexible duct Flex1'ble duct Flexible duct, aluminum/PET, DN of 125, at plant/RER
aluminum U
Construction Ventilation | Heat exchanger Ig-Iriz:]tneé(changer Ground heat exchanger, PE, DN 200, at plant/RER U
Construction Ventilation Insulation Insulation spiral Insulation spiral-seam duct, rockwool, DN 400, 30 mm,
seam at plant/RER U
Construction Ventilation | Overflow element g::lrﬂow element Sverﬂow element, steel, approx. 40 m3/h, at plant/RER
Construction Ventilation | Sealing tape Seahgg tape Sealing tape, aluminum/PE, 50 mm wide, at plant/RER
aluminum U
Construction Ventilation | Silencer Silencer steel Silencer, steel, DN 125, at plant/CH U
Construction Ventilation | Silencer Silencer steel Silencer, steel, DN 315, 50 mm, at plant/CH U
Construction Ventilation Ven.txlamm Ven.nlatlon Ventilation equipment, Avent E 97, at plant/RER U
equipment equipment avent
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. - Ventilation Ventilation Ventilation equipment, central, 600-1200 m3/h, at
Construction Ventilation . .
equipment equipment central plant/RER U
[ Ventilation _— . .
Construction Ventilation Venplatwn cquipment Ventilation equipment, decentralized, 180-250 m3/h, at
equipment . plant/RER U
decentralized
Construction Ventilation Vethlatlon Venplanon Ventilation equipment, GE 250 RH, at plant/CH U
equipment equipment GE
Construction Ventilation Ven.tllatlon Ven.tllatlon Ventilation equipment, KWL 250, at plant/RER U
equipment equipment KWL
. e Ventilation Ventilation . .
Construction Ventilation . . Ventilation equipment, KWLC 1200, at plant/RER U
equipment equipment KWLC
Construction Ventilation Ven.tllatlon Venﬁllatmn . Ventilation equipment, Storkair G 90, at plant/RER U
equipment equipment storkair
Construction Ventilation Venplatxon Venplauon Ventilation equipment, Twl-700, at plant/RER U
equipment equipment twl
Construction Window Window frame 3 Window aluminium Window frame, aluminium, U=1.6 W/m2K, at
frame plant/RER U
Construction Window Window frame 3 Window plastic Window frame, plastic (PVC), U=1.6 W/m2K, at
frame plant/RER U
. Window . . . _
Construction frame Window frame 3 Window wood Window frame, wood, U=1.5 W/m2K, at plant/RER U
. Window . Window wood- Window frame, wood-metal, U=1.6 W/m2K, at
Construction frame Window frame 3 metal plant/RER U
Electronics Components | Anode :; ?:r;-hﬂnum ron Anode, lithium-ion battery, graphite, at plant/CN U
Electronics Components | Backlight itzt::gh t-LCD Backlight, LCD screen, at plant/GLO U
Electronics Components | Cable Cable printer Cable, printer cable, without plugs, at plant/GLO U
Electronics Components | Cable Cable ribbon Cable, ribbon cable, 20-pin, with plugs, at plant/GLO U
Electronics Components | Cable Cable three Cable, three-conductor cable, at plant/GLO U
conductor
Electronics Components | Cable Cable-connector for | Cable, connector for computer, without plugs, at
computer plant/GLO U
Electronics Components | Cable Cable-data Cable, data cable in infrastructure, at plant/GLO U
Electronics Components | Cable Cable-network cat 5 Cable, network cable, category 5, without plugs, at
plant/GLO U
Electronics Components | Capacitor Capacitor film gapacnor, film, through-hole mounting, at plant/GLO
Electronics Components | Capacitor g;peacnor SMD I(japacnor, SMD type, surface-mounting, at plant/GLO
. . . Capacitor, Tantalum-, through-hole mounting, at
Electronics Components | Capacitor Capacitor tantalum plant/GLO U
Electronics Components | Capacitor Capacitor Capacitor, electrolyte type, < 2cm height, at plant/GLO
electrolyte type U
Electronics Components | Capacitor Capacitor Capacitor, electrolyte type, > 2cm height, at plant/GLO
electrolyte type U
. . Capacitor . .
Electronics Components | Capacitor unspecified Capacitor, unspecified, at plant/GLO U
. Cathode-Lithium Cathode, lithium-ion battery, lithium manganese oxide,
Electronics Components | Cathode on battery at plant/CN U
. . CD/DVD drive CD-ROM/DVD-ROM drive, desktop computer, at
Electronics Components | CD/DVD drive desktop plant/GLO U
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Electronics Components | Connector Connector PCI bus Connector, PCI bus, at plant/GLO U
Electronics Components | Connector Comecfor-clamp Connector, clamp connection, at plant/GLO U
connection
Electronics Components | Connector g:rﬁgi:::r' Connector, computer, peripherical type, at plant/GLO U
R . . Diode, glass-, SMD type, surface mounting, at
Electronics Components | Diode Diode-glass plant/GLO U
Electronics Components | Diode Diode-glass Diode, glass-, through-hole mounting, at plant/GLO U
Electronics Components | Diode Diode-unspecified Diode, unspecified, at plant/GLO U
Electronics Components | Electrode Electrode-positive Electrode, positive, LaNiS5, at plant/GLO U
Electronics Components | Electrolyte Electrolyte-KOH Electrolyte, KOH, LiOH additive, at plant/GLO U
Electronics Components | Electron gun Eletrogun-CRT tube | Electron gun, for CRT tube production, at plant/GLO U
Electronics Components Iélectromc EC-active Electronic component, active, unspecified, at plant/GLO
omponent 8]
. Electronic . Electronic component, passive, unspecified, at
Electronics Components Component EC-passive plant/GLO U
Electronics Components Electronic EC-unspecified Electronic component, unspecified, at plant/GLO U
Component
Electronics Components | Frit Fm'CR.T tube Frit, for CRT tube production, at plant/GLO U
production
Electronics Components | Funnel glass :;_2‘:11 glass-CRT Funnel glass, CRT screen, at plant/GLO U
Electronics Components | Inductor Inductqr Inductor, unspecified, at plant/GLO U
unspecified
. Inductor-low value Inductor, low value multilayer chip type, LMCI, at
Electronics Components | Inductor multilayer chip plant/GLO U
Electronics Components | Tnductor ir;l(;llv;lctor-mlmamre glductor, miniature RF chip type, MRF], at plant/GLO
Electronics Components | Inductor ‘I:r}xlc;i’llx(ztor-nng core Inductor, ring core choke type, at plant/GLO U
Electronics Components | Integrated circuit IC-logic type Integrated circuit, IC, logic type, at plant/GLO U
Electronics Components | Integrated circuit IC-memory type Integrated circuit, IC, memory type, at plant/GLO U
Electronics Components | LED LED-plant Light emitting diode, LED, at plant/GLO U
Electronics Components | Panel components ::f;ftl component- Panel components, at plant/GLO U
Electronics Components | Panel glass Panel glass-CRT Panel glass, CRT screen, at plant/GLO U
Electronics Components | Panel glass Panel glass-LCD LCD glass, at plant/GLO U
Electronics Components | Plugs z;%%:-computer Plugs, inlet and outlet, for computer cable, at plant/GLO
Electronics Components | Plugs Plugs-network cable {’Jlugs, inlet and outlet, for network cable, at plant/GLO
Electronics Components | Plugs Plugs-printer cable Plugs, inlet and outlet, for printer cable, at plant/GLO U
Electronics Components | Potentiometer Potentxgometcr- Potentiometer, unspecified, at plant/GLO U
unspecified
Electronics Components | Power adapter f;‘;:g adapter- Power adapter, for laptop, at plant/GLO U
Electronics Components | Resistor Resistor-metal film Resistor, metal film type, through-hole mounting, at

plant/GLO U
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Electronics Components Resistor Resistor-SMD type Resistor, SMD type, surface mounting, at plant/GLO U
Electronics Components Resistor Resistor-unspecified | Resistor, unspecified, at plant/GLO U
Electronics Components Resistor Resistor-wirewound Resistor, wirewound, through-hole mounting, at
plant/GLO U
Electronics Components Separator Separator-thhlum Separator, lithium-ion battery, at plant/CN U
ion battery
Electronics Components Switch Switch-toggle type Switch, toggle type, at plant/GLO U
Electronics Components Transformer 3:;§§)nner-hlgh Transformer, high voltage use, at plant/GLO U
Electronics Components Transformer 3;?:; sgf;)rmer-low Transformer, low voltage use, at plant/GLO U
. . Transistor-small Transistor, wired, small size, through-hole mounting, at
Electronics Components Transistor .
size plant/GLO U
Electronics Components Transistor ;l‘y?;mstor-SMD 'II'Jrans1stor, SMD type, surface mounting, at plant/GLO
Electronics Components Transistor Tran51s.tor- Transistor, unspecified, at plant/GLO U
unspecified
. . . . . Transistor, wired, big size, through-hole mounting, at
Electronics Components Transistor Transistor-wired big plant/GLO U
Electronics Devices Computer Desktop-screenless Desktop computer, without screen, at plant/GLO U
Electronics Devices Computer Laptop Laptop computer, at plant/GLO U
Electronics Devices Keyboard Keyboard-standard Keyboard, standard version, at plant/GLO U
Electronics Devices Mouse ‘I\;I/Zl;;;opncal Mouse device, optical, with cable, at plant/GLO U
Electronics Devices I(;I:‘Erzzrk access NAD-internet Network access devices, internet, at user/CH/I U
Electronics Devices Printer Printer-laser jet Printer, laser jet, b/w, at plant/GLO U
Electronics Devices Printer Printer-laser jet Printer, laser jet, colour, at plant/GLO U
Electronics Devices Router Router-IP network Router, IP network, at server/CH/I U
Electronics Devices Screen CRT-17in CRT screen, 17 inches, at plant/GLO U
Electronics Devices Screen LCD-flat-17in LCD flat screen, 17 inches, at plant/GLO U
. s Single cell, lithium-ion battery, lithium manganese
Electronics Modules Battery Battery-lithium jon oxide/graphite, at plant/CN U
. Battery- . . .
Electronics Modules Battery rechargeable Battery, Lilo, rechargeable, prismatic, at plant/GLO U
Electronics Modules Battery Batery- Battery, NiMH, rechargeable, prismatic, at plant/GLO U
rechargeable ’ ’ ? ’
Electronics Modules Chassis Ch?SSIS n'etwork Chassis, network main devices/RER U
main devices
Electronics Modules CRT3 CRT Cathode-ray tube, CRT screen, at plant/GLO U
Electronics Modules Electrode Electrode-negative Electrode, negative, LiC6, at plant/GLO U
Electronics Modules Electrode Electrode-negative Electrode, negative, Ni, at plant/GLO U
Electronics Modules Electrode Electrode-positive Electrode, positive, LiMn204, at plant/GLO U
Electronics Modules Fan Fan-plant Fan, at plant/GLO U
Electronics Modules HDD HDD-desktop HDD, desktop computer, at plant/GLO U
Electronics Modules HDD HDD-laptop HDD, laptop computer, at plant/GLO U
Electronics Modules ITO ITO-powder ITO powder, for target production, at plant/RER U
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Electronics Modules ITO ITO-sintered target ITO, sintered target, at plant/RER U
Electronics Modules Power supply unit I}:;; ‘::fr supply unit- Power supply unit, at plant/CN U
Electronics Modules Screen LCD module Assembly, LCD module/GLO U
Electronics Modules Screen LCD module LCD module, at plant/GLO U
Electronics Modules Screen LCD screen Assembly, LCD screen/GLO U
Electronics Modules Toner Toner-laser jet Toner module, laser jet, b/w, at plant/GLO U
Electronics Modules Toner Toner-laser jet Toner module, laser jet, colour, at plant/GLO U
Electronics Photovoltaic | Metallization paste Metal_llzatlon paste- | Metallization paste, back side, aluminium, at plant/RER
backside U
Electronics Photovoltaic | Metallization paste xecf'sl}:;auon paste- Metallization paste, back side, at plant/RER U
Electronics Photovoltaic | Metallization paste ?;I:rt:txsl}:iz:tlon paste- Metallization paste, front side, at plant/RER U
Electronics Photovoltaic | Photovoltaic Photocell-multi Si Photovoltaic cell, multi-Si, at plant/RER U
Electronics Photovoltaic | Photovoltaic Photocell-ribbon Si Photovoltaic cell, ribbon-Si, at plant/RER U
Electronics Photovoltaic | Photovoltaic Photocell-single Si Photovoltaic cell, single-Si, at plant/RER U
Electronics Photovoltaic | Silicon Si-multi wafer Multi-Si wafer, at plant/RER U
Electronics Photovoltaic | Silicon Si-multi wafer Multi-Si wafer, ribbon, at plant/RER U
Electronics Photovoltaic | Silicon Sl-smglc? crystal- CZ single crystalline silicon, electronics, at plant/RER U
electronics
Electronics Photovoltaic { Silicon Sl-smgle_ crystal- Single-Si wafer, electronics, at plant/RER U
electronics
. . i Si-single crystal- CZ single crystalline silicon, photovoltaics, at
Electronics Photovoltaic | Silicon photovoltaics plant/RER U
Electronics Photovoltaic | Silicon Si-single cFystal- Single-Si wafer, photovoltaics, at plant/RER U
photovoltaics
Printed .
Electronics Wiring CoerIS. antrols Electronic Electronics for control units/RER U
Electronic units
Board
. Printed PWB-mounted- Printed wiring board, mounted, Desktop PC mainboard,
Electronics Wiring PWB-mounted Desktop PC
- at plant/GLO U
Board mainboard
Printed PWB-mounted- . .. .
Electronics Wiring PWB-mounted Desktop PC Printed wirng board, mounted, Desktop PC mainboard,
. Pb containing, at plant/GLO U
Board mainboard
Printed PWB-mounted- . .. .
Electronics Wiring PWB-mounted Desktop PC Printed wiring board, mounted, Desktop PC mainboard,
. Pb free, at plant/GLO U
Board mainboard
Printed PWB-mounted- . .. .
Electronics Wiring PWB-mounted Laptop PC Printed wiring board, mounted, Laptop PC mainboard,
. at plant/GLO U
Board mainboard
Printed PWB-mounted- . . ;
. . Printed wiring board, mounted, Laptop PC mainboard,
Electronics Wiring PWB-mounted Laptop PC Pb containing, at plantGLO U
Board mainboard
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Printed PWB-mounted Printed wiring board, mixed ted. 1d

Electronics Wiring PWB-mounted nounted- . g T 1xed mounted, unspec., soider
Board unspecified mix, at plant/GLO U
Printed . - .

Electronics Wiring PWB-pov&fer PWB-power supply Pnnte.d wiring board, power supply unit desktop PC, Pb
Board supply unit unit desktop PC containing, at plant/GLO U
Printed . iy .

Electronics Wiring PWB-power PWB-power supply | Printed wiring board, power supply unit desktop PC, Pb
Board supply unit unit desktop PC free, at plant/GLO U
Printed Printed wiring board it desktop P

Electronics Wiring PWB-pov\'fer PWB-power supply rinted wiring board, power supply unit desktop PC,
Board supply unit unit desktop PC solder mix, at plant/GLO U
Printed . L .

Electronics Wiring PWB-surface PWB-surface Printed wiring board, surface mount, lead-containing
Board mount mount-lead surface, at plant/GLO U
Printed . .

Electronics Wiring PWB-surface PWB-surface Prmtf?d wiring board, surface mounted, unspec., Pb
Board mount mount-lead containing, at plant/GLO U
Printed . ..

Electronics Wiring PWB-surface PWB-surface Printed wiring board, surface mount, lead-free surface, at
Board mount mount-lead free plant/GLO U
Printed . .

Electronics Wiring PWB-surface PWB-surface Printed wiring board, surface mounted, unspec., Pb free,
Board mount mount-lead free at plant/GLO U
Printed

Electronics Wiring PWB-surface PWB-sull'face Printed wiring board, surface mount, at plant/GLO U
Board mount mount-plant
Printed . ..

Electronics Wiring PWB-surface PWB-surface . Px}nted wiring board, surface mounted, unspec., solder
Board mount mount-solder mix mix, at plant/GLO U
Printed PWB-through-hole | PWB-through-hole-

Electronics Wiring Printed wiring board, through-hole, at plant/GLO U
Board mounted at plant
Printed . ..

Electronics Wiring PWB-through-hole | PWB-through-hole- Prmte.d wiring board, through-hole mounted, unspec., Pb
Board mounted lead containing, at plant/GLO U
Printed . .. .

Electronics Wiring PWB-through-hole | PWB-through-hole- | Printed wiring board, through-hole, lead-containing
Board mounted lead surface, at plant/GLO U

Electronics %ﬁtsd PWB-through-hole | PWB-through-hole- | Printed wiring board, through-hole mounted, unspec., Pb
Boar dg mounted lead free free, at plant/GLO U

Electronics %ﬁgd PWB-through-hole | PWB-through-hole- | Printed wiring board, through-hole, lead-free surface, at
Boar dg mounted lead free plant/GLO U

Electronics I\’Vni?itgd PWB-through-hole | PWB-through-hole- | Printed wiring board, through-hole mounted, unspec.,
Boar dg mounted solder mix solder mix, at plant/GLO U

Electronics Silicons 2 General Silicon Zilggn-electromc Silicon, electronic grade, at plant/DE U

Electronics Silicons 2 General Silicon Z:Zg:n-electromc Silicon, electronic grade, off-grade, at plant/DE U

Electronics Silicons 2 General Silicon Silicon-MG MGe-silicon, at plant/NO U

Electronics Silicons 2 General Silicon Silicon-multi Si Silicon, multi-Si, casted, at plant/RER U
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Electronics Silicons 2 General Silicon Silicon- . Silicon, production mix, photovoltaics, at plant/GLO U
photovoltaics
. . . Silicon- Silicon, solar grade, modified Siemens process, at

Electronics Silicons 2 General Silicon photovoltaics plant/RER U

Glass g;)anssstructlon Flat Glass Flat Glass coated Flat glass, coated, at plant/RER U

Glass g;):SsStructlon Flat Glass Flat Glass uncoated | Flat glass, uncoated, at plant/RER U

Glass g&l):ssstructlon Glass Fiber Glass Fiber plant Glass fibre, at plant/RER U

Glass Construction Glass Tube Glass .‘E‘be Glass tube, borosilicate, at plant/DE U
Glass borosilicate
Construction Glass tube solar w/ Solar collector glass tube, with silver mirror, at plant/DE

Glass Glass tube . .
Glass silver mirror U

Glass Construction Glazing Glass Glazing Glass Glazing, double (2-IV), U<1.1 W/m2K, at plantRER U
Glass double g ? ’ i
Construction . Glazing Glass Glazing, double (2-IV), U<1.1 W/m2K, laminated

Glass Glass Glazing Glass double safety glass, at plant/RER U

Glass g;’;:s"““‘"“ Glazing Glass Glazing Glass triple | Glazing, triple (3-1V), U<0.5 W/m2K, at plant/RER U

Glass Construction Solar Glass $olar Glass low- Solar glass, low-iron, at regional storage/RER U
Glass iron

Glass ga;:ls(:gmg PG-brown PG-brown plant Packaging glass, brown, at plant/CH S

Glass Z?ZI;:gmg PG-brown PG-brown plant Packaging glass, brown, at plant/DE U

Glass PG?:IS(:gmg PG-brown PG-brown plant Packaging glass, brown, at plant/RER U
Packaging PG-brown regional . .

Glass Glass PG-brown storage Packaging glass, brown, at regional storage/CH S

Glass lc’;z;:g(:gmg PG-green PG-green plant Packaging glass, green, at plant/CH S

Glass (P;algls?gmg PG-green PG-green plant Packaging glass, green, at plant/DE U

Glass geizls(sagmg PG-green PG-green plant Packaging glass, green, at plant/RER U

Glass Packaging PG-green PG-green regional Packaging glass, green, at regional storage/CH S
Glass storage ’ ?

Glass PGz;::Sagmg PG-white PG-white plant Packaging glass, white, at plant/CH S

Glass lézizi(:gmg PG-white PG-white plant Packaging glass, white, at plant/DE U

Glass Zizl(:gmg PG-white PG-white plant Packaging glass, white, at plant/RER U

Glass ge;.ckagmg PG-white PG-white regional Packaging glass, white, at regional storage/CH S

ass storage

Glass Waste Glass | Waste Glass 3 Glass cullet Glass cullets, sorted, at sorting plant/RER U

Glass Waste Glass | Waste Glass 3 S;‘;Z;ggm public Glass, from public collection, unsorted/RER U
Ferrous \

Metal metals Iron Iron cast Cast iron, at plant/RER U
Ferrous

Metal metals Iron Iron cast Iron, sand casted/US
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Ferrous . .
Metal metals Iron Iron pig Pig iron, at plant/GLO U
Metal Ferrous Iron Iron4 Ferrite, at plant/GLO U
metals
Metal Ferrous Iron Iron4 Iron and steel, production mix/US
metals
Metal Ferrous Steel Stecl Reinforcing steel, at planRER U
metals
Metal i::;gs Steel Steel chromium Chromium steel 18/8, at plant/RER U
Metal Ferrous Steel Steel coil Stainless steel hot rolled coil, annealed & pickled, elec.
metals arc furnace route, prod. mix, grade 304 RER S
Ferrous . Steel hot rolled coil, blast furnace route, prod. mix,
Metal metals Steel Steel coil thickness 2-7 mm, width 600-2100 mm RER
Ferrous .
Metal metals Steel Steel converter Steel, converter, chromium steel 18/8, at plant/RER U
Metal ];fé:;lgs Steel Steel converter Steel, converter, low-alloyed, at plant/RER U
Metal f;;trg;s Steel Steel converter Steel, converter, unalloyed, at plant/RER U
Metal Eg:;zs Steel Steel electric Steel, electric, chromium steel 18/8, at plantRER U
Metal I;::;:S Steel Steel electric Steel, electric, un- and low-alloyed, at plant/RER U
Metal fne;:;lsls Steel Steel low alloyed Steel, low-alloyed, at plant/RER U
Ferrous Steel rebar, blast furnace and electric arc furnace route,
Metal metals Steel Steel rebar production mix, at plant GLO S
Metal Ferrous Steel Steel section Steel hot rolled section, blast furnace and electric arc
metals furnace route, production mix, at plant GLO S
Metal Ferrous Steel Steel sheet Galvanized steel sheet, at plant/RNA
metals
Metal Ferrous Steel Steel sheet Hot rolled sheet, steel, at plant/RNA
metals
Ferrous . . .
Metal rmetals Steel Steel tin plated Tin plated chromium steel sheet, 2 mm, at plant/RER U
Metal X[lit:;ls Aluminum Alloy Aluminum alloy Aluminium alloy, AIMg3, at plant/RER U
Metal ,I;/[]T:;ls Ferrous Alloys Ferrochromium Ferrochromium, high-carbon, 68% Cr, at plant/GLO U
Metal . Ferrochromium, high-carbon, 68% Cr, at regional
Metal Alloys Ferrous Alloys Ferrochromium storage/RER U
Metal Ferromanganese, high-coal, 74.5% Mn, at regional
Metal Alloys Ferrous Alloys Ferromanganese storage/RER U
Metal 11:‘/[1(1::;}5 Ferrous Alloys Ferronickel Ferronickel, 25% Ni, at plant/GLO U
Metal Tron-Nickel- . .
Metal Alloys Ferrous Alloys Chromium Iron-nickel-chromium alloy, at plant/RER U
Metal %ﬁg}s l;/Iagnesnum Alloy Magnesium alloy 4 Magnesium-alloy, AZ91, at plant/RER U
Metal IZII‘]?::;}S I:;/Iagnesmm Alloy Magnesium alloy 4 Magnesium-alloy, AZ91, diecasting, at plant/RER U
Metal Solder, bar, Sn63Pb37, for electronics industry, at
Metal Alloys Solder Solder bar plant/GLO U
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Metal Solder, bar, Sn95.5Ag3.9Cu0.6, for electronics industry,
Metal Alloys Solder Solder bar at plant/GLO U
Metal I\A/IE::;IS Solder ts.r(;leder cadmium Brazing solder, cadmium free, at plant/RER U
Metal Solder, paste, Sn63Pb37, for electronics industry, at
Metal Alloys Solder Solder paste plant/GLO U
Metal Solder, paste, Sn95.5Ag3.9Cu0.6, for electronics
Metal Alloys Solder Solder paste industry, at plant/GLO U
Metal XIITZC;}S Solder Solder soft Soft solder, Sn97Cu3, at plant/RER U
Non-
Metal Ferrous Aluminum Aluminum primary | Aluminium, primary, at plant/RER U
metals
Non-
Metal Ferrous Aluminum Aluminum primary | Aluminium, primary, liquid, at plant/RER U
metals
Non-
Metal Ferrous Aluminum Aluminum primary | Aluminum, primary, ingot, at plant/RNA
metals
Non-
Metal Ferrous Aluminum Aluminum primary Aluminum, primary, smelt, at plant/RNA
metals
Non- Aluminum
Metal Ferrous Aluminum . . Aluminium, production mix, at plant/RER U
metals production mix
Non- Aluminum
Metal Ferrous Aluminum ducti . Aluminium, production mix, cast alloy, at plant/RER U
metals production mix
Non- . . . .
Metal Ferrous Aluminum Aluminum Aluminium, production mix, wrought alloy, at
metals production mix plant/RER U
Non- Aluminum
Metal Ferrous Aluminum Aluminium, secondary, from old scrap, at plant/RER U
metals secondary
Non- Aluminum
Metal Ferrous Aluminum da Aluminum, secondary, ingot, at plant/RNA
metals secondary
Metal I::;;us Aluminum Aluminum Aluminum, secondary, ingot, from automotive scrap, at
metals secondary plant/RNA
Metal ;I::c;us Aluminum Aluminum Aluminum, secondary, ingot, from beverage cans, at
metals secondary plant/RNA
Non- Aluminum
Metal Ferrous Aluminum dal Aluminum, secondary, extruded/RNA
metals secondary shaped
Non- Aluminum
Metal Ferrous Aluminum Aluminum, secondary, rolled/RNA
metals secondary shaped
Non- Aluminum
Metal Ferrous Aluminum u Aluminum, secondary, shape casted/RNA
metals secondary shaped
Non- Aluminium extrusion profile, pri rod., prod. mi
Metal Ferrous Aluminum Aluminum shaped lumini -fini k? d » primary %0 "RpER S X,
metals aluminium semi-finished extrusion product
Non- Aluminium sheet, primary prod., prod. mix, aluminium
Metal ];f;tr;l;s Aluminum Aluminum shaped semi-finished sheet product RER S
Non-
Metal Ferrous Aluminum Aluminum shaped Aluminum ingot, production mix, at plant/US
metals
Non-
Metal Ferrous Aluminum Aluminum shaped Aluminum, cast, lost foam, at plant/kg/US
metals
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Level 1

Level 2

Level 3

Level 4

Level 5

Metal

Non-
Ferrous
metals

Aluminum

Aluminum shaped

Aluminum, cast, precision sand casting/kg/US

Metal

Non-
Ferrous
metals

Aluminum

Aluminum shaped

Aluminum, cast, semi-permanent mold (SPM), at
plant’kg/US

Metal

Non-
Ferrous
metals

Brass

Brass4

Brass, at plant/CH U

Metal

Non-
Ferrous
metals

Bronze

Bronze4

Bronze, at plant/CH U

Metal

Non-
Ferrous
metals

Cadmium

Cadmium chloride

Cadmium chloride, semiconductor-grade, at plant/US U

Metal

Non-
Ferrous
metals

Cadmium

Cadmium primary

Cadmium, primary, at plant/GLO U

Metal

Non-
Ferrous
metals

Cadmium

Cadmium

semiconductor grade

Cadmium, semiconductor-grade, at plant/US U

Metal

Non-
Ferrous
metals

Cadmium

Cadmium sulphide

Cadmium sulphide, semiconductor-grade, at plant/US U

Metal

Non-
Ferrous
metals

Cadmium

Cadmium telluride

Cadmium telluride, semiconductor-grade, at plant/US U

Metal

Non-
Ferrous
metals

Chromium

Chromium4

Chromium, at regional storage/RER U

Metal

Non-
Ferrous
metals

Cobalt

Cobalt4

Cobalt, at plant/GLO U

Metal

Non-
Ferrous
metals

Copper

Copper primary

Copper, at regional storage/RER U

Metal

Non-
Ferrous
metals

Copper

Copper primary

Copper, blister-copper, at primary smelter/RER U

Metal

Non-
Ferrous
metals

Copper

Copper primary

Copper, from imported concentrates, at refinery/DE U

Metal

Non-
Ferrous
metals

Copper

Copper primary

Copper, primary, at refinery/GLO U

Metal

Non-
Ferrous
metals

Copper

Copper primary

Copper, primary, at refinery/ID U

Metal

Non-
Ferrous
metals

Copper

Copper primary

Copper, primary, at refinery/RAS U

Metal

Non-
Ferrous
metals

Copper

Copper primary

Copper, primary, at refinery/RER U

Metal

Non-
Ferrous
metals

Copper

Copper primary

Copper, primary, at refinery/RLA U

Metal

Non-
Ferrous
metals

Copper

Copper primary

Copper, primary, at refinery/RNA U

Metal

Non-
Ferrous
metals

Copper

Copper primary
CombineProd

Copper, from combined metal production, at
beneficiation/SE U

Metal

Non-
Ferrous
metals

Copper

Copper primary
CombineProd

Copper, from combined metal production, at refinery/SE
18]
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Level 1 Level 2 Level 3 Level 4 Level §
Non- Copper primary Copper, primary, from platinum group metal
Metal Ferrous Copper CombineProd production/RU U
metals
Non- Copper primary Copper, primary, from platinum group metal
Metal Ferrous Copper CombineProd production/ZA U
metals
Non- Copper sheet, technology mix, consumption mix, at
Metal Ferrous Copper Copper processed plant, 0,6 mm thickness EU-15 S
metals
Non- . .
Metal Ferrous Copper Copper processed goppcr telluride cement, from copper production/GLO
metals
Non- . . .
Copper tube, technology mix, consumption mix, at plant,
Metal Ferrous Copper Copper processed diameter 15 mm, 1| mm thickness EU-15 S
metals
Metal I]-:I:x:;us Copver C r processed Copper wire, technology mix, consumption mix, at
ppe OPper processe plant, cross section 1 mm? EU-15 S
metals
Non-
Metal Ferrous Copper Copper secondary Copper, secondary, at refinery/RER U
metals
Non- Copper solvent
Metal Ferrous Copper PP Copper, SX-EW, at refinery/GLO U
extracted
metals
Non- Gallium
Metal Ferrous Gallium semiconductor Gallium, semiconductor-grade, at plant/GLO U
metals grade
Non- Gallium . . .
Metal Ferrous Gallium semiconductor I(ialhum, semiconductor-grade, at regional storage/RER
metals grade
Non- Indium regional
Metal Ferrous Indium g Indium, at regional storage/RER U
storage
metals
Non- Lead combined Lead, from combined metal production, at
Metal Ferrous Lead . L
production beneficiation/SE U
metals
Non- Lead combined
Metal Ferrous Lead . Lead, from combined metal production, at refinery/SE U
production
metals
Non-
Metal Ferrous Lead Lead primary Lead, primary, at plant/GLO U
metals
Non-
Metal Ferrous Lead Lead primary Lead, primary, consumption mix, at plant DE S
metals
Non- Lead regional .
Metal Ferrous Lead Lead, at regional storage/RER U
storage
metals
Non-
Metal Ferrous Lead Lead secondary Lead, secondary, at plant/RER U
metals
Non-
Metal Ferrous Lithium Lithium4 Lithium, at plant/GLO U
metals
Non-
Metal Ferrous Magnesium 3 Magnesium 4 Magnesium, at plant/RER U
metals
Non- Manganese regional
Metal Ferrous Manganese ganese reg Manganese, at regional storage/RER U
storage
metals
Non-
Metal Ferrous Mercury Mercury4 Mercury, liquid, at plant/GLO U
metals
Non-
Metal Ferrous Mischmetal Mischmetal4 Mischmetal, primary, at plant/GLO U
metals
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Non- Molybd
Metal Ferrous Molybdenum yobdenum Molybdenum, at regional storage/RER U
regional storage
metals
Non- Nickel, primary, from plati tal
Metal Ferrous Nickel Nickel primary ¢X¢, primary, trom platinum group meta
production/RU U
metals
Non- Nickel, primary, from platinum group metal
Metal fncex*;)lxsxs Nickel Nickel primary production/ZA U
Non- . . .
Metal Ferrous Nickel Nickel secondary Nxcke!, secondary, from electronic and electric scrap
recycling, at refinery/SE U
metals
Non-
Metal Ferrous Nickel Nickel4 Nickel, 99.5%, at plant/GLO U
metals
Non- Tantalum, powder, capacitor-grade, at regional
Metal Ferrous Tantalum Tantalum powder » powder, capaciior-grade, at reg
storage/GLO U
metals
Non- Tellurium
Metal Ferrous Tellurium semiconductor Tellurium, semiconductor-grade, at plant/GLO U
metals grade
Non-
Metal Ferrous Tin Tin regional storage | Tin, at regional storage/RER U
metals
Non- Titanium zinc plate, without pre-weathering, at plant/DE
Metal Ferrous Titanium Titanium zinc plate U pate, p sap
metals
Non- . . . . .
. Zinc combined Zing, from combined metal production, at
Metal Ferrous Zinc . "
production beneficiation/SE U
metals
Non- Zinc combined
Metal Ferrous Zinc . Zinc, from combined metal production, at refinery/SE U
production
metals
Non- Special high grade zinc, primary production, production
Metal Ferrous Zinc Zinc high grade P g »P yP +P
mix, at plant GLO S
metals
Non-
Metal Ferrous Zinc Zinc primary Zinc, primary, at regional storage/RER U
metals
Paper and Board Board Base Fiber Chipboard4 Whitelined chipboard, WLC, at plant/RER U
Paper and Board Board Core Board Core Board4 Core board, at plant/RER U
Paper and Board Board Liquid Board Liquid Board4 Liquid packaging board, at plant/RER U
Paper and Board Board Solid Board SB-Bleached Solid bleached board, SBB, at plant/RER U
Paper and Board Board Solid Board SB-Unbleached Solid unbleached board, SUB, at plant/RER U
Paper and Board gsgggated Base Fiber Kraftliner Corrugated board base paper, kraftliner, at plant/RER U
Corrugated . . . Corrugated board base paper, semichemical fluting, at
Paper and Board board Base Fiber SemiChemFluting plant/RER U
Paper and Board gggggated Base Fiber Testliner Corrugated board base paper, testliner, at plant/RER U
Paper and Board (bjg);ggated Base Fiber Wellenstoff gorrugatcd board base paper, wellenstoff, at plant/RER
Corrugated Recycling Fiber- Corrugated board, recycling fibre, double wall, at
Paper and Board board Double Wall DW plant/CH U
Corrugated Recycling Fiber- Corrugated board, recycling fibre, double wall, at
Paper and Board board Double Wall DW plant/RER U
Paper and Board tc):;:ilgated Single Wall Fresh Fiber Corrugated board, fresh fibre, single wall, at plant/CH U
Paper and Board gggggated Single Wall Fresh Fiber Sorrugated board, fresh fibre, single wall, at plant/RER
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Paper and Board Corrugated Single Wall Mixed Fiber Corrugated board, mixed fibre, single wall, at plant/CH
board U
Paper and Board bC;);ggated Single Wall Mixed Fiber ICjorrugatcd board, mixed fibre, single wall, at plant/RER
Corrugated . . . Corrugated board, recycling fibre, single wall, at
Paper and Board board Single Wall Recycling Fiber-SW plant/CH U
Corrugated . . — Corrugated board, recycling fibre, single wall, at
Paper and Board board Single Wall Recycling Fiber-SW plant/RER U
Graphic . . - . . s
Paper and Board Paper Graphic Recycling | Deinking Paper, recycling, with deinking, at plant/RER U
Graphic . . s . L
Paper and Board Paper Graphic Recycling | No-Deinking Paper, recycling, no deinking, at plantRER U
P Graphic . . . ..
aper and Board Paper News Print DIP-Containing Paper, newsprint, DIP containing, at plant/RER U
Graphic . . )
Paper and Board Paper News Print News Print-At Plant | Paper, newsprint, 0% DIP, at plant/RER U
Graphic . . .
Paper and Board Paper News Print News Print-At Plant | Paper, newsprint, at plant/CH U
Graphic . News Print- . .
Paper and Board Paper News Print Regional Storage Paper, newsprint, at regional storage/CH U
Graphic . News Print- . .
Paper and Board Paper News Print Regional Storage Paper, newsprint, at regional storage/RER U
Graphic .. .
Paper and Board Paper Wood Containing WC-LWC Paper, wood-containing, LWC, at plant/RER U
Paper and Board }(;?;';E:uc Wood Containing WC-LWC Paper, wood-containing, LWC, at regional storage/CH U
Paper and Board g:;;e):nc Wood Containing WC-LWC %aper, wood-containing, LWC, at regional storage/RER
Graphic . Paper, woodcontaining, supercalendred (SC), at
Paper and Board Paper Wood Containing WC-SC plant/RER U
Paper and Board Graphic Wood Containing WC-SC Pap_er, wood-containing, supercalendred (SC), at
Paper regional storage/CH U
Graphic . 3 Paper, wood-containing, supercalendred (SC), at
Paper and Board Paper Wood Containing WC-SC regional storage/RER U
Graphic . .
Paper and Board Paper Wood Free WF-Coated Paper, woodfree, coated, at integrated mill/RER U
P Graphic . .
aper and Board Paper Wood Free WEF-Coated Paper, woodfree, coated, at non-integrated mill/RER U
P Graphic .
aper and Board Paper Wood Free WF-Coated Paper, woodftree, coated, at regional storage/CH U
Graphic .
Paper and Board Paper Wood Free WF-Coated Paper, woodfree, coated, at regional storage/RER U
Graphic . .

Paper and Board Paper Wood Free WF-Uncoated Paper, woodfree, uncoated, at integrated mill/RER U
Paper and Board gar;g?w Wood Free WF-Uncoated Paper, woodfree, uncoated, at non-integrated mill/RER
Graphic .

Paper and Board Paper Wood Free WF-Uncoated Paper, woodfree, uncoated, at regional storage/CH U
Paper and Board }C)i;;g:uc Wood Free WEF-Uncoated Paper, woodfree, uncoated, at regional storage/RER U
Packaging Corrugated board, Packaging, corrugated board, mixed fibre, single wall, at
Paper and Board Paper Corrugated mixed fiber plant/CH U
Packaging Corrugated board, Packaging, corrugated board, mixed fibre, single wall, at
Paper and Board Paper Corrugated mixed fiber plant/RER U
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Packaging Corrugated boxes, Corrugated board boxes, technology mix, prod. mix,
Paper and Board Paper Corrugated technology mix 16,6 % primary fibre, 83,4 % recycled fibre EU-25 S
Packaging . .
Paper and Board Paper Graphic Packaging | Kraft-bleached Kraft paper, bleached, at plant/RER U
Packaging . .
Paper and Board Paper Graphic Packaging | Kraft-unbleached Kraft paper, unbleached, at plant/RER U
Paper and Board ;:;l:glng Liquid Packing Liquid Packing 4 i{;ﬁ;ﬁ%ﬁgf liquid packaging board containers, at
Paper and Board Pulp Chemi- Chemi- Chemi-thermomechanical pulp, at plant/RER U
Thermomech pulp | Thermomech pulp 4 ’
Paper and Board Pulp Sulphate pulp :3;}::;6 pulp, Sulphate pulp, average, at regional storage/CH U
Paper and Board Pulp Sulphate pulp 23;‘: :;e pulp, Sulphate pulp, average, at regional storage/RER U
Paper and Board Pulp Sulphate pulp S;Iel f(l:.lli: Z pulp, ECF Sulphate pulp, ECF bleached, at plant/RER U
Sulphate pulp, Sulphate pulp, from eucalyptus ssp. (SFM), unbleached,
Paper and Board Pulp Sulphate pulp cucalyptus at pulpmill'TH U
Sulphate pulp, Sulphate pulp, from eucalyptus ssp. (SFM), unbleached,
Paper and Board Pulp Sulphate pulp eucalyptus TH, at maritime harbour/RER U
Paper and Board Pulp Sulphate pulp S;’gfgﬁz pulp, TCF Sulphate pulp, TCF bleached, at plant/RER U
Sulphate pulp,
Paper and Board Pulp Sulphate pulp unblieachfd P Sulphate pulp, unbleached, at plant/RER U
Paper and Board Pulp Suphite pulp E;;] :é}i;pulp, Sulphite pulp, bleached, at plant/RER U
Paper and Board | Pulp Themo-mechanical | Thermo-mechanical | gy mechanical pulp, at plant/RER U
pulp pulp4
Paper and Board Pulp Wood Pulp Stone Ground Stone groundwood pulp, SGW, at plant/RER U
Waste WP-for further . Waste paper, mixed, from public collection, for further
Paper and Board Paper treatment Mt treatment/CH U
Waste WP-for further . Waste paper, mixed, from public collection, for further
Paper and Board Paper treatment WP-mixed treatment/RER U
Paper and Board ;Vaste WP-for further WP-sorted Waste paper, sorted, for further treatment/CH U
aper treatment
Paper and Board ;?Vaste WP-for further WP-sorted Waste paper, sorted, for further treatment/RER U
aper treatment
Plant Product Fruiting Fruit Fruit4 Harvesting, fresh fruit bunch, at farm/RNA
products
Plant Product Fruiting Nuts Nuts4 Husked nuts harvesting, at farm/PH U
products
Plant Product Fruiting Palm Palm fruit Palm fruit bunches, at farm/MY U
products
Plant Product Fruiting Palm Palm kernel Palm kernel, at plant/RNA
products
Fruiting Rape Seed .
Plant Product products Rape Seed conventional Rape seed conventional, at farm/DE U
Fruiting Rape Seed . .
Plant Product products Rape Seed conventional Rape seed conventional, Barrois, at farm/FR U
Fruiting Rape Seed .
Plant Product products Rape Seed conventional Rape seed conventional, Saxony-Anhalt, at farm/DE U
Plant Product Fruiting Rape Seed Rape Seed Rape seed extensive, at farm/CH U
products P extensive ’
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Fruiting . .
Plant Product products Rape Seed Rape Seed organic Rape seed, organic, at farm/CH U
Plant Product Fruiting Rape Seed Rape Seed4 Rape seed 1P, at farm/CH U
products
Plant Product Fruiting Rape Seed Rape Seed4 Rape seed, at farm/US U
products
Fruiting
Plant Product products Rape Seed Rape Seed4 Rapeseed, at field/kg/US
Plant Product Fruiting Seeds Scedsd Seedlings, at greenhouse, US PNW/US
products
Plant Product Fruiting Seeds Seeds4 Seedlings, at greenhouse, US SE/US
products
Plant Product Grains Barley Barley grains Barley grains IP, at farm/CH U
Plant Product Grains Barley Barley grains Barley grains conventional, Barrois, at farm/FR U
conventional
Plant Product Grains Barley Barley grains Barley grains conventional, Castilla-y-Leon, at farm/ES
conventional U
Plant Product Grains Barley Barley grains Barley grains conventional, Saxony-Anhalt, at farm/DE
conventional
Plant Product Grains Barley Barley. graimns Barley grains extensive, at farm/CH U
extensive
Plant Product Grains Barley E;;:){cgrams Barley grains organic, at farm/CH U
Plant Product Grains Com Corn grain Grain maize IP, at farm/CH U
Plant Product Grains Comn Corn grain organic Grain maize organic, at farm/CH U
Plant Product Grains Comn Corn4 Com, at farm/US U
Plant Product Grains Com Corn4 Corn, at field/kg/US
Plant Product Grains Rice Rice grain Rice grain, at field/kg/US
Plant Product Grains Rice Rice4 Rice, at farm/US U
Plant Product Grains Rye Rye grain Rye grains IP, at farm/CH U
Plant Product Grains Rye Rye grain Rye grains conventional, at farm/RER U
conventional
Plant Product Grains Rye Rye grain extensive | Rye grains extensive, at farm/CH U
Plant Product Grains Rye Rye grain organic Rye grains organic, at farm/CH U
Plant Product Grains Sorghum Sorghum grain Sweet sorghum grains, at farm/CN U
Plant Product Grains Wheat grain Wheat grain Wheat grains IP, at farm/CH U
Plant Product Grains Wheat grain Wheat grain Wheat grains, at farm/US U
Plant Product Grains Wheat grain Wheat grain Wheat grains, at field/kg/US
Plant Product Grains Wheat grain Wheat gramn Wheat grains conventional, Barrois, at farm/FR U
conventional
Plant Product Grains Wheat grain Wheat grain Wheat grains conventional, Castilla-y-Leon, at farm/ES
conventional U
Plant Product Grains Wheat grain Wheat grain Wheat grains conventional, Saxony-Anhalt, at farm/DE
conventional U
Plant Product Grains Wheat grain Wheat'gram Wheat grains extensive, at farm/CH U
extensive
Plant Product Grains Wheat grain Wheat grain organic | Wheat grains organic, at farm/CH U
Plant Product Legume Fava beans Fava bt;,ans organic Fava beans organic, at farm/CH U
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Plant Product Legume Fava beans Fava beans4 Fava beans IP, at farm/CH U

Plant Product Legume Pea Pea protein Protein peas conventional, Barrois, at farm/FR U
conventional

Plant Product Legume Pea Pea protein Protein peas conventional, Castilla-y-Leon, at farm/ES U
conventional

Plant Product Legume Pea Peap rqtem Protein peas conventional, Saxony-Anhalt, at farm/DE U
conventional

Plant Product Legume Pea Pea protien Protein peas, IP, at farm/CH U

Plant Product Legume Pea Pea protien organic Protein peas, organic, at farm/CH U

Plant Product Legume Soybean Soybean organic Soy beans organic, at farm/CH U

Plant Product Legume Soybean Soybean4 Soy beans IP, at farm/CH U

Plant Product Legume Soybean Soybeand Soybean grains, at field’kg/US

Plant Product Legume Soybean Soybean4 Soybeans, at farm/BR U

Plant Product Legume Soybean Soybean4 Soybeans, at farm/US U

Plant Product Plant fibers Cotton Cotton fibers Cotton fibres, at farm/US U

Plant Product Plant fibers Cotton Cotton fibers Cotton fibres, ginned, at farm/CN U

Plant Product Plant fibers Cotton Cottond Cotton, at field’kg/US

Plant Product Plant fibers Fibers Jute fibers Jute fibres, irrigated system, at farm/IN U

Plant Product Plant fibers Fibers TJute fibers Jute fibres, rainfed system, at farm/IN U

Plant Product Plant fibers Fibers Kenaf fibers Kenaf fibres, at farm/IN U

Plant Product Plant matter Corn silage Corn silage Silage maize IP, at farm/CH U

Plant Product Plant matter Corn silage Corn silage organic Silage maize organic, at farm/CH U

Plant Product Plant matter Fertilizer Green Manure Green manure IP, until April/CH U

Plant Product Plant matter Fertilizer Green Manure Green manure IP, until February/CH U

Plant Product Plant matter Fertilizer Green Manure Green manure IP, until January/CH U

Plant Product Plant matter Fertilizer Green Manure Green manure IP, until march/CH U

Plant Product Plant matter Fertilizer Gregfggﬁ':me Green manure organic, until April/CH U

Plant Product Plant matter Fertilizer Grezfggﬁ:me Green manure organic, until February/CH U

Plant Product Plant matter Fertilizer Gre:;lgI;/IIl:;.:ure Green manure organic, until January/CH U

Plant Product Plant matter Fertilizer Grezfgﬁ?gure Green manure organic, until march/CH U

Plant Product Plant matter Hay Hay extensive Hay extensive, at farm/CH U

Plant Product Plant matter Hay Hay intensive Hay intensive IP, at farm/CH U

Plant Product Plant matter Hay Hairl;;i?swc Hay intensive organic, at farm/CH U

Plant Product Plant matter Stem Tute stalks Jute stalks, from fibre production, irrigated system, at

farm/IN U
Plant Product Plant matter Stem Tute stalks Jute stalks, from fibre production, rainfed system, at
farm/IN U

Plant Product Plant matter Stem Kenaf stalks Kenaf stalks, from fibre production, at farm/IN U

Plant Product Plant matter Stem Sorghum stem Sweet sorghum stem, at farm/CN U

Plant Product Plant matter Straw Barley Straw Barley straw extensive, at farm/CH U
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Plant Product Plant matter | Straw Barley Straw Barley straw IP, at farm/CH U

Plant Product Plant matter | Straw Barley Straw Barley straw organic, at farm/CH U

Plant Product Plant matter | Straw Rye straw Rye straw IP, at farm/CH U

Plant Product Plant matter | Straw fgfvit::ivgnal Rye straw conventional, at farm/RER U

Plant Product Plant matter | Straw Rye straw extensive | Rye straw extensive, at farm/CH U

Plant Product Plant matter | Straw Rye straw organic Rye straw organic, at farm/CH U

Plant Product Plant matter | Straw Straw organic Straw organic, at farm/CH U

Plant Product Plant matter | Straw Straw4 Straw IP, at farm/CH U

Plant Product Plant matter | Straw Straw4 Straw, from straw areas, at field/CH U

Plant Product Plant matter | Straw Wheat straw Wheat straw extensive, at farm/CH U

Plant Product Plant matter | Straw Wheat straw Wheat straw IP, at farm/CH U

Plant Product Plant matter | Straw zg::’;:tmw Wheat straw organic, at farm/CH U

Plant Product Plant matter | Sugarcane Sugarcane4 Sugarcane, at farm/BR U

Plant Product Plant matter | Sunflower S;l:\fl?lvtiiilal Sunflower conventional, Castilla-y-Leon, at farm/ES U
Plant Product Plant matter | Sunflower Sunflower4 Sunflower IP, at farm/CH U

Plant Product Processed Plant oil Coconut oil4 Crude coconut oil, at plant/PH U

Plant Product Processed Plant oil Palm oil4 Crude palm kernel oil, at plant/RNA

Plant Product Processed Plant oil Palm oil4 Palm kernel oil, at oil mil/MY U

Plant Product Processed Plant oil Palm oil4 Palm kernel oil, processed, at plant/RNA

Plant Product Processed Plant oil Palm oil4 Palm oil, at oil milYMY U

Plant Product Processed Plant oil Rape Seed oil4 Rape oil, at oil mill’'CH U

Plant Product Processed Plant oil Rape Seed oil4 Rape oil, at oil mill/RER U

Plant Product Processed Plant oil Rape Seed oil4 Rape oil, at regional storage/CH U

Plant Product Processed Plant oil Soybean oil4 Soya oil, at plant/RER U

Plant Product Processed Plant oil Soybean oil4 Soybean oil, at oil milYBR U

Plant Product Processed Plant oil Soybean oil4 Soybean oil, at oil mil/US U

Plant Product Processed Starch Corn starch Maize starch, at plant/DE U

Plant Product Processed Starch Potato starch Potato starch, at plant/DE U

Plant Product Root Beet Beet fodder Fodder beets IP, at farm/CH U

Plant Product Root Beet Beet sugar Sugar beets IP, at farm/CH U

Plant Product Root Potato Potato organic Potatoes organic, at farm/CH U

Plant Product Root Potato Potato4 Potato, at field/kg/US

Plant Product Root Potato Potato4 Potatoes IP, at farm/CH U

Plant Product Root Potato Potato4 Potatoes, at farm/US U

Polymers Elastomer ABS ABS Copolymer I,;Z;yt}%xgt}{ig-bumdiene-styrene copolymer, ABS, at
Polymers Elastomer | ABS ;P:ugzgolymer srzrgizgg:ﬁ}z?t;d;:;%rﬁne granulate (ABS),
Polymers Elastomer ABS :\ezrsl Copolymer ;\lzxx'lyt}cl’{;\llt:lc-butadlene-styrene copolymer resin, at
Polymers Elastomer Bitumen Bitumen4 Bitumen sealing, at plant/RER U

79




Level 1 Level 2 Level 3 Level 4 Level 5

Polymers Elastomer Polybutadiene Ig’ﬁgz;:;diene g(;.zl}{butadiene granulate (PB), production mix, at plant
Polymers Elastomer Polybutadiene Polybutadiened Polybutadiene E

Polymers Elastomer Polybutadiene Polybutadiene4 Polybutadiene, at plantRER U

Polymers Elastomer Polybutadiene Polybutadiene4 Polybutadiene, at plant/RNA

Polymers Elastomer SAN SAN copolymer4 Styrene-acrylonitrile copolymer (SAN) E

Polymers Elastomer SAN SAN copolymer4 Styrene-acrylonitrile copolymer, SAN, at plant/RER U
Polymers Elastomer Synthetic rubber Synthetic rubber4 Synthetic rubber, at plant/RER U

Polymers Thermoplastic EVA EVA foil Ethylvinylacetate, foil, at plant/RER U

Polymers Thermoplastic EVA EVA4 Ethylene vinyl acetate copolymer, at plant/RER U
Polymers Thermoplastic Nylon Nylon 6 Nylon 6 + 30% glass fibre E

Polymers Thermoplastic Nylon Nylon 6 Nylon 6 E

Polymers Thermoplastic Nylon Nylon 6 1:1?;3[;1613 }g{ass filled (PA 6 GF), production mix, at
Polymers Thermoplastic Nylon Nylon 6 E}};l}({m 6 granulate (PA 6), production mix, at plant
Polymers Thermoplastic Nylon Nylon 6 Nylon 6, at plant/RER U

Polymers Thermoplastic Nylon Nylon 6 Nylon 6, glass-filled, at plant/RER U

Polymers Thermoplastic Nylon Nylon 66 Nylon 66 E

Polymers Thermoplastic Nylon Nylon 66 gﬁ?g&ﬁg{g&?mpcuﬂd (PA 66 GF 30), production
Polymers Thermoplastic Nylon Nylon 66 I;lysllgn 66 granulate (PA 66), production mix, at plant
Polymers Thermoplastic Nylon Nylon 66 Nylon 66, at plant/RER U

Polymers Thermoplastic Nylon Nylon 66 Nylon 66, glass-filled, at plant/RER U

Polymers Thermoplastic Nylon Nylon 66 Nylon 66/glass fibre composite E

Polymers Thermoplastic PMMA PMMA beads PMMA beads E

Polymers Thermoplastic PMMA PMMA beads ;(;L}:I:f ;kg;n;;kgorylaw (PMMA) beads, production
Polymers Thermoplastic PMMA PMMA beads Polymethyl methacrylate, beads, at plant/RER U
Polymers Thermoplastic PMMA PMMA sheet PMMA sheet E

Polymers Thermoplastic PMMA PMMA sheet Polymethyl methacrylate, sheet, at plantRER U
Polymers Thermoplastic Polyacrylonitrile AN Acrylonitrile E

Polymers Thermoplastic Polyacrylonitrile AN Acrylonitrile from Sohio process, at plant/RER U
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. _ Polyacrylonitrile fibres (PAN), from acrylonitrile and
Polymers Thermoplastic | Polyacrylonitrile PAN methacrylate, prod. mix, PAN w/o additives EU-27 S
. . . Glass fibre reinforced plastic, polyamide, injection
Polymers Thermoplastic Polyamide Polyamide glass moulding, at planVRER U
. . . Polyamide 6.6 fibres (PA 6.6), from adipic acid and
Polymers Thermoplastic Polyamide Polyamided hexamethylene diamine (HMDA), prod. mix, EU-27 S
. Polycarbonate Polycarbonate granulate (PC), production mix, at plant
Polymers Thermoplastic Polycarbonate granulate RER
Polymers Thermoplastic Polycarbonate Polycarbonate4 Polycarbonate E
Polymers Thermoplastic Polycarbonate Polycarbonate4 Polycarbonate, at plant/RER U
Polymers Thermoplastic Polyethylene HDPE HDPE bottles E
Polymers Thermoplastic Polyethylene HDPE HDPE pipes E
Polymers Thermoplastic Polyethylene HDPE HDPE resin E
Polymers Thermoplastic Polyethylene HDPE High density polyethylene resin, at plant/RNA
. Polyethylene high density granulate (PE-HD),
Polymers Thermoplastic Polyethylene HDPE production mix, at plant RER
Polymers Thermoplastic Polyethylene HDPE Polyethylene, HDPE, granulate, at plant/RER U
Polymers Thermoplastic Polyethylene LDPE LDPE bottles E
Polymers Thermoplastic Polyethylene LDPE LDPE resin E
Polymers Thermoplastic Polyethylene LDPE Low density polyethylene resin, at plant/RNA
Polymers Thermoplastic Polyethylene LDPE Packaging film, LDPE, at plant/RER U
' . Polyethylene low density granulate (PE-LD),
Polymers Thermoplastic Polyethylene LDPE production mix, at plant RER
Polymers Thermoplastic Polyethylene LDPE Polyethylene, LDPE, granulate, at plant/RER U
Polymers Thermoplastic Polyethylene LLDPE Linear low density polyethylene resin, at plant/RNA
Polymers Thermoplastic Polyethylene LLDPE LLDPE resin E
. Polyethylene low linear density granulate (PE-LLD),
Polymers Thermoplastic Polyethylene LLDPE production mix, at plant RER
Polymers Thermoplastic Polyethylene LLDPE Polyethylene, LLDPE, granulate, at plant/RER U
Polymers Thermoplastic Polyethylene PET Fleece, polyethylene, at plant/RER U
Polymers Thermoplastic Polyethylene PET PET (amorphous) E
Polymers Thermoplastic Polyethylene PET PET (bottle grade) E
Polymers Thermoplastic Polyethylene PET PET bottles E

81




Level 1 Level 2 Level 3 Level 4 Level 5
Polymers Thermoplastic Polyethylene PET PET film (production only) E
Polymers Thermoplastic Polyethylene PET Polyethylenentg;’e;;:l:}z;att’eagfghi zn;glt{e » production
Polymers Thermoplastic Polyethylene PET Polyethylenilt;iegl;?:ﬁfiE)]:tll?)grga?:;{‘l;;’ production
Polymers Thermoplastic Polyethylene PET POIYeE};z;;ﬁf}:;;zhégﬁ;,2?_225. gi%[‘}lzg i;n ethyl
Polymers Thermoplastic Polyethylene PET Polyethylene tercph;tll::lﬁlagl;a?; late, amorphous, at
Polymers Thermoplastic Polyethylene PET Polyethylene tereph;hlz;l;la.tt;;i é;:.:{l}llate, bottle grade, at
Polymers Thermoplastic Polyethylene Polyester glass Glass fibre reinforﬁle;,iaglgﬁinct,/ﬁ(gl);elsjter resin, hand lay-
Polymers Thermoplastic Polyethylene Polyester resin Alkyd resin, long oil, 70%81 white spirit, at plan/RER
Polymers Thermoplastic Polyethylene Polyester resin Polyester resin, unsaturated, at plant/RER U
Polymers Thermoplastic POIYSIL};EI(;};Iene Polzslkggey‘:ene Polyphenylene sulfide, at plant/GLO U
pohmers | Themeplasic | Popropyine | POVERYne | Fobpropyions e (P cude o el procuctin
Polymers Thermoplastic Polypropylene Polypropylene film Oriented polypropylene film E
Polymers Thermoplastic Polypropylene Polg}l"zgﬁztlznc Polypropylene granulate }({Pg}){, production mix, at plant
Polymers Thermoplastic Polypropylene Polg}l'-p;;%}ﬁltl:ne Polypropylene, granulate, at plant/RER U
Polymers Thermoplastic Polypropylene Pol):np;;)é)ggene Polypropylene injection moulding E
Polymers Thermoplastic Polypropylene Polypropylene resin Polypropylene resin E
Polymers Thermoplastic Polypropylene Polypropylene resin Polypropylene resin, at plant/RNA
Polymers Thermoplastic Polystyrene EPS Expandable polystyrene (EPS) E
Polymers Thermoplastic Polystyrene EPS Polystyrene exPaﬁf”l:t ﬁ:l;l:l;tséEPS), production
Polymers Thermoplastic Polystyrene EPS Polystyrene, expandable, at plant/RER U
Polymers Thermoplastic Polystyrene GPPS General purpose polystyrene, at plant/RNA
Polymers Thermoplastic Polystyrene GPPS Polystyrene (general p;r&?slzé%{a nulate (GPPS), prod.
Polymers Thermoplastic Polystyrene GPPS Polystyrene, general purpose, GPPS, at plant/RER U
Polymers Thermoplastic Polystyrene HIPS High impact polystyrene (HIPS) E

Polymers Thermoplastic Polystyrene HIPS High impact polystn}lfir:,rl:tirlzr:tllfa{té:}ngPS), production
Polymers Thermoplastic Polystyrene HIPS High impact polystyrene resin, at plant/RNA
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Polymers Thermoplastic Polystyrene HIPS Polystyrene, high impact, HIPS, at plant/RER U
Polymers Thermoplastic Polystyrene Polystyrene scrap Polystyrene scrap, old, at plant/CH U

Polymers Thermoplastic Polystyrene g:;l zr:z;::fling Polystyrene thermoforming E

Polymers Thermoplastic PVC PVC resin Polyvinyl chloride resin, at plant/RNA

Polymers Thermoplastic PVC PVC resin g?;ﬁ?ﬁ;‘ﬁg?::;iﬁ t(géivc)’ bulk polymerisation,
Polymers Thermoplastic PVC PVC resin gg%yyr‘ggggggid;r:ﬁzﬁ(fx;l:n{f’);te ;r;:[llstioRr]liR
Polymers Thermoplastic | PVC PVC resin gg{;‘gggl’;‘t‘fg:d}fr;ff;:n(gni‘u’?a f‘;ﬁgggg‘l‘z
Polymers Thermoplastic PVC PVC shaped PVC calendered sheet E

Polymers Thermoplastic PVC PVC shaped PVCfimE

Polymers Thermoplastic PVC PVC shaped PVC injection moulding E

Polymers Thermoplastic PVC PVC shaped PVC pipe E

Polymers Thermoplastic PVC PVC4 Polyvinylchloride, at regional storage/RER U
Polymers Thermoplastic PVC PVC4 Polyvinylchloride, bulk polymerised, at plant/RER U
Polymers Thermoplastic PVC PVC4 Eolyvinylchloride, emulsion polymerised, at plant/RER
Polymers Thermoplastic PVC PVC4 ;Oal mlg}:}g‘)ﬁde’ suspension polymerised, at
Polymers Thermoplastic PVC PVC4 PVC (bulk polymerisation) E

Polymers Thermoplastic PVC PVC4 PVC (emulsion polyerisation) E

Polymers Thermoplastic PVC PVC4 PVC (suspension polymerisation) E

Polymers Thermoplastic PVC PVDC Polyvinylidenchloride, granulate, at plant/RER U
Polymers Thermoplastic PVC PVDC Polyvinylidene chloride (PVDC) E

Polymers Thermoplastic TFE TFE Film Tetrafluoroethylene film, on glass/RER U

Polymers Thermoplastic TFE TFE4 Tetrafluoroethylene, at plant/RER U

Polymers Thermoset Epoxy Epoxy resin Epoxy resin insulator (A1203), at plant/RER U
Polymers Thermoset Epoxy Epoxy resin Epoxy resin insulator (Si02), at plant/RER U
Polymers Thermoset Epoxy Epoxy resin liquid Epoxy resin, liquid, at plant/RER U

Polymers Thermoset Epoxy Epoxy resin liquid Epoxy resin, liquid, disaggregated data, at plant/RER U
Polymers Thermoset Epoxy Epoxy resin liquid Liquid epoxy resins E

Polymers Thermoset fec;?:aldehyde ?gﬁﬁgﬁ;ﬁw Melamine formaldehyde resin, at plant/RER U
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Polymers Thermoset Formal(%ehyde Malamine-urea- Melamine-urea-formaldehyde hardener, at plant/US
resin formaldehyde
Formaldehyde Malamine-urea- . .
Polymers Thermoset resin formaldehyde Melamine-urea-formaldehyde resin, at plant/US
Polymers Thermoset Formal@ehyde Urea form.a ldehyde Urea formaldehyde resin, at plant/RER U
resin resin
Polymers Thermoset Polymer resin Phenolic resin Phenolic resin, at plant/RER U
Polymers Thermoset Polymer resin Resin Resin size, at plant/RER U
Polyurethane :
Polymers Thermoset Polyurethane flexible foam Polyurethane flexible foam E
Polyurethane :
Polymers Thermoset Polyurethane flexible foam Polyurethane, flexible foam, at plant/RER U
Polymers Thermoset Polyurethane Polyur;:)}::rrlle rigid Polyurethane rigid foam E
Polymers Thermoset Polyurethane Polyurtt:‘(t)k:::lle rigid Polyurethane, rigid foam, at plant/RER U
. Precious Gold combined Gold, from combined gold-silver production, at
Precious Metals metals 2 Gold production refinery/CL U
. Precious Gold combined Gold, from combined gold-silver production, at
Precious Metals metals 2 Gold production refinery/PE U
. Precious Gold combined Gold, from combined gold-silver production, at
Precious Metals metals 2 Gold production refinery/PG U
. Precious Gold combined Gold, from combined metal production, at
Precious Metals metals 2 Gold production beneficiation/SE U
Precious Metals Precious Gold Gold combmed Gold, from combined metal production, at refinery/SE U
metals 2 production
Precious Metals fnr:fgl‘;“; Gold Gold primary Gold, primary, at refinery/GLO U
Precious Metals Precious Gold Gold refinery Gold, at refinery/AU U
metals 2
Precious Metals Precious Gold Gold refinery Gold, at refinery/CAU
metals 2
. Precious
Precious Metals motals 2 Gold Gold refinery Gold, at refinery/TZ U
Precious Metals Precious Gold Gold refinery Gold, at refinery/US U
metals 2
Precious Metals Precious Gold Gold refinery Gold, at refinery/ZA U
metals 2
Precious Metals Precious Gold Gold regional Gold, at regional storage/RER U
metals 2 storage
. Precious .
Precious Metals metals 2 Gold Gold secondary Gold, secondary, at precious metal refinery/SE U
. Precious . . . . .
Precious Metals motals 2 Palladium Palladium primary Palladium, primary, at refinery/RU U
. Precious . . . . .
Precious Metals metals 2 Palladium Palladium primary Palladium, primary, at refinery/ZA U
Precious Metals Precious Palladium Palladium regional Palladium, at regional storage/RER U
metals 2 storage
. Precious . Palladium . .
Precious Metals metals 2 Palladium secondary Palladium, secondary, at precious metal refinery/SE U
. Precious . Palladium .
Precious Metals metals 2 Palladium secondary Palladium, secondary, at refinery/RER U
Precious Metals 1;::21.; uzs Platinum Platinum primary Platinum, primary, at refinery/RU U
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Precious Metals Precious metals 2 | Platinum Platinum primary Platinum, primary, at refinery/ZA U
Precious Metals Precious metals 2 | Platinum ifr[;z‘;m regional Platinum, at regional storage/RER U
Precious Metals Precious metals 2 | Platinum Platinum secondary | Platinum, secondary, at refinery/RER U
Precious Metals Precious metals 2 | Rhodium Rhodium primary Rhodium, primary, at refinery/RU U
Precious Metals Precious metals 2 | Rhodium Rhodium primary Rhodium, primary, at refinery/ZA U
Precious Metals Precious metals 2 | Rhodium ﬁl;?:gl:m regional Rhodium, at regional storage/RER U
Precious Metals Precious metals 2 | Rhodium Rhodium secondary | Rhodium, secondary, at refinery/RER U
Precious Metals Precious metals 2 | Silver Silver cf)mbmed Silver, from combined gold-silver production, at
production refinery/CL U
Precious Metals Precious metals 2 | Silver Silver cpmbmed Silver, from combined gold-silver production, at
production refinery/GLO U
Precious Metals Precious metals 2 | Silver Silver cpmbmed Silver, from combined gold-silver production, at
production refinery/PE U
Precious Metals Precious metals 2 | Silver Silver c9mbmed Silver, from combined gold-silver production, at
production refinery/PG U
. . . Silver combined Silver, from combined metal production, at
Precious Metals Precious metals 2 | Silver production beneficiation/SE U
Precious Metals Precious metals 2 | Silver Silver Cf)mbmed Silver, from combined metal production, at
production refinery/SE U
Precious Metals Precious metals 2 | Silver Silver cpmbmed Silver, from copper production, at refinery/GLO U
production
Precious Metals Precious metals 2 | Silver Silver cpmbmed Silver, from lead production, at refinery/GLO U
production
Precious Metals Precious metals 2 | Silver ?tl(l)::;eglonal Silver, at regional storage/RER U
Precious Metals Precious metals 2 | Silver Silver secondary Silver, secondary, at precious metal refinery/SE U
Wood Products Beam E;a?x:a%i?le Beam GL-plant Glue laminated beam, at plant, US PNW/kg/US
. Fiberboard without Fibreboard soft, without adhesives, at plant
Wood Products Beam Fiberboard soft adhesive (u=7%)/CH U
Wood Products EUR EUR 3 EUR flat pallet EUR-flat pallet/RER U
Wood Products Fiberboard Fiberboard hard S::trboard hard Fibreboard hard, at plant/RER U
. Fiberboard Fiberboard medium . .
Wood Products Fiberboard medium density density-plant Medium density fibreboard, at plant/RER U
. . Fiberboard soft - _
Wood Products Fiberboard Fiberboard soft Fibreboard soft, latex bonded, at plant (u=7%)/CH U
latex bonded
. . Fiberboard soft . _mo
Wood Products Fiberboard Fiberboard soft plant Fibreboard soft, at plant (u=7%)/CH U
Wood Products Laminatedboard Laminatedboard Laminatedboard Three layered laminated board, at plant/RER U
three layer three layer at plant
Wood Products l-joist Composite-l-joist glzrlﬁposxte-ljmst- Composite wood I-joist, at plant, US PNW/kg/US
Wood Products l-joist Composite-l-joist Composite-1-joist- Composite wood I-joist, at plant, US SE/kg/US

plarit
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Wood Products Log Conditioned Log Conc}i)llt;?;l::dLog- Conditioned log, at plywood plant, US PNW/US
Wood Products Log Conditioned Log Con(::f;g::: dbog- Conditioned log, at plywood plant, US SE/US |
Wood Products Lumber Lurlr{(t;’el;lill)ry Lumber-DR-kiln Dry rough lumber, at kiln, US PNW/US
Wood Products Lumber Lurﬁl(l:z;l]i)ry Lumber-DR-kiln Dry rough lumber, at kiln, US SE/US
Wood Products Lumber Lumber rough Lumber RG- Rough green lumber, at sawmill, US SE/kg/US
green sawmill
Lumber rough Lumber RG- Rough green lumber, softwood, at sawmill, US
Wood Products Lumber green softwood PNW/kg/US
Wood Products Lumber Lumb;’i:(lixrface LSD-planer mill Surfaced dried lumber, at planer mill, US PNW/kg/US
Wood Products Lumber Lumb;:i::luface LSD-planer mill Surfaced dried lumber, at planer mill, US SE/kg/US
Wood Products Lumber Lmnbgf;re:zrface LSG-planer mill Surfaced green lumber, at planer mill, US PNW/kg/US
Wood Products Lumber Lu{na:;i:; réeer lumber veneer-plant Laminated veneer lumber, at plant, US PNW/kg/US
Wood Products Lumber Lu;:rl;ei;:;%eer lumber veneer-plant Laminated veneer lumber, at plant, US SE/kg/US
. . Particleboard .
Wood Products Particleboard Particleboard 3 Particle board, cement bonded, at plant/RER S
cement bonded
Wood Products Particleboard Particleboard 3 Pamcleblc::gd indoor Particle board, indoor use, at plant/RER U
‘Wood Products Particleboard Particleboard 3 Particleboard Particle board, outdoor use, at plant/RER U
outdoor use
. . . Particle board, P2 (Standard FPY), production mix, at
Wood Products Particleboard Particleboard 3 Particleboard P2 plant, 7,8% water content EU-27 S
. . . Particle board, P5 (V100), production mix, at plant,
Wood Products Particleboard Particleboard 3 Particleboard P5 7,8% water content EU-27 S
Wood Products Plywood Plywood 3 Plywood-indoor Plywood, indoor use, at plant/RER U
‘Wood Products Plywood Plywood 3 Plywood-outdoor Plywood, outdoor use, at plant/RER U
‘Wood Products Plywood Plywood 3 Plywood-plant Plywood, at plywood plant, US PNW/kg/US
Wood Products Plywood Plywood 3 Plywood-plant Plywood, at plywood plant, US SE/kg/US
Plywood pressed Pressed raw plywood, from lay-up, at plywood plant,
Wood Products Plywood raw Plywood PR-layup US PNW/US
Plywood pressed Pressed raw plywood, from lay-up, at plywood plant,
Wood Products Plywood raw Plywood PR-layup US SE/US
Strandboard Strandboard .
Wood Products Strandboard oriented oriented 4 Oriented strand board product, US SE/kg/US
Wood Products Strandboard Strapdboard Strz.xndboard Oriented strand board, at plant/RER U
oriented oriented 4
Strandboard Strandboard Oriented strand board, OSB III, production mix, at
Wood Products Strandboard oriented oriented OSB mix plant, 4,8% water content EU-27 S
Wood Products Timber 113:&?1 :}1:; Beam GL-plant Glue laminated beam, at plant, US SE/kg/US
Wood Products Timber T;mbpr glue Timber GL-indoor Glued laminated timber, indoor use, at plant/RER U
aminated use
Timber laminated Laminated timber element, transversally prestressed, for
Wood Products Timber Timber laminated transversally g ?

prestressed

outdoor use, at plant/RER U
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Wood Products Timber Timber sawn TSH-parana pine Sawn t imber, paran pine (SFM), kiln dried, u=15%, at
sawmill/BR U
. . . Sawn timber, parana pine (SFM), u=15%, BR, at
Wood Products Timber Timber sawn TSH-parana pine maritime harbour/RER U
. Timber sawn o Sawn timber (SFM), azobe, planed, air dried, u=15%,
Wood Products Timber azobe TSA-air dried CM, at sawmilURER U
. Timber sawn TSH-planed kiln Sawn timber, hardwood, planed, air / kiln dried, u=10%,
Wood Products Timber hardwood dried at plant/RER U
. Timber sawn TSH-planed kiln Sawn timber, hardwood, planed, kiln dried, u=10%, at
Wood Products Timber hardwood dried plant/RER U
. Timber sawn o Sawn timber, hardwood, raw, air dried, u=20%, at
Wood Products Timber hardwood TSH-raw air dried plant/RER U
. Timber sawn . . Sawn timber, hardwood, raw, air / kiln dried, u=10%, at
Wood Products Timber hardwood TSH-raw kiln dried plant/RER U
. Timber sawn . . Sawn timber, hardwood, raw, kiln dried, u=10%, at
Wood Products Timber hardwood TSH-raw kiln dried plant/RER U
. Timber sawn TSH-raw plant Sawn timber, hardwood, raw, plant-debarked, u=70%, at
Wood Products Timber hardwood debarked plant/RER U
Wood Products Timber Timber sawn TSH-planed Sawn timber, softwood, planed, air dried, at plant/RER
softwood U
Wood Products Timber Timber sawn TSH-planed Sawn timber, softwood, planed, kiln dried, at plant/RER
softwood U
. Timber sawn Sawn timber, softwood, raw, air dried, u=20%, at
Wood Products Timber softwood TSH-raw plant/RER U
. Timber sawn Sawn timber, softwood, raw, forest-debarked, u=70%, at
Wood Products Timber softwood TSH-raw plant/RER U
. Timber sawn Sawn timber, softwood, raw, kiln dried, u=10%, at
Wood Products Timber softwood TSH-raw plan/RER U
. Timber sawn Sawn timber, softwood, raw, kiln dried, u=20%, at
‘Wood Products Timber softwood TSH-raw plan/RER U
. Timber sawn Sawn timber, softwood, raw, plant-debarked, u=70%, at
Wood Products Timber softwood TSH-raw plan/RER U
. Timber sawn _— Sawn timber, Scandinavian softwood, raw, plant-
Wood Products Timber softwood TSH-Scandinavian debarked, u=70%, at plant/NORDEL U
Wood Products Timber Timber Timber spruce Spruce wood, timber, production mix, at saw mill, 40%
sprucewood production mix water content DE S
- oy - - - - - "
Wood Products Timber Timber-pine Timber pine Pine wood, timber, production mix, at saw mill, 40%
production mix water content DE S
Wood Products Veneer T‘“?"“ glue Timber GL-outdoor Glued laminated timber, outdoor use, at plant/RER U
laminated use
Wood Products Veneer Veneer Dry ;wz;gry_ Dry veneer, at plywood plant, US PNW/kg/US
Wood Products Veneer Veneer Dry Vencer Dry- Dry veneer, at plywood plant, US SE/US
plywood
Wood Products Veneer Veneer Dry I\)’Iwzgcll)ry-sold Dry veneer, sold, at plywood plant, US PNW/kg/US
Wood Products Veneer Veneer green ;;::Veoe;green— Green veneer, at plywood plant, US PNW/kg/US
Wood Products Veneer Veneer green ;;I:ch; green- Green veneer, at plywood plant, US SE/kg/US
Wood Products Veneer Veneer green ;,1(:;/62: green-sold Green veneer, sold, at plywood plant, US PNW/kg/US
Wood Products Veneer Veneer green Veneer green-sold Green veneer, sold, at plywood plant, US SE/kg/US

plywood
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Wood Products Xéﬁzg Wood pellet 3 ::;‘;:g (ﬁf :}:t Wood pellets, u=10%, at storehouse/RER U

Wood Products Wood wool | Wood wool 3 tv:) z«()i(:(r\/ool cement Wood wool boards, cement bonded, at plant/RER S
Wood Products Wood wool | Wood wool 3 Wood wool plant Wood wool, u=20%, at plant/RER U
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