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Abstract

This thesis develops a multi-modal dataset consisting of transcribed speech along with the
locations in which that speech took place. Speech with location attached is called situated
language, and is represented here as spatial distributions, or two-dimensional histograms
over locations in a home. These histograms are organized in the form of a taxonomy, where
one can explore, compare, and contrast various slices along several axes of interest.

This dataset is derived from raw data collected as part of the Human Speechome Project,
and consists of semi-automatically transcribed spoken language and time-aligned overhead
video collected over 15 months in a typical home environment. As part of this thesis, the
vocabulary of the child before the age of two is derived from transcription, as well as the
age at which the child first produced each of the 658 words in his vocabulary.

Locations are derived using an efficient tracking algorithm, developed as part of this thesis,
called 2C. This system maintains high accuracy when compared to similar systems, while
dramatically reducing processing time, an essential feature when processing a corpus of this
size. Spatial distributions are produced for many different cuts through the data, including
temporal segments (i.e. morning, day, and night), speaker identities (i.e. mother, father,
child), and linguistic content (i.e. per-word, aggregate by word type).

Several visualization types and statistics are developed, which prove useful for organiz-
ing and exploring the dataset. It will then be shown that spatial distributions contain a
wealth of information, and that this information can be exploited in various ways to derive
meaningful insights and numerical results from the data.
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Chapter 1

Introduction

Data goes in, answers come out.

It is by now obvious that large datasets will be a hallmark of the coming years. Decreasing

costs of storage and processing as well as improved techniques for analysis are sparking

the generation of more and more datasets that until recently would have been unthinkably

large. Of particular interest are those datasets that bring disparate data types together:

social media linked to television, retail transaction data linked to surveillance video, or

time-aligned speech and video are just a few examples. These multi-modal datasets allow

the researcher to explore not only each modality in isolation, but more importantly to ex-

plore and understand the linkages and alignments between modalities.

These datasets are only useful if we can ask questions of them and expect to receive an

accurate, relevant answer. We'd like to put in some data, possibly a lot of data, and get

back an answer that allows us to make a business decision, pursue science, or achieve some

other goal.

If a picture is worth a thousand words, a video must be worth a million.

An important modality to consider, particularly as collection and storage costs are driven



lower, is video. There are vast amounts of information contained in video streams; in-

formation that is often difficult to process and analyze, but that is extremely dense and

useful when processed successfully. Video is also a very natural datatype for people to work

with. Watching video corresponds easily to normal visual perception, and analysis outcomes

are often more intuitive and readily understood because the modality itself is so familiar.

While this natural understanding of video and related data is clearly an advantage for a

researcher working on the project, there are ancillary benefits in that outside researchers or

other stakeholders in a project are able to assimilate and utilize the data easily as well.

When video is aligned with other data and viewed in aggregate form, analysis can bring

about insights that would otherwise have been opaque even to a dedicated researcher spend-

ing countless hours manually watching footage - the nature of the patterns in aligned multi-

modal data and the varying scales at which these patterns occur often make insights subtle

and difficult to ascertain without robust computational methods.

Aligning video with other data sources is

central to the work in this thesis. Many of

Video Time-aligned data the methods described here were developed

using several different datasets with dissim-

ilar "other" data in addition to video. Con-

sider one such dataset consisting of video

from a typical surveillance system in a retail

environment in addition to transaction data

Fi Re from that retail location. At the algorith-

mic level, building, managing, exploring,

and deriving insights from such a dataset is
Figure 1-1: Basic system design

nearly identical to performing those tasks

on a corpus of video taken in a home,

aligned with transcription of the speech in that home, as is the focus here. These simi-

larities provide generality for the approaches described here - it is my goal that this work

be relevant across many domains and disciplines.



This thesis describes one implementation of the more general system (the "black box" in

Figure 1-1) that accepts two time-aligned data sources and produces insights and numerical

results.

Generating the types of insights and results that are useful in any particular domain auto-

matically is a hard problem. Computers are not yet capable of true undirected exploration

and analysis, so instead I bring a human operator into the design of the system as a collabo-

rator. This notion of human-machine collaboration was first put forth by J.C.R. Licklider in

[13], where he describes a "very close coupling between the human and the electronic mem-

bers of the partnership" where humans and computers cooperate in "making decisions and

controlling complex situations without inflexible dependence on predetermined programs."

Over 50 years after Lickliders famous paper, this approach rings true now more than ever

and serves to frame the work described here.

Video

Aligned Data

Visualizations Human

Nm e ical

StatisticsRslt

Figure 1-2: System with human operator

In the system described here, the human operator accepts a wealth of data from the com-

puter in the form of visualizations and statistics, parses this data, and derives results ap-

propriate to the task at hand, possibly providing feedback to the system in order to revise

and iterate. Figure 1-2 shows the revised system design, now with an operator in place.

This thesis focuses on the black box, or the part of the system that processes multiple data

sources and generates user-friendly output data.



1.1 Goals

1.1.1 Multi-modal Understanding

Integrating information across modalities is the key to true understanding. It has been

argued that multimodal sensing is at the core of general intelligence [17, with some even

going so far as to say consciousness itself is the result of "integrating information" across

modalities [34]. From an information-theoretic perspective, adding information from addi-

tional modalities can only increase understanding (intuitively, notice that you can always

just ignore the new information if it provides no help and by ignoring unhelpful information

your overall understanding has remained the same).

I seek to explore multi-modal analysis from two perspectives: from the standpoint of build-

ing a system that uses information across modalities in order to derive accurate, meaningful

insights; and from the standpoint of a child learning to speak, who uses linguistic informa-

tion in addition to contextual information in order to begin to understand language.

These are clearly different, but complementary problems. Carver Mead famously said that

"If we really understand a system we will be able to build it. Conversely, we can be sure that

we do not fully understand a system until we have synthesized and demonstrated a working

model." By building a system that attempts to integrate what is seen with what is said, it

is reasonable to hope that we can gain some insights into how a child begins to integrate

what he is seeing with the language he is hearing.

1.1.2 Situated Language: establishing context for everyday language use

Labeling the things in our world is at the core of human intelligence. Our success as a

species is due in large part to our ability to use language effectively, and to connect that

language to the physical world - in other words, to label discrete objects and concepts.

In order to understand the cognitive processes at the heart of our language use, we must



understand the context in which language takes place in addition to understanding the lin-

guistic features. This work attempts to shed light on a few of the patterns associated with

language use in a natural environment and some of the properties of those patterns.

There has been significant work in the grounding of language in perception [26], an idea that

provides linguistic scaffolding to enable infants and intelligent machines to begin to connect

symbolic representations of language to the real world. This connection of symbols to real

world perception is crucial to understanding how language use comes about, and provides

a foundation on which we can build richer and more complex notions of communication.

Situated language is language for which a context has been established.

Everyday language exists in a rich context that provides the listener with countless clues

as to the underlying meaning of a linguistic act. This context must be taken into account

when attempting to understand language at any more than a surface level, and includes

all of the various properties of the environment in which the language occurs. Nowhere is

this context more important than in everyday speech, where much meaning is unspoken

and implied, to be gleaned via context by the listener. Contextual cues would often provide

useful clues for understanding the language used in the home. Knowing that there is a bag

of flour nearby, for example, provides essential clues as to the meaning of the phrase "please

hand me the flour," which would be interpreted differently if there were a bouquet of roses

on the table.

To understand context, we might consider modeling all of the myriad cues present dur-

ing a speech act. These cues would include the entire array of visual stimuli, identities of

participants (speakers and listeners), and temporal features (time of day, day of week, etc.),

as well as details about the activity taking place at the time. To fully model context, we

would also need to include complete histories of all participants (for example, relevant con-

text for a conversation could include a previous conversation with the same participants),

current psychological states, audible cues, and environmental features such as temperature



and wind. Clearly, such a model is computationally infeasible, therefore we must focus

on relevant bits of this context, and on computationally tractable proxies for these bits of

context.

One such useful proxy for environmental context is the location of the speech act. The

location of a speech act contains a wealth of information about the context surrounding

that speech act in the form of an abstraction of such information. By knowing that an

utterance has taken place in the kitchen, for example, we are implicitly examining infor-

mation about the visual context of that utterance. The kitchen contains visual cues x, y,

and z, therefore all speech taking place in the kitchen can be tied on some level to x, y,

and z because x,y, and z are part of the context in which language in the kitchen is immersed.

Temporal features also provide important context that can stand in for many other com-

plex cues in our non-linguistic environment. The various activities that we participate in

provide crucial pieces of information about what is said during these activities. These activ-

ities often occur at regular times, so by examining language through the lens of its temporal

context, we obtain a useful proxy for the types of activities that occur at that time. When

taken together with spatial context, temporal context becomes even more powerful. The

kitchen in the morning, for example, stands in for the activity "having breakfast," a context

that is hugely helpful to the understanding of the language taking place in the kitchen in

the morning.

Participant identity is the final contextual cue utilized here, and the one that stands in

for the most unseen information. The identity of a participant can encompass the entire

personal history of that participant: consider an utterance for which we know that the

speaker is person X. If we have aggregated speech from person X in the past, then we can

determine that this person tends to conduct themselves in certain ways - displaying par-

ticular speech and movement patterns and so on. We don't need to know why person X

does these things, it is enough that we can establish a proxy for person X's history based

on their past actions, and that we can now use this history in current analysis of person



X's speech.

In this work, context is distilled to a compact representation consisting of the location

in which a speech act occurred, the identity of the participants, and the time at which the

utterance was spoken. In this thesis, I intend to show that even this compact form of context

provides valuable information for understanding language from several perspectives: from

that of an engineer hoping to build systems that use language in more human-like ways, and

from that of a cognitive psychologist hoping to understand language use in human beings.

1.1.3 Practical Applications

Understanding language deeply has long been a goal of researchers in both artificial intel-

ligence and cognitive psychology. There has been extensive research in modeling language

from a purely symbolic point of view, and in understanding language use by statistical

methods. This work is limited, however, as words are understood in terms of other words,

leading to the kind of circular definitions that are common in dictionaries. There has been

interest, however, in grounding language use in real world perception and action [26], a

direction that hopes to model language in a manner that more closely resembles how people

use language. This work essentially says that "context matters" when attempting to un-

derstand the meaning of a word or utterance, and more specifically that visual perception

is an important element of context to consider.

Understanding and modeling the non-linguistic context around language could provide huge

practical benefits for artificial intelligence. Especially as datasets grow larger and corpora

such as the Human Speechome Project's become more common, access to the data neces-

sary for robust non-linguistic context estimation will become simple for any well engineered

Al system. However, a clearer understanding of how this context should be integrated must

be developed.

As a concrete example, consider automatic speech transcription. Modern systems rely



on both properties of the audio stream provided to them and immediate linguistic context

in order to perform accurate, grammatically plausible transcription. If we were to give

a system a sense of the non-linguistic context around a language act, we might expect

transcription accuracy to improve dramatically. Consider a human performing language

understanding - listening to a conversation, in other words. If this person were to attempt

to perform transcription based solely on the audio it receives from its sensors, we would

expect accuracy to be low. Adding some knowledge of grammar would help considerably,

but accuracy would still be below the levels that we would expect from a real person per-

forming this task. But by allowing the person to leverage non-linguistic context (as would

be the case when the person understands the language being transcribed and so can bring

to bear all of their experience in order to disambiguate the meaning of the language and

therefore the content of the language itself) we would expect accuracy to be near perfect. It

is clear, then, that providing this context to an Al system would allow for far more accurate

transcription as well.

From the point of view of human cognitive psychology, analysis of the context surrounding

language development will lead to better understanding of the role of this context, which

in turn will lead to deeper understanding of the mechanisms by which children come to

acquire language. There are many potential applications of such insights, one example be-

ing the facilitation of language learning in both normally developing and developmentally

challenged children.

1.1.4 Ancillary goals

There are several aspects of this work that relate to other goals: areas that are not pri-

mary foci of the work, but that I hope to make some small contribution to. As this work

is centered around an extensive dataset, the broader goal of increased understanding of

engineering and effective analysis of large datasets is important. These datasets present

problems that simply do not exist in smaller datasets - problems that have been overcome

in Human Speechome Project analysis.



This work also holds visualization as a central element, and so hopes to add to the dis-

course around effective visualization, particularly scalable visualization techniques that can

be applied to large, complex datasets.

Finally, machine vision is a key component of the construction of the situated language

dataset described in this thesis. The problems faced in performing vision tasks on this data

are central to most cases where vision is to be applied to a large dataset, and the solutions

presented here are both unique and applicable to a wide range of vision problems.

1.2 Methodology

1.2.1 How to situate language: a system blueprint

Consider a skeletal system that is capable of situating language. This system must posses,

at a minimum, a means of representing language in a way that is manipulable by the system

itself. While there are many forms of language that can be represented and manipulated

by a computer system, here I focus on basic symbolic language - English in particular.

It is possible to imagine many schemes for determining the locations of people. Such

schemes might rely on any of a variety of sensors, or any number of methods for deriv-

ing person locations in even a simple video-style sensor (such as what we have here). We

might attempt to find people in video by matching shape templates, or by looking at pixel

motion patterns, or by performing tracking of all objects over time and determining later

which tracks represent interlocutors in a speech act. Any of these methods share the com-

mon output of deriving conversational participants' locations at the time of the conversation.

From the representation of language, this system provides the statistical backing around

which to begin linguistic understanding. But from the locations of participants, this system

derives context for the language. And then, assuming such a system is capable of repre-



senting time and that it records temporal information for the language it represents, the

system can also provide temporal context.

Our basic system requirements are therefore:

1. A symbolic representation for language

Represented here as written English

2. A means of deriving and representing participant locations

Represented here as coordinates in Euclidean space relative to a single home, derived by

performing person tracking in time-aligned recorded video

3. A way to represent and record temporal information for speech acts

Represented here as microsecond timestamps aligned across video and audio data (and there-

fore locational and transcript data)

1.2.2 Taxonomy: Exploring a Large Dataset

The best known taxonomies are those that classify nature, specifically the Linnean Tax-

onomy, which classifies organisms according to kingdoms, classes, orders, families, and so

on. Carl Linnaeus set forth this taxonomical representation of the world in his 1735 work

Systema Naturae, and elements of this taxonomy, particularly much of the classification of

the animal kingdom, are still in use by scientists today.

It has been argued that Darwin's theory of evolution owes a great deal to his detailed

taxonomical explorations of animals [40]. Darwin is thought to have spent many years

building his taxonomy, noting features, similarities, and differences between various ani-

mals. This objective, unbiased classification of organisms without specific research goals

may have been crucial to Darwin's understanding of the evolutionary mechanisms he later

set out in Origin of Species.



This thesis sets out to create a taxonomy of natural language use over the course of 15

months in the home of one family. The taxonomy consists of information about the loca-

tion of the things that were said in the home, segmented across 3 dimensions of interest,

with many data points and organizational metrics related to these segmentations. I attempt

to categorize and structure various properties of situated language in ways that are likely

to provide meaning in understanding that language. Furthermore, I attempt to frame this

exploration through the lens of acquiring language, as language acquisition can be thought

of as the most basic form of (and a useful proxy for) language understanding. The creation

of this taxonomy, like Darwin's creation, has led and will continue to lead to new insights

and research directions about how language is used in day to day life.

1.2.3 Visualization

The dataset presented here is significantly complex - it represents much of the home life

of a normal family over the course of 15 months, and as such contains much of the com-

plexity and ambiguity of daily life. There is no quick and easy way to gain understanding

of this dataset - exploration and iteration is essential to slowly building up both intuition

and numerical insight into the data. Visualization is a good way to explore a dataset of

this size. Visualization benefits greatly from structure, however, and the taxonomy detailed

here provides that structure.

Visualization of quantitative data has roots that stretch back to the very beginnings of

mathematics and science [35]. Visualizing mathematical concepts has been shown to be

essential to learning and understanding [8], a result that points to the fundamental notion

that quantitative information is represented visually in ways that are more easily assimi-

lated and manipulated by people [9, 22].

Abstraction has been an undeniably powerful concept in the growth of many areas of sci-

ence, especially computing. Without abstraction, programmers would still be mired in the

intricacies of machine code and the powerful software we take for granted would have been



impossible to create. Human beings have finite resources that can be brought to bear on

a problem. By creating simpler, higher level representations for more complex lower level

concepts, abstraction is an essential tool for conserving these resources. Visualization can

be thought of as a kind of abstraction, hiding complexity from the viewer while distilling

important information into a form that the viewer can make sense of and use.

This work heavily leverages the power of visualization as a foundation of its analysis. Several

fundamental visualization types are central to the work, with other ad-hoc visualizations

having been undertaken during the course of research and development of the systems de-

scribed.

By treating numerical and visual data as qualitatively equal lenses into the same com-

plex data, we can think of the output of our system as truly multi-modal. Furthermore,

such a system leverages the strengths of both modalities - numerical data and mathematical

analysis provides precision and algorithmic power, while visualization provides views into

the data that a person can reason about creatively and fluidly, even when the underlying

data is too complex to be fully understood in its raw form.

1.3 Contributions

Primary contributions of this work are to:

" Demonstrate the construction of a large dataset that spans multiple modalities

" Develop novel visualization methods, with general applicability to any "video +

aligned data" dataset

" Utilize visualization and statistical approaches to construct a taxonomy of the patterns

present in the normal daily life of a typical family

" Understand behavioral patterns segmented along various dimensions including time



of day, identity, and speech act, and show how these patterns can be explained and

analyzed in a data-driven way

* Using statistical properties of the patterns derived above, show that non-linguistic

context is correlated with the age at which the child learns particular words and

provide a possible explanation for such correlation.
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Chapter 2

Dataset

The dataset described here is comprised of situated language, or language for which tem-

poral information as well as the locations and identities of participants are known. From

this situated language data, we can generate spatial distributions representing aggregate

language use along various dimensions of interest (i.e. temporal slice or the use of some

particular word).

We begin with raw, as-recorded video and audio. Audio is then semi-automatically tran-

scribed and video is processed by machine vision algorithms that track the locations of

people. Tracks are smoothed and merged across cameras, and transcripts are tokenized

along word boundaries and filtered to remove non-linguistic utterances and transcription

errors. Tracks and transcripts are then joined by alignment of the timestamps in each.

Transcripts with corresponding location information (points) are called situated language.

Finally, situated language data is distilled into spatial histograms. See Figure 2-1.



2.1 The Human Speechome Project

The Human Speechome Project [28], undertaken with the goal of understanding child lan-

guage acquisition, sought to record as much of a single child's early life as possible, capturing

a detailed record of the child learning to speak in a natural setting.

Tracks

Situated Utterances

Transcripts

Spatial Distributions

Figure 2-1: Overview of Dataset

Video was collected from eleven cameras installed in ceilings throughout a typical home.

Views from four cameras are shown in Figure 2-2. All occupants of the home were recorded,

including the mother, father, nanny, and child. Recording took place only while the child

was awake and at home, and occupants were able to suspend recording at any time. Cameras

were identical and were placed in order to provide maximum coverage of the home's living

spaces. Each high dynamic range camera was equipped with a fisheye lens and provided on-

board jpeg compression. Cameras were connected via Ethernet to a central control system

that ensured synchronicity across cameras as well as accurate frame-level timestamps. Au-

dio was recorded using 14 boundary-layer microphones, each connected to the same control

system as the video cameras. Microphones were positioned in order to provide maximum

coverage of the audible environment in the home. Care was taken to ensure that the audio

was suitably timestamped and was synchronized with the video streams. Further details

about the recording and storage of data can be found here [4].

Recording resulted in approximately 90,000 hours of multi-channel video and 140,000 hours



of audio recorded over the course of 3 years. We estimate that the total recorded data rep-

resents approximately 75% of the child's waking life. Here I focus on the 15 month period

during which the child was 9-24 months of age.

Figure 2-2: Views from 4 of the 11 cameras

Figure 2-3 shows a reconstructed 3D view of the home, visualized using the Housefly [6]

system. In this view, we can see the various rooms clearly. Clockwise from top left, we have

the dining room, kitchen, bathroom (no recording), master bedroom (no recording), guest

bedroom, child's bedroom, and living room.

Figure 2-3: Reconstructed 3D view of the home [6]



2.2 2C: Object Tracking and Visual Data

2.2.1 Overview

"There is a significant body of literature surrounding the interpretation of human behavior

in video. A common thread in all of this vork is that tracking is the very first stage of

processing." [12]

Object tracking is an integral part of this work, and the tracking mechanisms described

here are a key contribution of this thesis. In particular, this software tracks objects with

accuracy and precision comparable to the state of the art, while performing these tasks an

order of magnitude faster than other equally powerful systems.

The 2C vision system is a flexible framework for performing various vision tasks in a variety

of environments. 2C provides a powerful foundational API, enabling a developer to extend

the capabilities of the system easily via custom modules that can be chained together in

arbitrary configurations. 2C contains a set of interfaces for input, processing, and output

modules, data structures and protocols for communication between those modules, and in-

frastructure necessary for robust operation. Here I focus on one application of this system:

tracking people in the HSP dataset. Therefore, from here forward 2C will refer not to the

system as a whole, but to the particular configuration focused on efficient person tracking.

2.2.2 The Tracking Problem

At its simplest, a tracking system must implement some attention allocation scheme ( "what

to track?") and some method of individuating targets ( "where is the thing I saw in the last

frame ?").

More formally:

We have a set of features ft derived from video input at time t and a (possibly null) set of



existing objects Ot-I

From these we need to generate the set of objects Ot.

For algorithm a(.) the tracking problem can be described simply as:

Ot = a(ft, Ot_1)

Of course, this leaves out a lot of detail. What is a(.)? How do we describe 0? What

are the features f? Do we aggregate t across many frames, solving globally, or derive each

Ot individually?

Tracking problems range from very easy (imagine tracking a moving black object on a

white field - even the simplest algorithm solves this problem well) to very difficult (con-

sider tracking individual bees in a hive [36] - the most sophisticated approaches will still

make errors). There are also cases where tracking requires higher level inference - to de-

cide whether to track a baby in his mother's arms, for example, requires knowledge beyond

what vision can provide and so even the most sophisticated algorithms will fail in these cases.

There are several key differentiators in this particular tracking task that define the di-

rection of much of 2C's design. The following considerations were most important in the

design of 2C:

" The nature of the input video. HSP video contains huge lighting variation at

many temporal resolutions (i.e. day vs. night or lamps being turned on and off). A

robust, unsupervised approach is needed that can work in a variety of lighting condi-

tions.

" The size of the corpus. Even moderately sophisticated approaches to object track-

ing can require extensive computational resources that would make processing the

90,000 hours of video in the HSP corpus infeasible.



* The analysis needs of the project. The expected use of the output of the system

dictates how many design decisions are evaluated. In the case of current HSP analysis,

it was more important to provide accurate moment-to-moment views of occupancy

than long contiguous tracks, a consideration that resulted in several important design

decisions.

Based on the considerations listed above, it was determined that a highly adaptive system

was needed that would perform object tracking in as efficient a manner as possible, while

still maintaining accuracy at the point level.

Many tracking approaches appear in the literature [41], and many of these have been im-

plemented within the 2C architecture. Of particular interest here are efficient approaches

that might be combined as building blocks in the design of a larger system such as 2C.

When considering the design of an efficient object tracking system, it is natural to look

to an existing system that performs this task well: the human visual cortex. In the human

visual cortex, we have a system that performs near perfect tracking in almost all situations,

but whose operation we have only a cursory understanding of. Work such as [23, 30, 32]

has attempted to characterize the fundamental mechanisms for object tracking by studying

humans' ability to track generic objects. A variety of insights and constraints have come out

of this experimental work. Of particular importance in the context of this system are the

results that explore the types of features people use and don't use when tracking objects.

People can track robustly even if shape and color features of an object change over time [30] -

this result points to coherent velocity as the primary means by which object tracking is done.

Intuition, however, would seem to indicate that shape and color do play a role in tracking at

least part of the time. It doesn't seem possible that we track objects without ever regarding

their color or shape. More likely is that color and shape come into play when tracking based

on velocity fails. It also seems likely that shape and color are more closely tied to one's



world knowledge and might be used as "hooks" to relate things we know about a scene to

the objects we're seeing in that scene.

"Object perception does accord with principles governing the motions of material bodies:

Infants divide perceptual arrays into units that move as connected wholes, that move sepa-

rately from one another, that tend to maintain their size and shape over m6tion, and that

tend to act upon each other only on contact." [32]

The literature, therefore, points to a hierarchy of features that are utilized when humans

perform tracking:

1. Velocity - at the lowest level, objects are delineated and tracked based on their simulta-

neous movement. Things that tend to move together tend to be single objects.

2. Color - areas of the visual array that exhibit coherent color through temporal and spatial

change tend to be classified as objects.

3. Shape - this is the most complex feature to understand as it involves complex integration

with world knowledge due to the geometric variability of many objects. A person's shape,

for example, changes dramatically over time, but we are still able to recognize this multitude

of different shapes as a person. Even given the problems and complexities associated with

shape-based tracking, shape appears to be a feature that is utilized in the human tracking

system, and one that has also proven useful in machine vision.

Implementation

2C was developed around 3 primary datasets. In all cases, video was generated by a network

of overhead cameras with fisheye-style lenses. The primary dataset was the Human Spee-

chome Project corpus, with other datasets collected from inside busy retail environments.

Properties such as average number of people, variety of lighting, and motion patterns of

people vary enormously between datasets, making them ideal for development of a general

tracking system. All video is 960 pixels x 960 pixels and is encoded in a proprietary format

based on motion-JPEG.



2C is written primarily in Java, with certain aspects written in C and accessed from Java

using JNI. The software consists of approximately 20,000 lines of code altogether.

2C implements a pipeline architecture. First, the pipeline is defined in terms of the various

modules that will make it up. An input component accepts digital video (various video

formats are currently supported). This input is then passed sequentially to each module in

the pipeline, along with a data structure that carries the results of any processing a module

undertakes. An output module operates on this data structure, producing whatever output

is desired. Modules can be defined to perform any arbitrary operation on either the input

or the output of modules that come before it in the pipeline. In this way, dependencies

can be created such that modules work together to perform complex functions. Pipelines

can be defined and modified on the fly, making it possible to implement a dynamic system

where various modules are activated and deactivated regularly during processing. To date,

modules exist to handle nearly any video input format, to perform image processing and

analysis tasks including various types of feature extraction (such as color histogram gener-

ation and SIFT feature [15] generation), and to produce output of various kinds, including

numerical and visualization.

2.2.3 Input Component

The input component decodes a proprietary video format based on motion-JPEG known

as "squint" video. Each frame of variable framerate video contains a microsecond-accurate

timestamp. A key design choice implemented in this component is the decision to utilize

partially decoded video frames (known as "wink" video). This results in 120x120 frames,

as opposed to 960x960, speeding processing considerably through the entire pipeline, par-

ticularly in the input and background subtraction phases.



2.2.4 Low-level Feature Extraction

Tracking begins with motion detection and clustering. These processes form the low-level

portion of the system and can be thought of as an attention allocation mechanism. Many

biologically plausible attention mechanisms have been proposed [21, 24] and likewise many

computational algorithms have been developed [33, 29, 16], all with the aim of segmenting

a scene over time into "background" and "foreground" with foreground meaning areas of a

scene that are salient, as opposed to areas that are physically close to the viewer. Areas that

are considered foreground are then further segmented into discrete objects. These objects

can then be tracked from frame to frame by higher level processes.

Motion detection

The motion detection process operates using a frame-differencing operation, where each

pixel of each new frame of video is compared to a statistical model of the background.

Pixels that do not appear to be background according to this comparison are classified as

foreground. The background model is then updated using the new frame as a parameter.

The output of the motion detection step is a binary image D where each pixel di = 0

indicates that di is a background pixel and di = 1 indicates that di is foreground.

The algorithm implemented is a mixture-of-gaussians model as described in [33], where

each pixel Xi's observed values are modeled as a mixture of K gaussians in 3 dimensions

(RGB) Qi = qo...qK, each with a weight Wk. Weights are normalized such that >jK wk 1.

A model Qi is initialized for each pixel i, then each new frame is compared to this model

such that each pixel is either matched to an existing gaussian or, when the new pixel fails

to find a match a new gaussian is initialized. Newly initialized gaussians are given a low

weight. Matches are defined as a pixel value within some multiple of standard deviations

from the distribution. In practice, this multiple is set to 3.5, but can be adjusted with little

effect on performance.



Each pixel is therefore assigned a weight wi corresponding to the weight of its match-

ing (possibly new) distribution. We can then classify each pixel according to a parameter

T denoting the percentage of gaussians to consider as background:

di = 0 :wi > T

S:otherwise

Weights are then adjusted according to a learning parameter a corresponding to the speed

at which the model assimilates new pixel values into the background:

wit = (1 - a)w 3,t-i + a(Mk,t)

where Mk,t = 1 for the matching distribution and is 0 otherwise. Weights are normalized

again so that >jK 1.

Parameters for the matching distribution are adjusted as follows:

At = (1 - p)pt-1 + pXt

o7 = (1 - p)o_1 + p(Xt ut)T(Xt - t)

where:

p = ar1(XtIp M, O-k)

This model has several advantages. First, it is capable of modeling periodic fluctuations

in the background such as might be caused by a flickering light or a moving tree branch.

Second, when a pixel is classified as background, it does not destroy the existing back-

ground model - existing distributions are maintained in the background model even as new

distributions are added. If an object is allowed to become part of the background and then

moves away, the pixel information from before the object's arrival still exists and is quickly

re-incorporated into the background.

The input to the motion detection process is raw visual field data, and the output con-

sists of pixel-level motion detections, known as a difference image.



Motion clustering

Foreground pixels are grouped into larger detections by a motion clustering process. This

process looks for dense patches of motion in the set of detections produced by the mo-

tion detection process and from those patches produces larger detections consisting of size,

shape, and location features.

This module iterates over patches in the difference image produced above and computes a

density for each patch where density is the number of white pixels / the total number of

pixels in the patch. Patches with density greater than a threshold are then clustered to

produce larger areas representing adjacent dense areas in the difference image. These larger

dense areas are called particles.

Pseudocode for this algorithm follows:

foreach (n x n) patch in difference image do
if patch(white) / patch(total) > threshold then
| add patch to patchList

end
end
foreach patch in patchList do

foreach existing particle pi do
if intersects (patch,pi) then
| add(patch,pi)

end
new(pj)

end
end

The input to the clustering process is the pixel-level detections output by the motion detec-

tion process, while the output is larger aggregate motion detections.



2.2.5 Object tracking

Once low-level features are extracted from the input, the visual system can begin segmenting

objects and tracking them over time.

Motion-based hypothesis

Based on the detections provided by the motion clustering process, the motion tracking

algorithm computes spatio-temporal similarities and hypothesizes the locations of objects

in the visual field. In other words, it makes guesses as to where things are in the scene

based on the motion clustering process's output. It does so by computing velocities for

each object being tracked, and then comparing the locations of detections to the expected

locations of objects based on these computed velocities. Detections that share coherent

velocities are therefore grouped into objects, and those objects are tracked from frame to

frame (see Figure 2-4).

Classifiers

The motion tracking algorithm makes a binary decision as to whether to associate a particle

pi with an existing object oj. These decisions are made on the basis of either an ad-hoc

heuristic classifier, or a learning-based classifier trained on ground truth track data.

1. Heuristic classifier - this classifier attempts to embody the kinds of features a human

might look for when making decisions. It works by computing an association score, and

then comparing that score to a threshold in order to make its decision. The parameters

of this classifier (including the threshold) can be tuned manually (by simply watching the

operation of the tracker and adjusting parameters accordingly) or automatically using gra-

dient descent on a cost function similar to the MOT metrics described below.

The association score is computed as follows:



O(pi, oj) = a1(Av(pi, oj)) + a2(Ad(pi, oJ))

A, is the difference in velocity of pi (assuming pi is part of oj) and oj before connect-

ing Pi.

Ad is the Euclidean distance between pi and oy.

o1 and a 2 are gaussian functions with tunable parameters.

2. Learning-based classifier - these classifiers use standard machine learning techniques

in order to perform classification. Ground truth tracks are generated using a human an-

notator. These tracks can then be used to train the tracker's output, with positive and

negative examples of each classification task being generated in the process. Classifiers that

have been tested include Naive Bayes, Gaussian Mixture Models, and Support Vector Ma-

chines. All perform at least moderately well, with certain classifiers exhibiting particular

strengths. In practice, however, the heuristic classifier described above is used exclusively.

Objects

Figure 2-4: Motion-based tracking. Detections are clustered into objects that share coherent
velocities.

The motion tracking algorithm exhibits several useful properties. One such property is the

tracker's ability to deal with noisy detections. If an object is split across several detections

(as often happens), the tracker is able to associate all of those detections to a single object

because their velocities are coherent with that object. Likewise if several objects share a

single detection, that detection can provide evidence for all objects that exhibit coherent



motion with that detection.

Motion tracking also encodes the fundamental notion of object permanence. Once an object

has been built up over time through the observation of detections, the tracker maintains

that object in memory for some period of time, looking for further detections that support

its location. This notion of object permanence also helps the tracker deal with errors in

motion detection - a common problem in motion-based tracking is maintaining object loca-

tion when that object stops moving. Here we maintain the object's location even without

evidence and then resume normal tracking when the object finally moves again and new

evidence is provided.

This module accepts the set of clustered motion detections (particles) produced above as

input and attempts to infer the locations of objects. It does so by making an association

decision for each particle/object pair. If a particle is not associated with any existing object,

a decision is made whether to instantiate a new object using that particle. If a new object

is not instantiated, the particle is ignored (treated as noise).

Color-based hypothesis

In each frame, color-based tracking is performed in addition to motion-based tracking. For

a given object, we perform Meanshift [3] tracking in order to formulate a hypothesis as

to that object's position in the new frame. This algorithm essentially searches the area

immediately around the object's previous known position for a set of pixels whose colors

correspond to the object's color distribution.

Meanshift works by searching for a local mode in the probability density distribution rep-

resenting the per-pixel likelihood that that pixel came from the object's color distribution.

Color distributions are aggregated over the lifespan of each object, and are updated pe-

riodically with color information from the current video frame. Color distributions are

represented as 3-dimensional (red, green, blue) histograms.



Mean shift follows these steps:

1. Choose an initial window size and location

2. Compute the mean location in the search window

3. Center the search window at the location computed in Step 2

4. Repeat Steps 2 and 3 until the mean location moves less than a preset threshold

The search window size and position W are chosen as a function of the object's loca-

tion at time t - 1: Wt = O(Ot-i). Call the object's current aggregate color distribution Qt.

We first compute a probability image I as: I(x, y) = Pr((x, y); Qt) or the probability that

pixel (x, y) comes from distribution Qt for all values of (x, y) in the current frame of video.

We then compute a the mean location M = (z, 9) as:

X E X I(X, y) E y I(x, y)

This process continues until M moves less than some threshold in an iteration. In practice,

M generally converges in under 5 iterations.

Figure 2-5: Tracking pipeline: raw video, motion detection and aggregation, tracking

45



Hypothesis integration

For each object at time t, we have a motion hypothesis Ot and a color hypothesis Ot. These

hypotheses are combined using a mixing parameter a such that the overall hypothesis

Ot = aOt + (1 - a)Ot.

Hypothesis revision

This step searches for objects that should be merged into a single object, or those detections

that were incorrectly tracked as two or more objects when they should have been part of a

single object. In order to make this determination, pairwise merge scores Sij are generated

for all objects:

Sy= n-o VNnEOi,t-n, Oy,t-n)

where:

O(Oi,t-n, O,t-n) is the association score from above and:

On is a weighting parameter denoting how much more weight to place on more recent ob-

servations.

This score therefore denotes the average likelihood that objects i and j are associated

(are the same object) over N steps back from the current time t. When Sij > T where T

is a merge threshold, we merge objects i and j.

Object de-instantiaion

When motion tracking fails to provide evidence for an object, we look to the color distri-

bution to determine whether to de-instantiate the object. This says, in effect, that if we

have no motion evidence (the object has come to rest), but the colors at the object's last

known location match closely to the object's aggregate color distribution, then we main-

tain our hypothesis about that object's location. However, if the colors do not match, we

de-instantiate that object. We are thus making a binary decision whenever we lose motion



evidence for an object, where 0 = remove the object and 1 = maintain the object hypothesis.

In practice, we allow a window without motion evidence proportional to an object's lifes-

pan with motion evidence before we force the system to make its color-based binary decision.

We compute this binary decision as follows:

First compute the Bhattacharyya Distance DB(Pt, Qt) where Pt is the pixel color distri-

bution at the object's current location and Qt is the object's aggregate color distribution

taken at time t: DB(P, Q) = -ln(BC(P, Q))

where:

BC(P, Q) =ZxX p(x)q(x)

is the Bhattacharyya Coefficient and X is the set of pixels.

The decision K(Oi, t) E {0, 1} whether to de-instantiate object Oi at time t with threshold

T is then:

K(Oi, t) = DB (Pt, Qt) > T

otherwise

Algorithm summary

Given the set of particles Pt = {po, ...p} at time t and the current set of objects Ot

{ 00, . ..Ok}, the algorithm is summarized as follows:



foreach pi do

foreach og do
associate(pi, oy)

end

end

foreach pi with no associated oy do
I instantiate new o

end

foreach o, do
| perform meanshift tracking

end

integrate motion and color hypotheses

foreach og with no associated pi do
I de-instantiate oj?

end

foreach og do

I merge oj with other objects?

end
Algorithm 1: Tracking algorithm

2.2.6 Performance

2C is evaluated along two dimensions. First, we look at standard accuracy and precision

measures to evaluate the quality of the output of the system. Second, the speed at which

2C is able to generate those results is taken into consideration.

MOT Metrics

In order to be able to evaluate the tracking system's performance, we need a robust set of

metrics that is able to represent the kinds of errors that we care about optimizing. One such

set of metrics are the Clear MOT metrics, MOTA and MOTP (Multiple Object Tracking

Accuracy and Multiple Object Tracking Precision) [1]. In this work, I use a modified MOTA



and MOTP score that reflect the need to find accurate points while ignoring the contiguity

of tracks in favor of increased efficiency.

To compute MOT metrics, we first produce a set of ground truth tracks via manual anno-

tation. Several such annotation tools have been developed, the most basic of which simply

displays a video sequence and allows the user to follow objects with the mouse. More so-

phisticated versions incorporate tools for scrubbing forward and backward through video,

tools for stabilizing tracks, tools for automatically drawing portions of tracks, etc. Ground

truth for this work was produced primarily via two tools: Trackmarks [5] and a lightweight,

custom Java application that produces ground truth track data by following the mouse's

movement around the screen as the user follows a target in a video sequence.

MOTA and MOTP are computed as follows:

Given the set of ground truth tracks and a set of hypothesis tracks that we wish to evaluate,

we iterate over timesteps, enumerating all ground truth and hypothesis objects and their

locations at each time.

At time 0 initialize an error count E = 0 and a match count M = 0

We then create the best mapping from hypothesis objects to ground truth objects using

Munkres' algorithm [38], and then score this mapping as follows:

For each correct match, store the distance dl, increment M = M + l and continue.

For each candidate for which no ground truth object exists (false positive), increment

E = E + 1

For each ground truth object for which no hypothesis exists (miss), increment E = E + 1

MOTP is then:

4 or the distance error averaged over all correct matches.
M

MOTA is:

E+M or the ratio of errors to all objects.

Table 2.1 shows MOTA and MOTP scores as well as average track duration for 2C, as well



2C SwisTrack
MOTA 0.74 0.48
MOTP 1,856.14 2043.47
totalTimesteps 3,479 3,479
totalObjects 11,896 11,896
totalHypotheses 9,795 7,426
totalMatches 9,294 6,606
totalFalsePositives 501 820
totalMisses 2,602 5,293
totalMistakes 3,103 6,113
Mean track duration (sec) 56.8 13.9

Table 2.1: Accuracy and precision comparison

as for SwisTrack [14], an open source vision architecture that has previously been applied

to HSP data and that serves as a useful baseline for tracking performance.

The interpretation of these scores is that 2C is approximately 74% accurate, and is precise to

within 1.8m on average. Further inspection of the statistics reveal that misses (cases where

there is an object that the tracker fails to notice) are more than 5 times more common

than false positives (when the tracker denotes the presence of a non-existent object). In our

application, this is an acceptable ratio, as misses damage the results very little while false

positives have the potential to corrupt findings far more. Although it was not a primary

consideration in its design, notice that 2C produces longer tracks than SwisTrack (56.8 sec

vs. 13.9 sec), which is particularly encouraging in light of 2C's substantially higher MOTA

and MOTP scores (notice that due to the near complete recording coverage of the home,

we can assume that "correct" tracks will often be long, breaking only when a subject either

leaves the home or enters an area without video coverage).

Speed

Speed of processing was a primary consideration in the design and implementation of 2C.

As such, real world processing speed was analyzed and tuned exhaustively. Evaluations

given here are for a single process running on a single core, however in practice 2C was run

in an environment with many computers, each with up to 16 cores, all running in parallel.



Mean Std
Input Component < 1 < 1

Background Subtraction 2.1 3.32
Motion Aggregation < 1 .03

Tracker 0.43 6.08
Output Component < 1 2.3

Total frame time 4.10 6.81

Table 2.2: Runtime stats for tracking components

Mean Std

Init 0.03 2.38
Matching 0.1 0.39

Color Tracking 0.24 0.48
Integrate Hypotheses 0.01 0.12

Merge 0.05 2.26
Prepare Output 0.01 0.37

Table 2.3: Runtime stats for tracking module steps

Per-core speeds were slower, but overall throughput was of course much faster.

Runtime for each component is given in Table 2.2 and a breakdown by each step in the

tracking algorithm is provided in Table 2.3 (all times are in milliseconds). Precise runtime

data is unavailable for SwisTrack, but observed speeds across many tracking tasks was near

real time (67ms/frame for 15fps video).

2.2.7 Tuning

An effort was made to control the free parameters in the 2C system in two ways. First,

I attempted simply to minimize the number of free parameters. This was done by simpli-

fying where possible, combining parameters in sensible ways, and allowing the system the

freedom to learn online from data whenever possible. This effort was balanced against the

desire to "bake in" as little knowledge of tracking as possible, requiring the abstraction of

many aspects of the operation of the system out into new free parameters.



The second part of the effort to control 2C's free parameters involved the framing of the pur-

pose of these parameters. Rather than allowing them to be simply a set of model parameters

for which no intuitive meaning is possible, the free parameters are all descriptive in terms

that are understood by a human operator of the system. For example, consider the set of

parameters used in performing association of particles to objects. These have names such as

"WEIGHTDISTANCE", "WEIGHTVELOCITY", and "MINASSOCIATIONSCORE"

with intuitive explanations such as "the weight to apply to the Euclidean distance score

between particle and object when computing the overall score" and "the minimum overall

score for which an association is possible." Contrast this to a more abstract tracking ap-

proach such as a particle filter based tracker, where there is a set of parameters for which

no human-friendly description is possible.

Even with the parameter list minimized, the search space for parameter settings is large.

For this reason, two methodologies have been explored and utilized for establishing optimal

values for the free parameters in the 2C system. First, a GUI was created that allows the

user to manually change the various parameter settings while watching an online visualiza-

tion of the tracker's operation. This method heavily leverages the human operator's insights

about how to improve tracker performance. For example, a human operator might realize

that the operation of the motion tracking algorithm is highly sensitive to the output of

the background subtraction algorithm, and might choose to tune background subtraction

while "keeping in mind" properties of motion tracking. This allows the human operator to

traverse locally poor settings in pursuit of globally optimal ones.

The second approach to tuning free parameters is an automatic one and uses a gradi-

ent descent algorithm. A set of target parameters to tune is defined, as well as an order

in which to examine each parameter and default values for the parameters. Then, with all

other parameters held constant at their default values, the tracker is run iteratively with

all possible values of the initial target parameter. The best value of these is chosen, and

that value is then held constant for the remainder of the optimization run. Values for the



next parameter are then enumerated and tested, and so on until all parameters have been

set to optimal values. We then begin another iteration, resetting all parameter values. This

process continues until parameters are changed less than some threshold in a given iteration.

This method tends to find good values for parameters, but suffers from local maxima and

is highly sensitive to both the initial values of parameters and the definition of the tuning

set and order.

A variation of the second approach utilizes a genetic algorithm in an attempt to more

fully explore the parameter space. Initial values are set at random for all parameters. Gra-

dient descent then proceeds as above until all values have been reset from their random

starting points. This final set of parameters is saved, and a new set of initial values is set at

random. The process proceeds for no steps, when the overall best set of parameters is chosen

from among the best at each step. This overall winner is then perturbed with random noise

to generate ni new sets of starting values. Each of these starting value sets is optimized

using gradient descent as before, again with the overall best optimized set being chosen.

This process proceeds for k iterations. This method more fully explores the search space,

but is extremely computationally expensive. For example, if we are tuning r parameters

and enumerate m possible values for each, then we must track (no + ... nk) * (m * r) video

sequences. This number grows large quickly, particularly if we are tracking full-resolution

video in real time. Tuning 10 parameters with 10 values each with 5 initial random sets at

each iteration for 5 iterations with a 5 minute video sequence results in a total runtime of

12,500 minutes (208 hours).

While all three approaches described above were tested, the best results came from a com-

bination of manual and automatic tuning. Initial values were set manually via the GUI.

These values were used as starting points for several iterations of gradient descent. The

final values from gradient descent were then further optimized manually, again using the

GUI.



2.3 Transcription and Speaker ID

Audio data is transcribed via a semi-automatic system called BlitzScribe [27]. BlitzScribe

works by first segmenting the audio stream into discrete utterances. Segmentation is done

by searching for silence, and then by optimizing utterance length based on the cuts pro-

posed by the silence. Utterances are then aligned with human annotation of the location

of the child such that only utterances representing "child-available" speech are marked for

transcription. Audio is then given to transcribers one utterance at a time to be transcribed.

Transcribed segments are stored as text in an encrypted SQL database, each with start and

stop times (in microseconds), the audio channel from which the utterance originated, and

the annotation of the child's location. To date, approximately 60% of the corpus has been

transcribed.

Speaker identity is determined automatically using a generative model-based classification

system called WhoDat [18]. In addition to identity, WhoDat produces a confidence score

denoting its certainty about the label it has attached to an audio segment. Identity is added

to each utterance in the database along with transcripts.

Transcription accuracy is checked regularly using a system of inter-transcriber agreement,

whereby individual transcripts may be marked as inaccurate, or a transcriber's overall

performance can be assessed. Speaker ID was evaluated using standard cross validation

techniques. Performance varies considerably by speaker, with a high accuracy of 0.9 for the

child and a low of 0.72 for the mother, using all utterances. If we assess only utterances

with high confidence labels, accuracy improves significantly, at the expense of the exclusion

of substantial amounts of data. In practice, a confidence threshold of 0.4 is used when

speaker identity is needed (such as when determining which utterances were made by the

child), resulting in over 90% accuracy across all speakers and yielding approximately 2/3

of the data.



2.4 Processed Data

Tracks generated by 2C and transcripts (with speaker ID) from BlitzScribe are then further

processed to derive the datatypes described below.

2.4.1 Processed Tracks

Tracks are projected from the pixel space of the video data where it was recorded into world

space, represented by Euclidean coordinates relative to a floorplan of the home. The fisheye

lenses of our cameras are modeled as spheres, and model parameters 0 are derived using

a manual annotation tool. 6 fully specifies the camera's position and orientation in world

space. Each point P in a given track can then be mapped to world space U by a mapping

function f(P : 0) -* U.

Once projected into the single coordinate system representing the entire home, tracks can

be aggregated across all cameras. These aggregate tracks are Kalman filtered [10] and point

reduced using the Douglas-Peuker algorithm [39]. Once aggregated and filtered, tracks are

Figure 2-6: Sample Movement Traces



merged across cameras. This process attempts to join tracks from adjacent cameras that

represent the same tracked subject. Merging proceeds as follows. For two sets of tracks in

adjacent cameras, we generate all pairwise scores between individual tracks. The score is

computed as the mean distance between temporally overlapping portions of the two tracks,

combined with the point-wise standard deviation between the tracks in a weighted average.

This formulation incorporates two assumptions about tracks that should be merged: that

they should be close together for their duration (low mean delta distance), and that regard-

less of their distance, they should maintain a somewhat constant distance from each other

(low standard deviation).

The score Sij for tracks i, j is computed as:

S = (#31d;) + 320-,3

where:

d = mean distance between tracks i, j

#1 and #2 are tuned parameters

and:

i, j are the portions of track i and track j that overlap in time.

Wa grack

Figure 2-7: Track processing pipeline

Each track is then iteratively merged with all other tracks whose score is below a threshold.

This threshold was tuned empirically by iterating over values and examining both visualiza-

tions of the resulting merged tracks, as well as raw video data corresponding to the objects

being tracked.

The output of the track processing step is a set of tracks corresponding to all movement



throughout the home during the period of recording. These tracks are stored in SQLite

database files, with one day per file.

2.4.2 Child's Vocabulary and Word Births

From the transcripts of audio data, we'd like to know which words were present in the

child's vocabulary by the age of 2, as, by definition, these are the individual words that

signify language acquisition in the child. Then, for each of these words we would further like

to know the time of that word's first production. Given perfect transcription and speaker

ID, this is a trivial process, easily handled by a single query to the database (i.e. SELECT

* FROM utterances WHERE timestamp == min(timestamp) AND speaker == "child").

Both transcription and speaker ID are imperfect, however, which necessitates some filtering

in order to find first the child's vocabulary and then the first production of each word in

the vocabulary.

First I generated the vocabulary for the entire Human Speechome corpus by iterating over

all transcription and storing unique tokens. This resulted in 24,723 unique tokens, with

1,772 having appeared more than 100 times. To mark a word as part of the child's vocab-

ulary, it must appear a minimum of 10 times throughout the corpus, marked as "[child]"

with high confidence by speaker ID. This list is then filtered to remove non-linguistic tokens,

as well as to manually map various forms of the same word to a single token (for example

"dad," "daddy," and "dada"). This process resulted in 658 words being identified as present

in the child's vocabulary (see Appendix A).

In order to establish the time of the child's first production of each word or Age of Acqui-

sition (AoA), I create per-word temporal distributions at the week and month timescales.

I then search for the knee in each distribution, or the point at which the child's use of the

word increases substantially. This step helps to avoid spurious false positives before the

child actually assimilated a word into his vocabulary. The knee at each timescale is aver-

aged. Given this average knee, we then search for the nearest production of the word by the



child and call this the word birth, with its timestamp being that word's AoA. These times-

tamps are more accurately denoting the age at which the child first assimilates a word into

his vocabulary; however, this is assumed to be closely related to the time of first production

and so is used as the age of acquisition time.

50

25 -

9 18 24
Child's Age

Figure 2-8: Old vs. New Word Births

As a check on the results of this step, I gathered Age of Acquisition data derived for previous

research. This data was derived when there was substantially less transcription complete,

so we might expect AoA to move forward in time as we see new child-spoken utterances

containing a given word. Figure 2-8 shows that this is in fact the case - the overall pattern of

word acquisition (the "shark's fin") remains nearly identical, while the timestamps for each

word move forward in time in almost all cases. As another check on the newly derived age

of acquisition for each word, I plotted the child utterance temporal distributions, along with

the newly derived and previous word birth timestamps (see example in Figure 2-9). These

simple plots convey information about the child's usage of a word, and proved powerful in

troubleshooting AoA data. As a final check on each AoA, transcripts were examined for

each word birth utterance. In several cases, reading the transcript showed that an utterance

couldn't have been produced by the child, necessitating manual intervention to find the true



first production of the word by the child.
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Figure 2-9: Word birth verification plot

2.4.3 Situated Utterances

For a given utterance, I attempt to "situate" that utterance by extracting the point or set

of points denoting the location of a person or people at the time of the utterance. To do

this, I search for all tracks whose start and end times intersect the start and end times of

the utterance, and then extract (or interpolate) one point from each intersecting track at

the timestamp of the midpoint of the utterance. These points are then stored in a table,

matched to the target utterance. The result of this step is a table that stores the location

of participants for each utterance in the corpus.



2.4.4 Spatial Distributions

Situated utterances are distilled into spatial histograms that represent aggregate views

across arbitrary dimensions. A 2-dimensional histogram is initialized where the bins corre-

spond to discrete locations in the home. Histograms are initialized for bin sizes of 100mm

and 1000mm, with bins distributed in a uniform grid throughout the space. For 100mm bin

sizes, distributions contain 162 x 118 = 19,116 bins. The 1000mm distributions contain 16

x 11 = 176 bins.

For each situated utterance of interest, the set of points corresponding to the location

of people at the time of that utterance are added to the appropriate bin(s) of the histogram

using bilinear interpolation. Each bin is given a weight corresponding to the area an arti-

ficial bin centered at the point would overlap with the bin in question. A weighted point

is then added to each bin. Note that by this method, at most 4 bins can be affected by a

single point and a point that falls directly in the center of a bin affects only that bin.

If we have a point P and a bin centered at K with size w * h, the weight FP,K is given by:

P =(P,-w/2) P2 (Px+w/2)

P =(Py -h/2) P2=(Py+h/2)

K> (Kx-w/2) K=(Kx+w/2)

K'=(Ky -h/2) K =(Ky+h/2)

[min(Kx, Px) - max(Kx, Px)]* [min(K, P2) - max(K', P')]
rtPK w h Y

This spatial distribution represents the aggregate locations of participants in the utterances

of interest. Histograms are represented as multinomials with the added property that bins

have spatial adjacencies, where k = the number of bins and n = the number of samples

(in this case utterance points). The probability of an utterance occurring at a location i is

the total count of points in i = Xi divided by the total number of points n: pi = Q andn



Ej pi = 1. The mean location is a weighted sum of bin locations, where pi is the weight

of location i and Ki is the coordinate: p = E piKi and the mode is simply the maximum

likelihood location: mode = Ki s.t. i= argmax(pi).

2.5 Summary

Figure 2-10 summarizes the dataset creation pipeline. Tracks are produced by 2C, then are

filtered and merged across cameras. Transcription created by BlitzScribe is used to generate

the child's vocabulary and word birth dates. Processed tracks and transcription are then

joined to form situated utterances. These are aggregated to form spatial histograms.

AUDIO - TRANSCRIPTION ---- CHILD VOCAB&
- 0WORD BIRTHS

VIDEO 1 TRACKING FILTER AND MERGE

UTTERANCE SPATIAL DISTRIBUTIONS

Figure 2-10: Summary of Dataset Processing
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Chapter 3

Taxonomy

3.1 Overview

The fundamental building blocks of the taxonomy described here are spatial distributions

representing the locations of people during normal daily life. These distributions carry with

them various metadata, including the speech type (i.e. a particular word) they represent

and various statistical measures that serve to quantify the distribution. Distributions are

visualized in several ways for presentation to the user.

3.2 Schema

The schema for the taxonomy is defined according to a 3-dimensional structure as follows.

Each axis is segmented by a dimension of interest: activity type, participant identity, and

temporal slice. Locations along all axes are discrete.

Along the y-axis, we have activity types. With the exception of the first entry, activity

is speech and is defined according to the content of the speech.



Statistical Measures Visualizations

Taxonomy

Figure 3-1: Overview of Dataset and Taxonomy

Entries on the y-axis are:

Activity: This represents all person tracks in the corpus (note that identification is cur-

rently done only on the basis of speech, therefore activity entries are not segmented by

identity)

Speech: This represents data for all speech acts in the corpus

Target Words: These are utterances containing any of the 658 words in the child's vo-

cabulary at age 2

Learning Period: For each of the target words, these are utterances containing that word

that occurred before the child's first production of the word.

Target Words and the Learning Period are further segmented by each of the individual

words.

The y-axis therefore contains (1 + 1 + 1 + 1 + 658 + 658) = 1, 320 entries.

Along the x-axis, we have participant identities. These identities are segmented as fol-

lows:

All participants: no filtering is done



Mother: only utterances made by the Mother are included

Father: only utterances made by the Father are included

Nanny: only utterances made by the Nanny are included

Child: only utterances made by the Child are included

Other: utterances made by participants other than those noted above are included

The x-axis contains 6 entries.

To determine the total number of entries across the x- and y-axes, we first note that iden-

tity is not available for non-speech activity traces because identity is derived from utterance

audio. We also note that, by definition, Learning Period utterances are not made by the

child, so these entries are empty and need not be counted. We can now determine the total

number of entries as: (6 * (1 + 1 + 658)) + (5 * (1 + 658)) + 1 = 7, 256

Along the z-axis, we place temporal slices. While temporality can be viewed continuously,

we instead discretize as follows:

All: all activity

Morning: activity taking place between 4am and 9am

Daytime: activity taking place between 9am and 5pm

Evening: activity taking place between 5pm and 8pm

Night: activity taking place between 8pm and 4am

Weekend: activity taking place on Saturday or Sunday

Weekday: activity taking place Monday - Friday

By month: activity corresponding to a single month in the child's life from 9 - 24 months.

Combined with the entries above, the complete taxonomy contains 7, 256 *(7+16) = 166, 888

entries altogether.
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Figure 3-2: Taxonomy schema

3.3 Visualizations

For each entry in the taxonomy, the following visualizations were produced (details about

each type follow):

" Heat map (standard) for 100mm and 1000mm bin size distributions

" Heat map (log scale) for 100mm and 1000mm bin size distributions

" Difference map comparing this entry to the other entries in its x, y, and z axes (i.e.

target word utterances made by the father compared to all target word utterances)

for 100mm and 1000mm bin size distributions



3.3.1 Heat Maps

The core visualization type represented in the taxonomy are heat maps utilizing a "rainbow"

spectrum of color to represent counts in the various bins. These heat maps are normalized

such that the maximum value is depicted in white and the minimum value is black. These

basic heat maps are also extended to heat maps plotted on a log scale, again normalized so

that the maximum is white and the minimum is black. The log scale versions are useful for

displaying more subtlety in cases where there are many points and ranges are large.

3.3.2 Difference Maps

Difference maps are produced that visually represent a distribution's difference from the

background (or from any other distribution). These maps are derived by subtracting the

likelihood of each bin in the background distribution from each bin in the candidate dis-

tribution. Results might therefore be negative, with positive numbers reflecting bins (or

physical locations) where the candidate distribution is more likely than the background.

A modified color spectrum is used in these difference maps, where zero is still depicted in

black, but positive numbers utilize the warmer end of a rainbow spectrum (red, orange,

yellow, and white) and negative numbers are depicted in cooler colors (blue, green).

3.4 Statistics

For a large taxonomy, it is useful to define some organizing principles in addition to the

structure of the taxonomy itself. These principles can serve as a means of locating points of

interest within the taxonomy - "handles" that one can grasp in order to pull out interesting

features. To this end, various statistical measures were computed for each entry in the

taxonomy.

The notation used is:

P = background, or the spatial distribution for all speech

Q = target word spatial distribution



n = number of observations

k = number of bins

i = bin index

Entropy

H(Q) = - EI q(i)og(q(i))

Entropy (or Shannon Entropy) is an information-theoretic measure that quantifies the

amount of uncertainly in a random variable. In this context, entropy measures the de-

gree of uncertainty about the location of an utterance, or how "spread out" a distribution

is. For example, a distribution with all samples concentrated in a single bin would have 0

entropy, while a distribution with equal (non-zero) counts in all bins would have maximum

entropy. Notice that entropy does not contain any information about spatial adjacency - a

distribution with a single large peak (and otherwise uniform) would have similar entropy

to one with many small peaks.

KL-divergence

KL(P,Q) = Ekp(ijlogp

KL-divergence, also known as relative entropy, measures how much information one dis-

tribution provides about another. In this context, it can be seen as a measure of the

difference between two distributions. More specifically, KL-divergence is used here to mea-

sure how similar a particular spatial distribution is to the overall speech patterns in the

home, or how unusual a particular distribution is.



Ripley's K

RK(Q) = A-in-1 Ei ES, I~(j))

where:

Q q(i) - p(i)Vi

= q(i) - p(i)

j E Si is the set of bins near bin i

and:

I(q(j)) q(j) > T

0 : otherwise

This is a modification of the typical Ripley's K statistic [11, 7], originally designed to

measure the degree to which a discrete spatial point process exhibits complete spatial ran-

domness (CSR). Samples that are homogenous or those displaying CSR will have low values

of Ripley's K, while those with tight clusters will exhibit high values.

Ripley's K was devised to measure the clusteredness of a set of discrete, unevenly spaced

points by averaging the number of adjacent points in each cluster and normalizing by the

overall density of the points. Here, I classify each bin as a point or not a point based on the

residual probability after subtracting off the background. For each point i, evaluate I(q(j))

for each q(j) in the neighborhood of i. I(q(j)) is an indicator function that is 1 when a

bin has probability greater than T and 0 otherwise. T is a free parameter and is set to 0

in practice, but can be set differently in order to find different types of spatial clustering.

When T is high, Ripley's K will give high scores only to distributions with clusters of high

peaks. When T = 0 as here, the statistic has high value for distributions with clusters that

are even slightly more likely than background.

Moran's I



where:

Q = q(i) - p(i)Vi

and:

wij is the weight between bins i and j. wi,j is a function of Euclidean distance between

bins where bins that are further apart have lower weights. These weights can be thought

of as the resolution at which the data is measured. In practice, wij is computed such that

wij = 0 when the distance between bin i and bin j is greater than 2 meters.

Moran's I [20] is a measure of spatial auto-correlation, or the correlation between prob-

abilities in neighboring locations. The statistic is often used in fields such as epidemiology,

where one would like to measure how much the presence of a point (i.e. a disease case) in

one location affects the likelihood of a point in a nearby location. In this context, Moran's

I measures the degree of smoothness in a distribution. The settings in the weight matrix

(wi,j) affect the scale at which smoothness is measured, where, for example, a distribution

might be uneven at a fine scale, but display smoothness when more bins are considered

simultaneously.

Moran's I values range from -1 (perfect dispersion) to 0 (random, no autocorrelation) to 1

(perfect correlation).

Entropy of Difference

H(Q) = - (i)logq(i)

where:

Q = q(i) - p(i)Vi

This measure is a test of how much entropy varies when compared to the background -

distributions that are similar to the background will therefore display higher entropy in



their difference than will distributions with large variations from background.

Bhattacharyya Distance

DB(P, Q) = -ln(BC(P, Q))

where:

BC(P, Q) = E "p(i)q(i)

Bhattacharyya is a true distance metric (similar in some respects to Euclidean distance)

that, similar to KL-divergence, is used here to measure a distribution's difference from

background. Bhattacharyya distance is somewhat less sensitive to zero-count bins than

KL-divergence, but provides a slightly weaker measure of difference in distributions with

large n.

The effect of count

Many of the spatial distributions of interest contain too few samples to be robustly esti-

mated, leading to poorly formed information theoretic measures. Furthermore, the measures

that we can compute directly are extremely sensitive to the number of observed samples,

making comparisons between distributions with varying number of samples difficult and

often inaccurate.

For example, it can be shown rigorously that entropy decreases as a function of n - in-

tuitively, the more samples you've seen, the more uniform a distribution will appear until,

with large enough n it eventually converges to its "true" entropy. Likewise, with a single

sample, the entropy of a distribution is 0, and this entropy increases with each subsequent

sample until the distribution is adequately estimated and the true entropy is observed.

These principles can also be modeled using artificial data; this empirical modeling was un-

dertaken extensively as part of this work in order to understand the relationship between
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Figure 3-3: Sampled and observed KL-divergence

sample count and the various measures of interest. In all cases, measures were sensitive to

n, and converged toward their true value as n increased.

First, the theoretical effect of n on KL(P, Q) was derived [25]. This derivation estab-

lished an upper bound on the expected KL-divergence of a distribution P against Q, which

contains n samples. This expectation is:

E[KL(P, Q)|n] = E[H(P, Q)|n] - E[H(Q)|n]

B

= H(PQ) + pilog(pi - n _

B B1
1 -p

< -( pjlog(qi) + Y pilog(pi +

Notice that H(P, Q) is the cross-entropy of P and Q, which is unaffected by n. (x) implies

that KL-divergence as a function of n converges toward the "true" KL-divergence with -;

therefore the KL-divergence of a distribution against itself will converge to 0 linearly in

log-log space, a property that can be verified by modeling. Figure 3-3 shows the observed

KL-divergence of P with a distribution Pn generated by sampling P n times. Each Pn is

generated m times, with all such KL-divergences plotted.



This relationship is also seen in actual data (see Figure 3-4).

Residuals

In order to overcome the effect of n on KL-divergence, the following method was devised

(as part of related research [19]): the relationship between KL-divergence and n is linear

in log-log space, therefore it is suitable to fit a line to these points plotted together and

examine the residual from this line.

First, find ax + b that minimizes sum of squared error of log(n) and log(KL(P, Qi))Vi.

Then for a given Qj with sample count n, KLpredicted(P, Qi) = an + b

And KLresidual (P, Qi) = KL(P, Qi) - KLpredicted(P, Qi)

In simple terms, the residual effectively says "how does the observed KL-divergence for

this word compare to the observed KL-divergence for words with similar counts?"

While KL-divergence and many of the measures discussed above are correlated with count,

the residual measures computed here are uncorrelated with count, making it reasonable to

use them to compare words with different sample counts. Figure 3-4 illustrates (L to R) the

raw correlation of KL and count, the relationship between KL and count in log-log space

with a line fit to the values, and the uncorrelated KL-residuals.

I1

Figure 3-4: The relationship between count and observed KL-divergence

Notice that packed into this methodology are two possibly distinct effects - one is the effect

of count on KL-divergence, which, as has been stated, can be rigorously proven. The second



is the semantic effect of word use on KL-divergence: it is possible that seldom used words

are, in fact, used in ways that systematically differ more (or less) from the background,

likewise with often used words. The residual measure can be thought of as a high level

abstraction that embodies both of these properties in order to make a fair comparison be-

tween words.

Distribution Browser

Salient patterns can be seen in the visualizations described above even in very low resolution

images, implying that interesting differences could be drawn out by looking at aggregate

views of all distributions where each distribution is rendered at a small size. As a result

of this observation, an approach was devised as follows. All spatial distributions are vi-

sualized as small, iconic heat maps and arranged according to some user defined ordering

(i.e. alphabetical by target word). We then apply a statistical metric (i.e. KL-divergence)

to each distribution, generating a score for each according to this metric. Icons are then

darkened according to this score. The user can choose to visualize the scores in ascending

(low scores are brighter) or descending (high scores are brighter) order. Additionally, the

user can choose to filter the distributions by this score, showing, for example, only the top

50 scoring distributions.

Users can switch seamlessly between various statistical metrics, the ordering direction (as-

cending or descending), and the amount of filtering. The user can also choose to more

closely examine any individual distribution in standard, log, or difference form. Addition-

ally, an ordered list is provided for each metric that shows a total ordering of the target

words based on the currently selected metric.

One can quickly get a sense of the shape of the distribution over the measure being ex-

amined. For measures that provide good separation between spatial distributions, the user



sees a uniform spread between dark and light icons. For a measure that clusters distribu-

tions toward one end of the scale, however, the user will see an even distribution in the dark

(or light) part of the range, and just a few icons at the other end of the range.

As an example of the above effect, a particular measure gives a numerical score to "car"

of .90. The next word, "diaper" scores .68. There are 15 words scoring between .02 and

.50, and 408 words between 0 and .02. It is clear that most words have low scores, some

have higher scores, and "car" is an outlier at the top of the scale. These properties are

apparent when viewing the browser, as sorting in ascending orders shows nearly all icons as

very bright, with just a few appearing dark, and "car" being black. Sorting in descending

order is equally informative, as "car" appears very bright, several icons are less bright, and

most icons are dark or black.

The browser allows the researcher to make informed decisions about the best statistical

measure to use in order to select desired distributions. In the example of "car," we were

able to cycle through many measures quickly, noting in each case the position of "car"

along the continuum from dark to light. We were similarly able to look for measures that

highlighted words with similar spatial properties (in this case, words whose difference maps

appeared tightly clustered in a particular location). As a result, we were able to conclude

that the Ripley's K statistic selects the desired spatial distributions. We could then use

this measure to automatically sort the 658 target words, as well as any of the 26,000 other

words in the corpus' vocabulary.

Additional benefits are realized when we consider the ordering of the icons as a second

dimension by which to view distributions, with darkening and lightening as the first dimen-

sion. Given the task of finding spatial information that is predictive of age of acquisition,

we seek measures that are correlated with age of acquisition. In order to perform this

search, we first order the distributions by age of acquisition, and then apply some measure.

If correlation is high, we expect to see a smooth transition from dark (or light) at the top

left to light (or dark) at the bottom right. Such a transition implies that measure values



are varying with age of acquisition. Figure 3-5 shows such an ordering for 120 words, with

KL-divergence applied. We can see that KL-divergence values tend to be lower at the top

left (distributions are darker) and higher at the bottom right. Although correlation is not

perfect (r = 0.58), we can get a quick sense of the appropriateness of the measure. We can

also quickly find outliers, or those distributions that are poorly predicted by looking for

discontinuities in shading. For example, notice that "round" is far brighter than would be

appropriate given its position in the matrix.

Figure 3-5: Difference Browser



Chapter 4

Exploration and Analysis

The taxonomy built up from spatial distributions is a useful tool for exploration and analysis,

and in this chapter I will highlight some relevant pieces of data, showing that with careful

comparisons, interesting insights as well as numerical results can be drawn out and analyzed.

4.1 Activity Types

Figure 4-1 shows heat maps representing 3 views of the overall activity pattern in the home.

Even at a very rudimentary level, these visualizations provide insights about the daily life

of the family. One can immediately see, for example, that the kitchen is a hub of activity,

in particular the area near the center island. We can also see that a secondary hub exists in

the living room near the couch, and that there are three main areas of the child's bedroom

where activity takes place, making up the third activity center in the home.

4.1.1 Speech vs. Movement

In Figure 4-2 we see the spatial distribution over all speech visualized in three ways. These

heat maps show clearly several key areas of the home where speech is common ("social



Figure 4-1: Heat maps: (L to R) all activity, all activity plotted on log scale, all activity
with 1000mm bins

hotspots"): the kitchen, family room, and child's bedroom. It is important to note that these

hotspots were derived automatically via a very simple threshold-and-cluster algorithm that

looks for high likelihood locations and builds clusters containing those locations, implying

that these sorts of insights could be derived automatically.

Beyond knowing the locations of utterances, we might like to understand the ways in which

speech acts differ in their locational properties from overall activity. In other words, are

there locations in the home where people spend time silently? Are there locations in the

home where people are seldom silent? These questions are answered easily by examining

the difference map in Figure 4-3. We can see two prominent complementary areas in this

map: in the kitchen near the left side of the center island, speech is likely relative to overall

activity; and the hallway below the kitchen, where speech is unlikely. These observations

make sense when we think about the activities that take place in these locations. In the

kitchen as a whole, people may be moving around with little or no speech; however, during

mealtimes (which take place at the left side of the center island) people are rarely silent.

Likewise, in the hallway people are likely to be moving about silently as the hallway is not

a place that one would tend to linger and talk.

4.2 Speech content

By examining speech on a per-word basis, we can begin to understand how particular words

(and classes of words) fit into and are influenced by the patterns of daily life.
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Figure 4-2: Heat maps: (Clockwise from top left) all speech, all speech plotted on log scale,
all speech with 1000mm bins, social hotspots

4.2.1 Target Words vs. All Speech

Given this work's interest in language acquisition, a natural focus is on the words that even-

tually entered the child's vocabulary. Furthermore, we'd like to look at those words during

the learning period (the time leading up to the child's first production of the word) in order

to understand if there are contextual cues that either facilitate or indicate the learning of

the word.

Figure 4-4 summarizes the spatial properties of the 658 target words, as used during the

learning period for each word. The key insight from these visualizations is the existence and

location of two "learning zones," or areas where the child was taught much of the language

he came to know by the age of two. These are the areas where these words were used most

often, making it reasonable to assume that the learning process took place in these areas



All Activity vs. All Speech
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Figure 4-3: Difference map showing speech vs. all activity

primarily.

4.2.2 Spatial groundedness

A word that became a focus because of related research was "car." This word reduced the

perplexity of a spatial language model more than any other word, implying that spatial

properties of the word were important. The spatial distribution for car appears to follow

a typical usage pattern, with the word showing up in many areas of the home. This us-

age pattern differs significantly from the overall speech pattern in the home, however; a

difference that shows up immediately in the difference map visualization - the area near a

window in the family room appears bright yellow and orange, with the rest of the house

being blue, black, and green.

This pattern shows that "car" is used normally or less than most words throughout the



home, but is far more likely than other words in the area near the window in the family

room. This pattern is intuitive for a researcher familiar with the data: the child often stood

at the window with his nanny, pointing to cars as they drove by. There was also a play

mat near the window where the child often played with toy cars. A word whose usage
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Figure 4-4: Target word heat maps

pattern is similarly localized is "diaper." This word, as might be expected, occurs far more

frequently near the child's changing table than in other parts of the home. This pattern is

again evident upon examination of the difference map for the word.

Several food-related words also follow similar patterns, again, as expected. Words such

as "mango," "banana," and "papaya" occur far more frequently near the child's primary

feeding location in the kitchen. Similarly, but as a slight variation, several words including

"eat" and "done" (part of the phrase "all done") occur throughout the kitchen, but with

a more varied spatial distribution than words that tend to occur strictly while the child is

eating.

By contrast, there are many words that are spread more uniformly throughout the house.

Words such as "you," "those," and "that" exhibit spatial distributions that mirror closely

the distribution of all speech. These words and many like them are not tied to particular

locations, which is an intuitive property when one considers the meaning of the words.

Words that fall into this class are generally words that describe moveable objects, people,

or concepts, none of which are tied to locations. Of equal interest are words such as "come"

and "go," whose spatial distributions are spread throughout the home with the exception



that they occur infrequently in the kitchen where the child was often confined to a high

chair and thus was unable to "come" or "go."7

The Ripley's K statistic is intended to measure the "clumpiness" of a set of points, or

the degree to which a set of points exhibits complete spatial randomness (CSR). Here,

Ripley's K is applied to difference distributions using a threshold on the probability to de-

termine which bins are considered "points" (see Figure 3.4). Those distributions that are

more likely than background in localized ways therefore have high Ripley's K values.

Ripley's K can be an effective handle into the data - by searching for words with sim-

ilar patterns of clustering, we can find those words with similar ties to locations in the

home. To find words whose usage is grounded in a particular location, for example, we need

only find those words with high Ripley's K values (see Figure 4-5).

Figure 4-5: Top 150 Words by Ripley's K

This is a powerful concept. By pulling out those words that are tied to locations while being

able to recover those locations, we have the opportunity to begin to derive meaning for a

certain class of words simply by looking at the usage patterns for those words. Because

these distributions are aggregated over long periods of time (ranging from weeks to years),



we can assume that these spatially tied words relate to either objects or concepts that are

locationally invariant to some extent. Diapers are always present in the area of the child's

room where "diaper" occurs most frequently, mangos are always cut in the same area of

the kitchen, etc. It is therefore possible in principle to recover via visual information a

description of the items being discussed.

To summarize, we can take all speech in the home and, via spatial distributions alone,

highlight those words that are tied closely to particular locations. We then might search

these locations visually for the object or concept that the word describes, providing true

grounding for the word in an automatic way. Figure 4-6 illustrates this concept using video

frames taken during utterances containing the word "ball."

A problem with this approach arises when we consider words that are used in specific

locations exclusively, but that relate to objects or concepts that are not visible at that

location. An example from this data is the word "bus" which was used often in the kitchen

and has a high Ripley's K score, but that was part of a mealtime song about a bus. There

is no visual clue to be found that relates to "bus."

Figure 4-6: Snapshots taken during utterances containing "ball" in the location associated
with "ball"

4.2.3 Clustering

Clustering is an effective tool for exploring the relationship between Ripley's K and KL-

divergence, and how these measures might relate to the meaning and natural usage of words.

Words with high Ripley's K and also high KL-divergence, for example, would be those words

that are focused in locations that are substantially different from overall speech. Similarly,



words with high Ripley's K and low KL-divergence would be words whose locational focus

is well represented in the overall speech pattern. An example of the former is the word

"diaper" whose usage is highly focused in a location that is not a center of overall speech.

The word "mango" is an example of the latter - "mango" is used often in a single location,

but that location is well represented in the background (the kitchen near the center island

is the single most active speech location in the home); "mango" therefore has a relatively

low KL-divergence. A final example is "them " which has a high KL-divergence and a low

Ripley's K score, implying that this word is used in a way that stands out from background,

but is not tied to any single location.

In order to explore the ability of multiple spatial features to segment words into salient

groupings, K-means was applied to the data in two dimensions where KL-divergence is on

one axis, and Ripley's K is on the other. K was set to 30. See Figure 4-7 for visualizations

of the clusters generated. Some interesting examples of the various clusters follows.
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Figure 4-7: K-means clustering by KL-divergence and Ripley's K

The cluster with centroid (.64, .88), which represents a relatively high KL-divergence and

the highest Ripley's K of all clusters contains the following words:

"'mango"

"spoon"

"yum"1

"old"



"mcdonald"

This cluster of unusual, spatially tied words appear all to relate to mealtime (the song "Old

McDonald had a farm" was a mealtime favorite). This cluster provides evidence that meals

are the single most unifying factor in language use - no other activity in the home exhibits

such strongly spatially tied words, or as many words that differ so significantly from the

background. The high degree to which these words are spatially tied relative to words in

other locations or related to other activities might be explained by the fact that during

meals, participants are generally seated. In particular, mealtimes are one of the only times

that the child is stationary for extended periods.

As an example of the effect of mealtime, we examine another cluster, this one with centroid

at (.90, .44). This cluster diverges more from background than the previous one, but is less

spatially focused. Words in this cluster include:

"'come"

"goodnight"

"change"

"diaper"

"where"

"you"l

These words vary in the ways that they are used, both spatially and in the activity con-

texts they are part of. All exhibit moderate spatial clustering, which is clear for "diaper,"

"goodnight," and "change" but is somewhat less obvious for "come," "where," and "you."

Visual examination of these latter three words' distributions reveals that the usage of these

words is, in fact, clustered, but not in a single location. "come" has a cluster in the child's

bedroom and another in the living room, while "you" shows a cluster in the child's bedroom,

another in the kitchen, and a third in the dining room.

A final example comes from the cluster with centroid (.10, .28). This cluster should contain

words that resemble background and that are not location-specific, and indeed it does:

"about"



"keep"

"fine"

"sure"l

"need"

These are words that are more grammatical in nature, which would be words that would

be expected to be used in a variety of contexts.

These observations provide some insight into both the statistics and the usage of these

words. KL-divergence is capable of measuring various disparate properties of a word's dis-

tribution - words that are unusual may be unusual in various ways. Ripley's K, on the

other hand, appears to be measuring the single property that it is intended to measure -

the degree to which a word is tied to a single location. High scores are typically found with

words that are tied to one location, while moderate scores appear tied to several locations,

and low scores are spread more uniformly.

What these statistics reveal about the usage of the words is slightly more difficult to quan-

tify. We can see that words without spatial ties and low KL-divergence tend to be more

general words, and the words with moderate KL and high Ripley's K tend to be highly

focused, specific words. But the words in the middle group with high KL and moderate

Ripley's K are more individually different. "come" has a different reason for displaying the

values it displays than does "goodnight" or "diaper." Each word essentially has its own

story.

4.3 Identity

It has been shown that peoples' identities can be accurately segmented into classes using

a combination of behavioral traces (data from person tracking) and visual features (color

histograms from video) [31]. In this work I focus on a much coarser representation, spatial

distributions, but propose that they still contain enough individually identifiable informa-

tion to be useful for identification.



As just one example of a person-specific feature, consider the area around the kitchen

island. Each caregiver has a location that they prefer, a fact that can be verified by watch-

ing video of mealtimes. The mother tends to sit close to the bottom edge of the island,

while the father prefers the left side, and the nanny, who is often alone with the child at

mealtime, sits nearer the corner of the island. When we examine the difference maps in

Figure 4-8, these preferences are apparent - the mother is far more likely to speak in her

preferred location, the father in his, etc.

I currently make no claims as to a quantitative assessment of this concept, however it

appears reasonable that we could derive an aggregate distribution for each person of in-

terest and then generate at least a prior if not a full classification of identity based on

a small sample of observed data. In keeping with the cross-modal intent of this work,

this prior could be used in conjunction with an audio-based speaker ID system to improve

classification. This effectively says "where something was said influences who I think said

it."

4.4 Temporal slices

An interesting feature to notice in Figure 4-9 are the various activities that can be seen

clearly in this simple comparison. The morning shows the mother feeding the child (the hot

spot is associated with the mother's usual feeding location, see Section 4.3 above). Daytime

shows the nanny spending time in the chair in the child's room and near the window, as

well as meals in the nanny's usual location. Evening shows meal preparation, which differs

from breakfast and lunch in that it is spread throughout the kitchen. Presumably this is

because there are often two adults preparing the meal, moving around the kitchen cooking

and so on, and because preparation of the meal is more involved than with breakfast or

lunch. At night there is nearly no activity in the kitchen, because the family is spending

much more time on the couch in the living room.
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Figure 4-8: Difference maps for (clockwise from top left): child, father, nanny, mother

4.5 Age of Acquisition correlation

A key question that we might ask of this dataset is whether there is information contained in

spatial distributions that indicates the acquisition of language in the child. More concretely,

are statistical measures of spatial distributions for individual words correlated with the age

of acquisition for those words? If this correlation does exist, then we can say at least that

there is some relationship between where words are said and when the child learns them.

This relationship is likely to be complex, as we are dealing with a dynamic system involv-

ing several people who are constantly influencing each other in multiple feedback loops.

A straightforward causal relationship is unlikely in such a "loopy" system, but correlation

would be informative nonetheless.

Previous work has looked at the the effect of the frequency of word use on age of ac-

quisition. Previous work on HSP has verified that this relationship with frequency exists



Figure 4-9: Difference maps for (clockwise from top left): morning, daytime, evening, night

in this dataset as well, and has added similar correlations with prosodic features and AoA

[37]. This work builds on those concepts, looking for correlation with spatial data.

The basic prediction methodology is as follows:

1. Take the background spatial distribution representing all adult speech. Call this P.

2. Take spatial distributions for each target word's learning period. Call these Qj.
3. Compute some measure Mj (i.e. KL-divergence) for each Qj : Mj(P, Qi)
4. Using a least-squares linear regression, fit a line to each MjjVi plotted against AoAj

5. Pearson's r values are reported as ry

Several of the measures applied to spatial distributions are predictive of AoA. The high-

est correlation for all 658 words is KL-divergence (note that this is actually KL-residual,

described previously), with r = -0.41. We can see that with even a small amount of fil-

tering, Ripley's K dominates the other metrics in terms of prediction accuracy. Ripley's K
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(initial r = -0.33) reaches an early peak when words with less than 1825 samples are ex-

cluded and r = -0.81. At this level of filtering, we predict only 96 of the original 658 words.

Figure 4-10 shows each rj as a function of a sample count (n) threshold T: words for

which n < T are discarded for 0 < T < 8750.

0.6

0.5

0.4

50 100 150 200 250 300 350 400
Fiterthreshold

Figure 4-10: Predictor accuracy as a function of sample count threshold

As this is an early result, it is still unclear why prediction goes up as much as it does when

we filter by count. It is possible that the high count words are simply better estimated

than lower count words, and so are more accurately predicted. Or, it is possible that higher

count words are more sensitive to spatial usage patterns. It is also possible, however, that

filtering is introducing a subtle confound to the regression model. This is an interesting

area for further research. For the remainder of this section, however, I focus on prediction

over the full set of 658 words with no filtering.

If we take an existing known predictor, frequency (r = -0.35) and construct a regres-

sion model with frequency and KL-residual (r = -0.41) the correlation coefficient of this



multivariate model is r = 0.50 (r 2 = 0.25), showing that there is information in the spatial

distributions that is not contained in frequency, and that these two predictors together can

achieve a high correlation with AoA. Figure 4-11 shows the full prediction of this model

(linear fit of prediction vs. actual shown in red, diagonal shown in grey).

It is worth investigating the correlation with spatial features further, so I now again remove

frequency from the model in order to assess KL-residual on its own. The full prediction

for all 658 words is shown in Figure 4-11, as well as the best predicted half of the words

(r = 0.89) and the worst predicted half (r 0.11).

Figure 4-11: KL-residual correlation with AoA

Words with usage patterns that differ more from the overall language patterns in the home

tend to be learned earlier by the child, and as Figure 4-11 shows, some words are much

more sensitive to this effect than others. Are these usage patterns driving the learning of

the word by the child? Or are they reflective of the process of word learning in the child,

a process that is driven by some other force? Language learning is a complex process, and

this is a difficult question to answer quantitatively, so one can only speculate and attempt

to provide evidence.

I will argue that a mix between the two is true - the learning of any particular word

by the child is driven primarily by practical goals and desires and what we see in the spatial

distributions is reflective of the caregivers' use of the word in a child-directed way; and to a

lesser extent words that are spatially unusual are more readily learned by the child, perhaps

due to an effect like Bruner's formats [2].



The child has a need to communicate in order to get food, toys, and to socialize with

his caretakers, and these are some of the forces that drive his learning. His inherent inter-

ests are what cause him to learn words like "car" and "truck" earlier, while his desire to be

fed causes him to learn "mango" and "cookie." This again is a system of loopy causality,

where the child's goals are reflected in the actions of his caregivers, and the goals of the

caregivers are reflected in the actions of the child. We can simplify this system, though, and

say that a reason exists to learn a particular word, and because of the dynamic nature of the

interaction between caregiver and child, this reason is reflected in the way the word is used,

which manifests as a statistical difference in the spatial patterns around the use of the word.

Another way to think about this potential explanation is that a word might be used in

one of two ways - either in an "adult" way, or in a "child-centric" way. It is then reasonable

to think that the degree to which a word is used in a child-centric way would be correlated

with the age at which the child learns the word - words that are often directed at him

would be expected to be integrated into his vocabulary earlier. This argument rests on the

assumption that the use of a word in relation to the child is different (and furthermore is

different in a way that can be quantified using the methodologies described in this docu-

ment) from the way an otherwise similar word would be used between adults. If that were

not the case, then the spatial distribution of a word that the child learned would not differ

from that of a word the child did not learn.

As a crude test of this hypothesis, we can first make the assumption that the best estimate

of adult speech patterns comes from the child's parents. The nanny spends significantly

more time alone with the child than either parent, and so uses language in a more child-

directed way. Visitors to the home are likely to use language in a way that both differs from

normal speech patterns and that is more likely to be directed at the child (when Grandma

comes over, for example, she is likely to spend significant time addressing the child). And,

of course, the child's speech is a poor estimate of adult speech.

We can therefore construct a background distribution containing only the parents' speech as



a proxy for adult speech. If the correlation with KL-divergence is in fact measuring at least

in part the amount to which a word's usage patterns are "child-centric," we would expect

that effect to be amplified when KL-divergence is measured against this somewhat purer

adult speech background. And this is, in fact, what I found. When KL-divergence is com-

puted against the adult background (as opposed to the background representing all speech,

as was previously described), we see a correlation of r = -0.45 as opposed to r = -0.41

with the standard background. This is surely a crude test, but does provide a small amount

of evidence to support the notion that KL-divergence is encoding the "child-centric" use of

a particular word.

We can also probe this effect from the other direction. Take only the nanny's utterances

for a given word and compare that distribution to the background, again assuming that

the nanny's language use more closely resembles child-centric speech than any other's. If

the nanny's speech is uniformly child-centric, then we would expect this comparison to

contain only the differences due to the latter effect described earlier - that is, the spatial

distributions reflect only the degree to which a word's usage is unusual as a function of its

meaning, not the degree to which it is child-centric. If my original hypothesis holds, then

this correlation should be lower, and indeed it is with r = -0.22. Because this comparison

presumably does not contain variation due to child-centric use of words (it is all equally

child-centric) we would also expect a lower variance in the KL-divergences, which we also

see (- = 0.42 vs. o- = 0.58 for the original KL-divergences). As before, this test provides a

small amount of evidence to support child-centricness as the primary piece of information

contained in KL-divergence, with spatial difference also correlated with AoA, but to a lesser

extent.

It is important to attempt to understand the forces guiding the child's learning of words

beyond what is reflected in the spatial distributions, and a way to do this is to first look at

words that are predicted poorly by the model. First I'll define the error metric by which I

measure how well the model predicts a word. Because words in the center of the range are

more likely to have lower prediction error (there is simply less room for a mistake), I nor-



malize error by the maximum possible error, given a word's true AoA. Error for predicted

age of acquisition AoA, in relation to actual age of acquisition AoAa is therefore:

C m A abs(AoAp-AoAa )
max(AoAa-min(AoAa),max(AoA)-AoAa)

If we look at the two words that are predicted most poorly by KL-divergence, "pee" and

"diaper," we can get some idea about these forces. These words are highly localized in their

usage and have high KL values and so are predicted to be learned early by the child. These

words are presumably uninteresting to the child, however, and are unlikely to be encour-

aged by the caregivers and as a result were learned much later than predicted. Similarly,

"maybe" is predicted by this model to be learned late (it is used in a way that resembles

all speech) but it is in fact learned earlier. This is possibly because the word is useful to

the child, garnering his interest. Likewise, "dad" is predicted by the model to be learned

much later than it was actually learned, presumably because this word is quite important

to the child (as with many children, "dad" was the first word learned by this child). These

cases all provide evidence that there is some other force (i.e. interest) guiding the child's

acquisition of words, and that the spatial distributions reflect the ways in which words are

used around the child, but are wrong in cases where the child's interest level (either high

or low) is incongruous with how the word is used.
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Figure 4-12: Prediction error vs. actual age of acquisition

Figure 4-12 shows that on average, words that were learned earlier are more poorly pre-

dicted by the model. This implies that there is some other motive for learning these words

that is transparent to this model - there is no evidence from the way the word is used that



it should be learned as early as it is actually learned yet the child's interest acts as a force

for word learning.

One might further argue that words that are learned later are less subject to the child's

interest as a force for learning, since the child's vocabulary is broader and communication is

easier for him as he gets older - he has less of an intense need to learn new words, therefore

other forces drive his learning more. These other forces would include spatial usage pat-

terns (whether due to semantic needs, child-centric usage, or other effects), implying that

spatial statistics would better predict words that were learned later, which is in fact what

we observe.

As a final window into these forces, it might be useful to examine words that the child

did not learn by 24 months. The words "microwave," "appointment," and "quarter" are all

words that appear to be uninteresting to a child. They all have relatively high KL values

however (1.02, 1.10, and 1.13, respectively), and would be predicted by the model to be

learned at approximately 16 months in all cases. Because of the lack of appeal to the child,

however, none were learned before 24 months.

We have seen that there is some force that is influencing the child's learning of various

words beyond what can be seen in spatial or linguistic properties. This force is presumably

practical - regardless of where, how, or how often a word is used, the child's desire to learn

that word exists on an independent gradated scale. These other factors (frequency, spatial

properties, etc) likely have some influence, but these other forces must be taken into con-

sideration when attempting to understand language acquisition. It also appears likely that

KL-divergence, or the degree to which a distribution differs from overall speech patterns,

contains information about how a word is used in relation to the child. There is possibly

some effect of these spatial properties influencing learning, but it is likely that a large part

of the correlation we see is not causal, but a secondary effect.
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Chapter 5

Conclusions

5.1 Contributions of This Work

This work represents the first ever large scale, comprehensive look at movement patterns

and language use in daily life in a natural setting. In it, I showed how to construct a large

multi-modal dataset from raw video and audio, developing scalable algorithms for various

aspects of processing. Most notably, I developed a system to perform accurate, efficient

person tracking, and data structures for aggregating, visualizing and analyzing tracker out-

put in relation to other modalities.

This work showed that spatial properties of language use conveys information about the

participants, the activities in which language is embedded, and in some cases the meanings

of the words. With a suitable roadmap based on visualization and descriptive statistics, one

can test hypotheses, formulate new questions, and derive meaningful insights and numerical

results from this dataset. It was shown that not only are the spatial properties of language

use relevant in the ways we might expect, but that more subtle information is lurking just

beneath the surface as well.



5.2 Future Directions

There are many sources of potential error in the methods described here. Most notably,

tracking people in video is a difficult problem and the person tracks produced by 2C are

imperfect. While algorithms exist that can produce more accurate tracks, these algorithms

are too computationally expensive to be applicable to this corpus. As machine vision pro-

gresses and hardware speeds increase, however, we can expect the bar to be raised in terms

of what is possible at scale.

The added precision of more accurate tracking might improve the results described here,

but could also open up new research directions that are currently impossible - following

subjects for long periods, for example, could lead to new insights into sequences of behavior

and longer causal chains in regards to language use.

Another important source of error in this work comes from speaker identification. If speaker

ID were perfect, for example, age of acquisition would not be a source of potential error

- rather than implementing an algorithm to derive age of acquisition, we could just query

the database. A worthwhile goal to pursue would be deriving accurate identification from

video data (perhaps in a multi-modal system that integrates information derived from audio

as well). With accurate person identification based on both audio and video, a researcher

would have the ability to study in detail and at large scale the interaction patterns between

people both in relation to language and not, again with the ability to understand long causal

chains and complex dependencies.

Many of the insights discussed in the Exploration and Analysis chapter would be fertile

ground for further research. For example, the simple clustering scheme I described is only a

very coarse view of the way in which words relate to each other spatially. More sophisticated

methods were explored, but not developed fully and it isn't difficult to imagine that a more

comprehensive approach might be developed that groups words in even more interesting,

salient ways.



This thesis leaves many compelling questions unanswered. For example, how does the

child's language use change over time? Can we see how his comprehension increases after a

word is learned from the spatial properties of his use of that word? How do the movement

patterns of one individual relate to those of any other individual, and do those relationships

provide insights into language use?

A strong consideration in many of the design choices I've made was that the dataset and

methodology be general enough to be usable by others in relation to the research directions

described above as well as in pursuit of goals that I've not thought of. My time with the

Human Speechome Project has ended, but it is my hope that this work provides a firm

foothold for future researchers working on the project.
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Appendix A

Data for Target Words

This appendix gives quantitative data for each of the 658 words that were in the child's

vocabulary by the age of two. All data is for the learning period of the word - that is, the

period before the child's first production of the word. Data given is age of acquisition in

months, the number of utterances containing this word, the number of location points in the

spatial distribution for the word, the KL-divergence (normalized) of the spatial distribution,

and the Ripley's K value (normalized) of the spatial distribution.
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Table A.1: Data for words in the child's vocabulary

word AoA Utterances Points KL(P,Q) RK(Q)

a 15.624 13,566 16,295 0.752 0.326

aboard 17.646 69 105 0.367 0.476

about 16.458 1,439 1,929 0.168 0.261

accident 20.410 76 108 0.330 0.499

after 15.456 293 368 0.173 0.326

again 20.313 2,566 3,216 0.316 0.377

air 21.710 192 239 0.323 0.256

airplane 17.548 170 234 0.303 0.239

album 20.814 11 12 0.273 0.307

[name 1] 19.956 6 10 0.368 0.563

[nanny name] 15.456 407 495 0.326 0.363

all 11.642 994 1,183 0.550 0.436

alligator 18.242 36 42 0.333 0.590

alright 19.380 1,841 2,461 0.353 0.426

am 20.342 698 846 0.466 0.384

ambulance 21.523 324 371 0.394 0.457

an 23.755 1,830 2,331 0.150 0.351

and 11.025 2,998 3,369 0.974 0.541

animal 19.543 373 428 0.405 0.474

another 22.710 1,237 1,582 0.122 0.241

ant 22.978 34 36 0.521 0.159

any 16.056 796 1,014 0.302 0.558

anything 16.056 462 606 0.244 0.366

apple 15.313 155 178 0.437 0.583

are 14.986 6,846 7,960 0.667 0.525

around 20.718 1,108 1,522 0.184 0.284

Continued on next page
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word AoA UtterancesPoints KL(P,Q) RK(Q)

as

ask

at

ate

away

awesome

baa

baba

baby

back

bad

bag

bagel

ball

balloon

bambi

banana

barney

basket

basketball

bath

bathroom

be

beach

bear

beautiful

because

bed

18.524

23.876

21.708

25.489

22.942

21.226

11.083

14.977

15.756

14.453

17.557

17.695

21.344

12.925

17.714

18.579

20.313

18.944

20.215

20.890

16.562

18.754

16.864

23.512

14.555

21.211

10.645

18.514

1,134

715

6,736

888

2,218

61

176

24

1,524

887

598

161

48

411

287

51

490

335

165

94

375

124

3,538

133

430

567

88

454

1,511

815

8,848

1,124

2,819

78

190

31

1,742

1,115

819

227

92

512

341

64

712

379

208

139

471

183

4,868

131

440

676

111

569

Continued on next page
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0.276

0.235

0.162

0.276

0.142

0.236

0.672

0.376

0.625

0.306

0.174

0.203

0.483

0.649

0.473

0.632

0.435

0.804

0.542

0.496

0.502

0.349

0.195

0.396

0.850

0.303

0.443

0.513

0.292

0.159

0.345

0.510

0.167

0.300

0.369

0.537

0.422

0.329

0.252

0.154

0.504

0.612

0.328

0.640

0.612

0.987

0.306

0.554

0.365

0.383

0.370

0.155

0.515

0.385

0.354

0.241



bee 17.578 181 191 0.413 0.211

been 11.325 186 230 0.313 0.302

beep 22.388 236 319 0.256 0.447

before 16.449 501 687 0.156 0.343

beginning 20.147 92 118 0.175 0.323

behind 24.945 279 330 0.236 0.287

being 19.923 467 607 0.145 0.292

bell 16.883 80 83 0.447 0.185

better 15.727 391 509 0.098 0.297

bib 19.913 91 128 0.523 0.569

bicycle 18.514 272 315 0.519 0.220

big 17.549 1,936 2,554 0.277 0.342

bird 16.717 779 858 0.549 0.285

bit 21.140 1,373 1,963 0.348 0.388

bite 20.813 574 766 0.559 0.590

black 17.953 1,120 1,365 0.528 0.331

blanket 13.159 16 18 0.400 0.290

blue 16.043 463 497 0.565 0.226

boat 16.847 351 438 0.622 0.571

body 20.980 143 165 0.301 0.303

boo 15.490 182 219 0.354 0.328

booger 17.695 73 100 0.298 0.253

book 14.978 716 807 0.710 0.390

boom 16.153 166 209 0.308 0.327

bottle 19.643 374 524 0.171 0.380

bounce 19.479 70 99 0.337 0.608

bowl 22.957 255 309 0.339 0.384

box 19.449 297 367 0.439 0.293

Continued on next page
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word AoA Utterances Points KL(PQ) RK(Q)

boy

bread

break

breakfast

bridge

bring

broke

brother

brown

brush

bubble

buddy

bug

bum

bump

bun

bunny

burp

bus

but

butter

butterfly

button

by

bye

cake

call

came

14.818

14.986

19.445

18.977

19.612

23.187

20.409

19.693

16.747

16.447

15.189

21.224

17.048

17.552

16.755

16.594

18.580

24.828

14.687

14.515

23.311

18.747

13.290

19.923

15.024

20.815

21.358

19.579

914

106

306

176

38

1,189

249

106

256

140

48

136

145

64

139

60

220

247

76

1,785

184

256

97

1,061

1,049

269

1,031

1,203

1,121

149

393

283

50

1,642

334

139

269

163

59

192

183

78

168

71

241

320

89

2,230

244

261

101

1,398

1,190

336

1,357

1,368
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0.321

0.397

0.091

0.288

0.224

0.391

0.186

0.276

0.427

0.455

0.317

0.165

0.268

0.200

0.575

0.571

0.606

0.188

0.442

0.400

0.446

0.460

0.340

0.206

0.460

0.351

0.286

0.436

0.351

0.407

0.192

0.346

0.455

0.316

0.370

0.218

0.386

0.388

0.277

0.208

0.324

0.240

0.334

0.618

0.271

0.209

0.431

0.334

0.689

0.302

0.390

0.365

0.438

0.362

0.339

0.222



word AoA Utterances Points KL(P,Q) RK(Q)

camel

camera

can

car

careful

carpet

carrot

cat

catch

cause

cell

cereal

chair

change

chase

check

cheerios

cheese

cherries

chew

chick

chicken

chip

chocolate

choo

chug

circle

circus

18.579

16.152

20.916

12.918

20.244

20.858

18.747

14.708

18.513

19.945

21.942

19.419

14.978

18.790

19.693

20.275

21.843

19.481

21.654

17.727

18.546

19.454

16.858

20.484

18.811

25.124

16.745

17.924

62

102

9,810

479

687

11

101

667

248

1,168

136

328

213

1,204

65

382

24

429

54

177

98

732

120

146

404

99

225

36

63

134

13,717

540

895

13

127

684

347

1,676

194

437

277

1,629

91

535

11

597

72

219

122

1,006

154

210

453

106

260

47
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0.662

0.505

0.175

0.763

0.262

0.574

0.416

0.755

0.595

0.266

0.155

0.380

0.359

0.724

0.309

0.257

0.104

0.499

0.450

0.488

0.416

0.354

0.277

0.206

0.544

0.274

0.372

0.378

0.426

0.266

0.435

0.394

0.249

0

0.732

0.183

0.558

0.474

0.422

0.584

0.219

0.503

0.184

0.247

0.498

0.570

0.555

0.696

0.187

0.543

0.341

0.575

0.424

0.280

0.517

0.433



word AoA Utterances Points KL(P,Q) RK(Q)

clam

clean

climb

clock

close

cloth

clothes

coffee

cold

color

comb

20.313

18.762

20.483

17.490

18.793

19.447

18.793

17.646

21.310

16.649

17.778

15.625

20.712

21.411

17.588

15.716

21.140

17.692

16.045

17.644

20.156

22.677

20.019

20.180

18.444

17.148

15.590

17.490

44

1,066

122

319

635

85

366

181

660

322

68

5,455

169

159

311

466

150

985

1,014

27

99

40

1,215

1,056

128

598

238

252

49

1,360

155

370

782

103

482

294

861

376

70

6,812

241

218

413

536

226

1,269

1,056

33

141

38

1,580

1,373

158

723

289

354
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0.733

0.453

0.342

0.513

0.325

0.377

0.592

0.439

0.224

0.380

0.580

0.730

0.324

0.305

0.480

0.336

0.522

0.437

0.859

0.436

0.331

0.450

0.259

0.507

0.500

0.410

0.419

0.283

come

computer

cook

cookie

cool

couch

could

cow

crab

cracker

crayon

crazy

cream

crib

cry

cup

cut

0.240

0.339

0.410

0.355

0.270

0.363

0.417

0.528

0.309

0.205

0.445

0.519

0.381

0.252

0.539

0.279

0.680

0.251

0.408

0.470

0.523

0.511

0.365

0.303

0.346

0.421

0.474

0.347



word AoA Utterances Points KL(P,Q) RK(Q)

cute 18.747 371 493 0.111 0.300

dad 9.486 27 31 0.627 0.593

dame 21.140 206 243 0.605 0.072

dark 18.059 177 203 0.606 0.147

[child name] 10.558 1,166 1,358 0.665 0.406

day 16.494 906 1,203 0.177 0.483

dear 21.081 154 202 0.209 0.225

deer 18.714 23 33 0.395 0.300

diamond 19.844 88 89 0.435 0.310

diaper 17.547 1,044 1,323 0.957 0.564

did 19.946 5,945 8,115 0.169 0.443

ding 20.942 127 153 0.280 0.137

dinner 21.418 754 1,025 0.397 0.351

dinosaur 19.512 82 94 0.498 0.440

dirty 18.715 253 335 0.472 0.297

dish 20.083 316 364 0.510 0.407

do 13.753 4,122 4,919 0.601 0.550

doctor 19.446 168 234 0.146 0.317

does 23.755 3,743 4,481 0.356 0.437

dog 16.058 1,405 1,476 0.701 0.428

doing 20.410 2,965 3,943 0.024 0.233

dolphin 21.411 133 155 0.372 0.405

done 11.642 327 420 0.293 0.348

donkey 19.420 26 31 0.097 0.455

door 16.784 158 191 0.447 0.195

dough 22.258 78 69 0.268 0.509

down 14.986 1,350 1,621 0.375 0.392

downstairs 19.682 316 462 0.348 0.366

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

draw 17.448 154 216 0.417 0.718

drink 19.844 866 1,208 0.269 0.490

driving 23.416 812 949 0.404 0.219

drum 17.548 127 156 0.457 0.243

dry 19.343 162 215 0.255 0.236

duck 11.276 79 81 0.703 0.237

dude 16.082 2,145 2,459 0.701 0.524

dump 17.957 65 93 0.186 0.489

eat 19.448 4,662 6,311 0.641 0.767

elephant 17.744 221 264 0.388 0.277

[sister name] 21.285 8 11 0.343 0.083

elmo 18.746 71 78 0.464 0.340

else 19.477 849 1,137 0.168 0.344

empty 19.356 141 183 0.344 0.361

end 20.441 392 553 0.276 0.341

engine 18.789 66 83 0.200 0.272

enough 21.523 1,056 1,380 0.261 0.209

eye 14.593 305 329 0.567 0.276

face 19.947 629 800 0.116 0.226

fall 16.422 297 373 0.273 0.130

fan 16.645 40 54 0.347 0.230

far 25.141 542 617 0.228 0.151

fast 20.044 421 520 0.342 0.244

feel 17.551 510 698 0.085 0.201

fell 20.422 547 687 0.154 0.272

find 19.347 1,321 1,628 0.191 0.236

fine 20.879 799 1,146 0.056 0.261

finger 18.844 157 196 0.201 0.326

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

finish

fire

firetruck

first

fish

five

fix

floor

flower

fly

fold

food

for

found

four

fox

fresh

friday

frog

from

full

fun

funny

garage

garbage

[name 2]

get

gimme

20.157

17.953

18.243

16.111

9.608

17.560

21.743

14.986

16.117

17.980

21.345

19.976

15.389

20.376

18.810

18.481

21.708

19.681

16.578

10.660

20.984

21.423

17.978

18.759

18.745

18.514

14.986

24.376

552

312

13

513

66

1,688

156

113

682

252

64

788

3,757

505

1,753

179

165

170

663

141

1,103

925

425

61

107

32

2,705

184

748

386

16

662

92

2,056

225

149

685

313

86

1,074

4,845

678

2,165

193

241

231

704

162

1,349

1,116

556

82

164

52

3,422

222
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0.469

0.388

0.403

0.180

0.727

0.315

0.312

0.322

0.746

0.416

0.399

0.297

0.333

0.193

0.313

0.763

0.228

0.334

0.609

0.346

0.497

0.149

0.149

0.401

0.331

0.284

0.288

0.189

0.464

0.417

0.435

0.266

0.448

0.456

0.417

0.312

0.200

0.479

0.337

0.525

0.343

0.272

0.333

0.353

0.173

0.411

0.357

0.299

0.425

0.365

0.213

0.299

0.222

0.491

0.398

0.224



word AoA Utterances Points KL(PQ) RK(Q)

giraffe

girl

give

glasses

glider

go

god

gone

gonna

good

goodbye

goodness

goodnight

got

grape

gray

great

green

guava

gum

had

hair

hammer

hand

happened

happy

hard

has

18.359

18.715

22.677

17.056

22.451

14.985

19.421

13.744

21.410

16.293

17.678

22.344

21.743

20.814

18.457

17.648

20.142

17.646

18.349

17.655

17.782

17.512

21.789

17.912

21.178

18.111

20.813

24.379

139

189

3,863

87

19

6,104

698

181

6,219

4,638

200

676

280

3,178

90

41

357

743

21

32

2,449

265

32

899

1,175

582

679

2,291

152

228

5,089

127

35

7,439

978

233

8,239

5,798

234

817

291

4,495

118

58

517

907

31

38

3,360

304

42

1,128

1,589

744

928

2,782

Continued on next page

111

0.396

0.426

0.059

0.371

0.276

0.570

0.172

0.337

0.213

0.509

0.410

0.294

0.863

0.123

0.387

0.082

0.038

0.576

0.285

0.367

0.412

0.383

0.390

0.224

0.119

0.410

0.128

0.049

0.361

0.222

0.351

0.132

0.461

0.486

0.335

0.381

0.353

0.318

0.564

0.254

0.419

0.279

0.585

0.456

0.349

0.195

0.594

0.491

0.560

0.272

0.779

0.265

0.334

0.158

0.238

0.284



word AoA ] Utterances Points KL(P,Q) RK(Q)

hat

have

he

head

hear

heard

heart

helicopter

hello

help

her

here

hey

hi

hide

high

him

his

hit

hockey

hold

home

honey

hop

horse

hot

house

how

16.914

14.986

22.414

19.453

24.060

23.429

16.848

17.981

16.758

17.723

22.415

13.584

11.710

12.662

20.313

17.659

16.459

20.507

20.341

19.347

18.524

19.909

19.678

25.179

18.812

16.795

15.712

17.794

239

3,181

17,604

553

1,133

373

208

66

1,177

641

2,590

3,422

1,114

917

371

693

2,842

4,728

226

9

1,165

906

287

130

849

321

452

3,999

244

4,046

23,877

696

1,295

478

228

78

1,430

871

3,234

4,106

1,354

1,112

487

786

4,015

6,396

315

17

1,486

1,241

379

155

946

452

510

5,279

Continued on next page
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0.718

0.304

0.467

0.203

0.189

0.100

0.478

0.297

0.335

0.268

0.360

0.621

0.471

0.565

0.234

0.379

0.250

0.284

0.210

0.172

0.267

0.319

0.210

0.236

0.594

0.251

0.679

0.250

0.235

0.433

0.309

0.298

0.136

0.381

0.250

0.285

0.310

0.205

0.226

0.360

0.477

0.424

0.423

0.330

0.304

0.313

0.436

0.496

0.368

0.391

0.360

0.149

0.246

0.368

0.361

0.297



word AoA Utterances Points KL(PQ) RK(Q)

hug

hungry

hurt

i

ice

if

in

inside

is

it

jeans

jeep

job

joy

juice

jump

just

keep

key

kick

kid

kiss

kitchen

kite

know

lamp

lane

last

19.914

16.328

22.388

10.959

18.122

14.986

19.454

19.976

13.185

11.725

21.312

25.212

17.446

17.113

16.688

18.851

15.291

19.353

17.718

16.111

20.151

19.410

20.313

20.873

15.578

20.916

16.250

17.695

279

576

611

2,683

764

1,365

14,265

450

5,495

3,975

40

18

1,497

566

347

243

3,344

686

116

58

610

815

204

50

3,891

55

110

715

361

722

739

3,307

966

1,798

18,929

585

6,210

4,963

37

12

1,716

853

473

309

4,417

934

148

90

842

964

308

62

5,061

59

129

1,018
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0.414

0.377

0.149

0.770

0.549

0.307

0.460

0.117

0.881

0.497

0.403

0.450

0.501

0.256

0.604

0.432

0.318

0.047

0.291

0.438

0.176

0.434

0.238

0.474

0.287

0.547

0.435

0.179

0.345

0.350

0.298

0.519

0.531

0.451

0.396

0.204

0.494

0.449

0.448

0.503

0.398

0.375

0.782

0.208

0.434

0.292

0.177

0.193

0.357

0.338

0.190

0.609

0.428

0.367

0.213

0.380



Utterances

later

laundry

let

letters

lie

light

like

lion

listen

little

living

long

look

lots

love

mad

make

man

mango

many

matter

maybe

mcdonald

me

mean

medicine

meow

milk

Pointsword AoA

23.326

18.714

19.922

22.415

23.478

16.694

15.713

18.261

14.520

20.816

21.522

16.579

15.259

21.016

20.410

21.154

20.423

20.875

16.494

23.512

21.219

16.494

20.775

14.523

19.976

19.611

14.443

16.527

701

76

1,715

125

235

535

5,929

204

321

7,280

147

531

4,254

427

1,742

188

2,872

1,960

392

1,956

220

841

221

3,546

1,325

259

157

966

Continued on next page

114

910

106

2,364

135

240

631

7,586

255

363

9,296

199

734

4,920

522

2,163

249

4,118

2,472

491

2,292

317

1,176

265

4,154

1,894

362

159

1,274

KL(PQ)

0.217

0.405

0

0.337

0.456

0.639

0.519

0.187

0.472

0.410

0.286

0.118

0.703

0.164

0.290

0.168

0.221

0.295

0.671

0.316

0.062

0.223

0.600

0.550

0.215

0.329

0.432

0.468

RK(Q)

0.179

0.340

0.287

0.193

0.244

0.268

0.397

0.299

0.455

0.332

0.166

0.286

0.414

0.223

0.390

0.205

0.435

0.313

0.784

0.088

0.262

0.513

0.860

0.477

0.373

0.428

0.285

0.565



word AoA Utterances Points KL(PQ) RK(Q)

mine

mix

mobile

mom

monday

money

monkey

moo

moon

moose

more

morning

mouse

mouth

move

much

music

my

nap

neat

need

neigh

nemo

new

next

nice

nicely

night

17.122

20.979

23.275

13.124

20.245

19.679

16.580

13.517

15.175

24.278

13.159

16.121

17.678

18.110

19.976

17.657

21.051

13.290

24.084

19.919

21.889

15.755

18.579

20.441

11.743

19.678

21.360

10.862

258

212

16

827

151

125

1,050

158

428

21

1,231

497

740

1,514

710

1,268

468

1,275

362

94

2,230

121

95

1,101

120

3,009

636

90

360

261

18

956

192

169

1,252

167

410

11

1,449

647

791

1,859

913

1,782

551

1,513

445

113

3,017

129

112

1,481

145

3,830

723

94
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0.214

0.300

0.399

0.623

0.293

0.239

0.401

0.646

0.813

0.320

0.434

0.337

0.612

0.596

0.124

0.198

0.447

0.408

0.231

0.235

0.029

0.285

0.408

0.254

0.296

0.196

0.267

0.546

0.381

0.500

0.232

0.368

0.380

0.419

0.443

1

0.731

0.498

0.484

0.366

0.360

0.531

0.343

0.356

0.442

0.319

0.242

0.462

0.293

0.359

0.626

0.381

0.307

0.413

0.212

0.487



word AoA j Utterances Points KL(PQ) RK(Q)

nine

no

nose

not

now

number

octopus

of

off

oh

oil

ok

old

on

one

only

open

or

orange

other

ouch

our

out

outside

over

owl

pajamas

pancakes

23.756

11.326

18.146

14.986

19.920

21.523

19.543

19.946

16.577

9.955

19.447

9.952

19.393

10.314

14.710

15.748

16.480

16.655

16.913

19.093

16.795

21.708

15.056

19.309

21.052

17.744

19.455

21.975

875

1,671

661

3,467

5,746

947

124

10,327

1,007

360

174

439

1,215

1,130

4,684

486

904

2,551

376

1,490

71

1,490

2,012

531

2,367

108

63

69
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116

1,014

1,977

747

4,157

7,772

1,134

135

13,853

1,312

458

241

546

1,481

1,299

5,397

639

1,098

3,450

500

2,031

84

1,853

2,393

727

3,018

137

77

82

0.302

0.597

0.466

0.585

0.112

0.603

0.577

0.428

0.291

0.474

0.369

0.508

0.680

0.739

0.620

0.193

0.470

0.279

0.350

0.092

0.236

0.216

0.401

0.364

0.283

0.356

0.385

0.358

0.229

0.381

0.297

0.224

0.344

0.491

0.508

0.438

0.378

0.400

0.378

0.357

0.879

0.375

0.326

0.405

0.246

0.345

0.390

0.415

0.208

0.271

0.509

0.303

0.469

0.187

0.296

0.548



word AoA Utterances Points KL(P,Q) RK(Q)

panda

pants

papa

paper

park

party

pasta

pea

pear

pee

peek

pen

people

phone

pick

picture

pie

piece

pig

pillow

pink

pizza

plane

plate

play

please

plum

police

20.313

16.861

16.912

20.716

19.943

21.654

20.181

17.892

19.392

17.513

16.179

16.987

25.186

16.625

19.309

18.445

17.877

22.258

18.146

20.441

17.493

20.156

17.460

21.975

19.145

16.456

19.456

19.643

110

335

144

202

95

164

197

327

218

388

93

323

1,321

328

626

566

273

523

1,202

118

158

140

137

108

2,712

596

104

144

118

392

144

287

123

228

268

446

293

437

116

447

1,594

436

823

692

333

714

1,456

141

163

239

197

169

3,685

733

126

157
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0.523

0.607

0.900

0.225

0.278

0.209

0.470

0.666

0.471

0.952

0.386

0.534

0.240

0.236

0.143

0.294

0.675

0.484

0.437

0.570

0.396

0.413

0.395

0.365

0.263

0.282

0.388

0.493

0.225

0.261

0.248

0.373

0.307

0.232

0.490

0.618

0.725

0.554

0.224

0.909

0.326

0.425

0.241

0.403

0.395

0.464

0.578

0.273

0.364

0.545

0.266

0.477

0.455

0.576

0.265

0.340



word AoA Utterances Points KL(PQ) RK(Q)

poop

pop

potato

press

pretty

prince

pull

puppy

purple

push

put

puzzle

race

racecar

rain

rainbow

raining

read

ready

really

red

remember

rice

ride

right

robot

rock

room

17.481

17.556

18.747

21.775

20.411

20.814

23.310

17.714

16.795

16.694

20.376

15.456

20.388

23.873

19.448

23.923

19.448

22.142

18.853

21.178

18.412

20.877

19.924

25.186

16.194

20.153

17.659

20.154

625

246

207

1,446

1,009

66

594

91

238

521

6,320

17

225

13

571

233

571

1,447

1,768

2,881

1,369

855

185

244

4,460

55

112

509

803

279

274

1,597

1,316

95

683

98

240

658

8,705

25

284

18

619

229

619

1,813

2,283

3,940

1,627

1,178

293

242

5,641

66

144

705
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0.604

0.365

0.464

0.928

0.131

0.380

0.280

0.475

0.412

0.412

0.302

0.332

0.512

0.152

0.537

0.439

0.537

0.413

0.302

0.173

0.323

0.152

0.507

0.271

0.328

0.326

0.389

0.293

0.385

0.294

0.534

0.325

0.284

0.343

0.187

0.255

0.357

0.465

0.341

0.333

0.460

0.538

0.313

0.143

0.313

0.443

0.366

0.294

0.209

0.327

0.498

0.297

0.389

0.464

0.216

0.220



word AoA Utterances Points KL(PQ) RK(Q)
round

run

[mother name]

said

salad

sandals

sandwich

sara

saw

say

school

sea

seat

see

set

seven

shake

shark

she

sheep

shirt

shoe

should

show

shower

side

silver

sing

20.942

18.714

17.525

16.645

23.324

19.946

23.809

23.414

23.761

20.849

19.688

18.812

22.112

19.356

21.912

17.691

21.140

18.010

20.845

15.389

16.882

16.624

14.986

19.481

18.910

20.353

20.190

19.679

1,599

460

654

1,461

143

6

100

47

1,003

7,757

225

387

165

7,764

389

709

140

48

2,847

954

240

274

716

2,128

210

423

70

1,266

Continued on next page
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1,882

618

1,063

1,815

224

11

135

56

1,129

9,666

279

417

228

9,950

528

860

172

69

3,973

1,042

325

354

897

2,619

301

605

77

1,460

0.879

0.291

0.282

0.475

0.376

0.371

0.269

0.382

0.285

0.436

0.329

0.974

0.307

0.434

0.313

0.186

0.358

0.368

0.440

0.624

0.331

0.379

0.193

0.339

0.438

0.222

0.438

0.574

0.623

0.158

0.351

0.202

0.314

0.527

0.450

0.361

0.190

0.342

0.377

0.357

0.308

0.360

0.322

0.417

0.330

0.303

0.358

0.407

0.355

0.343

0.311

0.280

0.324

0.336

0.360

0.449

KL(PQ) RK(Q)word AoA Utterances Points



word AoA Utterances Points KL(PQ) RK(Q)
sir

sit

six

skin

sky

sleep

small

snow

so

soap

soccer

socks

some

something

song

sorry

soup

spider

spoon

squirrel

stairs

stand

star

starfish

stay

stick

stop

store

20.721

18.812

22.756

21.078

17.678

17.597

10.961

18.910

16.127

21.683

20.044

17.512

18.361

15.760

22.211

16.421

21.314

22.616

16.693

19.254

19.682

20.423

13.111

19.676

20.388

20.879

21.912

20.710

914

1,817

1,237

98

691

1,243

53

178

4,772

41

38

334

4,514

944

572

348

260

1,067

422

41

31

726

176

46

525

361

1,543

281

1,074

2,474

1,580

131

754

1,534

64

237

6,259

46

48

450

6,242

1,256

646

475

316

1,092

524

45

44

890

187

51

707

534

1,885

389

Continued on next page
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0.627

0.280

0.264

0.315

0.702

0.712

0.437

0.353

0.267

0.382

0.397

0.552

0.485

0.077

0.342

0.172

0.430

0.613

0.705

0.456

0.091

0.538

0.773

0.518

0.257

0.409

0.239

0.311

0.455

0.325

0.511

0.207

0.462

0.335

0.370

0.156

0.330

0.215

0.452

0.272

0.394

0.395

0.176

0.372

0.617

0.430

0.812

0.225

0.243

0.341

0.358

0.299

0.336

0.369

0.293

0.289

word AoA Utterances Points KL(PQ) RK(Q)



word AoA Utterances Points KL(P,Q) RK(Q)

straw 19.445 59 77 0.323 0.557

strawberry 18.779 59 92 0.444 0.624

stuck 17.560 131 166 0.272 0.213

stuff 17.456 655 947 0.186 0.366

sugar 18.753 239 372 0.536 0.513

sun 14.986 517 560 0.678 0.509

sure 21.778 1,319 1,875 0.155 0.310

sweet 22.976 634 776 0.366 0.341

swimming 19.687 77 86 0.420 0.305

table 18.522 422 556 0.446 0.468

tail 20.352 198 206 0.565 0.161

take 20.108 3,105 4,421 0.173 0.327

talk 20.350 655 844 0.184 0.389

taste 20.719 510 702 0.612 0.700

taxi 18.344 30 35 0.407 0.245

tea 17.714 170 275 0.473 0.564

teddy 20.376 122 142 0.462 0.269

teeth 20.845 530 648 0.257 0.283

telephone 19.923 240 256 0.678 0.238

tell 17.912 790 1,035 0.069 0.259

ten 19.145 742 1,006 0.320 0.577

thank 15.647 449 531 0.253 0.450

that 14.515 7,863 9,650 0.465 0.479

the 10.314 2,883 3,101 1 0.476

them 14.986 1,257 1,433 0.903 0.281

then 14.986 1,665 2,077 0.363 0.368

there 16.113 4,868 5,855 0.469 0.247

these 23.289 2,174 2,732 0.065 0.190

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

they 20.146 4,196 5,497 0.468 0.350

thing 22.744 4,526 6,078 0.229 0.267

think 20.441 4,798 6,934 0.340 0.389

this 14.445 6,034 7,208 0.689 0.374

thomas 21.352 54 38 0.483 0.634

those 22.909 1,967 2,585 0.149 0.131

though 22.760 1,037 1,407 0.082 0.316

three 16.191 2,083 2,366 0.515 0.388

through 16.421 516 598 0.412 0.264

throw 16.857 828 1,220 0.379 0.556

thumper 20.153 67 94 0.404 0.652

tickle 18.662 195 227 0.427 0.176

tiger 18.714 63 76 0.346 0.341

time 23.379 4,424 5,696 0.080 0.195

tiny 20.355 230 274 0.499 0.335

tired 20.441 570 727 0.201 0.323

to 13.876 7,304 8,944 0.566 0.460

today 17.648 1,588 2,362 0.151 0.439

toe 16.861 130 161 0.306 0.329

toes 16.861 130 161 0.306 0.329

together 24.075 680 817 0.178 0.315

tomorrow 16.527 305 462 0.281 0.476

tongue 17.547 187 207 0.410 0.208

too 20.376 2,913 4,043 0.107 0.560

toothbrush 18.458 35 47 0.407 0.274

toothpaste 20.720 46 66 0.400 0.690

top 22.677 455 589 0.174 0.292

touch 17.981 369 465 0.217 0.234

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

towel

town

toy

track

tractor

train

tree

triangle

[name 3]

trouble

truck

true

trunk

try

tummy

tunnel

turn

turtle

tweet

twinkle

two

under

up

vaseline

very

vroom

wait

walk

18.945

14.986

19.348

17.514

19.387

15.546

16.813

19.177

19.478

20.019

14.811

14.175

17.687

20.815

19.909

18.910

23.287

18.386

20.341

19.946

16.480

20.376

13.756

20.179

20.978

15.490

11.726

18.679

78

88

713

86

84

408

467

298

85

176

732

49

24

3,018

90

10

2,269

302

48

224

2,460

379

2,619

67

2,005

135

250

968

102

92

983

104

98

427

519

320

116

225

854

58

30

4,075

113

11

2,550

311

60

226

2,933

497

3,123

91

2,806

155

281

1,297

Continued on next page
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0.277

0.405

0.334

0.300

0.440

0.676

0.623

0.360

0.363

0.232

0.722

0.300

0.382

0.339

0.338

0.142

0.664

0.742

0.238

0.346

0.393

0.314

0.501

0.608

0.099

0.298

0.490

0.479

0.250

0.273

0.360

0.326

0.480

0.323

0.323

0.359

0.340

0.187

0.593

0.180

0.054

0.322

0.651

0.451

0.315

0.466

0.594

0.310

0.241

0.349

0.477

0.356

0.352

0.337

0.245

0.374



word AoA Utterances Points KL(P,Q) RK(Q)

walrus

want

was

wash

watch

water

way

we

wear

well

were

wet

what

wheel

when

where

which

whine

whistle

white

who

why

will

windmill

window

wipe

with

wonder

21.523

13.060

16.456

19.354

19.390

13.049

22.141

20.157

21.912

17.658

20.157

21.176

10.650

17.688

24.054

13.556

15.278

17.457

21.342

17.695

20.391

16.524

16.160

22.249

19.446

21.708

20.341

20.084

19

3,523

4,251

341

747

791

2,096

12,197

422

1,424

12,197

381

1,180

900

4,919

2,869

612

53

109

375

2,996

1,821

1,044

11

223

288

7,689

319

20

4,297

5,827

470

1,026

941

2,700

16,672

493

2,069

16,672

461

1,414

1,021

6,283

3,211

742

60

127

462

3,823

2,367

1,314

26

272

381

10,402

389

Continued on next page

124

0.305

0.582

0.446

0.389

0.144

0.581

0.133

0.176

0.652

0.202

0.176

0.385

0.651

0.823

0.149

0.823

0.369

0.396

0.449

0.404

0.292

0.176

0.558

0.214

0.422

0.257

0.331

0.241

0.340

0.529

0.291

0.350

0.351

0.424

0.283

0.421

0.420

0.383

0.421

0.448

0.372

0.795

0.236

0.393

0.402

0.418

0.294

0.217

0.359

0.256

0.455

0.523

0.367

0.321

0.381

0.268



word AoA Utterances Points KL(PQ) RK(Q)
woof296 21 0472 .24

woof

wool

work

wormy

would

wow

wrong

yellow

yes

yet

yogurt

you

yuck

yum

zoo

zoom

17.980

20.984

20.815

21.654

17.561

15.154

18.745

18.061

16.123

15.248

17.588

12.721

16.728

18.661

16.791

21.541

125

296

712

1,325

48

1,196

1,440

692

869

14,555

193

610

14,524

289

1,147

119

104

321

819

1,863

47

1,647

1,712

914

1,013

19,190

243

872

17,466

360

1,450

139

154

0.472

0.586

0.304

0.418

0.459

0.393

0.078

0.360

0.417

0.155

0.490

0.805

0.609

0.750

0.717

0.238

0.246

0.252

0.436

0.352

0.371

0.415

0.321

0.381

0.338

0.227

0.844

0.466

0.383

0.891

0.339

0.422
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Appendix B

Visualizations for Target Words

This appendix provides visualizations for each of the 658 words in the child's vocabulary

before the age of two. Visualizations are all based on the learning period of the word -

that is, the period before the child's first production of the word. Each entry displays

the number of utterances the word appeared in, the age of acquisition in months, an icon

(in green - darker is lower value) denoting the relative value of Ripley's K of the spatial

distribution for the word, an icon (in blue - darker is lower value) denoting the relative value

of KL-divergence of the spatial distribution for the word, and four visualizations: (1) heat

map with 100mm bins; (2) difference map with 100mm bins; (3) heat map with 1000mm

bins; (4) difference map with 1000mm bins.
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"a" Utterances: 13,566 AoA: 15.6

"about" Utterances: 1,439 AoA: 16.5

"after" Utterances: 293 AoA: 15.5

"air" Utterances: 192 AoA: 21.7

"album" Utterances: 11 AoA: 20.8

"[nanny name]" Utterances: 407 AoA: 15.5

"alligator Utterances: 36 AoA: 18.2

"am" Utterances: 698 AoA: 20.3

"an" Utterances: 1,830 AoA: 23.8

0 0 "aboard" Utterances: 69 AoA: 17.6

"accident" Utterances: 76 AoA: 20.4

"again" Utterances: 2,566 AoA: 20.3

"airplane Utterances: 170 AoA: 17.5

"[name 1]" Utterances: 6 AoA: 20.0

"all" Utterances: 994 AoA: 11.6

* U "alright" Utterances: 1,841 AoA: 19.4

'ambulance" Utterances: 324 AoA: 21.5I--
M U "and" Utterances: 2,998 AoA: 11.0

a U "another" Utterances: 1,237 AoA: 22.7

U.J

U.IL

U.9

U.r-

U.M

El --

ON

U.I

U.

"animal" Utterances: 373 AoA: 19.5



"ant" Utterances: 34 AoA: 23.0

"anything" Utterances: 462 AoA: 16.1

are" Utterances: 6,846 AoA: 15.0

"as" Utterances: 1,134 AoA: 18.5

"at" Utterances: 6,736 AoA: 21.7

"away" Utterances: 2,218 AoA: 22.9

"baa" Utterances: 176 AoA: 11.1

"baby" Utterances: 1,524 AoA: 15.8

"bad" Utterances: 598 AoA: 17.6

"any" Utterances: 796 AoA: 16.1

EU "apple" Utterances: 155 AoA: 15.3

"around" Utterances: 1,108 AoA: 20.7

"ask" Utterances: 715 AoA: 23.9

"ate" Utterances: 888 AoA: 25.5

"awesome" Utterances: 61 AoA: 21.2

"baba" Utterances: 24 AoA: 15.0

"back" Utterances: 887 AoA: 14.5

"bag" Utterances: 161 AoA: 17.7

g U "ball" Utterances: 411 AoA: 12.9

No

EM

ow

Eu

EM

Eu

ow

EM

Eu

"bagel" Utterances: 48 AoA: 21.3 mm



"balloon" Utterances: 287 AoA: 17.7

"banana" Utterances: 490 AoA: 20.3

"basket" Utterances: 165 AoA: 20.2

"bath" Utterances: 375 AoA: 16.6

"be" Utterances: 3,538 AoA: 16.9

"bear" Utterances: 430 AoA: 14.6

"because" Utterances: 88 AoA: 10.6

"bee" Utterances: 181 AoA: 17.6

"beep" Utterances: 236 AoA: 22.4

"bambi" Utterances: 51 AoA: 18.6

"barney" Utterances: 335 AoA: 18.9

"basketball" Utterances: 94 AoA: 20.9

"bathroom" Utterances: 124 AoA: 18.8

"beach" Utterances: 133 AoA: 23.5

I-m
ON "beautiful" Utterances: 567 AoA: 21.2

"bed" Utterances: 454 AoA: 18.5

"been" Utterances: 186 AoA: 11.3

"before" Utterances: 501 AoA: 16.4

M "behind" Utterances: 279 AoA: 24.9

ME

U-

ME

ME

ME

U-

ME

U-

IUI

"beginning" Utterances: 92 AoA: 20.1



"being" Utterances: 467 AoA: 19.9

"better" Utterances: 391 AoA: 15.7

"bicycle" Utterances: 272 AoA: 18.5

"bird" Utterances:779 AoA:16.7

"bite" Utterances: 574 AoA: 20.8

"blanket" Utterances:16 AoA:13.2

"boat" Utterances: 351 AoA: 16.8

"boo" Utterances: 182 AoA: 15.5

"book' Utterances: 716 AoA: 15.0

M E "bell" Utterances: 80 AoA: 16.9

M IN "bib" Utterances: 91 AoA: 19.9

"big" Utterances: 1,936 AoA: 17.5

"bit" Utterances: 1,373 AoA:21.1

"black" Utterances: 1,120 AoA: 18.0

"blue" Utterances:463 AoA:16.0

"body" Utterances: 143 AoA: 21.0

"booger" Utterances: 73 AoA: 17.7

"boom" Utterances: 166 AoA: 16.2

" U e 3"bounce" Utterances:70 AoA:19.5

F-U

U.A

IUI.

-1

WE

U.-_

-U

U.

-1U7

ME"bottle" Utterances:374 AoA:19.6



"bowl" Utterances: 255 AoA: 23.0

"boy" Utterances: 914 AoA: 14.8

"break" Utterances: 306 AoA: 19.4

"bridge" Utterances: 38 AoA: 19.6

"broke" Utterances: 249 AoA: 20.4

"brown" Utterances: 256 AoA: 16.7

"bubble" Utterances: 48 AoA: 15.2

"bug" Utterances: 145 AoA: 17.0

"bump" Utterances: 139 AoA: 16.8

N U "box" Utterances: 297 AoA: 19.4

"bread" Utterances: 106 AoA: 15.0

"breakfast" Utterances: 176 AoA: 19.0

M M "bring" Utterances: 1,189 AoA: 23.2

"brother" Utterances: 106 AoA: 19.7

"brush" Utterances: 140 AoA: 16.4

b k-rn00
"buddy" Utterances: 136 AoA: 21.2

"bum" Utterances: 64 AoA: 17.6

"bun" Utterances: 60 AoA: 16.6

"burp" Utterances: 247 AoA: 24.8

ME

ME

No

ME

ME

ME

ME

ME

-U

No"bunny" Utterances: 220 AoA: 18.6



"bus" Utterances: 76 AoA: 14.7 0 U "but" Utterances: 1,785 AoA: 14.5

"butter" Utterances: 184 AoA: 23.3

"button" Utterances: 97 AoA: 13.3

"bye" Utterances: 1,049 AoA:15.0

"call" Utterances: 1,031 AoA: 21.4

"camel" Utterances:62 AoA:18.6

"can" Utterances: 9,810 AoA: 20.9

"careful" Utterances: 687 AoA: 20.2

"carrot" Utterances: 101 AoA: 18.7

"butterfly" Utterances: 256 AoA: 18.7

"by" Utterances: 1,061 AoA: 19.9

"cake" Utterances: 269 AoA: 20.8

"came" Utterances: 1,203 AoA: 19.6

"camera" Utterances: 102 AoA: 16.2

"car Utterances: 479 AoA: 12.9

im-
"carpet" Utterances: 11 AoA: 20.9

i-u
0 0U "cat" Utterances:667 AoA:14.7

"ch U"cause" Utterances: 1,168 AoA:19.9

I=

IUa.

U.

Ow

MM

Lu-

MM

MM

U.

No"catch" Utterances:248 AoA:18.5



cl U"cereal" Utterances: 328 AoA: 19.4

"chair" Utterances: 213 AoA: 15.0

"chase" Utterances:65 AoA:19.7

"cheerlos" Utterances: 24 AoA: 21.8

"cherries" Utterances: 54 AoA: 21.7

"chick" Utterances: 98 AoA: 18.5

"chip" Utterances: 120 AoA: 16.9

"choo" Utterances: 404 AoA: 18.8

"circle" Utterances: 225 AoA: 16.7

"change" Utterances: 1,204 AoA: 18.8

"check" Utterances:382 AoA:20.3

"cheese" Utterances: 429 AoA: 19.5

N "chew" Utterances: 177 AoA: 17.7

E U "chicken" Utterances: 732 AoA: 19.5

"chocolate" Utterances: 146 AoA: 20.5

U M "chug" Utterances: 99 AoA: 25.1

"circus" Utterances: 36 AoA: 17.9

c c "clean" Utterances: 1,066 AoA: 1a.8

U-

U-

MM

EU

U-

"UI

EU

ON

No"cell" Utterances: 136 AoA: 21.9

No"clam" Utterances: 44 AoA: 20.3



"climb" Utterances: 122 AoA: 20.5

"close" Utterances: 635 AoA: 18.8

"clothes" Utterances:366 AoA:18.8

"cold" Utterances: 660 AoA: 21.3

"comb" Utterances: 68 AoA: 17.8

"computer" Utterances: 169 AoA: 20.7

"cookie" Utterances:311 AoA:17.6

"couch" Utterances: 150 AoA: 21.1

"cow" Utterances: 1,014 AoA: 16.0

"clock" Utterances: 319 AoA: 17.5

"cloth" Utterances: 85 AoA: 19.4

"coffee Utterances: 181 AoA: 17.6

"color" Utterances: 322 AoA: 16.6

"come" Utterances: 5,455 AoA: 15.6

"cook" Utterances: 159 AoA: 21.4

"cool" Utterances:466 AoA:15.7

"could" Utterances: 985 AoA: 17.7

"crab" Utterances: 27 AoA: 17.6

r U e "crayon" Utterances: 40 AoA: 22.7

M-

MU

EU

MM

-U

U-

No

U.

OM

" cracker" Utterances: 99 AoA: 20.2 MM



"crazy" Utterances: 1,215 AoA: 20.0

"crib" Utterances: 128 AoA: 18.4

"cup" Utterances: 238 AoA: 15.6

"cute" Utterances:371 AoA:18.7

"dame" Utterances: 206 AoA: 21.1

"[child name]" Utterances: 1,166 AoA: 10.6

"dear" Utterances: 154 AoA: 21.1

"diamond" Utterances: 88 AoA: 19.8

"did" Utterances: 5,945 AoA: 19.9

"cream" Utterances: 1,056 AoA: 20.2

"cry" Utterances: 598 AoA: 17.1

U..
"cut" Utterances: 252 AoA: 17.5

M E "dad" Utterances:27 AoA:9.5

* M "dark" Utterances: 177 AoA: 18.1

* M "day" Utterances: 906 AoA: 16.5

M E "deer" Utterances: 23 AoA: 18.7

E "diaper" Utterances: 1,044 AoA: 17.5

"ding" Utterances: 127 AoA: 20.9

n U"dinosaur" Utterances: 82 AoA: 19.5

ME

ME

U.

-U

ME

No

ME

No

ME

I ""dinner" Utterances: 754 AoA: 21.4



"dirty" Utterances: 253 AoA: 18.7

"do" Utterances: 4,122 AoA: 13.8

"does" Utterances: 3,743 AoA: 23.8

"doing" Utterances: 2,965 AoA: 20.4

"done" Utterances: 327 AoA: 11.6

"door" Utterances: 158 AoA: 16.8

"down" Utterances: 1,350 AoA: 15.0

"draw" Utterances: 154 AoA: 17.4

"driving" Utterances: 812 AoA: 23.4

M M "dish" Utterances: 316 AoA: 20.1

"doctor" Utterances: 168 AoA: 19.4i-r
"dog" Utterances: 1,405 AoA: 16.1

"dolphin" Utterances: 133 AoA: 21.4

"donkey" Utterances: 26 AoA: 19.4

"dough" Utterances: 78 AoA: 22.3

"downstairs" Utterances: 316 AoA: 19.7

"drink" Utterances: 866 AoA: 19.8

0 U"drum" Utterances: 127 AoA: 17.5

2 E l "duck' Utterances: 79 AoA: 11.3

ME

ME

ME

ME

ME

ME

ME

ME

ME

"dry" Utterances: 162 AoA: 19.3 ME



"dude" Utterances: 2,145 AoA: 16.1

"eat" Utterances: 4,662 AoA: 19.4

"[sister namel" Utterances: 8 AoA: 21.3

"else" Utterances: 849 AoA: 19.5

"end" Utterances: 392 AoA: 20.4

"enough" Utterances: 1,056 AoA: 21.5

"face" Utterances: 629 AoA: 19.9

"fan" Utterances: 40 AoA: 16.6

"fast" Utterances: 421 AoA: 20.0

M E "dump" Utterances: 65 AoA: 18.0

* U "elephant" Utterances: 221 AoA: 17.7

Io-
E U "elmo" Utterances: 71 AoA: 18.7

E E"empty" Utterances: 141 AoA: 19.4

E U "engine" Utterances: 66 AoA: 18.8

E "eye" Utterances: 305 AoA: 14.6

I--
S fall" Utterances: 297 AoA: 16.4

"far" Utterances: 542 AoA: 25.1

"feel" Utterances: 510 AoA: 17.6

f U "find" Utterances: 1,321 AoA: 19.3

FU.7

U.

U.

EU

EU

U.I

U.I

ME

ME

No"fell" Utterances: 547 AoA: 20.4



"fine" Utterances: 799 AoA: 20.9

"finish" Utterances: 552 AoA: 20.2

"firetruck" Utterances: 13 AoA: 18.2

"fish" Utterances: 66 AoA: 9.6

"fix" Utterances: 156 AoA: 21.7

"flower" Utterances: 682 AoA: 16.1

"fold" Utterances: 64 AoA: 21.3

"for" Utterances: 3,757 AoA: 15.4

"four" Utterances: 1,753 AoA: 18.8

"finger" Utterances: 157 AoA: 18.8

"fire" Utterances: 312 AoA: 18.0

"first" Utterances: 513 AoA: 16.1i-u
"five" Utterances: 1,688 AoA: 17.6

"floor" Utterances: 113 AoA: 15.0

"fly" Utterances: 252 AoA: 18.0

I-.
"food" Utterances: 788 AoA: 20.0

"found" Utterances: 505 AoA: 20.4

"fox" Utterances: 179 AoA: 18.5

" U s "friday" Utterances: 170 AoA: 19.7

ME

No

ME

U-

ME

ME

ME

ME

No

"fresh" Utterances: 165 AoA: 21.7 ME



"frog" Utterances: 663 AoA: 16.6

"full" Utterances: 1,103 AoA: 21.0

"funny" Utterances: 425 AoA: 18.0

"garbage" Utterances: 107 AoA: 18.7

"get" Utterances: 2,705 AoA: 15.0

"giraffe" Utterances: 139 AoA: 18.4

"give" Utterances: 3,863 AoA: 22.7

"glider" Utterances: 19 AoA: 22.5

"god" Utterances: 698 AoA: 19.4

M M "from" Utterances: 141 AoA: 10.7I--
-. 6 -. M

"fun" Utterances: 925 AoA: 21.4

"garage" Utterances: 61 AoA: 18.8Imu
"[name 2]" Utterances: 32 AoA: 18.5

"gimme" Utterances: 184 AoA: 24.4

"girl" Utterances: 189 AoA: 18.7

"glasses" Utterances: 87 AoA: 17.1

"go" Utterances: 6,104 AoA: 15.0

"gone" Utterances: 181 AoA: 13.7

n U"good" Utterances: 4,638 AoA: 16.3

U-

U.

U-

U-L

ME

UK

KU

KU1-

KU

"gonna" Utterances: 6,219 AoA: 21.4



"goodbye" Utterances: 200 AoA: 17.7

"goodnight" Utterances: 280 AoA: 21.7

"grape" Utterances: 90 AoA: 18.5

"great" Utterances: 357 AoA: 20.1

"guava" Utterances: 21 AoA: 18.3

"had" Utterances: 2,449 AoA: 17.8

"hammer" Utterances:32 AoA:21.8

"happened" Utterances: 1,175 AoA: 21.2

"hard" Utterances: 679 AoA: 20.8

N U "goodness" Utterances: 676 AoA: 22.3

"got" Utterances: 3,178 AoA: 20.8

"-gray" Utterances: 41 AoA: 17.6

I-.
"green" Utterances: 743 AoA: 17.6i-u
"gum" Utterances: 32 AoA: 17.7i-u
U"hair" Utterances: 265 AoA: 17.5

"hand" Utterances:899 AoA:17.9

"happy" Utterances: 582 AoA: 18.1

"has" Utterances: 2,291 AoA: 24.4

" U "have" Utterances: 3,181 AoA: 15.0

ON

ME

ME

ME

ME

I I.

ME

N.

O.

"hat" Utterances: 239 AoA: 16.9 ME



"he" Utterances: 17,604 AoA: 22.4

"hear" Utterances: 1.133 AoA: 24.1

"heart" Utterances: 208 AoA: 16.8

"hello" Utterances: 1,177 AoA: 16.8

"her" Utterances: 2,590 AoA:22.4

"hey" Utterances: 1,114 AoA:11.7

"hide" Utterances: 371 AoA: 20.3

"him" Utterances: 2,842 AoA: 16.5

"hit" Utterances:226 AoA:20.3

N O "head" Utterances: 553 AoA: 19.5

IM--
"heard" Utterances: 373 AoA: 23.4

"helicopter' Utterances: 66 AoA: 18.0

"help" Utterances: 641 AoA: 17.7

"here" Utterances: 3,422 AoA:13.6

"hi" Utterances: 917 AoA: 12.7

"high" Utterances: 693 AoA: 17.7

"his" Utterances: 4,728 AoA: 20.5

"hockey" Utterances:9 AoA:19.3

d U "home" Utterances: 906 AoA: 19.9

EUL

EUV

[-I

EU

U-

EUF-

-U

F-U-

U-F

"hold" Utterances: 1,165 AoA: 18.5



he U"hop" Utterances: 130 AoA: 25.2

"horse" Utterances: 849 AoA: 18.8

"house" Utterances:452 AoA:15.7

"hug" Utterances: 279 AoA: 19.9

"hurt" Utterances: 611 AoA: 22.4

"ice" Utterances: 764 AoA: 18.1

"in" Utterances: 14,265 AoA: 19.5

"is" Utterances: 5,495 AoA: 13.2

"jeans" Utterances: 40 AoA: 21.3

"hot" Utterances: 321 AoA: 16.8
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"one" Utterances: 4,684 AoA: 14.7

"open" Utterances: 904 AoA: 16.5

"orange" Utterances: 376 AoA: 16.9

"ouch" Utterances: 71 AoA: 16.8

"out" Utterances: 2,012 AoA: 15.1

"over" Utterances: 2,367 AoA: 21.1
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"pasta" Utterances: 197 AoA: 20.2

"pear' Utterances: 218 AoA: 19.4

"peek" Utterances: 93 AoA: 16.2

"people" Utterances: 1,321 AoA:25.2

"pick" Utterances: 626 AoA: 19.3

"pie" Utterances: 273 AoA: 17.9

"pig" Utterances: 1,202 AoA: 18.1
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"party" Utterances: 164 AoA: 21.7
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"pillow"' Utterances: 118 AoA: 20.4
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"plane" Utterances: 137 AoA: 17.5

"play" Utterances: 2,712 AoA: 19.1

"plum" Utterances: 104 AoA: 19.5

"poop" Utterances:625 AoA:17.5

"potato" Utterances: 207 AoA: 18.7

"pretty" Utterances: 1,009 AoA: 20.4

"pull" Utterances: 594 AoA: 23.3

"purple" Utterances: 238 AoA: 16.8

"put" Utterances: 6,320 AoA:20.4

0 U "plate" Utterances: 108 AoA: 22.0

"please" Utterances: 596 AoA: 16.5

"police" Utterances: 144 AoA: 19.6

"pop" Utterances: 246 AoA: 17.6

"press" Utterances: 1,446 AoA: 21.8

"prince" Utterances: 66 AoA: 20.8

"puppy" Utterances: 91 AoA: 17.7

"push" Utterances: 521 AoA: 16.7

"puzzie" Utterances:17 AoA:15.5
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"ready" Utterances: 1,768 AoA: 18.9

"red" Utterances: 1,369 AoA: 18.4

"rice" Utterances: 185 AoA: 19.9

"right" Utterances: 4,460 AoA: 16.2

"rock" Utterances: 112 AoA: 17.7

"round" Utterances: 1,599 AoA: 20.9

"[mother name]" Utterances: 654 AoA: 17.5

"rainbow" Utterances: 233 AoA: 23.9

"read" Utterances: 1,447 AoA: 22.1

"really' Utterances: 2,881 AoA: 21.2

"remember" Utterances: 855 AoA: 20.9

"ride" Utterances: 244 AoA: 25.2

"robot' Utterances: 55 AoA: 20.2

"room" Utterances: 509 AoA: 20.2
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"sandwich" Utterances: 100 AoA: 23.8

"saw" Utterances: 1,003 AoA: 23.8

"school" Utterances: 225 AoA: 19.7

"seat" Utterances: 165 AoA: 22.1

"set" Utterances: 389 AoA: 21.9

"shake" Utterances: 140 AoA: 21.1

"she" Utterances: 2,847 AoA: 20.8

"shirt" Utterances: 240 AoA: 16.9
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"silver" Utterances: 70 AoA: 20.2
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"sky" Utterances: 691 AoA: 17.7

"small" Utterances: 53 AoA: 11.0

"so" Utterances: 4,772 AoA: 16.1

"soccer" Utterances: 38 AoA: 20.0

"some" Utterances:4,514 AoA:18.4

"song" Utterances: 572 AoA: 22.2
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"spoon" Utterances: 422 AoA: 16.7

"stairs" Utterances: 31 AoA: 19.7

"star" Utterances: 176 AoA: 13.1

"stay" Utterances: 525 AoA: 20.4

"stop" Utterances: 1,543 AoA: 21.9

"straw" Utterances: 59 AoA: 19.4

"stuck" Utterances: 131 AoA: 17.6

"sugar" Utterances:239 AoA:18.8

"sure" Utterances: 1,319 AoA: 21.8
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"starfish" Utterances: 46 AoA: 19.7I--
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"tail" Utterances: 198 AoA: 20.4

"talk" Utterances: 655 AoA: 20.4

"taxi" Utterances: 30 AoA: 18.3

"teddy" Utterances: 122 AoA: 20.4

"telephone" Utterances:240 AoA:19.9

"ten" Utterances: 742 AoA: 19.1

"that" Utterances: 7,863 AoA:14.5

"them" Utterances: 1,257 AoA: 15.0

"there" Utterances:4,868 AoA:16.1

"take" Utterances: 3,105 AoA: 20.1

"taste" Utterances: 510 AoA: 20.7

"tea" Utterances: 170 AoA: 17.7

"teeth" Utterances: 530 AoA: 20.8

"tell" Utterances:790 AoA:17.9

"thank' Utterances: 449 AoA: 15.6
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"think" Utterances: 4,798 AoA: 20.4

"thomas" Utterances: 54 AoA: 21.4

"though" Utterances: 1,037 AoA:22.8

"through" Utterances: 516 AoA: 16.4

"thumper" Utterances: 67 AoA: 20.2

"tiger" Utterances: 63 AoA: 18.7
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"tongue" Utterances: 187 AoA: 17.5

"toothbrush" Utterances: 35 AoA: 18.5

"top" Utterances: 455 AoA: 22.7

"towel" Utterances: 78 AoA: 18.9

"toy" Utterances: 713 AoA: 19.3
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t U 9"tunnel" Utterances: 10 AoA: 18.9

"turn" Utterances: 2,269 AoA: 23.3

"tweet" Utterances: 48 AoA: 20.3

"two" Utterances: 2,460 AoA: 16.5

"up" Utterances: 2,619 AoA: 13.8

"very" Utterances: 2,005 AoA: 21.0

"wait" Utterances: 250 AoA: 11.7

"walrus" Utterances: 19 AoA: 21.5

"was" Utterances: 4,251 AoA: 16.5

* "turtle" Utterances: 302 AoA: 18.4
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"way" Utterances: 2,096 AoA: 22.1

"wear" Utterances: 422 AoA: 21.9

"were' Utterances: 12,197 AoA: 20.2
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"which" Utterances: 612 AoA: 15.3
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"with" Utterances: 7,689 AoA: 20.3

"woof" Utterances: 296 AoA: 18.0

"work" Utterances: 1,325 AoA: 20.8

"would" Utterances: 1,196 AoA: 17.6

"wrong" Utterances: 692 AoA: 18.7
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