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In this paper, we calculate the critical currents in thin superconducting strips with sharp right-angle turns,
180◦ turnarounds, and more complicated geometries, where all the line widths are much smaller than the Pearl
length � = 2λ2/d . We define the critical current as the current that reduces the Gibbs-free-energy barrier to
zero. We show that current crowding, which occurs whenever the current rounds a sharp turn, tends to reduce
the critical current, but we also show that when the radius of curvature is less than the coherence length,
this effect is partially compensated by a radius-of-curvature effect. We propose several patterns with rounded
corners to avoid critical-current reduction due to current crowding. These results are relevant to superconducting
nanowire single-photon detectors, where they suggest a means of improving the bias conditions and reducing
dark counts. These results also have relevance to normal-metal nanocircuits, as these patterns can reduce the
electrical resistance, electromigration, and hot spots caused by nonuniform heating.
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I. INTRODUCTION

When an electrical current travels through a 180◦ hairpin
turn or around a sharp corner in a thin film, it tends to
concentrate on the inner boundary of the curve. For normal
metals, this effect is known as current crowding, and results
in an additional resistance over what would be expected
from naive geometrical arguments.1 The situation with a
superconductor is analogous to that in normal metals, except
that the effect manifests itself primarily as a reduced critical
current for the pattern. A superconducting wire will become
resistive as soon as the critical current for the inner corner is
exceeded, even if the total current is lower than the critical
current of the connecting straight-line segments.

Current crowding has an important implication for mea-
surements of critical currents in thin films because such
measurements typically include at least one sharp corner.
For example, in two-point measurements, narrow, straight
segments connect to larger contacts at the end, forming sharp
inner corners on either side. Even the ubiquitous Kelvin bridge-
resistor structure typically includes sharp corners where
the voltage leads contact the center current-carrying lead.
These measurements are used extensively in materials and
device characterization for nanoscale structures, but in practice
these measurement methods can in general underestimate the
critical current.

Nearly 50 years ago, Hagedorn and Hall1 extended earlier
work by Cockroft2 to consider a strip conductor with a
right-angle bend. They calculated both the resistance for
a normal-metal strip and the current-density distribution for
a superconducting strip. Using conformal transformations,
the authors showed that the current density increases on
the inside corner of a bend, and derived the mathematical
form for an optimally rounded inner boundary for which
the critical current for the bend would be the same as
for a straight strip. The authors’ resistance result and its
extension to other geometries3 became widely used in the

field of integrated-circuit layout, but their critical-current
calculations were apparently forgotten. Despite extensive work
on the critical current of superconducting materials over the
intervening period,4 to our knowledge, Hagedorn and Hall’s
predictions have never been tested experimentally.

Although Hagedorn and Hall correctly predicted the pres-
ence of current crowding, their treatment did not permit a
quantitative estimate of its effect on the critical current, and
was limited to considering only simple 90◦ corner geometries.
An important aspect emphasized in our paper, not considered
in Ref. 1, is that the critical current of a superconducting strip
in the absence of thermal excitations is the current at which
a nucleating vortex surmounts the Gibbs-free-energy barrier
at the wire edge and then is driven entirely across the strip.5

The resulting voltage along the strip is proportional to the
rate at which these processes occur. Our approach permits an
estimate of the critical current of a variety of thin-film patterns.
To calculate the critical current, one needs to know both the
current distribution and the vortex’s interaction energy with
the edge of the strip. An interesting and important consequence
of this treatment is that the critical current of a right-angle
bend is finite, even though the current density at the sharp
inner corner calculated using the London equation, as done
in the Hagedorn paper, would diverge. In this paper, we
perform theoretical calculations of the critical current using
conformal transformations going beyond Hagedorn and Hall’s
calculations for simple right-angle bends1 to include many
more pattern geometries.

Thermal excitation of vortices over the Gibbs-free-energy
barrier can produce random voltage pulses due to vortex
motion across the strip.6 The resulting time-averaged voltage
gives rise to a strongly temperature-dependent finite resistance
of the superconductor at currents below the critical current that
would occur in the absence of thermal excitations. Voltage
pulses like these have been proposed as the origin of so-
called dark counts in superconducting nanowire single-photon
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detectors (SNSPDs).7–13 Our results should provide guidance
regarding the extent to which thermally activated voltages
depend upon the geometry of the underlying nanocircuitry.

These results may have important implications for SNSPD
performance. SNSPDs consist of thin films patterned to form
a continuous wire arranged in a boustrophedonic pattern on
the substrate. Their performance depends sensitively on the
bias current: typically, detectors increase in sensitivity with
increased bias current until the critical current is exceeded.
Commonly, somewhere between a few and 100% of fabricated
devices suffer from an effect known as “constriction”14 in
which the critical current is anomalously suppressed. This
suppression is established by comparing the measured critical
current to one predicted by measuring the device inductance
and fitting to theoretical expectations (which can be used
to extract a “true” critical current). At present, the cause
of constrictions in SNSPDs is not understood. There are
no unambiguous demonstrations in which a constriction was
identified. It seems from our work that sharp corners, hairpin
turns, contact inner corners, and line asperities (both widenings
and narrowings) could all result in constriction. Our results
as well as the earlier results of Hagedorn and Hall are of
direct relevance not only to superconducting wires, but also
to conventional current flow in patterned thin films. Sharp
corners and current crowding are known to cause problems
of electromigration and the formation of hot spots in the
pattern. Such effects can limit the performance and reliability
of integrated circuits. The results shown here specify how
to optimally design a variety of patterns without current
crowding, thus minimizing the undesirable impact of this
effect.

In Sec. II, we show why the current density is very nearly
uniform in straight, narrow, thin superconducting strips. In
Sec. III, we define the critical current as the current that
lowers to zero the Gibbs-free-energy barrier against vortex
entry into the strip. In Sec. IV, we present a general procedure
for calculating the critical current and, as an example, apply it
to the case of a long, straight, narrow, thin superconducting
strip. In Sec. V, we show how current crowding, which
occurs whenever the current bends around a curve, tends to
reduce the critical current. In Sec. VI, we show how the
current-crowding effect is ameliorated by a radius-of-curvature
effect. In Sec. VII, we calculate the extent to which the critical
current is reduced in 180◦ turnarounds. We show that sharp
inner corners reduce the critical current, and we show how the
inner curve can be optimally rounded so that there is no critical-
current reduction. In Sec. VIII, we calculate the extent to which
the critical current is reduced in 90◦ turns. We show that sharp
inner corners reduce the critical current, and we show how the
inner curve can be optimally rounded, as noted in Ref. 1, so
that there is no critical-current reduction. In Sec. IX, we show
how current crowding at the sharp corners of sidebar contacts
in the shape of T intersections reduce the critical current, and in
Sec. X, we show how a similar critical-current reduction occurs
because of current crowding at the sharp corner where a long
strip makes electrical contact with a wide contact pad. In both
Secs. IX and X, we also suggest new patterns with rounded
corners that should avoid critical-current reduction. In Sec. XI,
we examine the role played by edge defects in reducing the
critical current. In Sec. XII, we show how thermal excitation

over the Gibbs-free-energy barrier leads to broadening of
the switching-current distribution observed when the critical
current is measured repeatedly. In Sec. XIII, we compare our
calculations with previously unexplained experimental results
by Yang et al.15 In Sec. XIV, we list some limitations of
our results and discuss how these might be improved, and we
examine some practical consequences. The Appendix contains
a calculation of the self-energy of a Pearl vortex in a sector of
arbitrary angle α.

II. NEARLY UNIFORM CURRENT DENSITY IN A
STRAIGHT, NARROW, THIN SUPERCONDUCTING

STRIP

We focus our attention on the properties of a thin super-
conducting strip of thickness d much less than the London
penetration depth λ, width W much less than the Pearl length16

� = 2λ2/d, and Ginzburg-Landau coherence length ξ much
less than the width. In particular, let us examine the current
density in an infinitely long thin superconducting strip of
uniform width W in the xy plane, centered on the x axis.
Suppose a current I flows in the x direction. Since the film
thickness obeys d � λ, the current density j is very nearly
independent of z across the film thickness, and therefore it is
convenient to consider only the sheet current (the integral of
j across the thickness) K = jd. When W � �, K is very
nearly independent of y (|y| < W/2).

According to the London equation,17 the sheet-current
density in the strip obeys K = −(2/μ0�)[A + (φ0/2π )∇γ ],
where A is the vector potential (B = ∇ × A) and γ is the
phase of the order parameter. When the strip contains no
vortices but carries a current I = ∫ W/2

−W/2 Kx(y)dy in the x

direction, the gauge of the vector potential can be cho-
sen to absorb the constant (φ0/2π )∇γ , such that Kx(y) =
−2Ax(y)/μ0�, which is an even function, and the self-field
Bz(y) = −dAx/dy is an odd function of y. That Kx is
very nearly independent of y when W � � can be shown
using perturbation theory by expanding Kx = −2Ax/μ0� =
Kx0 + Kx1 + Kx2 + · · · and Ax = Ax0 + Ax1 + Ax2 + · · · ,
where Kx0 = I/W , Kxn = −2Axn(y)/μ0� is proportional to
(W/�)n, and

∫ W/2
−W/2 Kxn(y)dy = −2

∫ W/2
−W/2 Axn(y)dy/μ0� =

0 for n � 1. To obtain the first-order correction term Kx1, we
use the Biot-Savart law with Kx0 to obtain

Bz1(y) = μ0Kx0

2π
ln

∣∣∣∣y + W/2

y − W/2

∣∣∣∣ (1)

and then integrate Bz1(y) = −dAx1/dy with respect to y

for |y| � W/2 to obtain Ax1(y). The result is Kx1(y) =
−2Ax1(y)/μ0� = (W/�)f (2y/W )Kx0, where

f (u) = 1

2π
[1 − ln 4 + (1 + u) ln(1 + u) + (1 − u) ln(1 − u)].

(2)

The function f (2y/W ) varies smoothly from a minimum of
f (0) = −0.061 at the middle of the strip to f (±1) = 0.159 at
the edges of the strip. Thus, for the experiments reported in this
paper, for which W < 100 nm and � ≈ 100 μm, the current
density Kx(y) versus y in a long, straight superconducting strip
is flat to better than 0.02%.
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In general, the current flow in the strip obeys ∇ · K = 0 and
(via the London equation) ∇ × K = −2B/μ0�. However,
as we have seen above, when W � �, the effect of B on
the current flow is negligible, and to excellent approxima-
tion, the current flow can be obtained from ∇ · K = 0 and
∇ × K = 0, as in thin nonsuperconducting strips. As has
been demonstrated in Refs. 1– 3, the current distributions in
nonsuperconducting thin films with complicated geometries
can be obtained using complex-field methods.18 Here, we
express the x and y components of the sheet-current density
K (x,y) = x̂Kx(x,y) + ŷKy(x,y) as the real and imaginary
parts of a complex sheet-current density K(ζ ) = Kx(x,y) −
iKy(x,y), where K(ζ ) is an analytic function of the complex
variable ζ = x + iy. The Cauchy-Riemann conditions obeyed
by analytic functions correspond to the physical conditions
that ∇ · K = 0 and ∇ × K = 0.

III. PROCEDURE FOR ESTIMATING THE CRITICAL
CURRENT OF NARROW SUPERCONDUCTING

STRIPS

Within the context of the Ginzburg-Landau (GL)
theory,19–21 the upper limit to the dc supercurrent that can be
carried before a voltage appears along the length of the sample
is the GL critical-current density, JGL = φ0/33/2πμ0ξλ2, crit-
ical sheet-current density, KGL = 2φ0/33/2πμ0ξ�, or critical
current, IGL = 2φ0W/33/2πμ0ξ�. However, since JGL was
calculated theoretically assuming that both d and W were
much smaller than both λ and ξ , these results cannot be applied
to the case of interest here, ξ � W .

In this paper, we use a general but approximate method
for estimating the critical current at which a voltage first
appears along the sample length, the voltage being produced
by the nucleation of a vortex at an edge or corner and its
subsequent transit across the width. The method must be
capable of calculating the critical current for samples of
many different geometries, including width variations and
turnarounds. We will start by writing down the Gibbs free
energy G(rv), where rv is the two-dimensional coordinate of a
vortex G(rv) = Eself (rv) − WI (rv). Eself (rv) is the self-energy
of the vortex accounting for all its interactions with the sample
edges, including image vortices, and WI (rv) is the work done
by the sources of the current in moving the vortex away from
the sample edge to the position rv .

Neglecting core contributions, we use the London model of
a vortex to calculate the self-energy Eself as the area integral
of the kinetic-energy density per unit area μ0�K2/4 outside
the vortex core, taken to have radius ξ , the Ginzburg-Landau
coherence length.11,12,22–24 The divergence theorem can be
used to obtain Eself (rv) = φ0Icirc(rv)/2, where Icirc(rv) is the
net self-generated supercurrent circulating around the vortex
core when the vortex is at rv .

When the vortex is placed in a sample carrying a current I

distributed as the sheet-current density K I (r), the work WI (rv)
is the line integral of the Lorentz force FL(r) = K I (r) × φ0ẑ

from the vortex’s point of entry to the position rv . Thus
WI (rv) = φ0
I (rv), where 
I (rv) is the portion of the
current I that flows between the vortex’s point of entry and
the position rv . In contrast to the approach used in Refs. 11

and 12, we neglect any suppression of the magnitude of the
GL order parameter by the current density.

We wish to be able to calculate the critical current for a
variety of sample geometries. In each case, we will find that
for small currents I , there is a Gibbs-free-energy barrier at
rb that prevents the nucleation of a vortex. At the top of the
barrier, where rv = rb, ∇G(rv) = 0, which corresponds to a
balance of forces; the Lorentz force, which tends to repel the
vortex away from the sample edge, is balanced by the image
force, which tends to attract the vortex back to the edge. We
will define the critical current Ic as that value of the current
for which the height of the barrier is reduced to zero and rb

moves to the position rc, where G(rc) = 0. In the following
calculations, we will find for each case that rc is only a short
distance, of the order of ξ , from the vortex entry point. Since
we consider ξ � W , the functions needed to calculate G(rv)
can all be obtained using power-law expansions.

We emphasize that our approach uses a number of simpli-
fying approximations, including the London description of a
vortex and its neglect of the vortex-core energy, assumptions
that are known to lose accuracy when the vortex is close to the
sample edge. As a consequence, the numerical factors in our
expressions for the critical current are not expected to be accu-
rate. However, since essentially the same approximations have
been used for all geometries, our calculations should provide
a qualitatively correct, if only semiquantitative, description of
how various sample geometries affect the critical current.

IV. CRITICAL-CURRENT DENSITY OF A LONG,
STRAIGHT, NARROW, THIN SUPERCONDUCTING

STRIP

In this section, we present a general procedure for calcu-
lating the critical current in all geometries but apply it as an
example to the simplest case, a long, thin strip of uniform
width W , here assumed to occupy the space 0 < y < W .25

In general, we will first use conformal mapping to find the
applied sheet-current distribution and to calculate WI (rv) for
vortex positions rv close to the nucleation point. Next, we will
use the same mapping to find the current distribution around
the nucleating vortex and to calculate Eself (rv). We will then
examine the Gibbs free energy G(rv) for rv at or near the
barrier, and we will define the critical current as the current
that reduces the Gibbs-free-energy barrier to zero.

The conformal mapping,26

ζ ′(w) = dζ (w)

dw
= 2W

π (w2 − 1)
, (3)

ζ (w) = W

π
ln

(
w − 1

w + 1

)
, (4)

w(ζ ) = − coth

(
πζ

2W

)
, (5)

maps points in the upper half w plane v � 0 (w = u + iv) into
the strip 0 � y � W in the ζ plane (ζ = x + iy).

The complex potential

Gw(w) = I

π
ln

(
w − 1

w + 1

)
(6)
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describes the flow of current I in the upper half w plane from
a source at w = 1 to a drain at w = −1. In the ζ plane, the
same complex potential is

Gζ (ζ ) = Gw[w(ζ )] = I

π
ln

[
w(ζ ) − 1

w(ζ ) + 1

]
, (7)

and the corresponding complex sheet current is Kζ (ζ ) =
dGζ (ζ )/dζ = Kx(x,y) − iKy(x,y). The streamlines of the
applied sheet-current density K = x̂Kx + ŷKy are obtained
as contours of the stream function S(x,y) = �Gζ (x + iy), the
imaginary part of Gζ (ζ ). In general, Kx(x,y) = ∂S(x,y)/∂y
and Ky(x,y) = −∂S(x,y)/∂x.

In the example for which w(ζ ) is given by Eq. (5), we have,
with I = KIW , Gζ (ζ ) = KIζ , Kζ (ζ ) = KI , S(x,y) = KIy,

Kx = KI , and Ky = 0.
The complex potential describing the sheet-current flowing

around a Pearl vortex16 at w = wv in the upper half w plane,
subject to the boundary condition that at v = 0 there is no
current flow perpendicular to the u axis, can be obtained simply
by the method of images, so long as the vortex’s distance from
the edge of the film is much less than the Pearl length �.22 The
self-generated sheet-current density circulating at distances
ρ � � around the axis of a Pearl vortex has magnitude K =
φ0/πμ0�ρ.16 We therefore have

Gvw(wv; w) = iφ0

πμ0�
ln

(
w − w∗

v

w − wv

)
, (8)

where the term in the numerator arises from the negative image
at w = w∗

v needed to satisfy the boundary condition at v =
0. The complex potential describing the sheet-current flow
circulating around a vortex at ζv = xv + iyv in the ζ plane
can be obtained by starting from Eq. (8) and using w(ζ ) from
Eq. (5) to obtain

Gvζ (ζv; ζ ) = iφ0

πμ0�
ln

[
w(ζ ) − w∗(ζv)

w(ζ ) − w(ζv)

]
. (9)

This function automatically accounts for the infinite sets of
positive and negative image vortices needed to satisfy the
boundary condition that the sheet-current density should be
parallel to the edges at y = 0 and y = W . The imaginary part
of Gvζ is the stream function Sv(xv,yv; x,y) = �Gvζ (ζv; ζ ),
which rises to its largest value as ζ → ζv and w(ζ ) → w(ζv);
it is zero on the boundaries y = 0 and y = W .

The current circulating around the vortex can be obtained
from Eq. (9) by evaluating the stream function at a cutoff
radius equal to the Ginzburg-Landau coherence length, i.e.,
a distance ξ from the vortex position ζv , where we make
the approximation that ξ � |ζv|. In the numerator of the
argument of the logarithm, we replace w(ζ ) by w(ζv), and in
the denominator, we replace w(ζ ) − w(ζv) by ξdw(ζv)/dζv =
ξ/ζ ′[w(ζv)]. When the vortex is at (x,y) = (xv,yv), the
circulating current is

Icirc(xv,yv) = Sv(xv,yv; xv + ξ,yv)

= φ0

πμ0�
ln

[ |w(ζv) − w∗(ζv)||ζ ′(w(ζv))|
ξ

]
.

(10)

We can use the stream function S(x,y) to calculate the
work WI (rv) = φ0
I (rv) done by the source of the current in

moving the vortex from its point of entry (x,y) = (xen,yen) to
the point (x,y) = (xv,yv),


I (xv,yv) = S(xen,yen) − S(xv,yv). (11)

Note that 
I also can be obtained by integrating the sheet-
current density K I (r) that passes between (xen,yen) and
(xv,yv).

When ξ � W , the distance between the point of entry and
the point where the Gibbs free energy is zero is only a little
larger than ξ for all the cases considered here. We therefore will
use expansions of w(ζ ) valid at small distances from the vortex
entry point to evaluate Eqs. (7)–(11) for all cases considered
in this paper.

As an example, let us now apply the above general
procedure to evaluate the critical current for a long straight strip
of width W . If the vortex entry point is at (xen,yen) = (0,W ),
which corresponds to ζ = iW and w = 0, and the vortex
position of interest is (xv,yv) = (0,W − δ), we can use Eq. (3)
to obtain the approximation w = iπδ/2W , which is valid for
δ � W . Using this w in place of w(ζ ) in Eqs. (7) and (9) and
evaluating Eqs. (10) and (11) by expanding them to lowest
order in δ/W yields

G = φ2
0

2πμ0�
ln

(
2δ

ξ

)
− φ0KIδ. (12)

The first term on the right-hand side of Eq. (12) is the self-
energy accounting for the vortex’s interaction with its nearest
negative image vortex at a distance 2δ, and the second term is
the negative of the work done by the source of the current in
moving the vortex a distance δ in from the edge.

The free-energy barrier occurs at δ = δb. Setting ∂G/∂δ =
0 there, we obtain

δb = φ0

2πμ0�KI

, (13)

which is equivalent to the force balance between the repulsive
Lorentz force φ0KI and the attractive force of the image vortex
φ2

0/2πμ0�s. Setting G = 0 at δb yields δb = δc = eξ/2 =
1.36ξ and the critical sheet current KI = Kc,

Kc = φ0

eπμ0ξ�
, (14)

where e is Euler’s number, 2.718. . . . Despite the approxima-
tions made in deriving Eq. (14), this result for Kc is numerically
close to KGL. The barrier height for KI < Kc is

Gb = φ2
0

2πμ0�
ln

(
Kc

KI

)
. (15)

In later sections, we have followed the above procedure,
employing complex fields and conformal mapping, to calculate
the current flow and the critical sheet current in strips with
various geometries, including turns and turnarounds. The main
difference between these cases is the mathematical form of the
conformal mappings, which replace Eqs. (3)–(5).

V. CURRENT CROWDING

When a superconducting strip of constant width W follows
a curving path, current crowding occurs near the inner radius
of a bend. As a result, the critical current of the strip is reduced
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FIG. 1. Current flow in a strip carrying average sheet-current
density KI around a circular arc of inner radius a and outer radius
b = 2a, showing current crowding near the inner radius.

because vortices more readily nucleate where the edge has the
minimum radius of curvature. Here, we examine this effect in
two limits, ξ � W and ξ 
 W .

A. London-model calculation for ξ � W

This critical-current reduction can be understood using the
London model for the geometry shown in Fig. 1. When a sheet
current K (ρ) = Kφ(ρ)φ̂ flows around an annulus of inner and
outer radii a and b = a + W , where ρ is the radial coordinate
and W � �, the solution obeying ∇ · K = 0 and ∇ × K = 0
is Kφ(ρ) = (b − a)KI/ ln(b/a)ρ, where KI is the average
sheet-current density. The current density at the inner radius,
whose radius of curvature is ρc = a, has the enhanced value,
Kφ(a) = (b − a)KI/ ln(b/a)a. As a function of the distance
δ of a nucleating vortex from the point (x,y) = (a,0), the
self-energy of the vortex, including its interaction with the
nearest negative image, is the same as the first term in Eq. (12)
except for correction terms of order δ/a, which are negligible
in critical-current calculations when ξ � a. Thus when δ �
(b − a), the Gibbs free energy becomes

G = φ2
0

2πμ0�
ln

(
2δ

ξ

)
− φ0Kφ(a)δ. (16)

Following the steps that led to Eq. (14), we obtain

δb = φ0

2πμ0�Kφ(a)
, and δc = eξ/2 = 1.36ξ, (17)

which tells us that when ξ � ρc = a, the critical current is
reached when Kφ(a) = φ0/eπμ0ξ�. However, since KI <

Kφ(a) and Kc is the critical value of KI , we have

Kc = φ0

eπμ0ξ�
R, where R = a ln(b/a)

(b − a)
(18)

is the reduction factor due to current crowding at the curving
inner boundary, relative to the Kc for a long straight strip [see
Eq. (14)]. For example, R = 0.69 when (b − a) = W = a.

Note that R → 1 in the limit of infinite radius of curvature
(ρc = a → ∞) for fixed W = (b − a). The barrier height for
KI < Kc is

Gb = φ2
0

2πμ0�
ln

(
Kc

KI

)
. (19)

B. Ginzburg-Landau calculation for ξ � W

The calculation of the critical-current reduction factor
R of Eq. (18) assumed that ξ � a, but the amount of
the reduction is not as great when ξ ≈ a or when ξ 
 a.
For the latter case, it is straightforward to calculate the
critical current as an extension of the Ginzburg-Landau (GL)
calculation19–21 that yields the GL critical-current density of
a long, straight strip, JGL = φ0/33/2πμ0ξλ2, critical sheet-
current density, KGL = 2φ0/33/2πμ0ξ�, or critical current,
IGL = 2φ0W/33/2πμ0ξ�, which assumes that that both d and
W are much smaller than both λ and ξ . For the geometry
shown in Fig. 1, the GL sheet-current density is19–21 K =
−(2f 2/μ0�)[A + (φ0/2π )∇γ ], where f is the magnitude
of the normalized order parameter. Since we can neglect the
self-field, we may choose a gauge such that the current around
the arc is determined by the gradient of the phase of the order
parameter, ∇γ = −φ̂k/ρ, where k is a dimensionless constant.
The sheet-current density becomes K = φ̂Kφ , where

Kφ(ρ) =
(

φ0

πμ0�ξ

)
f 2vs, (20)

vs = ρ0/ρ is the magnitude of the superfluid velocity in GL
dimensionless units,19–21 and ρ0 = kξ is a measure of the
total current around the arc. When ξ 
 W = (b − a), the first
Ginzburg-Landau equation yields f 2 = 1 − v2

s , so that the
radial dependence of Kφ(ρ) is given by

Kφ(ρ) =
(

φ0

πμ0�ξ

)(
ρ0

ρ

)[
1 −

(
ρ0

ρ

)2]
. (21)

The integral of Kφ over the width W = b − a yields the total
current I and the average sheet-current density KI = I/W ,

KI =
(

φ0

πμ0�ξ

)[
ρ0 ln(b/a)

b − a
− ρ3

0 (b + a)

2a2b2

]
. (22)

KI is maximized when ρ0 = ρ0max, where

ρ0max = ab

[
2 ln(b/a)

3(b2 − a2)

]1/2

. (23)

The corresponding maximum value of KI is the arc’s
Ginzburg-Landau critical sheet-current density,

KcGL = KGLRGL, (24)

where KGL = 2φ0/33/2πμ0ξ�, and

RGL = ab√
(a + b)/2

[
ln(b/a)

b − a

]3/2

(25)

is the GL reduction factor due to the inhomogeneous current
density around the arc. For (b − a) = W = a, the case shown
in Fig. 1, RGL = 0.94. Expanding for small values of (b −
a)/(b + a) yields RGL ≈ 1 − [(b − a)/(b + a)]2/2.
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VI. RADIUS-OF-CURVATURE EFFECT

As we have seen above, when the superconducting strip
is curved, current crowding occurs at the point of minimum
radius of curvature ρc, and this reduces the critical sheet-
current density of the strip below the value given in Eq. (14)
when ξ � ρc. However, for values of ρc of the order of
ξ or smaller, the critical-current reduction due to current
crowding is ameliorated by a radius-of-curvature effect. In
strips fabricated with sharp corners, one might at first expect
the critical current to vanish, because the sheet-current density
diverges at the sharp inner corner. However, for such cases
the radius-of-curvature effect partially compensates for the
current-crowding effect and leads to a critical current that
is reduced by a factor proportional to (ξ/a)n, where a is
a characteristic linear dimension of the strip and n is a
geometry-dependent fractional exponent.

A. Rounded 180◦ turnaround

To analyze this radius-of-curvature effect near the inside
corner of a rounded 180◦ turnaround, we use the conformal
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FIG. 2. (a) Current crowding around a parabolic bend of radius
of curvature ρc, shown by the contour plot of the stream function
S(x,y) = �Gζ (x + iy) [see Eq. (28)], which has the value S = 0
along the parabolic boundary, x = −y2/2ρc. The contours corre-
spond to streamlines of the sheet-current density K , and the arrow
shows the current direction. (b) Current flow generated by a vortex
interacting with the parabolic boundary, shown by the contour plot
of the stream function Sv(xv,yv; x,y), which has the value Sv = 0 for
(x,y) along the boundary. The contours, shown here for (xv,yv) =
(ρc,0), correspond to streamlines of the vortex-generated sheet-
current density K v , and the arrow shows the direction of the current.

mapping,27

ζ (w) = −ρcw
2/2 − iρcw, (26)

w(ζ ) = i(
√

2ζ/ρc + 1 − 1), (27)

which maps points in the upper half w plane into points in the ζ

plane (ζ = x + iy) to the right of the parabola x = −y2/2ρc.

This parabola has radius of curvature ρc at the origin, see
Fig. 2.

The complex potential describing uniform current flow
from right to left in the w plane is Gw = −K0ρcw, and in
the ζ plane, the corresponding complex potential

Gζ (ζ ) = −K0ρcw(ζ ) (28)

describes the current crowding around the point (x,y) = (0,0).
The imaginary part yields the stream function S(x,y) =
�Gζ (ζ ), shown in Fig. 2(a). The complex current density is

K(ζ ) = dGζ (ζ )

dζ
= −iK0√

2ζ/ρc + 1
= Kx(x,y) − iKy(x,y).

(29)

The constant prefactors in Eq. (28) are chosen such that the
current density at the origin is K (0,0) = ŷK0.

The critical current is reached when a vortex can be
nucleated from the parabolic tip at (x,y) = (0,0). To calcu-
late it, we first need the work term WI (rv) = φ0
I (rv) =
φ0[S(0,0) − S(xv,yv)], which can be obtained from Eq. (28).
For rv = (δ,0) or ζv = δ,


I (δ) = K0ρc(
√

2δ/ρc + 1 − 1). (30)

The self-energy Eself (rv) = φ0Icirc(rv)/2 can be obtained
as follows. The complex potential describing the sheet-current
flowing around a vortex in the ζ plane of Fig. 2(b) is given
by Eq. (9) but with w(ζ ) given by Eq. (27). We are interested
only in the case when the vortex is on the x axis at rv =
(δ,0) or ζv = δ. The imaginary part is the stream function
Sv(xv,yv; x,y) = �Gvζ (ζv; ζ ), shown in Fig. 2(b). When ξ �
a, Icirc(rv) = Sv(δ,0; δ + ξ,0) can be evaluated as described in
Sec. IV. The result is

Icirc(δ) = φ0

πμ0�
ln

[
2ρc

ξ

√
2δ

ρc

+ 1

(√
2δ

ρc

+ 1 − 1

)]
. (31)

The Gibbs free energy is

G = φ2
0

2πμ0�
ln

[
2ρc

ξ

√
2δ

ρc

+ 1

(√
2δ

ρc

+ 1 − 1

)]

−φ0K0ρc

(√
2δ

ρc

+ 1 − 1

)
. (32)

The position of the barrier δb is the value of δ at the force-
balance condition, ∂G/∂δ = 0. The critical sheet-current
density at (x,y) = (0,0) is reached (K0 = K0c) when the
barrier height G is reduced to zero at δb = δc, and

K0c = φ0

eπμ0ξ�
k0c, (33)
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FIG. 3. Numerical results for (a) δc/ξ and (b) K0c (normalized
to φ0/eπμ0ξ�) as functions of the ratio of the radius of curvature
ρc (see Fig. 2) to the coherence length ξ . Expansions in powers of
ρc/ξ are shown as dashed curves for δc [see Eq. (34)] and K0c [see
Eq. (35)]. Expansions in powers of ξ/ρc are shown as dot-dashed
curves for δc [see Eq. (36)] and K0c [see Eq. (37)].

where numerical results for δc/ξ and k0c as functions of ρc/ξ

are shown in Fig. 3. Analytic expansions (including only the
first few terms in the series) for ρc/ξ � 1 are

δc

ξ
= e2

4
− 1

2

(
ρc

2ξ

)
+ 2

3e

(
ρc

2ξ

)3/2

+ 1

2e2

(
ρc

2ξ

)2

, (34)

k0c =
(

2ξ

ρc

)1/2

+ 1

e
+ 1

e2

(
ρc

2ξ

)1/2

+ 2

3e3

(
ρc

2ξ

)
, (35)

and corresponding expansions for ρc/ξ 
 1 are

δc

ξ
= e

2
+ e2

4

(
ξ

2ρc

)
− e3

4

(
ξ

2ρc

)2

, (36)

k0c = 1 + e

(
ξ

2ρc

)
− e2

2

(
ξ

2ρc

)2

. (37)

Regardless of the size of ρc relative to ξ , vortex nucleation
occurs when the barrier height is reduced to zero at a distance
δc of the order of ξ from the point of minimum radius of
curvature [see Fig. 3(a)]. When ξ � ρc, vortex nucleation
occurs when the sheet-current density K0 at this point exceeds
φ0/eπμ0ξ�. However, in the opposite limit (ρc � ξ ), vortex
nucleation does not occur until K0 reaches much larger values
[see Fig. 3(b)].
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FIG. 4. (a) Current crowding around a generalized hyperbolic
bend of radius of curvature ρc, shown by the contour plot of the stream
function S(x,y) = �Gζ (x + iy) [see Eq. (40)], which has the value
S = 0 along the boundary. The contours correspond to streamlines of
the sheet-current density K , and the arrow shows the current direction.
(b) Current flow generated by a vortex interacting with the boundary,
shown by the contour plot of the stream function Sv(xv,yv; x,y), which
has the value Sv = 0 for (x,y) along the boundary. The contours,
shown here for (xv,yv) = (ρc,0), correspond to streamlines of the
vortex-generated sheet-current density K v , and the arrow shows the
direction of the current.

B. Rounded 90◦ turn

To analyze the radius-of-curvature effect near the inside
corner of a rounded 90◦ turn, we use a different conformal
mapping:28

ζ (w) = (ρc/3)[(1 − iw)3/2 − 1], (38)

w(ζ ) = i[(3ζ/ρc + 1)2/3 − 1], (39)

which maps points in the upper half w plane onto points in the
ζ plane (ζ = x + iy) to the right of a generalized hyperbola
whose radius of curvature is ρc at the origin, see Fig. 4.

The complex potential describing uniform current flow
from right to left in the w plane is Gw = −(K0ρc/2)w. In
the ζ plane, the corresponding complex potential

Gζ (ζ ) = −(K0ρc/2)w(ζ ) (40)

describes the current crowding around the point (x,y) = (0,0).
The imaginary part yields the stream function S(x,y) =
�Gζ (ζ ), shown in Fig. 4(a). The complex current density is

K(ζ ) = dGζ (ζ )

dζ
= −iK0

(3ζ/ρc + 1)1/3
= Kx(x,y) − iKy(x,y).

(41)
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The constant prefactors in Eq. (40) are chosen such that the
current density at the origin is K (0,0) = ŷK0. The critical
current is reached when a vortex can be nucleated from the tip
at (x,y) = (0,0). To calculate it, we first need the work term
WI (rv) = φ0
I (rv) = φ0[S(0,0) − S(xv,yv)], which can be
obtained from Eq. (40). For rv = (δ,0) or ζv = δ,


I (δ) = (K0ρc/2)[(3δ/ρc + 1)2/3 − 1]. (42)

The self-energy Eself (rv) = φ0Icirc(rv)/2 can be obtained
as follows. The complex potential describing the sheet-current
flowing around a vortex in the ζ plane of Fig. 4(b) is given
by Eq. (9), but where w(ζ ) is given by Eq. (39), and we are
interested only in the case when the vortex is on the x axis at
rv = (δ,0) or ζv = δ. The imaginary part is the stream function
Sv(xv,yv; x,y) = �Gvζ (ζv; ζ ), shown in Fig. 4(b). When ξ �
a, Icirc(rv) = Sv(δ,0; δ + ξ,0) can be evaluated as described in
Sec. IV. The result is

Icirc(δ) = φ0

πμ0�
ln

{
ρc

ξ

(
3δ

ρc

+ 1

)1/3[(
3δ

ρc

+ 1

)2/3

− 1

]}
.

(43)

The Gibbs free energy is

G = φ2
0

2πμ0�
ln

{
ρc

ξ

(
3δ

ρc

+ 1

)1/3[(
3δ

ρc

+ 1

)2/3

− 1

]}

−φ0K0ρc

2

[(
3δ

ρc

+ 1

)2/3

− 1

]
. (44)

The position of the barrier δb is the value of δ at the
force-balance condition, ∂G/∂δ = 0. The critical sheet current
density at (x,y) = (0,0) is reached (K0 = K0c) when the
barrier height G is reduced to zero at δb = δc, and

K0c = φ0

eπμ0ξ�
k0c, (45)

where numerical results for δc/ξ and k0c as functions of ρc/ξ

are shown in Fig. 5. Analytic expansions (including only the
first few terms in the series) for ρc/ξ � 1 are

δc

ξ
= e3/2

3
+ e1/2

6

(
ρc

ξ

)2/3

− 1

3

(
ρc

ξ

)

+ 11e−1/2

72

(
ρc

ξ

)−4/3

+ 5e−3/2

144

(
ρc

ξ

)2

, (46)

k0c = 3

2

(
ξ

ρc

)1/3

+ 1

2e

(
ρc

ξ

)1/3

+ 1

12e2

(
ρc

ξ

)
, (47)

and corresponding expansions for ρc/ξ 
 1 are

δc

ξ
= e

2
+ e2

4

(
ξ

2ρc

)
− e3

4

(
ξ

2ρc

)2

, (48)

K0c = φ0

eπμ0ξ�

[
1 + e

(
ξ

2ρc

)
− e2

2

(
ξ

2ρc

)2]
. (49)

Regardless of the size of ρc relative to ξ , vortex nucleation
occurs when the barrier height is reduced to zero at a distance
δc of the order of ξ from the point of minimum radius of
curvature [see Fig. 5(a)]. When ξ � ρc, vortex nucleation
occurs when the sheet-current density K0 at this point exceeds
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FIG. 5. Numerical results for (a) δc/ξ and (b) K0c (normalized
to φ0/eπμ0ξ�) as functions of the ratio of the radius of curvature
ρc (see Fig. 4) to the coherence length ξ . Expansions in powers of
ρc/ξ are shown as dashed curves for δc [see Eq. (46)] and K0c [see
Eq. (47)]. Expansions in powers of ξ/ρc are shown as dot-dashed
curves for δc [see Eq. (48)] and K0c [see Eq. (49)].

φ0/eπμ0ξ�. However, in the opposite limit (ρc � ξ ), vortex
nucleation does not occur until K0 reaches much larger values
[see Fig. 5(b)].

VII. 180◦ TURNAROUNDS

In this section, we address the extent to which the
critical current is reduced by a 180◦ turnaround. We consider
the following specific examples: a sharp 180◦ turnaround,
an optimally rounded 180◦ turnaround, a 180◦ turnaround
intermediate between sharp and optimally rounded, a rounded
180◦ turnaround at the end of straight strips, and a sharp
rectangular 180◦ turnaround. The latter geometry was used
in the experiments of Yang et al.,15 which will be discussed in
more detail in Sec. XIII.

A. Sharp 180◦ turnaround

Consider the current flow in a strip of width a with a sharp
180◦ turnaround as shown in Fig. 6. Alternatively, we can think
of this as a wider strip of width 2a, cut along the x axis for
x < 0. The conformal mapping29

ζ ′(w) = dζ (w)

dw
= 2a

π

w

w2 − 1
, (50)

ζ (w) = (2a/π )(ln
√

w − 1 + ln
√

w + 1 − iπ/2), (51)

maps points in the upper half w plane (w = u + iv) into the
strip −a � y � a in the ζ plane (ζ = x + iy) as shown in
Fig. 6. The inverse mapping is given by

w(ζ ) = ±
√

1 − exp(πζ/a), (52)
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FIG. 6. (Color online) (a) Current flow in a strip carrying current
KIa around a 180◦ turn, shown by the contour plot of the stream
function S(x,y) = �Gζ (x + iy), which has the values S = 0 along
the lines y = ±a at the outer boundaries and S = KIa on either
side of the narrow gap along the line y = 0 for x < 0. The contours
correspond to streamlines of the sheet-current density K , and the
arrows show the direction of the current. The dashed curve, which
corresponds to S = KIa/2, separates the current-crowding region
close to (x,y) = (0,0) from the current-expanding region outside.
The magnitude of K is constant (K = KI ) along the dashed curve.
(b) Vortex-generated current flow, shown by the contour plot of
the stream function Sv(xv,yv; x,y), which has the values Sv = 0
for (x,y) along the boundaries. The contours, shown here for
(xv,yv) = (0.1a,0), correspond to streamlines of the vortex-generated
sheet-current density K v , and the arrow shows the direction of the
current.

where the upper (lower) sign holds when �ζ � 0 (�ζ > 0).
The complex potential is given by Eq. (7) but with w(ζ )

from Eq. (52) and I = KIa, and the corresponding complex
sheet current Kζ (ζ ) = dGζ (ζ )/dζ = Kx(x,y) − iKy(x,y) is

Kζ (ζ ) = KI

w(ζ )
. (53)

For −a < y < 0, Kx(x,y) → KI as x → −∞, and for 0 <

y < a, Kx(x,y) → −KI as x → −∞. The streamlines of the
sheet current K = K̂x + ŷKy are obtained as contours of the
stream function S(x,y) = �Gζ (x + iy), the imaginary part of
Gζ (ζ ), shown in Fig. 6(a).

The critical current of the 180◦ turnaround is reached when
a vortex can be nucleated at the sharp point in the center of
Figs. 6(a) or 6(b) at (x,y) = (0,0), which corresponds to ζ = 0
and w = 0. To calculate the critical current, we examine the

behavior when a vortex is at ζv = δ, where δ � a. Expanding
Eq. (50), we obtain w(ζv) = i(πδ/a)1/2 to lowest order, and
from Eqs. (7), (10), and (11) we obtain the Gibbs free energy,

G = φ2
0

2πμ0�
ln

(
4δ

ξ

)
− 2φ0KI

(
aδ

π

)1/2

. (54)

Following the steps that led to Eq. (14), we obtain with
KI = Kc,

δ
1/2
b = φ0

2μ0�KI

√
πa

, δc = e2ξ/4 = 1.85ξ, (55)

Kc = φ0

eπμ0ξ�
R, where R =

(
πξ

a

)1/2

(56)

is the reduction factor due to current crowding near (x,y) =
(0,0).30 For example, R = 0.56 when ξ = 0.1a and R = 0.18
when ξ = 0.01a. The barrier height for KI < Kc is

Gb = φ2
0

πμ0�
ln

(
Kc

KI

)
. (57)

Note that the prefactor is larger than that in Eq. (15) by a
factor of two, which arises from the term proportional to δ1/2

in Eq. (54).

B. Optimally rounded 180◦ turnaround

For the case of the 180◦ turn shown in Fig. 6, the complex
sheet-current density is given by Eq. (53). Examination of
Fig. 6(a) reveals that current crowding occurs, i.e., K = |K |
increases along streamlines inside the dashed curve as the
current turns around the end of the gap, reaching a maximum
at (x,y) = (0,0). On the other hand, K decreases along
streamlines outside the dashed curve in the current-turnaround
region. The dashed curve, which corresponds to the contour for
which S = KIa/2, but which also can be obtained by setting
K = KI , is given by either of the following equations:

xo(y) = (a/π ) ln[2 cos(πy/a)], (58)

yo(x) = ±(a/π ) cos−1[exp(πx/a)/2]. (59)

In the latter equation, x � (a/π ) ln 2 = 0.221a, and the upper
(lower) sign holds for positive (negative) values of y. Note
that y in Eq. (59) rapidly approaches ±a/2 for x < −a as
exp(πx/a) → 0.

The above results can tell us the optimal film design that
will prevent any significant reduction of the critical current
due to current crowding at a 180◦ turn. Consider a long super-
conducting strip of width W and critical sheet current given by
Eq. (14). If we wish the direction of the current to change by
180◦ at the corner of a strip for which the outer boundaries
are straight, as shown in Fig. 6(a), the inner boundary of
the strip should be chosen to be the smooth curve given by
Eqs. (58) or (59) but with a/2 = W . The minimum radius
of curvature of this curve is ρc = 2W/π = 0.637W , which
occurs at (x,y) = (xo(0),0) = (2W ln 2/π,0) = (0.441W,0).
As discussed in Secs. V and VI, so long as ξ � ρc, the
self-energy Eself of a nucleating vortex for small δ is the same
as in Eq. (12) to excellent approximation. Moreover, since
the sheet-current density along the entire inner boundary is
constant with the value KI , the work term WI and hence the
entire Gibbs free energy for small δ are very nearly the same
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as in Eq. (12). Therefore the critical current for a strip with a
180◦ turnaround of the above-described design, i.e., the area
between the dashed curve and the outer boundary in Fig. 6,
should be the same as that of a very long strip of constant width
W [see Eq. (14)], so long as ξ � W . See also Sec. VII D 3,
where the optimally rounded 180◦ turnaround is examined
from a different perspective.

C. 180◦ turnaround intermediate between sharp
and optimally rounded

Consider a long strip of width W whose critical sheet
current is given by Eq. (14) when ξ � W . In Sec. VII A,
we showed that current crowding reduces this critical current
by the factor R = (πξ/W )1/2 at the sharp 180◦ turn as shown
in Fig. 6 when a = W . In Sec. VII B, we described an optimal
180◦ turnaround geometry that avoids current crowding, such
that there is no reduction of the critical sheet current given
by Eq. (14) so long as ξ � W . However, the optimal 180◦
turnaround requires that the gap between strips is double the
strip width W , so that in meander arrays, the filling factor
(fraction of surface area covered by the superconducting film)
is only 1/3. Device designers may wish to increase the filling
factor at the price of reducing the critical current. In this
section, we therefore show how to estimate the critical current
in 180◦ turnarounds that are intermediate between the sharp
and optimally rounded cases discussed in Secs. VII A and
VII B.

Consider a 180◦ turnaround consisting of a superconducting
strip whose shape is chosen such that the outer boundaries are
the straight lines at y = ±a as shown in Fig. 6(a) and the
inner boundary is the curve defined by the stream-function
contour S(x,y) = �Gζ (x + iy) = KIW . Far to the left of the
turnaround, the film has a nearly constant width W extending
from y = −a to y = −(a − W ) for y < 0, where it carries a
sheet-current density K = x̂KI , and it has a nearly constant
width W extending from y = +a to y = +(a − W ) for y < 0,
where it carries a sheet-current density K = −x̂KI . Analysis
of the contour S(x,y) = KIW reveals that it intersects the x

axis at (x,y) = (xW ,0), where

xW = (2a/π ) ln[1/ sin(πW/2a)], (60)

the radius of curvature is

ρc(xW ) = 2a

π
(1 − e−πxW /a) = 2a

π
cos2(πW/2a), (61)

and the sheet-current density is, from Eq. (53),

K (xW ,0) = ŷ
KI

eπxW /a − 1
= ŷKI tan(πW/2a). (62)

We now make use of the results of Sec. VI, in which the
critical sheet-current density K0c at the point of minimum
radius of curvature ρc is given by Eq. (33), where k0c is the
function of ρc/ξ plotted in Fig. 3(b). Since KI = Kc at the
critical current, we have K0c = Kc tan(πW/2a) from Eq. (62),
such that

Kc = φ0

eπμ0ξ�
R, where R = k0c cot

(
πW

2a

)
, (63)

and the argument of k0c [see Fig. 3(b)] is ρc/ξ =
(2a/πξ ) cos2(πW/2a), obtained from Eq. (61). Figure 7
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0.001
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0.0

0.2

0.4
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0.8

1.0

g 2a a W a

R

FIG. 7. Critical-current reduction factor R [Eq. (63)] vs g/2a =
(a − W )/a for several values of ξ/a.

shows calculated values of R as a function of g/2a, the ratio of
the width of the gap g = 2a − 2W to the distance 2a between
the two outer boundaries in Fig. 6. R decreases monotonically
as g decreases and reduces to Eq. (56) in the limit g → 0 and
W → a.

As expected, for very small values of ξ/a (see plot
for ξ/a = 0.001), R = 1 when g/2a = 1/2 or W = a/2.
For larger values of ξ/a, on the other hand, the behavior
of R vesus g/2a becomes more strongly affected by the
radius-of-curvature effect (see Sec. VI), which counteracts the
current-crowding reduction of Kc. The portions of the curves
for which R > 1 tell us the values of ξ/a, g, and W for which
the critical current is limited by vortex nucleation not at the
point of minimum radius of curvature, (x,y) = (xW ,0), but
rather somewhere along the straight portion of the strip, far
from the bend.

D. Rounded 180◦ turnaround at the end of straight strips

We now use a method inspired by that of Cockroft2 to
calculate the current-crowding critical-current reduction factor
R for the case that straight strips with constant width W

and gap 2r ′ between them are connected at their ends with
a rounded corner, as shown in Fig. 8. The results depend in
detail upon the geometry chosen. In Sec. VII D 1, we discuss
the behavior for which the dimensions shown in Fig. 8(a)
obey W ′ = W , in Sec. VII D 2, we examine the behavior for
W ′ → ∞ and r ′/W < 1, and in Sec. VII D 3, we treat the
limiting case for W ′ → ∞ and r ′/W = 1, which produces a
curving inner boundary of the turnaround corresponding to the
optimal rounding discussed in Sec. VII B.

1. General case

The conformal mapping2

ζ ′(w) = dζ (w)

dw
= −A

√
w + 1 +

√
b+1
b−1

√
w − 1

√
w − 1

√
w − a

√
w − b

, (64)

ζ (w) = −A

{
2i√

(a + 1)(b − 1)
[(a − 1)�(φ1,n1,k1)

− (a + 1)F (φ1,k1)]

+ 2

√
b + 1

b − 1
ln

(√
a − w + √

b − w√
a − 1 + √

b − 1

)}
, (65)
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A = W/g(b), (66)

g(b) = π

(
1 +

√
b + 1

b − 1

)
, (67)

φ1 = sin−1

√
(a + 1)(1 − w)

2(a − w)
, (68)

n1 = 2

a + 1
, n2 = a − b

a + 1
, (69)

k1 =
√

2(b − a)

(a + 1)(b − 1)
(70)

maps points in the upper half w plane (w = u + iv) onto the
area ABCDEF in the upper half ζ plane (ζ = x + iy) shown in
Fig. 8. The inverse mapping w(ζ ) can be obtained numerically.
Here, F (φ,n,k) and �(φ,n,k) are elliptic integrals of the first
and third kind with parameter n and modulus k,31 and K(k) =
F (π/2,k) and �(n,k) = �(π/2,n,k) are the corresponding
complete elliptic integrals. Special points in the ζ and w planes
(see Fig. 8) are related as follows: A, w = −∞; B, w = −1;
C, w = +1; D, w = a; E, w = b; and F, w = +∞, where
1 < a < b. The lengths CD = W ′, r , and r ′ shown in Fig. 8(a)
are determined as functions of a and b as follows:

W ′ = A

{
2√

(a + 1)(b − 1)
[(b + 1)K(k2)

− (b − a)�(n3,k2)]

+ 2

√
b + 1

b − 1
ln

(√
a − 1 + √

b − 1√
b − a

)}
, (71)

n3 = a − 1

b − 1
, k2 =

√
(a − 1)(b + 1)

(a + 1)(b − 1)
, (72)

r = 2A

√
b + 1

b − 1
ln

(√
a + 1 + √

b + 1√
a − 1 + √

b − 1

)
, (73)

r ′ = 2A√
(a + 1)(b − 1)

[(1 + a)K(k1)

+ (1 − a)�(n1,k1)]. (74)

Note that DE = W + r ′.
The complex potential describing the current flow within

the area ABCDEF shown in Fig. 8 is Gζ (ζ ) = Gw(w), where

Gw(w) = I

π
ln(2w − 1 − a + 2

√
w − 1

√
w − a) (75)

and w = w(ζ ). The imaginary part of this is the stream
function S, whose contours, shown in Fig. 8, are the
streamlines of the sheet-current density K = x̂Kx + ŷKy . The
corresponding complex sheet current, Kζ (ζ ) = dGζ (ζ )/dζ =
Kx(x,y) − iKy(x,y), is

Kζ (ζ ) = −IA

π

√
w − b

√
w + 1 +

√
b+1
b−1

√
w − 1

. (76)

For r ′ < y < W + r ′ and x � −W , which corresponds to
w → ∞, we have, to a good approximation, Kx = −KI =
−IA/g(b) = −I/W . However, around the arc BC, which
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FIG. 8. (a) Current flow in a film carrying current KIW from
a straight strip of width W around a rounded 180◦ turn of length
CD = W ′ = W into another straight strip of width W , shown by the
contour plot of the stream function S(x,y) = �Gζ (x + iy), which has
the values S = 0 along the outer boundaries of the film and S = KIW

along the inner boundary. Here, r ′ = 0.500W and r = 0.402W . The
contours correspond to streamlines of the sheet-current density K , and
the arrows show the direction of the current. (b) Same as (a), except
that the connection is infinite in length (CD = ∞), r ′ = 0.500W , and
r = 0.525W .

corresponds to w = u, where −1 � u � 1, we find that
KBC = |K| is given by

KBC

KI

=
√

b + 1 + √
b − 1√

2
. (77)

Since b is required to obey b > 1 except in limiting cases, this
equation tells us that current-crowding (KBC > KI ) almost
always occurs. As discussed in Secs. V and IV, so long as ξ �
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r ′, this current-crowding therefore leads to a critical sheet-
current density of the form

Kc = φ0

eπμ0ξ�
R, where R =

√
2√

b + 1 + √
b − 1

(78)

is the reduction factor due to current crowding at the curving
inner boundary BC, relative to the Kc for a long straight strip
[see Eq. (14)]. However, to treat the case for which r ′ � ξ , an
approach similar to that in Sec. VI would be required.

Using Eqs. (66), (71), and (74), one can obtain two
equations from which the values of b and a can be obtained
for desired values of the ratios W ′/W and r ′/W . Figure 8(a)
was calculated for the following parameters: W = W ′ = 1,
r ′ = 0.500, r = 0.402, A = 0.102, a = 1.216, and b = 1.572.

Combining displaced mirror images of turnarounds like
these in a two-dimensional layout (a “boustrophedonic”
pattern) results in a fill factor f = W/p, where p = W + 2r ′
is the pattern period (pitch) and W and 2r ′ are the strip and gap
widths away from the turnarounds, respectively. For example,
Fig. 8 corresponds to f = 1/2. The solid curves of Fig. 9
show plots of R, r ′/W = (1 − f )/2f , r ′/r , and b − 1 versus
f = 1/(1 + 2r ′/W ) for W ′/W = 1. For f � 1, the following
expansions have been used to plot the functions for f � 0.12:

δb = b − 1 = 128

π2
exp

[
− π (1 − f )

2f

]
, (79)

R = 1/(
√

1 + δb/2 +
√

δb/2), (80)

f 1 3 f 1 2
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an
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FIG. 9. Plots of the current-crowding critical-current reduction
factor R, δb = b − 1, and the ratios r ′/W and r ′/r vs the fill factor
f = 1/(1 + 2r ′/W ) for W ′ = W (solid curves) and W ′ = ∞ (dashed
curves). The vertical dotted line marks the parameters for Fig. 8(a)
(f = 0.5, r ′/W = 0.5, R = 0.599, b − 1 = 0.572, and r ′/r =1.243)
and Fig. 8(b) (f = 0.5, r ′/W = 0.5, R = 0.707, b − 1 = 0.250, and
r ′/r =0.953). The vertical dot-dashed line marks the smallest f for
which solutions can be found for W ′ = ∞ and the value of f = 1/3
for which r ′/W = 1, r/W → ∞, and the inner boundary takes the
optimally rounded shape for a 180◦ turnaround so that R = 1.

r ′/r = ln

(
128

π2δb

)/
ln

(
8

δb

)

= 1 − f

1 − f [1 + (4/π ) ln(4/π )]
. (81)

While Fig. 9 shows R approaching zero for f → 1 and
r ′/W → 0, bear in mind that Eq. (78) is valid only for r ′ 
 ξ .

2. W ′ → ∞ and r ′/W < 1

In the limit CD = W ′ → ∞, b → a and Eqs. (64)–(74)
simplify to

ζ ′(w) = dζ (w)

dw
= −A

√
w + 1 +

√
a+1
a−1

√
w − 1

√
w − 1(w − a)

, (82)

ζ (w) = −A

{
2i

[
tan−1

√
1 − w

1 + w
−

√
a + 1

a − 1
φ1

]

+ 2

√
a + 1

a − 1
ln

(√
a − w√
a − 1

)}
, (83)

A = W/g(a), (84)

g(a) = π

(
1 +

√
a + 1

a − 1

)
, (85)

r = 2A

√
a + 1

a − 1
ln

(√
a + 1√
a − 1

)
, (86)

r ′ = Aπ

(√
a + 1

a − 1
− 1

)
. (87)

For W ′ → ∞, Eqs. (84) and (87) can be used to obtain an
equation from which b = a can be determined as a function of
r ′/W , but only for r ′/W � 1. Equations (75)–(78) still apply,
and Fig. 8(b) was calculated for the following parameters:
W = 1, W ′ → ∞, r ′ = 0.500, r = 0.525, A = 1/4π, and
b = a = 1.25. The dashed curves of Fig. 9 show plots of
R, r ′/W = (1 − f )/2f , r ′/r , and b − 1 = a − 1 versus f =
1/(1 + 2r ′/W ) for W ′/W = 1. While the dashed curve for R

in Fig. 9 shows R approaching zero for f → 1 and r ′/W → 0,

recall that Eq. (78) is valid only for r ′ 
 ξ .

3. Optimal rounding when W ′ → ∞ and r/W → ∞
Note from the dashed curves in Fig. 9 that in the limit

W ′ → ∞, we find R = 1, r ′/W = 1, r/W → ∞, and f =
1/3 in the limit a = b → 1. The dependence of ζ (w) then
becomes dominated by values of w very close to 1 and a, and
it is appropriate to introduce the variable ω = (w − 1)/(a − 1)
in Eqs. (82)–(87) and to take the limit as a → 1. This leads to
the conformal mapping

ζ ′(ω) = dζ (ω)

dω
= −W (1 + √

ω)√
ω(ω − 1)

, (88)

ζ (ω) = −2W

π
ln(1 − √

ω), (89)

w(ζ ) = [1 − exp(−πζ/2W )]2, (90)

which maps points in the upper half ω plane onto the area
BCDEF in the upper half ζ plane (ζ = x + iy) shown in
Fig. 10. Special points in the ζ and ω planes (see Fig. 10)
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FIG. 10. Current flow around a 180◦ turnaround with an optimally
rounded inner boundary, shown by the contour plot of the stream
function S(x,y) = �Gζ (x + iy), which has the values S = 0 along the
outer boundaries of the film and S = KIW along the inner boundary.
The contours correspond to streamlines of the sheet-current density
K , and the arrows show the direction of the current. Since there is
no current crowding along the curve BCC′B′, the critical current is
predicted to be the same as for a long straight strip.

are related as follows: B, ω = −∞; C, ω = 0; D, ω =
1 − ε; E, ω = 1 + ε; and F, w = +∞, where ε is a positive
infinitesimal. The curves BC and B′C′ for x < 0 are given by

yopt(x) = ±(2W/π ) cos−1[exp(πx/2W )] (91)

with the upper (lower) sign holding for BC (B′C′). These
curves correspond to the optimally rounded inner boundary
of a 180◦ turnaround discussed in Sec. VII B. Note that yopt(x)
in Eq. (91) is the same as yo(x) in Eq. (59) with a = 2W and
the origin shifted along the x axis by 
x = (a/π ) ln 2.

The complex potential describing the current flow within
the area BCDEF shown in Fig. 10 is

Gζ (ζ ) = 2I

π
ln[

√
ω(ζ ) +

√
ω(ζ ) − 1)]. (92)

The imaginary part of this is the stream function S, whose
contours, shown in Fig. 10, are the streamlines of the sheet-
current density K = x̂Kx + ŷKy . The corresponding complex
sheet current, Kζ (ζ ) = dGζ (ζ )/dζ = Kx(x,y) − iKy(x,y), is

Kζ (ζ ) = − I

W

√
ω(ζ ) − 1

1 + √
ω(ζ )

. (93)

For yopt < y < 2W and x � −W , which corresponds to
ω(ζ ) → ∞, we obtain Kx = −KI , where KI = I/W . Along
the arc BC, which corresponds to ω = u, where −∞ � u � 0,
we find that KBC = |K| = KI . In other words, there is no
current crowding, and the critical current is predicted to be
exactly the same as for a long straight strip [see Eq. (14)].
As discussed above, however, this conclusion is based on the
assumption that the coherence length ξ is much smaller than
the radius of curvature at the origin ρc = 2W/π . To treat the

case for which ξ � ρc, an approach similar to that in Sec. VI
would be required.

E. Sharp rectangular 180◦ turnaround

We next examine the current flow around a sharp rectan-
gular turnaround shown in Fig. 11. The film (width 2a) is
centered on the x axis, but a slot (width 2h) with sharp 90◦
corners has been cut out of the center for x < 0. The lower arm
of width W = a − h carries a uniform sheet-current density
K = x̂KI until it reaches the turnaround. The current then
turns around and finally flows in the upper arm with current
density K = −x̂KI . We wish to calculate the critical current
at which the first vortex is nucleated at one of the sharp inner
corners of the turnaround.

The conformal mapping32

ζ ′(w) = dζ (w)

dw
= 2a

π

√
w2 − α2

w2 − 1
, (94)
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FIG. 11. (a) Current flow in a film carrying current KIW around
a sharp rectangular 180◦ turn, shown by the contour plot of the stream
function S(x,y) = �Gζ (x + iy), which has the values S = 0 along the
lines y = ±a at the outer boundary of the film and S = KIW along
the inner boundary [|y| = h = a − W for x < 0 or |y| � h for x =
0]. (In this figure, h = a/2 = W and α = √

3/2 = 0.866.) The con-
tours correspond to streamlines of the sheet-current density K , and the
arrows show the direction of the current. (b) Vortex-generated current
flow, shown by the contour plot of the stream function Sv(xv,yv; x,y),
which has the values Sv = 0 for (x,y) along the boundaries. The
contours, shown here for (xv,yv) = (0.05a, − 0.55a), correspond to
streamlines of the vortex-generated sheet-current density K v , and the
arrow shows the direction of the current.
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ζ (w) =
(

2a

π

){
cosh−1

(
w

α

)
− iπ/2

−
√

1 − α2

2
cosh−1

[
w2(2 − α2) − α2

α2(w2 − 1)

]}
, (95)

where α =
√

2(h/a) − (h/a)2, maps points in the upper half
w plane (w = u + iv) onto the area −a � y � a for x > 0
or h < |y| < a for x < 0 in the ζ plane (ζ = x + iy) as
shown in Fig. 11. The inverse mapping w(ζ ) can be obtained
numerically.

The complex potential Gζ (ζ ) is given by Eq. (7) using the
inverse mapping w(ζ ) with I = KIW , and the correspond-
ing complex sheet current Kζ (ζ ) = dGζ (ζ )/dζ = Kx(x,y) −
iKy(x,y) is

Kζ (ζ ) = KIW

a
√

w2(ζ ) − α2
. (96)

For −a < y < −h, Kx(x,y) → KI as x → −∞, and for h <

y < a, Kx(x,y) → −KI as x → −∞. The streamlines of the
sheet current K = K̂x + ŷKy are obtained as contours of the
stream function S(x,y) = �Gζ (x + iy), the imaginary part of
Gζ (ζ ), shown in Fig. 11(a).

The critical current of the rectangular 180◦ turnaround is
reached when a vortex can be nucleated at one of the sharp
inner corners shown in Figs. 11(a) or 11(b). The lower right
corner at ζ = −ih corresponds to w = α. Expanding Eq. (50)
for rv = (δ/

√
2,h − δ/

√
2) or ζv = −ih + δ/

√
2 − iδ/

√
2

along the diagonal extending away from the lower right inner
corner of Fig. 11(a), we obtain

w(ζv) = α + i

(2α)1/3

(
W

a

)4/3(3πδ

4a

)2/3

(97)

to lowest order, where δ � a. From Eqs. (7), (10), and (11),
we obtain the Gibbs free energy,

G = φ2
0

2πμ0�
ln

(
3δ

ξ

)
− φ0KI

(
W

πα

)1/3(3δ

2

)2/3

. (98)

Following the steps that led to Eq. (14), we obtain
with KI = Kc,(

3δb

2

)2/3

= 3φ0α
1/3

4π2/3μ0�KIW 1/3
, δc = e3/2ξ

3
= 1.49ξ,

(99)

Kc = φ0

eπμ0ξ�
R, where R = 3

2

(
παξ

2W

)1/3

(100)

is the reduction factor due to current crowding at one
of the sharp inner corners, and (because h = a − W ) α =√

1 − (W/a)2. The barrier height for KI < Kc is

Gb = 3φ2
0

4πμ0�
ln

(
Kc

KI

)
. (101)

Note that the prefactor is larger than that in Eq. (15) by a
factor of 3/2, which arises from the term proportional to δ2/3

in Eq. (98).
In the limit when W � a, α → 1, in which case Eq. (100)

yields R ≈ (3/2)(πξ/2W )1/3, a result nearly the same as that

in Eq. (108) with a = W but larger by a factor of 21/3 = 1.26
because of the geometry differences.

The steps leading to Eq. (100) should be valid so long as
h = (a − W ) � ξ , but the above approximations fail for very
small gap widths g = 2h ∼ ξ . In this case, α ∼ (ξ/W )1/2 and
Eq. (100) yields R ∼ (ξ/W )1/2. In the limit as h → 0, the
value of R is given by Eq. (56).

VIII. 90◦ TURNS

In this section, we first calculate how much the critical
current is reduced by a sharp 90◦ turn, and we then describe
the shape of an optimally rounded 90◦ turn that should exhibit
no critical-current reduction.

A. Sharp 90◦ turn

Consider the current flow in a strip of width a with a right-
angle turn as shown in Fig. 12. The complex potential that
describes the flow of current is

Gζ (ζ ) = −KIa

π
ln[w(ζ ) − 1], (102)

where the conformal mapping from the w plane (w = u + iv)
to the ζ plane (ζ = x + iy) is33

ζ ′(w) = dζ (w)

dw
= a

√
2 − w

π (1 − w)
√

w
, (103)

ζ (w) = a

π

[
cos−1(1 − w) + cosh−1

(
1

1 − w

)]
, (104)

and w(ζ ) is the inverse of ζ (w), which is readily obtained
numerically. The imaginary part of G is the stream function,
S(x,y) = �G(x + iy). Shown in Fig. 12(a) is a contour plot
of S(x,y) whose contours correspond to streamlines of the
sheet-current density K .

To calculate the critical current at which a vortex is
nucleated from the inner corner, note that the corner at
ζ = a + ia corresponds to w = 2. Expanding Eq. (103) about
this point with ζv = a + ia + δe−i3π/4 yields

w(ζv) = 2 + i(3πδ/a
√

2)2/3. (105)

We can use this expansion following the procedure of Sec. IV
to obtain the Gibbs free energy,

G = φ2
0

2πμ0�
ln

(
3δ

ξ

)
− φ0KI

(
a

2π

)1/3

(3δ)2/3. (106)

Following the steps that led to Eq. (14), we obtain with KI =
Kc,

δ
2/3
b = φ0

2πμ0�KI

(
3π

4a

)1/3

, δc = e3/2ξ

3
= 1.49ξ, (107)

Kc = φ0

eπμ0ξ�
R, where R = 3

2

(
πξ

4a

)1/3

(108)

is the reduction factor due to current crowding at the sharp
inner corner. For example, R = 0.64 when ξ = 0.1a and R =
0.30 when ξ = 0.01a. The barrier height for KI < Kc is

Gb = 3φ2
0

4πμ0�
ln

(
Kc

KI

)
. (109)
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FIG. 12. (Color online) (a) Current flow in a strip carrying current
KIa around a 90◦ turn, shown by the contour plot of the stream
function S(x,y) = �G(x + iy) [see Eq. (102)], which has the values
S = 0 along the inner boundary (y = a for x � a and x = a for
y � a) and S = −KIa along the outer boundary (y = 0 for x � 0
and x = 0 for y � 0). The contours correspond to streamlines of
the sheet-current density K , and the arrows show the direction of
the current. The dashed curve, which corresponds to S = −KIa/2,
separates the current-crowding region near the inner corner from the
current-expanding region near the outer corner. The magnitude of K
is constant (K = KI ) along the dashed curve. (b) Vortex-generated
current flow, shown by the contour plot of the stream function
Sv(xv,yv; x,y), shown here for (xv,yv) = (0.9a,0.9a), which has
the values Sv = 0 for (x,y) along the inner and outer boundaries.
The contours correspond to streamlines of the vortex-generated
sheet-current density K v .

Note that the prefactor is larger than that in Eq. (15) by a
factor of 3/2, which arises from the term proportional to δ2/3

in Eq. (106).

B. Optimally rounded 90◦ turn

For the case of the right-angle turn shown in Fig. 12(a), the
complex sheet-current density in the ζ plane obtained from
Eq. (102) via Kζ (ζ ) = dGζ (ζ )/dζ is

Kζ (ζ ) = Kx − iKy = KI

√
w(ζ )√

2 − w(ζ )
, (110)

where K , the magnitude of Kζ , is also the magnitude of
K ; i.e., K = |Kζ | = |K | =

√
K2

x + K2
y , and K varies along

all of the contours of Fig. 12(a) except one. For contours
close to the inner corner, K increases upon approaching
the corner, which we call current crowding; for the contour
along the inner boundary, K even diverges at the corner.
As shown in Sec. VIII A, this current crowding leads to a
significant reduction in the critical current, because vortices
nucleate preferentially at the sharp inside corner. On the
other hand, for contours close to the outer corner, K de-
creases upon approaching the corner, which we call current
expansion.

However, as first discovered by Hagedorn and Hall,1 there
is one special contour near the middle for which K remains
constant with the value KI ; this contour, which we call the
optimal contour, is shown as the dashed curve in Fig. 12(a).
From Eq. (110) we find that in the w plane the optimal contour
corresponds to w = 1 + iv, where v > 0, such that the optimal
contour in the ζ plane, ζo(v) = xo(v) + iyo(v), is given by the
parametric equation

ζo = a

2

{[
1 + 2

π
sinh−1

(
1

v

)]
+ i

[
1 + 2

π
sinh−1 v

]}
.

(111)

Alternatively, v can be eliminated to obtain yo as a function of
x > a/2 or xo as a function of y > a/2:

yo(x) = a

2

{
1 + 2

π
sinh−1

[
1

sinh[(π/a)(x − a/2)

]}
,

(112)

xo(y) = a

2

{
1 + 2

π
sinh−1

[
1

sinh[(π/a)(y − a/2)

]}
. (113)

The above results have important consequences, because
they can tell us the optimal film design that will prevent any
significant reduction of the critical current due to current
crowding at a right-angle turn. Consider a long supercon-
ducting strip of width W and critical sheet current given
by Eq. (14). If we wish the direction of the current to
change by 90◦ at the corner of a strip for which the outer
boundary is a right angle, as shown in Fig. 12(a), the inner
boundary of the strip should be chosen to be the smooth curve
given by Eqs. (111)–(113) but with a/2 = W . The minimum
radius of curvature of this curve is 4W/π = 1.27W , which
occurs at xo = yo = W [1 + (2/π ) sinh−1(1)] = 1.56W . As
discussed in Secs. V and VI, so long as ξ is much smaller
than the minimum radius of curvature, the self-energy Eself of
a nucleating vortex for small δ is, to excellent approximation,
the same as in Eq. (12). Moreover, since the sheet-current
density along the entire inner boundary is constant with the
value KI , the work term WI and hence the entire Gibbs free
energy for small δ are very nearly the same as in Eq. (12).
Therefore the critical current for the strip with a corner of
the above-described design, i.e., the area between the dashed
curve and the outer boundary in Fig. 12(a), should be the same
as that of a very long strip of constant width W [see Eq. (14)],
so long as ξ � W .

C. Rounded 90◦ turnaround at the end of straight strips

We now use Cockroft’s method2 to calculate the current-
crowding critical-current reduction factor R for the case when
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FIG. 13. (a) Current flow calculated in Sec. VIII C 1 for a film
carrying current KIW from a straight strip of width W around a
rounded 90◦ turn into another straight strip of width W , shown by the
contour plot of the stream function S(x,y) = �Gζ (x + iy), which has
the values S = 0 along the outer boundaries of the film and S = KIW

along the inner boundary. The contours correspond to streamlines of
the sheet-current density K , and the arrows show the direction of the
current. Here r/W = 1/2, and current crowding along the arc BC
results in a critical-current reduction factor R = 0.654. (b) Current
flow calculated in Sec. VIII C 2, where the connection is infinite in
length and r/W → ∞, a geometry for which there is no current
crowding along the arc ABC and no critical-current reduction.

two straight strips with constant width W are connected by a
90◦ rounded corner, as shown in Fig. 13(a). The results depend
upon the parameters chosen. In Sec. VIII C 1, we discuss the
behavior for which the “radius” r shown in Fig. 13(a) is finite,
and in Sec. VIII C 2, we treat the limiting case for r/W → ∞,
which produces a curving inner boundary corresponding to the
optimal rounding discussed in Sec. VIII B.

1. General case

The conformal mapping2

ζ ′(w) = dζ (w)

dw
= A

√
w + 1 +

√
b+1
b−1

√
w − 1

(w − a)
√

w − b
, (114)

A = W/g, a = (b2 + 1)/2b, (115)

ζ (w) = 2A

[
ln

(√
w + 1 + √

w − b√
b + 1

)

+
√

b + 1

b − 1
tan−1

√
(b + 1)(w − b)

(b − 1)(w + 1)

+
√

b + 1

b − 1
ln

(√
w − 1 + √

w − b√
b − 1

)

+ tan−1

√
(b − 1)(w − b)

(b + 1)(w − 1)

]
, (116)

g = π

(
1 +

√
b + 1

b − 1

)
, (117)

maps points in the upper half w plane (w = u + iv) onto
the area ABCDEFG in the upper half ζ plane (ζ = x + iy)
shown in Fig. 13(a). The inverse mapping w(ζ ) can be obtained
numerically. Special points in the ζ and w planes are related as
follows: A, w = −∞; B, w = −1; C, w = +1; D, w = a − ε;
E, w = a + ε; F, w = b; and G, w = +∞; where 1 < a < b

and ε is a positive infinitesimal number. The “radius” r shown
in Fig. 8(a) is determined from

r = A

{√
b + 1

b − 1
ln

[
1 + √

2/(b + 1)

1 − √
2/(b + 1)

]
− 2 tan−1

√
2

b − 1

}
.

(118)

The complex potential describing the current flow within
the area ABCDEFG shown in Fig. 13 is

Gζ (ζ ) = I

π
ln[w(ζ ) − a]. (119)

The imaginary part of this is the stream function S, whose
contours, shown in Fig. 13, are the streamlines of the sheet-
current density K = x̂Kx + ŷKy . The corresponding complex
sheet current, Kζ (ζ ) = dGζ (ζ )/dζ = Kx(x,y) − iKy(x,y), is

Kζ (ζ ) = KI

(
√

b + 1 + √
b − 1)

√
w − b√

(b + 1)(w − 1) + √
(b − 1)(w + 1)

,

(120)

where KI = I/W . For 0 < y < W and x 
 W , which cor-
responds to w → ∞, we have, to a good approximation,
Kx = KI . However, around the arc BC, which corresponds to
w = u, where −1 � u � 1, we find that KBC = |K| is given
by

KBC

KI

=
√

b + 1 + √
b − 1√

2
. (121)

Since b > 1 except in the special limit b → 1, this equation
tells us that current-crowding (KBC > KI ) almost always
occurs. As discussed in Secs. V and VI, so long as ξ � r ,
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FIG. 14. Plots of the current-crowding critical-current reduction
factor R [see Eq. (122)], r/W [see Eq. (118)], b − 1, and a − 1 vs
b − 1 for the 90◦ turn discussed in Sec. VIII C 1. The vertical dotted
line marks the parameters for Fig. 13(a) (R = 0.654, r/W = 0.5,
b = 1.383, and a = 1.053).

this current-crowding therefore leads to a critical sheet-current
density of the form

Kc = φ0

eπμ0ξ�
R, where R =

√
2√

b + 1 + √
b − 1

(122)

is the reduction factor due to current crowding at the curving
inner boundary BC, relative to the Kc for a long straight strip
[see Eq. (14)]. However, to treat the case for which r ′ � ξ , an
approach similar to that in Sec. IV would be required.

Figure 14 shows plots of R, r/W , b − 1, and a − 1 versus
b − 1. While the plot shows R approaching zero for r/W → 0,

bear in mind that Eq. (122) is valid only for r 
 ξ . Note
that to achieve the goal of minimizing current crowding and
maximizing the critical current, one should choose the shape
of the 90◦ turn to make r/W as large as possible. To achieve
R = 1 requires r/W → ∞ and b → 1. We discuss this limit
in the following section.

2. Optimal rounding when r/W → ∞ and b → 1

When r/W → ∞ and b → 1, the dependence of ζ (w)
becomes dominated by values of w very close to 1 and b, and it
is appropriate to introduce the variable ω = (w − 1)/(b − 1)
in Eqs. (114)–(118) and to take the limit as b → 1. This leads
to the conformal mapping

ζ ′(ω) = dζ (ω)

dω
= W (1 + √

ω)

ω
√

ω − 1
, (123)

ζ (ω) = 2W

π

(
cos−1 1√

ω
+ cosh−1 √

ω

)
, (124)

which maps points in the upper half ω plane onto the area
ABCDEF in the upper half ζ plane (ζ = x + iy) shown
in Fig. 13(b). Special points in the ζ and ω planes are

related as follows: A, ω = −∞; B, ω = −1; C, ω = −ε;
D, ω = +ε; E, ω = 1; and F, w = +∞, where ε is a
positive infinitesimal number. The inverse mapping ω(ζ ) can
be obtained numerically. The inner boundary curve ABC for
ω < 0 is given by Eqs. (111)–(113) with v replaced by 1/

√|ω|
and a replaced by 2W . This curve corresponds exactly to the
optimally rounded inner boundary of the 90◦ turn discussed in
Sec. VIII B.

The complex potential describing the current flow within
the area ABCDEF shown in Fig. 13(b) is

Gζ (ζ ) = I

π
ln ω(ζ ). (125)

The imaginary part of this is the stream function S, whose
contours, shown in Fig. 13(b), are the streamlines of the sheet-
current density K = x̂Kx + ŷKy . The corresponding complex
sheet current, Kζ (ζ ) = dGζ (ζ )/dζ = Kx(x,y) − iKy(x,y), is

Kζ (ζ ) = I

W

√
ω(ζ ) − 1

1 + √
ω(ζ )

. (126)

For y < W and x 
 W , which corresponds to ω(ζ ) → ±∞,

we obtain Kx = KI , where KI = I/W . Along the arc ABC,
which corresponds to ω = u, where −∞ � u � 0, we find that
KBC = |K| = KI . In other words, there is no current crowding,
and the critical current is predicted to be exactly the same as
for a long straight strip [see Eq. (14)]. As discussed above,
however, this conclusion is based on the assumption that the
coherence length ξ is much smaller than the radius of curvature
at the origin ρc = 2W/π . To treat the case for which ξ � ρc,
an approach similar to that in Sec. IV would be required.

IX. T INTERSECTION

To measure the critical current of a narrow strip, it is often
the case that the current is driven in and taken out using
wide contact pads at the ends of the strip, and the voltage
is measured using sidebar contacts that intersect the strip at T
intersections. We defer to the next section the question of how
the wide contact pads at the ends affect the measurement, and
in the present section we first examine the extent to which
the geometry of the T intersection can reduce the critical
current because of current crowding at the sharp corners. We
then calculate the boundaries of a T intersection with rounded
corners that should prevent any reduction of the critical current.

A. Sharp corners

The current flow in a strip of width W across the top of
a T intersection with a voltage-contact sidebar of width 2b is
shown in Fig. 15. The conformal mapping34

ζ ′(w) = dζ (w)

dw
= 2b

π

√
β2 − w2

w2 − 1
, (127)

ζ (w) = iW − 2b

π
sin−1(w/β) − 2W

π
tanh−1

(
w

√
β2 − 1√

β2 − w2

)
,

(128)

where β =
√

1 + W 2/b2, maps points in the upper half w

plane (w = u + iv) onto the T-shaped region in the ζ plane
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(ζ = x + iy) shown in Fig. 15. The inverse mapping w(ζ )
must be obtained numerically.

The complex potential Gζ (ζ ) is given by Eq. (7) with
I = KIW and the inverse mapping w(ζ ). The correspond-
ing complex sheet current Kζ (ζ ) = dGζ (ζ )/dζ = Kx(x,y) −
iKy(x,y) is

Kζ (ζ ) = KI

√
β2 − 1√

β2 − w2(ζ )
. (129)

For 0 < y < W , Kx(x,y) → KI as |x| → ∞. The streamlines
of the sheet current K = X̂Kx + ŷKy are obtained as contours
of the stream function S(x,y) = �Gζ (x + iy), the imaginary
part of Gζ (ζ ), shown in Fig. 15(a). Note the current crowding
at the inner corners of the T intersection at (x,y) = (±b,0),
where K = |Kζ (ζ )| diverges.

The critical current of the T intersection is reached when
a vortex can be nucleated at the sharp corners in Figs. 15(a)
or 15(b) at (x,y) = (±b,0). Expanding Eq. (127) about w = β
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FIG. 15. (a) Current flow in a strip carrying total current KIW

across the top of a T intersection, shown by the contour plot of
the stream function S(x,y) = �Gζ (x + iy), which has the values
S = KIW along the top of the T (y = W ) and S = 0 along the
underside (|x| � b, y = 0) and the sides (|x| = b, y � 0). The
contours correspond to streamlines of the sheet-current density K ,
and the arrow shows the current direction. (b) Vortex-generated
current flow, shown by the contour plot of the stream function
Sv(xv,yv; x,y), which has the values Sv = 0 along the boundaries. The
contours, shown here for (xv,yv) = (−b + 0.1W,0.1W ), correspond
to streamlines of the vortex-generated sheet-current density K v , and
the arrow shows the direction of the current. The plots show the
behavior when b = W/2.

(which corresponds to ζ = −b) yields for ζv = −b + δeiπ/4,
w(ζv) = β + δw, where

δw = i

(2β)1/3

[
3π (β2 − 1)δ

4b

]2/3

. (130)

Thus for rv = (−b + δ/
√

2,δ/
√

2), where δ � b, we can
follow the procedure of Sec. IV to obtain the Gibbs free energy,

G = φ2
0

2πμ0�
ln

(
3δ

ξ

)
− φ0KI

(
W

πβ

)1/3(3δ

2

)2/3

. (131)

Following the steps that led to Eq. (14), we obtain
with KI = Kc,(

3δb

2

)2/3

= 3φ0β
1/3

4π2/3μ0�KIW 1/3
, δc = e3/2ξ

3
= 1.49ξ,

(132)

Kc = φ0

eπμ0ξ�
R, where R = 3

2

(
πβξ

2W

)1/3

(133)

is the reduction factor due to current crowding at one of the
sharp inner corners, and β =

√
1 + (W/b)2. The barrier height

for KI < Kc is

Gb = 3φ2
0

4πμ0�
ln

(
Kc

KI

)
. (134)

Note that the prefactor is larger than that in Eq. (15) by a
factor of 3/2, which arises from the term proportional to δ2/3

in Eq. (131).
In the limit when W � b, β → 1, in which case Eq. (133)

yields R ≈ (3/2)(πξ/2W )1/3, the same as that in Eq. (100)
in the limit when W � a and α → 1. In the opposite limit
when W 
 b, we have β → W/b, in which case Eq. (133)
yields R ≈ (3/2)(πξ/2b)1/3. The steps leading to Eq. (100)
should be valid when b 
 ξ , but the above approximations fail
for very small contact widths 2b ∼ ξ ; in this case, Eq. (100)
yields R ≈ 1. When 2b � ξ , current-flow perturbation by the
contact lead (the bottom of the T) is negligibly small, the
current-crowding effect essentially disappears, and the critical
sheet current is practically the same as in a straight long strip
[see Eq. (14)].

B. Rounded corners

Based upon our findings in Secs. VII B and VIII B for
180◦ turnarounds and right-angle turns, it should be possible
to design T intersections with rounded corners and slightly
widened strips near the intersection such that the critical
current is not determined by vortex nucleation at the corners
but rather is the same as for a long straight strip. The
mathematical form for a candidate T intersection with rounded
inner corners can be derived as follows.

Let us use the same conformal mapping as in Eqs. (127)
and (128) but consider equal current flow from the right and
left ends of the top of the T (width W ) at current density KI

into the bottom of the T (width 2b) at current density KIW/b,
as shown in Fig. 16. The complex potential describing this
current flow is

Gζ (ζ ) = −KIW

π
ln[w2(ζ ) − 1]. (135)
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FIG. 16. (Color online) Current flow in a strip carrying currents
KIW in opposite directions merging at the top of a T intersection,
shown by the contour plot of the stream function S(x,y) = �Gζ (x +
iy) [see Eq. (135)], which has the values S = 2KIW along the right
boundary (x > b, y = 0 and x = b, y � 0), S = KIW along the top
of the T (y = W ), and S = 0 along the left boundary (x < −b, y = 0
and x = −b, y � 0). The contours correspond to streamlines of the
sheet-current density K , and the arrows show the current direction.
The right dashed curve shows S = KIW/2 and the left one shows
S = 3KIW/2. Current crowding occurs only for contours near the
sharp corners under the dashed curves. The plot shows the behavior
when b = W/2.

The corresponding complex sheet current Kζ (ζ ) =
dGζ (ζ )/dζ = Kx(x,y) − iKy(x,y) is

Kζ (ζ ) = KIWw(ζ )

b
√

β2 − w2(ζ )
. (136)

For 0 < y < W , Kx(x,y) → ∓KI as x → ±∞, and for |x| <

b, Ky(x,y) → −KIW/b as y → −∞. The streamlines of the
sheet current K = K̂x + ŷKy are obtained as contours of the
stream function S(x,y) = �Gζ (x + iy), the imaginary part of
Gζ (ζ ), shown in Fig. 16. Note the current crowding at the
inner corners of the T intersection at (x,y) = (±b,0), where
K = |Kζ (ζ )| diverges.

The dashed contours in Fig. 16 for S = KIW/2 and
3KIW/2 correspond to the optimally rounded contours shown
in Figs. 6 and 12. As one moves along any contour under a
dashed curve in Fig. 16, K = |K | has a maximum near a sharp
corner, but K varies monotonically when one moves along one
of the dashed curves. Thus, for the type of current flow shown
in Fig. 16, a patterned film in the shape of a T with rounded
corners consisting of the region between the dashed curves and
the straight line across the top of the T has the optimum shape.
When ξ � W or b, the critical current will be unaffected by
the bend and will be the same as for a long straight film. To
calculate the coordinates xo and yo of the optimally rounded
dashed curves, note that in the w plane the corresponding con-
tours are defined by wo(η) = uo + ivo = cosh η + i sinh η =√

2 sin(π/4 + iη) for S = KIW/2 and wo(η) = uo + ivo =
− cosh η + i sinh η = √

2 sin(−π/4 + iη) for S = 3KIW/2,

where in both cases η � 0. Thus the coordinates of the dashed
curves in the ζ plane can be expressed with the help of
Eq. (128) via the parametric equations

ζo(η) = xo(η) + iyo(η) = ζ [wo(η)]. (137)

A T intersection with rounded corners as described above
would be a good choice for a patterned structure to avoid the
problem of critical-current reduction due to current crowding
discussed in Sec. IX A.

X. WIDE END PAD

To supply current to a narrow strip, it is common to use
wide contact pads at the ends of the strip. In Sec. X A, we
show that with such a geometry the sharp corners where the
strip connects to the end pad are weak points where vortex
nucleation caused by current crowding occurs at a current less
than the critical current of the long strip alone. However, in
Sec. X B, we calculate smooth boundaries of the connection
between the strip and the end pad for which there should be
no reduction of the critical current due to current crowding.

A. Sharp corners

Consider the current flow in a strip of width W (x < 0,
−W/2 < y < W/2) connected at x = 0 to a wide contact pad
of width a > W (x > 0, −a/2 < y < a/2). The sheet-current
density is KI for x � −W and KIW/a for x 
 a, and
to describe the overall current flow, we use the conformal
mapping35

ζ ′(w) = dζ (w)

dw
= W

√
γ + 1

π (1 − w2)
√

γ − w
, (138)

ζ (w) = i

π

[
W tan−1

(√
w − γ√
γ + 1

)
+ a tan−1

( √
γ − 1√
w − γ

)]
,

(139)

where γ = (a2 + W 2)/(a2 − W 2), maps points in the upper
half w plane (w = u + iv) onto the region of the ζ plane
(ζ = x + iy) defined by 0 < y < W/2 for x < 0 and 0 < y <

a/2 for x > 0. The inverse mapping w(ζ ) must be obtained
numerically. The mapping of Eq. (139), shown for a = 2W

and γ = 5/3 in Fig. 17, corresponds to just the upper half of
the strip and its contact pad, since the sheet-current density
K (x,y) has mirror symmetry about y = 0.

The complex potential Gζ (ζ ) describing total current KIW

in the x direction is given by Eq. (7) with I = −KIW/2 and
the inverse mapping w(ζ ). The corresponding complex sheet
current Kζ (ζ ) = dGζ (ζ )/dζ = Kx(x,y) − iKy(x,y) is

Kζ (ζ ) = KI

√
γ − w(ζ )√
γ + 1

. (140)

For x < 0 and 0 < y < W/2, we obtain Kx(x,y) → KI as
w(ζ ) → −1 and x → −∞, and for x > 0 and 0 < y < a/2,
we obtain Kx(x,y) → KI/2 as w(ζ ) → +1 and x → +∞.
The magnitude of the sheet current, K = |Kζ (ζ )|, is zero at
(x,y) = (0,a/2), where w(ζ ) = γ , but diverges at (x,y) =
(0,W/2), where w(ζ ) → ∞. The streamlines of the sheet
current K = K̂x + ŷKy are obtained as contours of the stream
function S(x,y) = �Gζ (x + iy), the imaginary part of Gζ (ζ ),
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FIG. 17. (Color online) (a) Current flow in the upper half of
a strip of total width W carrying total current KIW into a wide
contact strip of total width a, shown by the contour plot of the
stream function S(x,y) = �Gζ (x + iy), which has the values S = 0
along the upper boundary and S = −KIW/2 along the x axis. The
contours correspond to streamlines of the sheet-current density K ,
and the arrow shows the current direction. Current crowding leading
to K > KI occurs for all contours above the dashed contour for
S = −KIW/4. (b) Vortex-generated current flow, shown by the
contour plot of the stream function Sv(xv,yv; x,y), which has the
values Sv = 0 along the boundaries. The contours, shown here for
(xv,yv) = (0.05W,0.45W ), correspond to streamlines of the vortex-
generated sheet-current density K v , and the arrow shows the direction
of the current. The plots show the behavior when a = 2W.

shown in Fig. 17(a). Note the current crowding near the sharp
corner at (x,y) = (0,W/2), where K = |Kζ (ζ )| diverges.

The critical current is reached when a vortex can be
nucleated at (x,y) = (0,W/2) in Figs. 17(a) or 17(b). To
calculate it, we first need the work term WI (rv) = φ0
I (rv) =
φ0[S(0,W/2) − S(xv,yv)]. However, we need this only very
close to the corner. Expanding Eq. (138) about w = ±∞
yields, for ζ = iW/2 + δ/

√
2 − iδ/

√
2 and δ � W ,

1

w
= −i

(
3πδ

4W
√

γ + 1

)2/3

. (141)

Thus for rv = (δ/
√

2,W/2 − δ/
√

2), where δ � W , we can
follow the procedure of Sec. IV and use Eq. (141) to obtain
the Gibbs free energy,

G = φ2
0

2πμ0�
ln

(
3δ

ξ

)
− φ0KI

[
W

π (γ + 1)

]1/3(3δ

2

)2/3

.

(142)

Following the steps that led to Eq. (14), we obtain
with KI = Kc,

(
3δb

2

)2/3

= 3φ0(γ + 1)1/3

4π2/3μ0�KIW 1/3
, δc = e3/2ξ

3
= 1.49ξ,

(143)

Kc = φ0

eπμ0ξ�
R, where R = 3

2

[
π (γ + 1)ξ

2W

]1/3

.

(144)

is the reduction factor due to current crowding at the sharp
corner (x,y) = (0,W/2), and γ + 1 = 2a2/(a2 − W 2). The
barrier height for KI < Kc is

Gb = 3φ2
0

4πμ0�
ln

(
Kc

KI

)
. (145)

Note that the prefactor is larger than that in Eq. (15) by a
factor of 3/2, which arises from the term proportional to δ2/3

in Eq. (142).
In the limit when a/W → ∞, γ + 1 → 2, in which case

Eq. (144) yields R ≈ (3/2)(πξ/W )1/3, the same as that in
Eq. (100) in the limit α → 1 for a strip of width W/2.

The steps leading to Eq. (144) should be valid when (a −
W ) 
 ξ , but the assumptions fail when (a − W ) ∼ ξ , in which
case (γ + 1) ∼ W/ξ 
 1 and R ∼ 1. When (a − W ) � ξ ,
current-flow perturbation at the transition to the wider end is
negligibly small, and the critical sheet current is practically
the same as in a straight long strip [see Eq. (14)].

B. Rounded corners

We now seek the mathematical form of optimally rounded
boundaries of a transition region from a narrow strip to a wide
strip, such that the critical current is not reduced by vortex
nucleation at the corners but instead is the same as that of
a long, straight, narrow strip. We already have determined
in Secs. VII B and VIII B the shapes of optimally rounded
boundaries for which there is no critical-current reduction due
to current crowding around 180◦ turnarounds or right-angle
turns (see the dashed curves in Figs. 6 and 12). Here, we use a
similar approach.

A careful analysis of the contours for −KIW/4 < S � 0
in Fig. 17(a) reveals that K , the magnitude of the current
density, has a maximum greater than KI as one moves along
the contour from left to right. However, for S = −KIW/4, the
maximum occurs at x = −∞, where K = KI . For contours
with −KIW/2 � S < −KIW/4, K decreases monotonically
below KI as one moves along the contour from left to right. The
shape of the optimal contour therefore can be obtained from
S = −KIW/4. In the w plane, this corresponds to a circular
arc of radius 1 centered at the origin, wo(η) = uo + ivo =
eiη = cos η + i sin η, where 0 � η � π . Thus the coordinates
(xo(η),yo(η)) of the dashed curve in the ζ plane, the upper
boundary of the optimally rounded transition region, can
be expressed with the help of Eq. (139) via the parametric
equations

ζo(η) = xo(η) + iyo(η) = ζ [wo(η)]. (146)
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Because of the mirror symmetry about the x axis, the lower
boundary of the optimally rounded transition region is defined
by the coordinates (xo(η), − yo(η)).

Note that since the rounded transition region is essentially
carved out of the middle of a long strip of width W and an end
pad of width a, far from the joint, the widths are W/2 for the
narrow strip and a/2 for the end pad.

XI. EDGE DEFECTS

In the above calculations, we have calculated the critical
currents of long straight thin strips of uniform thickness or
strips with straight or smooth edges interrupted by corners or
turns. We now calculate the critical-current reduction when the
edges of the strips are not straight or smooth but have defects.

A. Semicircular notch

Consider a long, straight strip of constant width W with
a defect along the edge, modeled as a semicircular notch of
radius a at the edge, where a � W . The conformal mapping36

ζ ′(w) = 1

2
+ w

2
√

w2 − (2a)2
, (147)

ζ (w) = w +
√

w2 − (2a)2

2
, (148)

w(ζ ) = ζ + a2/ζ, (149)

maps points in the upper half w plane (w = u + iv) onto the
region of the ζ plane (ζ = x + iy) above the x axis for |x| � a

and above the semicircle for |x| < a.
For a sheet-current density with the value Kx = −KI at

large distances above the notch, the complex potential is

Gζ (ζ ) = −KIw(ζ ), (150)

and its imaginary part is the stream function, shown in
Fig. 18(a). Similarly, when a vortex is at the position ζv = iyv ,
the stream function Sv can be calculated from Eq. (9) with
w(ζ ) obtained from Eq. (149). The stream function Sv , the
imaginary part of Gvζ (ζv,ζ ), is shown in Fig. 18(b).

When a vortex is at the position ζv = iyv (yv > a) on the y

axis, we obtain from Eqs. (10) and (11),

G = φ2
0

2πμ0�
ln

[
2yv

(
y2

v − a2
)

ξ
(
y2

v + a2
) ]

− φ0KI

(
yv − a2

yv

)
. (151)

Setting δ = yv − a and following the steps outlined in Sec. IV
for arbitrary values of ξ/a, we obtain δc, the position for
which G = 0, as shown in Fig. 19(a). The corresponding
sheet-current density is

Kc = φ0

eπμ0ξ�
R, (152)

where R, the reduction factor due to current crowding near the
top of the notch, is shown in Fig. 19(b). Analytic expansions
(including only the first few terms in the series) for ξ/a � 1
are [dashed curves in Fig. 19]

δc

ξ
= e

2
+ e2

8

(
ξ

a

)
− e3

16

(
ξ

a

)2

, (153)
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FIG. 18. (a) Current flow around a semicircular notch of radius a

near the edge of a strip, shown by the contour plot of the stream
function S(x,y) = �Gζ (x + iy), Eq. (150), which has the values
S = 0 along the boundary. The contours correspond to streamlines of
the sheet-current density K , and the arrow shows the current direction.
(b) Vortex-generated current flow, shown by the contour plot of the
stream function Sv(xv,yv; x,y), which has the values Sv = 0 along
the boundaries. The contours, shown here for (xv,yv) = (0,1.2a),
correspond to streamlines of the vortex-generated sheet-current
density K v , and the arrow shows the direction of the current.

R = 1

2
+ e

4

(
ξ

a

)
− e2

16

(
ξ

a

)2

, (154)

and corresponding expansions for ξ/a 
 1 are [dot-dashed
curves in Fig. 19]

δc

ξ
= e

2
−

(
a

ξ

)
+ 8

e

(
a

ξ

)2

, (155)

R = 1 − 4

e2

(
a

ξ

)2

− 368

e4

(
a

ξ

)4

. (156)

Regardless of the size of ξ relative to a, vortex nucleation
always occurs when the barrier height is reduced to zero at a
distance δc of the order of ξ from the semicircular notch. When
ξ � a, the critical-current reduction factor is R = 1/2, which
arises from current crowding at the top of the notch, where the
sheet-current density is a factor of two larger than far away
from the notch. However, because of the radius-of-curvature
effect discussed in Sec. VI, R approaches 1 as ξ/a increases to
large values. This behavior of R as a function of ξ/a appears
to be a general feature of edge defects in thin films: When the
linear dimensions of the edge defect are much smaller than ξ ,
the suppression of the critical current is negligible (R ≈ 1).

B. Triangular notch

Consider a long, straight strip of constant width W with
a defect along the edge, modeled as a triangular notch in
the shape of an isosceles triangle with base 2b along the
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FIG. 19. Numerical results for (a) δc/ξ and (b) R as functions of
the ratio of the coherence length ξ to the radius a of the semicircular
notch. Expansions in powers of ξ/a are shown as dashed curves for
δc [See Eq. (153)] and R [See Eq. (154)]. Expansions in powers of
a/ξ are shown as dot-dashed curves for δc [See Eq. (155)] and K0c

[Eq. (156)].

edge, height a, two equal sides of length c = √
a2 + b2, and

vertex angle θ0 = 2 tan−1(b/a), where a � W . We define
μ = 1/(2 − θ0/π ), which varies between 1/2 (when θ0 = 0)
and 1 (when θ0 = π ). The conformal mapping37

ζ ′(w) = dζ (w)

dw
= K(μ)

w
1
μ
−1

(1 − w2)
1

2μ
− 1

2

, (157)

K(μ) = c exp

[
−i

π

2

(
1

μ
− 1

)]
g(μ), (158)

g(μ) =
√

π

�
(

1
2μ

)
�

(
3
2 − 1

2μ

) , (159)

ζ (w) = Kμw
1
μ 2F1

(
1

2μ
,

1

2μ
− 1

2
;

1

2μ
+ 1; w2

)

+ ic sin

[
π

2

(
1

μ
− 1

)]
, (160)

and 2F1(α,β; γ ; z) is the hypergeometric function, maps points
in the upper half w plane (w = u + iv) onto the region of the ζ

plane (ζ = x + iy) above the x axis for |x| � b and above the
notch for |x| < b. The inverse mapping w(ζ ) must be obtained
numerically. g(μ) = 1 at μ = 1/2 and 1, and rises smoothly
to a maximum of g = √

π/�2(3/4) = 1.180 at μ = 2/3.
For a sheet-current density with the value Kx = −KI at

large distances above the notch, the complex potential is

Gζ (ζ ) = −KIgcw(ζ ), (161)

and its imaginary part is the stream function, shown in
Fig. 20(a). Similarly, when a vortex is at the position ζv = iyv ,
the stream function Sv can be calculated from Eq. (9) with w(ζ )
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FIG. 20. (a) Current flow around an isosceles triangular notch
(height a, base 2b, and sides c) near the edge of a strip, shown
by the contour plot of the stream function S(x,y) = �Gζ (x + iy),
Eq. (161), which has the values S = 0 along the boundary. The
contours correspond to streamlines of the sheet-current density K , and
the arrow shows the current direction. (b) Vortex-generated current
flow, shown by the contour plot of the stream function Sv(xv,yv; x,y),
which has the values Sv = 0 along the boundaries. The contours,
shown here for (xv,yv) = (0,0.9c), correspond to streamlines of the
vortex-generated sheet-current density K v , and the arrow shows the
direction of the current. The plots show the behavior when μ = 2/3
and the vertex angle is θ0 = π/2.

obtained as the inverse of ζ (w), Eq. (160). The stream function
Sv , the imaginary part of Gvζ (ζv,ζ ), is shown in Fig. 20(b).

At distances along the y axis a short distance δ above the
peak at z = x + iy = ia, which corresponds to w = 0, one
can show from Eqs. (157) and (158) that w = iv, where v =
(δ/cμg)μ. Following the procedure of Sec. IV, we obtain

G = φ2
0

2πμ0�
ln

(
2δ

μξ

)
− φ0KIgc

(
δ

μgc

)μ

. (162)

Following the steps that led to Eq. (14), we obtain with
KI = Kc,(

δb

μgc

)μ

= φ0

2πμ0�KIμgc
, δc = μe1/μξ

2
, (163)

Kc = φ0

eπμ0ξ�
R, where R = 1

μ

(
ξ

2gc

)1−μ

(164)

is the reduction factor due to current crowding near the top of
the notch, valid only for small values of ξ/c. Figure 21 exhibits
plots of R versus θ0/π , where θ0 is the notch’s vertex angle,
and Table I exhibits the functional dependence of R upon θ0

and μ. The result in Eq. (164) is consistent with the solutions
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FIG. 21. The notch’s critical-current reduction factor R, see
Eq. (164), vs the vertex angle θ0 for ξ/a = 0.01, 0.03, and 0.1,
where a = c cos( θ0

2 ) = c sin[ π

2 ( 1
μ

− 1)].

of closely related problems in Refs. 5,38, and 39. The barrier
height for KI < Kc is

Gb = φ2
0

2πμμ0�
ln

(
Kc

KI

)
. (165)

Note that the prefactor is larger than that in Eq. (15) by a
factor of 1/μ, which arises from the term proportional to δμ

in Eq. (162).

XII. THERMAL EXCITATION OVER THE
GIBBS-FREE-ENERGY BARRIER

In the above sections, we have calculated the critical current
Ic = KcW by defining it as the current I = KIW at which
the Gibbs-free-energy barrier is reduced to zero. This is the
critical current that would be measured in the limit of zero
temperature, T = 0. However, because the Gibbs-free-energy
barrier height Gb is proportional to ln(Ic/I ), as shown in
Eqs. (15), (19), (57), (101), (109), (134), and (145), experi-
ments performed at finite temperature may observe switches
into a state of finite voltage at currents less than the zero-Gibbs-
free-energy-barrier critical current Ic. Such switches can occur
because nascent vortices may be thermally excited to the top
of the free-energy barrier during the time of the experiment.
Because this is a statistical process, the switching currents can
be described by a probability distribution that depends upon
temperature, sample properties, and experimental conditions.

We next derive the switching probability distribution
applicable to experiments in which the current I through
the superconducting device is ramped from zero to some
maximum value at a rate rI = dI/dt , where t is the time,

TABLE I. The notch’s critical-current reduction factor R, see
Eq. (164), as a function of the vertex angle θ0 and μ = 1/(2 − θ0/π ).

θ0 μ R

0 1/2 1.414(ξ/a)1/2

π/4 4/7 1.191(ξ/a)3/7

π/2 2/3 1.004(ξ/a)1/3

3π/4 4/5 0.876(ξ/a)1/5

π 1 1

such that I = rI t . Let Pu(t) denote the probability that the
device is still unswitched (in the zero-voltage state) at time t .
We assume that the probability per unit time of a switch into
a finite-voltage state (resulting from a successful transit of a
nascent vortex over the Gibbs-free-energy barrier) is

� = ω exp(−Gb/kBT ) = ω(I/Ic)N, I � Ic, (166)

= ω, I > Ic, (167)

where ω corresponds to the sample-dependent attempt fre-
quency in Herz and N is the ratio of Gb’s energy scale to
kBT : N = φ2

0/2πμ0�kBT for a straight strip or a gentle curve
[see Eqs. (15) and (19)], N = φ2

0/πμ0�kBT for a sharp 180◦
turnaround [see Eq. (57)], or N = 3φ2

0/4πμ0�kBT for sharp
right-angle inner corners [see Eqs. (109), (134), and (145)].
For the cases of interest here, N 
 1. The rate of decrease of
Pu(t) is given by the equation

dPu/dt = −�Pu. (168)

The solution of Eqs. (166)–(168), expressed in terms of I , is

Pu = exp

[
− ωIN+1

(N + 1)rI IN
c

]
, I � Ic, (169)

= exp

[
− ωIc

(N + 1)rI

]
exp

[
−ω(I − Ic)

rI

]
, I � Ic.

(170)

The probability that the device has switched by the time
the current reaches I is Psw = 1 − Pu, and the switching
probability distribution P ′

sw = dPsw/dI = −dPu/dI is

P ′
sw = ω

rI

(
I

Ic

)N

exp

[
− ωIN+1

(N + 1)rI IN
c

]
, I � Ic, (171)

= ω

rI

exp

[
− ωIc

(N + 1)rI

]
exp

[
−ω(I − Ic)

rI

]
, I � Ic.

(172)

Figure 22 shows normalized plots of P ′
sw vs I/Ic for

N = 1000 and values of rI /ωIc spanning over three orders
of magnitude.

When NrI/ωIc � 1, the switching probability distribution
P ′

sw has its maximum P ′
sw,max at I = Imax, where

Imax = Ic(NrI/ωIc)1/(N+1) (173)

and

P ′
sw,max = (N/Imax) exp[−N/(N + 1)]. (174)

At very low temperatures, N 
 1, and for a wide range
of values of rI /ωIc we find that Imax ≈ Ic and P ′

sw,max ≈
N/eIc. Since

∫ ∞
0 P ′

swdI = 1, the width 
I of the probability
distribution is approximately eIc/N . Note that Imax = Ic when
NrI/ωIc = 1.

When NrI/ωIc > 1, the maximum of P ′
sw becomes cusp-

like and remains at I = Ic. For high ramp rates rI 
 ωIc/N ,
the probability of switching at a reduced current I < Ic

becomes very small, and the switching occurs chiefly for
I > Ic on a time scale of order 1/ω. At zero temperature,
which corresponds to N = ∞, Eqs. (171) and (172) show that
no switching occurs for I < Ic, P ′

sw,max = ω/rI at I = Ic, and
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FIG. 22. Switching probability distribution due to thermally
activated barrier-climbing, P ′

sw/P ′
sw,max(Ic) vs I/Ic [Eqs. (171)

and (172)], where P ′
sw, max(Ic) = (N/Ic) exp[−N/(N + 1)], shown

for N = 1000 and rI /ωIc = (a) 10−5, (b) 3 × 10−5, (c) 10−4,
(d) 3 × 10−4, (e) 10−3 (Imax = Ic), (f) 3 × 10−3, (g) 10−2, and
(h) 3 × 10−2.

P ′
sw = (ω/rI ) exp[−(ω/rI )(I − Ic)], with a width 
I of order

rI /ω.

XIII. COMPARISON WITH EXPERIMENT USING SHARP
RECTANGULAR 180◦ TURNAROUNDS

In 2009, Yang et al.15 observed that narrow hairpin turns in
superconducting thin films exhibited reduced critical currents
and hypothesized that the current-crowding effect described
above might have explained their results, but at the time, the
authors were not aware of the work of Hagedorn and Hall,
and further did not attempt a careful analysis.1 Yang et al.15

measured the critical currents of superconducting meander
structures with rectangular 180◦ turnarounds like that shown
in Fig. 11. Combining displaced mirror images of rectangular
turnarounds in a two-dimensional layout (a “boustrophedonic”
pattern) results in a fill factor f = W/p, where p = W + g is
the pattern period (pitch) and W and g are the strip and gap
widths far from the turnarounds.

The results of Sec. VII E can be used to obtain a simple
theoretical prediction for the dependence of the ratio of the
critical current Ic(f ) at fill factor f to Ic(0), the critical current
in the limit of infinite gap width (zero filling factor). Since
in the latter case h/a → 1, the desired critical-current ratio
obtained from Eq. (100) is Ic(f )/Ic(0) = α1/3, where α =√

2(h/a) − (h/a)2. However, in terms of the fill factor f we
have h/a = (1 − f )/(1 + f ). The theory therefore predicts

Ic(f )

Ic(0)
= (1 + 2f − 3f 2)1/6

(1 + f )1/3
, (175)

except for a crossover at f ≈ 1 − ξ/W into the limit f → 1,
where Secs. VII A and VII E predict

Ic(1)

Ic(0)
= 24/3

3

(
πξ

W

)1/6

. (176)

Figure 23 shows a comparison between the experimental
results and Eqs. (175) and (176). The data are the same as
reported in Ref. 15, while the theoretical fit includes a single
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FIG. 23. Comparison between experimental results for sharp
rectangular 180◦ turnarounds15 and the corresponding theoretical
predictions of Eqs. (175) and (176).

free parameter, the critical current Ic(0) in the limit of zero
fill factor (f = 0), which was not measured. The fitted value
of Ic(0) = 17 μA was obtained by varying it until the fit
appeared acceptable by eye. A few-percent variation in this
fitting parameter resulted in a markedly unacceptable fit.

According to Eq. (100), since a fill factor of f = 0
corresponds to the value α = 1, this critical current (17 μA)
is smaller by the factor R = (3/2)(πξ/2W )1/3 than the ideal
critical current of a long strip of width W . With the values ξ =
7 nm and W = 90 nm,15 R = 0.744, suggesting that the critical
current of a long strip of width 90 nm at the same temperature
should be 23 μA.

XIV. DISCUSSION

In this paper, we have developed a relatively simple, general
method for systematically estimating the critical current of
narrow, thin-film superconducting strip patterns with various
layouts including turns and turnarounds. We have shown that
if the latter have sharp inner corners, current crowding has
the effect of reducing the critical current below that of a long,
narrow superconducting strip of constant width.

Our results also have important consequences for thin-film
superconducting single-photon detectors.7–13 These detectors
carry currents close to the critical current while waiting
for photons to arrive, but spurious dark counts arise when
thermally excited vortices climb over the Gibbs-free-energy
barrier and cross the strip, thereby producing a voltage pulse.
Our results suggest that the frequency of dark counts in
single-photon detectors is increased at sharp corners, where
the Gibbs-free-energy barrier is reduced.

We have made a number of simplifications to obtain
our results, and following are various extensions and im-
provements that could be made: (1) numerical solutions
of the time-dependent Ginzburg-Landau (TDGL) equations
in two dimensions, allowing for the growth of fluctuations
and instabilities leading to vortex nucleation at the corners
and subsequent propagation across the current-carrying strip,
would provide more accurate values for the nonthermally
activated critical currents. The geometries of interest here,
for which the strip widths are much less than the Pearl
length � = 2λ2/d, provide the opportunity for considerable

174510-24



GEOMETRY-DEPENDENT CRITICAL CURRENTS IN . . . PHYSICAL REVIEW B 84, 174510 (2011)

simplifications in the TDGL calculations, since the spatial
variation of the order parameter and the current density can be
calculated ignoring the effect of self-fields.

(2) The present calculations, which assume that the co-
herence length ξ is much less than the strip widths, could
be extended by relaxing this assumption. The price to be
paid, however, is that the results for the critical current would
become much more complicated.

(3) In calculating the self-energy, we have accounted only
for the kinetic energy of the supercurrent circulating around
the vortex outside the vortex core. (The magnetic field energy
contribution is negligibly small when � is much larger than
the strip width.) The accuracy of the self-energy calculation
could be improved by using a variational method to include the
contributions to the vortex energy inside the vortex core arising
from loss of condensation energy and the kinetic-energy cost
of bending the magnitude of the order parameter.40 However,
the best way to include the effects of the vortex core would be
via TDGL calculations, since studies such as those in Refs. 41
and 42 have revealed that the vortex core is strongly distorted
near the sample edges.

(4) The calculations in this paper make use of the London-
model assumption that the superconducting order parameter
is not suppressed by the current density. The accuracy of
the present results could be improved by accounting for the
current-induced suppression of the order parameter, as done
in Refs. 11 and 12.

(5) In this paper, we have calculated the critical current
as that for which the Gibbs-free-energy barrier for nucleation
of a vortex is reduced to zero. We believe that extensions
of our theory to calculate the rate of thermal excitation of
vortices over the Gibbs free energy barrier at slightly lower
currents would confirm that the frequency of dark counts8–13

(if time-resolved) and the thermally activated resistance6 (if
time-averaged) are systematically increased at sharp corners
as a result of current crowding.

It is important to note that in this paper we have assumed
that, in stark contrast to most earlier experiments measuring
the critical current in type-II superconductors with much larger
transverse dimensions, bulk pinning plays no role whatsoever
in determining the critical current in thin and narrow films
under self-field conditions.6 In 2G (second-generation) coated
conductors (thickness ∼1 μm and width ∼4 mm) with strong
pinning, what normally dominates the critical current is bulk
pinning,43 and except in very rare cases,44 the critical-current
density due to bulk pinning is typically far below the Ginzburg-
Landau depairing critical-current density.45 However, edge
pinning has been shown to play an increasingly dominant role
in measurements using narrow strips or bridges (width <10
μm) to assure that the current supply is adequate to do the
measurements.46,47 The theoretical calculations in the present
paper are intended to apply to even thinner and narrower
superconducting strips (thickness ∼5 nm, width ∼50–200
nm). In such films, vortices introduced into the strip by a
large applied perpendicular magnetic field24 presumably can
be pinned by bulk pinning sites. However, if the applied field
is removed, a high current can drive these vortices out of
their pinning sites, causing the vortices to annihilate with their
images upon exiting the strip. New vortices cannot enter the
strip until the current is high enough that the vortices can

surmount the Gibbs-free-energy barrier at the other edge of
the strip.

Mirror images of the 180◦ turnarounds discussed in Sec. VII
can be combined in a two-dimensional layout to produce
periodic meanders with the filling factor f = W/p, where
p = W + g is the pattern period (pitch) and W and g are the
strip and gap widths far from the turnarounds. In Sec. VII B, we
described how to pattern a 180◦ turnaround with an optimally
rounded inner corner that would avoid current crowding and
thereby maintain the critical current at the same level as that
of an infinitely long straight strip. However, this optimal
design yields a filling factor of only f = 1/3, because here
W = a/2 and g = a. If it is desired to increase the filling
factor above 1/3, our calculations indicate that this must
come at the expense of the critical current, because, as
shown in Sec. VII C, even with rounded inner corners, the
critical current generally will be reduced, primarily because of
unavoidable current crowding where the inner boundary has its
minimum radius of curvature. Figure 7 and Eq. (63) present our
calculations of the best one can do in alleviating critical-current
reduction by rounding the inner corner of the 180◦ turnaround.
Engineering considerations regarding the trade-offs between
critical currents Ic and filling factors f will determine the
shape of the turnaround for a specific application.

The work we have done here in fitting this theory to prior
work15 suggests that the bias current in conventional SNSPDs
may be limited by sharp corners. One is tempted to conclude
from this result that appropriately designed devices (in which
the inner corners are rounded to avoid current crowding)
would be capable of far superior performance. However, this
presumption would be slightly premature—every fabrication
process is slightly different, and the process used in the Yang
paper was unique in its details from other processes reported
in the literature. More careful experiments are needed in this
case.

Although the focus in this paper has been on super-
conducting thin films, our results have relevance to the
properties of normal-metal films. The current flows shown in
Figs. 1, 2(a), 4(a), 6(a), 8, 10, 11(a), 12(a), 13, 15(a), 16, 17(a),
18(a), and 20(a) apply equally well to normal films. Current
crowding at the inner corners of sharp bends leads to locally
increased dissipation, increasing the electrical resistance of the
strip, producing excess ohmic heating, and possibly increasing
electromigration. These are all undesirable properties that
could be avoided by choosing film patterns that optimally
round the inner corners as discussed above.
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APPENDIX: SELF-ENERGY OF A PEARL VORTEX
IN A SECTOR OF ANGLE α

Equation (8) gives the complex potential describing a vortex
interacting with its image at the straight edge of a strip. We
have used this complex potential, combined with conformal
mapping, to find the self-energy of a vortex in other strip
geometries. Using the conformal mapping,

ζ (w) = ie−iα/2wα/π , (A1)

w(ζ ) = ie−iπ2/2αζ π/α, (A2)

we can describe the current flow surrounding the vortex in a
thin-film sector of angular width α centered on the y axis (see
Fig. 24) in terms of the complex potential in the ζ plane,

Gvζ (ζv; ζ ) = iφ0

πμ0�
ln

[
w(ζ ) − w∗(ζv)

w(ζ ) − w(ζv)

]
, (A3)

whose imaginary part is the stream function Sv(xv,yv; x,y) =
�Gvζ (ζv; ζ ). When the vortex is at (xv,yv) = (0,δ) and ξ �
δ, the circulating current Icirc(rv) = Sv(0,δ; 0,δ + ξ ) can be
evaluated from Eq. (A3) by replacing the numerator in the
argument of the logarithm by w(ζv) − w∗(ζv), where w(ζv) =
iδπ/α , and the denominator by ξdw(ζv)/dζv = (πξ/α)δπ/α−1.
The resulting self-energy Eself (rv) = φ0Icirc(rv)/2 is

Eself (δ) = φ2
0

2πμ0�
ln

(
2αδ

πξ

)
. (A4)

When the factor 2α/π is an integer, it corresponds to the num-
ber of quadrants within which the vortex-generated current
flows.48 Note, for example, the factor 3 in the self-energy term

2 1 0 1 2
0

1

2

3

4

x Δ

y
Δ

FIG. 24. Vortex-generated current flow in a thin-film angular
sector of opening angle α, shown by the contour plot of the stream
function Sv(xv,yv; x,y), which has the values Sv = 0 for (x,y) along
the boundaries. The contours, shown here for rv = (xv,yv) = (0,δ)
and α = π/2, correspond to streamlines of the vortex-generated
sheet-current density K v , and the arrow shows the direction of the
current.

of Eq. (106) [see Fig. 12(b)] and the factor 4 in Eq. (54) [see
Fig. 6(b)].
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