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Adaptive Vision and Force Tracking Control for
Robots With Constraint Uncertainty

Chien Chern Cheah, Senior Member, IEEE, Saing Paul Hou, Student Member, IEEE, Yu Zhao,
and Jean-Jacques E. Slotine

Abstract—In force control applications of robots, it is difficult to
obtain an exact model of a constraint surface. In presence of the
constraint uncertainty, the robot needs to adapt to the uncertainty
in external parameters due to the environment, in addition to the
uncertainties in internal parameters of the robot kinematics and
dynamics. In this paper, a visually servoed adaptive controller is
proposed for motion and force tracking with uncertainties in the
constraint surface, kinematics, dynamics, and camera model. We
shall show that the robot can track the desired trajectories with the
uncertain internal and external parameters updated online. This
gives the robot a high degree of flexibility in dealing with changes
and uncertainties in its model and the environment.

Index Terms—Adaptive control, force control, uncertain kine-
matics and dynamics, visual servoing.

I. INTRODUCTION

IN MANY applications of robots, such as spot welding, pol-
ishing, and deburring, the end-effector is required to make

contact with an environment. In these applications, it is nec-
essary to control not only the position but also the interac-
tion force between the robot end-effector and the environment.
There are two major approaches for robot force control, namely
impedance control [1] and hybrid position/force control [2].
A review for the research in force control can be found in [3].
Several model-based approaches have been proposed for motion
and force tracking control [4], [5] of robots, but these controllers
require exact models of the robot systems that are difficult to
obtain in practice. To relieve this problem, much effort has been
devoted to understand how the robots can cope with dynamic
uncertainty [6]–[9].

A major problem for most hybrid position/force controllers
is that the exact knowledge of the constraint surface is required.
However, in force control applications, it is difficult to obtain
the exact model of the constraint. Several controllers [10], [11]
have been proposed to deal with constraint uncertainty, but the
robot kinematics is assumed to be known exactly. In addition,
the control problems are either formulated in joint space or
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Cartesian space. It is important to note that when the constraint
surface is uncertain, the desired end-effector position on the
constraint surface is unknown and, hence, cannot be obtained
directly in Cartesian space or joint space.

A fundamental benefit of image-based control is that it al-
lows noncontact measurement of the environment, so the posi-
tion of the end-effector and its desired position on the uncertain
constraint surface can be obtained in image space using cam-
eras. Most research so far on vision control of robot manipu-
lators has focused on free motion control. To deal with contact
tasks, several hybrid vision–force controllers have been pro-
posed [12]–[15]. However, these approaches have ignored the
effects of nonlinearity and uncertainties of the robot dynam-
ics in the design of the vision and force controllers. Therefore,
it is not sure whether the stability of the overall control sys-
tem can be guaranteed in the presence of dynamic, kinematic,
and constraint uncertainties. A computed torque method is pro-
posed in [16], but the dynamics and kinematics of the robot
are assumed to be known exactly and the stability issue is not
considered. This means that the robot is not able to adapt to any
changes and uncertainties in its models. For example, when a
robot picks up several tools of different dimensions, unknown
orientations, or gripping points, the overall kinematics and dy-
namics of the robot change and are therefore difficult to derive
exactly.

Arimoto [17] describes the importance of the research on
robot control with uncertain kinematics. Several controllers
[18]–[21] have been proposed to deal with uncertain kinemat-
ics and dynamics, but the results are focusing on free motion
control. In force control problems [3], it is necessary to con-
trol not only the position but also the interaction force between
the robot end-effector and the constraint. Recently, several posi-
tion and force controllers [22]–[24] using approximate Jacobian
have been proposed to overcome the uncertainties in both kine-
matics and dynamics. However, the results are limited to set
point control, and the trajectory tracking control problem with
uncertain constraint surface, kinematics, and dynamics has not
been solved so far.

In this paper, we propose a visually servoed motion and force
tracking controller, in which exact knowledge of the constraint
surface, kinematics, dynamics, and camera model is not re-
quired. The use of a vision sensor introduces additional trans-
formation and uncertainty from Cartesian space to image space,
and hence, the motion and force errors are defined in two dif-
ferent coordinate frames. Adaptive Jacobian matrices are used
to compensate the uncertainties due to internal and external pa-
rameters. A Lyapunov-like function is presented to prove the
stability of the proposed vision–force controller. It is shown that

1083-4435/$26.00 © 2009 IEEE
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Fig. 1. Camera–manipulator system.

the proposed controller can track desired vision and force tra-
jectories with the uncertainties in constraint surface, kinematics,
dynamics, and camera model. Simulation results illustrate the
effectiveness of the proposed controller.

II. ROBOT DYNAMICS AND KINEMATICS

We consider a force control system consisting of a robot
manipulator and a camera (s) fixed in the work space, as shown
in Fig. 1. In this system, the end-effector is in contact with a
constraint surface.

First, let r ∈ �m denote a position of the end-effector in
Cartesian space as [10], [19], [25], [26]

r = h(q) (1)

where h(·) ∈ �n → �m is generally a nonlinear transformation
describing the relation between joint space and task space, and
q = [q1 , . . . , qn ]T ∈ �n is a vector of joint angles of the manip-
ulator. The velocity of the end-effector ṙ is related to joint-space
velocity q̇ as

ṙ = Jm (q)q̇ (2)

where Jm (q) ∈ �m×n is the Jacobian matrix from joint space
to task space.

For a visually servoed system, cameras are used to observe the
position of the end-effector in image space. The mapping from
Cartesian space to image space requires a camera-lens model in
order to represent the projection of task objects onto the charge-
coupled device (CCD) image plane. Let x ∈ �m denote a vector
of image feature parameters and ẋ the corresponding vector
of image feature parameter rates of change. The relationship
between Cartesian space and image space is represented by [27]

ẋ = JI (r)ṙ (3)

where JI (r) ∈ �m×m is the image Jacobian matrix [28]–[30].
From (2) and (3), we have [31]

ẋ = JI (r)Jm (q)q̇ = J(q)q̇ (4)

where J(q) ∈ �m×n is the Jacobian matrix mapping from joint
space to feature space.

The equations of motion of constrained robot with n degrees
of freedom can be expressed in joint coordinates as [26], [32]

M(q)q̈ +
(

1
2
Ṁ(q) + S(q, q̇) + B

)
q̇ + g(q) + JT

m (q)Btṙ

= τ + JT
m (q)f (5)

where M(q) ∈ �n×n is the inertia matrix, S(q, q̇)q̇ = (1/2)
Ṁ(q)q̇ − (1/2){(∂/∂q)q̇T M(q)q̇}T is a skew-symmetric ma-
trix, B ∈ �n×n is the joint friction matrix, g(q) ∈ �n is the
gravitational force, f ∈ �n is a contact force vector normal to
the constraint surface, Btṙ denotes the contact friction aris-
ing in the direction of manipulator end-point movement ṙ,
Bt ∈ �m×m is the contact friction matrix, and τ ∈ �n is the
joint torque applied to the robot.

We consider a constraint surface that can be defined in an
algebraic term as

Ψ(r) = 0 (6)

where Ψ(r) : �m → �1 is a given scalar function. Differen-
tiating (6) with respect to time yields the following velocity
constraint:

∂Ψ(r)
∂r

ṙ = 0. (7)

The contact force normal to the constraint surface is then given
by

f = d(r)λ (8)

where d(r) = (∂Ψ(r)/∂r)/‖∂Ψ(r)/∂r‖ ∈ �m is a unit vector
denoting the normal direction to the constraint surface and λ ∈
� is defined as a magnitude of the contact force. Hence, using
(8), the robot dynamics (5) can be represented as

M(q)q̈ +
(

1
2
Ṁ(q) + S(q, q̇) + B

)
q̇ + g(q) + JT

m (q)Btṙ

= τ + DT (q)λ (9)

where D(q) = [(∂Ψ(r)/∂r)T /‖∂Ψ(r)/∂r‖]Jm (q) is a Jaco-
bian of the constraint function such that

D(q)q̇ = 0. (10)

One of the early important results in dynamic force control
was the model-based approach proposed by McClamroch and
Wang [4]. It was shown using a nonlinear transformation that the
dynamic equation can be decoupled into a differential equation
that characterizes the motion and an equation that describes the
contact force during the constrained motion. However, it is well
known that the method cannot be extended into uncalibrated
vision–force control problem with uncertain constraint because
the nonlinear transformation requires the exact knowledge of
the constraint surface.

Another important work in dynamic force control is the joint-
space projection method proposed by Arimoto [26]. A sliding
vector for motion subspace is proposed as

s = q̇ − Q(q)(q̇d − α∆q) (11)

where ∆q = q − qd , with qd being the desired joint trajectory
and α a positive constant gain, and Q(q) = I − (DT (q)D(q)/
‖D(q)‖2). The role of the projection matrix is to project the
motion error onto a tangent plane perpendicular to the nor-
mal vector DT (q). Note that sT DT (q)λ = q̇T DT (q) − (q̇d −
α∆q)T Q(q)DT (q) = 0, since D(q)q̇ = 0 and Q(q)DT (q) =
0. Hence, the sliding motion error can be decoupled from the
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force. Similarly, the aforementioned projection matrix requires
the exact knowledge of the constraint surface. In addition, the
dynamic force controller is formulated in the joint space. When
the constraint is uncertain, the desired position on the constraint
surface in Cartesian space is also uncertain, and hence, the de-
sired joint position qd cannot be computed using inverse kine-
matics even if the robot kinematics is known.

Using vision-based control, the desired position or trajectory
on the uncertain constraint surface can then be obtained in im-
age space directly. Let xd(t) ∈ �m denote the desired motion
trajectory in image space and ẋd(t) ∈ �m the desired speed
trajectory; a sliding motion vector can be defined using image
error as

s = q̇ − Q̂(q)Ĵ+(q)(ẋd − α∆x) (12)

where ∆x = x − xd is the image tracking error, Ĵ(q) is the
estimation of J(q), Q̂(q) = I − (D̂T (q)D̂(q)/‖D̂(q)‖2) is the
estimation of Q(q), and D̂(q) is the estimation of D(q). How-
ever, note that

sT D̂T (q) = q̇T D̂T (q). (13)

Since D̂(q)q̇ �= 0 in general, the image tracking error cannot
be decoupled from the force. In addition, since Q̂(q) is not of
full-rank and Ĵ(q)q̇ �= ẋ, it is clear that the convergence of the
sliding vector s does not imply the convergence of the image
errors. Therefore, the image and force cannot be resolved by
using existing dynamic force control methods.

III. ADAPTIVE VISION AND FORCE TRACKING CONTROL

In this section, a visually servoed motion and force track-
ing controller is proposed. We consider a robot with unknown
external parameters due to the constraint surface and unknown
internal parameters due to dynamics and kinematics. Since the
constraint surface is uncertain, the desired path on the surface
cannot be obtained in Cartesian space. However, using cam-
eras, the desired path can be obtained in image space by using
features such as edges or corners. In the absence of obvious fea-
tures, markers should be used on the constraint surface (see [14]
and [16]).

The dynamic model, as described by (9), is linear in a set of
physical parameters θd = (θd1 , . . . , θdp)T as

M(q)q̈ +
(

1
2
Ṁ(q) + S(q, q̇) + B

)
q̇ + g(q)

+JT
m (q)BtJm (q)q̇ = Yd(q, q̇, q̇, q̈)θd (14)

where Yd(·) ∈ �n×p is called the dynamic regressor matrix.
The right-hand side of (4) is linear in a set of kinematic

parameters θki = (θki1 , . . . , θkiq )T , such as link lengths, joint
offsets, and camera parameters. Then, (4) can be expressed as

ẋ = J(q)q̇ = Yki(q, q̇)θki (15)

where Yki(q, q̇) ∈ �m×h is called the kinematic regressor
matrix.

When the kinematics is uncertain, the parameters of the
Jacobian matrix are uncertain, and we estimate the parameters
in (15) as

ˆ̇x = Ĵ(q, θ̂ki)q̇ = Yki(q, q̇)θ̂ki (16)

where Ĵ(q, θ̂ki) is the estimations of J(q). The parameters θ̂ki

will be updated by parameter update law to be defined later.
When the constraint surface is uncertain, Jm (q)d̂(r̂) can be

expressed as

JT
m (q)d̂(r̂) = Yf (q)θf (17)

where θf = (θf 1 , . . . , θf i)T is a vector of parameters of Jm (q)
and Yf (q) ∈ �n×i , and d̂(r̂) is a fixed estimation of d(r) that
is not updated. The use of d̂(r̂) results in an estimation error
Jm (q)(d(r) − d̂(r̂)) that can be expressed as

JT
m (q)(d(r) − d̂(r̂)) = Ymd(q)θmd (18)

where r = h(q), r̂ = ĥ(q), θmd = (θmd1 , . . . , θmdj )T denotes
the unknown lumped parameters of JT

m (q) and d(r) − d̂(r̂),
and Ymd(q) ∈ �n×j . The unknown lumped parameters will be
updated by parameter update law to be defined later.

Let us define a vector ẋr ∈ �m as

ẋr = (ẋd − α∆x) + β(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x)d̂(r̂)∆F
(19)

where α and β are positive constants, xd(t) ∈ �m is the de-
sired motion trajectory in image space, ẋd(t) ∈ �m is the
desired speed trajectory, ∆x = x − xd is the image track-
ing error, Ĵ(q, θ̂ki) is an estimation of J(q), Ĵ+(q, θ̂ki) =
ĴT (q, θ̂ki)(Ĵ(q, θ̂ki)ĴT (q, θ̂ki))−1 is the pseudoinverse of the
Jacobian matrix, Ĵm (q, θ̂f ) is an estimation of Jm (q), ∆F =∫ t

0 (λ(σ) − λd(σ))dσ, λd(t) is the desired force trajectory, and
R(x) is a rotation matrix that will be defined later.

Differentiating (19) with respect to time, we get

ẍr = (ẍd − α∆ẋ) + β(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x)d̂(r̂)∆λ

+ β(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x) ˙̂
d(r̂, ˙̂r)∆F

+ β(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1Ṙ(x)d̂(r̂)∆F

+ β
˙̂

JI R(x)d̂(r̂)∆F (20)

where ˙̂
JI = (d/dt)((Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1).

In order to prove the stability of the vision–force tracking
system, we define an adaptive vision space sliding vector using
(19) as

ŝx = ˆ̇x − ẋr = Ĵ(q, θ̂ki)q̇ − ẋr . (21)

Differentiating the previous equation with respect to time, we
have

˙̂sx = ˆ̈x − ẍr = Ĵ(q, θ̂ki)q̈ + ˙̂
J(q, θ̂ki)q̇ − ẍr . (22)

Next, let

q̇r = Ĵ+(q, θ̂ki)ẋr + (In − Ĵ+(q, θ̂ki)Ĵ(q, θ̂ki))ψ (23)
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where ψ ∈ �n is minus the gradient of the convex function to
be optimized [33]. From (23), we have

q̈r = Ĵ+(q, θ̂ki)ẍr + ˙̂
J+(q, θ̂ki)ẋr

+ (In − Ĵ+(q, θ̂ki)Ĵ(q, θ̂ki))ψ̇

− ( ˙̂
J+(q, θ̂ki)Ĵ(q, θ̂ki) + Ĵ+(q, θ̂ki)

˙̂
J(q, θ̂ki))ψ. (24)

Hence, we have an adaptive sliding vector in joint space as

s = q̇ − q̇r (25)

and

ṡ = q̈ − q̈r . (26)

Multiplying both side of (25) by Ĵ(q, θ̂ki) and using (21), we
have

Ĵ(q, θ̂ki)s = Ĵ(q, θ̂ki)q̇ − ẋr = ŝx . (27)

Substituting (25) into (9), we have

M(q)ṡ +
(

1
2
Ṁ(q) + S(q, q̇) + B

)
s + JT

m (q)BtJm (q)s

+ M(q)q̈r +
(

1
2
Ṁ(q) + S(q, q̇) + B

)
q̇r + g(q)

+ JT
m (q)BtJm (q)q̇r = τ + DT (q)λ. (28)

The last three terms on the left-hand side of (28) are linear in
a set of dynamics parameters θd and can be expressed as

M(q)q̈r +
(

1
2
Ṁ(q) + S(q, q̇) + B

)
q̇r + g(q)

+JT
m (q)BtJm (q)q̇r = Yd(q, q̇, q̇r , q̈r )θd. (29)

Then, the dynamics equation (28) can be expressed as

M(q)ṡ +
(

1
2
Ṁ(q) + S(q, q̇) + B

)
s + JT

m (q)BtJm (q)s

+Yd(q, q̇, q̇r , q̈r )θd = τ + DT (q)λ. (30)

The vision and force tracking controller is proposed as

u = −ĴT (q, θ̂ki)K(∆ˆ̇x + α∆x) + Yd(q, q̇, q̇r , q̈r )θ̂d

− Ymd(q)θ̂mdλ − ĴT
m (q, θ̂f )d̂(r̂)λ

+ ĴT
m (q, θ̂f )R(x)d̂(r̂)(∆λ + γ∆F ) (31)

where ∆ˆ̇x = ˆ̇x − ẋd , K ∈ �m×m is a positive-definite matrix,
and γ is a positive constant. The estimated parameters θ̂d , θ̂f ,
θ̂md , θ̂ki are updated by

˙̂
θd = −LdY

T
d (q, q̇, q̇r , q̈r )s (32)

˙̂
θf = Lf Y T

f (q)sλ (33)

˙̂
θmd = LmdY

T
md(q)sλ (34)

˙̂
θki = 2LkiY

T
ki (q, q̇)K(∆ẋ + α∆x) (35)

where Ld ∈ �p×p , Lf ∈ �i×i , Lmd ∈ �j×j , Lki ∈ Rh×h are
symmetric and positive-definite gain matrices of the update

Fig. 2. Illustration of the rotation matrix.

laws. The rotation matrix R(x) is designed so that

s̄T
x R(x)d̂(r̂) = 0 (36)

where

s̄x = {β(∆ˆ̇x + α∆x)T K(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1∆F

+ sT
m (∆λ + γ∆F )}T

sm = Ĵm (q, θ̂f ){q̇ − Ĵ+(q, θ̂ki)(ẋd − α∆x)

− (In − Ĵ+(q, θ̂ki)Ĵ(q, θ̂ki))ψ}. (37)

The role of the rotation matrix is to rotate d̂(r̂) so that R(x)d̂(r̂)
is orthonormal to s̄x . In general, s̄x can be partitioned as s̄x =
(s̄xp , s̄xo)T , where s̄xp is the position vector and s̄xo is the
orientation vector. Therefore, d̂(r̂) can also be partitioned as
(d̂p(r̂), d̂o(r̂))T . Next, let np be a unit vector normal to both
the vectors s̄xp and d̂p(r̂), as illustrated in Fig. 2. The rotation
matrix R(x) is then introduced as

R(x) =
[

Rp 0
0 Ro

]
(38)

where the rotation matrix Rp is to rotate the vector s̄xp about the
axis np , so that the vector s̄T

xpRp is perpendicular to the vector

d̂p(r̂), as shown in Fig. 2. φp is the angle between s̄T
xpRp and

d̂p(r̂), which can be determined from the angle φ between s̄xp

and d̂p(r̂) (see Fig. 2). Here, the symbol × means cross product.
The rotation matrix Ro can be similarly designed. However,
since the constraint surface is usually independent of ro , the
rotation matrix Ro can be set as an identity matrix. Note that
when s̄r reduces to zero, R(x) can be set as any value because
(36) is always satisfied when s̄x = 0.

Substituting (31) into (30), we have the closed-loop equation

M(q)ṡ +
(

1
2
Ṁ(q) + S(q, q̇) + B

)
s + JT

m (q)BtJm (q)s

+ ĴT (q, θ̂ki)K(∆ˆ̇x + α∆x) + Yd(q, q̇, q̇r , q̈r )∆θd

= Yf (q)∆θf λ + Ymd(q)∆θmdλ

+ ĴT
m (q, θ̂f )R(x)d̂(r̂)(∆λ + γ∆F ) (39)

where I is the identity matrix, ∆θd = θd − θ̂d , and ∆θf =
θf − θ̂f . To carry out the stability analysis, we define the
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Lyapunov-like function candidate V as

V =
1
2
sT M(q)s + α∆xT K∆x +

1
2
∆θT

d L−1
d ∆θd

+
1
2
∆θT

f L−1
f ∆θf +

1
2
∆θT

kiL
−1
ki ∆θki

+
1
2
∆θT

mdL
−1
md∆θmd +

1
2
β∆F 2 (40)

where ∆θki = θki − θ̂ki . Differentiating V with respect to time,
substituting (32)–(34) and (39) into it, and using (27), we have

V̇ = −sT (B + JT
m (q)BtJm (q))s − ŝT

x K(∆ˆ̇x + α∆x)

+ sT ĴT
m (q, θ̂f )R(x)d̂(r̂)(∆λ + γ∆F )

+ 2α∆xT K∆ẋ − ∆θT
kiL

−1
ki

˙̂
θki + β∆F∆λ (41)

where we note that S(q, q̇) is skew-symmetric.
From (19), (25), and (37), we note that

Ĵm (q, θ̂f )s = Ĵm (q, θ̂f )q̇ − Ĵm (q, θ̂f )Ĵ+(q, θ̂ki)(ẋd − α∆x)

− Ĵm (q, θ̂f )(In − Ĵ+(q, θ̂ki)Ĵ(q, θ̂ki))ψ

− βR(x)d̂(r̂)∆F = sm−βR(x)d̂(r̂)∆F. (42)

Next, substituting (19), (21), and (42) into (41) and using
(37), we obtain

V̇ = −sT (B + JT
m (q)BtJm (q))s

− (∆ˆ̇x + α∆x)T K(∆ˆ̇x + α∆x)

+ β(∆ˆ̇x + α∆x)T K(Ĵm(q, θ̂f)Ĵ+(q, θ̂ki))−1R(x)d̂(r̂)∆F

+ sT
m R(x)d̂(r̂)(∆λ + γ∆F ) − β∆F (∆λ + γ∆F )

+ 2α∆xT K∆ẋ − ∆θT
kiL

−1
ki

˙̂
θki + β∆F∆λ

= −sT (B + JT
m (q)BtJm (q))s

− (∆ˆ̇x + α∆x)T K(∆ˆ̇x + α∆x)

+ s̄T
x R(x)d̂(r̂) − β∆F (∆λ + γ∆F )

+ 2α∆xT K∆ẋ − ∆θT
kiL

−1
ki

˙̂
θki + β∆F∆λ. (43)

Using (36) in the previous equation yields

V̇ = −sT (B + JT
m (q)BtJm (q))s

− (∆ˆ̇x + α∆x)T K(∆ˆ̇x + α∆x) + 2α∆xT K∆ẋ

− ∆θT
kiL

−1
ki

˙̂
θki − βγ∆F 2 (44)

where we note that RT (x)R(x) = I and d̂T (r̂)d̂(r̂) = 1.
From (15) and (16), since ˆ̇x = ẋ − Yki(q, q̇)∆θki , we have

∆ˆ̇x = ∆ẋ − Yki(q, q̇)∆θki. (45)

Substituting (35) and (45) into (44), we have

V̇ =−sT (B +JT
m (q)BtJm (q))s−∆ẋT K∆ẋ−α2∆xT K∆x

− ∆θT
kiY

T
ki (q, q̇)KYki(q, q̇)∆θki − βγ∆F 2 ≤ 0. (46)

We can now state the following theorem.

Theorem: The adaptive Jacobian control law (31) and the
update laws (32)–(35) for the robot system (9) result in the
convergence of vision and force tracking errors, i.e., x(t) −
xd(t) → 0 and ẋ(t) − ẋd(t) → 0 as t → ∞. In addition, the
contact force λ(t) also converges to λd(t) as t → ∞.

Proof: Since M(q) is positive-definite, V is positive-definite
in s, ∆x, ∆θd , ∆θf , ∆θki , ∆θmd , and ∆F . Since V̇ ≤ 0, V is
bounded. Therefore, s, ∆x, ∆θd , ∆θf , ∆θki , ∆θmd , and ∆F

are bounded vectors. This implies that θ̂d , θ̂f , θ̂ki , θ̂md , and x

are bounded, and ŝx = Ĵ(q, θ̂ki)s is also bounded.
As seen from (46), V̇ is negative-definite in s, ∆ẋ, ∆x,

Yki(q, q̇)∆θki , and ∆F . To show the convergence of the errors,
Barbalat’s lemma [34], [35] shall be used to check the uniform
continuity of V̇ . In the following development, we proceed to
show the uniform continuity by proving that V̈ is bounded.

First, note that ẋr , ˆ̇x are bounded, as seen from (19) and (21).
From (23), we can conclude that q̇r is bounded when Ĵ(q, θ̂ki)
is nonsingular. Therefore, q̇ is bounded since s is bounded. The
boundedness of q̇ means that ẋ, ṙ are bounded. Hence, ∆ẋ
is bounded, and ẍr − β(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x)d(r)∆λ

from (20) is also bounded if ẍd is bounded. ḋ(r, ṙ) is bounded
because r, ṙ are bounded.

As seen from (35), ˙̂
θki is bounded because q̇, ∆ẋ, and ∆x are

all bounded. Hence, ˙̂
J(q, θ̂ki) is bounded. Using (24), we have

q̈r − βĴ+(q, θ̂ki)(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x)d̂(r̂)∆λ

= Ĵ+(q, θ̂ki)(ẍr − β(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x)d̂(r̂)∆λ)

+ ˙̂
J+(q, θ̂ki)ẋr + (In − Ĵ+(q, θ̂ki)Ĵ(q, θ̂ki))ψ̇

− ( ˙̂
J+(q, θ̂ki)Ĵ(q, θ̂ki) + Ĵ+(q, θ̂ki)

˙̂
J(q, θ̂ki))ψ. (47)

Since all the terms on the right-hand side of the previous equa-
tion are bounded, q̈r − βĴ+(q, θ̂ki)(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1

R(x)d(r)∆λ is therefore bounded. Next, let

Yd(q, q̇, q̇r , q̈r )∆θd = (M(q) − M̂(q))q̈r

+
[
1
2
(Ṁ(q) − ˆ̇M(q)) + S(q, q̇) − Ŝ(q, q̇) + B − B̂

+ JT
m (q)BtJm (q) − ĴT

m (q)BtĴm (q)
]
q̇r + g(q) − ĝ(q)

+ βM(q)Ĵ+(q, θ̂ki)(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x)

× (ḋ(h(q), Jm (q)q̇) − ˆ̇
d(ĥ(q), Ĵm (q, θ̂f )q̇))∆F

= (M(q) − M̂(q))q̈r + Z̄d(q, q̇, q̇r , x, θ̂f , θ̂ki)∆θd (48)

where Z̄d(q, q̇, q̇r , x, θ̂f , θ̂ki)∆θd = ((1/2)(Ṁ(q) − ˆ̇M(q)) +
S(q, q̇) − Ŝ(q, q̇) + B − B̂ + JT

m (q)BtJm (q) − ĴT
m (q)

BtĴm (q))q̇r + g(q) − ĝ(q) + βM(q)Ĵ+(q, θ̂ki)(Ĵm (q, θ̂f )

Ĵ+(q, θ̂ki))−1R(x)(ḋ(h(q), Jm (q)q̇)− ˆ̇
d(ĥ(q), Ĵm (q, θ̂f)q̇)∆F.

Then, from (39) and (48), since D(q)q̈ = −Ḋ(q)q̇, we have

− Ḋ(q)q̇ + D(q)M−1(q){−M(q)(q̈r

− βĴ+(q, θ̂ki)(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x)d̂(r̂)∆λ)
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+ (M(q) − M̂(q))(q̈r − βĴ+(q, θ̂ki)

× (Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x)d̂(r̂)∆λ) + r(t)}

= D(q)M−1(q){D1∆λ − ĴT
m (q, θ̂f )R(x)d̂(r̂)λd

+ βM̂(q)Ĵ+(q, θ̂ki)(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x)d̂(r̂)∆λ

+ D1λd} (49)

where r(t) = ((1/2)Ṁ(q) + S(q, q̇) + B)s + Z̄d(q, q̇, q̇r , x,

θ̂f , θ̂ki)∆θd + ĴT (q, θ̂ki)K(∆ˆ̇x + α∆x) − γĴT
m (q, θ̂f )R(x)

d̂(r̂)∆F and D1 = (Yf (q)∆θf + Ymd(q)∆θmd + ĴT
m (q, θ̂f )

R(x)d̂(r̂)).
The previous equation can be written as

r̄(t) = k(t)∆λ (50)

where r̄(t) = −Ḋ(q)q̇ + D(q)M−1(q){−M(q)(q̈r − βĴ+(q,
θ̂ki)(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x)d̂(r̂)∆λ) + (M(q)− M̂(q))
(q̈r − βĴ+(q, θ̂ki)(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x)d̂(r̂)∆λ) +
r(t) − (Yf (q)∆θf + Ymd(q)∆θmd)λd} and k(t) = D(q)
M−1(q){D1+ βM̂(q)Ĵ+(q, θ̂ki)(Ĵm (q, θ̂f)Ĵ+(q, θ̂ki))−1R(x)
d̂(r̂))} are bounded scalars. Hence, ∆λ is bounded, and the
boundedness of ∆λ implies that ẍr , q̈r , and q̈r are bounded.

From the closed-loop equation (39), we can conclude that ṡ is
bounded. The boundedness of ṡ implies the boundedness of q̈,
as seen from (26). Since ẍ = J(q)q̈ + J̇(q)q̇, ẍ is bounded, and
hence, ∆ẍ is also bounded. To apply Barbalat’s lemma [34],
[35], let us check the uniform continuity of V̇ . Differentiating
(46) with respect to time gives

V̈ = −2sT (B + JT
m (q)BtJm (q))ṡ + 2sT JT

m (q)BtJ̇m (q)s

− 2∆ẋT K∆ẍ − 2α2∆xT K∆ẋ

+ 2∆θT
kiY

T
ki (q, q̇)KYki(q, q̇)

˙̂
θki

− 2∆θT
kiY

T
ki (q, q̇)KẎki(q, q̇)∆θki − 2βγ∆F∆λ. (51)

This shows that V̈ is bounded since ∆x, ∆ẋ, q̇, ∆ẍ, ṡ, ∆F ,
∆λ are all bounded. Hence, V̇ is uniformly continuous. Using
Barbalat’s lemma, we have ∆x → 0, ∆ẋ → 0, Yki(q, q̇)∆θki =
ẋ − ˆ̇x → 0, ∆F → 0 as t → ∞.

Next, we proceed to show the convergence of the force track-

ing error. From (32), (33), and (35), we note that ˙̂
θd , ˙̂

θf ,
˙̂
θki are bounded. Let zx = ẍr − βĴI R(x)d(r)∆λ and ĴI =
(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1 . From (20), we have

zx = ẍd − α∆ẋ + βĴI R(x) ˙̂
d(r̂, ˙̂r)∆F

+ βĴI Ṙ(x)d̂(r̂)∆F + β
˙̂

JI R(x)d̂(r̂)∆F. (52)

Since ∆ẍ, ẋ, ∆λ, q̈ are bounded, żx is also bounded if
the derivative of ẍd is bounded. Hence, the derivative of
q̈r − βĴ+(q, θ̂ki)(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1R(x)d̂(r̂)∆λ is also
bounded, as seen from (47). From (49), the derivative λ is there-
fore bounded. Finally, using Barbalat’s lemma and the conver-
gence of ∆F to 0, we have ∆λ → 0 as t → ∞. ���

Remark 1: In this paper, we have shown that the image and
force tracking errors of the adaptive control system can be re-
solved as in (36). It is shown with consideration of full robot

dynamics that stability of the vision and force control system
can be guaranteed even in the presence of uncertainties in kine-
matics, dynamics, and constraint surface.

Remark 2: We assume that the robot is operating in a region
such that the approximate Jacobian matrix is of full-rank. Note
from the adaptive Jacobian control law (31) and the parameter
update laws (32)–(35) that Ĵ+(q, θ̂ki) is used only in the defini-
tion of control variable q̇r in (23). Therefore, we should be able
to control this by bounding the variable or using a singularity-
robust inverse of the approximate Jacobian matrix [25].

Remark 3: This paper focuses on vision and force track-
ing control of a single robot manipulator, but the results can
also be extended to multifingered robots [36] or cooperative
manipulators [37], [38]. In such tightly coupled tasks, the
robots may grasp the object at an uncertain position, and each
robot may not know the kinematics and dynamics of other
robots.

Remark 4: The convergence of the estimated parameters can
only be ensured if the trajectory is persistently exciting [26],
[34]. However, a key point in adaptive control is that the track-
ing error will converge regardless of whether the trajectory is
persistently exciting or not, i.e., one does not need parameter
convergence for task convergence.

A. Dimension of Feature Space

In the previous development, we consider the case where the
dimension of feature space is equal to the dimension of task
space. If x ∈ �κ where the dimension of feature space is not
equal to the dimension of task variable r(∈ �m ), then the matrix
(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki)) ∈ �m×κ in (19) is not a square matrix
and (Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))−1 does not exist. There are two cases
to be considered, namely κ ≥ m and κ ≤ m.

If κ ≥ m, there are redundant features with respect to the task
degrees of freedom. Therefore, ẋr in (19) should be defined as

ẋr = (ẋd − α∆x) + β(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))+R(x)d̂(r̂)∆F
(53)

where

(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))+ = (Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))T

× [(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))T ]−1 (54)

is the pseudoinverse matrix. Hence, (42) is still valid as follows:

Ĵm (q, θ̂f )s = Ĵm (q, θ̂f )q̇ − Ĵm (q, θ̂f )Ĵ+(q, θ̂ki)(ẋd − α∆x)

− Ĵm (q, θ̂f )(In − Ĵ+(q, θ̂ki)Ĵ(q, θ̂ki))ψ

− β(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))

× (Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))+R(x)d̂(r̂)∆F

= sm − βR(x)d̂(r̂)∆F (55)

where we note that

(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))+ = I.
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If κ ≤ m, the pseudoinverse matrix must be defined as

(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))+

= [(Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))T (Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))]−1

× (Ĵm (q, θ̂f )Ĵ+(q, θ̂ki))T (56)

but in this case, (42) does not hold, and it is, therefore, difficult
to demonstrate the stability of the system. This could be due to
the fact that there are no enough feature points x to determine
the end-effector motion r [27].

B. Linear Parameterization Problem of Depth and Constraint
Function

Similar to standard robot adaptive controllers, we consider the
case where the unknown parameters are constant and linearly
parameterizable. If the unknown parameters are time varying
or linear parameterization cannot be obtained, adaptive control
using basis functions [39], [40] can be used. The basic idea is
to approximate the models by using neural network where the
unknown weights are adjusted online by the updated law. For
example, the dynamic regressor can be replaced by

M̂(q)q̈r +
(

1
2

˙
M̂(q) + Ŝ(q, q̇) + B

)
q̇r + ĝ(q)

+ ĴT
m (q)B̂t Ĵm (q)q̇r = Ŵd θd(q, q̇, q̇r , q̈r ) (57)

where θd(q, q̇, q̇r , q̈r ) is a vector of activation functions and Ŵd

are estimated neural network weights updated by the updated
law that can be designed similarly (see [39] and [40] for details).

When the depth information of the feature points is not con-
stant [41], the relationship between velocities in camera image
space and joint space is represented by [41], [42]

ẋ = Z−1(q)L(q)Jm (q)q̇ = Z−1(q)J̄(q)q̇ (58)

where JI = Z−1(q)L(q) is the image Jacobian matrix, Z(q) is a
matrix containing the depths of the feature points with respect to
the camera image frame, and the matrix L(q) is the remanding
image Jacobian matrix. Since the depths are not constant, linear
parameterization cannot be obtained for the Jacobian matrix
J(q) if the depth is uncertain. However, the Jacobian matrix
J(q) = Z−1(q)L(q)Jm (q) in (58) can be estimated by neural
networks as

Ĵ(q, Ŵki) = (Ŵli1θki(q), . . . , Ŵlin θki(q)) (59)

where Ĵ(q, Ŵki) is an estimation of J(q), θki(q) is a vector of
activation functions, and the estimated neural network weights
Ŵki are updated by the update law. In many force control ap-
plications, it is also difficult to determine the structure of the
constraint function, and the neural network can similarly be
used to approximate the constraint Jacobian. Another method
of updating the estimated depth information can be found
in [42].

C. Pose Control

The motion control task can be defined either as position con-
trol only or both position and orientation control. For position

Fig. 3. Illustration of full pose control.

control, a feature point at the tool tip is specified, and the desired
trajectory on the contact surface can be easily defined in image
space. Some calibration-free path planning algorithms in image
space can be found in [43] and [44]. However, for position and
orientation control, additional feature points on the tool or end-
effector are needed, but in the presence of kinematic uncertainty
and camera calibration errors, it is difficult to specify the de-
sired trajectories for the additional features with respect to the
desired trajectory on the contact surface. In such cases, a desired
moving region [45] should be specified to allow flexibility in the
orientation, as illustrated in Fig. 3. This is reasonable since the
accuracy of the position is more important as compared to the
orientation. Let xb be the features on the tool tip and xa be
the additional features for orientation control (see Fig. 3); we
can partition the joint position vector q as [qa , qb ] [46], where
ẋa = Ja(q)q̇a and ẋb = Ja(q)q̇a + Jb(q)q̇b . A desired trajec-
tory xbd is specified for xb while a desired region [45], [46] is
defined for xa as follows:

f(∆xa) = [f1(∆xa), f2(∆xa), . . . , fN (∆xa)]T ≤ 0 (60)

where fj (∆xa) ∈ R are continuous scalar functions with con-
tinuous first partial derivatives, j = 1, 2, . . . , N , N is the total
number of secondary objective functions, and ∆xa = xa − xao ,
with xao being a reference point in the desired region. Some
examples of desired moving regions can be found in [45].
The region tracking control formulation provides flexibility
to the manipulator in the presence of uncertainties. Similarly,
the estimated velocities can be defined based on the esti-
mated Jacobian matrices as ˆ̇xb = Ĵa(q, θ̂ki)q̇a + Ĵb(q, θ̂ki)q̇b

and ˆ̇xa = Ĵa(q, θ̂ki)q̇a .
The control law is proposed with some slight modifications

as follows:

∆ˆ̇x =
[

∆ˆ̇xb

∆ˆ̇xa

]
, ∆x =

[
∆xb

∆ξa

]
, xd =

[
xbd

xad

]

ĴT (q, θ̂ki) =

[
ĴT

a (q, θ̂ki) ĴT
a (q, θ̂ki)

ĴT
b (q, θ̂ki) 0

]

and ∆ξa is the region error [45] given by

∆ξa =
N∑

i=1

kimax(0, fi(∆xa))
(

∂fi(∆xa)
∂∆xa

)T

(61)
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Fig. 4. Position and velocity tracking errors for the planar surface.

where ki are positive constants. The proof of convergence can
be carried out in a similar way.

IV. SIMULATION RESULTS

In this section, we present simulation results to illustrate the
performance of the proposed controller. We consider a two-
link manipulator whose end-effector is required to move on a
constraint surface. A fixed camera is placed distance away from
the robot. The Jacobian matrix J(q) mapping from joint space
to image space is given by

J(q) =
f1

z1 − f1

[
β1 0
0 β2

] [−l1s1 − l2s12 −l2s12

l1c1 + l2c12 l2c12

]

where s1 = sin(q1), c1 = cos(q1), s12 = sin(q1 + q2), c12 =
cos(q1 + q2), and l1 , l2 are the lengths of the first and second
links, respectively. β1 , β2 denote the scaling factors in pixels per
meter, z1 is the perpendicular distance between the robot and
the camera, and fc is the focal length of the camera.

In the simulations, the exact masses of the two links are set
to 17.4 and 4.8 kg, the exact lengths l1 , l2 of the links are
set to 0.43 m, fc is set as 50 mm, z1 is set as 0.55 m, and
β1 = β2 = 10 000. White Gaussian noises with power of 1 dB
are added to the position and force.

Fig. 5. Force tracking error for the planar surface.

Fig. 6. Control inputs for the planar surface.

A. Planar Surface

In the first simulation, the end-effector is required to move on
a constraint surface described by

Ψ(r(q)) = rx + γsry + c = l1c1 + l2c12 + γs(l1s1

+l2s12) + c = 0

where rx = l1c1 + l2c12 and ry = l1s1 + l2s12 are the posi-
tions of end-effector in Cartesian space, and γs and c are
constant. Then, d(r) = ∂Ψ(r)/∂r = (1, γs)T . When the con-
straint surface is uncertain, d̂(r̂) = (1, γ̂s)T and d(r) − d̂(r̂) =
(0, γs − γ̂s)T . Hence, JT

m (q)d̂(r̂) can be written as

JT
m (q)d̂(r̂) =

[−s1 + γ̂sc1 −s12 + γ̂sc12

0 −s12 + γ̂sc12

][
θf,1

θf,2

]
= Yf (q)θf

where θf,1 = l1 and θf,2 = l2 . Note that JT
m (q)(d(r) − d̂(r̂))

can also be written as

JT
m (q)(d(r) − d̂(r̂)) =

[
c1 c12

0 c12

] [
θmd,1

θmd,2

]
= Ymd(q)θmd

where θmd,1 = l1(γs − γ̂s) and θmd,2 = l2(γs − γ̂s).
The camera in this setup is placed parallel to the constraint

surface, and hence, z1 is fixed.
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Fig. 7. Position and velocity tracking errors for the curve surface.

Fig. 8. Force tracking error for the curve surface.

Next, ẋ can be written as the product of a known regressor
matrix Yki(q, q̇) and an unknown vector θki where

Yki(q, q̇) =
[−s1 q̇1 −s12(q̇1 + q̇2) 0 0

0 0 c1 q̇1 c12(q̇1 + q̇2)

]

and θki =
[
(fc/(z1 − fc))β1 l1 , (fc/(z1 − fc))β1 l2 , (fc/(z1 −

fc))β2 l1 , (fc/(z1 − fc))β2 l2
]T

.
In this simulation, we set the parameters of the function of the

constraint surface as c = −0.52 and γs = 0. The desired motion
trajectory is set as xd(t) = 520 pixels and yd(t) = 199 + 20t
pixels. The desired contact force is set as 15 + 5 sin(2t) Newton.
The initial estimated parameters are set as l̂1 = 0.4 m, l̂2 =
0.5 m, f̂c = 40 mm, ẑ1 = 0.5 m, and β̂1 = β̂2 = 8000, respec-
tively. The control gains are set as α = 0.42, Lki = 1/500I,
Ld = 1/500I, Lf = 1/500I, Lmd = 1/500I,K = 300/106I,
β = 0.0105, γ = 15, and γ̂s = 0.3. The simulation results are
shown in Figs. 4–6.

B. Curve Surface

In this simulation, we consider a constraint surface described
by

Ψ1(q(r)) = sin(arx + b) − ry = 0.

Note that in the previous constraint function, the parameters in
Ψ1(r(q)) cannot be linearly separated. The camera is also tilted
by 15◦ so that the depth information z1 is time varying.

The parameters of the constraint surface are set as
a = 3.1337 and b = −1.4292. The control gains are set
as α = 25, Lki = 1/50I, Ld = 1/100I, Lf = 1/500I, Lmd =
1/100I,K = 400/106I, β = 0.25, and γ = 8. An image path
in image space is obtained from the camera. The initial position
of the end-effector on the path is set at (520, 199). xd(t) is set as
xd(t) = 520 + 5t pixels and yd(t) is obtained from the image
path. The desired contact force is set as 15 + 5 sin(2t) Newton.
In this simulation, Gaussian radial basis function (RBF) neural
networks were used. The centers were chosen so that they were
evenly distributed to span the input space of the network. The
distance of neural networks was fixed at 1.8 and the number
of neurons was set as 40. As can be seen from Figs. 7–9, the
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Fig. 9. Control inputs for the curve surface.

proposed controller is effective in dealing with uncertain struc-
ture of the constraint surface and Jacobian matrices.

V. CONCLUSION

In this paper, we have presented a visually servoed motion and
force tracking controller with uncertain constraint surface, kine-
matics, dynamics, and camera model. A Lyapunov-like function
has been presented for the stability analysis of the closed-loop
control systems. We have shown that the robot end-effector can
track the desired motion and force trajectories in the presence
of the uncertainties. Simulation results have been presented to
illustrate the performance of the proposed control law.
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