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Efficient Hydraulic State Estimation Technique using
Reduced Models of Urban Water Networks

Ami Preis'; Andrew J. Whittle®; Avi Ostfeld®; and Lina Perelman*

Abstract: This paper describes and demonstrates an efficient method for online hydraulic state estimation in urban water networks. The
proposed method employs an online predictor-corrector (PC) procedure for forecasting future water demands. A statistical data-driven algo-
rithm (M5 Model-Trees algorithm) is applied to estimate future water demands and an evolutionary optimization technique (genetic algo-
rithms) is used to correct these predictions with online monitoring data. The calibration problem is solved using a modified least-squares (LS)
fit method (Huber function) in which the objective function is the minimization of the residuals between predicted and measured pressure at
several system locations, with the decision variables being the hourly variations in water demands. To meet the computational efficiency
requirements of real-time hydraulic state estimation for prototype urban networks that typically comprise tens of thousands of links and
nodes, a reduced model is introduced using a water system—aggregation technique. The reduced model achieves a high-fidelity representation
for the hydraulic performance of the complete network, but greatly simplifies the computation of the PC loop and facilitates the implemen-
tation of the online model. The proposed methodology is demonstrated on a prototypical municipal water-distribution system. DOI: 10.1061/

(ASCE)WR.1943-5452.0000113. © 2011 American Society of Civil Engineers.

CE Database subject headings: Water distribution systems; Monitoring; Hydraulic models; Urban areas.

Author keywords: Water-distribution system; Online hydraulic state estimation; Predictor-corrector model; Real-time monitoring.

Introduction

Integration of near real-time hydraulic data with hydraulic com-
puter-simulation models allows water utility engineers to operate
and control their large-scale, urban water-distribution systems in
real time. In conventional practice, hydraulic models are calibrated
off-line (USEPA 2005) using a short-term (e.g., 1 wk) sample of
flow rate and pressure measurements within the network. There-
after, uncertain system parameters (e.g., water demands and pipe
roughness) are adjusted until an acceptable match is achieved be-
tween the model outputs and physical observations. Ormsbee
(1989) and Lansey and Basnet (1991) were among the first to de-
velop formal optimization methods for determining the uncertain
system elements. Datta and Sridharan (1994) and Reddy et al.
(1996) used the regression approach in which parameter uncertain-
ties were estimated as part of the calibration process. Greco and Del
Giudice (1999) used a sensitivity matrix to minimize the least-
squares differences between observed and predicted values, and
Lingireddy and Ormsbee (1998) developed a calibration method
using artificial neural networks (ANN).
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More recently, Kapelan et al. (2007) used the shuffled complex
evolution metropolis (SCEM-UA) global optimization algorithm
to solve a least-squares-type calibration problem in which both
calibration parameter values and associated uncertainties were
considered in a single optimization model run. Genetic algorithms
(Holland 1975) have been used by Savic and Walters (1995), Wu
and Simpson (2001), Kapelan et al. (2002), Wu et al. (2002),
Walski et al. (2006), and Clark and Wu (2006).

Overall, the main limitation of all off-line calibration procedures
is that they approximate the unknown parameters using a short-
term sample of hydraulic data. The calibration results may re-
present the system hydraulics during the short period of the sam-
pling procedure, but they are not expected to represent accurately
the system conditions for the full range of operational conditions
that can occur. In the case of water demands, this issue is even more
critical, because water demands have dynamic/stochastic pattern
variations that fluctuate with time-changing economic and demo-
graphic characteristics and may even show trends with local cli-
matic conditions (Maidment and Miaou 1986; Kenward and
Howard 1999; Zhou et al. 2000). In principle, much more realistic
predictions can be achieved by updating the hydraulic state estima-
tion using continuous online hydraulic measurements, provided by
a sensor network installed on the distribution system.

This paper describes and demonstrates an efficient method
for online hydraulic state estimation in urban water networks.
Several studies have assimilated online measurements into hy-
draulic state-estimation models. Andersen and Powell (2000) pro-
posed a constrained weighted least-squares technique to investigate
the effect of measurement bounds with the assumption that de-
mands were measured or estimated from knowledge of water con-
sumers’ characteristics.

Davidson and Bouchart (2006) proposed proportional and target
demand methods. These are two techniques for adjusting estimated
demands in hydraulic models of water-distribution networks to
produce solutions that are consistent with available Supervisory
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Control and Data Acquisition (SCADA) data. The two techniques
assume that pipe resistances and SCADA data are accurate and that
the combination of SCADA data and demand estimates produce
overdetermined problems. Nodal demands are regarded as stochas-
tic variables that fluctuate about an estimated mean value. The
method of weighted least squares is used to obtain solutions that
satisfy all of the constraints imposed by SCADA data with adjusted
nodal demands that most closely resemble the estimates. The meth-
ods are intended for use in real-time modeling but are limited to
quasi—steady-state flow.

Shang et al. (2006) presented a predictor-corrector (PC) method,
implemented in an extended Kalman filter to estimate water de-
mands within distribution systems in real time. A time-series
ARMA model is used to predict the water demands on the basis
of the estimated demands at previous steps. The predictions are cor-
rected using measured nodal water heads or pipe flow rates. The
proposed methodology is in a preliminary stage and aimed mainly
at studying the impact of spatial correlation between demand fore-
cast errors on demand estimations. The methodology is demon-
strated on EPANET example 3, having 59 demand nodes,
through three simulation studies with 20 pressure, 20 flow rate,
and 40 flow rate sensors. The main conclusion was that the model
performances depend on sampling design, measurement uncer-
tainty, demand forecast error, and the spatial correlations among
the demand forecast errors. Although only preliminary results were
presented, the study provided a modeling framework and math-
ematical tools for further implementations on more complex case
studies.

This paper, which extends early work of the writers (Preis et al.
2009a, b), uses a PC approach that integrates a limited number of
continuous observations to update predictions of the hydraulic state
of a real urban water-supply network at regular time intervals. The
M5 Model-Trees algorithm (Quinlan 1992) is used to forecast fu-
ture water demands for a rolling planning horizon of 24 h ahead,
and genetic algorithms are used to correct (i.e., calibrate) these pre-
dicted values in real time. Thereafter, at each subsequent time step,
the corrected outputs of previous iterations are used as inputs for
the prediction model. This a priori estimation of the calibration
parameter values repeats itself at each subsequent time step
whereas the forecasting model inputs correspond to the corrected
outputs of previous iterations, thus improving the model perfor-
mances over time and providing adequate information on the hy-
draulic state of the system for real-time operation and control. To
meet the computational efficiency requirements of this online pro-
cedure, the urban network model is condensed to an equivalent sys-
tem, with a reduced number of links and nodes through a system
aggregation technique (Ulanicki et al. 1996).

System reduction and aggregation techniques were first dis-
cussed by Hamberg and Shamir (1988) who presented a simplifi-
cation methodology using a stepwise combination of system
elements, and through a nonlinear continuum representation of
the system as a bundle. Anderson and Al-Jamal (1995) introduced
a methodology for the simplification of complicated hydraulic net-
works using a parameter-fitting approach. The layout of the final
simplified network was specified a priori. Pipe conductances and
demand distribution were then determined by maximizing the fit-
ness between the simplified and full system performances.

Ulanicki et al. (1996) presented a mathematical model for the
hydraulic aggregation of water-distribution systems. The approach
computes a network model equivalent to the original system with
fewer components by analytical elimination of system components.
The reduced nonlinear model preserves the nonlinearity of the
original model and approximates the original system within a wide
range of operating conditions.

Recent studies that implemented the method developed by
Ulanicki et al. (1996) include Shamir and Salomons (2008) who
developed a method for near-optimal online operation of an urban
water-distribution system by using a reduced model of the network
with optimization by a genetic algorithm. Perelman and Ostfeld
(2008) have also developed a similar methodology for a conjunc-
tive hydraulic and water quality model.

Methodology

Step 1: Off-Line Hydraulic Model Reduction

Appendix A summarizes the algorithm developed by Ulanicki et al.
(1996) that is used to create an equivalent reduced system. The al-
gorithm proceeds in a step-by-step elimination of pipes and nodes,
allocating the demand at the node being eliminated to its neighbor-
ing nodes. On the basis of reducing the algebraic system of mass
and energy conservation equations by eliminating variables using
Gauss elimination (Hammerlin and Hoffman 1991) all reservoirs,
pumps, valves, tanks, and critical nodes (e.g., nodes in which pres-
sure is monitored and nodes that represent significant water cus-
tomers) remain in the reduced network. The validity of the
system’s reduction is measured by the similarity of the connectivity
of the simplified system with that of the original system and its
hydraulic performance (e.g., similarity of pressure at nodes, water
levels at tanks, and/or pumps operation) over a wide range of op-
erating conditions.

Step 2: Predictor-Corrector Model

Step 2.1: Demand Multiplication Factors Prediction

The patterns in demand for hourly basis time steps are described by
the Demand Multiplication Factors (DMFs). In any time step, the
water consumption at a given node can be found by multiplying the
relevant DMF by the baseline demand.

There are thousands of water consumers with highly variable
and stochastic individual demand behavior to be estimated in a typ-
ical urban water system and only a relatively small number of direct
measurements are available. This creates an ill-posed, highly under-
determined calibration problem that may result with no solution at
all, no unique solution, or an unstable solution. This can be ad-
dressed by grouping the unknown parameters. The main advantage
of grouping is that the size of the problem is reduced. By reducing
the problem uncertainty, it is more feasible to predict aggregated
demands than individual ones.

In this study, the consumption nodes are grouped into demand
zones on the basis of a spatial analysis of the system and each group
of consumption nodes is assigned its own set of DMFs. The group-
ing is on the basis of the assumption that water customers in a given
area of the system will have the same characteristics and will not
need large adjustments to achieve calibration (Walski et al. 2003).

Thereafter, the demand zones DMFs are predicted using the
M5 Model-Trees algorithm (Quinlan 1992), with the inputs being
the calibrated DMFs from past hours t — 24, t — 25, t — 168, and
t — 169. These time cycles are based on the common approach
(Shang et al. 2006, Alvisi et al. 2007, and Ghiassi et al. 2008)
for the time-series forecasting of water demands that relies on direct
identification of patterns existing in the archived system data.

Water demand patterns usually follow a 24-h cycle. This cycle is
called the diurnal demand pattern and is used by many urban water
utilities to plan the system operation 1 day ahead (i.e., to schedule
pump operation and plan tank storage). Weekend demand patterns
often differ from weekday patterns and usually follow a 168-h
(1 wk) cycle.
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Persistence on hourly level (e.g., DMF from past hour 7 — 1)
was not considered in this study because the aim of this study
was to develop a decision-support tool that can be used to predict
the water system hydraulic states 24 h ahead at 1-h time-step in-
tervals. At each time step, the future DMFs at t + 24 hrs are pre-
dicted with the following inputs: DMFs at the current time step t;
DMFs att — 1; DMFs att — 144 (i.e., t — 168 4 24); and DMFs at
time step t — 145 (i.e., t — 169 + 24).

Taking into consideration persistence on hourly level (e.g. r — 1)
may improve the overall model results, but the primary drawback to
this approach is that it will limit the forecasting horizon to only 1 h
ahead, which will not be enough for forecasting the system re-
sponse to possible future operational scenarios that can range from
several hours to several days.

The prediction tool, M5 Model-Trees algorithm, presented by
Quinlan (1992) builds rule-based predictive models by using a
top-down induction approach. Preis et al. (2009a) provides a com-
prehensive description of the model-trees technique and, therefore,
only a short description of the method is presented here. A model
tree is fitted to a training data set by recursively partitioning the data
into homogeneous subsets on the basis of its attributes. The trai-
ning data set includes combinations of inputs (i.e., DMF,_jq9,
DMF,_ 43, DMF,_»5, and DMF,_,,) and outputs (i.e., DMF,).
The input training data set is recursively partitioned into smaller
and smaller fractions (‘tree leaves’) until the data at the groups
constitute relatively homogeneous subsets such that a linear re-
gression equation can explain the remaining variability of
each homogeneous subset (e.g., a-DMF,_;¢9 + - DMF,_ 63+
'Y . DMFZ—25 + 6 . DMFZ_24 +e= DMFt)

The overall set of linear regression models constructs the model
tree with all training cases being predicted by the tree leaves. To
simplify the tree structure, and thus to improve its ability to classify
new instances, the tree is then pruned from the bottom up by quan-
tifying the contribution of each attribute to the overall predicted
value and removing those attributes that add little to the model.
At the last stage, a smoothing process is performed to compensate
for the sharp discontinuities that will inevitably occur between ad-
jacent linear models at the leaves of the pruned tree.

The system hydraulic behavior is simulated by using the steady-
state mode of EPANET, with the predicted DMFs as inputs.
Possible simulation outputs are nodal pressures and pipe flow
rates.

Step 2.3: Online Hydraulic Data Integration

Pressure and/or flow rate measurements (from a set of sensors) are
inserted to the model at each time-step interval. This procedure is
related directly to the calibration Step 2.4, at which the integration
of the measurements in the model is been done by assimilating a

1. Predictor:
— M5 Model Trees
algorithm

vector of updated hydraulic records in the model at each subsequent
time-step interval (i.e., data is streamed continually to the model).

Step 2.4: DMF Correction/Calibration

A calibration problem is formulated and solved by using a genetic
algorithm, which is a heuristic combinatorial search technique that
imitates a set of evolutionary rules involving processes of selection,
crossover, and mutation. This is accomplished by creating a ran-
dom search technique that combines survival of the fittest with
a randomized information exchange.

The objective of the calibration process is to match the com-
puted and measured sensor-node data (pressure and/or flow rates),
taking into consideration possible noise in the measurements. In
this application, calibration is achieved by minimizing a modified
least squares of differences function known as the Huber function
(Huber 1973). The Huber function implementation to the hydraulic
state-estimation problem is described as follows:

1. The differences (i.e., residuals) between modeled and observed
pressures and flow rates at each time step, at sensor node i- are
defined as RY,_, and Rl.QJ:k, respectively

2. The Huber function of each residual R is defined as

2 \Mhit it

h|RP0rQ| 7%]12’ |RP0rQ| >h

it

FRI"C) =

it

{l(RPorQ)z’ |RP0rQ| Sh
it

where h = predefined value that represent the tolerance to noise
in measurements. For small residuals (|R| < &) that represent
low to zero values of noise in sensor measurements, the Huber
function minimizes the usual least-squares function (i.e.,
norm approximation); for large R (|R| > h) that represent high
values of noise in sensor measurements, it minimizes a linear
penalty function that is relatively insensitive to noise (i.e., /;
norm approximation)

3. The overall calibration problem objective function to be mini-
mized at each hydraulic time step ¢ is defined as

SRR+ S A(RD) @)
i=1 i=1

where i = sensor nodes (i.e., monitoring station) index; N b=
total number of pressure sensors; and Ny = total number of
flow rate sensors. In this application, the value of 4 in each
sensor node at each time-step is equal to the average of all pre-
vious time-steps’ sensor-node residuals multiplied by a factor
of 2.

Step 2.5: DMFs Delay
The calibrated DMFs are delayed for 24, 25, 168, and 169 h before
being used as inputs in the prediction model. The DMFs delay step

DMFs at t-24, t-25, t-168, t-169
(L,—' 4. Input delay
A

Corrected

Predicted

DMFsatt Simulated pressure and flow

rate at sensor node at t

3. Corrector:
Evolutionary
Optimization with a
i modified LS fit Qi
function

DMFs at t

Measured pressure and flow
rate at sensor node at t

2. Simulator:
—>1 EPAnet hydraulic
network solver

2. On-line measurements:
Hydraulic data integration from pressure
and flow rate sensors

Fig. 1. PC loop for DMFs prediction at the 7th time step
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O - Pressure sensor

Fig. 2. Network 2 full model with the sensor node locations

is used to synchronize the input data set of the model trees accord-
ing to the daily and weekly time cycles that are used in the predic-
tion process.

Steps 2.1 to 2.5 (Fig. 1) start at r = 169 h, after performing an
off-line calibration procedure for the first 168 h (1 week) of the
collected data; the aim of this off-line calculation is to generate ini-
tial values for the input data-set of the prediction model. No a priori
information is used during the first 168 h apart from constraints on
the minimum and maximum values of DMF (0.0-3.0, respectively)

that are based on prior publications by Walski et al. (2003) and
Jonkergouw et al. (2008).

The PC method is implemented for the reduced model of the
water-distribution network to meet the computational efficiency re-
quirements of this online procedure. The predicted water demands
are effectively the same in the reduced- and full-scale models.

Results

The PC approach developed in this study was tested against the
input data of Network 2 (Fig. 2) of the “Battle of the Water Sensor
Networks (BWSN): A Design Challenge for Engineers and Algo-
rithms” (Ostfeld et al. 2008). The network corresponds to an anony-
mous but real water-distribution system comprising 12,523 nodes,
two constant head sources, two tanks, 14,822 pipes, four pumps,
and five valves. The system was subject to highly variable demand
patterns over a period of 934 h (~39 days). Hydraulic simulations
for this system are considered valid for this entire duration. The
original EPANET input file was downloaded from the University
of Exeter Centre for Water Systems (ECWS) website: (www.exeter.
ac.uk/cws/bwsn). The current application assumes that continuous
in-line data are available from 30 pressure sensors (Fig. 2).

The nodal pressure records from these locations were generated
by the EPANET model by using real input data for the system. The
reservoirs and tank water levels were considered as known inputs.
The model was implemented in an online manner at which the syn-
thetic pressure measurements were streamed to the model at each
time-step interval.

BWSN Network 2 Aggregation Results

The method of Ulanicki et al. (1996) was used to create four re-
duced hydraulic models of the full network (Fig. 3). All the reduced
models include the system’s reservoirs, tanks, pumps, valves, pres-
sure monitoring nodes, and significant consumption nodes (i.e.,
significant nodes). Reduced model 1 is a reduced network com-
prised of the significant nodes and nodes connected to pipes with
diameter above 10 in. (total of 2,612 nodes and 3,748 links);

Reduced model 1:  +

2612 nodes -
3748 links

Reduced model 2:

909 nodes
1624 links

Reduced model 3: <

347 nodes a
1100 links |

Reduced model 4: 4,

90 nodes
528 links

Fig. 3. Four reduced hydraulic models of Network 2
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Table 1. Comparison of Sensor Nodes Pressure Data Over 168 h in the Reduced Model with That Calculated by the Full Model

Fraction of the total sample population (%)

Reduced model 1: (2,612 Reduced model 2: (909 nodes;
1,624 links)

nodes; 3,748 links)

Reduced model 3: (347
nodes; 1,100 links)

Reduced model 4: (90
nodes; 528 links)

Ranges of pressure data within 99.96
0.02 psi
within
0.04 psi
within 100
0.06 psi

within —
0.08 psi

within —

accuracy (psi)
99.98

0.1 psi
within —
0.2 psi

99.87 99.81 93.79
99.95 99.93 97.39
100 100 98.53
_ — 99.08
_ — 99.41
— — 100

Table 2. Reduction in the Hydraulic Simulation Computational Time

Hydraulic simulation computational time

Reduced model option reduction (%)

Reduced model 1: (2,612 nodes; 51
3,748 links)

Reduced model 2: (909 nodes; 77
1,624 links)

Reduced model 3: (347 nodes; 89
1,100 links)

Reduced model 4: (90 nodes; 528 93
links)

reduced model 2 is comprised of the significant nodes and nodes
connected to pipes with diameter above 14 in. (total of 909 nodes
and 1,624 links); reduced model 3 is comprised of the significant
nodes and nodes connected to pipes with diameter above 24 in.
(total of 347 nodes and 1,100 links); and reduced model 4 contains
only the significant nodes (total of 90 nodes and 528 links).

The validity of the four possible reductions of the full hydraulic
network is measured by the similarity of sensor nodal pressure data

over time in the reduced models with that calculated by the full
model (as will be shown in Table 1). The pressure data for the val-

idation tests was generated by using a representative sample of

hourly demand pattern for 168 h (1 week) of the utility operation.
The average range of operating pressures during this week was
20 psi. The results in Table 1 show that all of these reduced models
resemble the original system’s hydraulic performances with high
accuracy.

Table 2 summarizes the reduction in the hydraulic simulation
computational time as a percentage of the hydraulic simulation time
of the full network that equals to 10 s for extended period simu-
lation of 168 time steps on a DELL PC (2.66 GHz, 3.0 GB
of RAM).

Reduced model 3 was chosen for the online hydraulic simula-
tions as it has an equivalent accuracy rate in simulating pressure
values as the less reduced networks (e.g., models 1 and 2) and
its simulation time reduction is equivalent to the most reduced hy-
draulic model (e.g., reduced model 4). This aggregated network
contains 347 nodes and 1,100 pipes, and thereby the computation
time for the hydraulic simulation is reduced by 89%.

The analysis considers 20 demand zones [i.e., 20 groups of de-
mand nodes (see 20 indexed squares in Fig. 4)], which were chosen
on the basis of a spatial analysis of the system. It is expected that the

& - Reduced system

- Full system nodes

Fig. 4. Demand nodes groups (20 demand zones) on a plane grid of the system
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Table 3. Predictive Metrics for DMFs in 20 Demand Zones for r = 169 h

tor=934h

Demand zone CC (Aty) CC (Aty) CC (Ary)
1 0.72 0.83 0.88
2 0.69 0.81 0.86
3 0.71 0.86 0.93
4 0.76 0.86 0.92
5 0.73 0.85 0.92
6 0.68 0.82 0.90
7 0.71 0.83 0.88
8 0.75 0.83 0.90
9 0.74 0.85 0.89
10 0.68 0.82 0.87
11 0.73 0.86 0.92
12 0.72 0.84 0.88
13 0.72 0.85 0.91
14 0.75 0.86 0.92
15 0.74 0.84 0.89
16 0.69 0.80 0.86
17 0.70 0.82 0.88
18 0.72 0.84 0.91
19 0.73 0.84 0.90
20 0.71 0.86 0.92
Average: 0.72 0.84 0.90

consumption nodes in each zone will follow the same demand pat-
tern and each nodal base demand at each zone will be multiplied
with the same DMFs.

DMFs Prediction Accuracy

The total running time of the GA calibration process (i.e., with a
GA population of 120 decision variable strings and 100 GA iter-
ations) is less than 5 min and the total running time of the data-
driven prediction process is less than 5 s. The predictive ability
of the model can be evaluated with several prediction metrics.
In this application, the commonly used correlation coefficient
(CC) was applied to evaluate the fit between predicted (p) and

actual (a) DMF values. The CC (Eq. (3)) measures the degree of
correlation between predicted and actual values:

CC = Cov(p,a)/o,0, (3)

where Cov(p, a) = covariance between p and a; and o, o, = their
standard deviations.

A CC equal to zero value indicates that there is no correlation
between two parameters and values of 1 and —1 indicate total cor-
relation, i.e., dependence between two parameters. A CC of 1 in-
dicates that the maximum (or minimum) values of one parameter
coincide with the maximum (or minimum) value of the other
parameter; whereas a CC of —1 indicates that the maximum (or
minimum) value of one parameter coincides with opposite, the
minimum (or maximum) value of the other parameter.

The accuracy of the 20 zones DMF predictions starting at
t =169 h is summarized in Table 3. The improvement achieved
in the PC model predictions through experience, is also demon-
strated in the table by using three data segments of results at which
the data set from 7 = 169 to r = 934 h was divided into three time
segments (Ar; = 169-424 h; At, = 425-679 h; and Arz = 680
to t =934 h).

The relatively low CC values of Ar; (average of 0.72) are ex-
plained by insufficient input data for the model-trees predictor in
forecasting future DMFs. For the second (Ar,) and third (Az3) time
periods, with the increase in training data, there is an improvement
in the PC performances that is reflected in higher CCs (e.g., average
CC(t,) = 0.84 and average CC(t3) = 0.9).

Figs. 5-7 illustrate the improvement achieved in the PC model
predictions through experience, as demonstrated on one of the sys-
tem demand nodes (junction 7457, which is located in zone 3).
Fig. 5 shows a correlation coefficient, CC = (.71 for time period
At,. Figs. 6 and 7 show that with the increase in training data, there
is an improvement in the PC performances that is reflected in
higher CCs, CC = 0.84 and 0.91, for periods At, and Az, respec-
tively. These results highlight the importance of the prediction step
in the overall process that helps to initialize the calibration pro-
cedure from a better starting point, in the search space, at each cycle
of the online model, thus improving the calibration results over sub-
sequent time-step intervals.

25

period At1 (169 - 424 hrs): CC = 0.71

DMF

—o— Actual DMF
Predicted DMF

0

160 184 208 232 256 280

304 328 352 376 400 424

T (hrs)

Fig. 5. Comparison between predicted and actual DMFs for time period 1
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25

period At2 (425 - 679 hrs): CC = 0.86

DMF

—o— Actual DMF
Predicted DMF

0 T T T T T T T T T T
420 444 468 492 516 540 564 588 612 636 660
T (hrs)
Fig. 6. Comparison between predicted and actual DMFs for time period 2
3
period At3 (689 - 934 hrs): CC = 0.93 |
25 ‘
I
2
T8
= 15
o
14
0.5
=& Actual DMF
Predicted DMF
0 T T T T T T T T T T T T
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Conclusions

This study has presented and demonstrated a PC model for online,
hydraulic state prediction of urban water networks. The method
uses a statistical data-driven algorithm (M5 Model-Trees algo-
rithm) to estimate future water demands, whereas near real-time
field measurements are used to correct (i.e., calibrate) these pre-
dicted values online. The calibration problem is solved by using
genetic algorithms with a modified least-squares fit method (Huber
function) to account for noisy measurements.

The urban network model, which is comprised of over 10 thou-
sand pipelines and nodes, was reduced by using a water system—
aggregation technique thus allowing an efficient implementation of
the PC procedure. As shown in Table 2, the condensed network that
was chosen to resemble the full network contains only 347 nodes
and 1,100 pipes instead of 12,523 nodes and 14,822 pipes—
thereby the computation time for the hydraulic simulation is re-
duced by 89%.

The prediction step in the PC model helps initializing the evolu-
tionary optimization search procedure from a better starting point,
in the search space, at each cycle—thus improving the calibration
results over time. The initial values for the calibration parameters
are the predicted demand values at the previous time-steps and be-
cause the PC loop repeats itself at each subsequent time-step with
the forecasting model inputs being the corrected outputs of pre-
vious iterations, the calibration model performances improve over
time as shown in Table 3.

Ongoing research efforts are now focusing on the implementa-
tion of the proposed methodology for a large-scale, urban water
system using physical data from a recently installed in situ sensor
network. The ability to detect anomalies such as leakage and burst
events in real time will be evaluated by using an analysis of resid-
uals between predicted and observed pressures and flow rates at
different locations across the system.

Additional efforts will focus on developing an automated
method for demand zones selection that will incorporate graph
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algorithms and heuristic search techniques to find representative
clusters of consumption nodes within the complex topology of
water systems. The results of this procedure will be used for the
online hydraulic state estimation of the system.

Future work will also deal with testing different configurations
of the PC approach at which different optimization and prediction
methods will be used to replace the basic building blocks of the
current procedure (e.g., GA—Levenberg Marquardt method,
Cross-Entropy, Ant-Colony, or GRASP-heuristic instead of the ba-
sic GA that is currently used in the calibration process; and ANN,
Gaussian Process Regression, or Support Vector Machine instead
of the M5 Model-Trees algorithm that is currently used in the pre-
diction process).

Appendix A. Hydraulic Aggregation

The Ulanicki et al. (1996) algorithm proceeds in a step-by-step
elimination of pipes and nodes, allocating the demand at the node
being eliminated to its neighboring nodes. All reservoirs, pumps,
valves, tanks, and critical nodes (e.g., nodes in which pressure is
monitored and nodes that represent significant water customers)
remain in the reduced network. The validity of the system’s reduc-
tion is measured by the similarity of the connectivity of the sim-
plified system with that of the original system and its hydraulic
performance (e.g., similarity of pressure at nodes, water levels at
tanks, and\or pumps operation) over a wide range of operating con-
ditions. The method of Ulanicki et al. (1996) is based on reducing
the algebraic system of mass and energy conservation equations by
eliminating variables by using Gauss elimination (Hammerlin and
Hoffman 1991). The method involves the following stages:

Full Nonlinear Modeling of the System Hydraulics

The complete nonlinear mathematical description of the system hy-
draulics can be described by formulating mass conservation equa-
tion for each node (junction nodes and fixed demand nodes) of the
network in which its head is unknown:

AQ=gq (4)
And the energy balance equation for all links of the network is
ATh = Ah (5)

where A(nodes, links) = directed incidence matrix of the network
graph G(nodes, links) at which Ajj = +1if the pipe p; leaves node
n;, Ay = —1 if the pipe p; enters node n;, and O otherwise; Q =
vector of unknown flows in the links; / = vector of unknown nodal
heads; g = vector of known demands at the nodes; Ak = vector of
the head-losses along the links (i.e., pipes).

The relationship between the head loss and the flow in pipe, i,
can be expressed with the pipes component law by using the
Hazen-Williams coefficient:

Ql(Ahl) = g,(D” CHW” Ll)Ahll/el Slgn(Ah,) (6)

where g; = pipe conductance (i.e., a function of the pipe diameter
D;, the Hazen-Williams head-loss coefficient CHW,, and the pipe
length L;, with the constant ¢; = 1.852); sign(h;) = 1 if Ah; > 0;
and sign(h;) = —1 if Ah; <0

Linearization of the System’s Hydraulic Model

For a given operating point defined by the nodal head 4° and de-
mand ¢°, the linearized approximation describes the relationships
between small changes in nodal head 6/ and demand 6¢ around the

chosen operating point. After linearization, Eqs. (4) and (5) take the
following form:

G6h = 6q (7)

where G = A[dQ(Ah)/d(Ah)])AT is the symmetric Jacobian matrix
whose diagonal elements are linear pipe conductances. These linear
pipe conductances (i.e., g) can be evaluated by using Eq. (8),
and 6Ah and 6q = fluctuations in the nodal head and demand,
respectively.

The elements of the Jacobian matrix are computed by using

- 1 (L—1)
8ij = Zag,—,flAhul “

J

~ 1 19
8ij = —Zgi,j|Ahi,j|(”‘ )7

Vij

where g;; and g;; = linear and nonlinear conductances of a pipe
connecting nodes i and j, respectively; g; ; = linearized node, i, con-
ductance (i.e., the sum of the linearized pipe conductances of the
pipes that connected to the node); and Ah;; = pipe’s head loss.

The linear system of equations [Eq. (7)] describes head-demand
relationship around an operating point.

Linear Model Reduction Using Gauss-Elimination
Procedure

Following the linearization process, the network is then condensed
by applying Hammerlin and Hoffman’s Gauss-elimination process
(1991) at which node, i, is removed from the network by eliminat-
ing the corresponding equation (equation, i). The demand of that
node, dg;, is redistributed among other nodes connected to nodei,
proportionally to the conductance of the connecting pipes. The con-
necting pipes of the removed node are removed as well, and new
linear conductances and nodal demands are calculated for the re-
maining elements of the network.

Reduced Nonlinear Model Recovery from the Reduced
Linear Model

At the last stage of the aggregation procedure, the reduced nonlin-
ear model is retrieved by using the relationships formulated in
Eq. (8). The aggregated model contains fewer nodes and links,
forms a new network topology, and resembles the hydraulic perfor-
mance of the original system with high accuracy as is shown in the
“Results” section.
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