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ABSTRACT

It is not currently known if it is possible to accurately form a synthetic aperture radar image from N data
points in provable near-linear complexity, where accuracy is defined as the �2 error between the full O(N2)
backprojection image and the approximate image. To bridge this gap, we present a backprojection algorithm
with complexity O(log(1/ε)N log N), with ε the tunable pixelwise accuracy. It is based on the butterfly scheme,
which works for vastly more general oscillatory integrals than the discrete Fourier transform. Unlike previous
methods this algorithm allows the user to directly choose the amount of acceptable image error based on a
well-defined metric. Additionally, the algorithm does not invoke the far-field approximation or place restrictions
on the antenna flight path, nor does it impose the frequency-independent beampattern approximation required
by time-domain backprojection techniques.

1. INTRODUCTION

1.1 Setup

Synthetic-aperture radar (SAR) is an imaging modality that produces images of a scene from measurements of
scattered electromagnetic waves. Pulses of microwaves are sent from an antenna aboard an airplane or a satellite,
scattered by objects on the surface of the Earth, and recorded by the same (or a different) antenna. The imaging
problem consists in recovering a reflectivity profile that explains the recorded pulse-echo data.

• Image space is indexed by x = (x, y) ∈ R2, the horizontal coordinates. The scatterers are assumed to be
at a known elevation z = h(x, y), so we have the embedding xT = ((x, y), h(x, y)) ∈ R

3. The reflectivity
profile is a function m(x) whose magnitude indicates the strength of the reflection by the object at xT , as
an impedance contrast for instance.

• Data space is indexed by ω, the frequency of the recorded signal, and s, a parameter that defines the
position of the antenna through a function γ(s) ∈ R

3. Data are given by a function d(ω, s), whose value
is the result of a measurement of the strength of the recorded signal at angular frequency ω = 2πf , when
the antenna is at γ(s).

Under very general and widely accepted assumptions∗, this imaging map is an oscillatory integral. We
make three additional but unessential assumptions that can easily be removed: 1) monostatic SAR in which
the transmitter antenna is also the receiver, 2) no consideration of the orientation of the antenna, and 3) the
phase-center approximation, in which the antenna is far enough from the targets that it is considered as a point.
Imaging is then done by some “generalized” filtered backprojection:

m(x) =

∫
Ω

e−2iω|γ(s)−xT |/cB(ω, s,x)d(ω, s) dsdω, (1)

∗Single scattering in the Born approximation, scalar wavefields, no dispersion, no attempt at addressing three-
dimensional effects such as shadowing and layover, start-stop setup, no attempt at estimating target motion. This is
the setup in Cheney and Borden.12
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where B(ω, s,x) is an amplitude function, and xT = (x1, x2, h(x1, x2)) is the target point. We will comment
later on the backprojection interpretation. See Cheney and Borden12 for the justification of this formula.

Here Ω is the acquisition manifold, normally a rectangle [ωmin, ωmax]×[s1, s2]. The amplitude factor B(ω, s, x)
is chosen so that the formula above is a good approximate inverse to the forward/modeling/reprojection operator

d(ω, s) =

∫
e2iω|γ(s)−xT |/cA(ω, s, x)m(x) dx1dx2. (2)

In this integral, the amplitude factor A(ω, s, x) is

A(ω, s, x) = −ω2P (ω)
J(ω, ̂xT − γ(s))W (ω, ̂xT − γ(s))

(4π|xT − γ(s)|2) ,

where P (ω) is the transfer function of the pulse, and J and W are the respective antenna beam patterns
at transmission and reception. The hat over a vector denotes unit length normalization. The corresponding
amplitude B for imaging is cumbersome to write precisely without introducing the so-called Stolt change of
variables; suffice it to say that

B =
χ

AdB
,

where A is the amplitude above, dB is the so-called Beylkin determinant, and χ is an ad-hoc cutoff that prevents
division by zero.

The contribution of this paper is to propose a fast and accurate way of evaluating oscillatory integrals such
as (1). We start by reviewing the existing algorithms and their range of applicability.

1.2 Existing algorithms

Denote by Δω = ωmax − ωmin the bandwidth of the measurements. For simplicity, we will assume that the
bandwidth is on the same order of magnitude as the representative “carrier” frequency ω0 � (ωmin + ωmax)/2,
so we have broadband measurements.

The Nyquist-Shannon sampling rate should be respected both in image space and in data space.

• In image space, we expect variations on the order of the wavelength c/ω0 in both directions†, and the scene
to be imaged has sidelength L, so the total number of pixels is proportional to L2ω2

0/c
2.

• In data space, a frequency grid spacing of O(c/L) is called for to access distances on the order of L, so we
need O(ω0L/c) samples. The distance between pulses should be on the order of the wavelength O(c/ω0) to
attain the same wavelength resolution on the ground, so we need O(ω0L/c) samples in slow time as well.
So the total number of data points is proportional to L2ω2

0/c
2.

The complexity of specifying either a dataset, called N , is therefore proportional to the complexity of specifying
an image, and increases quadratically in the frequency ω0:

N = O(L2ω2
0/c

2).

It is the scaling of the complexity of the imaging algorithm as a function of this parameter N which is of
interest. We refer to direct summation as the naive algorithm, with complexity O(N2).

Traditionally, it is only in contexts where the problem formulation is simplified that designing faster algorithms
is possible. Two levels of simplification are popular in the literature:

†This can be refined by considering range direction and cross-range direction, in the case of narrowband measurements.
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1. The separability assumption B(ω, s, x) = P (ω)Q(s, x). This assumption only makes sense if the antenna
beam patterns are independent of frequency. In this setting, we may evaluate equation (1) by the following
sequence of steps: for each s, multiply the data by 1/P (ω), perform a Fourier transform in ω evaluated at
2|γ(s) − xT |/c, and multiply by Q(s, x). Iterate and sum over s. This procedure results in an algorithm
of complexity O(N3/2). It is called filtered backprojection (proper), because it can be seen as integration

along circles of equal range when expressed as acting on data d̂(t, s) of time t. One would also speak of
a generalized Radon transform.3 Further work can go into simplifying the computation of the remaining
sum over s to lower the overall complexity, like in the remarkable work of Ulander et al.30 on multiscale
“beamforming.” Ulander obtained a O(N logN) algorithm, but within the further limitation of an omni-
directional antenna, flat topography, and that deviations from a linear track are treated by a perturbation
argument. It is also unclear that a pointwise or mean-square error estimate would hold for this algorithm.

2. The far-field assumption ‖γ(s)− xT ‖ � ‖γ(s)‖ − x̂T · γ(s). This simplification makes sense if the target is
so far from the antenna that the circles of equal distance can be treated as straight lines. In this setting
equation (1) becomes a 2D Fourier transform, albeit not on a uniform grid. In the time domain, we would
speak of a Radon transform instead of a generalized Radon transform. The USFFT method of Dutt and
Rokhlin15 and its variants4,8 apply to this problem and yield algorithms of complexity O(N logN). In this
setting the Polar Format Algorithm (PFA),31 which interpolates the data from polar raster onto a rectilinear
grid, can be a reasonable approach. A comparison between PFA, USFFT, and NUFFT techniques for SAR
is given in Andersson et al.1 Backprojection algorithms of a different kind have also been designed in the
time domain for this task: this includes work by Basu and Bresler,2 and Nilsson,22 which can be seen as
special cases of Ulander’s work.30

In contrast, this paper presents a fast “butterfly” algorithm useful for much more general radar setups. None
of the assumptions above are made; only minimal smoothness properties of the functions γ(s) and B(ω, s, x) are
required. In fact, the butterfly scheme is intrinsically robust and we anticipate that it would easily accommodate
refinements such as multistatic SAR (several sources and antennas), or taking into account the orientation of
the antenna via the pitch, roll and yaw angles as measured by the Inertial Navigation System (INS).

The main idea behind the butterfly scheme is that of low-rank interaction. This idea conveys a very important
and general principle of quantification of the “information content” in high-frequency scattering.

1.3 Low-rank interactions

The phase center of an antenna is the point γ(s) introduced earlier, about which the antenna beam patterns are
constructed as functions of angular frequency ω direction x̂− γ. It draws its name from the fact that a more
accurate representation of the radiation field from an antenna Γ is (we drop the s dependence of γ for the time
being.)

u(x, ω) =

∫
Γ

eik|x−y|

4π|x− y|j(y, ω) dSy,

� eik|x−γ|

4π|x− γ|
∫
Γ

e−ik(̂x−γ)·yj(y, ω) dSy,

=:
eik|x−γ|

4π|x− γ|J(ω, x̂− γ) (ω = kc),

hence γ should be chosen as a good “center” for the approximately circular phase lines of u(x, ω). Here j(y, ω) is
a scalar counterpart of the current density on the antenna‡. To pass to the second line the well-known far-field
approximation |x−γ| � |y−γ| was used. While the full surface integral over the antenna is impractical for radar
imaging, this phase center reduction has the advantage of presenting the antenna beam patterns as functions on
the sphere of outgoing directions. (A similar argument can be made for the receiving antenna.)

‡We apologize in passing to the engineers who are used to j =
√−1.
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Another way of reducing the complexity of the integral, without making the far-field approximation, consists
in finding several equivalent sources γi, with weights Ji; as well as several regions A such that

u(x, ω) =
∑
i

eik|x−γi|

4π|x− γi|Ji +O(ε), x ∈ A.

Here, the error is under control and denoted ε. In other words, if we are willing to restrict ourselves to a certain
region A of space, how many “phase centers” γi indexed by i are really needed to synthesize the radiation field
to prescribed accuracy? Ultimately, a low-order equivalent-source approximation is attainable because of the
low-rank factorization property of the Green’s function when y is restricted to the antenna and x is restricted
to the box A.

The underlying fundamental property of Green’s functions is that factorization is guaranteed to work, with
a low rank independent of ω, if the following adimensional number is low,

F =
diam(Γ)× diam(A)

λ× d(Γ,A)
.

We may call F an “algorithmic Fresnel number” in analogy with the discussion of Fraunhofer vs. Fresnel
diffraction in physics textbooks. Its value should be comparable to 1 or lower for the low-rank property to hold.
Here diam(Γ) is the antenna diameter, diam(A) is the largest diagonal of the box A, λ = 2π/ω is the wavelength,
and d(Γ,A) is the distance between the antenna and the box. Similar ideas appear in work of Michielssen and
Boag,21 Engquist and Ying,16 Candès, Demanet, and Ying,10 Rokhlin,24 Brandt,6 and likely many others.

1.4 The butterfly algorithm

The butterfly algorithm is a systematic way of leveraging low-rank interactions in the scope of a fast algorithm
for oscillatory integrals. The pulse-echo data now replaces the antenna as a virtual “source” of radiation, so the
physical problem is different from that presented in the previous section, but the ideas remain the same.

The butterfly algorithm originates from work of Michielssen and Boag,21 and has recently been popularized
in a string of papers by Rokhlin and O’Neil,23 Ying,33 Candès, Demanet and Ying10 and Tygert.29 Note that the
algorithmic variant presented in our earlier work10 is particularly well suited for the application to SAR imaging:
unlike ONeil and Rokhlin23 it does not have a precomputation step. The butterfly is a natural descendant of, or
variant of, the fast multipole method18,24 for high-frequency scattering, in the sense that low-rank interactions
are adequate “summaries” that serve as a substitute for multipole expansions.34

If we let y = (ω′, s), with ω′ = ω/ω0 a rescaled frequency variable, then we may succinctly write the imaging
operation as

m(x) =
∑
y

K(x, y)d(y), (3)

with K(x, y) the oscillatory kernel. Low-rank interactions come into play through the problem of finding a good
approximation

m(x) =

r∑
j=1

K(x, yj)δj +O(ε), (4)

where (yj , δj) are equivalent sources. In order for the number r of terms to be independent of the carrier frequency
ω0 (or N ∼ ω2

0), it suffices to take x ∈ A, and to restrict the sum to y ∈ B, in such a way that the “algorithmic
Fresnel number” is small, i.e.

diam(A)× diam(B) ≤ H

ω0
, (5)

for some constant H that has the dimension of a length, with value comparable to the altitude of the antenna.
This property of r was established in earlier work of two of the authors, in the more general setting of Fourier
integral operators.10 It holds for SAR imaging if the trajectory γ(s) is smooth, i.e., a C∞ function of s.
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If B would cover the whole data space, we would be in presence of the full sum. In that case the range of
validity of a formula like (4) would be restricted to very small boxes A – of diameter O(1/ω0) – and to each
such small box A would correspond a given set of equivalent sources (yj , δj). If the information of the (yj , δj)
were available for each small box A, then we would be in presence of a very fast algorithm: a superposition of
r = O(1) terms for each of the O(ω2

0) = O(N) boxes in A would suffice for imaging. This is unfortunately not
the case.

The butterfly scheme is a way of computing these equivalent sources by playing on the sizes of A and B in
a multiscale manner. It is possible to tile model and data space with boxes that satisfy the scaling (5), and
consider the low-rank interactions between any pair of such boxes. It is advantageous to generate such tilings by
means of quadtree partitions of model and data space. See Figure 1.4, where data space (y) is on the right, and
model space (x) on the left.

Bc

Ap B

A

2

1

3

4

1

2

3

4

Figure 1. The two quadtrees of the butterfly scheme.

For instance,

• The fine boxes at the leaves (bottom) of the tree on the right can be paired with a large box at the root
(top) of the tree on the left. The pairing corresponds to the dashed line labeled “1”. If the boxes B are
small enough (1/ω0 by 1/ω0), then the scaling (5) is respected. This choice of tiling corresponds to sums
(4) restricted to only a few terms: it is straightforward to compute directly, without the δj . But it is not
very useful since we want the whole sum.

• On the other hand, the large box B at the root of the tree can be paired with small boxes A at the leaves.
This pairing goes by the number “4”. It corresponds to a low-rank view of the whole sum (3), only valid in
certain very small sets A on the x-side. It is exactly what we are interested in, but the δj in the expansion
are unknown to us.

The core of the butterfly algorithm is the ability to update low-rank interactions in a multiscale fashion, down
the left tree and up the right tree, by respectively grouping and subdividing boxes. In the picture this allows to
iteratively obtain the δj at all scales, from the pairing “1” to the pairing “4”.

The details of the butterfly scheme concern the choice of yj in (4), how to realize the low-rank expansion
as an interpolation problem, and how to update the δj weights from one scale to the next. These details are
presented in Section 2, and follow from our previous work in Candès, Demanet, and Ying.10 Let us mention that
it is the “Chebyshev interpolation” version of the butterfly algorithm which is used in this paper; it is unclear
that the other variants would be equally well suited for SAR imaging.

We now state the rigorous performance guarantee enjoyed by the butterfly algorithm, which was missing in
our previous work.10

1.5 Accuracy and complexity bounds

In this paper, like in Candès, Demanet, and Ying,9,10 we choose the radius of convergence of Taylor expansions as
a measure of smoothness of real-analytic functions. In one spatial dimension, a function f(x) is (Q,R)-analytic
if it is infinitely differentiable and its derivatives obey

|f (n)(x)| ≤ Qn!R−n.
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The number R is simply a lower bound on the radius of convergence of Taylor expansions of f , uniform over all
points where f is considered. We say that a function f(x) of x ∈ R

2 is (Q,R)-analytic if its directional derivative
along any line obeys the same estimate: for any unit-length d,

|(d · ∇)nf(x)| ≤ Qn!R−n.

Our main assumption on the kernel K(x, y) is that it can be written in Fourier integral form as a(x, y)eiMφ(x,y),
with the amplitude a and the phase φ both analytic in x and y separately. Manifestly, the SAR kernel of equation
(1) is of the form aeiMφ with M = ω0 = O(

√
N).

The following complexity result depends on N and ε and its dependence on Q and R will not be explicitly
calculated.

Theorem 1.1. Assume that the flight path γ(s) and the amplitude B(ω, x, s) are both real-analytic functions of
their arguments. Write y = (ω/ω0, s), and

K(x, y) = a(x, y)eiMΦ(x,y).

Then the variant of the butterfly method presented in this paper, which uses Chebyshev interpolation, provides
an approximation ũ(x) =

∑
K̃(x, yj)fj obeying

‖ũ− u‖∞ ≤ ε
∑
j

|fj |,

in exact arithmetic, and in (sequential) algorithmic complexity

C(Q,R)×max{log4(1
ε
), (log4 N) log4(C logN)} ×N logN.

The proof will be supplied in a forthcoming paper. Note that the above theorem contains no statement about
the discretization error; only the �∞ discrepancy between the result of naive summation and the result of the
fast algorithm is controlled.

2. THE BUTTERFLY ALGORITHM FOR OSCILLATORY INTEGRALS

Let us denote by X the set of all x (positions) indexing model space, and by Y the set of of all y (normalized
frequencies and slow times) indexing data space. From the discussion above, it is clear that both |X| and |Y |
are on the order of N = O(M2). By rescaling the geometry if necessary, we can assume that X and Y are
both supported in the unit square [0, 1]2. In this section, unlike in the numerical code, we do not worry about
the values of numerical constants: for brevety only the asymptotic behavior in terms of M is retained. The
computational problem is then to approximate u(x) defined by

u(x) =
∑
y∈Y

a(x, y)eiMΦ(x,y)f(y).

We now give a brief discussion of the butterfly algorithm for computing this oscillatory summation. The pre-
sentation follows closely to the one of Candès, Demanet, and Ying10 and the new contribution is an easy way to
address the amplitude function a(x, y).

Suppose that A and B are two square boxes in [0, 1]2, while A is considered to be a box in the X domain
and B in the Y domain. We denote their centers, respectively, by x0(A) and y0(B); and the length of their
diagonals, respectively, by diam(A) and diam(B). The most important component of the butterfly algorithm is
the existence of a low-rank approximation for the kernel

∣∣∣∣∣a(x, y)eiMΦ(x,y) −
rε∑
t=1

αAB
t (x)βAB

t (y)

∣∣∣∣∣ ≤ ε (6)
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for x ∈ A and y ∈ B when diam(A)diam(B) � 1/M . Define uB(x) to be the partial sum restricted to, or
“potential generated by”, y ∈ B. The benefit of the low-rank approximation is that it gives rise to a compact
representation for uB(x) when restricted to x ∈ A:

uB(x) �
rε∑
t=1

αAB
t (x)

⎛
⎝∑

y∈B

βAB
t (y)f(y)

⎞
⎠ ∀x ∈ A.

Therefore, any coefficients {δAB
t }t obeying

δAB
t �

∑
y∈B

βAB
t (y)f(y), (7)

offer a good approximation to uB(x) for x ∈ A.

In order to find a low-rank approximation, we introduce the so-called residue phase associated with the pair
(A,B)

RAB(x, y) := Φ(x, y)− Φ(x0(A), y)− Φ(x, y0(B)) + Φ(x0(A), y0(B)), (8)

Under the condition that Φ(x, y) is real-analytic both in x and in y, and diam(A)diam(B) � 1/M , it is easy to
show that RAB(x, y) = O(1/M) for x ∈ A and y ∈ B. As a result, it was shown in10 that rε in equation (6) can
be bounded by a constant times log4(1/ε). This bound can be further refined to a constant times log2(1/ε). The
point is that those bounds on rε are independent of M , and only depend weakly on the desired accuracy.

One way to realize such low values of rε, as explained in Candès, Demanet, and Ying,10 is to use polynomial
interpolation in x when diam(A) � 1/

√
M and in y when diam(B) � 1/

√
M . The interpolation points are placed

on tensor Chebyshev grids for efficiency. For some small positive integer q, the Chebyshev grid of order q on the
centered unit interval [−1/2, 1/2] is defined by

{
zj =

1

2
cos

(
jπ

q − 1

)}
0≤j≤q−1

.

The Lagrange basis polynomials Li(z) of this grid are given by

Lj(z) :=
∏

0≤k≤q−1,k �=j

z − zk
zj − zk

.

By taking tensor products, we can define the two dimensional Chebyshev grid {(zt1 , zt2)} for the centered unit
square and its Chebyshev basis functions

Lt(z1, z2) := Lt1(z1) · Lt2(z2), for t = (t1, t2).

For a general square box B in the Y domain, its Chebyshev grid can be defined similarly by appropriate scaling
and shifting. We denote this grid by {yBt } and its Lagrange basis functions for its Chebyshev grid by {LB

t }.
When diam(B) � 1/

√
M , Lagrange interpolation on the grid adapted to B provides the approximation

a(x, y)eiMRAB(x,y) �
∑
t

a(x, yBt )eiMRAB(x,yB
t ) LB

t (y).

Similarly, for a box A in the X domain, its Chebyshev grid and Lagrange basis functions are denoted by {xA
t }

and {LA
t }, respectively. When diam(A) � 1/

√
M , Lagrange interpolation on the grid adapted to A provides the

approximation

a(x, y)eiMRAB(x,y) �
∑
t

LA
t (x)a(x

A
t , y)e

iMRAB(xA
t ,y)

The number q of Chebyshev points grows logarithmically in the error level ε, resulting in rε = q2 = O(log2 1/ε)
as announced earlier. The section on numerical experiments contains more details on the choice of q vs. accuracy.
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In practice, it is advantageous to take q with values ranging from 5 to 10 in order to obtain “a few” to “several”
digits of accuracy.

To pass from low-rank approximations of a(x, y)eiMRAB(x,y) to those for the true kernel a(x, y)eiMΦ(x,y), we
restore the other factors in (8). When diam(B) � 1/

√
M , this gives

a(x, y)eiMΦ(x,y) �
∑
t

(
a(x, yBt )eiMΦ(x,yB

t )
)(

e−iMΦ(x0(A),yB
t )LB

t (y)e
iMΦ(x0(A),y)

)

In terms of the earlier notations,

αAB
t (x) = a(x, yBt )eiMΦ(x,yB

t ), βAB
t (y) = e−iMΦ(x0(A),yB

t )LB
t (y)e

iMΦ(x0(A),y), (9)

and the expansion coefficients {δAB
t }t for the potential should obey the condition

δAB
t �

∑
y∈B

βAB
t (y)f(y) = e−iMΦ(x0(A),yB

t )
∑
y∈B

(
LB
t (y)e

iMΦ(x0(A),y)f(y)
)
. (10)

Similarly when diam(A) � 1/
√
M , we have

a(x, y)eiMΦ(x,y) �
∑
t

(
eiMΦ(x,y0(B))LA

t (x)e
−iMΦ(xA

t ,y0(B))
)(

a(xA
t , y)e

iMΦ(xA
t ,y)

)

In terms of the earlier notations,

αAB
t (x) = eiMΦ(x,y0(B))LA

t (x)e
−iMΦ(xA

t ,y0(B)), βAB
t (y) = a(xA

t , y)e
iMΦ(xA

t ,y), (11)

and the expansion coefficients {δAB
t } should obey

δAB
t �

∑
y∈B

βAB
t (y)f(y) =

∑
y∈B

a(xA
t , y)e

iMΦ(xA
t ,y)f(y) = uB(xA

t ). (12)

Combining these expansions with the general structure of the butterfly scheme, we arrive at the following
algorithm. It is a slight modification of the one proposed in Candès, Demanet, and Ying.10

1. Preliminaries. Construct two quadtrees TX and TY for X and Y . Each leaf node of TX and TY is of size
(a constant times) 1/M × 1/M . We denote the number of levels of TX and TY by L.

2. Initialization. Set A to be the root of TX . For each leaf box B ∈ TY , construct the expansion coefficients
{δAB

t , 1 ≤ t ≤ rε} from (10) by setting

δAB
t = e−iMΦ(x0(A),yB

t )
∑
y∈B

(
LB
t (y)e

iMΦ(x0(A),y)f(y)
)
. (13)

3. Recursion. For each � = 1, 2, . . . , L/2, construct the coefficients {δAB
t , 1 ≤ t ≤ rε} for each pair (A,B) with

A at level � and B at the complementary level L− � as follows: let Ap be A’s parent and {Bc, c = 1, 2, 3, 4}
be B’s children. For each child, we have available from the previous level an approximation of the form

uBc(x) �
∑
t′

eiMΦ(x,yBc
t′ )δ

ApBc

t′ , ∀x ∈ Ap.

Summing over all children gives

uB(x) �
∑
c

∑
t′

eiMΦ(x,yBc
t′ )δ

ApBc

t′ , ∀x ∈ Ap.

Since A ⊂ Ap, this is also true for any x ∈ A. This means that we can treat {δApBc

t′ } as equivalent sources
in B. As explained below, we then set the coefficients {δAB

t }t as
δAB
t = e−iMΦ(x0(A),yB

t )
∑
c

∑
t′

LB
t (y

Bc

t′ )eiMΦ(x0(A),yBc
t′ ) δ

ApBc

t′ . (14)
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4. Switch. The interpolant in p may be used as the low-rank approximation as long as � ≤ L/2 whereas the
interpolant in x is a valid low-rank approximation as soon as � ≥ L/2. Therefore, at � = L/2, we need
to switch representation. Recall that for � ≤ L/2 the expansion coefficients {δAB

t , 1 ≤ t ≤ rε} may be
regarded as equivalent sources while for � ≥ L/2, they approximate the values of the potential uB(x) on
the Chebyshev grid {xA

t , 1 ≤ t ≤ rε}. Hence, for any pair (A,B) with A at level L/2 (and likewise for B),
we have δAB

t � uB(xA
t ) from (12) so that we may set

δAB
t =

∑
s

a(xA
t , y

B
s )eiMΦ(xA

t ,yB
s ) δAB

s (15)

(we abuse notations here since {δAB
t } denotes the new set of coefficients and {δAB

s } the older set).

5. Recursion (end). The rest of the recursion is analogous. For � = L/2 + 1, . . . , L, construct the coefficients
{δAB

t , 1 ≤ t ≤ rε} as follows. With {αAB
t } and {βAB

t } given by (11), we have

uB(x) =
∑
c

uBc(x) �
∑
t′,c

α
ApBc

t′ (x)
∑
p∈Bc

β
ApBc

t′ (y)f(y) �
∑
t′,c

α
ApBc

t′ (x)δ
ApBc

t′ .

Hence, since δAB
t should approximate uB(xA

t ) by (12), we simply set

δAB
t =

∑
t′,c

α
ApBc

t′ (xA
t )δ

ApBc

t′ .

Substituing αAB
t with its value gives the update

δAB
t =

∑
c

eiMΦ(xA
t ,y0(Bc))

∑
t′

(
L
Ap

t′ (xA
t )e

−iMΦ(x
Ap

t′ ,y0(Bc))δ
ApBc

t′

)
. (16)

6. Termination. Finally, we reach � = L and set B to be the root box of TP . For each leaf box A of TX , we
have

uB(x) �
∑
t

αAB
t (x)δAB

t , x ∈ A,

where {αAB
t } is given by (11). Hence, for each x ∈ A, we set

u(x) = eiMΦ(x,y0(B))
∑
t

(
LA
t (x)e

−iMΦ(xA
t ,y0(B))δAB

t

)
. (17)

Most of the computation is in (14) and (16). Because of the tensor product structures, the computations in
(14) and (16) can be accelerated by performing Chebyshev interpolation one dimension at a time, reducing the
number operations from O(q4) to O(q3), where q is the size of the Chebyshev grid in each dimension. As there
are at most O(M2 logM) pairs of boxes (A,B), the recursion steps take at most O(q3M2 logM) operations.
The cost of (15) is of order O(q4M2) operations since for each pair (A,B) on the middle level a q2 × q2 linear
transformation is required. Hence, the overall complexity estimate of this algorithm O(q3M2 logM + q4M2) =
O(q3N logN + q4N). For brevity we bound this further as O(q4N logN). For the purpose of the rigorous error
estimate, q depends on M and 1/ε logarithmically.

3. NUMERICAL RESULTS

3.1 Spotlight SAR, the Gotcha dataset

In this section we demonstrate the technique on the Air Force Research Laboratory’s publicly-released “Volu-
metric SAR Data Set, Version 1.0”.11 The imaging operator we applied is as follows,

I(i1, i2) =
∑

(j1,j2)∈J

eiΦ(i1,i2,j1,j2) A(i1, i2, j1, j2)D(j1, j2), (i1, i2) ∈ I, (18)

where
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• I, J are two subsets of [0, 1]2,

• D is the phase history data, D(j1, j2) = d(ω(j1), γ(j2)),

• the phase Φ(i1, i2, j1, j2) =
2
cω(j1) (||γ(j2)− x(i1, i2)|| − r0(j2)), and

• the amplitude A(i1, i2, j1, j2) = ||γ(j2)− x(i1, i2)||2w1(j1)w2(j2),

• γ the flight path in R
3,

• ω spans the angular frequency range of the LFM chirp (in radians per second),

• r0 the range to scene center from the antenna location (its presence is only due to some preprocessing that
needs to be undone),

• and with w1, w2 numerical weights allowing for irregularly sampled data.

The butterfly algorithm needs to evaluate A,D and Φ at arbitrary points (j1, j2) in between sample points,
so we interpolate the data d, γ, r0, ω; in these experiments we made use of the cubic spline interpolants of the
GNU Scientific Library. The scene is defined by {x(i1, i2) : (i1, i2) ∈ [0, 1]2}, and may be a general surface in R

3

parameterized by i1, i2; here we chose x(i1, i2) = ((b1 − a1)i1 + a1, (b2 − a2)i2 + a2, 0), with a1, b1, a2, b2 defining
the boundary of the scene.

Figure 2. SAR images formed from the Gotcha data set, using the butterfly algorithm with
√
N = 210, and 4 degrees of

azimuthal range, rendered on a logarithmic scale. Left image: q = 4, relative root-mean-square (RMS, �2) error of 3.2e-2,
speedup of 402. Right image: q = 17, relative RMS error of 1.4e-3, speedup of 3.0. The image on the right is visually
indistinguishable from that formed by performing direct summation.

The total number of available frequency samples is Mω = 426. In the spotlight configuration, the position
γ(s) of the aircraft is indexed by the “azimuthal range” s. The latter is an angle: it is first partitioned into 360
1-degree angular sectors, and within each sector by 118 angular samples. The images above are obtained by using
only 4 contiguous sectors. We let Mγ the total number of angular samples; in the example above, Mγ = 472.

The current version of the butterfly algorithm handles square domains and boxes. A rectangular data space
Y or image space X can easily be accommodated by stretching and resampling the dataset in the direction of
least number of samples. This results in a total number of samples given by

N = (max{Mω,Mγ})2 .
The two tuning parameters are q, the number of Chebyshev points per dimension per square, and L the depth
of the tree. The slight oversampling mentioned above — when Mω, Mγ are larger than M — alleviates the need
for considering values of q greater than 10 or 15 in practice. L should be chosen in such a way that each leaf
box in the data domain Y contains fewer than q2 points, and such that the size of the leaf boxes in image space
X matches the desired level of resolution.
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4. CONCLUSION

The ideas of the butterfly scheme are of course very reminiscent of the fast multipole method (FMM).18,24

The authors believe that the butterfly algorithm is the proper way to generalize FMM in an all-purpose way
to settings where high-frequency oscillations are present. “All-purpose” means robustness, and applicability
to many problems, but it also means that other numerical methods may be faster for certain problems with
structure. The fast Fourier transform, and the USFFT,15 are examples of algorithms which are faster than the
butterfly, but which only work for bilinear phases. The table below summarizes ballpark complexity figures and
ranges of applicability for the FFT, the USFFT of Dutt and Rokhlin, and the Chebyshev butterfly (B-Cheb)
algorithm presented here. The figures are for the one-dimensional transforms, so the complexity multiplier should
be squared for the two-dimensional transforms.

Kernel Algorithm Complexity vs. FFT

eixk FFT 1

eixjkn USFFT 6

a(x, k)eiφ(x,k), B-Cheb 30
φ(x, αk) = αφ(x, k)

The variable k is supposed to take on large values, on the order of N , in all cases. By xjkn, it is meant xk
sampled unevenly. The relation φ(x, αk) = αφ(x, k) (for α > 0) is a homogeneity condition that the butterfly
requires, or very nearly so, for operating at the N logN complexity level. It is ubiquitous in applications to wave
propagation.
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