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Efficient Traversal of Beta-Sheet Protein Folding

Pathways Using Ensemble Models

SOLOMON SHENKER,1 CHARLES W. O’DONNELL,2 SRINIVAS DEVADAS,2

BONNIE BERGER,2,3 and JÉRÔME WALDISPÜHL1,2

ABSTRACT

Molecular dynamics (MD) simulations can now predict ms-timescale folding processes of
small proteins; however, this presently requires hundreds of thousands of CPU hours and is
primarily applicable to short peptides with few long-range interactions. Larger and slower-
folding proteins, such as many with extended b-sheet structure, would require orders of
magnitude more time and computing resources. Furthermore, when the objective is to
determine only which folding events are necessary and limiting, atomistic detail MD sim-
ulations can prove unnecessary. Here, we introduce the program tFolder as an efficient
method for modelling the folding process of large b-sheet proteins using sequence data
alone. To do so, we extend existing ensemble b-sheet prediction techniques, which permitted
only a fixed anti-parallel b-barrel shape, with a method that predicts arbitrary b-strand/
b-strand orientations and strand-order permutations. By accounting for all partial and final
structural states, we can then model the transition from random coil to native state as a
Markov process, using a master equation to simulate population dynamics of folding over
time. Thus, all putative folding pathways can be energetically scored, including which
transitions present the greatest barriers. Since correct folding pathway prediction is likely
determined by the accuracy of contact prediction, we demonstrate the accuracy of
tFolder to be comparable with state-of-the-art methods designed specifically for the
contact prediction problem alone. We validate our method for dynamics prediction by
applying it to the folding pathway of the well-studied Protein G. With relatively very little
computation time, tFolder is able to reveal critical features of the folding pathways
which were only previously observed through time-consuming MD simulations and exper-
imental studies. Such a result greatly expands the number of proteins whose folding path-
ways can be studied, while the algorithmic integration of ensemble prediction with
Markovian dynamics can be applied to many other problems.
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1. INTRODUCTION

Protein folding and unfolding is a key mechanism used to control biological activity and molecule

localization (Dobson, 2003). The simulation of folding pathways is thus helpful to decipher the cell

behavior. Classical molecular dynamics (MD) methods (Karplus and McCammon, 2002) can produce re-

liable predictions but unfortunately the heavy computational load required by these techniques limits their

application to inputs tens of amino acids long and prevents their application to large sequences (i.e., hundreds

of amino acids). Recently, Faccioli et al. (2006) proposed an effective solution of the Fokker-Planck equation

to compute dominant protein folding pathways, but the same size limitations remain.

The development of distributed computing technologies has dramatically extended the range of appli-

cation of MD techniques. For instance, Pande and co-workers achieved a 1.5 millisecond folding simulation

of a 39 residue protein NTL9 (Voelz et al., 2010). In spite of this achievement, this strategy still seems

limited to small polypeptides (about 50 residues) and, more importantly, requires several months of parallel

computing and typically thousands of GPU’s.

In this article, we introduce a complete methodology to address these computational complexity limi-

tations. Our approach aims to complement the range of techniques already offered. Unlike MD simulations

that use an all-atom description of structures together with a fine-tuned energy force field, here we use a

residue-level representation of the structure with a statistical residue contact potentials. This simplification

enables us to sample intermediate structures and build a coarse-grained model of the energy landscape and

subsequently simulate folding processes.

Since the seminal work of Levitt and Warshel (1975), it is widely acknowledged that simplified rep-

resentations of protein structures and motions are required to circumvent computational limitations. A

conceptual breakthrough came when Amato and co-workers applied motion planning techniques to the

protein folding problem (Tapia et al., 2010; Amato and Song, 2002). The method is much faster than

classical MD techniques and enables the study of the folding of large proteins. However, this approach does

not predict structures; rather, it requires the three-dimensional (3D) structure of the native state to compute

potential intermediate structures and unfolding pathways, on which the folding simulations are performed.

It follows that the methodology cannot be applied to proteins with unknown structures and cannot be relied

upon to study misfolding processes.

In fact, all the methods previously described face a difficulty common with MD: efficient sampling of the

conformational landscape. MD algorithms explore the landscape through force-directed local search and

progressive modification of the structure. However, the scalability and numerical efficiency when modeling

large molecular structures remains problematic, limiting their application to small molecular systems. On

the other hand, motion planning algorithms use a 3D structure of the native fold to predict distant structural

intermediates. Accordingly, the accuracy of the method can suffer when intermediates sampled are far

away from the native state. Recently, Hosur et al. (2011) have combined efficient motion planning tech-

niques with machine-learning to model proteins as an ensemble, but this approach is effective only in the

local neighborhood of the input structure.

Such obstacles have been addressed for RNA molecules by the development of structural ensemble

prediction algorithms (McCaskill, 1990; Ding and Lawrence, 1999), and the derivation of a finely-tuned

energy model based on experimental data (Turner and Mathews, 2010). Combined together, these tech-

niques enable us to compute the RNA secondary structure energy landscapes and sample structures from

sequence information alone. Wolfinger et al. (2004) further demonstrated how an RNA energy landscape

can be constructed by connecting these samples together and estimating the transition rates between pairs

of interconverting states. The resulting ordinary differential equation (ODE) system can be solved to

predict and characterize RNA folding pathways. The method has since been improved to analyze the

motion of large RNAs (Tang et al., 2008).

In this article, we propose to expand the methodology developed for RNAs to the more complicated case

of proteins. First, we design an algorithm to sample the complete conformational landscape of large protein

sequences given sequence data alone. Then, we use this sampling algorithm to build a coarse-grain

representation of the energy landscape of a protein, from which we construct an ODE system modeling

transition rates between folding intermediates that we solve to simulate protein folding.

We choose to address specifically b-sheet structures. The folding of these structures is particularly

difficult to simulate. Indeed, b-sheets are stabilized by inter-strand residue interactions, and thus the folding
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and assembly of these structures is largely influenced by long-range interactions and global conformational

rearrangements. For instance, Voeltz et al. (2010) recently showed that the rate-limiting step in the NTL9

fold was beta-sheet hairpin formation.

Since the original work of Mamitsuka and Abe (1994), several groups have proposed models to predict

general b-sheets (Chiang et al., 2006; Kato et al., 2009; Tran et al., 2011). However, none of these methods

are capable of computing ensembles of b-sheet structures (i.e., perform an exact enumeration of all b-

structures without duplicates) and therefore cannot be used to sample the b-sheet energy landscape.

We recently introduced a structural ensemble predictor for transmembrane b-barrel (TMB) proteins

(Waldispühl et al., 2008), continuing earlier work on molecular structure modeling (Waldispühl and

Steyaert, 2005; Waldispühl et al., 2006). However, TMBs are a special case of b-sheets where each strand

pairs with its two sequence neighbors via an anti-parallel interaction (except the ‘‘closing’’ pair which

involves the first and last strands). Here, we expand these techniques to allow any b-strand organization in

the b-sheet, with parallel and anti-parallel orientations, and enable the sampling of general b-sheets. This

algorithm is implemented in the program tFolder.

We use tFolder to sample the b-sheet conformational landscape and build a coarse-grain model of

the energy landscape. More specifically, we cluster protein configurations according to contact distance metrics,

and associate each cluster with an intermediate folding state. We use the difference between the ensemble free

energies of the clusters to compute the transition rates and build an ODE system that models the energy

landscape. Finally, we solve this system to estimate the distribution of conformations over folding time.

This methodology reconciles the MD and motion planning approaches for studying folding pathways.

Using tFolder, we are now able to simulate in a couple of minutes on a single desktop the folding of

large proteins, and to predict the folding pathways (as well as possible misfolding pathways) of proteins

with unknown structures. Thus, we are able to provide a broader range of applications, while offering

computational efficiency comparable with motion planning techniques. Although we focus on b-sheet

proteins, our method in principle could be extended to describe the folding pathways of a wider class of

protein structures.

This article is organized as follows. In Section 2, we describe the tFolder algorithm and explain

how we construct the coarse grained energy landscape model. Then, in Section 3, we benchmark our

methods. First, we evaluate the accuracy of tFolder for simple inter-strand residue contact prediction

and show that it performs comparably with more sophisticated techniques specifically designed for this

task. Importantly, our contact predictions are not dependent on the separation between the residue indices,

which means an improved ‘‘very’’ long-range contact prediction accuracy. Then, we illustrate the insights

provided by our methods by analyzing the energy landscape of the extensively studied Protein G. We show

that tFolder predicts the correct folding pathways, and interestingly, our simulation reveals a possible

off-pathway structure. All these simulations can be performed on query sequences using our program

tFolder, available at http://csb.cs.mcgill.ca/tFolder.

2. METHODS

To predict realistic protein folding pathways, we exploit well-established ensemble prediction algorithms

(Waldispühl et al., 2008) for their ability to accurately predict the energy scores of millions of feasible

structural conformations from sequence alone. Our approach proceeds in two steps: (1) Given an arbitrary

peptide sequence, we produce ensemble predictions of the energetic weight for all possible b-sheet

structures and sub-structures, utilizing an enhancement to standard ensemble predictors which allows

permutation. (2) Using each conformation’s energetic score and metrics of conformational similarity, we

derive the likelihood of dynamic state-to-state transitions and assemble a set of complete folding paths. In

this way, we can identify and rank the most likely pathways from an unfolded conformation to a fully

folded conformation based on predicted energy landscapes.

Modeling b-sheet ensembles. We model the set of all possible b-sheet conformations a peptide can

attain using a statistical-mechanical framework. Conceptually, each structure is described by the set of

residue/residue contacts that form hydrogen bonds between b-strand backbones, and is assigned a Boltz-

mann-distributed pseudo-energy, determined by the specific residues involved in contacts. To characterize
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the energetic landscape of this ensemble, a partition function Z can be calculated over all structural states

S¼f1 . . . ng such that

Z¼ +
n

i¼ 1

e�
ESi
RT ‚

with energies ESi
, temperature T, and the Boltzmann constant R. For example, from this the relative

abundance of a structure Si can be easily derived:

p(Si)¼
e�ESi

Z
:

Our energy model is based on statistical potentials and follows directly from prior prediction tools that

have been shown to be accurate (Waldispühl et al., 2008; Cowen et al., 2001). An energy Ei,j is given to

each residue/residue pair within the b-sheet fold following Ei,j = - RT [log( p(i, j)) - Zc], where Zc is a

statistical recentering constant and p(i,j) is the probability of these two residues appearing in a b-sheet

environment, as observed across all non-sequence-homologous solved structures in the PDB (Waldispühl et

al., 2008). Further, we assign separate probabilities based on the hydrophobicity of the environment on

either face of a b-sheet.

A naive approach to computing the partition function would thus be to enumerate all possible structures

and compute each structure’s contribution to the sum individually. However, as was previously shown for

the special case of anti-parallel b-strands in transmembrane b-barrel proteins, a much more efficient

method exists using dynamic programming (Waldispühl et al., 2008). We have generalized this approach to

enable the computation of arbitrary single b-sheet fold topologies.

Permutable b-templates. We introduce the concept of permutable b-templates to enable the calculation

of the partition function of a b-sheet with arbitrary b-strand topologies. This extends existing ensemble

prediction techniques by allowing any combination of parallel and anti-parallel b-strands to be including

within a single b-sheet fold, and by removing any sequence dependency between b-strand /b-strand pairing

partners. Prior methods supported only all-anti-parallel b-strands and required b-strand /b-strand interac-

tions to be separated only by coil (and not other strands) (Waldispühl et al., 2008).

To efficiently encode these generic shapes, each strand is labeled f1 . . . ng to allow a stepwise permu-

tation through b-strand ordering, and a signed permutation is defined such that each b-strand is assigned to

be parallel or anti-parallel relative to the first strand in the sheet (Fig. 1). Algorithmically, tFolder is

capable of constructing a dynamic program over all such permutations to calculate the partition function. In

practice, since such an encoding can result in unrealistic combinations of b-strand/b-strand pairings (such

as if b-strands 1 and 4 had too short a coil between them in Fig. 1), we impose that valid foldings must

satisfy steric and biologically derived constraints. These include a minimum and maximum b-strand length,

maximum shear between neighboring b-strands (the amount of inclination that causes the b-sheet to deviate

from a perfect rectangle), and minimum inter-strand loop size. These constraints serve to limit the ex-

ploration of unrealistic conformations, minimizing excess computation and allowing directed investigation

into specific motifs.

The energy of a structure with n strands, can be recursively defined as E(Sn) = E(Sn - 1) + Pairing(sn - 1,sn),

where E(Sn - 1) is the interaction energy between the first n - 1 strands, and Pairing(sn - 1,sn) is the energy

of the pairing of strand n - 1 with strand n (Fig. 2a). tFolder exploits the shared structure between

instances in the ensemble by computing this recursion using a dynamic programming algorithm. The result

of each recursive call is stored in a table indexed by the parameters of the call. Subsequent recursive calls

made with the same parameters perform a table lookup instead of re-computing the value of the recursion.

FIG. 1. An illustration of how a

permutable b-template can be en-

coded as a signed permutation. The

permutation lists the strands in the

order that they occur in the sheet,

with the sign indicating whether

the strand is parallel ( + ) or anti-

parallel ( - ) to the first strand.
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For a sheet of n strands, the table has n rows, where the kth row has entries corresponding to valid

configurations of the first k strands. For the kth strand, these configurations are partitioned by the location of

four indices k1, k2, k3, k4, which denote the boundaries of the region occupied by the k strands (Fig. 2b). To

begin, the algorithm enumerates all possible positions of the first two strands, and for each stores the strand

pair interaction energy in entry E21222324
of the table. For each subsequent strand k, the value of Ek1k2k3k4 is

computed as:

Ek1k2k3k4
¼ +

i1i2i3i4

Ei1i2i3i4 þPairing(i‚ k)‚

where i1, i2, i3, i4 are enumerated for all valid settings for the boundaries of the preceding strands, given the

boundaries of the kth strand. Once the recursion has filled the table, the partition function Z is calculated by

summing over all possible settings of n1, n2, n3, n4:

Z ¼ exp(� +
n1n2n3n4

En1n2n3n4
):

The table constructed to calculate the partition function can be used to sample the distribution of

configurations of a given topology, utilizing the approach established by Ding and Lawrence (2003) for

RNA secondary structure, and successfully applied previously by Waldispühl et al. (2006) to sample

conformations of b-barrel proteins. To do this, we perform a traceback through the table and, at ith step,

sample the indices within which the first i strands are contained, according to the Boltzmann representation

of these i-stranded structures (Fig. 3).

2.1. Predicting folding dynamics

Conceptually, we model the folding process as a path through a graph of varyingly folded conformations

of a protein. In this graph, different protein conformations are represented as states, and two states that

inter-convert in a folding pathway are connected by an edge, analogous to work with RNA described

previously (Wolfinger et al., 2004). The tFolder algorithm provides a means to efficiently sample the

energetically accessible conformations that make up the states of this graph. We further propose a means to

determine the connectivity between states and demonstrate how this can be applied to calculate the

dynamics of the folding process.

Since we do not know the final structure, we begin by sampling configurations from all possible

permutations of b-sheet topology, as described above. For every pair of states, we add an edge between two

states if (1) the states have compatible topologies, and further, (2) the states show structural similarity.

FIG. 2. (a) Illustrates how the

energy function of a b-sheet can be

recursively defined as the sum of

the contribution of the last two

strands with the contribution of the

remaining structure. (b) Indicates

the indices used to store the ener-

gies of intermediate structures for

the recursion.

FIG. 3. Illustration of of how the

sampling procedure performs a

traceback through the table, over

the indices of intermediate struc-

tures. During each step of the

sampling procedure, the location of

a single strand is sampled from the

region indicated by the vertical

bars. The triangles denote the lo-

cation of the strand sampled during

the previous step.
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Two templates are compatible if they are identical to each other, modulo the addition or removal of a

single strand pairing. This operation can result in the growth of a core structure, or the nucleation of an

independent strand pair (Fig. 4). Note that the requirements for satisfying the second criterion of structural

similarity depends on the metric used to estimate structural similarity between two conformations. In

practice, we use a contact based metric and deem two structures to be structurally similar if the metric is

below the transition threshold.

Given the graph constructed according to these two criteria, the change in the probability of the system

being in state i at time t is calculated from the total flux into and out of state i,

dpi

dt
¼ +

j�X

rijpj(t)‚

where pi is the probability of state i, X is the state space, and rij is the rate of transition from state i to state j.

Given that two states are connected in the graph, the rate at which two states inter-convert is proportional to

the difference between free energies of the states (DG); the system tends toward energetically favorable

states. We calculate the transition rate rij between states i and j using the Kawasaki rule (with parameter r0

to scale the time dimension):

rij¼ r0 exp(�DGij=2RT):

The dynamics of the system are calculated by treating the folding process as a continuous time discrete

state Markov process. Given the matrix of folding rates R, where Rij = rij and initial state density p(0), the

distribution over states p(t) of the system at time t is given by the explicit solution to the system of linear

differential equations,

p(t)¼ exp (Rt)p(0):

Since we sample hundreds of states from each b-strand topology, we partition the state space into macro

states using clustering, in order to work with a tractably sized system. Under this approximation, we

consider two clusters the graph to be connected if the minimum distance between any two states from each

cluster is below the transition threshold. We define the ensemble free energy difference DGij between two

macrostates i and j by summing over the states from which they are composed.

DGij¼E(vi)�E(vj)¼ +
x�vi

E(x)� +
x�vj

E(x):

Although this approximation lessens the computational burden, it represents a trade off. The granularity

achievable by our simulation is at the level of the macrostates. Note, energy barriers are not explicitly

incorporated into the model, since entire b-strands are either added or removed between states without

partially-formed intermediates.

3. RESULTS

3.1. Evaluation of contact prediction

To evaluate the contact prediction performance of tFolder, we tested it using a 16-protein

benchmark.1 Proteins were selected from the Protein Data Bank which had 4–6 b-strands with dominantly

FIG. 4. The topologies that are

compatible with a given state

(shaded gray) result from the addi-

tion of a single pairing between

strands (dashed box). The ‘‘ + ’’

indicates that there is no pairing

between the gray structure and the

white strand pair.

1Complete benchmark results available at the tFolder website.
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beta structure, 100 residues or smaller, and sequence identity less than 30%. To ensure a fair comparison

with the BETApro and SVMcon, we removed from this set those proteins that were used in the training sets

of these methods. From each of these 16 proteins, the b-topology was extracted and used as input for

tFolder, along with the amino-acid sequence and fixed strand length of 5–8 residues. Since predicting

folding dynamics involves a permutation over all b-topologies, this demonstrates the expected accuracy of

each folding state along the pathway. We sample 500 configurations of each protein, and use these

ensembles to compute a stochastic contact map and distribution of strand locations (Fig. 5a, and b). The

contact map represents the probability of observing a given contact, and predicted contacts are the set of all

contacts with probability above a threshold value t. The selection of t influences the measured performance

(Fig. 5c), so to objectively set the threshold, we chose a t that maximizes the F-measure. We evaluated

the quality of our contact maps based on the Accuracy no: of correctly predicted contacts
no: of predicted contacts

� �
, Coverage

no: of correctly predicted contacts
no: of observed contacts contacts

� �
, and F-measure 2�Accuracy�Coverage

AccuracyþCoverage

� �
of our predictions. We calculated these

measures in terms of b-contacts, which we defined as residues located within b-strands less than 8Å apart

(between Ca atoms) in the PDB structure. A summary of tFolder performance on Protein G, as well as

average performance on the 16 protein dataset, is presented in Table 1. Here we distinguish between results

for long range contacts, greater than 0, 12, or 24 residues apart. Thus, tFolder maintains reasonable

predictive accuracy even with large contact separations.

FIG. 5. Summary of the distribution of structures predicted by tFolder for Protein G. (a) Contact probability predicted

by tFolder between all pairs of amino acids. Green squares indicate contacts predicted by tFolder, whereas red squares

represent pairs of amino acids that are less than 8Å from each other in the observed structure. A higher intensity of

green indicates a higher predicted probability of the contact, and yellow squares are an indication of agreement between

prediction and observed contacts. (b) Probability of the location of each strand, computed from the ensemble of

sampled structures.The bars at the top of the plot indicate the location of the strands from the experimentally deter-

mined structure. (c) Relationship between the threshold used to determine a contact from the contact map, and the

values of the three metrics Accuracy, Coverage, and F-measure. The threshold can be set to maximize the value of the

F-measure, representing a reasonable trade-off between Coverage and Accuracy.
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In order to evaluate the performance of tFolder with respect to other approaches for contact

prediction, we present in Table 2 a comparison with two leading contact prediction algorithms, SVMcon

and BETApro. It can be seen that tFolder is able to perform comparably at the task of contact

prediction, and performs particularly well for contacts with sequence separation greater than 24 residues.

Although these methods sometimes outperform tFolder, it is important to note that the accuracy of

tFolder is less sensitive to the distance of contact separation. Since critical protein folding steps can

involve both short-range and long-range b-sheet contacts, it is especially important for long-range contacts

to be predicted correctly to allow an accurate folding pathways to be reconstructed.

3.2. Predicting the folding pathways of the B1 domain of Protein G

To demonstrate the efficacy of our techniques for predicting protein folding pathways, we reconstruct the

folding landscape of the B1 domain of Protein G—a well-studied protein for which the pathway has been

elucidated through many experimental studies and MD simulations. To do this, all possible permutations of

a 4-strand b-sheet topology were sampled and clustered. For each of these sets of structures, the cluster with

the highest probability of being observed was selected to be representative of each topology.

The graph of the folding pathway was constructed by considering all pairs of clusters. If the minimum

distance beween two clusters was less than a predetermined transition threshold, we considered that there

was exchange between the two states. We tried several metrics, including segment overlap, mountain

metric, and a contact based metric (Zemla et al., 1999; Moulton et al., 2000), selecting the contact-based

metric, because it performed best empirically. The resulting graph of protein conformations is illustrated in

Figure 6a. Inspection of this graph, along with the folding dynamics computed from this graph in Figure 6b,

reveals folding intermediates consistent with those previously reported by Song et al. (2003). It should also

be noted that although we compute other configurations of the sequence that are energetically favorable

(faded states in Fig. 6a), they are not predicted to form because they are unreachable from the unfolded

state. Interestingly, a four-stranded off-pathway structure is predicted to form, which has not been observed

previously. Furthermore, our results agree with the work of Hubner et al., (2004), who show that the anti-

parallel beta-hairpin, predicted to form an interaction between residues 39–44 and 50–55, center around

known nucleation points W43, Y50, and F54.

3.3. Algorithm running time

The computational bottleneck of our approach is the computation of the partition function of a template.

The primary factors influencing this calculation are the length of sequence and the number of strands in the

Table 1. Performance of tFolder for Contact Prediction Is Evaluated Based

on the Accuracy, Coverage, and F-Measure of Experimentally Observed Contacts

Protein G 16 protein benchmark

‡ 0 ‡ 12 ‡ 24 ‡ 0 ‡ 12 ‡ 24

F-measure 0.36 0.37 0.45 0.25 0.27 0.23

Accuracy 0.34 0.33 0.41 0.25 0.27 0.28

Coverage 0.39 0.42 0.50 0.28 0.32 0.25

These performance metrics are reported for contacts that are more than 0, 12, and 24 residues apart, showing that tFolder
maintains reasonable predictive accuracy even with large contact separations.

Table 2. Comparison of the Performance of tFolder Contact Prediction

with Contact Prediction Algorithms SVMcon and BETApro

‡ 12 ‡ 24

Method F-measure Accuracy Coverage F-measure Accuracy Coverage

tFolder 0.27 0.27 0.32 0.23 0.28 0.25

BETApro 0.22 0.40 0.16 0.05 0.14 0.07

SVMcon 0.32 0.31 0.50 0.24 0.21 0.44

The methods are evaluated based on their ability to perform contact prediction for contacts greater than 12 and 24 residue separation

respectively.
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b-topology (the depth of the recursion). The partition function for sequences between 40–130 residues and

4–6 strands was calculated using a single 2.66-GHz processor with 512 MB of RAM. The effect of these

two parameters on the computation time is depicted in Figure 7 below. Further, computing the parition

function across multiple b-templates is trivially parallelizable. The ability to formulate quick, coarse-

grained predictions in a matter of minutes, rather than days of atomistic-detail simulation, is a fundamental

benefit of our technique.

4. DISCUSSION

We present tFolder, a novel approach for quickly predicting protein folding pathways through the

accurate prediction of the conformational landscape of arbitrary b-sheet proteins. What distinguishes

FIG. 6. (a) Graph of the folding landscape of Protein G predicted by tFolder is illustrated above. The gray shaded

region indicates the states predicted to be reachable from the unfolded state. The dark arrows indicate transitions

between states, and the size of the arrow indicates the favored direction of transition along each edge. Faded arrows are

drawn between states that have compatible topologies but do not reach the transition threshold. The size of each state

indicates its relative representation at equilibrium. The faded structures indicate states that are unreachable from the

unfolded state. (b) Folding dynamics of Protein G shows how the probability of observing any of the reachable states

changes over the time the protein folds. Each line is annotated with an image of the state it represents.
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tFolder from other computational approaches that attempt to probe protein folding processes is that

tFolder does not require vast computational resources; in fact, it can be ran on a single personal

computer. To achieve this performance we use a simplified model for protein folding, allowing us to very

rapidly compute a coarse-grained picture of the folding of a protein from sequence information alone. This

contrasts with methods that attempt to determine folding mechanisms by trying to unfold proteins from

their native state. Such methods require the a priori knowledge of the native structure, and as such are not

applicable to study protein sequences with unknown structures. When computing protein folding pathways,

our method explores all possible b-sheet configurations, and thus does not face this limitation. Interestingly,

this independence from known structures could provide insights into off-pathway kinetics, such as the

aggregation of proteins into amyloid structures.

Although tFolder only predicts coarse folding pathway transitions in b-sheet proteins, its strength

lies in its ability to quickly separate conformational transitions that are critical to folding from those

transitions that could simply result from minor structural fluctuations. This complements the use of MD

simulations as the MD can be used to explore the nuanced structural interactions that certainly occur near a

transition highlighted by tFolder. Further, although we are able to produce good results using a fairly

simplistic energy model, a more complicated formulation, such as one including entropic forces, would

clearly improve tFolder’s analysis. More advanced heuristics also exist (Tang et al., 2008), which

more efficiently extract folding pathway information, which could be applied to tFolder.

Understanding the folding dynamics of b-sheet proteins, especially which b-strand contacts drive folding

and conformational stability, could help create better models of hierarchical folding, protein aggregation,

and evolutionary pressure. Significant overlap likely exists between many proteins’ folding pathways to

even permit a classification of common transition elements (Fulton et al., 2005); however, creating such a

database would only be possible with sufficiently fast and accurate algorithms. tFolder takes a step

toward this end by demonstrating techniques for efficiently predicting ensembles of arbitrary b-sheet

proteins, and for combining these predictions to construct accurate protien folding transition landscapes.

5. APPENDIX

Computing the partition function

For a b-sheet with k strands, and residues labeled 1 . . . n, its topology can be represented as a vector p

containing a permutation of the numbers f1 . . . kg. The partition function of this sheet is computed by a

recursion of depth k, where at each level of the recursion the location of the strands pi is summed over. In

order to calculate this pairing energy, one must maintain the location of the last strand added to the

structure, as well as the locations in the sequence that are already occupied by strands (to ensure that no

FIG. 7. The time required to

compute the partition function in-

creases with increasing size of

amino acid sequence, and number

of strands. The time was computed

by averaging over n = 3 trials, for

sequences of 40–130 residues in

length, with 4–6 strands.
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strands are overlapping). The region already occupied by strands is represented by a vector of four indices

{i1, i2, j1, j2}, indicating the boundaries of this region. This scheme allows one to track the boundaries of

four boundaries, meaning it cannot be applied to all possible permutations. For instance if p = {1, 3, 5, 2, 4},

one would need to maintain the location of six boundary locations at the third level of the recursion.

Nevertheless, keeping four boundaries seems sufficient in practice for the majority of observed sheet to-

pologies, and if desired a more general structure could be developed at the price of carrying more information

between levels of the recursion.

Depending on the permutation, the location of ith strand will occur in one of three regions relative to the

boundaries of the occupied structure:

1. In the region of 1 . . . i1
2. In the region of j1 . . . i2

3. In the region of j2 . . . n

Once the energy of the pairing has been computed, the boundaries of the occupied region are updated

depending on which region the strand was added to, and whether further strands will be added in the gaps

between strands. For example, in the first column, if there remains a strand to be added in the region j1 . . . i2

FIG. 8. Illustration of the de-

compositions applied by tFolder

used to compute the partition

function. The gray arrow represents

the addition of the ith strand, and

the white arrow is the location of

the previous strand, which must be

maintained to compute the pairing

energy. The solid arcs between (i1,

j1) and (i2, j2) represent the

boundaries of the previously occu-

pied structure. The dashed arc filled

arc represent the updated bound-

aries after adding the ith strand.
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according to p, the boundary will be updated to {i3, j1, i2, j2}, otherwise the bounds will be {i3, j3, i1, j2}. In

this manner the energy of a sheet can be recursively decomposed into a sum of pairing energies between

strands. Thus, by selecting the proper sequence of decompositions, and enumerating the possible strand

locations at each step, one is able calculate the partition function of the desired b-sheet. For clarity,

illustrations of these decompositions and accompanying equations describing the energy of a partial

structure are illustrated in Figures 8 and 9.
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FIG. 9. Equations used in the

recursive calculation of the folding

energy and partition function. The

three groups separated by bars

represent the three columns in

Figure 8.
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