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Malicious User Detection in a
Cognitive Radio Cooperative Sensing System

Praveen Kaligineedi, Student Member, IEEE, Majid Khabbazian, Member, IEEE,
and Vijay K. Bhargava, Fellow, IEEE

Abstract—Reliable detection of primary users (PUs) is an
important task for cognitive radio (CR) systems. Cooperation
among a few spectrum sensors has been shown to offer sig-
nificant gain in the performance of the CR spectrum-sensing
system by countering the shadow-fading effects. We consider a
parallel fusion network in which the sensors send their sensing
information to an access point which makes the final decision
regarding presence or absence of the PU signal. It has been
shown in the literature that the presence of malicious users
sending false sensing data can severely degrade the performance
of such a cooperative sensing system. In this paper, we investigate
schemes to identify the malicious users based on outlier detection
techniques for a cooperative sensing system employing energy
detection at the sensors. We take into consideration constraints
imposed by the CR scenario such as the lack of information
about the primary signal propagation environment and the small
size of the sensing data samples. Considering partial information
of the PU activity, we propose a novel method to identify the
malicious users. We further propose malicious user detection
schemes that take into consideration the spatial information of
the CR sensors. The performance of the proposed schemes are
studied using simulations.

Index Terms—Cognitive radio, cooperative sensing, malicious
user detection, outlier detection.

I. INTRODUCTION

IN A recent study conducted by the Federal Communica-
tions Commission (FCC), it was found that most of the

allocated radio frequency spectrum is not efficiently utilized by
the licensed (primary) users [1]. In order to improve spectral
utilization, it has been suggested that opportunistic access
of the spectrum be given to unlicensed secondary users [2].
Cognitive Radio (CR) is an emerging technology that would
allow an unlicensed (cognitive) radio user to sense and make
efficient use of any available radio spectrum at a given time.

Identifying the presence of primary users (PUs) with high
reliability is crucial for a CR system. This process is difficult
due to the presence of a wide range of PUs using different
modulation schemes, transmission powers and data rates,
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and due to interference from other secondary users, variable
propagation losses and thermal noise. The burden on signal
processing techniques to detect the PU can be reduced to
a large extent by using cooperative diversity between CR
spectrum sensors. Cooperation among a few sensing devices
sufficiently distant from one another (in order to ensure
independent propagation loss) can help reduce the individual
sensitivity requirements by countering the shadowing effects
[3], [4], [5].

In this paper, we consider a parallel fusion sensing archi-
tecture in which the spectrum sensors send their sensing data
to an access point. The access point makes a final decision
regarding the presence or absence of a primary signal based
on the data obtained from the sensors. It was shown in [3] that
the presence of a few malicious users sending false sensing
data can severely affect the performance of such a cooperative
sensing system. Techniques to detect the malicious users in CR
cooperative sensing systems have recently been proposed in
the literature [6], [7].

In our previous work [7], a malicious-user detection scheme
was proposed based on an outlier-detection technique [8] con-
sidering energy detection at the sensors and assuming constant
path loss between the PU transmitter and the CR sensors.
Using the average combination scheme as the data fusion rule
at the access point, it was shown in [7] that employing outlier
detection technique improves the performance of the system
affected by the malicious users. An outlier is an observation
which is far away from rest of the data [8]. Outlier detection
techniques are extensively used to identify fraudulent data
in the field of data mining. Their applications include video
surveillance, intrusion detection and identifying fraudulent
transactions.

In this paper, we further investigate malicious user detection
schemes that are based on robust outlier-detection techniques.
We focus on those malicious users that reduce the throughput
of the CR system by giving false high energy values when
the PU signal is not present. Identifying malicious users in
CR cooperative sensing system is very difficult since the
malicious user detection schemes do not know whether a
primary signal is present or not. Thus, they are unaware of
the underlying distribution of the energy detector outputs. We
also take into consideration further constraints imposed by the
CR scenario such as the lack of complete information about
the primary signal propagation environment, the absence of
feedback from PU network and the small size of the sensing
data samples among which the malicious user data points need
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to be identified (It was shown in [3] that most of the gain
through cooperation is achieved by using ∼ 10 − 20 users).
We only consider those malicious user detection schemes that
are based on the non-parametric outlier detection techniques
and hence, do not require the prior knowledge of the under-
lying data distribution parameters. Thus, the malicious user
schemes detection proposed in this paper are not influenced
by uncertainty in the noise measurement and do not require
any feedback from the PU system or knowledge of the location
of the primary transmitter. Low number of spectrum sensors
also make the detection of the malicious sensors among them
very challenging. Robust as well as efficient outlier detection
techniques are necessary to ensure reliable detection of the
malicious users based on small size of sensor data samples.
We later assume partial knowledge of the PU activity and
propose improved malicious user detection schemes based on
this information. We also propose methods which consider
the spatial location information of the CR users to further
improve the performance of malicious user detection schemes,
especially, for the CR systems spread over a wide area.

The rest of this paper is organized as follows. In Section II,
we define the cooperative sensing system model and discuss
the effect of malicious users on the system. In Section III, we
discuss techniques to assign robust and efficient outlier factors
to the cognitive users based on their sensing data. In Section
IV, we propose techniques which use these outlier factors to
detect the malicious users present in the system. In Section
V, we propose malicious user detection technique which takes
into consideration the users’ spatial information. Section VI
describes the method used to compare the performances of
various malicious user detection schemes for the case when
equal gain combining is used as the fusion rule at the access
point. Simulation results are presented in Section VII. Finally,
conclusions are drawn in Section VIII.

II. SYSTEM MODEL

We consider a group of 𝑁 CRs with collocated spectrum
sensors in the presence of a primary transmitter. All of the
sensors use energy detectors. We assume that the CR sensors
can cancel the interference caused due to other CR transmis-
sions in the network. The sensors send their sensing data to
an access point through control channels, which are assumed
to be perfect. Based on the data obtained from the sensors,
the access point makes a decision regarding the presence or
absence of the primary signal using a data fusion and detection
scheme.

Let 𝑒𝑛[𝑘] represent the output of energy detector at 𝑛𝑡ℎ

sensor during the 𝑘𝑡ℎ sensing iteration. Let hypotheses 𝐻1

and 𝐻0 denotes the presence and absence of a primary signal,
respectively. The output of the 𝑛𝑡ℎ user’s energy detector in
the baseband is given by [9]

𝑒𝑛[𝑘] =

⎧⎨
⎩

∫ 𝑇𝑘+𝑇−1

𝑇𝑘

∣ℎ𝑛(𝑡)𝑠(𝑡) + 𝑧𝑛(𝑡)∣2𝑑𝑡 ;𝐻1∫ 𝑇𝑘+𝑇−1

𝑇𝑘

∣𝑧𝑛(𝑡)∣2𝑑𝑡 ;𝐻0

(1)

where 𝑇 denotes the length of the sensing interval, 𝑠(𝑡) is the
primary transmitted signal and ℎ𝑛(𝑡) represents the channel

between the primary transmitter and the 𝑛𝑡ℎ spectrum sensor.
𝑧𝑛(𝑡) is the additive white Gaussian noise (AWGN) at the 𝑛𝑡ℎ

sensor.

A. Impact of Malicious Users

The presence of malicious users can significantly affect
the performance of a CR cooperative sensing system [3]. A
user might be malicious for selfish reasons or due to sensor
malfunctioning. In the former case, a CR might detect that the
primary signal is absent. However, it might force the access
point to erroneously decide that a primary signal is present
by sending false sensing data. The malicious user can then
selfishly transmit its own signal on the free channel. If the
sensor is malfunctioning, it might generate random energy
values.

There are, generally, two ways in which malicious users can
affect the cooperative sensing system. They may send high
energy values when there is no primary signal present, thus
increasing the probability of a false alarm and decreasing the
available bandwidth for the CR system. Malicious users may
also send low energy values when the signal is present, thus
decreasing the probability of detection of the primary signal
and causing increased interference to the PU system. Since
most of the data fusion schemes at the access point take into
consideration that some of the sensors will have weak channels
from the primary transmitter, the impact of malicious users
sending low energy values when a primary signal is present
will, in general, be low on the performance of the cooperative
sensing system. However, when the malicious users send high
energy values when no primary signal is present, the impact
on the performance of the cooperative sensing system will be
much more severe. Thus, malicious user detection schemes
should be efficient in identifying malicious users that falsely
send high energy values to the access point. At the same time,
the scheme chosen to identify these malicious users should not
misdetect a non-malicious user as a malicious user. When the
primary signal is present, it is especially important that the
data of non-malicious users that receive good signal strength
from the primary transmitter should not be rejected, as this
would severely decrease the probability of detection of the
cooperative sensing system leading to severe interference to
the PU system.

III. ASSIGNING OUTLIER FACTORS

Each user is assigned a set of outlier factors based on the
energy detector outputs. The outlier factor gives a measure of
the outlyingness of a data point. These outlier factors are then
used to identify and nullify the effect of malicious users. In this
paper, we assume that the outlier factor assignment schemes
are unaware of the additive noise variance and location of
the primary transmitter and receives no feedback from the PU
system.

A simple way to assign outlier factors 𝑜𝑛[𝑘] based on the
energy values obtained during the 𝑘𝑡ℎ sensing iteration is as
follows:

𝑜𝑛[𝑘] =
𝑒𝑑𝐵𝑛 [𝑘]− 𝜇[𝑘]

𝜎[𝑘]
(2)
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where 𝑒𝑑𝐵𝑛 [𝑘] represents the energy detector outputs in deci-
bels (dB), 𝜇[𝑘] and 𝜎[𝑘] are, respectively, the sample mean and
the sample standard deviation of the energy values 𝑒𝑑𝐵𝑛 [𝑘] of
all users at a given iteration 𝑘. The sample mean is an estimate
of the location of a distribution, and the standard deviation is
an estimate of the scale. This method of outlier assignment
was used in [7] to detect the malicious users in CR networks.

The energy-detector outputs are considered in dB because
it is desirable that the underlying data distribution be close
to symmetric when assigning outlier factors as in (2). If the
underlying distribution is highly skewed (un-symmetric), then
the valid data points lying on the heavy-tailed side of the
skewed distribution will be assigned very high outlier factors.
Distribution of 𝑒𝑛[𝑘] can have a high positive skew, especially
in the presence of a primary signal. One way to reduce the
positive skew in the data is to use logarithmic transformation
(i.e., consider energy-detector outputs in dB). A more com-
putationally complex and widely used technique to reduce
skewness in any distribution is the Box-Cox transformation
[11]. However, Box-Cox transformations are not robust against
outliers. Moreover, most of the channel shadow-fading models
in wireless communications follow a log-normal distribution.
Therefore, if the sensors are distributed over a small area
in which the path-loss component can be assumed to be
same for all the sensors, taking the logarithm would make
the distribution of energy detector outputs close to normal
distribution with low skew. Also, in the case where no primary
signal is present, the logarithm operation does not induce
significant negative skewness in the energy distribution.

However, there are several issues with assigning outlier
factors as in (2). First, the mean and the standard deviation are
not robust estimates and can be easily manipulated by the data
of the malicious users. Even a few malicious users can severely
degrade the performance of the system without being detected
when outlier detection schemes use non-robust location and
scale estimates such as the mean and standard deviation.
Therefore, robust alternatives to the sample mean and the
sample standard deviation need to be studied. Secondly, these
robust estimates of location and scale must also be efficient.
The efficiency of a statistic determines the degree to which
the statistic is stable from sample to sample. An estimate
having low efficiency can have a huge deviation from the
underlying distribution, especially for a low number of sample
data points. Thirdly, the logarithm transformation does not
completely remove the skew in the data under hypothesis 𝐻1.
The data might still have a high positive skew if the secondary
user network size is large with variable path loss between
the primary transmitter and the sensors. Techniques to tackle
skewness in the energy distribution need to be explored.

A. Alternatives to Mean

As discussed earlier in this section, the sample mean is
highly vulnerable to outliers. A robust alternative to the sample
mean to estimate the location of a distribution in (2) is the
median (�̃�). The median has a 50% breakdown point (the
minimum proportion of contaminated points in a sample that
can make the estimate unbounded) compared to 100

𝑁 % for the
mean, where 𝑁 is the sample size. Even though the median
has a very high breakdown point, its efficiency is low.

A more efficient and robust estimate of the location is the
bi-weight estimate (�̂�[𝑘]) [10], which is calculated iteratively
as follows:

�̂�[𝑘] =

∑
𝑤𝑛[𝑘]𝑒

𝑑𝐵
𝑛 [𝑘]∑

𝑤𝑛[𝑘]
(3)

where

𝑤𝑛[𝑘] =

⎧⎨
⎩

(
1−

(
𝑒𝑑𝐵𝑛 [𝑘]−�̂�[𝑘]

𝑐1𝑆

)2
)2

:
(

𝑒𝑑𝐵𝑛 [𝑘]−�̂�[𝑘]
𝑐1𝑆

)2

< 1

0 : Otherwise
(4)

and
𝑆 = median

𝑛
{∣𝑒𝑑𝐵𝑛 [𝑘]− �̂�[𝑘]∣} (5)

The bi-weight estimate calculates a weighted mean with lower
weightage being given to the observations away from the
estimate. Initially, all data points are assigned equal weights
𝑤𝑛[𝑘] and then the bi-weight estimate is calculated recursively.
𝑆 measures the median absolute deviation from the location
estimate �̂�[𝑘]. The parameter 𝑐1 is called the tuning constant.
Observations at a distance of more than 𝑐1 times 𝑆 from
the estimate are assigned zero weight. Generally, a tuning
constant of 𝑐1 = 6 is used [12]. It has been shown in
the literature that the bi-weight estimate (�̂�[𝑘]) has higher
efficiency than the median, is very robust and has a high
breakdown point [10]. The bi-weight estimate ignores data
points that are substantially far away from rest of the data. It
is much more sensitive to data that is at a moderate distance
from the location estimate [10]. Hence, the bi-weight estimate
considers the influence of data points that are not necessarily
outliers and at the same time restricting the influence of the
outliers beyond certain value. Thus, it is efficient as well as
robust.

B. Alternatives to Standard Deviation

One possible alternative to standard deviation for the scale
estimate (2) is the median absolute deviation (MAD). Median
absolute deviation measures the median of the absolute dis-
tances of the data points from the sample median. MAD (�̃�)
of the 𝑒𝑑𝐵𝑛 is given by

�̃�[𝑘] = median
𝑛

{∣𝑒𝑑𝐵𝑛 [𝑘]− �̃�[𝑘]∣} (6)

MAD has a breakdown point of 50%, and is used as a
robust alternative to standard deviation in many applications.
However, MAD is not an efficient estimate of the scale [12].

A more efficient and robust measure of scale is the bi-weight
scale (BWS) given by [10]

�̂�[𝑘] =

√√√√⎷𝑁
∑
𝑢2
𝑛<1

(𝑒𝑑𝐵𝑛 [𝑘]− 𝜇∗[𝑘])2(1− 𝑢2𝑛)4

𝑠(−1 + 𝑠)
(7)

where
𝑠 =

∑
𝑢2
𝑛<1

(1 − 𝑢2𝑛)(1 − 5𝑢2𝑛) (8)

and

𝑢𝑛 =
𝑒𝑑𝐵𝑛 [𝑘]− 𝜇∗[𝑘]

𝑐2median
𝑛

{∣𝑒𝑑𝐵𝑛 [𝑘]− 𝜇∗[𝑘]∣} (9)
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𝜇∗[𝑘] is a robust estimate of location such as the median (�̃�[𝑘])
or the bi-weight estimate (�̂�[𝑘]). 𝑐2 is the tuning constant. 𝑐2
can be used to determine the impact of the extreme data points
on the BWS estimate. In [12], it was shown that BWS (�̂�)
is very efficient for a wide range of symmetric distributions
compared to other robust estimates of scale. It can be shown
that the BWS is sensitive to the data points that are at a
moderate distance from the location estimate and only ignores
the extreme data points, like the bi-weight location estimate
[10]. Generally, a tuning constant of 𝑐2 = 9 is found to be
more efficient for a wide range of distributions [12].

IV. MALICIOUS USER DETECTION

In this section, malicious user detection techniques are
proposed that employ robust and efficient outlier factor as-
signment techniques discussed in Section III. The maximum
number of malicious users that the cooperative sensing system
is expected to tolerate is denoted by 𝑀𝑚𝑎𝑥.

A. Method I

One method to identify the malicious users in the system is
to compare the magnitudes of the outlier factors, computed
using bi-weight as the location estimate and BWS as the
scale estimate in Eq. (2), with a threshold 𝜃1 during each
iteration. The users whose outliers values have the magnitude
above the threshold are considered malicious. If the number
of such users is more than 𝑀𝑚𝑎𝑥, then only the 𝑀𝑚𝑎𝑥

users with the largest outlier factor magnitudes are considered
malicious. The users identified as malicious are not used for
the decision making process during the particular iteration.
However, deciding whether a user is malicious or not just
based on its present outlier factor can potentially degrade
the performance of the system. For example, in order to
reliably detect the malicious users falsely producing high
energy values a low detection threshold 𝜃1 is needed. However,
if the primary signal is present, a non-malicious cognitive user
with very good channel between its receiver and the PU might
have a high outlier factor especially if the distribution of the
PU signal-to-noise ratio (SNR) at the CR users is skewed.
Thus, lower threshold value 𝜃1 would increase the chances
of misdetection of such a user as malicious, which might
severely decrease the probability of detection of the PU signal
by the cooperative sensing system. On the other hand, if a
high outlier detection threshold is used, then the malicious
users can potentially report higher energy values without being
identified as the bad users. This could drastically increase
the probability of false alarm of the system affected by the
‘Always Yes’ malicious users. If the PU does not change its
state over a period of time, it is not possible to determine
without a priori knowledge of PU signal statistics, the channel
conditions between PU transmitter and CR sensors or the
background noise level, whether the high outlier factor is due
good channel between the PU and the CR sensor or due to
false data.

B. Method II

If the PU system is dynamic, with the PU signal appear-
ing and disappearing after every few sensing iterations, the

malicious user detection schemes can be further improved.
Significant increase in the energy values of the CR users
from one sensing iteration to another would, in general, imply
that the PU has started transmission during the particular
sensing iteration. Similarly, when the energy values of sensors
show significant decrease might indicate that PU has stopped
transmission. The change in the energy values of the CR users,
as the state of the PU changes over a period of time, can
be used to detect those malicious users which do not exhibit
similar behavior as rest of the users. However, it is important
to precisely identify the iteration during which the change in
the energy values is due to change in the state of PU rather
than due to malicious users or fluctuations in noise and fading
components. In this subsection, we propose a technique, based
on robust statistics discussed in Section III, to identify the
iterations during which there was a change in the PU state
and using it to detect the malicious users.

During each iteration, the energy values of users having
very high outlier factor magnitudes that are above a certain
threshold 𝜃2 are ignored and the adjusted bi-weight estimate
�̂�𝑎[𝑘] and adjusted bi-weight scale �̂�𝑎[𝑘] are estimated using
remaining energy values. 𝜃2 is generally used to eliminate
only extreme outliers. If the number of outlier factors with
magnitudes above 𝜃2 is more than 𝑀𝑚𝑎𝑥, only 𝑀𝑚𝑎𝑥 energy
values are ignored before evaluating the adjusted bi-weight
location and scale estimates. The difference between the
adjusted bi-weight estimate �̂�𝑎[𝑘] from iteration 𝑘 and the
adjusted bi-weight estimate from the iteration 𝑘−1 is obtained
as follows

Δ�̂�𝑎[𝑘] = �̂�𝑎[𝑘]− �̂�𝑎[𝑘 − 1] (10)

If the adjusted bi-weight increases from the 𝑘 − 1𝑡ℎ iteration
to the 𝑘𝑡ℎ iteration (i.e. if Δ�̂�𝑎[𝑘] is positive), it could be due
to the appearance of PU signal in between iterations 𝑘 and
𝑘−1. It is also possible that the PU has remained in the same
state (i.e. it hasn’t started transmission) and the increase in the
bi-weight estimate is due to fluctuations in the channel fading
and noise components or due to the presence of malicious
users. However, a malicious user data has only limited impact
on the adjusted bi-weight estimate, especially since the data of
users with very large outlier factor magnitudes is eliminated.
The impact of variations in noise and fading components will
not be significant compared to increase due to appearance of
a primary signal as long as there are few non-malicious users
with good channels between PU and their sensors. Similarly, if
the Δ�̂�𝑎[𝑘] is negative, it could be due to disappearance of PU
signal, malicious users or due to variations in channel fading
and noise components. However, magnitude of Δ�̂�𝑎[𝑘], in
general, is expected to be higher if the PU stops transmission.

At each sensing iteration, Δ�̂�𝑎[𝑘] from previous 𝐾 itera-
tions are taken into consideration. Among these 𝐾 iterations,
we identify the set of 𝐾𝑚/2 iterations 𝑆+[𝑘] such that
Δ�̂�𝑎[𝑘

′], for 𝑘′ ∈ 𝑆+[𝑘], are positive with 𝐾𝑚/2 largest
magnitudes, and the set of 𝐾𝑚/2 iterations 𝑆−[𝑘] such that
Δ�̂�𝑎[𝑘

′], for 𝑘′ ∈ 𝑆−[𝑘], are negative with 𝐾𝑚/2 largest
magnitudes. Thus, 𝑆+[𝑘] represents the set of iterations during
which there is a high chance that the PU has started transmis-
sion and 𝑆−[𝑘] represents the set of iterations during which
the PU might have stopped transmission.
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The penalty factors 𝑃𝑛[𝑘] are now assigned to each user as
follows:

𝑃𝑛[𝑘] =
∑

𝑘′∈𝑆+[𝑘]

(
𝑜+𝑛 [𝑘

′ − 1] + 𝑜−𝑛 [𝑘
′]
)

+
∑

𝑘′∈𝑆−[𝑘]

(
𝑜−𝑛 [𝑘

′ − 1] + 𝑜+𝑛 [𝑘
′]
)

(11)

where

𝑜−𝑛 [𝑘
′] =

{
− 𝑒𝑑𝐵𝑛 [𝑘′]−�̂�𝑎[𝑘

′]
�̂�𝑎[𝑘′] ; 𝑒𝑑𝐵𝑛 [𝑘′] < �̂�𝑎[𝑘′]

0 ;Otherwise
(12)

𝑜+𝑛 [𝑘
′] =

{
𝑒𝑑𝐵𝑛 [𝑘′]−�̂�𝑎[𝑘

′]
�̂�𝑎[𝑘′] ; 𝑒𝑑𝐵𝑛 [𝑘′] > �̂�𝑎[𝑘′]

0 ;Otherwise
(13)

Therefore, for all values of 𝑘′ ∈ 𝑆+[𝑘], during which the
PU has most likely started transmission, magnitudes of only
negative adjusted outlier factors 𝑜−𝑛 [𝑘′] for iteration 𝑘′ and
positive adjusted outlier factors 𝑜+𝑛 [𝑘

′ − 1] for iteration 𝑘′ − 1
are added to the penalty factor, and for values 𝑘′ ∈ 𝑆−[𝑘], the
magnitudes of only positive adjusted outlier factors 𝑜+𝑛 [𝑘

′] for
iteration 𝑘′ and negative adjusted outlier factors 𝑜−𝑛 [𝑘

′−1] for
iteration 𝑘′ − 1 are added to the penalty factor.

Suppose a user consistently produces high energy values
irrespective of the presence or absence of the PU. If in between
iterations 𝑘− 1 and 𝑘 the PU reappears, then Δ�̂�𝑎[𝑘] will be
positive. As a result, the users producing high energy value
during iteration 𝑘 − 1 will receive a penalty factor based on
their adjusted outlier factors from iteration 𝑘 − 1. Also, the
CR sensors with low primary SNR will be assigned a penalty
factor based on their adjusted outlier factors from iteration
𝑘. However, these sensors will not have significant impact
on the final decision at the access point. In a similar way,
malicious users and CR users with low PU SNR will also
be assigned a high penalty factor when the PU disappears in
between iterations 𝑘 − 1 and 𝑘. Sometimes, the sensors with
high primary user SNR could be assigned penalty factors. This
would usually happen when some of 𝐾𝑚 iterations chosen
from previous 𝐾 iterations do not correspond to a change in
state of the PU. In such scenario, adjusted bi-weight might
decrease due to fluctuations in fading and noise components
even though the PU was present during both iterations 𝑘 − 1
and 𝑘. The choice of 𝐾𝑚 and 𝐾 would depend upon the
number of times a PU is expected to change its state during
a given time period. For a good choice of 𝐾𝑚 and 𝐾 , the
proposed method would avoid assignment of high penalty
factors to non-malicious CR users having high PU SNR as
long as there are few CR users with good channels between
PU and their sensors.

Based on these penalty factors another set of the outlier
factors 𝑜𝑛[𝑘] are defined as follows:

𝑜𝑛[𝑘] =
𝑃𝑛[𝑘]− �̂�𝑃 [𝑘]

�̂�𝑃 [𝑘]
(14)

where �̂�𝑃 [𝑘] and �̂�𝑃 [𝑘] are bi-weight location and scale
estimates of 𝑃𝑛[𝑘]. A positive threshold 𝜃3 is applied to
determine the malicious users. All the users with positive
outlier factors above this threshold (or users with the 𝑀𝑚𝑎𝑥

largest outlier factors if the number of users with outlier factors
above 𝜃3 is more than 𝑀𝑚𝑎𝑥) are considered malicious.

1) Method IIa: If a malicious user is aware that Method II
is being used at the access point, it can avoid sending false
values whenever the state of PU changes. Even though the
malicious user could be identified using Method II, since it
would be not be sure whether the PU would change its state
during the next iteration, it could still escape getting assigned
a high penalty factor. In this section, we propose a method to
identify such smart malicious users. We define

Δ�̂�𝛿𝑎[𝑘] = �̂�𝑎[𝑘]− �̂�𝑎[𝑘 − 𝛿] (15)

𝐾𝛿
𝑚, 𝑆𝛿

+[𝑘] and 𝑆𝛿
−[𝑘] are defined based on Δ�̂�𝛿𝑎[𝑘] in a similar

way as 𝐾𝑚, 𝑆+[𝑘] and 𝑆−[𝑘] were defined based on Δ�̂�𝑎[𝑘].
The penalty factors 𝑃 𝛿

𝑛 [𝑘] are assigned as follows:

𝑃 𝛿
𝑛 [𝑘] =

∑
𝑘′∈𝑆𝛿

+[𝑘]

(
𝑜+𝑛 [𝑘

′ − 𝛿] + 𝑜−𝑛 [𝑘′]
)

+
∑

𝑘′∈𝑆𝛿
−[𝑘]

(
𝑜−𝑛 [𝑘

′ − 𝛿] + 𝑜+𝑛 [𝑘′]
)

(16)

Final penalty factors are assigned as follows

𝑃𝑛[𝑘] =
∑
𝛿∈𝐷𝛿

𝑃 𝛿
𝑛 [𝑘] (17)

where 𝐷𝛿 is the set of 𝛿 values considered. The outlier
factors 𝑜𝑛[𝑘] are calculated as in (14). Values of 𝛿 > 1
could be used to identify the smart malicious users mentioned
earlier. Moreover, 𝛿 values can also be chosen randomly by
the access point. Both Methods II and IIa, cannot accurately
identify malicious users which send false sensing values once
every few iterations keeping their overall penalty factors low.
However, the impact of such malicious users would be less
on the throughput of the cooperative sensing system.

V. MALICIOUS USER DETECTION USING SPATIAL

INFORMATION

As mentioned in earlier sections, significant skewness could
be present in the energy distribution under hypothesis𝐻1 even
after logarithm operation, particularly when the CR network
spatial size is large. Another way to tackle skew is to estimate
the skewness present in the data by calculating the skew
factor and then use it to modify the outlier factors [13], [14].
However, for small sample sizes, robust skew estimates exhibit
significant variation from sample to sample and the false data
points can have a substantial effect on the estimate. Therefore,
these measures cannot be used effectively to compensate for
the skew, particularly for a low number of sensors.

If the spatial information of the users is available at the
access point, then the outlier factor can be assigned to each
user based on the energy-detector outputs of its closest spatial
neighbors. In wireless communication systems, the distribution
of the energy-detector outputs is generally expected to be less
skewed for sensors spread over a small area, compared to
sensors spread over a larger area. Spatial outlier factors 𝑜𝑠𝑛[𝑘]
are computed as follows

𝑜𝑠𝑛[𝑘] =
𝑒𝑑𝐵𝑛 [𝑘]− �̂�𝑠[𝑘]

�̂�𝑠[𝑘]
(18)

where �̂�𝑠[𝑘] and �̂�𝑠[𝑘] are the bi-weight estimate and bi-weight
scale of the energy values of the 𝐴 closest neighbors of a user
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𝑛 (including the user 𝑛). Based on 𝑜𝑠𝑛[𝑘] calculated as in (18)
and 𝑜𝑛[𝑘] calculated as in (2), a final outlier factor 𝑜𝑓𝑛[𝑘] is
assigned as follows:

𝑜𝑓𝑛[𝑘] =

{
min{∣𝑜𝑠𝑛[𝑘]∣, ∣𝑜𝑛[𝑘]∣} ; 𝑜𝑛[𝑘] ≥ 0
−min{∣𝑜𝑠𝑛[𝑘]∣, ∣𝑜𝑛[𝑘]∣} ; 𝑜𝑛[𝑘] < 0

(19)

The minimum of 𝑜𝑠𝑛[𝑘] and 𝑜𝑛[𝑘] is taken instead of just
assigning 𝑜𝑠𝑛[𝑘] as the outlier factor of each user to prevent
assignment of high outlier factors to certain non-malicious
users. For example, a non-malicious user might have a high
channel gain from the primary transmitter compared to rest
of the sensors in its spatial neighborhood, thus, getting a high
spatial outlier factor 𝑜𝑠𝑛 under Hypothesis 𝐻1. However, when
compared to other sensors in the entire system the channel gain
of this particular user is not too high to raise any suspicion.
Taking just 𝑜𝑠𝑛 will lead to erroneous assignment of high
outlier factor to such non-malicious user.

Malicious users can now be identified by Method I dis-
cussed in Section IV-A, using the values 𝑜𝑓𝑛[𝑘] instead of
𝑜𝑛[𝑘]. Alternatively, Method II discussed in Section IV-B can
be used. The algorithm remains the same except that 𝑜−𝑛 [𝑘] in
(12) and 𝑜+𝑛 [𝑘] in (13) are assigned:

𝑜−𝑛 [𝑘
′] =

{
min{∣𝑜𝑠𝑛[𝑘′]∣, ∣𝑜𝑛[𝑘′]∣} ; 𝑜𝑛[𝑘

′] < 0
0 ;Otherwise

(20)

𝑜+𝑛 [𝑘
′] =

{
min{∣𝑜𝑠𝑛[𝑘′]∣, ∣𝑜𝑛[𝑘′]∣} ; 𝑜𝑛[𝑘

′] ≥ 0
0 ;Otherwise

(21)

where

𝑜𝑠𝑛[𝑘
′] =

𝑒𝑑𝐵𝑛 [𝑘′]− �̂�𝑠𝑎[𝑘′]
�̂�𝑠𝑎[𝑘

′]
(22)

𝑜𝑛[𝑘
′] =

𝑒𝑑𝐵𝑛 [𝑘′]− �̂�𝑎[𝑘′]
�̂�𝑎[𝑘′]

(23)

where �̂�𝑠𝑎[𝑘
′] and �̂�𝑠𝑎[𝑘

′] are the new spatial neighborhood bi-
weight location and scale estimate obtained after eliminating
users with outlier factors having magnitudes above the thresh-
old 𝜃2.

VI. PERFORMANCE ANALYSIS

In this section, a method to compare the performances of
the proposed malicious user detection schemes is considered.
The equal gain combination scheme is considered at the access
point due to its simplicity. The equal gain combining method
is as follows:

1

𝑁

𝑁∑
𝑛=1

𝑒𝑛[𝑘]
𝐻1

≷
𝐻0

𝑒𝑇 (24)

where 𝑒𝑇 is the detection threshold used at the access point.
The performances of the malicious user detection schemes

are analyzed by defining measures additional probability of
false alarm 𝑃𝑓 and additional probability of misdetection 𝑃𝑚

as follows:

𝑃𝑓 = 𝑃𝑟(𝑑𝑚 = 1/𝑑0 = 𝑑 = 0) (25)

𝑃𝑚 = 𝑃𝑟(𝑑𝑚 = 0/𝑑0 = 𝑑 = 1) (26)

where 𝑑 is the PU state (𝑑 = 1 and 𝑑 = 0 denote the
presence and absence of the primary signal, respectively), 𝑑0
is the decision made by the ideal malicious user detection

scheme that correctly identifies and ignores the data of the
malicious users. 𝑑𝑚 is the decision made by a system,
affected by the malicious users, implementing the proposed
malicious user detection scheme. Thus, when the PU is not
present, 𝑃𝑓 represents the probability that the malicious user
identification scheme fails to detect the malicious users or
misdetects non-malicious user as malicious resulting in a
wrong decision 𝑑𝑚 = 1, when in fact the ideal malicious
user detection scheme would have made the correct decision
𝑑0 = 0. Similarly, when the PU is present, 𝑃𝑚 represents the
probability that malicious user detection scheme fails to detect
the malicious user or misdetects a good user as a malicious
user resulting in making a wrong decision 𝑑𝑚 = 0 when for
the same set of energy values an ideal malicious user detection
scheme would have made the correct decision 𝑑0 = 1. Thus,
for a system affected by the malicious users and implementing
the malicious user detection scheme, the probability of false
alarm 𝑃𝑓 and misdetection 𝑃𝑚 are given by

𝑃𝑓 = 𝑃𝑓 + (1 − 𝑃𝑓 )𝑃𝑓 (27)

𝑃𝑚 = 𝑃𝑚 + (1 − 𝑃𝑚)𝑃𝑚 (28)

where 𝑃𝑓 and 𝑃𝑚 represent the probability of false alarm and
misdetection, respectively, for the system unaffected by the
malicious users. In malicious user detection Methods I and II
described in Section IV, the values of 𝑃𝑓 and 𝑃𝑚 depend on
the outlier detection thresholds 𝜃1 and 𝜃3, respectively. The
trade-off between 𝑃𝑓 and 𝑃𝑚, as the values of thresholds 𝜃1
and 𝜃3 are varied, is studied to analyze the performance of the
malicious user detection schemes.

VII. SIMULATION RESULTS

We consider a cooperative sensing system with 𝑁 = 20
users. An urban micro-cell propagation model is considered
for the primary signal. The path loss constant is 5. The
standard deviation of log-normal shadowing is 5 dB. The
correlation between shadowing components of two sensors
is assumed to be exponentially decreasing with the distance
between the sensors, with a correlation of 0.3 at a distance
of 10m. Independent and identically distributed small-scale
Rayleigh fading is assumed at each sensor. The sensing
period at each sensor is given by 𝑇 = 5/𝐵, where 𝐵 is
the channel bandwidth. The CR sensors are assumed to be
stationary with fixed path loss and shadowing components.
Outlier factors are calculated using bi-weight location and
scale estimates. BWS is calculated using the median as the
location estimate 𝜇∗ in (7) and (9). The threshold 𝑒𝑇 in (24)
is chosen so that the probability of false alarm at the fusion
center is 0.01. We assume that the probability of a PU being
present during a sensing iteration is 0.5 and this probability
is independent from one iteration to another. We consider
‘Always Yes’ malicious users that generate values that are
randomly distributed between the values 4𝑒𝑇 and 8𝑒𝑇 .

We assign the spatial locations of the sensors using a two-
dimensional model. In Fig 1., we assume that the sensors
are distributed in an area of 50𝑚 × 50𝑚 as 5 × 4 uniform
rectangular grid. The 𝑋 and 𝑌 coordinates of the sensors lie
between the values 100𝑚 and 150𝑚. The (𝑋,𝑌 ) coordinates
of the PU transmitter are (0, 0) and ignoring fading effects,
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Method II, K

m
 = 8, K = 16
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m
 = 16, K = 32

Method II, K
m
 = 32, K = 64

Fig. 1. Performance of malicious user detection schemes for CR network
spread over a small area in the presence of 𝑀 = 1 malicious user and
𝑀𝑚𝑎𝑥 = 2.

the SNR at (100𝑚, 100𝑚) is -5dB. The number of malicious
users is 𝑀 = 1 and the maximum number of malicious users
tolerated is 𝑀𝑚𝑎𝑥 = 2. The location of the malicious user
is chosen as (100𝑚, 100𝑚). Performances of the Methods I
and II are compared. In case of Method II, the threshold 𝜃2
which is used to eliminate extreme outliers before calculating
adjusted bi-weight location and scale estimates is chosen to be
4. We see that Method II significantly outperforms Method I.
Moreover, the performance improves as value of 𝐾 increases
for given 𝐾𝑚/𝐾 ratio. It should also be noted that the 𝑃𝑓

cannot be reduced below a certain value for each malicious
user detection scheme, since at low values of outlier detection
thresholds, some of the good users are misidentified as bad
users. The case when no malicious node detection scheme is
used corresponds to the left end of the performance curve of
Method I (at low 𝑃𝑚), i.e., for very high detection threshold
(𝜃1) at which the malicious user is not detected. As we can
see, the malicious user significantly increases the probability
of false alarm of the system.

In Fig. 2, we assume that the sensors are distributed in an
area of 225𝑚× 225𝑚 as 5× 4 uniform rectangular grid. The
𝑋 and 𝑌 coordinates are distributed between the values 25𝑚
and 250𝑚. Ignoring fading, the PU SNR at (100𝑚, 100𝑚) is
-5dB and 3dB in case of Fig. 2a and Fig. 2b, respectively. All
other parameters are similar to those used in Fig 1. The skew
in the received energy distribution in dB under hypothesis 𝐻1

is generally expected to be higher compared to the system
considered in Fig. 1. We consider the performance of Method
I and II for 𝑀 = 1 and 𝑀𝑚𝑎𝑥 = 2. The location of the
malicious user is chosen to be (25𝑚, 25𝑚). We see from Fig.
2a that compared to the system considered in Fig. 1, to achieve
similar decrease in the value of 𝑃𝑓 would result in higher
𝑃𝑚. This is due to higher probability of misdetection of CR
users with strong channels from PU as malicious. Moreover,
the impact of eliminating such users on the sensing system
would be higher. We also notice that at higher SNR values,
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(b) PU SNR at (100m, 100m) ignoring fading effects = 3dB

Fig. 2. Performance of malicious node detection schemes for CR network
spread over a large area in the presence of 𝑀 = 1 malicious user.

as in Fig. 2b, Method II offers significant improvement in the
performance.

In Fig. 3, we consider the performance of Method II for
the system considered in Fig 2a. We vary the value of 𝐾
keeping 𝐾𝑚 constant at 16. We see that the performance of
the malicious user detection scheme increases with increasing
value of 𝐾 . This is because for larger values of 𝐾 , the 𝐾𝑚

iterations during which the change in the bi-weight location
estimate has been largest, more precisely corresponds to the
change in the state of the PU. However, an increase in 𝐾 also
leads to latency in malicious user detection scheme.

In Fig. 4, we consider the performance of Method II
at different values of 𝐾𝑚 keeping 𝐾 constant at 32, for
the system considered in Fig. 2a. We observe that the best
performance is obtained when 𝐾𝑚 is 0.5𝐾 . This is due the
nature of the PU considered in these simulations. Since, the
probability of PU being in state 𝑑 = 1 (PU signal present)
or state 𝑑 = 0 (PU signal absent) is assumed to be 0.5 and
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Fig. 3. Performance of Method II at different values of 𝐾 for 𝑀 = 1,
𝑀𝑚𝑎𝑥 = 2 and 𝐾𝑚 = 16.
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Fig. 4. Performance of Method II at different values of 𝐾𝑚 for 𝑀 = 1,
𝑀𝑚𝑎𝑥 = 2 and 𝐾 = 32

independent from one iteration to another, the most likely
number of PU state transitions during the 𝐾 iterations would
be 0.5𝐾 . Therefore, if 𝐾𝑚 < 0.5𝐾 , there is a high probability
that the some of the iterations during which there was a change
in the PU state have not been considered in assigning penalty
factor, leading to poorer performance. If 𝐾𝑚 > 0.5𝐾 , there is
a high chance that some of iterations during which there was
no change of state of the PU have been considered in assigning
penalty factor, again leading to a poorer performance. Thus,
more precise knowledge of the PU activity (expected number
of state transitions in a given time interval) can be used to
appropriately choose 𝐾𝑚 and 𝐾 .

In Fig. 5, we consider the performance of Methods I and
II at different values of 𝑀 for 𝑀𝑚𝑎𝑥 = 20. The system
considered is similar to the system analyzed in Fig. 2a. The PU
SNR (ignoring fading effects) at (100𝑚, 100𝑚) is assumed
to be -5dB, 0dB and 8dB in Fig. 5a, Fig. 5b and Fig.
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Fig. 5. Performance of malicious user detection schemes at different values
of 𝑀 for 𝑀𝑚𝑎𝑥 = 20
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Fig. 6. Performance of malicious user detection schemes using spatial
information of the CR network for 𝑀 = 1 malicious user and 𝑀𝑚𝑎𝑥 = 2.

5c, respectively. We assume that all malicious users collude
together and produce equal high energy values. We consider
the worst possible case in which all the malicious users in
the system are the ones spatially closest to the PU. In case
of Method II, we choose 𝐾𝑚 = 16 and 𝐾 = 32. We see
that the performance of Method II degrades more compared
to that of Method I as 𝑀 increases. This is especially true at
low values of PU SNR (Fig. 5a). This is because at low PU
SNR values there are not enough non-malicious users with
good channels from the PU. Therefore, it is not necessarily
true that the largest increase or decrease in the adjusted bi-
weight estimates is due to change in the state of the PU,
leading to severe performance degradation in case of Method
II. However, as seen from Fig. 5c, at high values of SNR,
Method II still outperforms Method I even for high values of
𝑀 . Both Method I and II would offer a trade-off between the
probability of false alarm and probability of misdetection for a
system affected by malicious users as long as their percentage
is less than 50. However, the trade-off might not be practical
for high values of 𝑀 and low PU SNR values.

In Fig. 6, we consider the performance of malicious user
detection techniques using spatial information for the system
considered in Fig 2a with 𝑀 = 1 and 𝑀𝑚𝑎𝑥 = 2. The size
of spatial neighborhood considered is 𝐴 = 8. We see that the
performances of both Methods I and II improve substantially
when spatial outlier factors are taken into consideration. This
is due to assignment of lower magnitude outlier factors to
non-malicious users with good channels from the PU which
decreases the probability of such users of having a outlier
magnitude or penalty factor higher than the malicious users
or CR users with low SNR from the primary user. Even
though, in this method, the chances of sensors with low PU
SNR getting high outlier or penalty factor are higher, the
effect of these sensors will be low on the performance of the
cooperative sensing system. The choice of 𝐴 would depend
on the propagation environment of PU signal.

In Fig. 7, we analyze the performance of Method IIa when
𝐷𝛿 = {1, 2, 3, 4} for the system considered in Fig. 2a. In Fig.

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Additional Probability of Misdetection (P̄m)

A
d
d
it
io

n
a
l
P

ro
b
a
b
il
it
y

o
f
F
a
ls

e
A

la
rm

(P̄
f
)

 

 

Method I
Method II, K

m
 = 8, K = 16

Method II, K
m
 = 16, K = 32

Method IIa, K
m
 = 8, K = 16

Method IIa, K
m
 = 16, K = 32

(a) ‘Always Yes’ malicious user

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Additional Probability of Misdetection (P̄m)

A
d
d
it
io

n
a
l
P

ro
b
a
b
il
it
y

o
f
F
a
ls

e
A

la
rm

(P̄
f
)

 

 

Method I

Method II, K
m
 = 8, K = 16

Method II, K
m
 =16, K = 32

Method II, K
m
 = 32, K = 64

Method IIa, K
m
 = 8, K = 16

Method IIa, K
m
 = 16, K = 32

Method IIa, K
m
 = 32, K = 64

(b) Smart malicious user

Fig. 7. Performance of malicious node detection schemes for CR network
spread over a large area in the presence of 𝑀 = 1 malicious user.

7a, we consider ‘Always Yes’ malicious user and in Fig. 7b,
we consider a smart malicious user that avoids sending false
sensing values during the iterations when there is change in the
PU state. Same 𝐾𝛿

𝑚 value is used for each 𝛿 and is denoted by
𝐾𝑚 in Fig. 7a and Fig. 7b. We see that Method IIa performs
close to Method II in case of ‘Always Yes’ malicious user. At
the same time, Method IIa significantly outperforms Method
II in case of smart malicious user. This is because the smart
malicious user escapes getting a penalty during most iterations
in case of Method II. However, for 𝛿 > 1, it still receives the
penalty and thus is identified using Method IIa.

VIII. CONCLUSION

In this paper, we have proposed malicious user detection
schemes based on outlier-detection techniques for a CR co-
operative sensing system. A parallel fusion sensing network
was considered in which all sensors send their energy detector
outputs to an access point which then applies a data fusion
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and detection scheme to determine the presence of a primary
signal. We investigated various robust methods to assign
outlier factors to the users during each sensing iteration.
Malicious user detection schemes using these outliers factors
are then proposed to identify malicious users and reduce their
impact on the performance of the sensing system. We focused
on identifying the malicious users which decrease the CR
throughput by sending false high energy values when the PU
is absent. Several important constraints imposed by the CR
scenario have been taken into consideration. The proposed
malicious user detection schemes do not require feedback from
the PU network or knowledge of the additive noise variance
and the location of the primary transmitter. Assuming partial
knowledge of the PU activity, we proposed a novel method
to improve the performance of the malicious user detection
scheme. For the case of a CR cooperative sensing system
spread over a wide area with significant difference in path loss
components of the channels between the PU and various sen-
sors, we proposed improved malicious user detection schemes
in which spatial information of the sensors is taken into
consideration. We analyzed the performance of the proposed
schemes through simulations for a cooperative sensing system
using equal gain combining as the data fusion scheme at the
access point. In the future, we will consider malicious-user
detection techniques for CR cooperative sensing systems when
the data sent to the access point by the sensors is quantized.
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