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We construct charged and rotating asymptotically Schrödinger black hole solutions of type IIB

supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of a broad class

of type IIB backgrounds, including solutions of minimal five-dimensional gauged supergravity, and

identify the resulting five-dimensional effective action. We use these results to demonstrate that the near-

horizon physics and thermodynamics of asymptotically Schrödinger black holes obtained in this way are

essentially inherited from their anti–de Sitter (AdS) progenitors, and verify that they admit zero-

temperature extremal limits with AdS2 near-horizon geometries. Notably, the AdS2 radius is parametri-

cally larger than that of the asymptotic Schrödinger space.
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I. INTRODUCTION

A series of beautiful experiments on cold atoms at
unitarity [1] and other nonrelativistic critical systems has
led to an intense study of nonrelativistic conformal field
theories (NRCFTs) [2]. Since these systems are generally
strongly nonperturbative, making progress with traditional
tools has proven difficult. In an attempt to provide a strong-
coupling expansion, Son [3] and Balasubramanian and
McGreevy [4] proposed a new application of gauge-gravity
duality to NRCFTs in which the usual AdSdþ1 space,
whose isometry group is the relativistic conformal group
in d space-time dimensions, is replaced by the Schdþ2

geometry,

ds2 ¼ �dt2

r4
þ 2dtd�þ d~x2 þ dr2

r2
;

whose isometry group is the nonrelativistic conformal
group in d space-time dimensions—the so-called
Schrödinger group. In this construction, � is a compact
null circle, with the particle number of the NRCFT iden-
tified with momentum along this direction under a discrete
light cone quantization (DLCQ), N ¼ i@�. Using a simple

generalization of the usual AdS/CFT dictionary, one can
show that this gravitational dual does indeed reproduce the
correlation functions of a NRCFT at zero temperature and
chemical potential.

Of course, a nonrelativistic system at zero temperature
and zero density is a somewhat degenerate system.
Meanwhile, the Schdþ2 geometry above has a null singu-
larity in the IR region near r ! 1. To improve the situ-
ation, one can turn on a nonzero temperature and chemical
potential. In the gravity solution, this corresponds to hiding
the erstwhile null singularity behind a warm fuzzy black
hole horizon at finite r [5–7]. Using the previously con-
jectured dictionary, these gravity systems generate bound-
ary correlation functions which transform like those of an
NRCFT at finite temperature and density, which pass some
rather nontrivial checks [8], and which lead to the predic-

tion that the dual NRCFT has a viscosity to entropy ratio
which saturates the KSS bound [9]. The evidence is thus
strong that these systems describe some NRCFT living on
the boundary.
Our main interest, however, is not in the symmetric

phase of these systems, but rather in superfluid phases in
which the particle-number U(1) is spontaneously broken
by the particle condensate. In the relativistic context, such
condensates have been studied in some detail by Gubser
[10] and by Hartnoll, Herzog, and Horowitz [11] and
others, where charged black holes were shown to be un-
stable to the spontaneous emission of charge into a trapped
layer above their horizons—a near-horizon superfluid.
Rotation is readily incorporated by studying charged-
rotating black holes [12]. Related, in the context of fermi-
ons, the study of Fermi condensates involves a very similar
structure, with a sharp Fermi surface appearing in the zero-
temperature extremal limit of a charged black hole [13]. It
would be very interesting to extend this construction to the
nonrelativistic regime.
We are thus led to search for more general charged-

rotating asymptotically Schrödinger black holes. In this
paper, we will construct precisely such black hole solutions
in type IIB supergravity. As in the original example, we
will derive these solutions from charged, rotating anti–
de Sitter (AdS) solutions by the application of a solution
generating technique, the null Melvin twist. Also as in the
original example, these black holes will inherit many of
their properties from AdS space. However, they will enjoy
a number of novel features. First, these solutions will boast
extremal limits with AdS2 near-horizon geometries, a very
powerful constraint on the IR physics. Secondly, unlike the
AdS case, the radius of curvature of the near-horizon
region will be independent of the radius of curvature of
the asymptotic geometry, but will instead be controlled by
the NR density of the boundary conformal field theory
(CFT). Third, these solutions will allow us to explicitly
break rotation invariance in the boundary solution with
either rotation or additional fields.
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In constructing these solutions explicitly, several bits of
technology will be quite useful. First, we obtain a closed-
form expression for a general Melvinization, including
Ramond-Ramond (RR) forms, which simplifies our com-
putations. Secondly, we determine the dimensionally re-
duced five-dimensional action associated with the
Melvinized solutions. The Melvin map on five-
dimensional solutions is shown to slightly modify the
metric, preserve the initial massless gauge field, and in-
troduce a massive gauge field corresponding to the Killing
vector in the direction of the number operator isometry.

This paper is organized as follows. In Sec. II, we present
the closed-form expression for the null Melvin twist, re-
strict the general form to solutions of 5D gauged super-
gravity, and discuss the 5D effective action after
Melvinization. Section III addresses general properties of
black holes which arise from Melvinization, including
their thermodynamics and near-horizon geometries.
Section IV works out two examples, the charged
Reissner-Nordstrom (RN)-Sch5 black hole and the
charged-rotating Kerr-Newman-Sch5 black hole, including
a brief discussion of their thermodynamics and near-
horizon geometries. We conclude in Sec. V.

II. THE NULL MELVIN TWIST

The null Melvin twist [14,15] is a simple solution gen-
erating technique for IIB supergravity. The idea is to act
with a series of symmetry operations which preserve, point
by point, the satisfaction of the equations of motion, but
which do not necessarily respect global properties of the
solution. The result is a new and generally inequivalent
solution which, however, inherits some of the structure of
the original background. This process of ‘‘Melvinization’’
has been used successfully to construct (up to now un-
charged, unrotating) black holes with asymptotic
Schrödinger symmetry from AdS black holes in type IIB
supergravity. With an eye toward extremal solutions with
Schrödinger asymptotics, we would like to apply this
technique to AdS black holes carrying charge and rotation.

For this technique to work, the initial solution must
admit one timelike and two spacelike isometries, @�, @y,

and @�. One then performs a boost of rapidity � in the �-y

plane followed by a T duality along y, and then twists
d� ! d�þ �dy; this is followed by another T duality
along y and a boost of rapidity �� in the �-y plane.
Finally one takes a double-scaling limit with

� ! 0; � ! 1; � � � cosh� fixed: (2.1)

The ‘‘Melvinized’’ solution is characterized by the new
constant �; the original solution is recovered in the limit
� ! 0. By construction, the end result is again a solution
of 10D type IIB supergravity.

While the procedure is completely straightforward in
principle, intermediate steps can be messy. For simplicity,
we begin this section with a closed-form expression for the

Melvinization of a broad class of initial solutions, then
specialize to 10D solutions corresponding to general AdS5
black holes. We use the result as an ansatz for a dimen-
sional redution to five dimensions and present the reduced
5D action. We will use these results to discuss the thermo-
dynamics of Melvinized black holes in the next section,
and then discuss some simple examples in the subsequent
section.

A. General Melvin map

We consider a type IIB supergravity background with
the requisite three isometries, a self-dual five-form F5,
constant dilaton and all other fields vanishing. These as-
sumptions can be relaxed straightforwardly, but will suffice
for our purposes.
Letting a, b run over the isometry directions �, y, �, with

xi¼3���9 the remaining seven coordinates, the initial back-
ground may be written as

ds2 ¼ gabe
aeb þ Gijdx

idxj; (2.2)

F5 ¼ �F5 ¼ F0
5; (2.3)

� ¼ �0; (2.4)

where the one-forms ea, given by

e� � d�þ A�
i ðxÞdxi; ey � dyþ Ay

i ðxÞdxi;
e� � d�þ A

�
i ðxÞdxi;

(2.5)

are defined so that all cross terms between the three-
dimensional part of the metric spanned by �, y, � and the
other seven directions xi are absorbed into it; however, they
do not contain the cross terms between �, y, and � them-
selves, which are realized by off-diagonal elements in gab.
In writing down the Melvinized solution, it is useful to

decompose the five-form F0
5 into all possible tensors rela-

tive to e�, ey, and e� and single out two terms, in particular,

F0
5 � e� ^ ey ^ e� ^ a2 þ 1

2ðey � e�Þ ^ e� ^ b3 þ � � � ;
(2.6)

where a2 and b3 are a 2-form and a 3-form with indices in
the xi directions; all other possible terms consistent with
self-duality can be present as well, but these two play a
special role in the results.
We now perform the Melvinization as described. A

compact and convenient presentation of the T-duality rules
is given in Appendix B. After some character-building
labor, we find the result

ds20 ¼ �2kgabk
K

ðe� þ eyÞ2 þ 1

K
gabe

aeb þ Gijdx
idxj;

(2.7)

B0
2 ¼ B0

abe
a ^ eb; (2.8)
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F0
3 ¼ �½ðe� þ eyÞ ^ a2 þ b3�; (2.9)

F0
5 ¼ F0

5 þ B0
2 ^ F0

3; (2.10)

�0 ¼ �0 � 1
2 logK; (2.11)

where kgabk is the determinant of the initial metric in the
�-y-� directions, and

K ¼ 1þ �2½g��ðg�� þ gyy � 2g�yÞ � ðgy� � g��Þ2�;
(2.12)

B0
�y ¼ �

K
½g��ðgyy � g�yÞ þ gy�ðg�� � g�yÞ�; (2.13)

B0
�� ¼ �

K
½g��ðgy� � g��Þ þ g��ðg�� � g�yÞ�; (2.14)

B0
y� ¼ �

K
½gy�ðgy� � g��Þ þ g��ðg�y � gyyÞ�: (2.15)

Note that the only change in the metric is the squashing of
the ð�; y; �Þ part by 1=K and the addition of a single new
term in the ð�þ yÞ direction. In addition, a B field is
generated, as well as a varying dilaton.

We also see that the RR flux now includes not only a 5-
form but also, in general, a 3-form. The RR 3-form is
nonvanishing only if the five-form terms written explicitly
in (2.6) are nonzero. For all the explicit examples consid-
ered in this paper, � and y will be part of a noncompact
five-dimensional geometry,M, and � will be on a compact
Sasaki-Einstein space. When these two factors of the ge-
ometry are orthogonal in the metric andF0

5 ¼ ð1þ �ÞvolM,
as is the case for the uncharged, nonrotating black hole
examples of [5–7], it is easy to see that F3 vanishes. In
general, however, F3 is nonzero, as will be the case for the
charged examples we study in the following sections.

B. Light-cone coordinates

The form of the solution simplifies considerably if we
rotate initial and final solutions to a light-cone frame
defined by

t ¼ �ð�þ yÞ; � ¼ 1

2�
ðy� �Þ:

In the asymptotically Schrödinger examples of interest in
the following sections, this is also the physically useful
choice, as @t becomes the canonically normalized genera-
tor of time translations in the asymptotic region. Note that
this transformation is unimodular, so we do not have to
worry about Jacobians.

In the light-cone frame, the new term in the metric
becomes diagonal, and the Melvinized solution takes the
simpler form,

ds20 ¼ kgabk
K

etet þ 1

K
gabe

aeb þ Gijdx
idxj; (2.16)

B0
2 ¼

ffiffiffiffiffiffijgjp
K

�g et; (2.17)

F0
3 ¼ i�i�F

0
5; (2.18)

F0
5 ¼ F0

5 þ B0
2 ^ F0

3; (2.19)

�0 ¼ �0 � 1
2 logK; (2.20)

where i is the inclusion acting as iXðeX ^ YÞ � Y, and

K ¼ 1þ ½g��g�� � g2���:
The components of B take a simple form in terms of
minors,

Bt� ¼ 1

K
ðg��gt� � gt�g��Þ;

Bt� ¼ 1

K
ðg��gt� � gt�g��Þ;

B�� ¼ 1

K
ðg2�� � g��g��Þ:

Note that all factors of� have been absorbed by the change
of coordinates.

C. Melvinizing solutions of 5D gauged supergravity

Melvin maps ten-dimensional solutions to ten-
dimensional solutions. In using a Melvin solution to build
Schrödinger black holes, we will generally begin with a
five-dimensional AdS black hole, lift it to ten dimensions,
Melvinize, and then reduce back to five dimensions. It is
therefore convenient to write down a formula circumvent-
ing the side trip to ten dimensions, and simply mapping one
five-dimensional geometry into another. In this section we
choose a 10D ansatz corresponding to 5D gauged super-
gravity and construct a five to five map.
Suppose our initial metric solution takes the Kaluza-

Klein (KK) form [16,17],

ds210 ¼ ds25ðMÞ þ ds2ðXÞ þ ð�þ AqÞ2; (2.21)

where M is a five-dimensional Lorentzian space-time on
which the isometries @t and @� act, X is a compact Kähler-

Einstein 4-manifold, � � d�þA defines a Sasaki-
Einstein fibration Y over X, and Aq is a 1-form on M.

For example, if X ¼ P2, � is then the Hopf fiber on S5; see
Appendix A for more details. We can always cast the 5D
metric in the form,

ds25ðMÞ ¼ G��e
�e� þGmndx

mdxn; (2.22)

with �, � running over only t, � and m, n over the
remaining three spatial dimensions, where et �
dtþ At

mdx
m and e� � d�þ A�

mdxm contain the cross
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terms between the t, � directions and the other three, but
not each other. (One may equally well use the coordinates
�, y, for which analogous statements hold.) Additionally,
the 1-form Aq can be written as

Aq ¼ Aqð�Þe� þ AqðmÞdxm: (2.23)

We assume as before a constant dilaton, self-dual five-form
F0
5 and no other fields. The 5-form that supports the metric

(2.21) has the form [6,16,17]

F0
5 ¼ �4volM þ 1

2ð�þ AqÞ ^ dA ^ dA

þ 1
2 �5 Fq ^ dA� 1

2Fq ^ ð�þ AqÞ ^ dA; (2.24)

where each line is self-dual by itself; the top line contains
the volume form on M and its Hodge dual, and the second
line contains a factor of Fq � dAq. The Bianchi identity

dF0
5 ¼ 0 implies

d �5 Fq ¼ Fq ^ Fq; (2.25)

which must be satisfied by any initial solution. Solutions of
the form (2.21) and (2.24) include the various charged,
rotating AdS5 black holes which we will study. The di-
mensional reduction of this ansatz is precisely minimal
gauged supergravity in five dimensions,

2�2
5S5 ¼

Z
volMðRð5Þ þ 12Þ � 3

2

Z
Fq ^ �5Fq

þ
Z

Aq ^ Fq ^ Fq; (2.26)

where the canonically normalized gauge field is A �ffiffiffi
3

p
Aq, and the pre-Melvinized 5D metric and gauge field

Aq are solutions to the equation of motion coming from this

action.
We can now apply the Melvin machine to this 10D

solution. Using et and e� (or e� and ey) from (2.22) and
defining e� � �þ AqðmÞdxm to be our 1-forms (2.5), we

find the resulting 10D solution,

ds2010 ¼ ds25ðMÞ0 þ ds2X þ e2Vð�þ AqÞ2; (2.27)

F0
5 ¼ F0

5 þ B0
2 ^ F0

3; (2.28)

F0
3 ¼ f ^ d�; (2.29)

B0
2 ¼ AM ^ ð�þ AqÞ; (2.30)

�0 ¼ �0 � 1
2 logK; (2.31)

where the new five-dimensional metric takes the form

ds25ðMÞ0 ¼ kG��k
K

etet þ 1

K
G��e

�e� þGmndx
mdxn;

(2.32)

with kG��k � GttG�� �G2
t� ¼ G��Gyy �G2

�y, and

K ¼ e�2V ¼ 1þG��; (2.33)

and where we have defined 1-forms AM and f on M:

AM ¼ �e2VG��e
�; f ¼ �1

2dAqð�Þ: (2.34)

Importantly, the vector Aq does not change.

In the original �-y coordinates, this takes the equiva-
lently simple form,

ds25ðMÞ0 ¼ �2kG��k
K

ðe� þ eyÞ2 þ 1

K
G��e

�e�

þGmndx
mdxn; (2.35)

K ¼ e�2V ¼ 1þ �2ðG�� þGyy � 2G�yÞ; (2.36)

AM ¼ ��e2VðGy� �G��Þe�;

f ¼ ��

2
dðAqðyÞ � Aqð�ÞÞ;

(2.37)

where now �, � run over � and y.
Notice that the Melvinized 5D metric does not involve

Aq or any other data, but only components of the original

5D metric tensor. In the case where Gt� ¼ 0, one can see

that

G0
tt ¼ 1

K
ðGtt þGttG��Þ ¼ Gtt; ðGt� ¼ 0Þ; (2.38)

and hence only the G0
�� ¼ G��=ð1þG��Þ component

changes in this case. The generalization of this observation
to Gt� � 0 can be found in Appendix C.

The metric also determines the new vector field AM,
while the gauge field Aq fixes f. The nature of the vector

AM can be understood more easily if we raise its index,
with either the pre-Melvinized or post-Melvinized 5D
metric. Either way we find it points purely in the
� direction:

G0	
ðAMÞ
 ¼ ��	
� ¼ e�2VG	
ðAMÞ
: (2.39)

In particular, this implies that AM is (minus) the �-Killing
vector with respect to the Melvinized metric.
We now turn to dimensionally reducing the 10D type IIB

supergravity action to five dimensions using (2.27), (2.28),
(2.29), (2.30), and (2.31) as an ansatz for the fields; see
Appendix C for further details. Since V ¼ � in our solu-
tion, the simplest dimension reduction involves setting
them equal and keeping only this single scalar field.1 We
find the (string frame) result,

1We have set�0 ¼ 0 for convenience; it can easily be restored
if necessary.
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2�2
5S5 ¼

Z
volMe

��½R0ð5Þ þ 16� 4e2��

� 1

2

Z
e�Fq ^ �05Fq �

Z
e��ðFq � 2f ^ AMÞ

^ �05ðFq � 2f ^ AMÞ þ
Z

Aq ^ Fq ^ Fq

� 1

2

Z
8e�f ^ �05f� 1

2

Z
½e��ðAM ^ FqÞ

^ �05ðAM ^ FqÞ þ e�3�FM ^ �05FM

þ 8e��AM ^ �05AM�; (2.40)

with 2�2
5 � 2�2

10=volðS5Þ. Thus upon KK reduction on Y,
the five-dimensional effective dynamics includes the met-
ric ds205 ; a massless vector Aq, which was present in the

10D metric before the Melvin map acted; a massive vector
AM coming from B2 of the type that is by now standard in
Schrödinger-type backgrounds; and a scalar �. Upon set-
ting � ¼ V the kinetic term for the combined field van-
ishes, but it will reappear in the Einstein frame.

Note that f, the field characterizing F3, is completely
fixed by the vectors AM and Aq and is not an independent

mode. The field equation for f involves no derivatives,
consistent with what we obtain from reducing the ten-
dimensional F3 equation of motion. Varying (2.40) with
respect to f, we obtain

f ¼ �1
2e

�2� �05 ðAM ^ �05ðFq � 2f ^ AMÞÞ; (2.41)

¼ �1
2e

�2� �5 ðAM ^ �5FqÞ; (2.42)

where in the second line we used the results (C11), (C12),
and (C16); evaluating the Hodge stars and using that AM is
a Killing vector for � (2.39) gives us precisely the expres-
sion (2.34) for f.

To pass to the five-dimensional Einstein frame, we
define

GE
	
 � e�2�=3G	
: (2.43)

This leads to the 5D Einstein frame action,

2�2
5S5;E¼

Z
volEM

�
R0ð5Þ
E �4

3
@	�@	

0
E�þ16e2�=3�4e8�=3

�

�1

2

Z
e4�=3Fq^�0EFq�

Z
e�2�=3ðFq�2f^AMÞ

^�0EðFq�2f^AMÞþ
Z
Aq^Fq^Fq

�1

2

Z
8e2�f^�0Ef�

1

2

Z
½e�4�=3ðAM^FqÞ

^�0EðAM^FqÞþe�8�=3FM^�0EFM

þ8AM^�0EAM�: (2.44)

The limit of the action in either frame (2.40) or (2.44)

where AM ¼ � ¼ f ¼ 0 is simply minimal gauged super-
gravity (2.26).

III. PROPERTIES OF MELVINIZED BLACK
HOLES

In this section, we study the general properties of generic
Schrödinger black holes which arise by Melvinization,
including their thermodynamics, extremal limits, and
near-horizon geometries.
It was shown in [5–7] that Melvinizing the

Schwarzschild-AdS5 black hole leads to a special asymp-
totically Schrödinger black hole whose odd thermody-
namic properties are a consequence of its origin.2 As we
shall see, a number of features of the charged and rotating
asymptotically Schrödinger black holes derived via
Melvinization are similarly inherited from their pre-
Melvin progenitors—in particular, their temperature, en-
tropy, chemical potential, and properties of the near-
horizon geometry.
Consider a black hole metric of the class in (2.22), with

the particular form

ds25ðMÞ ¼ G��ðe�Þ2 þ 2Gy�e
ye� þGyyðeyÞ2 þGrrdr

2

þGijdx
idxj; (3.1)

where we choose Schwarzschild-like coordinates where
Grr ! 0 at the horizon r ¼ rþ. We use � and y, rather
than t and �, as the more natural coordinates near the
horizon. The Melvinized solution is obtained from (2.35),
and passing to the Einstein frame produces an extra factor

of K1=3:

ds25ðMÞ0 ¼ 1

K2=3
ðG��ðe�Þ2 þ 2Gy�e

ye� þGyyðeyÞ2

þ �2ðG��Gyy �G2
y�Þðe� þ eyÞ2Þ

þ K1=3Grrdr
2 þ K1=3Gijdx

idxj; (3.2)

where as before

K ¼ 1þ �2ðG�� þGyy � 2Gy�Þ: (3.3)

In general K is finite and nonzero at the horizon; as long as
this holds, the horizon still exists at the same radius
G0rrðr ¼ rþÞ ¼ 0 after the Melvin map is performed. We
will now enumerate a number of thermodynamic proper-
ties related to this horizon.
For simplicity, here we will consider the class of black

holes where e� ¼ d�. This restricts the only possible rota-
tion of the hole to be along the y direction, which encom-

2This unusual thermodynamics, which we will recapitulate
below, was shown to similarly follow from DLCQ in the dual
field theory in an interesting paper by Barbon and Fuertes [18];
see also [19] for a discussion of the more lenient constraints of
Schrödinger symmetry on the thermodynamic potentials.
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passes our examples. There is no reason this analysis
cannot be generalized.

The divergence of Grr ! 1 at the horizon is in general
accompanied by a corresponding zero in the determinant of
G, so that the volume element remains finite at the coor-
dinate singularity. When G�y ¼ 0, it is G�� ! 0 that pro-

vides this zero; when G�y is nonzero, G�� vanishes at the

stationary limit surface, which may not coincide with the
horizon, and instead the determinant of the �-y metric
vanishes at the horizon. To emphasize this we can write
the metric in the noncoordinate form

ds25ðMÞ ¼ G��d�
2 þGyy

�
ey þG�y

Gyy

d�

�
2 þGrrdr

2

þGijdx
idxj;

G�� �
G��Gyy �G2

�y

Gyy

; Gyy � Gyy: (3.4)

In general at the horizon G�� ! 0, and we shall assume
this is the case in what follows.

A. Entropy

The entropy of the black hole is simply proportional to
the area of the horizon, S ¼ A=4G5, integrated at constant
� and r ¼ rþ. For the un-Melvinized solution, this reads

S ¼ 1

4G5

Z ffiffiffiffiffiffi
G3

p ¼ 1

4G5

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gyy detðGijÞ

q
: (3.5)

In the Melvin case we get

S0 ¼ 1

4G5

Z ffiffiffiffiffiffi
G0

3

q

¼ 1

4G

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�2=3ðGyyþ�2ðG��Gyy�G2

�yÞÞdetðK1=3GijÞ
q

;

(3.6)

¼ 1

4G5

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gyy detðGijÞ

q
¼ S; (3.7)

where we used G��Gyy �G2
�y ¼ 0 at the horizon, and

found the factors of K to cancel. Thus the area of the
horizon, and consequently its entropy, is unchanged by
the Melvin map.

B. Temperature and chemical potential

The temperature is most easily calculated by analyti-
cally continuing to imaginary time and verifying that the
region near the horizon in the �-r plane is free of conical
singularities. This is conveniently done with the metric in
the form (3.4), and we find

T ¼ lim
r!rþ

1

2�
ffiffiffiffiffiffiffiffi
Grr

p d

dr

ffiffiffiffiffiffiffiffi
G��

q
: (3.8)

Under the Melvin map, the relevant quantities transform

like (in the Einstein frame),

G 0
�� ¼ K1=3 G��

1þ �2G��

; G0
rr ¼ K1=3Grr; (3.9)

and using the vanishing G��ðr ! rþÞ ! 0 at the horizon,

d

dr

ffiffiffiffiffiffiffiffi
G0

��

q
¼ K1=3

�
d

dr

ffiffiffiffiffiffiffiffi
G��

q �
ð1þOðG��ÞÞ; (3.10)

where we assumed the regularity of dK=dr at the horizon,
implying

T0 ¼ lim
r!rþ

1

2�
ffiffiffiffiffiffiffiffi
G0

rr

p d

dr

ffiffiffiffiffiffiffiffi
G0

��

q
¼ T; (3.11)

and thus the temperature is unchanged by the Melvin map.
This result assumes the temperature is defined with

respect to the same Killing generator of the event horizon
both before and after the Melvin transformation. One does
have to take into account the change from using i@� as the
asymptotic time coordinate, as is suitable for an AdS black
hole, to using i@t as the asymptotic time coordinate as suits
the Schrödinger cases.
In our class of solutions, the generator of the Killing

horizons can take the form

� ¼ @� þ�H@y (3.12)

¼ �ð1þ�HÞ@t � 1

2�
ð1��HÞ@�; (3.13)

where �H parametrizes rotation in the y direction; � has
unit coefficient with respect to the � coordinate. To switch
to a generator suited to the t coordinate, we define

�t � 1

�ð1þ�HÞ� ¼ @t � 1

2�2

1��H

1þ�H

@�: (3.14)

Since the temperature may be defined as T � �=ð2�Þ
where the surface gravity � is

�2 � �1
2ðr	�
Þðr	�
Þ; (3.15)

we see that the shift in coordinates to the Schrödinger time
t produces a rescaling of the temperature,

Tt ¼ T�

�ð1þ�HÞ : (3.16)

We can also read the chemical potential off the expression
(3.14). Since i@t corresponds to the Hamiltonian H while
i@� is the number operator N, we obtain the chemical

potential from the identification �t �H þ	N for the
grand-canonical ensemble,

	 ¼ 1

2�2

�H � 1

�H þ 1
: (3.17)

ADAMS et al. PHYSICAL REVIEW D 80, 125018 (2009)

125018-6



C. Near-horizon limit

One of our main goals in studying charged and rotating
asymptotically Schrödinger black holes is to find extremal
examples with scale-invariant near-horizon geometries, or
throats. Quite apart from just being unusually simple, such
extremal black holes have become important tools in the
application of gauge-gravity duality in a number of con-
texts, most notably in the holographic description of (non-)
Fermi liquids [13].3

A number of extremal black holes are known to have
near-horizon AdS2 regions. We now show that if this is the
case for the pre-Melvin extremal metric, the Melvinized
result also has anAdS2 region, albeit with a different radius
of curvature. Recall that the AdS portion of the near-
horizon limit of the original AdS5 black hole came from
the G��d�

2 þGrrdr
2 portion of the metric. Under the

Melvin map above, this sector becomes

G ��d�
2 þGrrdr

2 ! K1=3ðG��ð1þOðG��ÞÞd�2
þGrrdr

2Þ: (3.18)

The near-horizon geometry is thus simply rescaled by a

factor of K1=3 common to both terms. In the case of an
extremal black hole with a near-horizon AdS2 region, the
Melvinized Schrödinger version will have an analogous
AdS2 region, with the AdS radius rescaled by the factor

K1=6.
Because of the different scalings of the y direction from

the x and z directions under Melvin, the remaining three-
dimensional space is in general squashed by a factor of K.
In the planar limit, this is a completely trivial rescaling of
the flat spatial section. When the spatial section is S3,
however, the net result is a squashing of the S3.

One interesting consequence of this result is that the
radius of curvature of the near-horizon region is now
independent of that of the asymptotic region—explicitly,
K depends on �2, which can be tuned independently. That
the radius of curvature of the extremal throat depends
explicitly on the density of nonrelativistic excitations in
the boundary theory is an interesting result, and may play
in important role in understanding holography in this
space-time.

IV. EXAMPLES: SCHRÖDINGER BLACK HOLES
WITH CHARGE

In this section, we apply our Melvin map to a pair of
five-dimensional AdS black holes, and explicitly write
down the resulting backgrounds. We also discuss thermo-
dynamic properties, and find the results consistent with the
previous section where we showed they are unchanged by
Melvin, modulo the coordinate transformations needed for
asymptotically Schrödinger solutions. First we consider a
charged AdS black hole in the Poincaré patch; this will
give us the simplest charged Schrödinger black hole. Then
we examine the more complicated case of a charged black
hole in global coordinates, rotating along the Hopf fiber of
the global S3; this includes as a limiting case the chargeless
rotating black hole.

A. Charged Schrödinger black hole

As a first application of our results, we can construct the
first charged black hole with asymptotic Schrödinger sym-
metries, which we call RN-Sch5 for Reissner-Nordstrom-
Schrödinger in five dimensions.
Our pre-Melvinized solution is a five-dimensional

RN-AdS5 black hole. This solution is associated with a
ten-dimensional solution of D3-branes rotating around the
Hopf direction � of the S5 [16,17]. The five-dimensional
metric and gauge field are

ds2 ¼ 1

r2

�
� f

H2
d�2 þH

�
dr2

f
þ d~x2

��
;

Aq ¼ qr2

Hr2H
d�;

(4.1)

where q is the charge, and

f � H3 � r4

r4H
; H � 1þ q2r2: (4.2)

Note that rH is the location of the horizon in the uncharged
geometry; it is related to the mass parameter m by r4H ¼
1=2m. In what follows we use rþ to denote the true horizon
radius. This background is a solution to the action (2.26)
for five-dimensional minimal gauged supergravity, and
lifts to a ten-dimensional solution of type IIB supergravity

described by (2.21) and (2.24) with X ¼ P2 and � ¼ �ð5Þ
the Hopf fiber generating the map S1 ! S5 ! P2; see
Appendix A for more details.
We now turn the Melvinization crank as outlined in

Sec. II, with e� ¼ d� and ey ¼ dy; the directions x, y,
and z are all equivalent and so the choice of the Melvin
direction is arbitrary. We arrive at the five-dimensional
charged Schrödinger solution in the Einstein frame:

ds2 ¼ K1=3

r2

�
� f

H2K
d�2 � f�2

r2HK
ðd�þ dyÞ2 þH

K
dy2

þH

�
dr2

f
þ dx2 þ dz2

��
; (4.3)

3The reason throats are important is easy to see. When the
near-horizon region has a scaling invariance (for example, the
near-horizon AdS2 symmetry of the extremal RN-AdS4 black
holes), taking a scaling limit allows one to consistently decouple
the modes near the horizon from the modes near the boundary.
Since the horizon and boundary are holographically related to IR
and UV physics, this means that at least some aspects of UVand
IR physics may be studied independently of each other, a power-
ful statement of universality. This view is elegantly presented in
[20] and by Liu in a talk at the KITP on 7 July 2009. A. A.
thanks H. Liu and J. McGreevy for explaining their work, and D.
Marolf and A. Sinha for discussion on the meaning of the near-
horizon geometry of extremal black holes.
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with

K ¼ 1þ �2r2

H2r4H
: (4.4)

The overall factor of K1=3 is absent in the string frame. For
the special case q ¼ 0, (4.3) is precisely the uncharged
Schrödinger geometry previously studied in [5–7]. The
process also generates, as discussed in previous sections,
a nontrivial dilaton� and massive vector field AM, while it
leaves the massless vector Aq unchanged:

� ¼ �0 � 1

2
log

�
1þ �2r2

H2r4H

�
;

AM ¼ ��

K

�
f

r2H2
d�þ H

r2
dy

�
; Aq ¼ qr2

Hr2H
d�:

(4.5)

1. Entropy

The entropy S associated with (4.3) is easily computed
via the Beckenstein-Hawking result S ¼ A=4G5 where A is
the area of the horizon, and G5 is the gravitational constant
in five dimensions. Performing this calculation, we find for
the entropy density,

s � S

Vx;y;z

¼ 1

4G5r
2
Hrþ

¼ HðrþÞ3=2
4G5r

3þ
; (4.6)

where Vx;y;z is the (infinite) horizon volume. Again, in the

limit q ! 0 (rþ ! rH), this result agrees with those ob-
tained in [5–7]. Furthermore, it is manifestly independent
of �, demonstrating that it was not changed by the Melvin
procedure, consistent with our general argument in the
previous section.

2. Temperature and chemical potential

The corresponding Hawking temperature is readily cal-
culated from the relation T ¼ �=2� where � is the surface
gravity of the horizon (3.15). As discussed in the previous
section, to obtain the temperature associated with the
asymptotic Schrödinger Hamiltonian H ¼ i@t we should
take the generator of the horizon to be �t ¼ @�=�; we have
�H ¼ 0 in this nonrotating case. We then find

T ¼ jf0ðrþÞj
4��

�
rH
rþ

�
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
HðrþÞ

p
2��rþ

jHðrþÞ � 3j: (4.7)

Notice that the temperature vanishes when HðrþÞ ¼ 3,
which implies the geometry becomes extremal when

q ¼
ffiffiffi
2

p
rþ

: (4.8)

We will use this fact in the following section. The tem-
perature corresponding to the asymptotic � coordinate is
�T, which is manifestly � independent and thus un-
changed by Melvin.

Because �t takes the form

�t ¼ 1

�
@� ¼ @t � 1

2�2
@�; (4.9)

we can read off the chemical potential for � translations as

	 ¼ � 1

2�2
; (4.10)

consistent with the previous section.

3. On-shell action

A straightforward, if tedious, application of familiar
techniques from holographic renormalization allows us to
construct a renormalized on-shell action for this solution.
Dispensing with the technicalities, the result is

S5 ¼ � 1

16�5

Z
dx4

H½rþ�3ð1� 2q2�2Þ
r4þ

: (4.11)

Continuing to periodically identified Euclidean time then
gives the on-shell Euclidean action,

SE ¼ ���V

8�5

H½rþ�5=2ð1� 2q2�2Þ
r3þjHðrþÞ � 3j ; (4.12)

which we would like to identify as the action of a saddle-
point approximation to the full grand-canonical partition
function.

4. The extremal, near-horizon limit

Near the horizon of an extremal Reissner-Nordstrom
black hole, the geometry becomes a direct product space
with one factor AdS2. We expect an analogous limit for the
extremal version of (4.3). To obtain this, we define the
deviation from the horizon  ,

 � r

rþ
� 1; (4.13)

and expand the metric (4.3) in the extremal limit (4.8) in
powers of  . The horizon in the extremal case is located at

rþ ¼ 271=4rH ¼
�
27

2m

�
1=4

: (4.14)

Shifting � to absorb the cross term with y, rescaling the
coordinates and inverting  ¼ 1=�, we find the near-
horizon result

ds2 ¼ L2

�2
ðd�2 þ d�2Þ þ dx2 þ dy2 þ dz2: (4.15)

Low and behold, the limiting form isAdS2 � R3, with AdS
radius

L2 ¼ KðrþÞ1=3
12

¼ ð1þ 3�2=r2þÞ1=3
12

; (4.16)

which as anticipated, depends on �.
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B. Charged, Hopf-rotating Schrödinger black hole

We now turn to a more complicated example, a charged
AdS black hole that is also rotating. In five dimensions
there are two independent rotation parameters, in the lit-
erature usually termed a and b; we focus on the case where
b ¼ a, corresponding to rotation along the Hopf fiber of
the S3 of global AdS. The uncharged version of this
solution was written in [21], while the charged version,
which is a solution to minimal gauged supergravity (2.26)
was formulated in [22]. The solution reads in our conven-
tions

ds2 ¼�qþ�2ð1þ�2=L2Þ
�2�

d�2þfþq�2�

�4�2
ðd��a�ð3ÞÞ2

þ�2

��

d�2þ�2

�

�
ds2

P1 þ
�
1þqa2

�4

�
ð�ð3ÞÞ2

�
; (4.17)

Aq ¼ q

�2�
ðd�� a�ð3ÞÞ; (4.18)

where �ð3Þ is the vertical 1-form along the Hopf fiber of the
S3, as described in Appendix A, and

� ¼ 1� a2=L2; �2 ¼ �2 þ a2;

f ¼ 2m�2 þ 2qa2�2=L2 � q2;

�� ¼ q2 þ 2qa2 þ �4ð1þ �2=L2Þ � 2m�2

�2
:

(4.19)

In the limit a ! 0 this solution becomes the RN-AdS5
black hole in global coordinates, while for q ! 0 it reduces
to the uncharged AdS-Kerr black hole rotating along the
Hopf fiber.
This solution is readily Melvinized. We take e� ¼ d�,

ec ¼ 2�ð3Þ ¼ dc þ cos�d�, where c takes the place of
y as the T-duality direction; we are thus choosing the Hopf
direction for the y isometry. The resulting Melvinized
Kerr-Newman-Sch5 metric is then

ds2 ¼�qþ�2ð1þ�2=L2Þ
K�2�

d�2þfþq�2�

K�4�2
ðd��a�ð3ÞÞ2

þ �2

K�

�
1þqa2

�4

�
ð�ð3ÞÞ2� �2�2��

4�2�2K
ðd�þ 2�ð3ÞÞ2

þ �2

��

d�2þ�2

�
ds2

P1 ; (4.20)

where

K ¼ 1þ �2

�
fð2þ aÞ2
4�2�4

þ að2þ aÞq
2��2

þ �2 � 4ð1þ �2=L2Þ
4�

�
: (4.21)

The resulting dilaton and massive vector field, along with
the unmodified massless vector, are then

� ¼ �0 � 1

2
logK ¼ �0 � 1

2
log

�
1þ �2

�
fð2þ aÞ2
4�2�4

þ að2þ aÞq
2��2

þ �2 � 4ð1þ �2=L2Þ
4�

��
;

AM ¼ ��

K

��
�
�
1þ a

2

�
f

�4�2
� aq

2�2�
þ 1þ �2=L2

�

�
d�þ 1

2

�
a

�
aþ 2

�
f

�4�2
þ 2aðaþ 1Þ q

�2�
þ �2

�

�
�ð3Þ

�
;

Aq ¼ q

�2�
ðd�� a�ð3ÞÞ:

(4.22)

1. Entropy, temperature, and chemical potential

The entropy density associated with this geometry is
found to be

s ¼ �4þ þ a2q

4G5�
2�þ

; (4.23)

which, as expected, is independent of � and hence identi-
cal to that obtained from the 5D un-Melvinized metric. As
a result, it agrees with [22].

To determine the temperature and chemical potential, it
is necessary to compute the null generator of the horizon
for this geometry. Because the metric is stationary but not
static, the generator will be of the form � / @� þ�H@c ,

where �H is the angular velocity of a test particle at
location �þ. By considering a photon emitted in the c
direction at fixed �, �, and �, it is easy to show that

�H ¼ 2að�2þð1þ �2þÞ þ qÞ
�4þ þ a2q

: (4.24)

This too is unchanged by Melvinization. As is by now
familiar, to use our null generator for asymptotically
Schrödinger thermodynamics, one must normalize it such
that the coefficient of @t is 1. As in (3.14), this amounts to a
scaling by 1=�ð1þ�HÞ:

�t ¼ @t þ 1

2�2

�
�H � 1

�H þ 1

�
@�; (4.25)

from which we easily read off the chemical potential

	 ¼ 1

2�2

�
�H � 1

�H þ 1

�
: (4.26)

We note that the rotation of the original AdS black hole has
been converted into a rescaling of the chemical potential
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for the corresponding Schrödinger geometry. In particular,
there is no spatial rotation associated with the (2þ 1)-
dimensional field theory dual space-time. Such a rotation
could be obtained by considering the Melvin map on an
AdS black hole with two independent angular momenta.

The temperature must also be identical to that of the un-
Melvinized 5D geometry [22], up to a rescaling introduced
by the properly normalized null generator, and we find

T ¼ 1

2��

�4þð1þ 2�2þÞ � ða2 þ qÞ2
�þð1þ�HÞð�4þ þ a2qÞ : (4.27)

2. The extremal, near-horizon limit

From (4.27), it is easy to see that the geometry becomes
extremal when

q ¼ �a2 � �2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2þ

q
: (4.28)

Using this fact, we can again study the near-horizon limit
of the extremal solution, whose horizon is located at

�þ ¼ 1ffiffiffi
3

p ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6mþ a2ða2 � 2Þ

q
� 1� 2a2�1=2: (4.29)

As before, we scale the radial coordinate like �=�þ ¼ 1þ
 and expand about  ¼ 0. Although the details are tedi-
ous, we again find that all geometries satisfying (4.28)
decompose into a direct product space with one factor
AdS2. Computationally, it is easiest to work with the metric
written in the form (3.4), in which caseG�� / r2 and g�� /
r�2 near the horizon, with all other components Oðr0Þ.

V. CONCLUSION

In this paper we obtained a general expression for the
action of the null Melvin twist, constructed a series of
charged and rotating asymptotically Schrödinger black
hole solutions of type IIB supergravity, found a 5D trunca-
tion of the 10D IIB theory adapted to these solutions, and
examined some of the salient features of their geometry
and thermodynamics. Along the way we discovered that
these space-times inherit extremal limits from their parent
AdS spaces, but that some of their features—like the radii
of curvature of the near-horizon regions—are not inherited,
leading to a potentially interesting class of new solutions.
The fact that these systems are explicitly embedded in IIB
string theory allows us to identify the boundary CFT as the

�DLCQ of the pre-Melvin boundary theory. Such a theory

is by construction a nonrelativistic conformal field theory.
Whatever this boundary system is, however, it is decid-

edly not a good description of fermions at unitarity. First,
the thermodynamics of this system is wrong. For example,
while the pressure is positive, it scales with a negative
power of the chemical potential, P � T4=	2; positivity
of the number density N ¼ @P=@	 then requires that the
chemical potential is negative. Notably, this scaling is not a

consequence of NR conformal symmetry, as the conformal

algebra requires only that P � Tðdþ2=2Þgð	=TÞ, as ele-
gantly explained in [19]. Rather, this odd thermodynamics
is a direct consequence of the identification of a particle
number with a DLCQ momentum, N ¼ i@�, as powerfully
argued in [18], who found that the curious scalings follow
from the summation over the infinite tower of KK modes.
Secondly, and importantly, while the system certainly

has a finite density of nonrelativistic excitations, it is not in
a superfluid phase, since the U(1) conjugate to the particle
number—here, �-translation invariance—is manifestly un-
broken. It is certainly possible that this geometry is secretly
a subleading saddle, with a �-momentum violating solu-
tion dominating entropically; unfortunately, no such solu-
tion is presently known.
Eventually, onewould like to find solutions that dispense

with the �-translation symmetry entirely, for example, by
breaking it explicitly even in the asymptotic regime, or by
KK reducing on a finite-density geometry in which the
� circle is spacelike and lifting the KK modes by moving
out along a Coulomb branch, as was done, for example, in
the DLCQ of M theory. This is an important direction for
future work.4

All that said, even if these systems are not fermions at
unitarity, they are NRCFTs and deserve study in their own
right. The solutions presented and explored in this paper
open the door to a number of physically interesting ques-
tions, such as the study of superfluids and Fermi surfaces in
field theories which are microscopically nonrelativistic.
We will return to these questions in the future.
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APPENDIX A: COORDINATES ON S3 AND S5

In our examples, we employ a Hopf parametrization of
the coordinates on the compact S5 and, in the cases built on
global AdS, the S3. The metrics may be elegantly ex-

4We thank J. McGreevy and D. Son for illuminating discus-
sions on this topic.
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pressed in terms of the left-invariant one-forms of SU(2),

�1 ¼ 1
2ðcosc d�þ sinc sin�d�Þ;

�2 ¼ 1
2ðsinc d�� cosc sin�d�Þ;

�3 ¼ 1
2ðdc þ cos�d�Þ:

(A1)

The Hopf fibration S1 ! S3 ! P1 enjoys the round metric,

ds2
S3

¼ �2
1 þ �2

2 þ �2
3 ¼ ds2

P1 þ ð�ð3ÞÞ2; (A2)

where the metric on P1 is

ds2
P1 ¼ �2

1 þ �2
2 ¼ 1

4ðd�2 þ sin2�d�2Þ; (A3)

and the Hopf fiber is

�ð3Þ � �3 ¼ 1
2ðdc þ cos�d�Þ; (A4)

with Hopf coordinate c ; thus the metric may be written

ds2
S3

¼ 1
4½d�2 þ sin2�d�2 þ ðdc þ cos�d�Þ2�: (A5)

Meanwhile the Hopf fibration S1 ! S5 ! P2 has the met-
ric

ds2
S5

¼ ds2
P2 þ ð�ð5ÞÞ2; (A6)

where the metric on P2 is

ds2
P2 ¼ d	2 þ sin2	ð�2

1 þ �2
2 þ cos2	�2

3Þ; (A7)

and the Hopf fiber �ð5Þ is

�ð5Þ � d�þA � d�þ sin2	�3; (A8)

where the Hopf coordinate is �.
In the literature on five-dimensional black holes in

global AdS, the S3 is typically written in Boyer-
Lindquist (BL) coordinates �B, c B, and �B rather than
the Hopf coordinates �, c , and � given above. These are
related by

� ¼ 2�B c ¼ c B þ�B � ¼ c B ��B; (A9)

which leads to the BL metric on S3,

ds2
S3

¼ d�2B þ sin2�Bd�
2
B þ cos2�Bdc

2
B:

APPENDIX B: T-DUALITY CONVENTIONS

We can express the T-duality rules as follows. Let y be
the isometry direction along which T duality is taken and
x� the remaining coordinates. Any 10D string metric,
B field, and RR fields with a y isometry can be written as

ds2 ¼ gyyðdyþ gðyÞÞ2 þ G��dx
�dx�; (B1)

B2 ¼ ðdyþ 1
2gðyÞÞ ^ BðyÞ þ 1

2B��dx
� ^ dx�; (B2)

Fp ¼ ðdyþ gðyÞÞ ^ FpðyÞ þ Fpðy6 Þ; (B3)

where the one-forms gðyÞ and BðyÞ capture the off-diagonal

terms between y and the other directions:

gðyÞ �
gy�
gyy

dx�; BðyÞ � By�dx
�; (B4)

andFpðyÞ and Fpðy6 Þ are (p� 1) and p forms polarized along

the x� directions, respectively.
T duality along the y direction gives a result that may

also be written in the form of (B1)–(B3),

ds20 ¼ g0yyðdyþ g0ðyÞÞ2 þ G��dx
�dx�; (B5)

B0
2 ¼ ðdyþ 1

2g
0
ðyÞÞ ^ B0

ðyÞ þ 1
2B��dx

� ^ dx�; (B6)

F0
p ¼ ðdyþ g0ðyÞÞ ^ F0

pðyÞ þ F0
pðy6 Þ; (B7)

with

g0yy � 1

gyy
; g0ðyÞ � �BðyÞ;

B0
ðyÞ � �gðyÞ; e2�

0 ¼ e2�

gyy
;

(B8)

F0
pðyÞ ¼ Fðp�1Þðy6 Þ; F0

pðy6 Þ ¼ Fðpþ1ÞðyÞ: (B9)

Note that G�� and B�� are invariant.

APPENDIX C: DIMENSIONAL REDUCTION

1. Hodge dual conventions

We use conventions for the Hodge dual where, acting on

a noncoordinate basis �̂a,

�ð�̂a1 ^ � � � ^ �̂apÞ ¼ 1

ðD� pÞ! �
a1���ap

apþ1���aD�̂
apþ1

^ � � � ^ �̂aD ; (C1)

which implies

Fp ^ �Fp ¼ 1

p!
Fa1a2���apF

a1a2���ap vol; (C2)

with vol the D-dimensional volume form.
For a 10D metric of the Kaluza-Klein form (2.21), we

can split the 10D Hodge star into Hodge stars acting on the

5D ds25ðMÞ, the 4D ds2ðXÞ, and the 1D e2Vð�ð5Þ þ AqÞ2
parts. Conventionally ordering forms as 5D, then 1D, then
4D parts, we find

�10 ¼ ð�1Þ� �5 �1�4; (C3)

where � ¼ 1 if the form being acted on has (even, odd,
even) or (odd, even, odd) numbers of indices in the (5D,
1D, 4D) parts, and � ¼ 0 otherwise, i.e. � ¼ n5n4 þ
n1ð1þ n5 þ n4Þ.
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We then have the useful expressions

�5 1 � volM; �11 ¼ eVð�ð5Þ þ AqÞ;
�41 ¼ 1

8dA ^ dA; �4dA ¼ dA;
(C4)

where J � dA=2 is the Kähler form on X, implying

�10 1 ¼ eVvolM ^ �ð5Þ ^ 1
8dA ^ dA: (C5)

The volume form on Y is then ð�11Þð�41Þ with V ¼ Aq ¼
0:

vol ðYÞ ¼
Z

�ð5Þ ^ 1

8
dA ^ dA: (C6)

2. Noncoordinate basis

We would like to determine the effective five-
dimensional action for which the fields of Sec. II C provide
solutions. To do so, it is useful to write the pre- and post-
Melvinized 5D metrics in a noncoordinate basis, in which
the map simplifies even further. Reexpress the original
metric (2.22) as the t-� version of (3.4),

ds25ðMÞ ¼ Gtte
tet þG��

�
e� þ Gt�

G��

et
�
2 þGmndx

mdxn;

(C7)

G tt �
GttG�� �G2

t�

G��

; G�� � G��; (C8)

so we can define noncoordinate basis 1-forms,

�̂ t �
ffiffiffiffiffiffiffi
Gtt

q
et; �̂� �

ffiffiffiffiffiffiffiffiffi
G��

q �
e� þ Gt�

G��

et
�
: (C9)

One may then show thatGtt is unchanged byMelvinization
due to the cancellation of 1=K and the new term, general-

izing (2.38), so that �̂t is fixed. Meanwhile �̂� changes only

by an overall factor of K�1=2. Thus the entire Melvin map
boils down to the transformation

�̂ � ! ð�̂�Þ0 � 1

K1=2
�̂� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ G��

q �̂�: (C10)

One can also see that AM is a 1-form proportional to ð�̂�Þ0:
AM ¼ �

ffiffiffiffiffiffiffiffiffi
G0

��

q
ð�̂�Þ0: (C11)

This presentation allows us to understand the relation-
ship between the 5D Hodge duals �5 and �05. When acting

on a form that contains �̂�, they differ by eV :

eV �05 ð� � � ^ �̂� ^ � � �Þ ¼ �5ð� � � ^ �̂� ^ � � �Þ; (C12)

while the converse is true when acting on a form that does

not contain �̂�:

e�V �05 ð� � � ^ �̂6 � ^ � � �Þ ¼ �5ð� � � ^ �̂6 � ^ � � �Þ: (C13)

These relations are useful in understanding the presenta-
tion of the tensor F0

5 (2.24) after Melvinization. This object

is not changed, but it contains the pre-Melvin Hodge star
�5, and it is useful for the dimensional reduction we are
about to carry out to write it in terms of the post-Melvin
metric. We can easily see

volM � �5ð1Þ ¼ e�V �05 ð1Þ ¼ e�VvolM0 ; (C14)

since the Hodge stars act on a 0-form. The �5Fq term is not

so simple, since in general Fq contains both terms with and

without �̂�. However, we can use the fact that while F0
5 is

self-dual with respect to the un-Melvinized 10D metric,
only F5 � F0

5 þ B0
2 ^ F0

3 is self-dual with respect to the

Melvin metric; one can think of the additional B0
2 ^ F0

3

term as being what is needed to ensure the tensor is still
self-dual after the metric changes. Given that

B0
2 ^ F0

3 ¼ f ^ AM ^ ð�þ AqÞ ^ dA; (C15)

we must have that �5Fq becomes in the new metric,

�5 Fq ¼ e�V �05 ðFq � 2f ^ AMÞ; (C16)

and the five-forms can be written

F0
5 ¼ �4e�VvolM0 þ 1

2ð�þ AqÞ ^ dA ^ dA

þ 1
2e

�V �05 ðFq � 2f ^ AMÞ ^ dA

� 1
2Fq ^ ð�þ AqÞ ^ dA; (C17)

and

F0
5 ¼ �4e�VvolM0 þ 1

2ð�þ AqÞ ^ dA ^ dA

þ 1
2 �05 ðFq � 2f ^ AMÞ ^ dA

� 1
2ðFq � 2f ^ AMÞ ^ ð�þ AqÞ ^ dA: (C18)

The Bianchi identity dF0
5 ¼ H0

3 ^ F0
3 implies

de�V �05 ðFq � 2f ^ AMÞ ¼ Fq ^ Fq; (C19)

consistent with (2.25) and (C16).

3. Reduction of IIB action

The IIB action in the string frame with C0 ¼ 0 is

2�2
10S ¼

Z �
ð�1Þe�2�ðRþ 4ð@�Þ2Þ � 1

2
e�2�H3 ^ �H3

� 1

2
F3 ^ �F3 � 1

4
F5 ^ �F5 � 1

2
C4 ^H3 ^ F3

�
:

(C20)

Here F5 � dC4 � C2 ^H3 is the gauge-invariant field
strength. As usual the IIB action gives the correct equations
of motion, but F5 ¼ �F5 must be imposed only after
deriving the equations.
Using the expressions (2.29) and (2.30) for F3 and H3

and dropping primes for convenience, we find
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�F3 ¼ eV �5 df ^ ð�ð5Þ þ AqÞ ^ dA

þ eV �5 df2 ^ ð�ð5Þ þ AqÞ ^ 1
8dA ^ dA; (C21)

�H3 ¼ �e�V �5 FM ^ 1
8dA ^ dA

� eV �5 AM ^ ð�ð5Þ þ AqÞ ^ dA

� eV �5 ðAM ^ FqÞ ^ ð�ð5Þ þ AqÞ ^ 1
8dA ^ dA:

(C22)

The Ricci scalar is

R ¼ Rð5Þ � 2@	V@
	V � 2r2V þ 24� 4e2V

� 1
4e

2VðFqÞ	
ðFqÞ	
: (C23)

Using integration by parts and the fact that dðB2 ^ C2Þ ^
B2 ^ F3 ¼ 1

2dðB2 ^ B2 ^ C2 ^ F3Þ is a total derivative, the
Chern-Simons term can be reexpressed as

� 1

2

Z
C4 ^H3 ^ F3 ! 1

2

Z
F0
5 ^ B2 ^ F3: (C24)

Using the above relations, and the ansatz (2.27), (2.28),
(2.29), (2.30), (2.31), (C17), and (C18) for the RR 5-form,
we perform the dimensional reduction leading to (2.40).
Because of the subtlety arising from the self-duality of the
RR 5-form, the coefficients were checked using the mode
decomposition of the F3 and the H3 equations of motion.
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