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Imaging the functional connectivity of the
Periaqueductal Gray during genuine and sham
electroacupuncture treatment
Carolyn E Zyloney1*, Karin Jensen1, Ginger Polich1, Rita E Loiotile1, Alexandra Cheetham1, Peter S LaViolette1,
Peichi Tu2, Ted J Kaptchuk3, Randy L Gollub1,2, Jian Kong1,2*

Abstract

Background: Electroacupuncture (EA) is currently one of the most popular acupuncture modalities. However, the
continuous stimulation characteristic of EA treatment presents challenges to the use of conventional functional
Magnetic Resonance Imaging (fMRI) approaches for the investigation of neural mechanisms mediating treatment
response because of the requirement for brief and intermittent stimuli in event related or block designed task
paradigms. A relatively new analysis method, functional connectivity fMRI (fcMRI), has great potential for studying
continuous treatment modalities such as EA. In a previous study, we found that, compared with sham
acupuncture, EA can significantly reduce Periaqueductal Gray (PAG) activity when subsequently evoked by
experimental pain. Given the PAG’s important role in mediating acupuncture analgesia, in this study we
investigated functional connectivity with the area of the PAG we previously identified and how that connectivity
was affected by genuine and sham EA.

Results: Forty-eight subjects, who were randomly assigned to receive either genuine or sham EA paired with
either a high or low expectancy manipulation, completed the study. Direct comparison of each treatment mode’s
functional connectivity revealed: significantly greater connectivity between the PAG, left posterior cingulate cortex
(PCC), and precuneus for the contrast of genuine minus sham; significantly greater connectivity between the PAG
and right anterior insula for the contrast of sham minus genuine; no significant differences in connectivity between
different contrasts of the two expectancy levels.

Conclusions: Our findings indicate the intrinsic functional connectivity changes among key brain regions in the
pain matrix and default mode network during genuine EA compared with sham EA. We speculate that continuous
genuine EA stimulation can modify the coupling of spontaneous activity in brain regions that play a role in
modulating pain perception.

Background
Acupuncture has been used to alleviate pain for thou-
sands of years. Multiple randomized controlled trials
(RCTs) and many meta-analyses have concluded that
acupuncture effectively relieves clinical pain for disor-
ders such as knee osteoarthritis [1], migraine [2] and
chronic low back pain [3-5]. For instance, three recent
large trials found that acupuncture is statistically, clini-
cally [3-5], and cost-effectively [6-10] superior to either

optimal guidelines-based conventional therapy, or wait-
list controls for chronic low back pain. However, the
lack of a significant clinical difference between genuine
or sham (placebo) acupuncture has raised skepticism
and limited acupuncture’s acceptance.
In parallel, brain imaging tools such as positron emis-

sion tomography (PET) and functional Magnetic Reso-
nance Imaging (fMRI) have been used to investigate the
neural mechanisms underlying acupuncture needle sti-
mulation [11-28]} and acupuncture treatment effects
[17,29-32]. The goal of these studies is to elucidate the
changes in neural activity in brain networks associated
with acupuncture needle stimulation and to link them
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to the therapeutic effects of treatment. The block- and
event-related paradigms often used in fMRI studies,
while well suited to studying the effects of brief inter-
mittent acupuncture needle stimuli, are not suitable for
studying some modes of clinical acupuncture treatment.
For instance, one of the most important acupuncture
treatment modalities, electroacupuncture (EA), is typi-
cally administered with continual stimulation for twenty
minutes or more. Elucidating the neural substrates of
long-duration EA stimulation requires a new approach.
Recently, functional connectivity MRI (fcMRI) has

attracted the attention of brain imaging investigators
[33-35]. This technique provides a potential fMRI
approach appropriate for the study of EA. Based on the
premise that low-frequency components of the sponta-
neous MR imaging signal can provide information about
the intrinsic functional and anatomical organization of
the brain [36,37], fcMRI investigates the connectivity
between all brain regions and a specifically defined
“seed”, or region of interest (ROI). Recent findings using
fcMRI have significantly enhanced our understanding of
the intrinsic functional and anatomical connections of
the brain, including those that underlie pain perception
[38] and modulation [39,40], and pathological changes
in these connections that are associated with chronic
pain in patients [41-43]. Recently, investigators have also
reported functional connectivity changes within the
default mode network [44,45], sensorimotor networks
[44], and amygdala-associated brain networks [46,47]
after acupuncture needle stimulation, suggesting that
this approach is sufficiently sensitive to detect neural
modulation associated with acupuncture treatment.
Therefore, in this new analysis of previously unpub-

lished data collected in a randomized placebo-controlled
study [29,30], we investigated the functional connectivity
of PAG changes during EA stimulation and sham EA
stimulation at acupoints Large Intestine 3 and 4 (LI3
and LI4) on the right hand. The PAG was chosen for
analysis because: 1) it is well known that the PAG plays
a role in pain modulation [48-52]; 2) PAG has been
found to play an important role in acupuncture analge-
sia [53-55]; and 3) in a previous analysis conducted
using this same data set, we found that fMRI signal
change to calibrated heat pain was inhibited at the PAG
after genuine acupuncture treatment, but was not influ-
enced by level of analgesia expectancy [30].

Methods
This study utilized a previously collected fMRI dataset
investigating brain mechanisms underlying genuine and
sham electroacupuncture’s analgesic effects. This paper
will focus on the fMRI data collected during the acu-
puncture administration. Results on the treatments’
analgesic effects - as measured by changes in subjective

pain ratings and in objective brain response - have been
published separately [29,30]. Please see the original
papers for these results as well as for additional details
on experimental procedures not relevant to the present
manuscript.

Subjects
Seventy-seven healthy, right-handed subjects partici-
pated in this study; all subjects were acupuncture naive
and had no history of neurological or psychiatric disor-
ders. As approved by the Massachusetts General Hospi-
tal’s Institutional Review Board, all subjects provided
their written consent to participate. Subjects were then
randomized to one of four groups: genuine EA or sham
EA paired with either high expectancy (HE) or low
expectancy (LE) manipulation. After their participation,
subjects were debriefed as to the goals of the experiment
and un-blinded to their randomization.

Experimental Protocol
This study consisted of two behavioral testing sessions
and one fMRI scanning session, each separated by a
minimum of three days. The goals of the behavioral ses-
sions were to familiarize subjects with the heat pain rat-
ing system and to manipulate their expectations of
acupuncture’s analgesic effects. In the subsequent fMRI
session, the brain networks involved in genuine and
sham EA, as well as in HE and LE conditions, were
examined. A general overview of the experimental
design is presented below.

Session 1
This first behavioral session was used to determine
appropriate stimulus intensities of heat pain and to
familiarize subjects with the pain rating scales. Briefly,
temperatures eliciting subjective intensity ratings in the
LOW pain range (~5; which indicates weak on the 0-20
Sensory Scale) and HIGH pain range (~15; strong) were
selected for each individual using an ascending series of
noxious stimuli (increasing by 1°C per stimulus). We
then applied a series of 8 noxious stimuli, 4 HIGH pain
and 4 LOW pain, presented in random order, and a ser-
ies of 6 identical HIGH pain noxious stimuli to the right
arm. Temperatures were adjusted when necessary to
ensure that each subject’s subjective ratings of HIGH
and LOW remained in the desired range and the final
temperature settings were used in the following sessions.

Session 2
To prepare subjects for the expectancy manipulation,
and in order to establish subjects’ expectancy for the
duration of the study, subjects were first told that
responses to acupuncture can be variable and that a
given subject’s response tends to remain consistent
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across sessions. Subjects then viewed a Traditional
Chinese Medicine meridian diagram and were falsely told
that, according to previous literature, acupuncture could
only produce analgesia on the meridian side of the arm.
Following the preparatory disclaimer, pain stimuli

were applied according to the same procedures as ses-
sion 1. Then, according to their randomization, subjects
received either genuine or sham EA. Finally, subjects
received post-treatment pain stimuli. Though all sub-
jects were told they were receiving the same pre-treat-
ment heat stimuli so as to test acupuncture’s analgesic
effect, we actually only followed this protocol on sub-
jects in the LE groups. In the HE groups, we surrepti-
tiously decreased temperatures on the side of the arm
subjects were told was the treated meridian in order to
elicit reduced pain ratings and give subjects an unmis-
takable experience of analgesia. (This expectancy manip-
ulation is a modification from previous studies
[39,56-61].)

Session 3
Subjects were told that the procedures from Session 2
would be repeated inside the fMRI scanner. First, fMRI
scans were acquired during the pre-treatment applica-
tion of noxious thermal stimuli. Then, another fMRI
scan was acquired during the administration of sham or
genuine EA, which provided the data for the functional
connectivity analysis described in this manuscript.
Lastly, subjects were scanned post-acupuncture treat-
ment while additional heat stimuli were applied. LE
groups received the same temperature thermal stimuli
as they had before treatment. Although the HE groups
were informed that Session 2 procedures would be
repeated, only one reduced temperature heat stimuli
was administered on the meridian side of the right fore-
arm arm to remind subjects of the analgesia they experi-
enced in Session 2. All other heat stimuli, applied after
this “expectancy boost,” were delivered at their original
temperatures in order to test the treatment effect. In
this study, we will focus only on the electro-acupuncture
stimulation scan; additional details on the results of the
fMRI scans acquired during heat pain application are
reported in our previous publications [29,30].

Acupuncture administration
Identical genuine or sham EA was performed by a
licensed acupuncturist at acupoints LI3 and LI4 on the
right hand during Sessions 2 and 3. LI 3 is located in
the depression proximal to the metacarpo-phalangeal
joint. LI 4 is located on the dorsum of the hand,
between the 1st and 2nd metacarpal bones, in the mid-
dle of the 2nd metacarpal bone on the radial side. Both
LI 3 and LI 4 can produce analgesic effects according to
acupuncture literature [62,63].

For genuine EA, needles were inserted into the skin at
a depth of about 1.5 cm and adjusted until subjective
deqi sensations [64], but no sharp pain, was evoked.
Needles were then connected to an EA device passing a
2 Hz current (OMS Medical Supplies IC-1107) [63], and
the intensity was gradually increased to the highest level
subjects could tolerate without the sensation of sharp
pain. Once the appropriate level of stimulation was
achieved for each subject, the level of current was
recorded. After calibrating the intensity of the EA sti-
mulation, treatment was applied for approximately 25
minutes. The treatment was further broken down into
three 6.5-minute current ON and four 1.5-minute cur-
rent OFF blocks. An fMRI scan was acquired for 23.5
minutes encompassing the entire treatment (Figure 1).
For sham EA, specially-designed Streitberger sham

acupuncture needles were placed on the surface of the
skin and connected to a de-activated electroacupuncture
device. The Streitberger placebo needle has been vali-
dated and used in many studies [60,63,65-68]. Total
scan time was the same for the sham group as for the
genuine EA group.
After treatments, sensations evoked by genuine and

sham EA were measured with the Massachusetts Gen-
eral Hospital (MGH) Acupuncture Sensation Scale
(MASS), a rubric created by acupuncture researchers at
MGH [63,64].

fMRI Data Acquisition and Analysis
Brain imaging was performed with a 3-axis gradient
head coil in a 3 Tesla Siemens MRI System equipped
for echo planar imaging. At the midpoint of the study,
an MRI scanner upgrade replaced the 3 Tesla head-only
Siemens Allegra MRI System with a 3 Tesla whole-body
Siemens TIM Trio MRI System. To avoid any potential
confounding due to scanner hardware and software
changes, pre-post scanner upgrade studies were con-
ducted at the Martinos Center at the time of transition
from the Allegra to the Trio scanner system and the
data were used to optimize the image acquisition para-
meters to be as closely matched as possible while still
taking advantage of the benefits of the scanner upgrade.
Multiple previous studies have demonstrated that when
these careful measures are taken to match scan acquisi-
tion parameters, inter-subject variability is the predomi-
nant source of variance in structural and functional MRI
data, regardless of scanner type or manufacturer [69-73].
Therefore we were careful to randomize comparable
numbers of subjects from each of the four groups across
the two scanner systems: 6-8 subjects per group were
tested on the old scanner and 4-6 subjects per group
were tested on the new scanner.
Thirty axial slices (4 mm thick with 1 mm skip) paral-

lel to the anterior and posterior commissure covering
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the whole brain were imaged with 2000 ms TR, 40 ms
TE, 90° flip angle and 3.13 × 3.13 mm in-plane spatial
resolution. For the scan acquired during EA stimulation,
a total of 705 time points were collected during an acu-
puncture treatment lasting twenty-three minutes and 30
seconds. A high-resolution 3 D MPRAGE sequence for
anatomic localization was also collected.

Functional Connectivity Analysis
We used a spherical seed region located in the PAG,
centered at 0 -28 -10 (Montreal Neurological Institute
[MNI] coordinates) with a 2 mm radius. This seed
served as a pre-defined anatomical region from which
we explored connectivity to other brain regions. The
seed region coordinates are based on our previous ana-
lysis of the fMRI signal changes evoked by calibrated
heat pain before and after treatment using this same
data set. The PAG voxel with the maximal pain-evoked
fMRI signal change after genuine EA treatment, as com-
pared with sham EA treatment, was located at 0 -28 -10
[30]. This location is situated in the ventral PAG, and as
such, it belongs to the “analgesic zone” of the PAG [74].
Methods for functional connectivity analysis were

similar to previous studies [75-77]. In summary, the
long EA scan for each subject was split into 3 epochs
(as illustrated in Figure 1) in which the current was
turned on for participants receiving genuine EA, with
each ON epoch lasting 6 minutes. (The first 30 seconds
of each EA treatment was excluded to account for the
time subjects spent acclimating to the application of the
current from the EA device). Functional data were first
preprocessed to decrease image artifacts and to elimi-
nate differences in odd/even slice intensity. Rigid body
translation and rotation was used to reduce within- and
across-run head movement. Data were re-sampled to

3 mm isotropic voxels after transforming anatomical
and functional data to atlas space.
The functional connectivity analysis required addi-

tional filtering of low- and high-frequency components
(0.009 Hz < f < 0.083 Hz) and spatial 8 mm Gaussian
kernel smoothing. Other variables that were simulta-
neously regressed included movement parameters,
whole brain signal, lateral ventricle mean signals, deep
white matter ROI signal, and the first temporal deriva-
tive of each time course. The resulting time course was
used in the subsequent analysis. Next, we performed
correlation maps between the seed region and all voxels
across the whole brain. Analysis produced seed region-
whole brain voxel correlation coefficients. Fisher’s r-to-z
transformation was used to convert correlation maps
into z maps.
Group analysis was applied with a random effects analy-

sis using a one sample t-test. To further explore differ-
ences in the functional connectivity of PAG between the
different acupuncture modes and expectancy levels, an
analysis equivalent to an ANOVA was performed. More
specifically, to calculate the main effect of acupuncture, a
two-sample t-test comparing the pre- minus post differ-
ence was performed between the cohort receiving genuine
acupuncture treatment (pooling the two expectancy
groups) and the cohort receiving sham EA treatment
(pooling the two expectancy groups). Then, to calculate
the main effect of expectancy, a two-sample t-test compar-
ing the pre- minus post difference was performed between
the high expectancy condition (pooling the acupuncture
groups) and the low expectancy condition (pooling the
acupuncture groups). Finally, to calculate the interaction
between expectancy and acupuncture, a two sample t-test
comparing the pre- minus post difference was performed
between the cohorts receiving genuine EA with high

Figure 1 Acupuncture stimulation procedures. A) Anatomical location of the acupoints LI3 and LI4 on the right hand; used for genuine and
sham acupuncture administration. B) Schematic illustration of the timing during treatment blocks. In total, electroacupuncture (EA) treatment
was applied for approximately 25 minutes at a frequency of 2 Hz. Treatment was given in blocks of 6.5-minute current ON and four 1.5-minute
current OFF blocks. For sham EA, the sham needle was attached to a de-activated EA device, and no current was applied during the 25 minute
treatment.
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expectancy + sham EA with low expectancy and the
cohorts receiving sham EA with high expectancy + genu-
ine EA with low expectancy. This method has been used
in our previous studies [30] and is equivalent to the infor-
mation provided by an ANOVA analysis. In addition,
post-hoc comparisons were calculated to test the differ-
ence between treatment groups using a two-sample t-test.
For all analyses, the threshold was set at voxel-wise

p < 0.001. To correct for multiple comparisons, we ran
Monte Carlo simulations with AlphaSim to obtain cor-
rected type I error http://afni.nimh.nih.gov/afni/doc/
manual/AlphaSim. The results showed that, in our
study, signal voxel threshold p < 0.001 combining 31
voxels has a corrected threshold of p < 0.05 at the clus-
ter level. Thus, the threshold of voxel-wise p < 0.001
uncorrected with 31 contiguous voxels was used in this
study.

Results
Of seventy-seven healthy enrolled subjects, forty-eight
(average age 26.4 ± 4.9; 24 males and 24 females) com-
pleted the study; each of the four treatment groups con-
tained twelve subjects.

MASS ratings
We used the MASS to quantify the intensity of subjects’
sensations experienced during acupuncture treatment.
Mean ratings differed between the genuine and sham
group. For example, there were higher ratings of “dull
pain”, “throbbing pain” and “soreness” during genuine
treatment, compared to sham. No sensations were rated
higher in the sham group, compared to genuine. Addi-
tionally, there were sensations that did not differ
between genuine and sham, e.g. “warm”, “fullness”, and
“heaviness” yielded similar ratings in both treatment
groups. To further assess whether there were differences
in average MASS ratings amongst the four groups, we
performed a fixed effect ANOVA using treatment mode
(genuine and sham), and expectancy (high and low) as
factors. The results showed that the four groups were
significantly different, F (3,44) = 7.9, p = 0.0002. Sub-
jects in both low and high expectancy genuine groups
reported significantly greater MASS ratings than those
in both sham groups (p < 0.002). There was no interac-
tion between treatment mode and expectancy level (p =
0.8).

fMRI results
Functional connectivity results (as shown in Table 1 and
Figure 2) demonstrated that during genuine EA, there
was predominant positive functional connectivity
between the PAG and nearby brain structures, including
the bilateral PAG and surrounding areas (midbrain teg-
mentum, substantia nigra, raphe nucleus, hypothalamus,

striatum, globus pallidum, left insula, thalamus,
hippocampus, brain stem, and cerebellum). In addition,
there was significant functional connectivity between the
PAG and certain distant brain regions, including bilat-
eral anterior cingulate cortex (ACC), medial prefrontal
cortex (MPFC), middle cingulate cortex (MCC), poster-
ior cingulate cortex (PCC), precuneus, inferior parietal
lobule, and left postcentral gyrus.
Similarly, functional connectivity results (as shown in

Table 1 and Figure 2) during sham EA showed a posi-
tive functional connectivity between the PAG and
nearby brain structures equivalent to those activated by
genuine EA. Additional brain regions that exhibited a
significant connection with the seed include the right
frontal operculum, anterior insula, inferior frontal gyrus
and occipital cortex.
The main effect of acupuncture mode, as indicated by

comparison of genuine and sham EA groups (as shown
in Table 2 and Figure 2), showed that: during genuine
EA, the PAG showed more connectivity with the left
PCC than during sham EA; and during sham EA there
was more connectivity to the anterior right insula (rAI)/
inferior frontal gyrus than during genuine EA. The main
effect of expectancy, determined by direct comparison
of HE and LE groups, showed no brain regions above
the threshold. An interaction between the treatment
mode and expectancy level was observed in the activa-
tion of the right superior parietal lobule.
Post-hoc comparisons were calculated between the

following groups: genuine EA with high expectancy vs.
sham EA with high expectancy, genuine EA with high
expectancy vs. genuine EA with low expectancy, sham
EA with high expectancy vs. sham EA with low expec-
tancy, and genuine EA with low expectancy vs. sham EA
with low expectancy. The results indicated that genuine
EA with high expectancy showed more connectivity at
the right inferior parietal lobule (39 -60 48, 36 voxles)
compared with genuine EA with low expectancy. In
addition, genuine EA with low expectancy showed less
connectivity at the right superior parietal lobule (21 -51
57, 47 voxels) compared with sham EA with low expec-
tancy. Other comparisons showed no brain regions
above the threshold.

Discussion
In this study, we investigated functional connectivity of the
PAG during genuine and sham EA. We found that during
both genuine and sham EA, the PAG was significantly
connected with brain areas surrounding the PAG, includ-
ing the midbrain tegmentum, substantia nigra, raphe
nucleus, hypothalamus, striatum, globus pallidum, left
insula, thalamus, hippocampus, brain stem, and cerebel-
lum as well as distant regions such as ACC, MPFC, MCC,
PCC and precuneus. However, genuine EA - relative to
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sham EA - showed significantly stronger connectivity
between the PAG and left PCC, and significantly weaker
connectivity between the PAG and rAI.
Our result that, during both genuine and sham EA,

the PAG is functionally connected with surrounding
regions and some distant regions, including the RVM
and ACC, is similar to our previous study investigating
the intrinsic functional connectivity of PAG during rest-
ing state using data from a different cohort [40]. Thus,
neither genuine nor sham EA appeared to significantly
disrupt the connectivity between PAG and the network
of brain regions seen during resting state.
During genuine EA, we found that the PAG had a sig-

nificantly stronger connectivity with the PCC. Through
an examination of the existing literature, we could not
find reliable evidence for a direct (monosynaptic) con-
nection between the two structures; however, previous
studies suggest a functional linkage between the PCC
and brain stem [78]. A di-synaptic connection is the
most parsimonious solution for which direct evidence
exists. Thus, we speculate that this functional linkage
may be conveyed via the thalamus and ACC, two
regions that have direct connections with both PCC and
PAG.
Previous studies have implicated the PCC’s involve-

ment in responses to treatment in chronic pain patients
[79,80]. In a study by Niddam and colleagues [80],
patients with myofascial pain syndrome were given

painful stimulations during fMRI, and in between scan-
ning sessions the same area was treated with low-inten-
sity electrostimulation. When comparing responders and
non-responders, a treatment effect was observed for
responders in the dorsal midbrain, PCC, and the caudate
[80].
In an early PET-study from 1995 [79], a normalization

of attenuated PCC activity after non-opioidergic treat-
ment was seen in patients with chronic neuropathic
pain. Patients with localized peripheral neuropathic pain
were treated with a regional nerve block using lidocaine,
resulting in significant analgesic effects. Interestingly,
the neural correlate to the pain alleviated state was an
increase of cerebral blood flow in the ACC and PCC.
Hseieh et al. suggest that the increased neural response
in the PCC could reflect the altered subjective percep-
tion of pain relief rather than the afferent blockade. The
PAG is one of the key regions in the descending pain
inhibitory circuitry, enabling regulation of afferent pain
signals. The strong connectivity between the PAG and
the PCC in response to active treatment furthers the
idea that the PCC plays an important role in pain
treatment.
The PCC is a key region in the default mode network

(DMN): a set of specific brain structures with intrinsic
fluctuations that constitute a baseline of attention and
wakefulness in the human brain [81-83]. In humans, the
PCC has the highest level of resting cortical glucose

Table 1 Functional connectivity results during genuine EA state and sham EA state

Region Z
score

Number of voxels
in cluster

Peak
coordinate
(x y z)

Genuine
EA state

Bilateral PAG and surrounding areas (midbrain tegmentum, substantia nigra, raphe nucleus,
hypothalamus, striatum, globus pallidum, left insula, thalamus, hippocampus, brain stem,
cerebellum)

Inf 4992 -3 -27 -6

ACC/MPFC, MCC and PCC 5.18 2269 3 21 45

Right inferior parietal lobule 4.69 131 45 -39 33

Right precuneus 4.06 42 12 -66 45

Left precuneus 4.01 78 -9 -63 42

Left inferior parietal lobule 3.95 42 -57 -39 30

Bilateral medial prefrontal cortex 3.66 76 -6 -9 69

Left inferior parietal lobule 3.65 41 -42 -54 51

Left postcentral gyrus 3.6 32 -33 -21 39

Sham EA
state

Bilateral PAG and surrounding areas (midbrain tegmentum, substantia nigra, raphe nucleus,
hypothalamus, striatum, globus pallidum, left insula, thalamus, hippocampus, brain stem,
cerebellum)

Inf 5989 0 -27 -9

Right frontal operculum/inferior frontal gyrus 5.52 45 21 15

Right anterior insula/inferior frontal gyrus 5.39 42 27 3

Bilateral ACC/MPFC, MCC 5.44 0 35 27

Left postcentral gyrus/inferior parietal lobule 5.45 146 63 -24 42

Right inferior parietal lobule 5.37 72 -66 -33 33

Bilateral PCC/precuneus 5.16 190 15 -36 42

Right occipital gyrus 4.12 42 42 -81 27

Note: The threshold was set to voxel-wise p < 0.001 uncorrected with 31 continuous voxels. Peak coordinates refer to the MNI atlas.
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metabolism [84], and is involved in processing inten-
tions related to the self, self-awareness and conscious
experience, which are key functions attributed to the
DMN [78,85]. DMN activity has been shown to decrease
in relation to task-evoked activity, and demonstrates an
inverse relationship with the cognitive work load of the
task [81-83]. Other studies show that activity in the
DMN decreases in response to repeated painful stimuli
[85], and chronic pain patients seem to exhibit perma-
nently altered DMN activity. In a study by Baliki and
colleagues [86], chronic low back pain patients displayed
reduced activity in several key DMN regions compared
with healthy subjects. We believe the results from this
study indicate that EA may modulate the functional
connectivity of the DMN, as evidenced by the increased
connectivity of PCC with PAG during EA stimulation.
In this study we also found that during sham acu-

puncture, the PAG has stronger connectivity with the
rAI compared with genuine acupuncture. The anterior
insula is a key region in the pain matrix [87] and is

involved in integration and interoception of pain [88-90]
and pain modulation processes such as placebo analge-
sia [29,60]. In a more recent study, investigators found
that the pre-stimulus functional connectivity between
the PAG and the anterior insula can predict subsequent
pain perception [91]. Thus, we speculate that EA stimu-
lation may reduce brain responses to calibrated pain sti-
muli by interfering with the functional connectivity
between the PAG and insula. Further research is needed
to test this hypothesis.
An interaction between the acupuncture treatment

modes and expectancy levels was observed in right
superior parietal lobule. Studies have suggested that this
region is involved in attention [92] and somatosensory
perception modulation [93]. We speculate that our
results may indicate that functional connectivity in gen-
uine and sham EA are differentially modulated by
expectancy levels, however further research is needed to
fully understand the sources of observed functional con-
nectivity in this study.

Figure 2 Functional connectivity results. A) Positive functional connectivity during sham treatment; B) Positive functional connectivity during
genuine treatment. C) and D) Main effect of EA stimulation: Genuine > Sham (C) Sham > Genuine (D). The threshold was set to voxelwise p <
0.001 uncorrected with 31 contiguous voxels.
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In this study, we did not find any significant func-
tional connectivity changes between the high and low
expectancy groups. We believed that this may be attrib-
uted to several reasons. 1) The PAG seed we chose for
this study was identified in our previous analysis of the
fMRI signal changes evoked by calibrated heat pain [30]
as being selectively involved in mediating acupuncture
treatment effects (genuine EA vs sham EA) and not
expectancy effects (high expectancy vs low expectancy).
2) Although previous studies suggested that PAG is
involved in expectancy evoked placebo analgesia [94-96]
or attention modulation of pain [97], the involvement of
PAG in these studies is observed during the pain appli-
cation process; in contrast, this study measures func-
tional connectivity changes during acupuncture
treatment. Thus, our results are not necessarily in con-
flict with findings from previous studies. 3) The rela-
tively small sample size may also prevent us from
finding significant functional connectivity between the
high and low expectancy conditions. Further study is
needed to elucidate the influence of expectation of
analgesia on the functional connectivity of PAG during
the treatment phase.

Conclusions
In summary, during continuous EA, functional connec-
tivity changed significantly in brain regions including
PCC and rAI. Our findings indicate the intrinsic func-
tional connectivity changes among key brain regions in
the pain matrix and default mode network during genu-
ine EA compared with sham EA. We speculate that con-
tinuous genuine EA stimulation can modify the coupling

of spontaneous activity in brain regions that play a role
in modulating pain perception.
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