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Abstract

Robots must act purposefully and successfully in an uncertain world. Sensory
information is inaccurate or noisy, actions may have a range of effects, and the robot’s
environment is only partially and imprecisely modelled. This thesis introduces active
randomization by a robot, both in selecting actions to execute and in focusing on
sensory information to interpret, as a basic tool for overcoming uncertainty.

An example of randomization is given by the strategy of shaking a bin containing
a part in order to orient the part in a desired stable state with some high probability.
Another example consists of first using reliable sensory information to bring two parts
close together, then relying on short random motions to actually mate the two parts,
once the part motions lie below the available sensing resolution. Further examples
include tapping parts that are tightly wedged, twirling gears before trying to mesh
them, and vibrating parts to facilitate a mating operation.

Randomization is seen as a primitive strategy that arises naturally in the solution
of manipulation tasks. Randomization is as essential to the solution of tasks as are
sensing and mechanics. An understanding of the way that randomization can facilitate
task solutions is integral to the development of a theory of manipulation. Such a
theory should try to explain the relationship between solvable tasks and repertoires
of actions, with the aim of creating autonomous systems capable of existing in an
uncertain world.

The thesis expands the existing framework for generating guaranteed strategies
to include randomization as an additional operator. A special class of randomized
strategies is considered in detail, namely the class of simple feedback loops. A simple
feedback loop repeatedly considers only current sensed values in deciding on actions
to execute in order to make progress towards task completion. When progress is not
possible the feedback loop executes a randomizing motion. The thesis shows that if
the average velocity of the system points towards the goal, then the system converges
to the goal rapidly.

A simple feedback loop was implemented on a robot. The task consisted of
inserting a peg into a hole using only position sensing and randomization. The
implementation demonstrated the usefulness of randomization in solving a task for
which sensory information was poor.

Thesis Supervisor: Tomés Lozano-Pérez
Title: Associate Professor of
Electrical Engineering and Computer Science







Acknowledgments

My sincere thanks and gratitude go to my advisor Tomds Lozano-Pérez for his enormous
support, encouragement, and, above all, intellectual stimulation, over the past seven years.
Tomds was always there when I needed to talk to him. Many hours were spent exchanging
ideas in Tom4s’ office. That was fun and rewarding, and I will miss the interaction. Many
ideas in this thesis were born during those discussions, while others were gracefully retired.
Thank you, Tomés.

Many thanks as well to the other members of my committee, Rod Brooks, Eric Grimson,
and Matt Mason, for their suggestions and advice, and for detailed comments on the thesis.
I very much appreciate all the reading. Thanks also to Eric for much useful advice on
various occasions in the past few years. Thanks to Rod for chatting about robotics and
life, and for running. Thanks to Matt for his support and for all the discussions on friction,
planning, and a trillion other things. Thank you all for all you have given me.

I have very much enjoyed this process, and I thank all members of the AT Lab community
for their friendliness and camaraderie. The combination of intellectual curiosity and
personal warmth present in this lab is something to be treasured.

Many thanks to Bruce Donald, friend and scholar. You too were always there for me
when I needed you. Thanks for all the discussions on robotics and life. Thanks for the oral
exam preparations, for practice talks, for champagne. Many of the ideas in this and the
preceding thesis benefited greatly from discussions with Bruce. Thanks.

Thanks to my officemates: Thanks first to John Canny and Bruce Donald, my
officemates for five years. It was fun going through this process together. Thanks for
all the discussions and debates on the whiteboards. I learned a lot from both of you. More
recently, thanks to Michael Brent and Maja Mataric. It was fun, and I'll miss you. Thanks
in particular to Maja for long hours of talking, walking, and some running. I enjoyed our
talks on mobile robots and the debates on theory versus practice. Thanks for all your help.

Thanks to other members of the lab: Thanks to Mike Caine for discussions on robotics,
and for the use of all his peg-in-hole assemblies. Various experiments, including those in this
thesis, were conducted using those assemblies. Thanks to Mike Kashket, Jeff Koechling,
and David Siegel for checking up on me, and keeping the proper perspective. Thanks to
Karen Sarachik for talks and espresso. Thanks to Sundar Narasimhan for much advice on
robotics and life. I couldn’t have done it without you.

Thanks to Randy Brost, Ken Goldberg, Yu Wang, and Brad White at CMU for
discussions and support. You made my visits to Pittsburgh particularly exciting and fun.

Thanks to the System Development Foundation, the National Science Foundation,
General Motors Research Laboratories, and NASA-JPL for financial support.

Many thanks to Laura Radin for her friendship and support over the past several years.

Thanks to Andrew Ajemian, Leola Alfonso, David Clark, Bruce McDermott, and Laura
Nugent for support at various times. Your friendships have been wonderful. Thanks in
particular to Bruce for constant moral support and understanding advice over the last two
decades. Thanks to Laura for those long runs, and selfless insights. And thanks to Andrew
and Laura for Gloucester, hibachis, and the “K” episode.

Finally, thanks to my family for their never ending support. Thanks to my parents,
Joachim and Ursula Erdmann, for their strong belief in education, and their advice on
all matters. Thanks to my siblings, Thomas and Mariele, for being there. This thesis is
dedicated to the memory of my grandmother, Martha Wedemeyer, for the example she set.







Detailed Abstract

Robots must act purposefully and successfully in an uncertain world. Sensory
information is inaccurate or noisy, actions may have a range of effects, and the robot’s
environment is only partially and imprecisely modelled. This thesis introduces active
randomization by a robot, both in selecting actions to execute and in focusing on
sensory information to interpret, as a basic tool for overcoming uncertainty.

An example of randomization is given by the strategy of shaking a bin containing
a part in order to orient the part in a desired stable state with some high probability.
Another example consists of first using reliable sensory information to bring two parts
close together, then relying on short random motions to actually mate the two parts,
once the part motions lie below the available sensing resolution. Further examples
include tapping parts that are tightly wedged, twirling gears before trying to mesh
them, and vibrating parts to facilitate a mating operation. Randomization is also
useful for mobile robot navigation and as a means of guiding the design process.

Over the past several years a planning methodology [LMT] has evolved for
synthesizing strategies that are guaranteed to solve robot tasks in the presence of
uncertainty. Traditionally such strategies make judicious use of sensing and task
mechanics, in conjunct with the maintenance of past sensory information and the
prediction of future behavior, in order to overcome uncertainty. There are two
restrictions on the generality of this approach. First, not all tasks admit to guaranteed
solutions. Uncertainty simply may be too great to guarantee task success in a
specific number of steps. Second, a strategy is only as good as is the validity of
its assumptions. In an uncertain world all assumptions are subject to uncertainty.
For instance, there may be unmodelled parameters that govern the behavior of a
system. This fundamental uncertainty limits the guarantees that one can expect
from any strategy.

The randomization approach proposed in this thesis attempts to bridge these
difficulties. First, the underlying philosophy of a randomized strategy assumes that
several attempts may need to be made at solving a task. A task is only assumed to
be solvable with some probability on any given attempt. This view of a solution to a
task broadens the class of solvable tasks. Second, by actively randomizing its actions
a system can blur the significance of unmodelled or uncertain parameters. Effectively
the system is perturbing its task solutions slightly through randomization. The intent
is to obtain probabilistically a solution that is applicable for particular instantiations
of these unknown parameters.

An understanding of the way that randomization can facilitate task solutions
is integral to the development of a theory of manipulation. Such a theory should
try to explain the relationship between solvable tasks and repertoires of actions,
with the aim of creating autonomous systems capable of existing in an uncertain
world. Randomization is seen as a primitive strategy that arises naturally in the
solution of manipulation tasks. Randomization is as essential to the solution of
tasks as are sensing and mechanics. By formally introducing randomization into the




theory of manipulation, the thesis provides one further step towards understanding
the relationship of tasks and strategies.

The thesis expands the existing framework for generating guaranteed strategies
to include randomization as an additional operator. A special class of randomized
strategies is considered in detail, namely the class of simple feedback loops. A simple
feedback loop repeatedly considers only current sensed values in deciding on actions to
execute in order to make progress towards task completion. Integral to the definition
of a simple feedback loop in this thesis is the notion of a progress measure. Distance
to the goal can serve as a progress measure as can some nominal plans developed
under the assumption of no uncertainty. When progress is not possible the feedback
loop executes a randomizing motion. The thesis shows that if the average velocity
of the system relative to the progress measure points towards the goal, then the
system converges to the goal rapidly. In particular, the expected time to attain the
goal is bounded by the maximum progress label divided by the minimum expected
velocity. A simple feedback loop in the plane is analyzed. It is shown that the rapid
convergence regions of this randomized strategy are considerably better than those
for a corresponding guaranteed strategy.

As part of the thesis, a simple feedback loop was implemented on a robot. The task
consisted of inserting a peg into a hole using only position sensing and randomization.
The implementation demonstrated the usefulness of randomization in solving a task
for which sensory information was poor.

The development of randomized strategies is undertaken in the discrete and
continuous domains. Most of the technical results are proved in the discrete domain,
with extensions to the continuous domain indicated.




Contents

1 Introduction 15
1.1 A Peg-In-Hole Problem . . . . .. ... ... .. ... ... .. .... 16
Combining Sensing and Randomization . . . . . ... ... .. 18

A Three-Degree-of-Freedom Strategy . . . .. ... ... ... 18

Errors in Sensing and Control . . . . . . .. ... ... .... 23
Randomization . .. ... ... ... ... ... .. ..... 24
Convergence Regions . . . . . ... ... ... ... ...... 25

Analysis of the Strategy . . .. .. ... ... ... ..... 25

A More General Problem . . . . . ... .. .. ...... ... 27

Gaussian Errors . . . . . .. ... oo oo oo 27

1.2 Further Examples . . . . . . .. .. ... .. .. .. .. .. . ... 30
1.2.1 Threading aneedle . . . . ... .. ... .. ... ...... 30
1.2.2 Imsertingakey ... .. ... .. ... .. ... ... 31
1.2.3 Meshing twogears . . . .. ... .. .. .. ... ... ..., 31

1.3 Why Randomization? . . . . . . ... ... ... ... L 40
1.4 Previous Work . .. . .. ... . ... 44
1.4.1 Uncertainty . . ... ... ... e 44
1.4.2 Compliance . . . . . . . . i i e 44
1.4.3 Configuration Space and Motion Planning . . ... .. .. .. 45
1.4.4 Planning for Errors . . . . .. .. ... .. ... L. 46
1.4.5 Planning Guaranteed Strategies using Preimages . . . . . . . . 46
1.4.6 Sensorless Manipulation . .. ... ... ... .. ....... 47
1.4.7 Complexity Results . . . . ... ... ... ... ..., 48
1.4.8 Further Work on Preimages . .. ... ... ... ....... 48
1.4.9 Guaranteed Plans . . . . .. ... ... .. ... ... ... . 48
1.4.10 Error Detection and Recovery . . . . ... .. ... ... ... 49
1.4.11 Randomization . . . .. ... ... .. ... ... ... 50

1.5 Thesis Contributions . . . . . .. .. ... ... .. oL, 50
1.6 ThesisOutline. . . . . ... ... .. ... .. ... 53
2 Thesis Overview and Technical Tools 55
2.1 Motivation . . . . . . . .. e 55
2.1.1 Domains of Applicability . . . . .. ... ... ... ...... 56
2.1.2 Purpose of Randomization . . . . . ... ... ... ...... 57

9




10 CONTENTS

Accepting Uncertainty . . . . .. .. .. .. ... ....... 58
Randomization is Everywhere . . . . . . . . ... ... .. .. 59

Eventual Convergence . .. ... .. ... ........... 60

Fast Convergence . . . . . .. ... ... ... ......... 60

2.2 Basic Definitions . . .. .. ... . L o 60
2.2.1 Tasks and State Spaces . . . . . .. .. ... .. ........ 60
Continuous Space . . . . . . . . . v it e 61

Discrete Space . . . . . . . .. .. o oo 61

222 Actions . . ... e e 63
Deterministic Actions . . . . . . . ... ... L. 63
Non-Deterministic Actions . . . . .. ... ... ... ..... 63

Partial Adversaries . . . .. .. .. ... ... ... ... 64
Probabilistic Actions . . . . . . ... ... L oL 66

223 Sensing . . ... i i i e e e e e 67
Perfect Sensing . . . . . .. ... . oo oL 67

Imperfect Sensing: Basic Terms . . . .. .. .. ... ..... 67

Imperfect Sensing: Non-Deterministic Sensing . . . . . .. .. 68

Imperfect Sensing: Probabilistic Sensing . . . . . . .. .. .. 68

Imperfect Sensing: Sensorless and Near-Sensorless Tasks . . . 69

2.3 Strategies . . . .. .. e 70
2.3.1 Guaranteed Strategies . . . . ... .. ... ... ... 70
2.3.2 Randomized Strategies . . .. .. ... .. ... ... .. ... 70
2.3.3 History and Knowledge States . . . . . . ... ... ...... 71
234 Planning . . . . . . ... o 72
Planning Guaranteed Strategies . . . . . .. .. .. ... ... 72

Planning Randomized Strategies. . . . . .. .. .. ... ... 72

2.4 A Randomizing Example . . . . . ... ... ... ... ... .. ... 73
2.5 Simple Feedback Loops . . . . ... .. .. ... ... ... . ... 80
2.5.1 Feedback and Uncertainty . ... ... ... .......... 80
Feedback in a Perfect World . . . . .. ... ... ... .... 80

Feedback with Imperfect Control . . .. ... .. ... .... 80

Feedback with Imperfect Control and Imperfect Sensing . . . 81

2.5.2 Progress in Feedback Loops . . . . ... ... ... ... ... 82

The Feedback Loop . . . . . . .. ... ... ... ...... 82

Velocity of Approach . . . . . .. ... ... ... ... ... 83

Random Walks . . .. .. .. ... ... ... ... ..... 84

2.6 Strategies Revisited . . . . . . .. ... ..o 0oL 87
2.7 Summary . . .o . e e e e e e e e e e e e e e e 89
3 Randomization in Discrete Spaces 91
3.1 Chapter Overview . . . . . . . . . . . vt i ittt 91
Basic Definitions . . . . . ... ... oL L. 91

Random Walks . . . ... .. ... ... ... ......... 92




CONTENTS 11

3.2

3.3
3.4

3.5
3.6
3.7
3.8
3.9

Extensions and Specializations . . . . . ... ... ....... 92
Basic Definitions . . . . . . ... .. Lo 92
3.2.1 Discrete Tasks. . . .. ... ... ... . ... 92
3.2.2 Discrete Representation . . . ... ... ... ......... 94
States . . . . .. e 94
Actions . . .. .. .. L 9
Tasks. . . . . . . 95
Sensors . . . ... 95
Functional Representation . . . .. ... ... ......... 97
3.2.3 Markov Decision Processes . . . . ... .. ... .. ...... 98
Non-Determinism and Knowledge Paucity . . .. .. ... .. 98
Probabilistic Actions and Optimality . . .. .. ... .. ... 98
Probabilistic Sensors . . . . . . ... .. Lo 99
3.2.4 Dynamic Programming Example . . .. ... ... ... ... 99
A Probabilistic Example . . . .. .. .. ... .. .. ..... 99
Complexity . . . . . . .. . . e 101
A Non-Deterministic Example . . . .. ... ... ....... 101
3.2.5 Knowledge States in the Non-Deterministic Setting . . . . . . 102
Forward Projection . . . . .. .. .. ... .. ... ...... 102
Sensing . . . . . .. e e 103
Constraintson Sensors . . . . . . .. .. .. ... ... 103
Inconsistent Knowledge States . . . . . ... ... ... .. .. 104
*Interpreting Sensors More Carefully . . . ... ... .. ... 105
3.2.6 Knowledge States in the Probabilistic Setting . . . . ... .. 111
3.2.7 Connectivity Assumption. . . . . . .. ... ... ..., 112
Probabilistic Setting . . . .. .. ... ... .. 0oL, 112
Non-Deterministic Setting . . . . ... ... ... ... .... 112
Connectivity Tests . . . .. .. ... .. ... ... ... ... 116
Goal Reachability and Perfect Sensing . . . .. ... ... .. 116
Perspective . . . . . . . .. e e 118
One-Dimensional Random Walk . . . . ... ... ... ... ..... 118
34.1 Two-StateTask . . . . ... .. ... ... ... . ....... 118
342 Random Walks . . ... ... ... ... . ... ... ... 121
3.4.3 General Random Walks . . .. ... ... ... ....... 127
3.4.4 Moral: Move Towards the Goal on Average. . . . . . ... .. 128
Expected Progress . . . . .. .. .. .. ... o 128
Progress in Tasks with Non-Deterministic Actions . . . . . . .. ... 140
Imperfect Sensing . . . . . .. ... ... L oo 142
Planning with General Knowledge States . . . . .. . ... ... ... 143
Randomization with
Non-Deterministic Actions . . . . . . ... .. .. ... ... ...... 148
3.9.1 Guessing the Starting State . . . .. ... ... ... ..... 148
3.9.2 Execution Traces . . .. ... ... ... ... ... . ..... 149

3.9.3 Incorrect Guessing . . .. ... .. ... ... ... ... 150




12 CONTENTS

3.9.4 Goal Recognizability . . .. ... ... ... ... ..... 151
3.9.5 Repeated Goal Reachability . . .. ... ............ 155
3.9.6 Observations and Assumptions . . . ... ... ... ..... 157
3.10 Comparison of Randomized and
Guaranteed Strategies . . . . . ... .. ... ... ... 0. 158
'3.11 Multi-Guess Randomization . . .. ... ... ... .......... 159
An Augmented Dynamic Programming Table . . . ... ... 159
Planning . . . . .. ... . o o 159
Execution . .. ... ... .. .. .. L L 160
Examples . . .. .. .. . . . . e 161
Randomization Can Solve Nearly Any Task . . ... ... .. 161
3.12 Comments and Extensions . . . . .. .. ... ... ... ....... 162
3.12.1 Randomization in Probabilistic Settings . . .. .. ... ... 162
3.12.2 Randomization:
State-Guessing versus State-Distribution . . . . . .. .. ... 163
3.12.3 Feedback Randomization . . . . .. ... ... ... ...... 164
Using Current Sensed Information Only . . . . ... ... .. 165
Progress Measures . . . .. .. ... ... ... ..., . 166
Feedback with Progress Measures . . . . . . ... ... .. .. 166
Planning Limitations . . . . . .. ... ... ... .. ..... 167
Progress as a Generalization of Guarded Moves . . . . . . .. 170
Guessing, Whenever Progress is not Possible . . . . . . . . .. 170
Sensing and the Speed of Progress . . . . .. ... ... .... 170
3.12.4 Partial Adversaries . . . . . . ... ... oL 171
3.13 Some Complexity Results for
Near-Sensorless Tasks . . . . ... .. .. ... ... .. ... ..... 173
3.13.1 Planning and Execution . .. ... ... ............ 174
3.13.2 Partial Equivalence of Sensorless and
Near-Sensorless Tasks . . . . .. ... .. ... ........ 176
3.13.3 Probabilistic Speedup Example . . ... ... ... ...... 178
3.13.4 An Exponential-Time Randomizing Example . . . . . . .. .. 185
3.13.5 Exponential-Sized Backchaining . . . .. ... ... ... ... 190
3.136 TheOdometer. . . . . . ... ... ... .. ... ..... 191
3.14 Summary . . .. .. e e e e e e e e 192
4 Preimages 195
4.1 Preimage Planning . . . .. ... .. ... .. ... ... ... ..., 195
Uncertainty . . . . ... .. . .. .. . e 195
Preimages and Termination Predicates . . . . . ... .. ... 197
Knowledge States . . . . . ... .. ... ... ... ..., 198
Actions and Time-Steps . . . . . . . .. .. .. ... ... .. 198
History . . . . . . . . o o o e 199
Preimages: Definition . . . . . .. .. ... ... ... .. ... 200

Planning by Backchaining . . . . . ... ... ... ... .. 200




CONTENTS 13

4.2 Guessing Strategies . . . . . . . .. ... L Lo 201
4.2.1 Ensuring Convergence of SELECT . . . . . ... ... ..... 201
Constraints on Guessing Probabilities . . . . . ... ... ... 203
Cautions . . . . . . . .. e 204
Success Maximization . . ... ... ... .. ......... 205
Comparison of Non-Deterministic and Probabilistic Constraints 205
4.2.2 Restricting SELECT to Finite Guesses . . . . . .. ... .. .. 208
Forward Projections . . . .. ... ... ... ......... 208
Collisions and Friction . . . ... .. .. ... .. ....... 210
Forward Projections on Surfaces . . . . ... ... ... .. .. 213
Contact Changes . . .. ... ... ... ... ... ...... 215
Brief Summary . .. .. ... . oo oo 215
Compactness Argument . . . .. .. .. ... ... ... 216
Preimages and Forward Projections . . . . . ... ... .... 216
Finite Guesses . . . . . .. .. ... . . . oo 218
4.3 SUmMMmMAary . . .« v v v e e e e e e e e e e e e e e e e e 220
5 Diffusions and Simple Feedback Loops 221
51 Diffusions . . . .. ... L e 222
5.1.1 Convergence to Diffusions . . . .. ... ... ... ...... 223
5.1.2 Expected Convergence Times . . . ... ... ......... 225
5.1.3 Brownian Motion on an Interval . . . . . . ... ... ... .. 226
5.1.4 The Bessel Process . . .. .. .. ... .. ... ........ 227

5.2 Relationship of Non-Deterministic and
Probabilistic Errors . . . . . . . .. .. . o o 229
5.2.1 Control Uncertainty . .. ... .. ... ... ... ...... 230
5.2.2 Sensing Uncertainty . .. ... ... ... .. ......... 232
5.3 A Two-Dimensional Simple Feedback Strategy . . . . .. .. .. ... 234
The Task . . . . . . . o e 235
The Strategy . . . .. ... .. o o oo 235
Reducing Distance to the Origin . . . . . . . .. .. .. .... 235
Maximum Approach Time . . . . . .. ... .. ... ..... 237
5.4 Analysis of the Sensing-Guessing Strategy in a Simple Case . . . . . . 246
5.4.1 Expected Progress . . .. ... ... ... ... ........ 247
Expected Change in Position . . ... ... .......... 248
Variance of Positional Change . . . . ... ... ... ... .. 251
Infinitesimal Parameters of an Approximating Diffusion Process 253
A Radial Process . . . . ... ... ... ... .. ... ..., 254
542 AnExample . . . .. . .. .. ... e 256
Convergence Times . . . . . .. .. .. .. ... ........ 258
54.3 Simulations . . .. ... ... ... e 261
Biases . . . . . . . e 262
5.5 Summary . ... .. e e e e e e e 264




14 CONTENTS
6 Conclusions and Open Questions 267
6.1 Synopsisand Issues . . . . ... ... ... ... ... ... 267
Randomization and Task Solvability . . ... ......... 267

Synthesizing Randomized Strategies . . . . . ... .. ... .. 267

More Extensive Knowledge States . . . . . ... ... ..... 268

Reducing Brittleness . . . .. ... ... .. ... . ...... 268

6.2 Applications . . . . . . ... e e 268
6.2.1 Assembly . ... ... ... e 268

A Formal Framework For Existing Applications . . . ... .. 268

Utilizing Available Sensors . . . . . ... ... ... ...... 269

Using Additional Sensors . . . . . . ... ... ... ...... 269

Eventual Convergence in the Context of Grasping . . . . . . . 270

Some Assembly Tasks . . .. ... ... ... ......... 270

6.2.2 Mobile Robots . . . . ... ... .. o s 272

623 Design . . .. .. .. e 273

Sensor Design: A Sensor Placement Example. . . . . . .. .. 273

PartsDesign. . . . . .. ... ... . .. o o 274

6.3 Further Future Work . . . . . .. .. ... ... ... ... ... ... 275
6.3.1 Task Solvability . . . . .. .. .. ... ... .. ... ... 275

6.3.2 Simple Feedback Loops . . . . . . ... .. ... ... ..... 275
Conditions of Rapid Convergence . . .. ... ... ...... 275

Biases . . . . . . . e 275

More Complicated Tasks . . . . . .. .. ... ... . ..... 276

Diffusion Approximation . . . .. .. ... ... ... ..... 276

6.33 Learning . . . . . . . .. .. e 276

6.3.4 Solution Sensitivity . . . . . ... ... L 0oL 277
Bibliography . ... ..o 279




Chapter 1

Introduction

The goal of robotics is to understand physical interaction, and to use that
understanding towards endowing machines with the autonomous capability of
operating productively in the world. Towards realizing this goal, a large body of work
has been concerned with the problem of providing robots the ability to automatically
synthesize solutions to tasks specified in high-level terms. Of central importance in
synthesizing these solutions is the repertoire of primitive actions that are available to
a robot. It is evident that the form or even existence of a solution depends on the
actions available. In turn, the actions that one is likely to consider depend strongly
on one’s view of the world. In recent years, the key obstacle to successfully planning
and executing task solutions has been uncertainty. Uncertainty arises in a variety
of forms. Often uncertainty arises from run-time errors in sensing or control. Other
causes of uncertainty may be one’s lack of knowledge in modelling a system or an
environment. The realization that uncertainty plays a fundamental role in physical
interaction has changed the character of primitive actions deemed necessary to solve
particular robot tasks. For instance, in a perfect world it may be enough to specify
actions of the form MOVE FROM A TO B, assuming that the path from A to B is free.
In a world with uncertainty it may be impossible to guarantee the success of such
an action. The work on uncertainty over the past two decades may be interpreted
as searching for various primitive actions and methods of action combination that
extend the class of tasks solvable in the presence of uncertainty.

The archetypical primitive action is often simply a motion in a particular
direction. Sensors determine when an action should be initiated and when it should
be terminated. Actions are combined by a planning or execution system whose
responsibility it is to ensure that a task is completed. The outcome of a given
action may be non-deterministic, as uncertainty may yield a possible range of results
rather than a unique result at the termination of an action. Actions may have non-
deterministic outcomes, but generally the action to be performed at a given stage in
the solution of the task is deterministically fixed as a function of sensor values.

Other types of primitive actions are imaginable. For instance, instead of choosing
actions deterministically as a function of sensory inputs, a system could select a
motion randomly from a set of possible motions. Equivalently, a system might

15




16 CHAPTER 1. INTRODUCTION

Figure 1.1: A three-dimensional peg-in-hole task.

randomly hallucinate sensor values when actual sensor values are not sufficiently
precise to guide the progress of a task solution. More simply, a given action may
attain a particular goal only with some non-zero probability of success but not with
certainty. Nonetheless, if the action is repeatable then it makes sense to retain the
action in one’s repertoire. This is because one can under suitable conditions ensure
eventual success by placing a loop around the action. These suitable conditions
postulate the absence of trap states and lower bounds on the probability of success.

We will refer to actions in which random choices are made or in which the outcome
is probabilistically determined as randomized or probabilistic actions, respectively.
The purpose of this thesis is to investigate the use of randomization in the solution
of robot tasks. Randomized and probabilistic actions are viewed as additional types
of primitive actions whose existence is essential to the solution of many tasks.

The advantages to be gained from randomization are three-fold.  First,
randomization increases the class of solvable tasks beyond those solvable by bounded-
step guaranteed strategies. This is because a randomized strategy need not solve
a task in a specific number of steps, but must merely ensure convergence in an
expected sense. Second, by tolerating local failures and circumventing these with
randomization, a strategy becomes less sensitive to task details. This reduces
brittleness, and, third, it simplifies the planning process.

1.1 A Peg-In-Hole Problem

Consider the task of placing a rectangular peg into a rectangular hole. See figure
1.1. One of the experiments conducted for this thesis inserted such a peg using a
strategy that combined sensing and randomization. The task system consisted of a
PUMA robot that manipulated the peg, and a camera system that provided position
sensing.
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Combining Sensing and Randomization

The nature of the strategy is roughly sketched in figure 1.2. The basic principle of the
strategy is to make use of sensory information when possible, and otherwise to execute
a randomizing motion. The purpose of the randomizing motion is to either attain the
goal or move to a location from which the sensor again provides useful information.
The sensing errors are represented in the figure with an error ball. For configurations
of the system far away from the goal the resulting sensing information may adequately
suggest an approach direction that is guaranteed to reduce the system’s distance from
the goal. In the figure this is indicated by a pair of long straight-line motions, one
of which actually attains the goal. However, when the system is near the goal, the
sensors may not be able to distinguish on which side of the goal the system is. In
this case, the system will execute a randomizing motion. A possible execution trace
of such motions is shown in the figure.

A Three-Degree-of-Freedom Strategy

Let us examine this strategy in more detail for the peg-in-hole problem.

The problem was restricted to a three-dimensional task, instead of the full
six-dimensional problem inherent to an object with three translational and three
rotational degrees of freedom. It was assumed that the peg was properly aligned
vertically. This was achieved by picking up the peg from a horizontal table. However,
the peg was permitted to be misaligned about the vertical axis. The translational
degree of freedom corresponding to the peg’s height above the hole was removed by
making contact between the peg and the horizontal plate surrounding the hole. Thus
the peg’s remaining three degrees of freedom consisted of two translational degrees
of freedom in the plane perpendicular to the vertical axis, and a rotational degree
of freedom about this axis. The axis of the hole was assumed to be parallel to the
vertical axis.

The system operated as follows. The camera was mounted above the assembly,
looking straight down. The system would take a picture, extract edges, then try to
match these to the edges of the hole and the edges of the peg. Figure 1.3 depicts an
idealized picture. The hole was backlit from below by a light, so that the edges visible
to the camera were primarily those bounding the open part of the hole. Having fixed
on a match of image edges to the peg and the hole, the system would generate a
planar motion consisting of a translation and a rotation that would roughly align the
peg above the hole. Figures 1.4 through 1.6 portray some actual data obtained by
the camera, along with the motion suggested by the system. The system would then
try to execute this motion, and take another picture. If the picture indicated that
the peg was probably above the hole and properly aligned, the system would try to
insert the peg. The test for proper alignment was visibility of a pair of perpendicular
edges on both the peg and the hole that were in close proximity and parallel. If the
peg was not yet ready to be inserted into the hole, then the system would generate
a new motion, and proceed to try again. If ever the system did not obtain useful
image edges for suggesting a motion, then it would execute a randomizing motion.
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Figure 1.3: Top view of a peg-in-hole assembly. The camera extracts edges from the
scene. The edges are used to suggest a motion that will align the peg over the hole.
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Figure 1.4: This and the next two figures show some actual image data obtained for
the peg-in-hole strategy outlined in figure 1.3. The lines in this figure were obtained
from an image taken by a camera looking down on the peg-in-hole assembly. The
region bounded by the edges is the portion of the hole visible to the camera. The
hole was illuminated from below. The lines were thus obtained by first thresholding
the actual image, then looking for zero-crossings.
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Figure 1.5: This figure shows the system’s attempt to match the short image edges
of figure 1.4 to the physical edges of the peg and the hole. The four vertices indicate
the system’s interpretation of the endpoints of the physical edges.



22 CHAPTER 1. INTRODUCTION

¥~ Suggested motion of the peg

™

Estimated Peg Edges

|
|
|
\
1
|
I
|
§
I
|

Figure 1.6: The outer two solid lines are the system’s interpretation of the location
of the hole boundary. The inner two solid lines are the system’s interpretation of the
boundary of the peg. The two dashed lines indicate the system’s suggested motion.

Specifically, if the peg moved precisely as suggested by the system, it would move to
the location indicated by these lines.
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The motion was selected in a random fashion from a collection of two-dimensional
translations and rotations. In pseudo-code, the strategy was of the following form.

REPEAT until the peg is in the hole:

1. Take a picture of the assembly from above.
2. Extract zero-crossing edges from the image.

3. Try to match the image edges to the peg and the hole.

4. IF the edges can be matched reliably.
THEN use these to move the peg towards the hole,

ELSE execute a random motion.

End_repeat

Pseudo-code describing a randomized strategy for inserting a peg into a hole.

The z-y dimensions of the hole were 31.75mm x 19mm, while those of the peg
were 3lmm X 18mm. The material was aluminum. The random motions within the
feedback loop had maximum magnitude of about 2.5mm. The insertion was started
from various randomly chosen configurations within a radius of about 10mm of the
center of the hole. This distance is well within the accuracy achievable using an open-
loop motion of the PUMA. Indeed, the robot arm would pick up the peg several feet
away from the assembly, then move it to within camera range of the assembly using
a preprogrammed motion. Once within camera range, the feedback strategy outlined
above would take control of the assembly.

Errors in Sensing and Control

The interesting aspect of the non-randomizing portion of this strategy is that it does
not always succeed. There are two reason for this. First, the suggested motion
need not be accurate, and second, the camera may not return any useful sensing
information, in which case there is not even a suggested motion. The interesting
failure is the second one, and it is here that randomization plays a useful role. We
will return to this topic shortly.

The first type of failure arises both because of calibration errors and sensing
uncertainty. Consider what it takes to transform an image motion into a robot
motion. There must be some correspondence between the coordinate system of the
image plane and the joint coordinates of the robot. Changing the position of the
camera or refocusing can easily change this correspondence. We thus performed a
rough calibration of the camera with the robot before each assembly, by executing a
set of test motions, consisting of two perpendicular translations, and a rotation about
a joint axis, to determine the mapping between the group of image motions and the
associated joint commands. The calibration was therefore very approximate. Indeed,
part of the motivation was to determine how easily one could place the peg into the
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hole without requiring fine precision either in sensing or control. It is thus highly
likely that the calibration contained a fixed but unknown bias. In other words, even
if subsequent sensing was perfect, the initial calibration error probably introduced
an unknown error into the suggested motions. Thus it would be highly unreasonable
to expect the robot to insert the peg into the hole in a single motion. Additionally,
there are sensing errors on each iteration. For instance, the light below the hole
causes blooming. This means that the image edges bulge out in a curved fashion,
thereby introducing error into the observed positions of the peg and the hole. In
short, the non-randomizing portion of the strategy is not guaranteed to succeed in a
specific predictable number of steps. Instead, the full randomized strategy operates
as a simple feedback loop that eventually succeeds. This will be explained further
below.

A more serious problem arises when the peg is near the hole. In this case the
camera may not see any edges on either the peg or the hole, or may only see small
fragments that it cannot reliably match to the peg or the hole. In part this is due to
the placement of the camera. Inherently, the camera will be offset slightly to one side
or the other of the assembly, and thus will not always be able to see the hole. For
instance, viewing camera, peg, and hole in terms of their projections into the plane
of assembly, if the peg is situated between the camera and the hole, then the camera
may not be able to see any edges. Conversely, if the peg is approaching the hole from
the far side of the hole relative to the camera, then the camera will likely be able
to detect the defining edges of the hole and the peg throughout the approach. Thus
there are preferred approach directions. Of course, the system is not aware of these,
just as it is not aware of the actual biases in the calibration and sensing information.

Randomization

Now consider the state of the assembly once the peg is near the hole, supposing that
the camera cannot determine any edges with which to suggest a next motion. In
order to have some chance of attaining the goal, the system must make a motion.
By selecting the motion randomly the system can avoid any deterministic traps
that might result. For instance, if the system were to choose a motion direction
deterministically, then it might have the bad fortune of moving to a location from
which the sensors would direct it right back to the location at which the sensors
provide no information. Thus the system would be stuck in a loop. By choosing the
motion direction randomly, the system can break out of such a loop. So long as there
is some chance of attaining the goal, with probabilities that are uniformly bounded
away from zero, the strategy will converge eventually. Indeed, for this particular
implementation we chose the maximum step size of the random motions to be on
the order of 2.5mm. Thus whenever the system was within a few millimeters of the
goal, it had some chance of attaining the goal upon execution of a random motion.
The camera could always bring the peg to within a few millimeters of the hole. More
importantly, however, the random motions permitted the system to enter a region
from which the biases in the sensor-robot calibration and in the placement of the
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camera actually acted in favor of goal attainment. In short, the randomizing aspect
could actually ferret out approach directions from which the biases were helping rather
than hindering the assembly. This is an important property of randomized strategies.

Convergence Regions

For this particular example the start configurations could be roughly grouped into
four regions as indicated in figure 1.7. For one of these regions, the assembly time of
the strategy was very fast, namely three motions on average. This region corresponds
to the quadrant that was diagonally opposite of the camera. For the other regions
the convergence times varied, although fourteen motions seems to have been a rough
average (taken over fifty trials). We often observed the system finding its way into
the fast region with the aid of randomizing motions, then quickly attaining the goal.

Analysis of the Strategy

Let us analyze this strategy in a very rough and approximate fashion. Suppose, for
the sake of argument, that whenever the system starts in the lower right quadrant
of figure 1.7, it can insert the peg in three motions on average. Experimentally, two
motions were required to actually insert the peg, and one motion to recognize that
the peg had been inserted. Suppose further, that if the system starts in any of the
remaining three quadrants, it invariably fails to insert the peg, but instead, within
two motions, places the peg above the hole in such a manner that the camera cannot
extract any useful edges. Whenever this happens, the system executes a random
motion, and tries again. For simplicity let us assume that the random motion moves
the peg into any of the four quadrants with equal probability. Thus the probability of
moving into the quadrant from which fast goal attainment is possible is 1/4. In other
words, the expected number of randomizing motions required before the system starts
from the lower right quadrant is four. Since two motions are executed before each
randomizing motion, the expected number of sensor-based and randomizing motions
executed until the goal is attained is approximately (2 + 1) x4 + 3, that is, 15.

Although this explanation is simplistic, it nonetheless provides an explanation of
the observed data, as well as a description of randomized strategies in general. The
important observation is that a randomized strategy is not a guaranteed strategy in
the traditional sense. By a guaranteed strategy we mean a set of possibly conditional
actions that are certain to accomplish a specified task in a bounded predetermined
number of steps. In particular, one cannot say that a randomized strategy will
succeed in a fixed predetermined number of steps. Rather, the strategy runs through
a sequence of operations that merely provides some probability of success. If this
sequence is repeatable and if the success probabilities sum to unity over an infinite
number of trials, then one may speak of eventual convergence of the randomized
strategy. Indeed, one may even be able to compute the expected number of steps
until convergence. However, one cannot generally say with certainty that the strategy
will succeed on any particular iteration.
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Figure 1.7: Four start regions around the hole. From one of these, the biases in the
system permit fast peg insertion. From the others, the robot either attains the goal or
finds its way via randomizing motions into the region from which fast goal attainment
is possible.
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A More General Problem

The previous analysis provides a rough explanation for the observed behavior of
the feedback loop. We would like tools for analyzing and synthesizing such strategies
more precisely. Most of the rest of the thesis is concerned with the development of such
tools. Chapter 5 provides a detailed analysis of a simple feedback loop for attaining a
circular region in the plane. This problem is an abstraction of the translational version
of the peg-in-hole problem just analyzed. See figure 1.8. Recall that once the peg has
made contact with the surface surrounding the hole, then the only motions required
to move the peg towards the hole are translations and rotations in the plane. This
is because we are assuming that the peg is aligned properly vertically. If the peg is
actually cylindrical, then only translations are required. The peg was not cylindrical
in our implementation. Nonetheless, the two-dimensional feedback strategy analyzed
in chapter 5 provides a reasonable abstraction of the peg-in-hole problem. Higher
dimensional analyses of the discussion of chapter 5 apply more generally.

We assume also that the system can recognize when the peg is directly above or
in the hole. In our implementation this was usually possible because the peg would
slightly drop into the hole creating a very narrow slit of light that was generally
observed only when the peg was in the hole. !

Gaussian Errors

The simple feedback strategy will be analyzed in chapter 5 assuming Gaussian errors
in sensing and control. Recall, however, that the strategy itself is formulated for more
general types of errors. Similar to the implementation of the peg-in-hole example
above, the feedback strategy of chapter 5 operates as a combination of sensing and
randomization. Whenever the sensors provide information useful for moving towards
the goal, then the strategy executes a motion guaranteed to move closer to the
goal. Otherwise, the strategy executes a random motion. As we will see later, the
randomization has a natural tendency to move away from the goal. In contrast, the
feedback loop uses sensory information in such a way as to make progress towards
the goal. However, progress is not always possible since the sensors do not always
provide useful information. An important issue therefore is to determine the range of
locations for which the strategy makes progress towards the goal on average. As we
will prove in chapters 3 and 5, whenever the natural motion of the system is towards
the goal on average, then the goal is attained quickly.

Figure 1.9 indicates the average behavior of the system for a particular set
of uncertainty parameters. In particular, the sensing error is an unbiased two-
dimensional Gaussian distribution with standard deviation 7/3. The qualitative shape
of this graph applies more generally to different uncertainty parameters. The graph
shows the expected velocity of the system as a function of the system’s distance from
the origin. Recall that the goal is a circle centered at the origin. A negative velocity

'During the course of some fifty trials there were only a couple of occasions when the system
incorrectly thought that it had placed the peg in the hole.
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Figure 1.8: This figure shows the cylindrical version of the peg-in-hole problem of
figure 1.1. The peg is assumed to be aligned vertically. Once the peg has made
contact with the surface surrounding the hole, the task of moving the peg towards
the hole becomes a two-dimensional problem. The task may thus be represented as
the planar problem of moving a point into a circle. The point represents the position
of the peg in the space whose axes are given by the two translational degrees of
freedom of the peg.
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Figure 1.9: This figure shows the expected radial velocity of a simple
randomized feedback strategy for the problem of moving a point into a
circle, as in figure 1.8. That problem is an abstraction of the peg-in-hole
problem.

The expected velocity in the figure is positive in the range 0 < a < aq,
and negative in the range a > ao, where ap & 3. This means that for
starting positions that are closer to the origin than 3, the randomization
component of the strategy naturally pushes the system away from the
origin. For starting locations further away from the origin than 3,
the sensing information is good enough to pull the system towards the
origin on the average. This says that a goal whose radius is at least 3
would be attained very quickly.

In contrast, it turns out that a strategy which wishes to guarantee
progress towards the goal on each step can do so only if the goal radius
is at least 15.1. In short, the randomized strategy has considerably
better convergence properties than does the guaranteed strategy.

This graph and the number 15.1 will be derived in chapter 5. The
sensing error is assumed to be normally distributed with standard
deviation 7/3. Similarly, the velocity error is assumed to be normally
distributed with standard deviation 1/6 times the magnitude of the
commanded velocity.

29
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means that the system is making expected progress towards the origin. In particular,
we see that there is a region near the origin for which the natural tendency of the
system is to move away from the origin. Outside of this region the system moves
towards the origin on the average. The zero-velocity point is given by approximately
ap = 3 in the figure. Thus if the goal has radius bigger than aq, the system will
quickly converge to the goal. Even if the goal radius is smaller than ao, the system will
eventually converge, but now the convergence may require considerable time. Instead
of drifting towards the goal on average, the system attains the goal eventually due
to the diffusion character of the feedback loop. Figures 5.8 through 5.10 on pages
259-261 indicate the expected convergence times of the feedback strategy for different
starting locations and different goal radii.

An important observation to take from figure 1.9 is that the randomized feedback
loop has a wider convergence range than would a guaranteed strategy for attaining
the goal. In order to see this, let us simply state that for the example of figure 1.9
the feedback strategy requires a sensory observation that lies at least distance 8.1
from the origin in order to guarantee progress towards the goal. Whenever a sensory
observation lies closer to the goal, the feedback strategy executes a random motion. In
order to guarantee that the only sensor values observed will be at least distance 8.1
from the origin, it turns out that the system must be at least distance 15.1 from the
origin.?2 Thus, a planner wishing to guarantee, prior to execution time, that progress
towards the goal will be made consistently at execution time would only construct
plans for goals of radii larger than 15.1. On the other hand, the randomized feedback
strategy converges to goals of arbitrary size. Furthermore, for the unbiased Gaussian
errors used to derive figure 1.9, the strategy converges quickly for goals of radii as
small as 3. This is because the expected approach velocity points towards the goal
whenever the system is at least distance 3 from the origin.

1.2 Further Examples

1.2.1 Threading a needle

There are numerous examples of manipulation tasks in which randomization arises
naturally. For instance, consider the task of threading a needle. Without perfect
control and perfect sensing, it is unlikely that one can thread a needle on a specific
try. Nonetheless, within a reasonable starting location near the eye of the needle,
there is a definite chance of success on each attempt to insert the thread, so that
success can be guaranteed by trying repeatedly. This is an example of a probabilistic
action around which a loop has been placed.

ZThese numbers are derived form a particular sensing model that will be explained in more detail
in the rest of the thesis. See in particular sections 2.2.3 and 5.2.
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Gear A

Gear B

Figure 1.10: Two gears.

1.2.2 Inserting a key

Similar examples are given by tasks such as inserting a key into a lock or closing a
desk drawer that is jamming. In the key-lock task the solution consists of moving the
key near the keyhole, then moving the key back and forth if necessary while reducing
the distance to the hole, until the key actually slides into the keyhole. Once the key
is in the lock, one may have to jiggle it back and forth while pushing in order to fully
insert the key. The example of closing a desk drawer is similar to this last step. If
the drawer jams, one may randomly jiggle it while pushing inward, to overcome any
jamming forces.

1.2.3 Meshing two gears

A wonderful example is given by the task of meshing two gears (see figure 1.10).
Donald ([Don87b] and [Don89]) first used this example to demonstrate a task in which
solutions cannot be guaranteed but for which there is some hope of success. His thesis
was that a robot should attempt to solve such tasks, so long as at the end of each
attempt the robot is able to distinguish between success and failure. For the gear-
meshing case, should the success not be directly visible, Donald suggested a test that
consists of trying to rotate one gear. If the other gear rotates as well, with the proper
gearing ratio, then the meshing operation is known to have completed successfully.
Otherwise, it has failed. In the context of the randomized actions of this thesis, the
attempt to mesh the gears will play the role of a non-deterministic action, around
which we will place a loop whose active randomization guarantees eventual success.
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In order to get a flavor of the approach, consider a simplified version of the gear-
meshing problem in which one can move the gears towards each other perfectly, so
that the centers of rotation travel on the straight line joining them (this might be
possible if the gears are mounted on a telescoping device constraining their centers of
rotation). As the gears are brought near each other, they will mesh if they are properly
aligned. In other words, for some set of starting orientations, the two gears will mesh
if brought together. The range of starting orientations that permit successful meshing
is some subset of the two-dimensional space [0, 27] X [0, 27] that describes the possible
orientations of the two gears. Suppose that one cannot sense or control the orientation
of the gears well enough to be able to ensure that the gears are properly oriented. If
initially the gears are randomly oriented, then the ratio of the area of the successful
starting range to 472 is the probability of success on any given try. A randomized
strategy for meshing the gears consists of first spinning the gears to achieve a random
orientation, then bringing them together in an attempt to mesh them, followed by a
test to determine whether they have indeed meshed properly. This action is repeated
until the test indicates that the gears have been meshed. The expected number of
attempts until success is simply one over the probability of success on a given try.

This example raises a number of important issues. First, let us consider the
probability of success on a given iteration. In order to specify the strategy of looping
around a primitive action one really does not need to know what this probability of
success is. It is sufficient to know that on each try there is some chance of success
and that the sum of the probabilities of success over an infinite number of trials is
one. For instance, it is sufficient to know that the probability of success on each trial
is larger than some non-zero constant.

While the specification of the strategy does not depend on the probability of
success, it is nonetheless sometimes desirable to compute this probability, either to
ascertain that it is non-zero or to compare it with other possible strategies. This
entails computing the area of the range of initial orientations that permit successful
gear meshing. Figure 1.11 portrays this range in a highly approximate fashion.
Essentially the range of successful initial orientations consists of a set of diagonal
stripes in the space of orientations of the two gears. The number of stripes depends
on the number of gear teeth, and the inclination of the stripes depends on the gearing-
ratio. The center axes of the stripes correspond to orientations of the two gears at
which the gears are perfectly meshed. The stripes themselves include orientations at
which the gears are not perfectly meshed, but from which the gears will compliantly
rotate to perfect meshing if they are pushed together. Computing the exact shape
of these stripes is in general a difficult task, which depends on the exact geometry of
the parts and on the coefficient of friction between them. The basic idea is to start
from a goal consisting of those orientations at which the gears are perfectly meshed,
then backchain, recursively determining all those points that can move compliantly
toward the goal under a given applied force. The problem is complicated by the
rotational compliance of the gears. This backchaining process is known as computing
preimages or backprojections (see [LMT], [Mas84] and [Erd84]). We will refer to
this approach as the LMT preimage planning approach. Donald (see [Don87b] and
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Figure 1.11: Schematic representation of the range of initial orientations that permit
successful gear-meshing. These are indicated by the hatched areas. [The figure
corresponds to gears with only four teeth. Realistic gears generate more stripes.]

[Don89]) has investigated approximate techniques for computing such backprojections
in the gearing case. We will not examine those techniques here. Instead, we will
convey the basic idea of how one might compute success probabilities with a slightly
simpler example.

If we fix the orientation of one of the gears, the successful starting orientations of
the other gear form a periodic pattern of disconnected intervals. This pattern looks
very much like a sieve, and indeed we can think of the gear as a sieve that filters out
bad orientations of the other gear or, more generally, improperly shaped gears. Let us
look then at a sieve to demonstrate in a simpler setting the ideas behind randomized
strategies.

Figure 1.12 shows a simple grating that acts like a one-dimensional sieve,
permitting some two-dimensional objects through but not others. Let us suppose
that the object we would like to get through the sieve is a square, as shown in figure
1.13. Assume the object can only translate, not rotate. Relative to the indicated
reference point on the object, the translational constraints imposed by the sieve on
the object are as shown in figure 1.14. This is the configuration space (see [Loz81]
and [Loz83]) representation of the sieve. Moving the object through the real sieve
corresponds directly to moving a point through this configuration space sieve. The
representation depends of course on the object being moved. Indeed for objects that
are too large, the configuration space sieve is simply a solid horizontal slab, indicating
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Motion of objects
through sieve

Figure 1.12: A grating of two-dimensional obstacles. The grating acts as a
one-dimensional sieve, only allowing objects small enough to move through the sieve.

that the object cannot be moved through the sieve.

Given the configuration space sieve, we are now in a position similar to the gear-
meshing example. In particular, let us suppose that the analogue to moving the gears
together consists of translating the object vertically downward (for instance, under
the influence of gravity). Then, for certain starting configurations, the object will
translate through the sieve, while for other configurations it will become stuck on the
sieve elements. Thus the sieve also acts as a configuration sieve, filtering out certain
initial starting configurations of the object. Of course, that is not exactly the purpose
of the sieve. After all, one would like the object to translate through the sieve. In
order to ensure this, one shakes the sieve, or equivalently, one randomizes the initial
position of the part. This operation corresponds to the act of twirling the gears in
order to randomize their configurations on each meshing attempt.

Let us compute the probability of success for the sieve example. First, let us
assume that there is no control uncertainty, so that the object translates straight
down when commanded to do so. Figure 1.15 portrays those start configurations from
which the object is guaranteed to pass through the sieve when translating downward
(recall that the part is represented by a point in its configuration space). Suppose that
the sieve is periodic and unbounded, and suppose further that the start configuration
of the object is uniformly distributed. One then sees that the probability of success
is simply the ratio of the length of a hole in an elemental period of the sieve to the
full length of the elemental period.

In the previous computation, it was enough to look at one-dimensional quantities
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Figure 1.13: This figure shows the constraints imposed on the motion of the square
by the trapezoidal sieve element. The bottom polygon describes the locations of the
reference point of the square for which there would be contact between the square
and the trapezoid.

(NN DY D

Figure 1.14: This figure shows the configuration space sieve corresponding to the real
space sieve of figure 1.12 for the motion of a square as in figure 1.13.
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Figure 1.15: Perfect velocity preimage. For starting locations in the shaded area,
the system is guaranteed to pass though the sieve by moving straight down. For
other locations, the system will get stuck on a horizontal edge. If the starting
location is uniformly distributed, then the probability of passing through the sieve is
approximately a/b.
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Figure 1.16: Preimage assuming velocity error. For starting locations in the shaded
area, the system is guaranteed to pass though the sieve, given the velocity error cone.
For other locations, the system may get stuck on a horizontal edge. If the starting
location is uniformly distributed in the infinite horizontal strip, then the probability
of passing through the sieve is at least A/B.




38 CHAPTER 1. INTRODUCTION

in computing the probability of success, since the vertical coordinate of a point above
the sieve did not matter in determining whether the point would translate through
the sieve. However in general one needs to compute the ratio of the area of successful
starting configurations to the area of possible starting configurations. Suppose, for
instance, that whenever a translation is commanded the actual motion lies within
some velocity error cone about the nominal commanded velocity. Then the set of
initial configurations from which translation through the sieve is guaranteed changes.
Indeed, the successful starting configurations are delineated by triangles that are
determined by erecting the velocity error cone above the sieve holes, as shown in
figure 1.16. Suppose that the initial configuration of the object is known to lie in
some region, uniformly distributed. Consider those portions of the triangles that
lie within this starting region, and sum up the areas of these portions. Then the
probability of success is given by the ratio of this area to the full area of the starting
region. This computation is also indicated in the figure for a periodic sieve with a
periodic starting region.

Actually, the probability thus computed is an underestimate. This is because
the probability is determined only by considering configurations from which passage
through the sieve is guaranteed, independent of the actual motion taken within the
velocity error cone. Such regions are known as strong preimages (see [LMT]). It is,
however, also possible that some points that lie outside of these strong preimages
may for some possible error velocity pass through the sieve. However, since this
passage cannot be guaranteed, without further information, one cannot say anything
about how the possibility of success for these start configurations affects the total
probability of success. If the probability distribution of the velocity errors is known,
then it can be used to compute an additional term that figures into the probability of
success. Without such knowledge, however, we can imagine that no point outside of
the strong preimages ever passes through the sieve, and thus our original probability
computation is the best possible lower bound.

Another issue raised by these examples concerns the need for randomization. We
will discuss this issue further in the next section, but let us briefly consider the
question of randomization in the context of the gear and sieve examples. One might
wonder why it is ever necessary to randomize the start configuration of a part, as
opposed to deterministically searching the set of possible start locations. For instance,
in the gear example, even if the orientations of the gears are not measurable well
enough to ensure proper initial alignment, one could imagine rotating one or both of
the gears slightly after each meshing attempt, then retrying. If the rotation is small
enough, then this process should eventually encounter a starting orientation from
which successful meshing is possible. Unfortunately, there are some problems with this
approach. First, it may be impossible to rotate the gears finely enough to guarantee
that the rotation will not just jump over the successful start orientation. And second,
after a failed meshing attempt the configuration of the gears will have changed, so that
it is not at all clear that incremental rotations will eventually encounter a successful
starting configuration. In principle, the system could get into a loop, starting from
a given unsuccessful orientation, rotating during the failed attempt to an orientation
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exactly offset from the start orientation by the angle of increment, thus ensuring that
the new start orientation after incrementing is again the old start orientation, and
so forth. Of course, if one’s predictive capabilities are good enough, one could detect
the potential for such a loop, but that is not always the case. A straightforward
method of avoiding the possibility of a deterministic loop is to randomize the initial
conditions. We will discuss this approach in more detail in the next section.

There is another reason for randomizing, which again relates to the accuracy with
which one can model the world. In the sieve example, for instance, the spacing
between sieve elements may be slightly non-uniform, so that one cannot predict
exactly where a hole will be. Taken over a large segment of the sieve, the density of
holes to non-holes may be the same as in the uniform case, but it may vary locally.
Thus it may make sense to randomize the start location to take advantage of the high
overall probability of success, avoiding possibly low local probabilities of success. Let
us make this argument more precise. Suppose that in a perfectly shaped sieve, the
period of the sieve has length b, of which length a is free space, and length b — a is
an obstacle. Thus the probability of success (assuming perfect control) is a/b. See
again figure 1.15. Now suppose that the sieve is not built very well. Instead there
are two types of sieve sections. In Type One sections the hole has size a + ¢, while in
Type Two sections the hole has size a — €, where € is some positive number satisfying
0 < € < min{a,b—a}. Suppose that the underlying period of the sieve still has size b,
and that the two types of sieve sections occur with equal frequency when viewed over
the entire sieve, although locally one or other type may dominate. If the state of the
system happens to be in a region in which there are only Type One sieve sections,
then the probability of success is (a + €)/b, whereas if the system happens to be in
a region in which there are only Type Two sections, then the probability of success
is (a — €)/b. If € is close to a, then the probability of success might be very near
zero if the system is in this second region. However, if the system first randomizes its
initial position, so that it starts off with a uniformly chosen initial position, then the
resulting probability of success is given again by a/b.

We will discuss a related example in section 2.4. Another related example is given
by a person trying to open a door in the dark. Suppose he has n keys of which &
will open the door. If he tries the keys in order, in the worst case he may need to
try n — k + 1 keys before success, but if he tries them randomly (with replacement),
then, although the worst case is now unbounded, the expected number is n/k. If n
and k are large and k is comparable to n, but still considerably less than n, then
it makes sense to try the randomized approach. This is essentially the motivation
behind the use of probabilistic algorithms in computer science. If k is small, then the
deterministic approach is preferable. However, even in this case, if the deterministic
approach is subject to failure, in that the person may drop the keys or forget which
keys he has already tried, then the randomized approach is again useful.

To summarize, randomization is useful in two ways. First, randomization foils
an adversarial world that might cause a deterministic search to loop. Second,
randomization may compensate for imperfect world knowledge, by ensuring that
successful actions are taken at least occasionally, and in some cases by ensuring that
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successful actions are taken with high enough frequency.

1.3 Why Randomization?

The main purpose of randomization is to increase the class of solvable tasks. In
particular, randomized strategies are useful for solving tasks for which there is no
guaranteed solution but for which there is some probability of success. A guaranteed
solution in this context refers to a strategy consisting of a set of possibly conditional
actions that are certain to accomplish a task in a bounded predetermined amount of
time. In contrast, a randomized strategy is expected only to attain the goal in some
expected amount of time. While giving up predetermined convergence, randomized
strategies provide a tool for solving a broader class of tasks.

Randomization also increases the class of solvable tasks by reducing the demands
made on modelling and prediction. For instance, in the peg-in-hole task at the
beginning of this chapter, we were not required to model very accurately the errors
introduced by the calibration process. More generally, one can imagine tasks in
which geometrical errors in the modelling of parts prevent guaranteed solutions. For
instance, there might exist slight nicks and bumps on the hole surface, which could
prevent successful entry of the peg into the hole. In general, it is very difficult to plan
explicitly for such irregularities. However, for a large class of such irregularities the
system can avoid becoming permanently stuck by wiggling the peg slightly, that is,
by introducing randomized motions.

Reducing the demands on modelling and prediction also permits simpler solutions
to tasks for which there might actually exist guaranteed strategies. In addition,
reducing the knowledge requirements of a strategy reduces its brittleness.

One question remains. It deals with the difference between active randomization
and probabilistic or non-deterministic actions. In the context of this thesis, to say that
a strategy or an action is probabilistic is to say that it has some non-zero probability
of success, but may not be guaranteed to succeed. More formally, an action is
probabilistic if its effect on each state is modelled as a set of configurations, each
of which has some non-zero probability of occurring. Often a probabilistic strategy
will consist of some loop around a probabilistic action, the purpose of the loop being
to guarantee eventual convergence.

More generally, a strategy or action is said to be non-deterministic if its outcome is
modelled as a set of possible configurations. The non-deterministic model is intended
as a worst-case model. It says simply that an action might cause a transition to any
one of a set of possible configurations. However, nothing is said about the actual
likelihood of that transition occurring.

While an action may be probabilistic, the decision to execute that action is often
deterministic. In other words, given certain sensor values, the system selects a certain
action in a completely deterministic fashion. It is simply the outcome of the action
that is probabilistic or non-deterministic. An alternate approach is for a system to
actively make random choices in selecting actions. This process is what we have been
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calling randomization.

We have already indicated in the sieving example the usefulness of randomization.
However, it may not be clear why randomization is ever really required. After all, one
could imagine that a system could simulate in a deterministic fashion a randomizing
system, simply by enumerating in some order all possible random decisions of the
randomizing system, until the goal is attained.

One possible benefit of active randomization might be improved convergence
times. There are certainly arguments from the theory of randomized algorithms
that suggest that randomization can speed up convergence of certain tasks. Indeed,
we will exhibit an example in chapter 3 for which randomization does speed up
convergence. However, the problem here is slightly different, in essentially three ways.
First, unlike decision problems in algorithms, when moving in the physical world one
cannot arbitrarily restart the problem to improve convergence. For instance, for
decision problems in Bounded Probabilistic Polynomial time, one can repeatedly ask
the decision question, thereby making the probability of error as small as desired.
Furthermore, this may be done in a polynomial amount of time. In contrast, once a
robot has moved, it may have introduced uncertainty into its configuration, and thus
may not be able to restart from the same location should it fail to attain its goal. To
some extent one can define this issue away, by insisting that it be possible to place
a loop around any probabilistic sequence of actions. However, the basic difference
remains. Second, many robot planning problems in the presence of uncertainty
are at least PSPACE-hard (see [Nat88], [CR], and [Can88]). Thus the hope for
polynomial speedup by moving to probabilistic algorithms seems futile in general
(see [Gill]). Third, our main interest lies in extending the class of solvable tasks,
with performance issues entering as a secondary motivation. Thus the question of
whether randomization is ever required enters at the level of task solvability rather
than purely at the level of convergence time.

The need for randomization arises in the context of non-deterministic actions.
When actions are probabilistic, one can, at least in principle, compare different
decisions based on their probability of success, then select that decision which
maximizes the probability of success. No randomization is required. However, in
the setting of non-deterministic actions, one must be prepared to handle worst-case
scenarios. This means that one should view uncertainty as an adversary who is
trying to foil the system’s strategy for attaining the goal, and who will therefore
always choose that outcome of a non-deterministic action that prevents the system
from attaining its goal. Again, it may seem that one can enumerate all decisions and
actions, then select that sequence of actions that is guaranteed to attain the goal
despite the most devilish adversary. Indeed, this is the approach taken in planning
systems that generate guaranteed plans, that is, plans guaranteed to attain the goal in
a predetermined bounded number of steps. However, not all tasks admit to guaranteed
solutions. The interest of this thesis is in tasks for which there may not exist any
guaranteed plan, or for which finding a guaranteed plan may be very difficult. In
that setting randomization can play a useful role, in that it can prevent an adversary
from forever foiling the goal-attaining strategy. We should note that there is a tacit
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(5)7*

Figure 1.17: This is a state graph with non-deterministic actions. There is no
guaranteed strategy for attaining the goal if the state of the system is unknown.
However, by randomly and repeatedly executing one of the actions A; or A,, the goal
is attained in two steps on average.

assumption here that nature, that is, the adversary, cannot control or observe the
dice used to make the randomizing decisions. We now demonstrate the usefulness of
randomization with a very simple example.

Imagine a discrete three-state system, as shown in figure 1.17. There is one goal
state G, and two other states labelled as state s, and state s,. Additionally, there
are two actions, A; and A,, that have non-deterministic outcomes. If the system is
in state s; then action A; is guaranteed to move the system to the goal. However,
action A, will non-deterministically move the system from s; either back to s; or to
the other state so. Similarly, if the system is in state sg, then action A, is guaranteed
to attain the goal, while action A; will non-deterministically either remain in s, or
move to state s;. Suppose that the only sensing available is goal recognition. In other
words, the system can detect goal attainment, but cannot decide whether it is in state
81 or s3. We observe that there is no guaranteed strategy for attaining the goal. For
any deterministic sequence of actions there is some interpretation of the diagram for
which the sequence fails to achieve the goal. Said differently, from a worst-case point
of view, no finite or infinite deterministic strategy is guaranteed to attain the goal.

As an example, consider the sequence of actions Aj; Ay; Ag; Aq; Ag; Ay The
following is a possible sequence of transitions that fails to attain the goal.

Ay Ay A, Ay Az Az

89 —* 89 —— 8§ — §9 — 8; — §; ——> < whatever > .

In order to prove that there is no guaranteed strategy for attaining the goal,
imagine an adversary who can look ahead to the next action A;, and use the current
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action to either stay in the current state or move to the other non-goal state. In
particular, the adversary can always move to state s;, with j # ¢, where the index ¢
is determined by the action A;. (Here both 7 and j are either 1 or 2.)

The introduction of an adversary is just a proof artifice of course. There is no
need to actually have someone look at a purported strategy for attaining the goal.
The point is that even without an adversary, the transition diagram might behave as
if there were such an adversary, for any fixed deterministic strategy. For instance,
the transition diagram might be the visible portion of a considerably more complex
machine or natural process, whose transitions govern the apparently non-deterministic
transitions of A; and A,.

One question one might ask is how complex such a hidden state diagram must be
to foil a particular deterministic strategy. In particular, if one limits the complexity
of the hidden diagram, then sufficiently long deterministic strategies will eventually
attain the goal. We will not delve into this question.

Another question concerns the importance of the term “fixed”. If one varies
the strategy then one increases the likelihood of obtaining a guaranteed strategy.
Of course, varying a deterministic strategy in a deterministic manner yields another
deterministic strategy. Instead, suppose that one varies the strategy by randomizing.
Then we see that there exists a randomized strategy whose expected convergence
time is very low, namely two steps. This strategy randomly chooses between actions
A; and A; on each step, choosing each action with probability 1/2. Since the system
is in some state s;, the strategy will choose the correct action A; for that state with
probability 1/2. This is true independent of the behavior of the system. Thus, by a
waiting time argument, the expected time until the system guesses the correct action
is two. In turn this says that the expected time until the goal is attained is no
greater than two. [It may actually be less than two, if the underlying transitions are
themselves probabilistic rather than adversarial.] This example shows clearly how
randomization can solve tasks for which there are no guaranteed strategies, and for
which no deterministic simulation of the randomization is guaranteed to solve the
task.

The argument of the example above is essentially a worst-case versus expected-
case analysis. It may seem strange to compare worst and expected cases. However,
there are two important observations to take from this example. First, there is a
major advantage to be gained by considering the expected case rather than the worst
case. This is because the task of attaining the goal is solvable only in the expected
case, not in the worst case. Second, the expected case convergence time is computed
over randomizing decisions actively made by the run-time system, not over externally
defined probability distributions. In particular, the system has control over this
expectation on any attempt to complete the task. It is not an expectation computed
over different possible world models of the actions A; and A,. Rather the upper
bound on the expectation applies for every possible interpretation of the underlying
non-deterministic model.

As a final comment, let us observe that often probabilistic actions may have the
same effect as active randomization on the system’s part. For instance, if the non-
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deterministic transitions of A; and A, were probabilistic, with transition probabilities
1/2, then the system could simply execute action A; repeatedly. No randomization
would be required, since the physics of the problem would effectively provide the
required randomization. If the system originally started from state s;, the strategy
would succeed in a single step, whereas if the system started from state s;, the strategy
would succeed in the expected time of three steps.

1.4 Previous Work

Work on planning in the presence of uncertainty goes back in time as far as one can
imagine. Credit for the modern approach probably goes to Richard Bellman [Bell],
who formulated the dynamic programming approach that underlies much of optimal
control and decision theory. His ideas were themselves based to some extent on the
calculus of variations and game theory. See [Bert] for an introduction to dynamic
programming in the discrete domain, and see [Stengel] for an overview of techniques
in optimal control.

1.4.1 Uncertainty

Within the domain of robotics, uncertainty has always been a central problem.
Much of the work on compliant motion planning was motivated by a desire to
compensate for uncertainty in control and inaccuracies in the modelling of parts.
The aim was to take advantage of surface constraints to guide assembly operations.
Inoue [Inoue] used force feedback to perform peg-in-hole assembly operations at
tolerances below the inherent positional accuracy of his manipulator. Simunovic
(see [Sim75] and [SimT79]) considered both Kalman filtering techniques in position
sensing and the use of force information to guide assembly operations in the presence
of uncertainty. In conjunction with this work there grew an interest in friction and
the modelling of contact to describe the possible conditions under which an assembly
could be accomplished successfully. See [NWD], [Drake], [OHR], [OR] and [Whit82].
More recent work with an emphasis on understanding three-dimensional peg-in-hole
assemblies in the presence of friction and uncertainty includes [Caine] and [Sturges].

1.4.2 Compliance

The formalization and understanding of compliant motion techniques received several
major boosts. Whitney [Whit77] introduced the notion of a generalized damper as a
way of simplifying the apparent behavior of a system at the task level. The generalized
damper is a first-order description of a system. A zeroth-order description is given
by a generalized spring. In this direction, Salisbury’s [Sal] work on generalized
springs provided a means of stiffness control for six degrees of freedom. Several
researchers considered a form of control known as hybrid control (see the article
[Mas82b] for a pointer to these various researchers, and more generally the book
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[BHIJLM]). The work of Mason [Mas81] contributed to the understanding of compliant
motions by modelling and analyzing compliance in configuration space. In particular,
he introduced and formalized the ideas of hybrid control, showing how these could
be modelled naturally on surfaces in configuration space. The basic approach is to
maintain contact with an irregular and possibly unknown surface, by establishing a
force of contact normal to the surface, while position-controlling directions tangential
to the surface of contact. In short, uncertainty is overcome in some dimensions.
Raibert and Craig [RC] describe a combination of position and force control in their
implementation of a hybrid control system. See also [Inoue] and [PS] for earlier work
on hybrid control.

1.4.3 Configuration Space and Motion Planning

The notion of configuration space was introduced into robotics by Lozano-Pérez (see
[Loz81] and [Loz83]), as a means of characterizing a robot’s degrees of freedom
and the constraints imposed on those degrees of freedom by objects in the world.
A point in configuration space corresponds to a configuration of the robot in real
space. Thus configuration space is a means of transforming a complicated motion
planning problem into the problem of planning the motion of a point in a (possibly)
higher-dimensional space whose axes are the robot’s degrees of freedom. The roots
of these ideas may be found in [Udupa], who transformed the problem of moving
a robot among a set of obstacles into the problem of moving a point among a set
of transformed obstacles. See also [Loz76], who used configuration space in the
context of grasping parts. The motivation for configuration space was initially to
solve the obstacle avoidance problem. In particular, the configuration space of an
object provides a geometric description of the set of collision-free configurations of
the object, and thus the basis for planning algorithms. Much work has occurred in
obstacle avoidance since then; see below for a partial list.

An important observation made by Mason’s paper [Mas81] is that configuration
space possesses dynamic properties as well as purely kinematic properties. Thus the
normals to configuration space surfaces have dynamic significance. In particular,
one can push on a configuration space surface and experience a reaction force.
This observation meant that hybrid control could be viewed nicely in configuration
space. Additionally, the dynamic information of configuration space was later used
by Erdmann [Erd84] to model friction in configuration space.

As we have indicated, much of the geometric work on motion planning provided
a foundation for the subsequent and parallel work on planning with uncertainty.
Investigation of the motion planning problem finds its roots in the works of Brooks
[Brooks83]; Lozano-Pérez and Wesley [LPW]; Reif [Reif]; Schwartz and Sharir [ScShII]
and [ScShIII}; and Udupa [Udupa]. For further foundational work in the area,
both for a single robot and for several moving robots, see Brooks and Lozano-Pé-
rez [BLP]; Lozano-Pérez [Loz86]; Canny [Can88]; Canny and Donald [CD]; Donald
([Don84] and [Don87a]); Erdmann and Lozano-Pefez [ELP]; Fortune, Wilfong, and
Yap [FWY]; Kant and Zucker [KZ]; Khatib [Khatib]; Koditschek [Kodit]; Hopcroft,
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Joseph, and Whitesides [HIW]; Hopcroft, Schwartz, and Sharir [HSS]; Hopcroft and
Wilfong ([HW84] and [HW86]); O’D unlaing and Yap [ODY]; O’D unlaing, Sharir
and Yap [ODSY]; Reif and Sharir [RS]; Spirakis and Yap [SpY]; and Yap ([Yap84]
and [Yap86]). This is by no means an exhaustive list. Much research has been done.
Some books with excellent survey articles include [SHS], [SY], and [KCL].

We will not discuss this work in detail, but instead focus more on the development
of the work on uncertainty.

1.4.4 Planning for Errors

The generalized spring and generalized damper approaches provided a new set of
primitives with which one could reduce uncertainty in specific local settings. In
parallel with this work there arose a desire to synthesize entire planning systems
that could account for uncertainty. Early work considered parameterizing strategies
in terms of quantities that could vary with particular problem instantiations. The
skeleton strategies of Lozano-Pérez [Loz76] and Taylor [Tay] offered a means of
relating error estimates to strategy specifications in detail. In particular, Lozano-
-Pérez’s LAMA system used geometric simulation of plan steps to decide on possible
motion outcomes. The simulation made explicit the possible errors that could occur.
This information could be used to restrict certain parameters or to introduce extra
sensing operations. Taylor’s system used symbolic reasoning to restrict the values
of parameters in skeleton strategies in order to ensure successful motions. Brooks
[Brooks82] extended this approach using a symbolic algebra system. His system could
be used both to provide error estimates for given operations, as well as to constrain
task variables or add sensing operations in order to guarantee task success. Along
a slightly different line, Dufay and Latombe [DL] developed a system that observed
execution traces of proposed plans, then modified these using inductive learning to
account for uncertainty.

1.4.5 Planning Guaranteed Strategies using Preimages

In 1983, Lozano-Pérez, Mason, and Taylor [LMT] proposed a planning framework
for synthesizing fine-motion strategies. This approach is sometimes referred to as the
preimage framework. This is because the framework generates plans by recursively
backchaining from the goal. Each backchaining step generates a collection of sets,
known as preimages, from which entry into the goal is guaranteed. This framework has
strong connections to the dynamic programming approach mentioned above, which
will be discussed further in the thesis. The preimage framework directly incorporated
the effect of uncertainty into the planning process. In particular, the framework
made clear how sensing operations as well as mechanical operations could be used to
reduce uncertainty. An example of a mechanical operation that reduces uncertainty
is a guarded move. During a guarded move a robot moves in the direction of an
object located at an unknown distance, until contact with the object is established.
Thus the uncertain location of the object becomes known with precision, relative
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to the location of the robot. Guarded moves are discussed in [WG]. Earlier work
using guarded moves includes [Ernst]. Mason [Mas84] showed that that the preimage
planning approach is correct and bounded-complete. This means that if any system
can solve a motion planning problem given the uncertainty and dynamics assumed
within the preimage framework, then in fact the preimage framework will also provide
a solution.

The preimage methodology spawned numerous other directions of research.
Erdmann [Erd84] considered the issues of goal reachability and recognizability. He
showed that for some variations of the planning problem, the task of computing
preimages can be separated into two simpler problems. One of these ensures that
the system will reach its goal, while the other ensures that the system will actually
recognize that it has attained the goal. In general these issues are not separable.
Buckley [Buc] implemented a system that computed multi-step strategies in three-
dimensional cartesian space. His planner employed a discrete state graph that
modelled the possible transitions and sensing operations in an AND/OR graph. Turk
[Turk] implemented a two-dimensional backchaining planner.

1.4.6 Sensorless Manipulation

We have already mentioned the importance of mechanical operations for reducing
uncertainty. A strong champion of such techniques is Mason. See, for instance,
[Mas82al], [Mas85], and [Mas86]. In particular, Mason has looked at the problem of
reducing uncertainty in the orientation of parts by pushing. Building on this work,
Brost (see [Brost85] and [Brost86]) has implemented a system that can orient planar
parts through a series of pushing and squeezing operations. An important aspect
of these strategies is that they do not require sensing at the task level. Instead,
all the actions are open loop, relying purely on the mechanics of the problem to
reduce uncertainty. Other work involving the reduction of uncertainty without sensing
includes the work by Mani and Wilson [MW] on orienting parts by sequences of
pushing operations, the work by Peshkin [Pesh] on orienting parts by placing a series
of gates along a conveyer belt, and the graph algorithms of Natarajan [Nat86] for
designing parts feeders and planning tray-tilting operations. A tray-tilter is a system
that orients planar parts dropped into a tray by tilting the tray. Erdmann and Mason
[EM] investigated this problem, designing a planner based on the mechanics of part
interactions with the walls of the tray. The planner expected as input a polygonal
description of the part to be oriented along with the coefficient of friction. The output
of the planner consisted of a sequence of tilting operations that was guaranteed to
orient and position the part unambiguously, if such a sequence existed. A robot
executed the motions suggested by the planner. This work represents a specialization
of the preimage framework to the sensorless case, in which only mechanical operations
may be used to reduce uncertainty. The idea for tray-tilting came from work by
Grossman and Blasgen [GB] who used a combination of tray-tilting and probing
operations to ascertain the orientation of a part as a prelude to grasping the part.
Taylor, Mason, and Goldberg [TMG] introduced sensing back into the tray-tilter, as
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a means of investigating the relative power of sensing and mechanical operations.
They developed a discrete planning system based on an AND/OR graph similar to
the graph used in Buckley’s planner.

More recent work includes the study of impact by Wang (see [Wang] and [WM]).
Studying impact is of central importance, since all operations in which objects make
contact involve impact. Generally, the impact occurs at scales well below those
available to current sensors.

1.4.7 Complexity Results

We should mention some hardness results regarding the motion planning problem
in the presence of uncertainty. Natarajan [Nat88] has shown the problem to be
PSPACE-hard in three dimensions for polyhedral objects. Canny and Reif [CR]
have shown the problem to be hard for non-deterministic exponential time, also in
three dimensions. In general, the computability and complexity of the problem of
planning in the presence of uncertainty is not known. Erdmann [Erd84] showed that
the problem is uncomputable in the plane if the environment can encode arbitrary
recursive functions. However, for many special cases, computable algorithms are
known. Natarajan [Nat86] also has a number of results suggesting fast planning times
for restricted versions of the sensorless manipulation problem. Donald [Don89] has
demonstrated various polynomial-time algorithms for computing single-step strategies
in the plane, assuming restrictions on the type of sensing permitted. In particular, all
motions were terminated by detecting sticking in the environment. Donald also gave
a single-exponential-time algorithm based on the theory of real closed fields for the
multi-step strategy. Briggs [Briggs] extended these results to improve the performance
of the single-step planner. Also, Canny [Can89)] recently exhibited an algorithm based
on the theory of real closed fields that solves the general motion planning problem
under uncertainty for those cases in which the robot trajectories may be modelled as
algebraic curves.

1.4.8 Further Work on Preimages

Further work on the preimage methodology has been conducted by Latombe [Lat]
and his group. This work includes a study of the preimages and strategies that result
from the use of various termination predicates, in addition to those used in the LM'T
preimage methodology. Others who have looked at fine motion assembly recently
include [Desai], [Koutsou], [LauTh], and [Valade]. We also refer to the book [KCL]
for a review of other relevant literature.

1.4.9 Guaranteed Plans

The philosophy of the preimage methodology is to generate plans that are guaranteed
to accomplish some task despite uncertainty in control, sensing, and possibly the
geometry of the environment. The framework assumes that uncertainty can behave
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as a worst-case adversary, within specified task-dependent bounds. If a given subgoal
cannot be attained with certainty assuming this worst-case behavior, then the task
is deemed unsolvable. In this thesis a guaranteed strategy for solving a task will
therefore refer to a set of possibly conditional actions that are certain, in the presence
of this worst-case uncertainty, to accomplish the task in a bounded predetermined
amount of time.

1.4.10 Error Detection and Recovery

An important offspring of the LMT preimage planning methodology is Donald’s
recent thesis (see [Don87b] and [Don89]). This work deals with the problem of
representing model error and the problem of Error Detection and Recovery. The
need for error detection and recovery arises naturally if one permits uncertainty in
the geometric shape of objects. This is because for many interesting tasks there
simply are no guaranteed plans in the sense just outlined. An example that Donald
cites is the task of inserting a peg into a hole in which the size of the hole can vary
due to manufacturing errors. Certainly, if the hole is smaller than the peg, then the
peg cannot be inserted. Nonetheless, in many cases the hole will be large enough,
and it would be foolish not to try to insert the peg. Donald claims that a robot
should attempt certain tasks even if there is no guarantee of success, so long as there
is a guarantee that the robot will be able to ascertain whether or not its attempt
has succeeded. An error in Donald’s terminology is thus more subtle than the usual
notion that an error occurs when an action does not have the desired outcome. An
error for which one can plan a recovery prior to execution time is not really an error,
merely one of many execution-time conditions for which the system needs to check
before deciding on its next action. In Donald’s framework, an error is a condition of
task failure for which it is impossible to plan a recovery at planning time. Thus the
claim is that a robot should attempt tasks even if an error is possible, so long as the
error is recognizable. Donald’s formulation makes use of the preimage methodology in
defining how a strategy operates. In particular, his definition of failure and the error
recognizability condition are based on the preimage constructs of reachability and
recognizability. These are determined by the dynamics of the task and the available
sensors and termination predicates.

The important contribution of Donald’s work is that it moved away from the
requirement that a strategy be guaranteed to solve a task in order to be considered
a strategy. This is an important and subtle point, that forms the motivation for
the current thesis. By permitting strategies to fail, one can vastly increase the
class of tasks that one would consider solvable. Indeed, it is clear that in some
completely imperfect world, no task is ever guaranteed to be solvable assuming worst-
case adversaries. The real world is such a world. Yet many tasks are solvable simply
because they are attainable sometimes. Donald’s thesis made this notion very precise.
The aim of the current thesis is to extend some of these ideas, by considering tasks
that are solvable in an expected sense. Of great importance is the ability to loop
and try again, as suggested in Donald’s thesis. In a worst-case sense, looping does
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not help, since the strategy can always fail. However, by introducing the notions
of probabilistic failure, either through actions that have probabilistic outcomes or
through active randomization of run-time decisions, one can often guarantee task
solvability in an expected sense.

1.4.11 Randomization

In a slightly different direction, we should mention that randomization is a technique
that is sometimes used in optimizing algorithms. The simulated annealing approach
[KGV] is a well-known technique. Roughly speaking, the randomization of simulated
annealing helps to avoid local minima. For any given level of randomization the
system naturally converges to some subset of the state space. By reducing the level
of randomization in a principled manner, this subset is made to converge to the
desired optimal states. In the context of this thesis, randomization is used to avoid
deterministic traps. This is similar to the avoidance of local minima. However, there
is no notion of changing the level of randomization in order to ensure convergence.
Indeed, for the most part we will assume that a desired goal is recognizable upon entry.
More general strategies might relax this assumption, relying instead on a probabilistic
prediction function to ensure that the goal is attained with high reliability.

Randomization has also been used in the domain of mobile robots. See for instance
[Arkin], who injects noise into potential fields in order to avoid plateaus and ridges.
[BL] have also investigated a Monte-Carlo approach for escaping from local minima
in potential fields.

Some probabilistic work has aimed at facilitating the design process. For instance,
[BRPM] have considered the problem of determining the natural resting distributions
of parts in a vibratory bowl feeder. This information is useful for designing both part
shapes and bowl feeders.

[Goldberg] is currently investigating probabilistic strategies for grasping objects.
That work, in parallel with the work of this thesis, is also interested in the development
of a general approach towards the analysis and synthesis of randomized strategies for
manipulation tasks.

1.5 Thesis Contributions

The contributions of this thesis lie both in adding randomization to the theory
of manipulation and in the practical demonstration of an assembly task using
randomization. The major contributions of the thesis are:

e Implementation of a Randomized Peg-In-Hole Task on a PUMA.
This experiment demonstrated the feasibility and usefulness of randomization
in assembly operations. The sensors available to the system consisted of joint
encoders on the robot and a camera positioned above the assembly. The camera
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