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ABSTRACT

The orderly assembly of neuronal circuits is specified by developmental programs of
gene expression, however, the final stage in circuit development, maturation and refinement of
specific synaptic connections, is strongly influenced by neuronal activity. It is thus not surprising
that the products of many activity-regulated genes have been implicated in synapse development
and plasticity. The extracellular signaling protein CPG15 is one such activity-regulated gene
product that promotes the maturation and growth of synapses, dendrites, and axonal arbors
during development. Expression of cpg15 mRNA is spatiotemporally correlated with periods of
synapse maturation and refinement, posing it to play a central role in the wiring of developing
brain circuits. Here we utilize a mouse mutant, which is null for the cpg15 gene (cpg15 KO), to
elucidate the mechanism of CPG15 function in the developing brain. Analysis of the cpg]5 KO
mouse suggests that CPG15 signaling leads to the selection and stabilization of synapses in the
developing brain, as well as in the adult. Loss of CPG 15 results in reduced synapse numbers and
synapse maturation with a corresponding reduction in the complexity and growth of neuronal
arbors. This is most pronounced during early periods of promiscuous synapse formation and
arbor growth that provide a physical substrate upon which subsequent experience-dependent
processes act to sculpt mature patterns of neuronal connectivity. Consequently, cpg]5 KO mice
do not appear to undergo the same extensive refinement as their wild type (WT) counterparts.
cpg]5 KO mice are also slow learners, requiring repeated training in learning tasks to perform at
WT levels. These results led us to propose that the selection and stabilization of synapses by
CPG15 mediates optimal wiring of developing neuronal circuits important for brain function
throughout life. To test this possibility we investigated the function of CPG15 in the developing
thalamocortical circuit in the visual system. The thalamus is the major hub for sensory
information flow (minus olfaction) en route from the periphery to the cortex. As CPG15 is
expressed in both input and target structures in this circuit we compared cortical synapse
development in the global cpg15 KO mouse which lacks CPG15 expression in both the cortex
and thalamus to a cortex-specific cpg15 KO mouse which retains thalamic expression of CPG15.
Previous work has shown the importance of cortically-derived signaling factors in the maturation
of thalamocortical circuits, however, we were surprised to find that CPG15 signaling by the
thalamus has a stronger contribution to cortical synapse development than cortical CPG 15. This
work reveals a novel function for thalamic signaling in the maturation of cortical circuits.

Thesis Supervisor: Dr. Elly Nedivi
Title: Associate Professor of Brain and Cognitive Sciences and Biology
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Chapter 1: Activity-Regulated Genes and Synaptic Plasticity

Jennifer H. Leslie and Elly Nedivi

Much of this chapter will be published as "Activity-Regulated Genes and Synaptic Plasticity"

Jennifer H. Leslie and Nedivi E. In: Perkins M, ed. Comprehensive Developmental Neuroscience

Encyclopedia. Oxford, UK: Elsevier. This chapter includes an expanded section "Candidate

Plasticity Gene 15 in Developmental Plasticity".



1.1 INTRODUCTION

There are an estimated 0.15 quadrillion synapses in the adult human cortex with billions

of neurons each forming thousands of synapses onto each other (Pakkenberg et al., 2003). It

would be nearly impossible to encode into the genome the directions for wiring each and every

unique connection in this massive circuit. Instead, the developing nervous system has evolved

mechanisms that guide the formation of efficient connections through an adaptive approach in

which synapses are selected based on their use in response to salient patterns of activity. These

mechanisms are collectively termed synaptic plasticity, and they allow fine tuning of nervous

system structure and function during development as well as during day-to-day activity in the

adult.

1.2 THE ROLE OF ACTIVITY IN CIRCUIT FORMATION

Development of precise neuronal connections occurs in several stages. First, axonal

projections grow towards and into their appropriate target area. Axonal and dendritic arbors then

elaborate, staking out prospective innervation domains and receptive fields. These processes are

controlled by a combination of long-range and local guidance cues in the form of both secreted

and cell surface molecules, acting as attractants and/or repellants (Plachez and Richards, 2005).

Next, there is a period when neural activity directs the precision of synaptic connections through

selective synapse stabilization or elimination, concomitant with dendritic and axonal arbor

elaboration or pruning (Constantine-Paton et al., 1990, Goodman and Shatz, 1993, Katz and

Shatz, 1996). Sensory, cognitive, and motor experience, all play important roles during this

developmental period when activity has its most profound effect on circuit wiring (Greer and

Greenberg, 2008).



In pioneering studies of the developing kitten and monkey visual system, Hubel and

Wiesel were the first to demonstrate how sensory experience could influence the structure and

function of brain circuits. They showed that occluding vision through one eye during early

postnatal development caused thalamocortical afferents from the spared eye to commandeer

cortical territory normally innervated by the deprived eye (Hubel et al., 1977). Consistent with

this altered wiring of the visual cortex, cortical neurons shifted their responsiveness towards the

spared eye (Wiesel and Hubel, 1963, Hubel et al., 1977). These structural changes and functional

ocular dominance shifts took place in response to manipulations of the visual environment only

during a specific developmental time window, which they termed the critical period (Wiesel,

1982). The critical period, during which experience provides patterns of activity that direct

circuit refinement, turns out to be a common feature of sensory systems across many species

(Hensch, 2004) and is likely relevant to cognitive and social development as well (Blakemore,

2010).

While axon guidance, target selection, and synapse formation were once thought to be

activity-independent processes, occurring prior to activity-dependent neuronal arbor growth and

refinement, the dividing line between these two stages is no longer clear. Below, I review the

activity-dependent aspects of circuit development and refinement that are tied to the selection of

synapses for strengthening and stabilization or for weakening and elimination. I will also discuss

activity-regulated genes, which provide the mechanistic link between patterned activity and

synaptic modification.



1.2.1 Synapse formation as an instructive force in shaping neuronal arbors

During neuronal arbor development, individual branches perform an intricate dance as

they gradually increase in size and complexity. Through a dynamic process of branch extension

and retraction neurons sample the local environment in search of correct synaptic partners (Rajan

et al., 1999, O'Rourke and Fraser, 1990, Wu and Cline, 1998, Wu et al., 1999, Wong and Ghosh,

2002, Wong and Wong, 2000, Sin et al., 2002, Niell et al., 2004, Cline and Haas, 2008). Most

branches last only minutes, while a select few are stabilized, persisting hours or longer (Rajan

and Cline, 1998, Wu and Cline, 1998, Ruthazer et al., 2006, Cline and Haas, 2008). Dendrites of

most mammalian excitatory projection neurons are studded with small protrusions, the site of

most excitatory synapses in the central nervous system (Harris and Kater, 1994). Early in

development these protrusions take the form of highly motile, long, thin projections called

filopodia, which are replaced by more stable dendritic spines over the course of development

(Ziv and Smith, 1996, Fischer et al., 1998). The development of synapses, spines, and dendritic

and axonal arbors occurs in concert and shares common signaling pathways (Wu and Cline,

1998, Zou and Cline, 1999, Wong et al., 2000, Cline, 2001, Bozdagi et al., 2004, Van Aelst and

Cline, 2004). This is consistent with the idea that persistent branches and spines are likely those

that have successfully found an appropriate partner, and are stabilized by synaptic contacts (Ziv

and Smith, 1996, Rajan and Cline, 1998, Cline, 2001, Wong and Ghosh, 2002, Portera-Cailliau

et al., 2003, Hua and Smith, 2004, Konur and Yuste, 2004, Niell et al., 2004, Hua et al., 2005,

Ruthazer et al., 2006, Cline and Haas, 2008).

In 1989, James E. Vaughn proposed the synaptotrophic hypothesis, which states that

synapse formation acts to stabilize growing dendritic arbors (Vaughn, 1989). Using electron

microscopy, Vaughn discovered that synapses are present on dendritic and axonal growth cones,



leading him to infer that synapse formation may be a stabilizing force on nascent branches. He

suggested that this required communication between the axon and dendrite by what he termed

'epigenetic factors' to signal the creation of synaptic contacts. These 'epigenetic factors' are now

thought to be proteins such as cell-surface adhesion molecules and secreted neurotrophins (Hua

and Smith, 2004, Cline and Haas, 2008). We also now know that it is not the synaptic contact,

but rather activity across the synapse that is important for regulating dendritic and axonal branch

growth as well as maintenance. Disruption of neuronal activity can lead to profound defects in

neuronal arbor development. In the vertebrate visual system, blockade of glutamatergic

transmission though ionotropic glutamate receptors alters branch dynamics of both axons and

dendrites (Rajan and Cline, 1998, Cohen-Cory, 1999, Rajan et al., 1999, Wong and Wong, 2000,

Haas et al., 2006, Sin et al., 2002, Hua and Smith, 2004, Cline and Haas, 2008, McAllister et al.,

1996). Dendritic spines also appear or disappear in an activity-dependent manner, suggesting

excitatory synapses on those spines also turn over in response to activity (Engert and Bonhoeffer,

1999, Lendvai et al., 2000, Nagerl et al., 2004). In the cat visual system, blockade of retinal

action potentials leads to the formation of abnormal retinogeniculate axonal arbors. Instead of

projecting to restricted eye-specific layers, arbors are unrefined and projections from the two

eyes overlap extensively (Shatz and Stryker, 1988, Sretavan et al., 1988).

Consistent with the synaptotrophic hypothesis, activity-dependent arbor refinement

occurs in concert with synapse selection (Hua and Smith, 2004). There are many examples in the

nervous system demonstrating activity-dependent pruning and selection of functionally

appropriate pre- and postsynaptic partners by specific synapse remodeling. A classic example is

the vertebrate neuromuscular junction where initially multiple inputs innervate individual muscle

fibers. During early postnatal development, these inputs are pruned down to a single axon. The



remaining axon's inputs are strengthened by addition of new synaptic contacts with the muscle

fiber. Blocking transmission at neuromuscular synapses with the acetylcholine receptor blocker

c-bungarotoxin prevents this developmental pruning. Synchronizing fiber activity similarly

prevents refinement, and blocking only some of the inputs to a given muscle fiber will result in

selective elimination of the blocked inputs, suggesting that selective synapse elimination is

dependent on relative activity levels of competing inputs. (Lichtman and Colman, 2000). This

process of activity-based synapse selection is also seen in the central nervous system. In the

visual system prior to eye opening, lateral geniculate nucleus (LGN) neurons initially receive

weak inputs from 20 or more different retinogeniculate axons. After eye opening, synapses are

eliminated until contacts from only 1-3 axons remain per cell. As is observed at the

neuromuscular junction, the remaining inputs are strengthened by increases in synaptic strength

and formation of new synapses (Chen and Regehr, 2000). Activity is critical in partner selection

and maintenance of these connections once they are established (Hooks and Chen, 2006). A third

example is found in the developing cerebellum, where cerebellar climbing fiber synapses are

similarly refined. Multiple climbing fibers innvervating a purkinje cell are pruned down to a

single climbing fiber connection early in postnatal development. Prior to elimination, inputs that

will be lost are weakened, while those to be kept are strengthened (Hashimoto and Kano, 2003,

Hashimoto and Kano, 2005).

Functionally discernable weakening of inputs that will be lost and strengthening of those

that will be maintained is commonly seen prior to activity-based synapse elimination and

stabilization. Long-term potentiation (LTP), and long-term depression (LTD) are mechanisms

thought to underlie the activity-dependent strengthening and weakening of synapses, respectively

(Feldman, 2009). In the developing brain, these mechanisms can serve to alter synaptic strength



prior to selective synapse stabilization or elimination and consequent arbor rearrangements.

Correlated activity induces synapse strengthening by LTP, and also drives the stabilization and

subsequent addition of new axonal branches. Conversely, uncorrelated activity leads to LTD and

drives selective elimination of axonal branches (Ruthazer et al., 2003, Feldman, 2009).

1.3 SIGNALING FROM THE SYNAPSE TO THE NUCLEUS

Activity plays an important role in the refinement of neural circuits. How does

neurotransmitter release into the synaptic cleft and its binding to a postsynaptic receptor lead to

dramatic and specific growth and restructuring of arbors and synapses? What are the mechanistic

links between neural activity and synapse remodeling?

1.3.1 Synaptic glutamate receptors

In the CNS the neuronal activity that modulates developmental plasticity is primarily

derived from the activation of ionotropic glutamatergic receptors at the synapse. There are two

families of these receptors, NMDA and AMPA receptors.

The NMDA receptor is a heterotetramer generally composed of a combination of three

families of subunits. GluN 1, GluN2A-D, and GluN3A-B (Paoltetti, P. (2011)). Receptors

containing GluN1, a constitutive component of all NMDA receptors, and GluN2A and/or

GluN2B subunits have been studied most extensively. The NMDA receptor is permeable to Ca2

as well as Na* and K+. Permeability to Ca varies, depending on subunit composition. GluN2B

containing receptors have a higher affinity for glutamate and a longer channel open time

allowing them to conduct more Ca2 than GluN2A containing receptors (Feldmeyer and Cull-

Candy, 1996). Early in development, GluNl/GluN2B NMDA receptors are preferentially



expressed. Later, with postnatal onset of GluN2A expression, GluN1/GluN2B/GluN2A and

GluN1/GluN2A containing NMDA receptors predominate (Monyer et al., 1994, Sheng et al.,

1994). This subunit switch can be regulated by activity and occurs over the course of postnatal

development (Scheetz and Constantine-Paton, 1994). While it has been speculated that the

developmental switch in subunit composition from more Ca 2+-permeable to less permeable

subunits may regulate the leveling off of plasticity that occurs towards the end of postnatal

development, this view is likely too simplistic (Perez-Otano and Ehlers, 2004, van Zundert et al.,

2004). More likely, the precise GluN2A/GluN2B ratio may determine the type and extent of

NMDA receptor-dependent plasticity during development (Yashiro and Philpot, 2008).

At the resting potential of the cell, the NMDA receptor is blocked by Mg2+ ions. This

Mg 2+ block is removed upon depolarization, allowing ions to pass through the NMDA receptor

upon glutamate binding (Mori and Mishina, 1995, Ozawa et al., 1998). This endows the NMDA

receptor with a unique ability to detect coincident activity, since it can be activated only after the

postsynaptic membrane has been depolarized by two closely timed inputs. The NMDA receptor

is therefore a critical mediator of many forms of LTP and LTD in response to differing patterns

of activity (Yashiro and Philpot, 2008).

Early in development, many nascent synapses contain only NMDA type glutamate

receptors (Durand et al., 1996, Isaac et al., 1997, Rao and Craig, 1997, Nusser et al., 1998,

Petralia et al., 1999, Takumi et al., 1999)(Wu et al., 1996, Liao et al., 1995). These synapses are

functionally 'silent', as they cannot be activated at resting membrane potential due to the Mg2+

block of NMDA receptors. As synapses mature, AMPA-type glutamate receptors are inserted

into synapses alongside NMDA receptors, converting 'silent synapses' into functional ones and

strengthening the synaptic response. This insertion can be driven by synaptic activity



(Constantine-Paton and Cline, 1998, Carroll et al., 1999, Liao et al., 1995, Shi et al., 1999).

Some forms of hippocampal LTP work by converting 'silent synapses' into functional AMPA

receptor containing synapses, and generally LTP and LTD can be mediated by AMPA receptor

insertion and removal at the synapse. However, this form of LTP is attenuated with

developmental age as the incidence of 'silent synapses' decreases (Kerchner and Nicoll, 2008).

AMPA receptor subunit expression is also developmentally regulated. AMPA receptors

are heteromers of four subunits, GluAl-4 (Hollmann and Heinemann, 1994, Dingledine et al.,

1999). Only those AMPA receptors not containing the RNA-edited GluA2 subunit can flux Ca 2+

(Seeburg et al., 1998). Ca 2+-permeable AMPA receptors are expressed preferentially during early

development, while Ca2+-impermeable, GluA2 containing AMPA receptors are more common in

mature neurons (Kumar et al., 2002).

1.3.2 Second messenger cascades and transcription factor activation

Neurons maintain gradients of many ions across their membranes. Most, such as Na*, K+,

and Cl, are important regulators of membrane excitability. Ca2+ however, is a potent activator of

intracellular signaling cascades. For this reason, it is normally maintained at very low

concentrations within the cytoplasm. At glutamatergic synapses, activity can lead to Ca2+ influx

into the postsynaptic cell via activation of Ca2+-permeable AMPA and NMDA type glutamate

receptors, as well as through voltage sensitive Ca2+ channels (VSCCs), particularly L-type

VSCCs (Catterall, 1995, Rosen et al., 1995). Ca2+ acts as a second messenger to trigger signaling

cascades that activate nuclear transcription factors, which in turn induce distinct patterns of gene

expression. The various routes of Ca2 entry into the cell activate different, but overlapping

cellular responses, providing an additional level of control to activity-dependent gene regulation



(Greer and Greenberg, 2008). In this way, synaptic activity, in lieu of an intrinsic genetic

blueprint, acts as the master controller over when and which pathways and genetic programs are

activated in order to implement synaptic and neuronal arbor rearrangements.

Linking Ca 2+ entry at the cell surface to gene expression in the nucleus are kinase

pathways activated by Ca -sensitive factors, such as the high affinity Ca 2 binding protein,

calmodulin. After binding Ca 2 near its site of entry, Ca 2+-calmodulin can signal to the nucleus

through multiple pathways. Ca2+-calmodulin can bind and activate Ca2+-calmodulin-dependent

protein kinases (CaMKs) in the cytoplasm. Activated CaMKs may work locally near the

synapse, or they can translocate into the nucleus and phosphorylate transcription factors (Ghosh

and Greenberg, 1995). Ca 2 -calmodulin itself can also rapidly translocate to the nucleus in

response to synaptic activation. In the nucleus, Ca 2 -calmodulin binding activates the nuclear

kinase CaMKIV, and perhaps other CaMKs. Activated CaMKIV is then free to phosphorylate

transcription factors that initiate new gene expression (Deisseroth et al., 1998). CaMK pathways

are known to regulate activity-dependent growth of dendritic arbors (Wu and Cline, 1998,

Wayman et al., 2008), LTP induction (Kirkwood et al., 1997), and experience-dependent

plasticity in the developing visual cortex (Taha and Stryker, 2005).

Another way in which Ca entry signals to the nucleus is through the Ras-dependent

kinase signaling cascade. Although the mechanism is unclear, Ca2+ entry can activate the small

GTP-binding protein Ras, which activates the kinase Raf. Raf then triggers the MAP kinase

cascade: MEK-1 (MAPK kinase) activates the ERKs (also called MAP kinases), which activate

the ribosomal S6 kinases (RSKs) (Bading and Greenberg, 1991, Rosen et al., 1994, Rusanescu et

al., 1995). RSKs are able to translocate to the nucleus and phosphorylate transcription factors

(Impey et al., 1998). The Ras signaling cascade can mediate neurite outgrowth in PC12 cells



(Rusanescu et al., 1995). ERK1/2 are also important for regulating LTP as well as experience-

dependent development and plasticity of the visual system (Di Cristo et al., 2001, Naska et al.,

2004).

Once Ca -activated signaling pathways converge on the nucleus they target

transcriptional activators that can initiate gene expression. One major nuclear target of activity-

dependent signaling pathways is the transcription factor CREB which initiates transcription of

genes containing Ca 2 /cAMP response elements (CREs) sites within their promoter (Brindle and

Montminy, 1992, Sassone-Corsi, 1995). Sensory manipulations, such as exposure to light after

dark adaptation, and monocular deprivation, induce CRE-mediated gene transcription during the

critical period for visual cortex development (Pham et al., 1999, Cancedda et al., 2003). Studies

expressing a dominant-negative form of CREB have demonstrated that CREB function is

essential for ocular dominance plasticity in the visual cortex (Mower et al., 2002). In keeping

with its role in circuit plasticity, CREB is also an important regulator of activity-dependent

dendritic arbor growth (Redmond et al., 2002, Wayman et al., 2006), as well as refinement of

retinogeniculate projections (Pham et al., 2001).

1.4 ACTIVITY-DEPENDENT GENE EXPRESSION

Activation of transcription factors such as CREB by rapid phosphorylation cascades

initiates the first phase of a bi-phasic transcriptional program. The first phase is comprised of

rapid response genes, termed immediate early genes (IEGs) that do not require protein synthesis

for their expression. Many IEGs encode transcription factors that in turn activate a second phase

of the activity-dependent transcriptional program by inducing expression of another gene set, the

delayed early genes.



The first IEG shown to be a transcription factor, c-fos, was also the first gene discovered

to be regulated by neuronal activity. Depolarizing stimuli and Ca2+ influx through VSCCs could

elicit c-fos induction in cultured PC12 cells (Morgan and Curran, 1986). This led to the

examination of c-fos expression, as well as that of other transcription factor IEGs such as c-jun

and zif/268, in the brain (Morgan et al., 1987, Saffen et al., 1988). All were found to be robustly

activated in seizure paradigms, as well as by more natural, physiological levels of stimulation

(Loebrich and Nedivi, 2009). zif/268 can also be induced by stimuli that induce LTP, in an

NMDA receptor-dependent manner (Cole et al., 1989, Wisden et al., 1990). Mutant mice lacking

Zif/268 protein show a defect in long-lasting LTP indicating that zif/268 expression is not simply

coincident with LTP induction, but is also important for maintenance of LTP (Jones et al., 2001).

Studies of IEGs like c-fos, c-jun, and zif/268 were critical to the realization that gene expression

is a normal downstream response to neuronal depolarization. Moreover, elucidation of signaling

pathways that couple other extracellular cues to transcriptional activation has led to a better

understanding of neuronal responses to activity.

The initiation of gene expression programs in response to synaptic activity is analogous

in many ways to the cellular response program to other extracellular stimuli such as growth

factors, mitogens, and phorbol esters (Loebrich and Nedivi, 2009). Both types of responses begin

at the cell membrane where extrinsic stimuli activate cell surface receptors which in turn induce

intracellular signaling cascades to the nucleus. Neuronal activity, like other types of stimuli,

induces a bi-phasic transcriptional response where early induction of transcription factors then

activates further changes in gene expression. Neuronal activity also utilizes much of the same

intracellular signaling machinery that has been described for other cellular stimuli. However, in

neurons the site of activation for these pathways is spatially discrete. Unlike growth factors



whose receptors are distributed throughout the cell membrane, the bulk of signaling by neuronal

activity occurs through synaptically localized receptors. This spatial restriction in combination

with the unique properties of NMDA receptors at these sites allows the de-coding of temporally

and spatially distinct activity patterns and their translation into diverse cellular responses.

Many of the IEGs first studied in the context of activity-regulated gene expression in

neurons were initially identified as responsive to other extracellular cues such as growth factors

and mitogens. Since they also encode ubiquitous transcription factors that are expressed in

multiple cell types, their characterization did little to reveal the cellular processes recruited to

implement activity-dependent genetic programs in neurons. In the 1990's several groups

performed large-scale screens to directly identify genes regulated in the brain by neuronal

activity (Nedivi et al., 1993, Qian et al., 1993, Yamagata et al., 1993). Using a conceptually

similar approach, these groups utilized a combination of subtractive hybridization and

differential screening methods to select for seizure-induced transcripts in the rat cerebral cortex,

or more specifically the hippocampus. Based on these screens the number of activity-regulated

genes in the brain was estimated at 500-1,000 (Nedivi et al., 1993). Many of the activity-

regulated genes identified in these screens were later shown to be induced in the adult brain by

physiological stimuli, such as vision and by LTP-inducing protocols (Lanahan and Worley,

1998, Nedivi, 1999). Some of the same genes were also found to be developmentally regulated in

correlation with critical periods for activity-dependent circuit remodeling. This suggests that, at

least in part, the activity-dependent genetic program is common to periods of synapse and branch

selection during development and activity-dependent synaptic plasticity in the adult (Nedivi,

1999, Bailey and Kandel, 1993).



While later studies have added to the list of genes regulated by activity, these first screens

identified a significant number of the activity-regulated genes that have been functionally

characterized in the context of synaptic plasticity to date. They also afforded the first view of the

cellular mechanisms likely to take part in activity-dependent plasticity. Some of the most

abundantly represented functional categories of activity-regulated genes include transcription

factors, signal transduction proteins, trophic factors, structural, and synaptic proteins. The

number and diversity of activity-regulated genes indicate that neurons activate a complex, multi-

faceted response to input activity (Nedivi et al., 1993, Lanahan and Worley, 1998, Nedivi, 1999).

Yet ultimately the products of these genes work to effect changes in synaptic connectivity in

response to changing levels and patterns of activity.

1.5 CANDIDATE PLASTICITY GENE 15 IN DEVELOPMENTAL PLASICITY

Candidate plasticity gene 15 (CPG15), also known as Neuritin, has striking effects on

axonal, dendritic, and synaptic growth and maturation. cpg]5 mRNA is expressed at high levels

in developing vertebrate brains including the frog Xenopus laevis, rodents, and felines (Nedivi et

al., 2001, Corriveau et al., 1999, Lee and Nedivi, 2002, Nedivi et al., 1996). In the visual system,

this expression temporally coincides with periods of synapse formation and refinement,

beginning first in the retina, then progressing to the LGN, and finally to the cortex, as these

various structures sequentially mature (Corriveau et al., 1999). In the visual cortex, expression

peaks during the height of the critical period for ocular dominance plasticity, when this area of

the brain is most susceptible to manipulations of visual activity (Corriveau et al., 1999, Lee and

Nedivi, 2002). Adult expression of cpg15 is regulated by physiological forms of activity such as

exposure to light in visual cortex and single whisker experience in barrel cortex (Harwell et al.,



2005, Lee and Nedivi, 2002, Nedivi et al., 1996). cpg15 is an IEG whose expression is induced

by classical activity-dependent signaling pathways involving Ca2 + influx through NMDA

receptors and L-type VSCCs, activation of CaMK and MAPK signaling cascades, and induction

of transcription by CREB (Fujino et al., 2003).

CPG15 protein is approximately 142 amino acids and is very highly conserved across

vertebrate species with 97% identity between mouse and human, and 63% identity, 90%

homology between mouse and Xenopus laevis (Fig. 1.1). CPG 15 contains an N-terminal signal

sequence marking it for secretion. In the mature form, the C-terminal tail of CPG 15 is modified

with a glyosyl-phosphatidylinositol (GPI) anchor linking it to the cell membrane. This GPI-link

can be cleaved to release CPG15 from the membrane (Putz et al., 2005, Naeve et al., 1997). The

soluble form of CPG15 can be harvested from the media of CPG15-expressing HEK cells, and is

active in promoting cell survival, however it is not known which form, cell-attached or soluble,

is important for the function of CPG15 in vivo. CPG15 also contains six conserved cysteine

residues (Fig. 1.1). Interestingly, neurotrophins all have six conserved cysteine residues which

mediate intermolecular disulfide bonds within homodimers (Lewin and Barde, 1996), however

the positions of the cysteine residues in CPG15 do not correspond to those of neurotrophins.

CPG15 protein has one known homolog, CPG15-2, which is also activity-regulated and

functions in neurite outgrowth and cell survival (Fujino et al., 2003).



Mus musculus
Homo sapiens
Xenopus laevis

Mus musculus
Homo sapiens
Xenopus laevis

Mus musculus
Homo sapiens
Xenopus laevis

KCDAVFKGFSDCLLKLGDSMA
GKCDAVFKGFSDCLLKLGDSMA

GKCDAVFKGLSDCMLTLGDKVA
***** **** *.***. .***.***.*.*********.***.* *** .*

NYPQGLDDKTNIKTVCTYWEDFHSCTVTALTDCQEGAKDMWDKLRKESKN
NYPQGLDDKTNIKTVCTYWEDFHSCTVTALTDCQEGAKDMWDKLRKESKN

NYPQDLEEKKNLDTICSYWDDFHVCTVTALADCQEGAADIWEKLKRQSKN

****.** ** ***** ******.****** *.*.** . **

LNIQGSLFELCGSSN AGS--LLPALSVLLVSLSAALATWFSF 142

LNIQGSLFELCGSGN4AAGS--LLPAFPVLLVSLSAALATWLSF 142

LNIQGSLFELCPGSAIAPGQRLLFPAFLPLLMVFLSTLFILVLQ 144
*********,,** * *.**. **. . .. ,

Figure 1.1 Conservation of CPG15 protein. Alignments of CPG15 protein sequences between

Mus musculus, Homo sapiens, and Xenopus laevis. Blue indicates signal sequence, magenta is

putative GPI-linked reside, yellow indicates GPI-link sequence that is removed in the mature

form of the protein. Six conserved cysteine residues are indicated by red stars. Asterisk denotes

identity between all sequences, colon denotes a conserved substitution, period denotes a semi-

conserved substitution.
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1.5.1 CPG15 in arbor growth, synapse maturation, and neuronal progenitor survival

CPG 15 overexpression in the developing Xenopus optic tectum has profound effects on

the maturation of both synapses and arbors. CPG15 overexpression results in increased dendritic

and axonal arbor size and complexity (Fig. 1.2) (Nedivi et al., 1998, Cantallops et al., 2000).

Time-lapse imaging of retinotectal axons reveals that CPG15 stabilizes growing branches and

reduces the rate of branch retractions (Cantallops et al., 2000). At the same time, CPG15

promotes synapse maturation through the insertion of AMPA-type glutamate receptors into

NMDA receptor containing-only "silent" synapses (Cantallops et al., 2000). This results in

increased AMPA to NMDA ratios, and increased frequencies of AMPA receptor-mediated

miniature excitatory postsynaptic currents (mEPSCs) (Fig. 1.3). On Xenopus motor neuron

axons, CPG15 increases synapse density, as well as axon branching and size (Javaherian and

Cline, 2005). CPG15 can be transported down axons and exocytosed in response to neuronal

activity, suggesting multiple modes of regulating activity-dependent signaling by CPG15

(Cantallops and Cline, 2008).

In addition to its role in neuron structural and functional maturation, CPG15 also works

as a survival factor during embyronic development (Putz et al., 2005). RNAi-mediated

knockdown of CPG15 in the subventricular zone of embryonic rats leads to decreased survival of

cortical progenitors whereas overexpression has the opposite effect. In this manner CPG15

functions similarly to neurotrophins such as NGF and BDNF, playing a pleiotropic role in cell

survival, growth, and synapse development (Schuman, 1999, Lewin and Barde, 1996). Unlike

what has been proposed for neurotrophins, the effects of CPG15 on synapse and arbor

development are likely both downstream results from a specific role for CPG15 in the

stabilization of newly forming synapses.
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Figure 1.2 CPG15 enhances growth and complexity of dendritic and axonal arbors.

Overexpression of CPG15 greatly increases the growth and branching of dendrites (A) and axons

(B) in immature Xenopus optic tectum compared with p-GAL protein controls. Figures adapted

from Nedivi et al., 1998 (A), and Cantallops et al., 2000 (B).



A B 80- C 1 P-GAL

3- 70- 
CPG15

60- *

.D 30-
0 150-

21

CC

z; 40-2

E
0 0 0

Figure 1.3 CPG15 increases synapse maturation. Overexpression of CPG1 5 in immature

Xenopus optic tectum increases AMPA/NMDA ratios (A), leading to a reduction in the number

of "silent" synpases (B), and increases AMPA mediated mEPSC frequencies (C). Figures

adapted from Cantallops et al., 2000.



1.5.2 Model of CPG15 function

As discussed earlier, neuronal development proceeds through a dynamic process of

branch extensions and retractions as neurons seek appropriate synaptic partners. The

synaptotrophic hypothesis proposes that these growing branches can be stabilized through the

formation of stable synaptic contacts (Vaughn, 1989). Neuronal activity plays an important role

in this selection of synaptic partners (Hua and Smith, 2004), however little is known about the

molecular signals downstream of activity that select certain synapses for stabilization, while

others are eliminated. Work to date strongly implicates CPG15 as an activity-regulated signal for

synapse stabilization.

Signaling by CPG15 stabilizes activated synapses allowing them to mature further, for

example by inserting AMPA receptors into NMDA receptor-only "silent" synapses (Fig. 1.4).

The formation of stable synaptic contacts in turn stabilizes growing axonal and dendritic

branches. This decreases branch retractions and promotes further growth and elaboration of

neuronal arbors. The selection of activated synapses by CPG15 may be an important mechanism

for the experience-dependent sculpting of developing neural circuits, a process that is critical for

brain function throughout life.

Along with developing Xenopus neural circuits, CPG15 also plays a role in neuron

growth and development in mammals. In vitro neurite outgrowth and branching of rat

hippocampal neurons increase in the presence of exogenous CPG15 protein (Fujino et al., 2008,

Naeve et al., 1997). These effects on neurite maturation likely have corresponding effects on

synapses formation and maturation; however, a role for CPG15 in mammalian synapse

maturation has yet to be established.
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in search of synaptic partners. Once synapses form they can be selected for either stabilization
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1.6 CONCLUSIONS

To create efficiently wired networks, developing neurons make and break synaptic

connections depending on their use in the circuit. Patterned activity selectively strengthens and

stabilizes some connections, while weakening and pruning others. Activity-dependent

modulation of synaptic connectivity is also a critical regulator of dendritic and axonal arbor

morphology. Synapse formation and strengthening stabilizes branches, allowing for further

elaboration. In contrast, synapse pruning can lead to arbor loss and retraction. Intracellular

signaling pathways mediate between neuronal activity and structural remodeling by integrating

neuronal activity and initiating transcription of activity-regulated genes that act to modulate

synaptic strength, number, and arbor morphology. While synapse formation and arbor growth

can proceed without activity-regulated gene products, activity-regulated genes are essential

mediators of the selective processes by which activity sculpts optimally functioning circuits.
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2.1 INTRODUCTION

During development, neuronal processes extend and retract as they explore their

environment to identify appropriate synaptic partners. The establishment of pre and post-synaptic

contact is an early event in an ordered progression that can lead to formation of stable mature

synapses. It has been proposed that synapse formation consequently acts as a stabilizing force on

growing axonal and dendritic processes (Ruthazer et al., 2006, Meyer and Smith, 2006). While

studies have delineated some aspects of synaptogenesis and synaptic maturation (McAllister,

2007), the signals at the contact point of axon and dendrite that determine whether a synapse will

stabilize and persist have not been fully elucidated.

Although excitatory synaptogenesis can occur in the absence of neural activity (Verhage

et al., 2000, Gomperts et al., 2000), strong evidence suggests that experience plays a critical role

in biasing the formation and stabilization of synapses that transmit appropriately patterned

activity (Hua and Smith, 2004), and that NMDA type glutamate receptors mediate this activity-

dependent synapse selection (Gomperts et al., 2000). Activation of NMDA receptors allows Ca+2

influx into the postsynaptic cell, turning on kinase signaling cascades, which in turn initiate

transcription factor activation and new gene expression (reviewed in (Flavell and Greenberg,

2008, Loebrich and Nedivi, 2009). Yet how this set of events leads to local implementation of

synaptic stabilization is not clear. In fact, little is known about the molecular mechanisms

regulating selective synapse and dendrite stabilization in response to activity.

cpg]5 (also termed neuritin) was first identified in a screen for activity-regulated genes in

rat (Nedivi et al., 1993, Hevroni et al., 1998) and is a downstream target of the classic synaptic-

plasticity signaling cascade, involving the NMDA receptor, MAPK, CaMK, and CREB (Fujino

et al., 2003). During development, cpg]5 expression is induced in presynaptic neurons upon

contact with their target (Diaz et al., 2002), and is spatially and temporally correlated with



synapse formation and activity-dependent plasticity (Nedivi et al., 1996, Lee and Nedivi, 2002,

Corriveau et al., 1999). cpg15 encodes a small extracellular protein anchored to the cell surface

via a glycosyl-phosphoinositide (GPI) link (Naeve et al., 1997). CPG15 overexpression in the

developing Xenopus enhances dendritic and axonal elaboration in a non cell-autonomous

manner, as well as synapse formation and maturation (Nedivi et al., 1998, Cantallops et al., 2000,

Javaherian and Cline, 2005).

To investigate the requirement for CPG 15 in a mammalian system, we generated a

knockout mouse for cpg15 (cpg]5 KO). We find that in the cpg]5 KO, there is a developmental

delay in axonal and dendritic arborization and maturation of excitatory synapses. In the dentate

gyrus of the hippocampus as many as 30% of spines initially lack synapses. Chronic in vivo

imaging of cortical pyramidal neurons through a cranial window shows that while dendritic spine

dynamics in cpg]5 KO mice are comparable to controls, fewer events in these mice are

stabilized, and thus favor persistent spine loss. These results suggest that the in vivo

developmental deficits in the cpg]5 KO mouse derive from lack of a synaptic stabilization

signal, perhaps supplied in an activity-dependent manner. While adult circuits appear normal,

they are functionally suboptimal, leading to poor performance in learning tasks. These findings

establish a role for CPG1 5 in efficient circuit formation and function, and provide a potential

molecular mechanism for selective synapse stabilization.



2.2 RESULTS

2.2.1 Generation of a cpg15 knockout mouse

To investigate the in vivo role of cpg15, we generated a mouse lacking cpg15 using a

conditional knockout approach based on the Cre-loxP system. We first made a "floxed" cpg]5

mouse with loxP sites flanking cpgl5 exons two and three (Fig. 2. 1A). Exons two and three

contain the entire coding sequence for the mature form of CPG15 and excision of the sequence

between the loxP sites by Cre recombinase would generate a null mutation. Floxed cpg]5 mice

were crossed to a global Cre-deleter line that expresses Cre recombinase in all tissues including

the germ line (Lakso et al., 1996b) to obtain general cpg]5 null mice (cpg15 KO mice). Southern

blotting showed successful homologous recombination in the floxed cpg]5 mouse and Cre

excision in the cpgl5 null mouse (Fig. 2.1B). Northern blotting and Western blotting confirmed

absence of cpg15 mRNA and CPG15 protein in the brains of cpg15 KO mice (Fig. 2.1C, D).

Homozygous cpg]5 KO mice were born at a Mendelian ratio and showed no overt

behavioral abnormalities. Their muscle strength and motor coordination were also normal

(Fig. 2.S1A, B). cpg15 KO mice were leaner than wild-type (WT) littermates, with a body

length 3% shorter, and on average weighing 20-30% less (Table 2.S1). cpg15 KO brains were

similar in weight and size to WT brains, although the cerebellum tended to be slightly smaller

(Table 2.S1). The anatomy of Nissl-stained cpg15 KO brains at 8 weeks of age appeared

normal (Fig. 2. 1E). Neocortical volume, cell density, and total cell number were similar between

WT and cpg15 KO mice (Table 2.S 1).
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Figure 2.1 Generation of the cpg15 KO mouse. (A) Schematic drawing of the WT cpg]5

allele, the targeting vector, the floxed allele with the neomycin resistant gene (neo), the floxed

allele without neo, and the null allele. Indicated are: three cpg15 exons (closed boxes), the neo

and the diphtheria toxin A gene (DT-A) serving as positive and negative selection markers

respectively (open boxes), loxP sites (closed triangles), FRT sites (open triangles), and XhoI (X)

and EcoRV (RV) restriction sites. Homologous recombination between the WT allele and the

targeting vector generated a floxed-neo allele, and eliminated the DT-A gene. The neo gene

flanked by two FRT sites was deleted by injection of flippase RNA into eggs harvested from the



floxed-neo mice. Mice after Flippase recombination were crossed with a Cre-deleter line to

generate the cpg15 null allele. Positions of the 3' probe used for Southern blot analysis and

expected band sizes are indicated. (B) Southern blot analysis of WT (cpg15*/*), heterozygous

floxed (cpg15+flox-neo), and heterozygous null mouse (cpg]5*'-). Genomic DNA was digested

with EcoRV and probed with the 3' probe shown in (A). In addition to the WT 15.8-kb band, the

floxed-neo mouse shows a 6.2-kb band and the null mouse shows a 9.7-kb band as expected. (C)

Northern blot analysis of brain RNA from WT, heterozygous, and homozygous-null mouse

probed with cpg15 cDNA. Ribosomal RNA (rRNA) is shown as a loading control. (D) Western

blot analysis of brain extracts from WT and homozygous-null mouse probed with an anti-CPG 15

antibody. (E) Nissl-stained coronal sections from WT and cpg]5 KO mice. Scale bar: 1 mm



2.2.2 Delayed axonal and dendritic arbor development in cpg15 KO mice

In the developing Xenopus, CPGl 5 overexpression promotes arborization of retinal

ganglion cell axonal projections in the tectum by reducing branch retractions (Cantallops et al.,

2000). To test for deficits in axon arbor development in cpg]5 KO mice, we bulk-labeled retinal

ganglion cell projections as these axons were growing and elaborating their arbors in the lateral

geniculate nucleus (LGN) of the thalamus by injecting each eye with an anterograde tracer

conjugated to a different fluorophore. In WT mice, the total area of LGN covered by projections

from both eyes increased dramatically between postnatal day (P) 4 and P21 (Fig. 2.2A, B). Since

neuronal proliferation in the LGN occurs during embryogenesis (BrUckner et al., 1976), the

postnatal increase in LGN volume is largely due to axon ingrowth, and elaboration of both the

axonal and dendritic neuropil. In the cpg]5 KO mice, the retinogeniculate projection area is

similar in size to that of WT mice at P4, but the projection area does not grow to the same extent

as controls by P9 (Fig. 2.2A, B). LGN cell count and density in the cpg15 KO mice at P9 were

comparable to controls (Table 2.S2), suggesting that the difference in projection areas at this age

is not due to a decrease in LGN cell numbers, but rather due to delayed development of the

neuropil including retinal ganglion cell axons and LGN cell dendrites. By P90, the

retinogeniculate projection area was indistinguishable between genotypes, with similar levels of

segregation of ipsilateral and contralateral arbors as measured by the degree of overlap (Fig.

2.2C). While the delay in retinogeniculate projection development in the LGN of cpg15 KO mice

indicates that there may be deficits in axonal and perhaps dendritic elaboration, the normal

appearance of the LGN at P90 suggests that these deficits are overcome with age.

CPG15 overexpression studies showing enhanced dendritic arborization (Nedivi et al.,

1998) and the potential delay in LGN neuropil development seen in cpg15 KO mice, led us to



WT

P4

P9

P90

B 0-4 C. 0.08.

0.3 0.06.

0.2- 0.04.

2 0.1- ' 0.02.

0 20 40 0 6 8 100 6 20 40 60 80 1o
Age (days) Age (days)

Figure 2.2 Delayed axon arbor development in the LGN of cpg15 KO mice. (A)

Representative images of the dorsal LGN at different developmental times from WT and cpgl5

KO mice injected in each eye with wheat germ agglutinin conjugated to different fluorophores.

Projections from the contralateral eye (left), ipsilateral eye (middle), and the merged image from

both eyes (right) are shown. For merged images, all pixels above background were pseudo-

colored in green for contralateral or magenta for ipsilateral eye. White indicates overlap. Notice

similar overlap but different size of labeled LGN at P9. (B) Age-dependent change in total area

of LGN covered by projections from both ipsilateral and contralateral eyes (n = 3 for P4, P9,



P21, n = 5 for P90). (*) P-value < 0.05. (C) Age-dependent change in the area of overlap

between projections from ipsilateral and contralateral eyes did not differ between genotypes.

Scale bar: 200 mm.



examine whether dendritic arbor development was also delayed in cpg]5 KO neurons. Using

diolistic labeling (Grutzendler et al., 2003) we visualized neurons in the granule cell layer of the

dentate gyrus (DG) of the hippocampus (Fig. 2.3A), a region that normally shows high cpg]5

expression throughout development, and has been extensively characterized in the context of

synaptic plasticity and paradigms of learning and memory.

Granule cell dendritic arbors in the hippocampal DG predominantly develop in two

stages (Rahimi and Claiborne, 2007). The bulk of neurogenesis occurs embryonically through

P14, peaking during the second postnatal week, with the majority of cells born postnatally.

During this period granule cell dendritic trees are initially established. The second phase begins

at the end of the second postnatal week and lasts until about 2 months of age. It is during this

time that the dendritic trees are sculpted and refined. At the onset of this second phase, granule

cell dendritic trees have many segments including short terminal branches, which are largely

pruned by 2 months. The remaining branches increase in length over this period resulting in a

conservation of total dendrite length but a reduction in segments and terminal ends. To assess the

contribution of CPG 15 at these two phases we compared granule cell dendritic morphology in

the cpg15 KO and WT littermates at P15 and P60. At P15, DG granule cells in the cpgl5 KO

showed significantly fewer branch tips per neuron as compared to WT, suggesting an initial lack

of complexity due to reduced numbers of short terminal branches. Between P15 and P60 we

observed branch tip pruning that was more pronounced in the WT as compared to KO animals,

such that the difference between them was diminished by 2 months of age and dendritic arbors

appeared normal (Fig. 2.3B). This is similar to our findings regarding neuropil development in

the LGN.
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Figure 2.3 Delayed dendritic arbor and synapse development in DG of cpg15 KO mice. (A)

Representative traces of reconstructed DG granule cells from the WT, left, and cpg]5 KO, right,

at 2 months of age. (B) Average number of dendritic branch tips per cell at P15, left, (n = 39 WT

cells, n = 32 KO cells) and 2 months, right (n = 32 cells for WT and KO). (*) P-value < 0.05. (C)

Cumulative probability plots of interevent intervals of mEPSCs of DG granule cells at ages P7,

left (n = 9 WT cells, n = 7 KO cells) P-value < 0.001 by K-S test, and 2 months, right (n = 13

WT cells, n = 7 KO cells) P-value = 0.003 by K-S test. (D) Average mEPSC amplitudes of DG

granule cells at ages P7, left (n = 9 WT cells, n = 7 KO cells), and 2 months, right (n = 13 WT

cells, n = 7 KO cells). Averaged mEPSCs are plotted for both ages (right inset). (*) P-value =

0.01.
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2.2.3 Delayed synaptic development and maturation in cpg15 KO mice

Next, we tested for deficits in the cpg]5 KO that might derive from the effects of CPG15

on synapse formation and maturation. We examined formation of functional synapses by

performing whole cell patch clamp recordings in the granule cell layer of the DG in acute

hippocampal slices and recorded spontaneous miniature post-synaptic currents (mEPSCs) (Fig.

2.3C). We found that in the DG of cpg15 KO mice at P7, mEPSCs occur with lower frequency.

This deficit persisted at 2 months of age, but was less significant (Fig. 2.3C). In the P7 DG of

cpg15 KO mice, mEPSC amplitudes were also reduced, however this deficit was no longer

observed by 2 months of age (Fig. 2.3D). These results suggest that during development cpg]5

KO mice have fewer and less mature functional synapses.

To examine the synaptic structural correlates of reduced mEPSC frequency and

amplitude in the developing hippocampus we performed electron microscopy (EM) in different

subfields of the hippocampal formation. No apparent qualitative differences in synaptic structure

were seen in any of these areas, as assessed by the presence of presynaptic terminal zones with

vesicles and apposed post-synaptic densities (PSDs) (Fig. 2.4A). However, when the density of

asymmetric synapses on dendritic spines was measured by unbiased stereology, we found that

cpg]5 KO mice had spine synapse densities in the DG that were 26% lower than WT controls at

2 months of age (Fig. 2.4B). This change appeared specific to the DG and was not observed in

CA1 at this age. The decrease in DG spine density correlates with our findings of decreased

mEPSC frequency in the cpg15 KO DG (Fig. 2.3C) but not in CA1 (Fig. 2.S2) at 2 months of

age, and may be due to late development of the DG as compared to other hippocampal regions.

Interestingly, when we measured the density of spines and spine-like protrusions at 2 months
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Figure 2.4 Delayed spine synapse development and lack of age-dependent synaptic pruning

in cpg15 KO mice. (A) Representative EM images from the molecular layer of the DG of WT

and cpg15 KO mice. Arrowheads indicate spine synapses and asterisks mark spine or spine-like

protrusions. (B) Spine synapse density, (C) spine or spine-like protrusion density, and (D) PSD

length of indicated regions (n = 4 mice for WT and KO). (**) P-value < 0.05. (E) Age-dependent
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change in spine density of DG region. Spine density per mouse is represented by circles, and

average for each genotype is indicated by a horizontal line (n = 4 mice each for WT and KO at 2

months, n = 4 mice for WT and 5 mice for KO at 9 months). P-value < 0.001 for 2 months vs. 9

months for WT and KO DG. (F) Age-dependent change in spine-synapse density in the DG

region. Spine synapse density per mouse is represented by circles, and average for each genotype

is indicated by a horizontal line (n = 4 mice for 2 months, n = 5 mice for 9 months for WT and

KO). P-value < 0.001 for 2 months vs. 9 months for WT, n.s. for KO. Scale bar: 1 mm.



regardless of whether they contained a synaptic specialization, there were no significant

differences between cpg15 KO mice and WT controls even in the DG (Fig. 2.4C). These results

suggest that in the developing DG of the cpg]5 KO a large fraction of spine-like protrusions lack

a synaptic structure. EM examination of synapse size at 2 months, as measured by PSD length,

showed that PSDs of cpg]5 KO mice were 33% larger than those of WT mice in the DG but not

in CA1 (Fig. 2.4D). Perhaps the increased synapse size is a compensatory response to the

decrease in spine synapse numbers in the DG of cpg15 KO mice.

In the retinogeniculate pathway, as well as the hippocampus, neuropil development in the

cpg]5 KO is initially delayed but eventually reaches WT levels. We examined whether the

deficit in dendritic spine synapse number also recovers with age by comparing spine and spine

synapse densities between 2- and 9-month-old cpg]5 KO mice and WT littermates. Between 2

and 9 months both cpg15 KO mice and WT controls prune spines in a similar manner (Fig.

2.4E). WT controls also prune spine synapses over this period consistent with ongoing synapse

remodeling and refinement (Markus and Petit, 1987). However, cpg15 KO synapse density,

which starts out lower than WT at 2 months, is not further reduced by 9 months of age and

remains relatively constant during this period (Fig. 2.4F). Thus, we see that neurons in the late

developing DG of cpg]5 KO mice initially form fewer spine synapses than WT neurons. Over

time, these synapses are less likely to be pruned, so that by 9 months, synapse numbers are

similar in WT and KO.

2.2.4 Increased loss of persistent spines in cpg15 KO mice

In vivo imaging studies followed by EM have demonstrated that spine sprouting and

retraction are associated with synapse formation and elimination (Trachtenberg et al., 2002,



Knott et al., 2006) and that synaptogenesis is inversely correlated with spine motility (Konur and

Yuste, 2004). In light of the unusually large fraction of dendritic spines lacking synapses in the

developing DG of cpg]5 KO mice we asked whether CPG15 depletion also affects dendritic

spine dynamics. To this purpose we performed in vivo imaging of neurons in the visual cortices

of adult cpg15 KO mice. The cortex was chosen to assay spine dynamics because it is optically

accessible via implantation of cranial windows, allowing chronic monitoring of spine dynamics.

In addition, previous studies have shown that even in the adult cortex a significant fraction of

dendritic spines remain dynamic, with the majority of events being either transient spine

additions or reversible eliminations (Holtmaat et al., 2005, Holtmaat et al., 2006). Persistent

dynamic events, including spines that emerge and persist (new-persistent spines) as well as

spines that disappear and do not re-emerge (lost-persistent spines) likely best represent events

that correspond to synapse formation and elimination (Holtmaat et al., 2005, Holtmaat et al.,

2006).

We generated cpg15 KO mice expressing GFP in a random subset of neurons sparsely

distributed within the neocortical layers, by crossing the thy]-GFP-S line that expresses GFP in a

random subset of neocortical neurons (Feng et al., 2000, Lee et al., 2006) to the cpg]5 KO (see

methods). Adult thy]-GFP/ cpg]5 KO mice (homozygous for thy]-GFP and cpg15-'~) and thy]-

GFP littermate controls were surgically implanted with bilateral cranial windows over the visual

cortices. Following 3 weeks of recovery, layer 5 (L5) pyramidal neurons were identified and a

two-photon imaging volume encompassing their apical tufts in Li was acquired at 4-day

intervals (Fig. 2.5A). We found that the total rate of dynamic events, including both spine gain

and loss was not significantly different between WT and cpg]5 KO mice (Fig. 2.5B). However,

in the cpg15 KO the percentage of dynamic events that persisted was significantly higher than in
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Figure 2.5 Repeated imaging of apical L5 cell dendrites in visual cortex of cpg15 KO and

WT mice show that dendritic spine dynamics in cpg15 KO neurons are weighed toward

spine loss. (A) Representative example of a dendrite stretch showing persistent spines (yellow

arrows), new-persistent spines (green arrows), lost-persistent spines (orange arrows) and

transient spines (white arrows). (B) Averaged rates of spine gain and spine loss for all sessions (n

9 KO mice, 13 cells, 794 spines, n = 8 WT mice, 16 cells, 847 spines). (C) Percent of

persistent-dynamic and transient spines out of total dynamic spines. Persistent-dynamic includes

lost-persistent and new-persistent spines. (n = 9 KO mice, 13 cells, 794 spines, n = 6 WT mice,

11 cells, 609 spines). (*) P-value <0.05. (D) Percent of new-persistent and lost-persistent spines

out of total persistent-dynamic spines. (*) P-value <0.05, (**) P-value < 0.001. (E) Spine

densities of individual animals between the first and fifth imaging sessions. Student's paired t-

test (*) P-value <0.05. Scale bar: 5 gm.
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the WT. Conversely, the percentage of transient events was significantly lower (persistent-

dynamic 69.23% for KO, 55.06% for WT; transient 30.76% for KO, 44.94% for WT; P-value <

0.05) (Fig. 2.5C). For both the WT and cpg15 KO dynamic-persistent events that favor spine loss

(lost-persistent) were higher than dynamic-persistent events that favor spine gain (new-

persistent). However, this difference was more pronounced for the cpg15 KO (lost-persistent

70.79% for KO, 60.64% for WT; new-persistent 29.21% for KO, 39.36% for WT; P-value <

0.001 for KO, P-value < 0.05 for WT) (Fig. 2.5D). Since the cpg15 KO has a greater percentage

of dynamic-persistent events overall, and persistent events favor loss, we observe a significant

reduction in spine densities for individual cpg15 KO neurons over the course of the imaging

period, which was not seen in WT neurons (Fig. 2.5E). Overall, these results suggest that loss of

cpg15 leads to a decrease in spine stabilization, resulting in reduced maintenance of both newly

formed and existing spines.

2.2.5 Inefficient learning in cpg15 KO mice

Given the contribution of activity-regulated genes to plasticity (Leslie and Nedivi, 2011),

we next examined whether the deficits in cellular development and spine stabilization seen in

cpg15 KO mice impacted behavioral plasticity in the adult, such as learning and memory. cpg15

KO mice were subjected to a fear conditioning test, a form of classical conditioning. Context-

dependent fear conditioning is a hippocampal-dependent paradigm. We rationalized that due to

cellular defects observed in the hippocampus that cpg15 KO mice may not perform as well as

WT counterparts in this task. Mice were given a paired shock and tone in a conditioning

chamber. Afterwards, they were returned to the same chamber to test for contextual memory, or

presented with the same tone in a different context to test for tone-dependent memory.



Surprisingly, cpg]5 KO mice exhibited less freezing than WT controls in response to both

context and tone (Fig. 2.6A), suggesting deficits in both contextual and tone-dependent memory.

Interestingly, cpg]5 KO mice showed little freezing in response to context even 1 hour after

training, suggesting impaired short-term memory. In this test it was impossible to discriminate

whether there was a true deficit in long-term memory or if it was secondary to the short-term

memory deficit. To address this question, mice were trained using repeated conditioning sessions

on days 1, 3, 5, 7 and tested 1 day after each session on days 2, 4, 6, 8. For tone-dependent

memory, WT mice showed a robust freezing response after the first conditioning trial with an

additional small increase after the second trial (Fig. 2.6B). cpg15 KO mice showed little freezing

after the first conditioning trial, despite a slightly lower threshold for pain and higher anxiety that

WT controls (Fig. 2.S1C, D) but showed a large increase after the second trial before reaching a

similar plateau as WT controls by the third trial. To see if stronger conditioning would improve

learning, in the fourth conditioning session three tone-shock pairs were given instead of one.

This fourth conditioning session did not elicit increased freezing in either genotype, indicating

saturation of the response. The repeated training experiment demonstrates that while cpg15 KO

mice are slow to learn the task, they do have the basic sensory and motor functions to perform it

and are able to form and retrieve long-term memories once they learn the task.

To see if memory was stable on a longer time scale, we tested the mice 2 weeks after

conditioning by repeated training. Memory retention, calculated as the ratio of freezing at 2

weeks to 1 day after completion of the repeated training trials, showed that cpg15 KO mice

retained memory similarly to WT controls (Fig. 2.6C). In summary, cpg]5 KO mice showed

inefficient learning of fear memories. However, this impairment could be overcome by repeated

training, and memory was stable once acquired.
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Figure 2.6 cpg15 KO mice show slow learning in fear conditioning and visible platform

tests. (A) Mice were given a paired tone and shock, then tested for contextual memory 1 h and 24

h later, and for tone-dependent memory at 25 h after the shock. Fear memory is measured as

percent time spent freezing (n = 23 for WT, n = 27 for KO). (*) P-value < 0.05, (**) P-value <

0.01. (B) Freezing response to tone after repeated training. Mice were given tone-shock pairings

every other day, and were tested 1 day after each training session (n = 10 for WT and KO). (* *)

P-value < 0.01. (C) Fear conditioning is stable for at least 2 weeks. Mice were tested at 1 day and

2 weeks after the repeated training shown in (B). Percent retention was calculated as the ratio in



freezing time at 2 weeks to 1 day after training, and averaged for each genotype. Some mice

showed longer freezing times at 2 weeks, resulting in some retention scores above 100% (n = 10

for WT and KO). (D) Swim distance with repeated training in the Morris water maze visible

platform test (n = 12 for WT and KO). (*) P-value < 0.05, (**) P-value < 0.001.



To confirm that the learning deficit in cpg]5 KO mice was not specific to the fear

conditioning task, we also tested learning in the Morris water maze. The Morris water maze

requires mice to locate a platform submerged in a pool using only visual or spatial cues. In the

visible platform version of the Morris water maze, a visual cue is placed on the submerged

platform so that mice can locate the platform based on this cue. This task does not require spatial

memory, but does require mice to make certain associations such as those between the visual cue

and the platform, in addition to basic visual and motor abilities to perform the task.

During the seven days of training, swim distance to reach the platform decreased for both

WT and cpg]5 KO mice indicating that they were able to learn the task (Fig. 2.6D). However,

cpg]5 KO mice showed slower acquisition when compared to WT controls. The difference was

most obvious on the second day of the training, when WT controls were close to their peak

performance but many of the cpg]5 KO mice showed no improvement. Despite these deficits,

improvement in performance and the directed swimming towards the platform after training

suggests that cpg]5 KO mice were able to recognize the visual cue. Thus in the visible platform

test, cpg]5 KO mice showed slower acquisition of the task but improved with repeated training,

similar to what we observed in the fear conditioning test.

2.3 DISCUSSION

Here we show that a KO mouse lacking cpg]5 exhibits delayed axonal, dendritic, and

synaptic development. Adult cpg]5 KO mice display reduced spine maintenance leading to

gradual spine loss. Loss of cpg15 also has behavioral consequences, manifested as poor

performance in learning tasks.



The finding that adult cpg15 KO mice have an apparently normal neocortex with regards

to size and cell number was initially surprising, since acute RNA interference (RNAi)-mediated

knockdown in embryonic rat brains showed a requirement for CPG15 in cortical progenitor-cell

survival (Putz et al., 2005). We were also surprised that despite the robust effect of CPG15

overexpression on dendritic and axonal arbor growth in the developing Xenopus retinotectal

system (Nedivi et al., 1998, Cantallops et al., 2000), the effects of CPG15 deletion on both

axonal and dendritic arborization are more subtle and are fully compensated for in the cpg15 KO

mice by 2 months of age. There are precedents for in vivo RNAi-mediated interventions and

overexpression studies during development resulting in deficits not observed in knockout

animals. For example, in the case of the doublecortin (DCX) gene, acute knockdown early in

development results in severe cortical lamination deficits but in the knockout mouse cortical

lamination is normal (Bai et al., 2003). Even in the case of neurotrophins and their receptors,

mutant mouse studies repeatedly show less overt phenotypes than might be expected for

molecules considered critical for both neuronal survival and differentiation (Conover and

Yancopoulos, 1997). Molecules such as neuroligins that exhibit robust synaptogenic activity in

co-culture assays (Scheiffele et al., 2000), when completely eliminated in KO mice fail to affect

synapse numbers in vivo (Varoqueaux et al., 2006). Rather, neuroligin KO mice show subtle

synaptic deficits that are likely associated with selection of specific synapse types. When a gene

product is missing from the outset, compensatory or redundant molecules and mechanisms may

be brought into play before developmental programs are significantly compromised. This is

likely to be particularly true for molecules involved in synapse formation and maturation due to

the multiplicity of players involved (Brose, 2009). This does not mean that the function of these

molecules is completely interchangeable, rather combinations of these molecules likely instruct



specificity and diversity of synaptogenesis. In the cpg15 KO other molecules can apparently

replace the trophic function of CPG15, resulting in normal cell number and structure. cpg15 KO

neurons can form functional synapses with normal ultrastructure indicating that CPG15 is also

dispensable for synaptogenesis and synaptic growth. However, the delay in arbor growth and

synapse development and the reduced stability of dendritic spines in the adult suggest that

CPG15 plays a critical regulatory role in determining which synaptogenic events are stabilized

and maintained.

2.3.1 A biphasic role for CPG15 in arbor and synapse development

During development, increased rate of growth is often equated with maturation, but this

interpretation may be too simplistic. There are many examples throughout the developing brain

where maturation proceeds first through the initial establishment of exuberant and/or

promiscuous dendritic and axonal branches and synapses, followed by a period of dynamic

refinement and sculpting during which inappropriate contacts and branches are eliminated and

appropriate ones are stabilized and elaborated (Kano and Hashimoto, 2009). The cpg15 KO

mouse exhibits a lack of initial exuberance in dendritic branch elaboration and synapse formation

in areas of the developing brain investigated in this study. This results in some cases in the

superficial appearance of "mature" looking branches from an early age, however these arbors

have not matured in the sense that they have not undergone the same extensive remodeling as

their WT counterparts. We would not interpret this as a precocious maturation, since a true

precocious maturation would go through the same sequence of events as a normally developing

animal, except earlier. Consistently our data shows that this in not the case for the cpg]5 KO

mouse. Instead we show that the cpg]5 KO never reaches the phase in development where



processes and synapses become exuberant enough for large-scale sculpting and refinement to be

observed.

This interpretation is also consistent with the developmental regulation of cpg15

expression. In the visual system early in development cpg15 expression is activity independent

(Corriveau et al., 1999, Lee and Nedivi, 2002). Promiscuous early expression of CPG15 may

result in the establishment of large arbors and many synapses, effective substrates upon which

activity-dependent mechanisms can later work to sculpt circuits by choosing which synapses and

branches to keep and which to prune. During these later periods cpg15 expression becomes

activity-dependent, perhaps allowing CPG15 to function in the stabilization of appropriate

activity-selected synaptic partners and branches.

2.3.2 CPG15 as a synapse stabilization factor

Despite lower spine synapse density in the hippocampal DG of 2-month-old cpg]5 KO

mice as compared to WT controls, spine counts in this region were normal. This suggests that

cpg15 KO neurons have a larger percentage of spines without well-defined synaptic structures.

Previous serial EM reconstruction studies have found little evidence of spines without synaptic

specializations in adult animals (Harris et al., 1989, Harris and Kater, 1994), and developmental

studies in dissociated and organotypic slice cultures suggest that synaptic molecules can cluster

at pre and postsynaptic sites shortly after contact (Vardinon Friedman et al., 2000, Okabe et al.,

2001). Imaging studies combined with retrospective EM show that the latency to formation of

synaptic structures on nascent spines varies from several hours up to 4 days (Knott et al., 2006,

Nagerl et al., 2007, Zito et al., 2009). Thus, spine formation can lead to rapid synapse

recruitment and stabilization, but does not necessarily do so. The choice between synapse



stabilization and elimination is likely guided by specific signaling molecules that ensure the

selection of optimal synaptic partners and efficient circuit wiring. Reduction in spine synapse

density in the cpg]5 KO mice without a change in spine number may reflect an increase in spine-

like protrusions that fail to stabilize nascent synapses. Indeed, when spine and spine synapse

densities are analyzed at a later age, cpg15 KO mice prune spines, but not spine synapses

suggesting selective pruning of unstabilized, synapse-less spines. Further, in vivo time-lapse

imaging of dendritic spines on cortical layer 5 neurons of wild-type and cpg15 KO mice show

that while overall spine dynamics on cpg]5 KO neurons is normal, there is a bias towards

increased spine loss, suggesting that spines are less well maintained. The fact that this can be

observed even in the adult on an individual cell basis further suggests an acute requirement for

CPG15 in spine and perhaps synapse stabilization.

During development, synapses have been shown to act as anchoring points for growing

dendritic and axonal branches, facilitating branch extension and giving pause to branch

retractions, so that arbor dynamics are strongly influenced by synapse stabilization (Ruthazer et

al., 2006, Meyer and Smith, 2006). It is therefore likely that delayed axon and dendrite

development in the cpg]5 KO is directly linked to the delay in functional synapse formation and

maturation. This interpretation is consistent with findings from previous overexpression studies

in the developing Xenopus which showed that CPG15 coordinately promotes synaptic maturation

and arbor growth (Cantallops et al., 2000, Javaherian and Cline, 2005), and that increased arbor

growth is due to fewer branch retractions (Cantallops et al., 2000).

In rodents, exposure to an enriched environment improves performance in learning and

memory tasks and increases dendritic spine density (van Praag et al., 2000), suggesting that

changes in connectivity may be a cellular correlate of improved performance. In vivo imaging



studies show that dendritic spines retain dynamic qualities even in the adult brain (Grutzendler et

al., 2002, Trachtenberg et al., 2002), and that activity appears to play an instructive role in this

remodeling. Spines appear and disappear in hippocampal slices after electrical stimulation as

well as in vivo in response to experience (reviewed in Bhatt et al., 2009). Thus, it seems that the

dynamic nature of dendritic spines provides the capacity for local circuit restructuring in

response to normal day-to-day levels of activity. In the same way that synapse formation on

growing axons and dendrites provides an anchor for arbor stabilization during development,

synapse formation on dynamic spines could serve to consolidate nascent connections in a mature

circuit. This suggests that CPG15 could continue to play a role as a synaptic stabilizing factor

extending past developmental circuit wiring and into optimization of adult circuitry. cpg15 KO

neurons may be unable to stabilize connections in the adult, and thus may have to rely on an

initial set of synapses stochastically formed during development.

Based on our analysis of the cpg15 KO mouse we propose that CPG15 acts to stabilize

nascent synapses on dendritic spines resulting in spine and arbor stabilization and synaptic

maturation. Neuroligins were recently proposed to act as a signal for the validation of excitatory

versus inhibitory synapses. Rather than mediating synapse formation per se, neuroligins signal

whether a transiently initiated connection stays or goes (Chubykin et al., 2007). It is intriguing to

consider that since CPG15 is expressed and can be externalized in response to activity

(Cantallops and Cline, 2008), it could provide a saliency signal for selective stabilization of

active synapses. While synaptic connections can form without CPG15, they are slower to form

and are not optimized by activity patterns that are required for efficient learning. cpg15 KO mice

are capable of learning with increased trials and their sensory and motor functions appear to be

within the normal range, suggesting that many behaviors required for survival are hard wired



through highly overlapping and redundant mechanisms. Only when peak performance is desired

does the role of activity-dependent tuning mediated by molecules such as CPG 15 become starkly

evident.

The subtle deficit we observed in relation to synapse stabilization allowed us to probe the

consequences of CPG15 functional deletion on circuit properties and behavior, without the

confounding aspects of complex phenotypes commonly found in general knockout mice. Our

results lead us to speculate that the inefficient learning seen in cpg]5 KO mice derives from a

diminished capacity for selective synapse stabilization.

2.4 MATERIALS AND METHODS

2.4.1 Generation of the cpg15 KO mice

All animal work was approved by the Massachusetts Institute of Technology Committee

on Animal Care and conforms to NIH guidelines for the use and care of vertebrate animals.

To allow conditional deletion of the cpg]5 gene using the Cre-loxP system, we generated

floxed cpg15 mice. The targeting vector was constructed starting with a 13.7-kb genomic

fragment spanning a region of the cpg]5 gene from the EcoRV site 0.2-kb upstream of exon

one to the AflIl site 4.7-kb downstream of exon three, cloned from a C57BL/6 mouse BAC

library (Genomic Systems). Exons two and three were floxed by replacing a 19-bp sequence

between the SacI and KpnI sites 0.5-kb upstream of exon two with a 40-bp fragment

containing loxP and XhoI sites, and inserting a 2.9-kb LFNT-TK cassette (gift of Kazu

Nakazawa), consisting of a neomycin-resistance (neo) gene flanked by two loxP sites and

two FRT sites, into the SacI site 0.9-kb downstream of exon three. The diphtheria toxin A

gene from pMCI DT-A (Yagi et al., 1990)was inserted at the end of the targeting vector for



negative selection. The linearized targeting vector was electroporated into a C57BL/6 ES cell

line. G418-resistant ES cell clones were tested for homologous recombination by Southern

blot analysis using an internal probe and 5'- and 3'-external probes. ES clones showing the

expected patterns were injected into blastocysts from BALB/c mice to obtain chimeric mice.

Chimeras were bred with C57BL/6 mice to generate mice carrying the floxed-cpg]5 allele

and neo gene (cpgl5flox-neo/+). The neo gene was then removed by injecting flippase cRNA

synthesized in vitro from pOG-Flpe6 (Buchholz et al., 1998) into fertilized eggs from

cpg154"o-"eo/* mice, thus generating floxed-cpg15 mice without the neo gene in pure

C57BL/6 background (cpg]5 flox/+). To generate general cpg]5 null mice, cpg15 "'* mice

were crossed to an adenovirus Ella promoter-driven Cre transgenic line in C57BL/6

background (Jackson Laboratory, B6.FVB-TgN(EIIa-cre)C5379Lmgd) (Lakso et al., 1996a).

Progeny of this cross that were heterozygous for the cpg]5 null allele (cpg15*/~) were

intercrossed to obtain homozygous cpg15 null mice (cpg15-'~). The absence of floxed-cpg]5

genomic sequence, cpg]5 mRNA, and CPG15 protein was confirmed by Southern blots of

tail genomic DNA (Sambrook et al., 1989), Northern blots on brain RNA (Fujino et al., 2003),

and Western blots, respectively. For Western blots, membrane protein enriched fractions were

prepared from the cerebral cortex and hippocampus of adult mice using Mem-PER kit (Pierce)

and PAGEprep advance kit (Pierce). Forty micrograms of protein were resolved by 15% SDS-

PAGE, transferred to a nitrocellulose membrane, and incubated with rabbit anti-CPG 15 (1:100),

then with HRP-conjugated goat anti-rabbit IgG (Jackson ImmunoResearch, 1:50,000), and

visualized by chemiluminescence (Pierce). Antibodies against CPG15 were generated by

immunizing rabbits with peptides corresponding to amino acids 28-40 and 99-116, and affinity

purified with the immunizing peptides (Open Biosystems, Huntsville, AL).



cpg15 KO lines were maintained as cpg]5*/- x cpg]5*/- crosses. Genotyping was done by

tail-DNA PCR. Wild-type forward primer (5'-CGCAGCCCAATCTGCATTC-3', 0.13 pmol/ml),

cpg15 null forward primer (5'-GTTGTGGTCTTCCAAAGACC-3', 0.5 pmol/ml), and common

reverse primer (5'-GGAGCAGCGAGATCTCCTT-3', 0.5 pmol/ml) were used to amplify a 230-

bp wild-type band and a 350-bp cpg]5 null band. Mice were housed under a 12-h light/dark

cycle with ad libitum access to food and water.

2.4.2 Data collection and analysis

All quantification comparing WT and cpg15 KO mice were done blind to genotype.

Statistical analysis was done using StatView software (SAS Institute, Cary, NC). Unless

otherwise stated, Student's unpaired t-test was used for two-group comparisons, and analysis of

variance (ANOVA) and Student-Newman-Keuls post hoc analysis were used for comparisons

involving more than two groups. Error bars are standard error of the mean unless otherwise

stated.

2.4.3 Brain measurements

Age-matched males were perfused with phosphate-buffered saline (PBS) then with 4%

paraformaldehyde in PBS. Brains were dissected out, weighed, and measured with vernier

calipers. After overnight post-fixation at 4'C, brains were cryoprotected in 30% sucrose in PBS,

frozen in powdered dry ice, sectioned coronally at 40 mm with a cryostat (Leica). Every sixth

section was stained with cresyl violet. For volume measurements, the area on each section was

measured using the point-counting method, and the total volume estimated based on Cavalieri's



rule (Rosen and Williams, 2003). Cell density was measured by the three-dimensional counting

method (Williams and Rakic, 1988).

2.4.4 Labeling retinal ganglion projections in the LGN

Mice younger than P9 were anesthetized by hypothermia or with 2.5% Avertin (250 mg

/kg i.p.) at later ages. Animals received an intravitreal injection of wheat germ agglutinin (WGA)

conjugated to Alexa Fluor 555 (1 mg/ml, Molecular Probes, Eugene, OR) in the left eye and

WGA-Alexa Fluor 488 in the right eye. For injections prior to natural eye opening, fused eyelids

were separated or cut to expose the temporal region of the eye. After 24 h, animals were perfused

with 4% paraformaldehyde in PBS. Brains were removed and postfixed overnight, then coronally

sectioned at 75 mm using a vibratome.

LGN images were acquired with an epi-fluorescence microscope (Nikon, Tokyo, Japan)

using a lOx/N.A. 0.3 objective lens (Nikon). Four successive sections, representing the middle

third of the LGN, were selected. Background fluorescence was subtracted and grayscale images

were normalized (0-255) using ImageJ (http://rsb.info.nih.gov/ij/). Grayscale images were

converted into binary high-contrast black and white images by employing a threshold procedure

that distinguishes signal from residual background fluorescence (Muir-Robinson et al., 2002,

Torborg and Feller, 2004) Contralateral (pseudo-colored green) and ipsilateral signals (pseudo-

colored magenta) were superimposed. An outline of the entire LGN was drawn, and the area

measured. The extent of overlapping projections was determined by counting pixels that

contained both green and magenta signal, represented as white.



2.4.5 Diolisitic labeling in the hippocampus

Brain sections from P7, P15, and 2-month-old mice were processed for diolistic labeling

as described (Grutzendler et al., 2003) with the following modifications. After rapidly perfusing

P15 and 2-month-old mice with 4% paraformaldehyde in PBS (40 ml in 2 min), brains were

dissected out and postfixed for 10 min at room temperature. P7 brains were removed without

perfusion and then fixed for 10min in 4% PFA at room temperature. All brains were coronally

sectioned at 100 pm with a vibratome, and stored in 30% sucrose in PBS. Bullets were prepared

by coating tungsten particles (1.7 tm, Biorad) with DiI (Molecular Probes), then loaded into

Tefzel tubing (Biorad) pretreated with polyvinylpyrrolidone (1 mg/ml in isopropanol, Sigma),

and dried with N2. Brain sections were covered with a tissue culture insert with a 3-pm pore size

(Greiner), and then shot with Dil-coated particles using a Helios gene gun system (Biorad) set at

160 psi. Sections were postfixed in 4% paraformaldehyde / 30% sucrose in PBS overnight and

mounted on glass slides with Fluoromount-G (Sourthern Biotech, Birmingham, AL). Neurons

were imaged with a Nikon PCM 2000 confocal microscopy system controlled by the Simple PCI

software (Compix Inc. Image system, Cranberry Township, PA) or an Olympus (Melville, NY,

USA) FluoView 300 laser-scanning confocal microscope and FluoView 500 acquisition

software. Stacks of 26 images at 2-jim interval, spanning 50 pim in thickness, were obtained with

a 20x objective lens. Images were analyzed using Object-Image software

(http://simon.bio.uva.nl/object-image.html) with Morphometry Macros (Ruthazer and Cline,

2002) or with Neurolucida and Neurolucida Explorer software (MBF Bioscience). Total

dendritic branch length and branch tip number within the imaging volume were quantified for

dendritic arbors of DG granule cells.



2.4.6 Electrophysiology

Hippocampi of P7 or 2-month-old mice were isolated and 300um slices were prepared

with a vibratome (World Precision Instruments) in ice-cold cutting solution containing (in mM)

238 Sucrose, 26 NaHCO 3, 10 Glucose, 2.5 KCl, 1 NaH2PO4, 3 MgSO 4 and 1 CaCl2 constantly

bubbled with 95% 02/5% CO2. The slices were transferred to a holding chamber filled with

artificial cerebrospinal fluid (ACSF) containing (in mM) 119 NaCl, 26 NaHCO3, 10 Glucose, 2.5

KCl, 1 NaH2 PO 4, 1.3 MgSO 4 and 2.5 CaC12 constantly bubbled with 95% 02/5% CO 2 and

recovered at 32'C for half an hour, then at room temperature for half an hour. Slices were placed

in a recording chamber continuously perfused with 32'C ACSF bubbled with 95% 02/5% CO 2,

plus 1OOuM picrotoxin and luM tetrodotoxin to isolate mEPSCs. Whole cell recordings were

performed with patch pipettes (5-7MQ), containing (in mM) 130 K-gluconate, 4 KCl, 2 NaCl, 10

Hepes, 0.2 EGTA, 4 ATP-Mg, 0.3 GTP-Tris, 7 phosphocreatine-Tris and 10 sucrose, pH 7.25,

290mOsm. Neurons in CA1 or dentate were patched under visual guidance with a Nikon

microscope equipped with IR/DIC optics using a black and white CCD camera (CCD-300IFG,

Dage-MTI). Current traces were collected using a AxoPatch 2B amplifier (Axon), digitized at

5kHz by a Digidata 1322A (Axon), and analyzed offline using Clampfit software (Axon). At

least 150 mEPSCs, thresholded at 6pA, were recorded at -70mV from each cell. 20uM 6,7-

Dinitroquinoxaline-2,3-dione was applied during some recordings to verify AMPAR mEPSCs.

2.4.7 Electron microscopy

Two- and 9-month-old male littermates were perfused, and brains fixed as described

(Diano et al., 2006). Ultrathin sections were prepared as described (Diano et al., 2006) from

stratum radiatum of CAl and CA3, and molecular layer of dentate gyrus. Spine and spine



synapse density was calculated by unbiased stereological methods based on the dissector

technique (Diano et al., 2006). PSD length was measured from 100 to 150 spine synapses in 10

non-overlapping sections and averaged for each animal.

2.4.8 Two-photon imaging

Cranial window implantation and multi photon imaging were done essentially as described (Lee

et al., 2008). Mice (6-8 weeks of age) were implanted with cranial windows and imaged 2-3

weeks after surgery at 4 day intervals. For imaging mice were anesthetized with 1.25% avertin

(250 mg per kg body weight, (i.p.)). Anesthesia was monitored by breathing rate and foot-pinch

reflex, and additional doses of anesthetic were administered during the imaging session as

needed. Two-photon imaging was performed using a custom-built microscope modified for in

vivo imaging by inclusion of a custom-made stereotaxic restraint affixed to a stage insert and

custom acquisition software. The light source for two-photon excitation was a commercial Mai

Tai HP titanium:sapphire laser (Spectra-Physics) pumped by a 14-W solid-state laser delivering

100-fs pulses at a rate of 80 MHz with the power delivered to the objective ranging from

approximately 37 to 50 mW depending on imaging depth. z resolution was obtained with a piezo

actuator positioning system (Piezosystem Jena) mounted to the objective. The excitation

wavelength was set to 950 nm, with the excitation signal passing through a 20x, 1.0-numerical

aperture water-immersion objective (Plan-Apochromat, Zeiss) and collected after a barrier filter

by a photomultiplier tube.

Given the sparse density of GFP expression in the thy]-GFP-S line, typically a dendritic

segment from one L5 pyramidal neuron (and a maximum of two) was imaged per animal. Cells

mapped to visual cortex were then identified as L5 pyramidal neurons based on their depth from



the pial surface and morphology. Blood vessel pattern maps were used to locate the cells and

dendritic branches throughout the imaging sessions. Low-resolution image stacks (512 x 512

pixels, 1mm/ pixel X-Y resolution, 5 ptm z-step size) were used to identify cell type and depth.

High-resolution image stacks (768 x 768 pixels, 0.2mm/ pixel X-Y resolution, 0.7 pm z-step

size) were used to capture spine dynamics on L5 dendrites in LI.

2.4.9 Dendritic spine analysis

Image stacks were aligned such that the presence or absence of an individual spine at a

given location on the dendrite could be determined in each session. Spines were scored only if

they protruded greater than 0.4 microns from the dendritic shaft, and were projecting into the XY

plane. Long thin spines without bulbous heads were excluded from analysis since they were

always transient and were not significantly different in number or dynamics between genotypes.

The rate of spine gain and spine loss was defined as the percentage of spines appearing (spine

gain) or disappearing (spine loss) in a session compared to the total number of spines in the

previous session. Dynamic spines were sorted into the following categories: Transient spines

were those that appeared for no more than one or two imaging sessions then disappeared, or

spines that disappeared and reappeared through the imaging period; New-persistent spines were

defined as those which were not present in the first session and subsequently gained for at least

the last two sessions; Lost-persistent spines were defined as those that were present in at least the

first two sessions then lost for the remaining sessions. Analysis was performed using V3D

software (Peng et al., 2010) by an observer blind to genotype.



2.4.10 Behavioral tests

Male littermates between 3 to 6 months of age were used for behavioral experiments,

unless otherwise noted.

Grip strength test: Mice were allowed to hold on to a wire attached to a spring scale (Pesola) and

pulled horizontally by their tail. Maximal pulling force before releasing the wire was recorded.

Five trials were done for each mouse, and the average was calculated for best three.

Rotarod test: Mice were placed on an accelerating rotarod and latency to falling from the rod was

recorded. Each trial lasted for a maximum of 8 min, during which the rotation speed increased

linearly from 2.5 rpm to 40 rpm. Three trials were done per day for two consecutive days.

Open field test: Mice were placed in the center of an open field (40 x 40 cm) and allowed to

move freely for 30 min. Their activity was monitored by a Digiscan system in 1-min bins and

analyzed by Versa Max software (AccuScan Instruments). Data was averaged for 30 min.

Hotplate test: Mice were placed on a hotplate preheated to 55*C. Latency to paw lifting or

sudden movement was recorded. All mice responded within 15 s.

Fear conditioning: One-trial fear conditioning was done as described (Zeng et al., 2001) with

modifications described in the supplemental information. Memory was tested after 1 h and

24 h of the conditioning trial for contextual memory and after 25 h for tone-dependent

memory. For repeated training, conditioning sessions with one tone-shock pairing were given on

days 1, 3, 5, and a session with three tone-shock pairings (each pair starting at 1, 2, and 3 min

after placement in chamber) was given on day 7. Context and tone tests were done 24 h and 25 h,

respectively, after each conditioning session. For one-trial fear conditioning, 4- to 9-month-old

male mice were used.



Morris water maze visible platform test: The visible platform test was done essentially as

described (Zeng et al., 2001). The pool was 150 cm in diameter, with water at room temperature

(21-22*C). The platform was 10 cm in diameter. Each mouse was trained three trials per day

with intertrial intervals of approximately 30 min. The platform position was changed for each

trial. In each trial the mouse was allowed to swim until it found the platform or until 60 s had

elapsed at which point the mouse was guided to the platform. The mouse was allowed to sit on

the platform for 30 s before being picked up.



2.5 SUPPLEMENTARY DATA

Motor, sensory, & behavioral characterization of cpg15 KO mice

To evaluate potential motor and sensory deficits, cpg15 KO mice were subjected to a

series of behavioral tests. Assessing forepaw muscle strength using the grip-strength test

indicated that general muscle strength in cpg15 KO mice was similar to that of WT littermates

(Fig. SlA). In the rotarod test, when placed on a rotating rod that gradually increased in speed,

cpg]5 KO mice showed similar latency to falling as WT mice (Fig. SIB), indicating they have

comparable balance and coordination. Furthermore, cpg]5 KO mice showed progressively

longer fall latency with more trials similar to WT controls, demonstrating normal motor learning.

Pain sensitivity was intact and even slightly enhanced in cpg15 KO mice when tested on the

hotplate test (Fig. SIC).

In the open field test, cpg]5 KO mice showed similar horizontal travel distance, vertical

movements (rearing), and time spent moving as WT controls (Fig. Si D), indicating they are

neither hyper- nor hypo-active. However, time spent in the center of the arena was shorter in

cpg15 KO mice (Fig. SID), suggesting they may be more anxious than WT controls.

Normal progenitor cell survival in cpg15 KO mice

Previous studies have identified cellular effects of CPG15 in promoting progenitor cell

survival in the embryonic brain (Putz et al. 2005). We examined progenitor survival in the cpg]5

KO mice, although normal cell numbers and density in the cpg]5 KO brain (Table Si) suggest

that there is compensation for CPG15 in promoting progenitor survival when it is absent from

the outset. Pregnant mothers were injected with BrdU to label proliferating cells in embryos. At

embryonic day (E) E15.5 when neural progenitors are rapidly proliferating, WT and cpg15 KO



embryos showed similar cell density in each layer of the cerebral cortex (Figure S3A, B). The

proportion of proliferating cells assessed by the BrdU labeling index in the progenitor layers was

similar between genotypes (Figure S3C). These results are consistent with normal cell numbers

in the adult brain and indicate that absence of CPG15 during embryonic development does not

affect the size of the cortical progenitor pool.
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Figure S2.1 cpg15 KO mice basic motor and sensory functions are essentially normal. (A)

Normal forepaw grip strength in cpg15 KO mice (n = 10). (B) Accelerating rotarod test showing

similar latencies to falling in both genotypes. Three trials were done on two consecutive days (n

= 10). (C) Slightly enhanced pain sensitivity in cpg]5 KO mice. Hotplate test, measuring

reaction times after being placed on a 55*C plate, shows faster reaction times in cpg]5 KO mice

(n = 10). (*) P-value < 0.05. (D) Open field test showing similar spontaneous movement, but less

time spent in the center of the field. Parameters are normalized to WT values (n = 22). (*) P-

value < 0.05.
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Figure S2.2 Normal mEPSCs in cpg15 KO CA1 at 2 months. (A) Cumulative probability plot

of interevent intervals of mEPSCs in the CA1 of cpg15 KO and WT mice at 2 months (n = 13

WT cells, n = 9 KO cells). P-value = n.s. by K-S test.
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Figure S2.3 Normal embryonic progenitor numbers in cpg15 KO mice. (A) Cerebral cortex

of E15.5 embryos stained with anti-BrdU (magenta) and fluorescent Nissl (green). White

indicates overlap. (B) Nissl-stained cell densities in cortical plate (CP), intermediate zone (IZ),

and subventricular/ventricular zones (SVZ/VZ). Data are represented as mean ± standard error of

the mean. (C) BrdU labeling index in SVZ/VZ (n = 3). Scale bar: 50 mm.



Parameter WT cpg15 KO t-testd
Body length (cm)a 10.6 ±0.0 10.2 ±0.1
Body weight (g)a 45.0± 1.6 31.4 ±0.9
Brain weight (mg)b 433 6 428 6
Brain size (mm)b

Cortex (antero-posterior length) 0.90 +0.01 0.90 0.02
Cortex (lateral width) 1.04 0.00 1.03 0.01
Cerebellum (antero-posterior length) 0.30 0.01 0.27 0.01 *
Cerebellum (lateral width) 0.80 0.01 0.78 0.01 *

Regional volume (mm')'
Neocortex 85.3 1.0 86.4 3.2
Hippocampal formation 17.7 0.8 17.6 0.3

Neuronal density (x10 3/mm 3),
Neocortex 93 ±5 98± 4
Amygdala basolateral nucleus 77 ± 3 77 ± 5

Mean ± standard error of mean is shown
a n = 8 mice, 7-8 months
b n = 10 mice, 6-7 months
C n = 3 mice, 6-7 months
d * p < 0.05, *** p < 0.001

for each parameter.

Table S2.1 Comparison measurements of cpg15 KO mice and WT controls.



Parameter WT cpg15 KO t-test*
Retinal ganglion cell axon projection 0.27 ± 0.02 0.21 ± 0.01 *

area (mm 2 )a

LGN area (mm 2 )b 0.26 ± 0.01 0.22 ± 0.01
Percentage of LGN area covered by 105 9 96 6
axonal projection (%)C

LGN cell density (103 cells/mm 2) 1.9 ± 0.2 2.1 0.1
Number of cells per section (cells)d 483 54 461 21

Mean ± standard error of mean is shown for each parameter.
a Area determined by WGA-conjugated dye labeling.
b Area determined by fluorescent Nissl staining.
c Percentage of axonal projection area per Nissl stained LGN area
d Cell density x LGN area
e* p < 0.0 5 (n = 3)

Table S2.2 Decreased axonal projection area but similar cell counts in the LGN of cpg15
KO mice at P9.
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3.1 INTRODUCTION

The thalamocortical circuit is central to mammalian brain function. The thalamus is the

major hub of sensory information flow to the cerebral cortex and an important modulatory site

for information en route from the periphery to the cortex and of cortical feedback loops

(Saalmann and Kastner, 2011). In the visual system, the primary visual cortex receives

projections from the dorsal lateral geniculate nucleus (dLGN) of the thalamus. Activity in

developing thalamocortical and corticocortical networks work together to sculpt mature patterns

of connectivity in the cortex (Lopez-Bendito and Molnar, 2003). Synapse maturation in the

visual cortex occurs postnatally. The first synapses are detected in the cortical plate in the days

after birth (Blue and Parnavelas, 1983). A mature distribution of synapses in the cortex does not

arise until postnatal day 14 (P14), and reaches adult levels of synapse density by P20. Like many

of the excitatory synapses in the brain, immature thalamocortical and corticocortical synapses are

thought to be postsynaptically "silent" containing only NMDA receptors which are then

converted into AMPA receptor-containing functionally mature synapses in an activity-dependent

manner (Kerchner and Nicoll, 2008). In the barrel cortex where thalamocortical synapses can be

directly interrogated in acute slices in which the thalamocortical tract is preserved (Agmon and

Connors, 1991) silent synapses are present only until P8 (Isaac et al., 1997, Feldman et al.,

1999). However, in the visual cortex, silent synapses are found much later in development and

are regulated differentially depending on the cortical layer (Rumpel et al., 2004). In layer II/Ill

silent synapses peak at P14 and then decline over the next week and a half.

The orderly assembly of neuronal circuits is specified by developmental programs of

gene expression, however, the final stage in circuit development, maturation and refinement of

specific synaptic connections, is strongly influenced by neuronal activity (Greer and Greenberg,



2008, Lopez-Bendito and Molnar, 2003). It is thus not surprising that the products of many

activity-regulated genes have been implicated in synapse development and plasticity (Leslie and

Nedivi, 2011). In the case of the thalamocortical circuit, little is know of the cellular and

molecular mechanisms underlying specific synapse selection and maturation.

The activity-regulated gene product CPG15 has been shown to enhance synapse

maturation by promoting the incorporation of AMPA receptors into silent synapses in the

developing Xenopus retinotectal system coincident with the promotion of dendritic and axonal

arbor growth and elaboration (Cantallops et al., 2000, Nedivi et al., 1998). In the mammalian

brain, expression of cpg15 mRNA in presynaptic structures is spatiotemporally correlated with

periods of synapse formation and maturation in target regions (Nedivi et al., 1996, Corriveau et

al., 1999, Nedivi et al., 2001, Lee and Nedivi, 2002). For example, cpg15 expression in thalamus

is high during development of thalamocortical synapses. In addition, cpg]5 expression in

presynaptic structures may be regulated by contact with postsynaptic targets (Diaz et al., 2002).

CPG15 protein is detected in retinotecal fiber tracts in developing Xenpus optic tectum

suggesting is can also be transported along afferent inputs into target brain regions (Nedivi et al.,

1998). CPG15 is thought to act as a selective synaptic stabilizer, providing a signal for further

synapse and arbor maturation (see Chapter 2)(Fujino et al., 2011).

The function and expression patterns of CPG15 make it a promising candidate for

regulating the final stages of thalamocortical circuit assembly. To test this, we examined the

early postnatal development of excitatory synapses and neurons in the visual cortex of a mouse

with a global deletion of cpg15 (see Chapter 2)(Fujino et al., 2011). Further, to differentiate

whether the source of CPG15 critical for cortical synapse maturation was thalamic or cortical,



we utilized the Cre-loxP system to specifically delete cpg15 in the cortex and then analyzed

excitatory synapse maturation in the visual cortex in the absence of cortically-derived CPG15.

3.2 RESULTS

3.2.1 Deficient excitatory synapse development in the visual cortex of global cpg15 KO mice

In the visual cortex, excitatory synapse development has been extensively studied in the

context of activity-dependent circuit formation and maturation, and can be associated with onset

of visual experience. During normal development, visual experience leads to a gradual reduction

in mEPSC amplitudes triggered by eye opening around P12 thought to be a homeostatic tuning

of the neuron in response to increasing levels of presynaptic activity (Desai et al., 2002). There is

also a dramatic increase in mEPSC frequencies likely due to large increases in synapse density

(Blue and Parnavelas, 1983) as well as the conversion of postsynaptically silent synapses into

functionally mature AMPA receptor-containing synapses (Rumpel et al., 2004). CPG1 5 has been

shown to play a role in excitatory synapse stabilization (see Chapter 2)(Fujino et al., 2011), and

has also been implicated in conversion of silent synapses to mature AMPA receptor-containing

synapses in the Xenopus optic tectum (Cantallops et al., 2000). To investigate the role of CPG1 5

in excitatory synapse development during this period when visual input conveyed by developing

thalamocortical synapses has a profound effect on visual cortex development, we used whole-

cell patch clamp to record spontaneous miniature excitatory postsynaptic currents (mEPSCs)

from layer 11/111 pyramidal neurons in acute slices prepared from the primary visual cortex of

developing cpg15 KO mice and WT littermate controls (Fig 3.1A). We analyzed both mEPSC

amplitudes as a correlate of synapse strength, and mEPSC frequency as a correlate of functional,

AMPA receptor-containing synapse number. Three ages were chosen for this study based on



visual development milestones and the cpg15 expression profile; P10 prior to eye opening and

the onset of cpg15 expression in visual cortex, P14 shortly after eye opening and coincident with

early onset of cpg]5 expression, and P28 the peak of cpg15 expression (Lee and Nedivi, 2002)

which also corresponds to the height of the critical period for eye specific preference in the

binocular zone of the primary visual cortex (Gordon and Stryker, 1996).

In our WT controls we observed a gradual decrease in mEPSC amplitude consistent with

previous studies (Desai et al., 2002). At PlO, we found no difference in mEPSC amplitudes

between pyramidal neurons in cpg15 KO and WT littermate control mice. However, by P14

cpg15 KO mice displayed a significant reduction in mEPSC amplitudes compared to controls,

which was even more significant by P28 (Fig. 3. 1B, C) indicating that cpgl5 KO neurons receive

weaker synaptic input at P14 and P28. This amplitude deficit is closely correlated with the

normal onset of cpg15 expression in the cortex.

Similarly, no difference was observed in mEPSC frequency early in development at P10

(Fig. 3.1D, E). Between PlO and P14, both cpg15 KO and WT neurons undergo a similar

increase in mEPSC frequency consistent with a dramatic developmental increase in synapse

density (Blue and Parnavelas, 1983). WT mice exhibit another large increase in mEPSC

frequency between P14 and P28 that likely corresponds to another jump in synapse density is

known to occur between P14 and P16 (Blue and Parnavelas, 1983). In contrast, cpg]5 KO mice

do not show any further increase in frequency by P28, instead remaining at P14 levels,

significantly lower than WT controls (Fig. 3.1D, E). Silent synapses, which peak in layer II/III

around P14, are largely converted to functionally mature AMPA receptor-containing synapses

between P14 to P28 (Rumpel et al., 2004). Consistent with synapse maturation occurring at this

time, presynaptic vesicle numbers also increase (Blue and Parnavelas, 1983). The observations
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Figure 3.1 Reduction of mEPSC amplitudes and frequencies in layer 11/111 pyramidal

neurons in the visual cortex of cpg15 KO mice. (A) Representative traces of whole-cell patch

clamp spontaneous mEPSC recordings from layer II/III pyramidal neurons in the visual cortex of

cpg15 KO and WT littermates at PlO, P14, and P28. (B) Cumulative distribution of mEPSC

amplitudes. (C) Average mEPSC amplitudies from. (D) Cumulative distribution of mEPSC

interevent intervals. E, Average mEPSC frequencies. (P 10 n = 14 WT, n = 15 KO cells; P14 n =

17 WT, KO cells; P28 n = 13 WT, n = 14 KO cells; * p < 0.05, **p <0.01).



that there is no deficit in mEPSC frequency between P1O and P14 in the cpg]5 KO mouse

despite the large amount of synaptogenesis that normally occurs during this period, and weaker

synapses in the cpg]5 KO mouse at both P14 and P28, are consistent with previous studies

showing that CPG15 is not required for synapse formation but is instead important for synapse

maturation. We conclude that the deficit we observe in frequency and amplitude is most likely

due to a reduction in the insertion of AMPA receptors into developing synapses.

3.2.2 Reduced dendrite growth and complexity in the visual cortex of global cpg15 KO mice

The synaptotrophic hypothesis (Vaughn, 1989) postulates that the formation and

maturation of synapses promotes the growth and stabilization of neuronal arbors, most

demonstratively axons (Meyer and Smith, 2006, Ruthazer et al., 2006). Overexpression of

CPG15 results in enhanced synapse maturation concomitant with enhanced arbor development

(Nedivi et al., 1998, Cantallops et al., 2000, Javaherian and Cline, 2005), and loss of CPG15 in

hippocampus results in delayed synapse formation and arbor maturation (see Chapter 2)(Fujino

et al., 2011). We therefore investigated whether the deficient synapse development seen in visual

cortex layer 11/111 pyramidal neurons is accompanied by delays in dendritic arbor formation. Full

dendritic trees of neurons were sparsely labeled in fixed slices using diolistics (Grutzendler et al.,

2003), then imaged with confocal microscopy, and reconstructed in 2 dimensions (Fig 3.2A).

Basal dendrites of pyramidal neurons in cpg15 KO mice and WT littermate controls were

examined at the same ages as synapse development, P10, P14, and P28. Apical dendrite analysis

was not included as the variance in apical dendrite length in the imaged slices precluded analyses

of subtle differences in growth and complexity.



Our observations on the growth of WT cortical pyramidal neuron basal dendrites over

time (Fig. 3.2B, C) are in agreement with previous studies showing that in layer II/III of the

rodent visual cortex the number of primary basal dendrites is established by P10, higher order

branches continue to be added throughout the second postnatal week, and branches and segments

grow in size, reaching maturity around P30 (Juraska and Fifkova, 1979, Miller, 1981, Juraska,

1982). In cpg]5 KO neurons we found no significant difference in total dendrite length or

primary branches number as compared to WT neurons at the ages tested. However, when we

examined the difference in length between ages, while WT dendrites significantly increase in

length between both time intervals, cpg15 KO dendrites only increase in length between P10 and

P14, showing no statistically significant change in length between P14 and P28 (Fig. 3.2B),

suggesting an impairment in arbor growth rate coincident with impaired synaptic maturation

observed in recording of mEPSCs.

We also examined parameters of dendritic complexity. While WT neurons establish the

proper number of primary basal dendrites by P10, cpg15 KO neurons show a significant increase

in the primary dendrite numbers between P10 and P14 and a trend towards pruning primary

dendrites between P14 and P28 (Fig. 3.2C). This aberrant change in complexity suggests that

there may be less structural consolidation of cpg]5 KO arbors at this age in development. It is

possible that reduced synapse stabilization resulting from a lack of CPG15 destabilizes what

normally is a well established primary structure of the basal dendritic arbor, allowing a greater

scale of morphological plasticity in the cpg]5 KO mouse at this stage of development.

Scholl analysis was used as an additional measure of basal dendrite complexity, revealing

that at P10 cpg15 KO dendrites are less complex than WT with a significantly lower peak

number of intersections (Fig. 3.2D). At P14 cpg15 KO dendrites overshoot WT in complexity at
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the radius closest to the cell body, a reflection of the addition of primary branches (Fig. 3.2C, E).

However, by P28 cpg]5 KO dendrites again lag behind WT dendrites in complexity most

significantly at a radius far from the cell body reflecting the reduced rate of growth of cpg15 KO

neurons (Fig. 3.2F).

The emergence of a deficit in dendrite complexity as early at PlO in cpg15 KO neurons

was surprising in that we did not expect to see differences between cpg]5 KO mice and WT

controls at a time prior to the normal onset of cpg]5 expression in the cortex. At this time

however, cpg]5 mRNA is expressed in the dLGN of the thalamus (Nedivi et al., 1996, Corriveau

et al., 1999). There is also evidence from studies in the developing Xenopus retinotectal system

that CPG15 can be transported along axons into brain regions far from the cell body (Nedivi et

al., 1998, Cantallops and Cline, 2008). This led us to speculate that thalamocortical projections

from the dLGN may provide a significant source of CPG 15 protein during cortical development.

3.2.3 Transient deficit in synapse maturation in the visual cortex of conditional cpg15 KO

mice

To differentiate between possible contributions of CPG15 from thalamus and cortex

during the development of cortical neurons we generated a cortex-specific knockout of cpg]5. A

"floxed" cpg15 mouse containing loxP sites flanking exons 2 and 3 of the cpg]5 gene (see

Chapter 2)(Fujino et al., 2011) was crossed with a knockin mouse expressing Cre recombinase

under control of the endogenous emxl gene locus (Gorski et al., 2002). In these mice emx] gene

expression is not disrupted and Cre recombinase is expressed throughout the cortex in precursors

of excitatory neurons and glia starting by embryonic day 10, with no expression in the retina and

only very sparse expression in the thalamus. The conditional cpg15 KO mice resulting from this



cross retain cpg]5 expression in the thalamus but show significantly reduced expression in the

cortex as compared to floxed littermate controls (Fig. 3.3A).

To assess the role of cortically expressed CPG 15 on synapse development we performed

whole-cell patch-clamp recording of mEPSCs from layer 2/3 pyramidal neurons in acute slices

of visual cortex from conditional cpg]5 KO mice and floxed littermate controls at the same

developmental ages assayed in the global cpg15 KO line. Like global cpg]5 KO mice,

conditional cpg]5 KO mice displayed no difference in mEPSC amplitudes at P10 when

compared to controls. At P14, during the period of normal onset of cpg]5 expression in the

visual cortex, mEPSCs recorded from conditional cpg15 KO mice showed significantly reduced

amplitudes when compared to floxed littermates. However, unlike global cpg]5 KO mice, in

conditional cpg]5 KO mice this deficit was transient and no deficit was observed in mEPSC

amplitudes at P28 (Fig. 3.3B, C). No significant difference was observed in mEPSC frequencies

between conditional cpg15 KO mice and floxed littermate controls at any age (Fig. 3.3D, E).

These results suggest that cortically-derived CPG15 might only have a very limited role in the

development of excitatory synapses on layer II/III neurons. Instead thalamic afferents might

provide a critical presynaptic supply of CPG15 or at the very least are able to compensate for the

loss of cortical CPG1 5 essential for synaptic maturation.

3.2.4 Rescue of the synaptic deficit in conditional cpg15 KO mice

To determine whether acute delivery of CPG 15 could rescue the synaptic deficit observed

in the conditional cpg15 KO mEPSC amplitudes at P14, we utilized a lentiviral-mediated

expression strategy. A lentivirus expressing CPG15 and co-expressing GFP, or a control

lentivirus expressing GFP alone, was injected into the visual cortex of conditional cpg15 KO and
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interevent intervals. (E) Average mEPSC frequencies. (P10 n = 15 Flox, CKO cells; P14 n = 13

Flox, n = 14 CKO cells; P28 n = 15 Flox, CKO cells; *p < 0.01).



floxed littermates at P4 (Fig. 3.4A). At P14 acute slices of visual cortex were prepared from

injected mice and whole-cell patch-clamp recording of mEPSCs were performed on cells within

injection sites visualized by GFP protein expression (Fig. 3.4A, B). As we hypothesized that

CPG15 protein might be supplied at synapses from presynaptic infected neurons, we targeted

cells that were not expressing GFP, yet were near GFP-expressing cells. The intracellular

recording solution contained biocytin allowing for posthoc staining with a streptavidin-

conjugated fluorophore to verify that recorded neurons did not express GFP yet were located

within infection sites (Fig. 3.4B). Conditional cpg]5 KO mice injected with control GFP

expressing lentivirus has smaller mEPSC amplitudes compared to injected floxed littermate

controls at P14 as was observed in uninjected animals. Conditional cpgl5 KO mice injected with

CPG15 expressing lentivirus no longer displayed a difference in mEPSC amplitude when

compared to controls suggesting that an acute delivery of exogenous CPG15 can rescue the

mESPC deficit (Fig. 3.4C) indicating that this deficit was not secondary to larger scale wiring

deficits results from early loss of CPG15 expression.

We observed no significant difference in mEPSC frequency between the conditional

cpg]5 KO mice and floxed controls with GFP expression alone. However, with CPG15

expression we observed a significant difference in mEPSC frequency between conditional cpg15

KO mice and floxed littermates (Fig. 3.4D). This appears to be due to a CPG15 overexpression-

mediated increase in mEPSC frequency in floxed mice. This result is similar to experiments in

developing Xenopus optic tectum where even on a WT background CPG15 overexpression

increases mEPSC frequencies in immature tectal neurons (Cantallops et al., 2000).

As we only recorded from uninfected neurons within injection sites, we were able to find
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coexpressing CPG15. (D) Average mEPSC frequencies. (E) Putative synapse (yellow

arrowhead) between an axonal bouton on a GFP labeled infected neuron (left panel), and a spine

on a biocytin filled neuron (middle panel), merged (right). (GFP virus n = 11 Flox, n = 9 CKO

cells; CPG15 virus n = 7 Flox, n = 14 CKO cells; *p < 0.05; ***p < 0.001).



putative synaptic contacts where GFP labeled axons with buoton swellings were positioned in

very close apposition to spines on filled recorded neurons (Fig. 3.4D). The existence of synaptic

contacts between infected and recorded neurons allows for the possibility that CPG15 could be

supplied presynaptically to mediate its effects on synapse maturation.

3.3 DISCUSSION

Here we describe a novel mechanism by which thalamocortical inputs can regulate

maturation of cortical synapses through signaling by the secreted protein CPG15. Immature

thalamocortical synapses are postsynaptically silent, containing only NMDA receptors (Isaac et

al., 1997, Feldman et al., 1999). Throughout postnatal development AMPA receptors are

trafficked into synapses in an activity-dependent manner. Synapse maturation has been shown to

be critical for the proper establishment of thalamocortical circuits. In a mouse mutant lacking

type-1 adenylyl cyclase (AC1) activity, AMPA receptor content in synapses is greatly reduced

(Lu et al., 2003). This mouse mutant is known as barrelless as it has no barrel formation in the

somatosensory cortex demonstrating the critical need for synapse maturation in the establishment

of mature thalamocortical cytoarchitecture despite the proper targeting of thalamic axons to the

cortex in these mice. Presynaptic deficits in synapse function, such as found in the GAP-43

knockout and the RIMla knockout mouse, also correlate with defective thalamocortical

patterning in somatosensory cortex (Lu et al., 2006, Albright et al., 2007).

Molecular signals expressed by the cortex have been shown to be important in regulating

innervation and maturation of thalamic inputs (Lopez-Bendito and Molnar, 2003). In the visual

cortex, Neurotrophin-3, expressed in cortical layer IV, acts as a local trophic signal for thalamic

axons to invade and establish synapses in the cortical plate (Ma et al., 2002). In mouse
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somatosensory cortex BDNF expression regulates the segregation of thalamocortical axons into

barrels by signaling through TrkB receptors localized on thalamic axons (Lush et al., 2005). It

seems that for neurotrophins, expression and release from cortical neurons drives the maturation

of thalamic afferents in the cortex by signaling through receptors expressed on thalamic axons.

Evidence is also emerging that cell-attached molecules such as ephrins are also important for the

establishment and collateralization of thalamocortical projections. Ephrin-A5, which is expressed

in layer IV of somatosensory cortex, can regulate the arborization of thalamic axon terminals

(Mann et al., 2002). A variety of ephrins-As have also been implicated in guiding retinotopic

map development in the visual cortex (Cang et al., 2005). However, CPG15 is the first described

signaling protein in which this role seems to be reversed. Our results suggest that expression and

release of CPG15 from thalamic axons mediates CPG1 5's effects on cortical synapse maturation.

There is evidence suggesting that thalamic signaling through a diffusible factor regulates

the proliferation of cortical precursors in the subventricular zone during embryonic development

(Dehay et al., 2001), as well as their radial migration into the cortex (Edgar and Price, 2001).

These studies implicate a role for thalamic signaling in very early cortical development, while

our study extends this result suggesting even a late stage role for thalamic signaling during

cortical synapse maturation. CPG 15 signaling also plays a role during embryonic corticogenesis

by promoting survival of cortical progenitors (Putz et al., 2005). It is interesting to speculate that

embryonic effects of CPG15 on neuronal precursors might also be mediated by thalamic

secretion of CPG15.

Our results reveal a role for thalamic signaling in late stages of cortical circuit

development during the maturation of excitatory synaptic connections. CPG15 may be released

from thalamic afferents in an activity-dependent manner leading to the stabilization and thus
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maturation of immature cortical synapses. While the relay of peripheral sensory activity to the

cortex by the thalamus has long been known to be important for thalamocortical circuit

development, we propose that it is not solely the conveyance of neuronal activity, but

additionally the secretion of CPG15 by thalamic inputs that aids in the establishment of mature

synaptic connections between the thalamus and the cortex.

3.4 MATERIALS AND METHODS

3.4.1 Animals

All animal work was approved by the Massachusetts Institute of Technology

Committee on Animal Care and conforms to NIH guidelines for the use and care of

vertebrate animals. Generation of cpg]5 KO and cpg15 floxed mice is previously described

(Fujino et al., 2011). To generate cortex-specific cpg]5 KO mice, cpg15 floxed male mice

were crossed with female B6.l29S2-Emx1tm(cre)Krj/J mice (Gorski et al., 2002). PCR

genotyping was used to identify cpg15fl4'x/4o;Emx1-Cre mice and cpg15l""fl" littermate

controls.

3.4.2 Electrophysiology

Acute 300um coronal slices of visual cortex from P10, P14, and P28 day old mice were

prepared with a vibratome (World Precision Instruments) in ice-cold cutting solution containing

(in mM) 238 Sucrose, 26 NaHCO 3, 10 Glucose, 2.5 KCl, 1 NaH2PO4, 3 MgSO 4 and 1 CaCl 2

constantly bubbled with 95% 02/5% CO 2. The slices were transferred to a holding chamber filled

with artificial cerebrospinal fluid (ACSF) containing (in mM) 119 NaCl, 26 NaHCO 3, 10

Glucose, 2.5 KCl, 1 NaH2PO 4 , 1.3 MgSO 4 and 2.5 CaCl 2 constantly bubbled with 95% 02/5%
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CO 2 and recovered at 32*C for half an hour, then at room temperature for half an hour. Slices

were placed in a recording chamber continuously perfused with 32'C ACSF bubbled with 95%

02/5% C0 2 , plus 1OuM pictroxin and luM tetrodotoxin to isolate mEPSCs. Whole cell

recordings were performed with patch pipettes (5-7MQ), containing (in mM) 130 K-gluconate, 4

KCl, 2 NaCl, 10 Hepes, 0.2 EGTA, 4 ATP-Mg, 0.3 GTP-Tris, 7 phosphocreatine-Tris and 10

sucrose, pH 7.25, 290mOsm. For some recordings 0.2% biocytin (Sigma) was also included in

the patch pipette. Layer 2/3 pyramidal neurons were patched under visual guidance with a Nikon

microscope equipped with IR/DIC optics using a black and white CCD camera (CCD-300IFG,

Dage-MTI). Current traces were collected using an AxoPatch 2B amplifier (Axon), digitized at

5kHz by a Digidata 1322A (Axon), and analyzed offline using Clampfit software (Axon). At

least 200 mEPSCs, thresholded at 6pA, were recorded at -70mV from each cell.

3.4.3 Diolisitic labeling in the visual cortex

Brain sections from PlO, P14, P28, and 3-month-old mice were processed for diolistic

labeling as described (Grutzendler et al., 2003) with the following modifications. After rapidly

perfusing mice with 4% paraformaldehyde in PBS (40 ml in 2 min), brains were dissected out

and postfixed for 10 min at room temperature. All brains were coronally sectioned at 150 pm

with a vibratome, and stored in 30% sucrose in PBS. Bullets were prepared by coating tungsten

particles (1.7 pim, Biorad) with DiI (Molecular Probes), then loaded into Tefzel tubing (Biorad)

pretreated with polyvinylpyrrolidone (1 mg/ml in isopropanol, Sigma), and dried with N2. Brain

sections were covered with a tissue culture insert with a 3 m pore size (Greiner), and then shot

with Dil-coated particles using a Helios gene gun system (Biorad) set at 160 psi. Sections were
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postfixed in 4% paraformaldehyde / 30% sucrose in PBS overnight and mounted on glass slides

with Fluoromount-G (Sourthern Biotech, Birmingham, AL). Neurons were imaged with an

Olympus (Melville, NY, USA) FluoView 300 laser-scanning confocal microscope and FluoView

500 acquisition software. For dendrite analysis, stacks 50 um thick stacked were acquired at 2

pm intervals using with a 20x objective lens. Dendritic trees were traced and analyzed with

Neurolucida and Neurolucida Explorer software (MBF Bioscience). For spine analysis, dendrite

segments that were relatively level within the XY plane of the slice were collected in 8 um stacks

with 0.3 um imaging intervals using a 60x lens. Spine images were analyzed with ImageJ

software (http://rsb.info.nih.gov/ij/).

3.4.4 RT-PCR

Total RNA was extracted from neocortex and thalamus dissected from P10, P14, and P28

condition cpgl5 KO and floxed littermate brains using TRIZOL reagent (Invitrogen) according

to the manufacturer's instructions. cDNA was synthesized from lug RNA using the

AffinityScript Multiple Temperature cDNA Synthesis Kit (Stratagene) with random hexamers

according to the manufacturer's instructions. PCR reactions were performed using HotstarTaq

DNA Polymerase (Qiagen) and contained 1x Hotstar Taq buffer, 1mM dNTPs, and luM each

primer. For cpg] 5 amplification primers 5'-GGGCTTTTCAGACTGTTTGC-3' for sense and 5'-

GCTAAAGCTGCCGAGAGAGA-3' for antisense were used with an expected product size of

308 base pairs. For gapdh amplification sense primer 5'-TGACGTGCCGCCTGGAGAAA-3'

and antisense primer 5'-AGTGTAGCCCAAGATGCCCTTCAG-3' were used with an expected

product size of 98 base pairs. PCR conditions were 95*C for 15 minutes, followed by 40 cycles
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of 94*C for 40 seconds, 56*C for 40 seconds, and 72*C for 1 min, followed by 10 minutes at

72'C. PCR reactions were run out on a 2% agarose gel.

3.4.5 Cortical injections of lentivirus

A pFUGW vector (Lois et al., 2002) containing CPG15-FLAG-IRES-EGFP subcloned

downstream of the ubiquitin promoter was used as for in vivo CPG15 expression (Putz et al.,

2005). pFUGW lentivirus was used as the EGFP control. Lentivirus production, concentration

and titer determination were done as described (Lois et al., 2002). Typical titers for in vivo

injections were greater than 1 X 106 pfU/ul.

P4 conditional cpg]5 KO mice and floxed littermates were anesthetized with isoflurane

anesthesia. A small incision was made down the midline of the head then a small hole was

drilled bilaterally over the visual cortex, -2mm lateral to the lambda fissure, using a 1.4mm

carbon steel burr (Fine Science Tools). A pipette puller (Sutter) was used to pull glass capillary

needles (Drummond) with 40 to 50um tips. Five injections of 27.5nL virus were made at depth

of 350um from the pial surface, then 5 more at 250um using a Nanoject II (Drummond

Scientific) for a total of approximately 600nL virus injected in each hemisphere. Incisions were

sutured with size 6-0 nylon monofilament (Hannah Pharmaceutical Supply). Pups were allowed

to recover at 37'C then placed with the dam.

3.4.6 Immunohistochemistry and biocytin staining

Recorded slices were postfixed overnight in 4% paraformaldehyde in PBS at 4'C, then

placed in 30% sucrose in PBS overnight at 4'C for cryoprotection. Slices were frozen in
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powdered dry ice for 5 minutes then thawed at room temperature to aid in permeabilization.

Slices were incubated overnight with Streptavidin-conjugated AlexaFluor 555 (Invitrogen)

diluted 1:500 in PBS containing 0.1% Triton X- 100. They were washed in PBS then blocked for

1-2 hours room temperature in 10% normal goat serum, 1% Triton X-100 in PBS. Slices were

incubated with rabbit anti-GFP (Abcam) diluted 1:3000 overnight at 4'C, washed 3 times in

PBS, then incubated for 2 hours room temperature with anti-rabbit AlexFluor 488 (Invitrogen)

diluted 1:400. All antibodies were diluted in 5% normal goat serum, 0.1% Triton X- 100 in PBS.

Slices were also DAPI stained to visualize cortical layers and mounted with Fluoromount-G

(Southern Biotech). Biocytin-filled and infected neurons were imaged using an Olympus

(Melville, NY, USA) FluoView 300 laser-scanning confocal microscope with FluoView 500

acquisition software.
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4.1 SUMMARY

Protein products of many activity-regulated genes act as important intermediaries

between neuronal activity and synaptic plasticity. Induction of new gene expression is required

for the long-term consolidation of structural and functional changes in neuronal circuits during

development as well as throughout life (Leslie and Nedivi, 2011). The immediate early gene

candidate plasticity gene 15 (cpg]5) is one such gene whose product functions to directly effect

synaptic change in response to activity. Previous work characterizing CPG15 function in the

nervous system has largely been performed using an overexpression paradigm in developing

Xenopus tadpoles (Nedivi et al., 1998, Cantallops et al., 2000, Javaherian and Cline, 2005).

These studies revealed profound effects of CPG15 on enhancing synapse maturation and

dendritic and arbor growth and complexity, most dramatically observed in immature regions of

the developing Xenopus optic tectum (Nedivi et al., 1998, Cantallops et al., 2000). While these

studies have yielded tremendous insight into the role of CPG15 in neuronal synapse and arbor

maturation, overexpression experiments have some limitations. They are able to reveal what

uncharacterized proteins may be capable of doing in the system, however they are unable to

definitively answer what functions novel proteins actually do perform. To form a more

unambiguous picture of how CPG15 works in the vertebrate brain, our lab turned to a loss-of-

function approach by generating a mutant mouse with a genetic ablation of the cpg15 gene

(cpg]5 KO; see Chapter 2)(Fujino et al., 2011).

4.1.1 CPG15 stabilizes synapses to promote synapse and arbor maturation

To understand the mechanism by which CPG15 regulates the maturation of synapses and

arbors in the developing mammalian brain, we began by assaying axon, dendrite, and synapse
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development in cpg15 KO mice compared to WT littermate controls. We found that the

retinogeniculate projection showed delayed growth and elaboration in the dLGN of the thalamus.

In addition in the dentate gyrus of the hippocampus, during development granule cell dendrites

are less complex and synapses are fewer in number and weaker than in WT animals.

Interestingly, these phenotypes are all largely attenuated at later, more mature time points.

However, cpg15 KO neurons did not simply "catch-up" to WT controls later in life. Instead, WT

controls seemed to exhibit initial promiscuous growth followed by extensive pruning and

remodeling. cpg]5 KO neurons on the other hand showed little evidence of such refinement and

did not greatly change over time, resulting in later time points in which the cpg15 KO no longer

appeared different than WT. These results indicate that CPG15 is particularly important for the

establishment of exuberant synapses and arbors during early development. This initial

promiscuous growth provides a physical substrate on which experience-dependent refinement

can then act to sculpt precisely wired brain circuits.

Further analysis using chronic in vivo imaging of GFP expressing neurons in the visual

cortex of adult animals revealed that spines, the major site of excitatory synaptic contacts, are

less stable in cpg15 KO mice compared to WT, suggesting a role for CPG15 in stabilizing

synaptic contacts. Behavioral tests show that adult cpg15 KO mice are slow learners, requiring

repeated training in learning tasks to perform at WT levels. Analysis of developmental and adult

phenotypes in the cpg15 KO led us to propose that the selection and stabilization of synaptic

contacts by CPG15 signaling is critical for the establishment of efficiently wired neuronal

networks.
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4.1.2 Input-derived CPG15 may regulate target synapse development

To test the role of CPG15 in circuit development, I turned to the developing

thalamocortical circuit in the visual system. Primary visual cortex receives visual information

through inputs from the dorsal lateral geniculate nucleus (dLGN) of the thalamus (Saalmann and

Kastner, 2011). The developmental expression pattern of cpg]5 mRNA is spatiotemporally

correlated with periods of synapse formation and refinement (Nedivi et al., 1996, Corriveau et

al., 1999, Lee and Nedivi, 2002). In the thalamocortical circuit CPG15 is expressed first in the

input structure, the thalamus, then following thalamic innervation during periods of

thalamocortical afferent remodeling, in the cortex, the target. CPG15 is therefore poised to act as

an important mediator of circuit formation during periods when inputs converge on their targets.

To dissect the role of input- versus target-derived CPG1 5 signaling in the development of

visual thalamocortical circuits, I used the Cre-loxP system to genetically disrupt CPG15

expression specifically in the cortex. Comparing synapse development in layer 11/III pyramidal

neurons in the visual cortex of the previously generated global cpg15 KO mice with cortex-

specific cpgl5 KO mice, I found a markedly more pronounced reduction in synapse development

when CPG15 was lost throughout the thalamocortical circuit rather than just lost in the cortex.

These results indicate the CPG 15 signaling by thalamic afferents in the cortex critically regulates

cortical synapse maturation. While many cortically expressed cell-attached and diffusible

signaling molecules have been shown to be important for thalamocortical circuit development

(Lopez-Bendito and Molnar, 2003), this reveals a novel mechanism by which inputs from the

thalamus may signal to regulate the development of circuits in the cortex.
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4.1.3 CPG15 in the nervous system

Throughout the mammalian brain CPG15 promotes the maturation of synapses as well as

dendritic and axonal arbors (see Chaper 2 and 3)(Fujino et al., 2011). Results to date suggest that

the primary function of CPG15 signaling is in the selection and stabilization of newly forming

synapses. Synapse stabilization allows for subsequent synapse maturation and also reduces the

retraction of growing neuronal branches at points of stabilized synaptic contacts (Javaherian and

Cline, 2005, Meyer and Smith, 2006). Signaling by CPG15 can likely be regulated by neuronal

activity (Cantallops and Cline, 2008), acting as a positive synapse selector during experience-

dependent remodeling of neuronal circuits. Spatiotemporal expression patterns of CPG15 in the

developing brain correlate well with developmental periods of synapse formation and refinement

(Nedivi et al., 1996, Corriveau et al., 1999, Lee and Nedivi, 2002). In thalamocortical circuit

development CPG15 signaling by thalamic afferents in the cortex may help establish mature

patterns of connectivity (see Chapter 3). However, CPG15's role is not limited to developing

circuits, CPG15 likely remains important into adulthood enabling circuit modifications that

underlie lifelong processes including learning and memory (see Chapter 2)(Fujino et al., 2011).
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4.2 FUTURE DIRECTIONS

4.2.1 Mechanism through which CPG15 promotes thalamocortical synapse maturation

Immature excitatory synapses are often postsynaptically silent, containing only NMDA

receptors (Kerchner and Nicoll, 2008). During development, the activity dependent trafficking of

AMPA receptors converts synapses from silent into mature functional synapses. Thalamocortical

synapse maturation is known to proceed in this manner (Isaac et al., 1997, Feldman et al., 1999)

and synaptic maturation and function has been shown to be critical for the development of

thalamocortical networks (Lu et al., 2003, Lu et al., 2006, Albright et al., 2007).

In Chapter 3, I utilized recordings of spontaneous mESPCs to assess synapse maturation

in both global cpg15 KO mice, lacking CPG15 expression throughout the thalamocortical circuit,

and cortex-specific cpg15 KO mice, lacking CPG15 expression only in the target for thalamic

axons, the cortex. Average mEPSC amplitude provides a correlate for AMPA receptor

containing synapse strength, while frequency can be correlated with synapse number. In these

experiments I found that average mEPSC amplitudes and frequencies were reduced in the global

cpg]5 KO (Fig. 3.1, Chapter 3), however only a transient deficit in mEPSC amplitudes was

observed in the cortex-specific KO (Fig. 3.3, Chapter 3). CPG15 overexpression has previously

been shown to enhance synapse maturation through the incorporation of AMPA receptors into

silent synapses, thus increasing mESPC frequency (Cantallops et al., 2000), therefore these data

strongly suggest that in the without thalamic CPG 15 signaling, AMPA receptors trafficking into

immature cortical synapses is greatly reduced. However, reductions in mEPSC amplitude and

frequency alone cannot prove reduced AMPA receptor synaptic content and the presence of

immature silent synapses.
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To more rigorously test the mechanism by which CPG15 promotes mammalian

excitatory synapse maturation, I plan to do two experiments. First, to test if there are indeed

synapses that do not contain AMPA receptors in the global cpg15 KO I will record depolarize

neurons to record NMDA receptor-mediated mESPCs as well as AMPA receptor-mediated

mESPCs at resting potentials and compare their frequencies. I will perform this experiment at

P28, the time point when I initially observed the deficit in mEPSC frequency. A ratio of NMDA

receptor-mediated mEPSC frequency to AMPA receptor-mediated mESPC frequency above one

is strongly indicative of the presence of silent synapses (Rumpel et al., 2004). I will compare

these ratios between cpg]5 KO mice and WT littermates. Second, I will also measure

AMPA/NMDA ratios by stimulating white matter and recording evoked responses in layer 11/III

pyramidal neurons. By comparing AMPA/NMDA ratios between cpg]5 KO and WT mice I can

determine whether synaptic insertion of AMPA receptors is deficient in the absence of CPG15

signaling. This experiment will also give higher spatial resolution by specifically interrogating

synapses from extracortical inputs, which include thalamocortical afferents. It is possible that I

will find no difference between cpg]5 KO mice and WT littermate controls in these experiments.

If so, then is it likely that the reduction in mEPSC frequency observed in the absence of CPG15

may be due to a reduction in overall synapse numbers and not in deficient synapse maturation.

These proposed experiments will shed light of the role of CPG15 in excitatory synapse

maturation in the mammalian brain and will hopefully confirm previous results from

overexpression studies the developing Xenopus retinotecal system (Cantallops et al., 2000). They

will help resolve ambiguity in interpreting the analysis of mESPCs in the global cpg15 KO (see

Chapter 3), and will additionally address whether defects in the cortex arise specifically at

synapses from extracortical inputs such as the thalamus.
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4.2.2 Rescue of thalamic afferent CPG15 signaling in the cortex

Previously I described a rescue of synaptic deficits by restoring CPG15 expression in the

cortex of cortex-specific cpg15 KO mice using a lentiviral mediated expression system (see

Chapter 3). To prove that CPG15 signaling from thalamic afferents in the cortex can promote

cortical synapse maturation, I plan to employ a similar strategy to rescue CPG15 expression in

the thalamus of global cpg]5 KO mice. By targeting injections of lentivirus expressing CPG15,

or GFP as a control, to the dLGN of global cpg]5 KO mice I can restore thalamic signaling by

CPG15. After allowing sufficient time for expression, I will record from layer II/III pyramidal

neurons at P28 in acute slices of visual cortex from injected cpg]5 KO mice and WT littermates.

This experiment should hopefully attenuate the synaptic phenotypes in mEPSC frequency and

amplitude that occur at P28 in the cpg15 KO thus showing conclusively that thalamic expression

of CPG15 can provide a signal for synapse maturation in the cortex.

4.2.3 Functional consequences of CPG15 signaling in thalamocortical circuits

Much of the work to understand the function of molecules in late stages of patterning of

thalamocortical connectivity has been performed in the somatosensory barrel cortex of rodents.

In this region thalamocortical afferents in layer IV are anatomically arranged into a

somatosensory map of distinct barrel-like structures each corresponding to an individual whisker.

Change in the patterning of the cytoarchitecture of the somatosensory barrel cortex serves as a

useful indicator of thalamocortical connectivity deficits (Lopez-Bendito and Molnar, 2003). In

cats and primates thalamocortical afferents in the primary visual cortical areas develop similarly

distinct anatomical organizations known as ocular dominance columns in which inputs from each

eye are segregated into alternating stripes (Hubel and Wiesel, 1962, Hubel and Wiesel, 1969).
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However, the mouse visual cortex has no detectable columnar arrangement of thalamocortical

inputs, although it is likely that there is some level of columnar organization that cannot be

discerned anatomically (Shatz, 1992).

The segregation of ocular columns can be manipulated by alterations in visual experience

(Hubel et al., 1977), as well as pharmacologically through the application of drugs that affect

neuronal activity (Shaw and Cynader, 1984, Reiter et al., 1986), and even the cortical infusion of

neurotrophins such as BNDF and NGF (Cabelli et al., 1995). Ocular dominance plasticity has

functional correlates whereby the strength of connectivity of inputs from each eye, measured

using in vivo electrophysiological recordings, can be altered by manipulations in visual

experience (Wiesel and Hubel, 1963, Hubel et al., 1977). This functional ocular dominance

plasticity has also been observed in the mouse visual cortex (Gordon and Stryker, 1996).

Monocular deprivation, or the closing of one eye, leads to a depression in cortical responses to

the deprived eye and a potential of responses to the spared eye (Frenkel and Bear, 2004).

Therefore despite the lack of anatomical correlates for thalamocortical connectivity in mouse,

functional paradigms exist through which the development of this circuit can be probed. For

example, BDNF and its cognate receptor TrkB, known to be important for the establishment of

somatosensory barrels in rodents (Lush et al., 2005), as well as ocular dominance columns in cats

(Cabelli et al., 1995), are also important for functional ocular dominance plasticity in mouse

visual cortex (Hanover et al., 1999, Huang et al., 1999).

To establish a definitive role for CPG15 in the development and refinement of

thalamocortical circuitry in the mouse visual cortex, it will be important to test the role of

CPG15 in ocular dominance plasticity. Optical imaging of intrinsic signals has recently been

developed as a method to examine retinotopic maps as well as to measure ocular dominance
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plasticity in the visual cortex of mice (Kalatsky and Stryker, 2003, Cang et al., 2005). Our lab

has recently acquired an optical imaging system and would be able to perform such experiments.

It can be hypothesized that the global cpg15 KO mouse would display reduced cortical plasticity

due to a failure to stabilize synapse and mature new connections forming between the spared eye

and cortical neurons. However, if thalamic-mediated CPG15 signaling is important for the

organization of thalamocortical connectivity, then it is likely that the cortex-specific cpg]5 KO

mouse will not show deficits in ocular dominance plasticity. This would provide more definitive

evidence for CPG15 signaling by thalamic inputs guiding the wiring of thalamocortical circuits

during development.
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A.1 RESULTS

A.1.1 Spine density in the visual cortex of cpg15 KO mice

The frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs)

recorded from layer II/III pyramidal neurons in primary visual cortex of cpg]5 KO mice is lower

than WT littermates at postnatal day 28 (P28) (see Chapter 3). This suggests that cpg]5 KO

neurons may have fewer functional, AMPA receptor-containing synapses than controls, or

possibly fewer synapses in general, (AMPA receptor-containing, as well as "silent" NMDA

receptor-only synapses). Spines are often used as a correlate of excitatory synapses. Therefore

we measured the density of spines on layer II/III pyramidal neuron basal dendrites using diolistic

labeling of neurons in slices. Three ages were assessed, P10, P28, and 3 months. Normally, spine

density in the visual cortex greatly increases after P10 in correlation with a large amount of

synaptogenesis reaching mature levels around the second week postnatal (Miller, 1981). There

was no difference in spine density between cpg]5 KO mice and WT littermates at any age (Fig.

A. 1). This result supports a role for CPG15 that is downstream of spinogenesis. Previously we

have shown using electron microscopy that in the dentate gyrus (DG) of the hippocampus while

there is no difference in the density of spines and spine-like protrusions, there is a 26% reduction

in the density of spine synapses in cpg15 KO mice compared to controls (see Chapter 2)(Fujino

et al., 2011). This suggests that while spines may normally be a useful approximation of

excitatory synapses, this may not be the case when examining synaptic phenotypes involving

proteins such as CPG15 that likely play a role in synapse biogenesis downstream of

spinogenesis. Further work is needed to determine whether the reduction in mESPC frequencies
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Figure A.1 Spine density on basal dendrites of layer II/III pyramidal neurons in cpg15 KO

mice. (A) Representative examples of diolistic labeling of spines on segments of dendrites at

ages P1O, P28, and 3 months. Scale bar is 10um. (B) Quantification of spine densities for cpg15

KO mice and WT littermates. (P1O n = 8 mice, 625 spines for WT, n = 4 mice, 462 spines for

KO; P28 n = 7 mice, 2303 spines for WT, n = 7 mice, 2247 spines for KO; 3 months n = 4

animals, 1163 spines for WT, n = 5 animals, 1075 spines for KO).
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in the visual cortex of cpg]5 KO mice is due to a reduction in overall synapse density or in

functional AMPA receptor-containing synapses.

A.1.2 Other electrophysiological measurements of pyramidal neurons in the visual cortex

In addition to analysis of mEPSCs recorded from layer II/III pyramidal neurons in the

primary visual cortex of global and conditional cpg]5 KO mice, we also assessed other

parameters that are known to change as pyramidal neurons mature. The resting potential of

pyramidal neurons gradually becomes more hyperpolarized during postnatal development, and as

the cells add additional ionotropic channels, the membrane resistance also decreases (Etherington

and Williams, 2011, Maravall et al., 2004). We measured both of these parameters in global and

conditional cpg15 KO mice at the same ages that mEPSC analysis was performed, P10, P14, and

P28. We found no significant differences between KO and WT littermate controls at any ages for

either parameter except at P14 conditional cpg]5 KO mice show slightly lower (more

hyperpolarized) resting membrane potentials than their WT counterparts (Fig. A.2). Interestingly

this is the same age at which the only mEPSC phenotype was observed in the conditional cpg]5

KO line. We found decreased mEPSC amplitudes at P14 (see Chapter 3). All mEPSCs were

recorded from cells clamped at -70mV to ensure that membrane potential did not affect mESPC

amplitudes. While changes in membrane resistance could affect mEPSC amplitudes this

difference was not observed (Fig. A.2).
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Figure A.2 Membrane resistance and membrane potential in layer II/III pryamidal

neurons of global and conditional cpg15 KO mice. Membrane resistance in layer 2/3

pyramidal neurons in the primary visual cortex of global cpg]5 KO mice compared to WT

controls, (A) and conditional cpg]5 KO mice compared to floxed controls (B). Membrane

potentials from the same neurons in global cpg]5 KO mice and WT controls, (C), and

conditional cpg15 KO mice and controls, (D). (*p < 0.05).
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A.2 MATERIALS AND METHODS

A.2.1 Diolistic labeling and counting of spine density

Please see Chapter 3 Materials and Methods for a description of diolistic labeling of layer

2/3 pyramidal neurons in the primary visual cortex. Segment of basal dendrites from labeled

neurons were imaged with an Olympus (Melville, NY, USA) FluoView 300 laser-scanning

confocal microscope and FluoView 500 acquisition software. For spine analysis, dendrite

segments that were relatively level within the XY plane of the slice were collected in 8 um stacks

with 0.3 um imaging intervals using a 60x lens. Spine images were analyzed with ImageJ

software (http://rsb.info.nih.gov/ij/). Only spine densities on secondary and tertiary branch

segments were included in the analysis.

A.2.2 Electrophysiology

Please see Chapter 3 Materials and Methods for a description of whole-cell patch clamp

electrophysiology. Membrane potentials were recorded immediately after cells were successfully

patched. Membrane resistance was recorded from cells held at -70mV prior to the start of

mEPSC recordings using the "Membrane Test" function in pCLAMP 9 (Axon Instruments).

127



A.3 REFERENCES

Etherington, S. J. & Williams, S. R. 2011. Postnatal development of intrinsic and synaptic
properties transforms signaling in the layer 5 excitatory neural network of the visual
cortex. JNeurosci, 31, 9526-37.

Fujino, T., Leslie, J. H., Eavri, R., Chen, J. L., Lin, W. C., Flanders, G. H., Borok, E., Horvath,
T. L. & Nedivi, E. 2011. CPG15 regulates synapse stability in the developing and adult
brain. Genes Dev, 25.

Maravall, M., Stern, E. A. & Svoboda, K. 2004. Development of intrinsic properties and
excitability of layer 2/3 pyramidal neurons during a critical period for sensory maps in rat
barrel cortex. JNeurophysiol, 92, 144-56.

Miller, M. 1981. Maturation of rat visual cortex. I. A quantitative study of Golgi-impregnated
pyramidal neurons. JNeurocytol, 10, 859-78.

128


