
MIT Open Access Articles

Identification of Potent EGFR Inhibitors 
from TCM Database@Taiwan

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Yang, Shun-Chieh et al. “Identification of Potent EGFR Inhibitors from TCM 
Database@Taiwan.” Ed. James M. Briggs. PLoS Computational Biology 7.10 (2011): e1002189. 
Web. 26 Apr. 2012.

As Published: http://dx.doi.org/10.1371/journal.pcbi.1002189

Publisher: Public Library of Science

Persistent URL: http://hdl.handle.net/1721.1/70415

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/70415
http://creativecommons.org/licenses/by/2.5/


Identification of Potent EGFR Inhibitors from TCM
Database@Taiwan
Shun-Chieh Yang1, Su-Sen Chang1, Hsin-Yi Chen2, Calvin Yu-Chian Chen1,2,3*

1 Laboratory of Computational and Systems Biology, School of Chinese Medicine, China Medical University, Taichung, Taiwan, 2 Department of Bioinformatics, Asia

University, Taichung, Taiwan, 3 China Medical University Beigang Hospital, Yunlin, Taiwan

Abstract

Overexpression of epidermal growth factor receptor (EGFR) has been associated with cancer. Targeted inhibition of the
EGFR pathway has been shown to limit proliferation of cancerous cells. Hence, we employed Traditional Chinese Medicine
Database (TCM Database@Taiwan ) (http://tcm.cmu.edu.tw) to identify potential EGFR inhibitor. Multiple Linear Regression
(MLR), Support Vector Machine (SVM), Comparative Molecular Field Analysis (CoMFA), and Comparative Molecular
Similarities Indices Analysis (CoMSIA) models were generated using a training set of EGFR ligands of known inhibitory
activities. The top four TCM candidates based on DockScore were 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-
feruloyl tartaric acid, and all had higher binding affinities than the control IressaH. The TCM candidates had interactions with
Asp855, Lys716, and Lys728, all which are residues of the protein kinase binding site. Validated MLR (r2 = 0.7858) and SVM
(r2 = 0.8754) models predicted good bioactivity for the TCM candidates. In addition, the TCM candidates contoured well
to the 3D-Quantitative Structure-Activity Relationship (3D-QSAR) map derived from the CoMFA (q2 = 0.721, r2 = 0.986)
and CoMSIA (q2 = 0.662, r2 = 0.988) models. The steric field, hydrophobic field, and H-bond of the 3D-QSAR map were
well matched by each TCM candidate. Molecular docking indicated that all TCM candidates formed H-bonds within the
EGFR protein kinase domain. Based on the different structures, H-bonds were formed at either Asp855 or Lys716/
Lys728. The compounds remained stable throughout molecular dynamics (MD) simulation. Based on the results of this
study, 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid are suggested to be potential EGFR
inhibitors.
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Introduction

Target-specific therapies have generated much attention in

addition to conventional cancer treatments [1–3]. By targeting key

molecules essential for cellular function, replication, or tumori-

genesis, such therapies may exert cytostatic or cytotoxic effects on

tumors while minimizing nonspecific toxicities associated with

chemotherapy or irradiation [4].

The epidermal growth factor receptor (EGFR) signaling

pathway is one of the most important pathways in mammalian

cells [5]. Specific ligands, such as epidermal growth factor (EGF)

and transforming growth factor alpha (TGFa), bind and activate

EGFR, triggering autophosphorylation of the intracytoplasmic

EGFR tyrosine kinase domain [6,7]. The phosphorylated tyrosine

kinase residues serve as binding sites for signal transducers and

activators of intracellular substrates, which then stimulate

intracellular signal transduction cascades that upregulate biolog-

ical processes such as gene expression, proliferation, angiogenesis,

and inhibition of apoptosis [8]. EGFR overexpression has been

shown to activate downstream signaling pathways, resulting in

cells that have aggressive growth and invasive characteristics [9].

Tumor cell motility, adhesion, metastasis, and angiogenesis have

also been associated with stimulated EGFR pathways [10–12].

Since EGFR over-expression often differentiates tumor cells from

normal cells, it is possible for EGFR inhibitory molecules to act on

tumor cells and attenuate their proliferation rates [4].

Several tyrosine kinase inhibitors were approved for clinical use.

IressaH (gefitinib) is highly selective for EGFR tyrosine kinase and

is commonly used for treating lung cancer [13]. EGFR

downstream signaling is competitively inhibited by IressaH at its

ATP binding site [14]. Other therapeutic agents with inhibitory

mechanisms similar to IressaH include Erlotinib (TarcevaH) against

non-small cell lung cancer (NSCLC) and pancreatic cancer

[15,16], and Vandetanib (ZactimaH) against late stage medullary

thyroid cancer [17]. Lapatinib (TykerbH) is a dual inhibitor of

EGFR and HER2 tyrosine kinases approved for metastatic breast

cancer [18,19]. Though the effect of IressaH on lung cancer has

been well established, severe side effects has also been reported

[20]. Adverse reactions listed under IressaH product information

include diarrhea, skin rash and dryness, nausea, vomiting,

haemorrhage, anorexia, asthenia, and in some cases, interstitial

lung disease with fatal outcomes [21]. The adverse effects of

PLoS Computational Biology | www.ploscompbiol.org 1 October 2011 | Volume 7 | Issue 10 | e1002189



available treatments necessitate continuous search efforts for

alternatives with less toxicity.

Computational predictions in biology and biomedicine are of

significant importance for generating useful data which otherwise

be time-consuming and costly through experiments alone [3,22–

27]. Computational predictions, combined with information

derived from structural bioinformatics analysis, can provide useful

insights and timely information for both basic research and drug

development [28,29]. Much cutting-edge cancer drug develop-

ment has been conducted through the use of computational

bioinformatics and modeling [30–37]. The powerful ability of

modern computational prediction and bioinformatics were

adopted in this research to search for novel EGFR inhibitors.

Traditional Chinese medicines (TCM) are natural substances

with therapeutic effects on many diseases [38–40]. The vast

number of TCM represents a rich resource that can be explored

for drug development. We had investigated kinase inhibitor

candidates from TCM targeting HER2 and HSP90 receptors

before [28,41–42]. Though EGFR kinase inhibitors have been

investigated through different screening and modeling scenarios

[43–47], none from TCM compounds has been reported to date.

This study utilized the world’s largest TCM Database@Taiwan

[48] to screen for potential EGFR inhibitors from TCM

compounds and applied structure- and ligand-based methods to

evaluate the suitability of candidates as EGFR inhibitors.

Materials and Methods

A useful predictor for a biological system should include the

following steps [49]: (i) selection of a valid dataset to train and test the

predictor; (ii) formulate samples with an effective mathematical

expression that reflects intrinsic correlation with the attribute to be

predicted; (iii) develop a powerful algorithm to operate the prediction;

(iv) objectively evaluate accuracy of the predictor through cross-

validation tests. The experimental design of the current study follows

these guidelines and details are explained in the following sections.

EGFR Protein Sequence, Structure, and Characteristics
The EGFR protein sequence (EGFR_HUMAN, P00533) used in

this study was obtained from Swiss-Prot [50], and the 3D structure

(PDB: 2ITY) [51] used for analyses was downloaded from Protein

Data Bank. The tyrosine kinase was encoded from Phe712-Leu979,

and the ATP binding site was located at Leu718–Val726.

Candidate Screening and Docking Studies
The Traditional Chinese Medicine (TCM Database@Taiwan,

url: ) database (http://tcm.cmu.edu.tw) was used to screen for

potential EGFR inhibitors from more than 20,000 compounds

within the database. All compounds were operated using the

Prepare Ligands module with Lipinski’s rule of five using

Discovery Studio 2.5 (DS 2.5; Accelrys Inc., San Diego, CA).

IressaH was selected as the control. The LigandFit program (DS

2.5) was used to locate the best docking pose for different

confirmations under the Chemistry at HARvard Macromolecular

Mechanics (CHARMm) force field [52]. Results for the docking

studies were ranked according to Dock Score.

Descriptor Generation Using Genetic Function
Approximation (GFA) Algorithm

Twenty ligands with demonstrated inhibition against EGFR

were used in this study (Table S1) [53]. Descriptors for each ligand

were identified using the Calculate Molecular Properties program

in DS 2.5. Predictive models containing five optimum descriptors

were generated using the Genetic Function Approximation (GFA)

algorithm. Descriptors in the model with the highest r2 value were

used to construct ligand activity prediction models.

Ligand Activity Predictions Using Multiple Linear
Regression (MLR) and Support Vector Machines (SVM)

A MLR model using the descriptors from the top GFA algorithm

was constructed using Matlab Statistics Toolbox (MathWorks,

Natick, MA) and validated using MLR Leave-One-Out validation

[54]. The MLR model was trained with 17 randomly selected

ligands with EGFR inhibitory activity (Table S1) and used to predict

the activity (pIC50) of the control and TCM candidates.

The identical descriptors were normalized to the range of

[21,+1] and plugged into the libSVM program to generate a

SVM prediction model[55]. Following model training with the 17-

ligand training set, the SVM model was used to predict the activity

of the control and TCM candidates.

3D Quantitative Structure-Activity Relationship (QSAR) Model
Ligands used in the previous sections were also used for 3D-

QSAR analysis. The 2-dimensional (2D) and 3-dimensional (3D)

ligand structures were drawn with ChemBioOffice 2008 (Perki-

nElmer Inc., Cambridge, MA) under a Molecular Mechanics 2

(MM2) force field. Following ligand alignment, Comparative

Molecular Field Analysis (CoMFA) and Comparative Molecular

Similarities Indices Analysis (CoMSIA) models were constructed

using partial least squares statistical method (PLS). Cross-

Validated (CV) correlation coefficient (q2) and non-cross-valida-

tion correlation coefficient (r2) were used to validate the models.

Biological activities of IressaH and TCM candidate compounds

were predicted using the generated 3D-QSAR contour map.

Molecular Dynamics Simulation
Molecular dynamics (MD) of IressaH and the TCM candidates

were simulated using DS2.5 Standard Dynamics Cascade and

Dynamics package. Sample preparation was conducted under the

following parameters: [minimization] steepest descent and conjugate

gradient: each with maximum steps of 500, [heating time] 50 ps,

[equilibration time] 200 ps. The simulations were produced with a

total production time of 20 ns with NVT, constant temperature

dynamics of Berendsen weak coupling method, a temperature decay

Author Summary

Tumor growth is associated with overexpression of
epidermal growth factors receptors. Targeted control of
EGFR by EGFR inhibitors is an attractive therapy alternative
to conventional cancer treatment that offers specificity and
reduced adverse effects. The purpose of this study was to
identify natural compounds from traditional Chinese
medicine that may be used as EGFR inhibitors. The top
four TCM compounds with the highest binding affinity to
EGFR were selected and their suitability as EGFR inhibitors
confirmed with different statistical prediction models. The
candidate compounds had higher bioactivity than IressaH,
the drug that is clinically used. The TCM compounds also
met key structural components that were characteristic
among known inhibitors. In addition, the binding between
TCM compounds and EGFR were stable which is a
fundamental requirement for any targeting drug. Results
from bioactivity prediction, structural component matching,
and binding stability all point to the possibility of these TCM
compounds as suitable EGFR inhibitor candidates.

Potent EGFR Inhibitors from TCM Database@Taiwan
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time of 0.4 ps, and a target temperature of 310K. Root mean square

deviations (RMSD) of protein-ligand complex and individual

ligands, total energy of protein-ligand complex, hydrogen bond

(H-bond), and H-bond distance were analyzed using the Analyze

Trajectory function following MD simulation.

Results/Discussion

Candidate Screening and Docking Studies
The top four TCM candidates with the highest Dock Score were

2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl

tartaric acid (Table 1). Corresponding scaffolds of the top TCM

candidates are illustrated in Figure 1. IressaH, Emitine, and

Rosmaricine had amine groups available for H bonding whereas

2-O-Caffeoyl tartaric acid and 2-O-feruloyl tartaric acid had

carbonyl groups. The different residues available for H bonding

resulted in different binding poses (Figure 2). Binding of IressaH
(Figure 2a), Emitine (Figure 2c), and Rosmaricine (Figure 2e) to

tyrosine kinase were located within the pocket, with H-bonds

formed between the amine group of the ligand compounds and the

carboxyl group of Asp855. 2-O-Caffeoyl tartaric acid (Figure 2b)

and 2-O-feruloyl tartaric acid (Figure 2e) docked outside the

tyrosine kinase pocket and formed multiple H-bonds through their

carboxyl groups with Lys716 and Lys728. The binding location of

2-O-caffeoyl tartaric acid and 2-O-feruloyl tartaric acid directly

blocks the ATP binding site of tyrosine kinase located from Leu718–

Val726. Dock scores of each TCM candidate is given in Table 1. All

candidates have higher dock scores than IressaH, indicating higher

binding affinities to the tyrosine kinase receptor than IressaH.

Ligand Activity Predictions Using MLR and SVM
Representative descriptors from the top GFA algorithm include:

Num_H_Acceptors_Lipinski (equivalent of N+O count), Molecu-

lar_SurfaceArea (the total surface area for each molecule using a

2D approximation), Kappa_1 (Kappa Shape Indices), PMI_Y

(principle moment of inertia Y-component), and Shadow Xlength

(length of molecule in the X dimension). The descriptors were

validated using Leave-One-Out method which is the most

objective of all available cross-validation methods [56]. The

MLR model established with the determined descriptors was:

pIC50~6:7148{0:4477 �Num H Acceptors Lipinski{0:0800�

Molecular SurfaceAreaz1:5172 �Kappa 1z0:00027466�

PMI Y{0:0452 � Shadow Xlength

The SVM model was also established with the five identified

descriptors using libSVM.

Table 1. Docking score and biological activity predictions of
top TCM candidates in comparison with the control.

Predicted Activity (pIC50)

Compounds Dock Score MLR SVM

2-O-Caffeoyl tartaric acid 118.065 8.386 7.041

Emetine 113.424 5.548 7.140

Rosmaricine 105.149 4.543 7.463

2-O-Feruloyl tartaric acid 104.284 8.359 7.242

Iressa* 60.791 6.715 5.110

*control.
doi:10.1371/journal.pcbi.1002189.t001

Figure 1. Scaffolds of the control and TCM compounds. (A) Iressa, (B) 2-O-Caffeoyl tartaric acid, (C) Emetine, (D) Rosmaricine, and (E) 2-O-
Feruloyl tartaric acid.
doi:10.1371/journal.pcbi.1002189.g001

Potent EGFR Inhibitors from TCM Database@Taiwan
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Correlation between the predicted and observed pIC50 activities

on EGFR ligands of known activity using the constructed MLR

and SVM models were illustrated in Figure 3a and 3b,

respectively. Correlation coefficients based on the training set

were 0.7858 for the MLR model and 0.8754 for the SVM model.

Activity predictions of IressaH and the TCM candidates using

MLR and SVM were summarized in Table 1. Both models

indicate that Iressa and the TCM candidates are compounds with

acceptable predicted activities. Predicted activities (pIC50) of Iressa

by the trained MLR and SVM models were 6.715 and 5.110,

respectively. The Iressa activity predicted by SVM was closer to

experimentally determined Iressa activities (pIC50) between 4.76–

5.96 [57], thus SVM values may be more accurate predictions of

the actual activity.

Figure 2. Docking pose of different compounds in EGFR using LigandFit. (A) Iressa, (B) 2-O-Caffeoyl tartaric acid, (C) Emetine, (D)
Rosmaricine, and (E) 2-O-Feruloyl tartaric acid. Binding site amino acids are shown in red (negatively charged amino acids) and blue (positively
charged amino acids). Hydrogen bonds are color coded based on bond distance: 1.6–1.8Å (orange), 1.8–2.0Å (yellow), 2.0–2.2Å (light green), 2.2–2.4Å
(neon green), and 2.4–2.5Å (dark green).
doi:10.1371/journal.pcbi.1002189.g002

Potent EGFR Inhibitors from TCM Database@Taiwan

PLoS Computational Biology | www.ploscompbiol.org 4 October 2011 | Volume 7 | Issue 10 | e1002189



3D QSAR Model
The results of CoMFA and CoMSIA model generation are

detailed in Table 2. Steric field was the sole factor in the CoMFA

model since the electrostatic field value was zero. Cross-validated

(q2) and non-cross-validated (r2) correlation coefficient values of

0.721 and 0.986, respectively, indicated a high level of confidence

for this model. The small standard error of estimates (SEE) and

large F-test value further supported the reliability of this model. In

contrast, CoMSIA models were influenced by multiple factors

including steric field, hydrophobic region, and hydrogen bond

donor/acceptors. Among all generated versions of the CoMSIA

model, CoMSIA_SHD had the highest r2 (0.988), lowest SEE

(0.133), and highest F value (134.272), thus was selected as the

optimum CoMSIA model for use in this study. The pIC50 of 20

ligands predicted by the constructed CoMFA and CoMSIA

models were compared with observed pIC50 reported by Fidanze

et al. [53] in Table 3. In general, both models gave similar

predicted values and were close to the experimentally determined

activities. Correlations between predicted and observed pIC50

using CoMFA and CoMSIA models are summarized in Figure 4a

and 4b, respectively. High correlation coefficients validated the

reliability of the constructed CoMFA (r2 = 0.9860) and CoM-

SIA(r2 = 0.9877) models.

Ligand activities of IressaH and the TCM candidates can be

predicted based on structural conformation to the 3D-QSAR

feature map, including features in steric field, hydrophobic field,

and H-bond donor/acceptor characteristics. As illustrated in

Figure 5, Iressa and the TCM candidates were able to match the

generated 3D-QSAR model features. The benzene in IressaH
favored steric and hydrophobic fields, and H-bond was favored

between its amine group and Asp855. In 2-O-Caffeoyl tartaric

acid, the benzene structure favored steric and hydrophobic

fields, and the carboxyl group favored H-bond formation with

Lys716 and Lys728. The carbon chain structure in Emetine

contoured to the steric and hydrophobic fields, and the amine

group favored H-bond formation with Asp855. Rosmaricine had

benzene and isopropyl structures that favored steric and

hydrophobic fields, and an amine group that favored H-bond

with Asp 855. The benzene structure in 2-O-feruloyl tartaric

acid favored steric fields and the carboxyl group favored H-bond

formations with Lys716 and Lys728. IressaH and the TCM

candidates have structural components that contour to the

features of the 3D-QSAR model, thus were likely to be

biologically active.

Figure 3. Correlation of observed and predicted activity (pIC50)
using 2D-QSAR models. (A) MLR and (B) SVM.
doi:10.1371/journal.pcbi.1002189.g003

Table 2. CoMFA and CoMSIA models as a factor of various
fractions and the corresponding validation values.

Cross
validation

Non-cross
validation Fraction

ONC q2
cv r2 SEE F S H D A

CoMFA 6 0.721 0.986 0.142 117.843 1.00 - - -

CoMFA

S 6 0.764 0.975 0.189 65.257 1.00 - - -

H 6 0.331 0.980 0.168 83.249 - 1.00 - -

D 6 0.236 0.945 0.281 28.780 - - 1.00

A 6 20.344 0.784 0.558 6.034 - - - 1.00

SH 6 0.541 0.986 0.141 118.218 0.37 0.63 - -

SD 6 0.615 0.982 0.159 92.965 0.48 - 0.52 -

SA 6 0.718 0.977 0.180 72.008 0.53 - - 0.47

HD 6 0.569 0.982 0.160 91.804 - 0.56 0.44 -

HA 6 0.265 0.979 0.176 76.040 - 0.60 - 0.40

DA 6 0.003 0.956 0.250 36.635 - - 0.60 0.40

SHD* 6 0.662 0.988 0.133 134.272 0.26 0.40 0.35 -

SHA 6 0.441 0.983 0.156 96.519 0.26 0.42 - 0.33

SDA 6 0.664 0.979 0.173 78.179 0.33 - 0.38 0.30

HDA 6 0.543 0.979 0.175 76.649 - 0.42 0.32 0.26

SHDA 6 0.665 0.985 0.148 107.106 0.20 0.31 0.27 0.22

ONC: Optimal number of components.
SEE: Standard error of estimate.
F: F-test value.
PLS: partial least squares.
S: Steric.
H: Hydrophobic.
D: Hydrogen bond donor.
A: Hydrogen bond acceptor.
*: CoMISA model selected for 3D-QSAR simulation.
doi:10.1371/journal.pcbi.1002189.t002
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Molecular Dynamics Simulation
Binding stability of the control and TCM candidates was

validated using MD simulation. RMSDs of protein-ligand complex

(Figure 6a) and individual ligand (Figure 6b) stabilized after 10 ns.

The RMSDs of the protein-ligand complexes stabilized at

approximately 1.6Å. With regard to individual ligands, the RMSDs

of Iressa and 2-O-caffeoyl tartaric acid was 2.0 and 1.6Å,

respectively. All other compounds registered RMSD values of

approximately 1.0Å. The lower RMSD values of the TCM

candidates suggest more stability within the receptor compared to

Iressa. The energy trajectory of each compound is shown in

Figure 6c. Complexes formed by Rosmaricine and 2-O-feruloyl

tartaric acid had the lowest total energy (,214,800 kcal/mol),

followed by IressaH and Emetine (approximately 214,700 kcal/

mol), and 2-O-caffeoyl tartaric acid (214,600 kcal/mol). Stabiliza-

tion of total energy in ligand-protein complexes was achieved after

12 ns.

H-bond distance profiles in the EGFR receptor were

summarized in Figure 7. A single H-bond between the amine

group on IressaH and the carboxyl group on Asp855 was formed

after 9.74 ns and stabilized after 20 ns (Figure 7a). Two H-

bonds were formed between the carboxyl group of 2-O-caffeoyl

tartaric acid and Lys716 and Lys728 of the EGFR receptor

(Figure 7b). The formation of two H-bonds contributed to a

higher stability between 2-O-caffeoyl tartaric acid and the

EGFR receptor. However, an increase in H-bond distance was

observed towards the end of the 20 ns simulation period,

suggesting a weakening of the H-bond at Lys728. Emetine

formed a total of four H-bonds with the receptor, two with

Asp722 and two with Ala855 (Figure 7c). Bond distances

stabilized after 10 ns for Ala722 and 4 ns for Asp855.

Rosmaricine formed three H-bonds each at Asp841 and

Arg855 (Figure 7d). The multiple H-bonds enabled Rosmaricine

to remain in a stable state within the protein. 2-O-Feruloyl

tartaric acid also formed multiple H-bond at Lys716 and

Lys728, enhancing its stability within the receptor site

(Figure 7e). However, similar to 2-O-caffeoyl tartaric acid, an

increase in H-bond distance was also observed at Lys728 for 2-

O-feruloyl tartaric acid. These observations suggest that the

bond at Lys728 weakens throughout the MD simulation process,

and that the H-bond at Lys716 may be the primary bond for 2-

O-caffeoyl tartaric acid and 2-O-feruloyl tartaric acid. In

addition, periodic fluctuations in H-bond distances were

observed in 2-O-caffeoyl tartaric acid, Rosmaricine, and 2-O-

feruloyl tartaric acid. These phenomena can be attributed to the

rotation of the amine group where the H-bond is formed. These

Table 3. Observed and predicted activities of EGFR ligands
using the constructed CoMFA and CoMSIA models.

CoMFA CoMSIA

Comp.
Observed
pIC50

*
Predicted
pIC50 Residual

Predicted
pIC50 Residual

1 6.620 6.571 0.049 6.600 0.020

2 7.081 7.192 20.111 7.230 20.149

3 7.260 7.234 0.026 7.147 0.113

4 6.638 6.394 0.244 6.522 0.116

5 8.102 8.337 20.235 8.275 20.173

6 8.721 8.508 0.213 8.493 0.228

7 6.060 5.940 0.120 6.012 0.048

8 6.180 6.237 20.057 6.247 20.067

9 7.000 6.893 0.107 6.952 0.048

10 6.721 6.828 20.107 6.717 0.004

11 7.201 7.293 20.092 7.322 20.121

12 8.208 8.149 0.059 7.806 0.402

13 9.108 9.077 0.031 9.167 20.059

14 9.018 9.059 20.041 9.023 20.005

15 8.638 8.563 0.075 8.566 0.072

16 7.252 6.377 0.875 6.012 1.240

17 7.244 7.210 0.034 7.159 0.085

18 7.796 7.790 0.006 7.710 0.086

19 7.620 7.744 20.124 7.729 20.109

20 8.194 8.089 0.105 8.216 20.022

*: Experimental values of ligand bioactivity adapted from Ref [53].
doi:10.1371/journal.pcbi.1002189.t003

Figure 4. Correlation of observed and predicted activity (pIC50)
using 3D-QSAR models. (A) CoMFA and (B) CoMSIA.
doi:10.1371/journal.pcbi.1002189.g004

Potent EGFR Inhibitors from TCM Database@Taiwan
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MD results support our docking findings which identify Asp855,

Lys716, and Lys 728 as key residues for docking.

As determined in the CoMSIA model, hydrophobic interactions

were key factors contributing to ligand bioactivity. Toward the

final 20 ns of analysis, hydrophobic amino acids surrounding the

docking region were Leu718, Val726, Ala743, Cys775, Phe795,

Cys797, and Leu844. The hydrophobic subgroups of IressaH,

Emetine, and Rosmaricine were surrounded by Val726, Cys797,

and Leu844 (Figure 8a). Hydrophobic groups of 2-O-caffeoyl

tartaric acid were also surrounded Val726, Cys797, and Leu844

(Figure 8b). The hydrophobic region of 2-O-feruloyl tartaric acid

was attracted to the Phe795 on EGFR (Figure 8b). The

significance of matching the hydrophobic region of the ligand

to that of the receptor may be to increase stability of the

Figure 5. Structural contouring of different compounds to 3D-QSAR mapping. (A) Iressa, (B) 2-O-Caffeoyl tartaric acid, (C) Emetine,
(D) Rosmaricine, and (E) 2-O-Feruloyl tartaric acid. 3D-QSAR features are represented by the following: steric field favor/disfavor (green/
yellow), hydrophobic field favor/disfavor (cyan/white), and hydrogen bond donor avor/disfavor (magenta/orange). Bond distances are shown
in yellow.
doi:10.1371/journal.pcbi.1002189.g005
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ligand-protein complex, and contribute to the bioactivity of the

activated ligand. Our results indicate that IressaH and the TCM

candidates remained stable within the EFGR hydrophobic area

following MD simulations.

Conclusion
Structural and ligand based methods supported 2-O-caffeoyl

tartaric acid, Emetine, Rosmaricine, and 2-O-feruloyl tartaric

acid as potential EGFR inhibitors. Structurally, the TCM

candidates were capable of forming H-bonds with key residues

Asp855, Lys716, and Lys728 and matched hydrophobic regions

of the receptor. Bioactivity of the candidates were evaluated

using validated MLR, SVM, CoMFA, and CoMSIA models.

All models indicated that the TCM candidates have good

predicted bioactivity. Molecular simulation results further

supported the high potential for the TCM candidates in drug

development. IressaH, the drug currently used clinically, bound

to the ERGF receptor through a single H-bond at Asp855. In

comparison, multiple H-bonds formed at Asp855 and addi-

tional H-bonds formed at Ala722 and Arg841 increase the

stability of Emetine and Rosmaricine, respectively. The ability

of carboxyl groups in 2-O-caffeoyl tartaric acid and 2-O-

feruloyl tartaric acid to form multiple H-bond networks that

directly blocked the ATP binding site was also a unique

characteristic worthwhile of further investigation. Contour to

hydrophobic regions of the TCM candidates within the

receptor site provides additional support for the stability of

the protein-ligand complex. In summary, using different

simulation and validation methods, we have identified four

TCM compounds that may have potential as novel EGFR

inhibitors. As the four TCM compounds have two distinctive

types of binding locations and bond formation within the

EGFR binding site, we suggest exploring the possibility of

connecting Emetine/Rosmaricine with 2-O-caffeoyl tartaric

acid/2-O-feruloyl tartaric acid through a spacer. The connec-

tion could allow more of points of attachment, which in turn

would contribute to more stable binding within the tyrosine

kinase site.

Figure 6. RMSD and total energy during MD simulation. (A)
Protein-ligand complex RMSD (Å), (B) ligand RMSD (Å) and (C) total
energy of protein-ligand complex.
doi:10.1371/journal.pcbi.1002189.g006

Figure 7. Hydrogen bond distance profile during MD simulation. (A) Iressa, (B) 2-O-Caffeoyl tartaric acid, (C) Emetine, (D) Rosmaricine, (E) 2-
O-Feruloyl tartaric acid.
doi:10.1371/journal.pcbi.1002189.g007
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Supporting Information

Table S1 Molecular structures and biological activities
of ligands used for model training. Structural details of the

20 ligands adopted for ligand-based studies are listed within this

table. Experimental bioactivity values for each ligand were

adapted from Ref [53].
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