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Abstract

The development of efficient and economic photovoltaic (PV) systems harvesting
solar energy is one of the grand challenges for engineering and scientific researchers.
The theoretical conversion limit of a single-junction solar cell is 31% according to
Shockley and Queisser (SQ), which the most advanced single-junction PV devices are
approaching. Thus it is important to develop new methods and devices that can
exceed the SQ limit. An economic strategy that may potentially break the SQ limit is
to make use of the unique properties of semiconductor nanoclusters to fabricate PV
devices.

The physics of semiconductor nanoclusters such as the dynamics of electrons and
excitons are the fundamentals for fabricating nanocluster-based PV devices. Although
the theories and numerical approaches have been long established for
three-dimensional (3D) bulk materials, two-dimensional (2D) graphene-like structures
and one-dimensional (ID) nanotubes, the computational methods for
zero-dimensional (OD) finite systems based on the most advanced physical theory are
not well established.

In the thesis, the computational approaches and methods based on the many-body
Green's function theory are developed for OD nanoclusters and molecules. The
numerical implementations for the calculation of electronic inelastic scattering rates in
nanoclusters are established. An efficient computational approach for the calculation
of excitonic inelastic scattering rates in nanoclusters is also developed. Both the
single-phonon and the multiple-phonon nonradiative relaxation mechanisms in
nanoclusters are investigated. It is demonstrated that the nonradiative relaxation of
one-particle states and two-particle states are distinctive due to the difference between
the density-of-states of one-particle states and two-particle states.

Based on the numerical method established in the thesis, a strategy is proposed to
reduce the electron-phonon coupling in nanoclusters by pushing valence electron
away from nuclei with core electrons in heavy atoms, which is demonstrated with the
lead chalcogenide nanoclusters, and porphyrin molecule and a porphyrin derivative.
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Chapter 1

Introduction

1.1 Dynamics of Electrons and Excitons in Nanostructures

The development of efficient and economic photovoltaic (PV) systems harvesting

solar energy is one of the grand challenges for engineering and scientific

researchers.-3 The mechanism of a general single-junction semiconductor PV device

is schematically illustrated in Fig. 1-1, where an absorbed photon produces an

electron-hole pair. The electron-hole pair then relaxes to the edges of the conduction

band and the valence band, separates at the heterojunction, and generates a usable

photovoltage. The theoretical conversion limit for this type of solar cell is 31%

according to Shockley and Queisser (SQ). 4 In other words, 69% of solar energy is

lost. There are several pathways for the energy loss. One is from the incident photons

with energy larger than the bandgap of the semiconductor, where extra photon energy

is converted to heat through the non-radiative electron-phonon interaction as shown in

Fig. 1-1. Another pathway is through the low-energy photons in the sunlight. These

photons do not have sufficient energy to promote electrons to the conduction band,

and they merely pass through (or even worse, heat up) the device. These two

pathways account for the majority of the energy loss of the incoming solar energy. A

small fraction of the energy loss is from the direct recombination of the electron-hole

pair before the pair is separated at the heterojunction.



Hot Electron

Cool
SDown

h 1

Cool
Down %

Hot Hole

Donor Acceptor

Figure 1-1. Mechanism of a general single-junction semiconductor PV device.

The currently best single-junction PV devices are approaching the SQ limit,5 and

thus it is necessary to develop new methods and devices that can exceed the limit of

the single-junction. Some new concepts have been proposed. Most of these new

concepts aim at the reduction of the energy loss during the electron and hole

relaxation processes as shown in Fig. 1-1. An approach to enhance the efficiency

beyond the SQ limit is to build a stack of multiple junctions with compensated

bandgaps.6 The theoretical limit for a PV device with infinite junctions is predicted to

be 66%. However, the manufacturing of multiple junctions usually requires

expensive CVD processes. Thus tandem cells are used only in extreme situations

where the power-to-weight ratio is the major concern.

Another strategy for enhancing PV efficiency is to take advantage of the unique

properties of semiconductor nanoclusters to fabricate PV devices, whose efficiencies

can potentially break the SQ limit, with economic production costs. The underlying

mechanism of the semiconductor nanocluster-based solar cells is to utilize the energy

of the hot carriers before these carriers relax to the band edges. If a hot carrier can be

extracted from the donor to the acceptor before its thermalization, the photovoltage

can be potentially enhanced (Fig. 1-2a).8 '9 Alternatively, when a hot carrier can

promote another electron from the valence band to the conduction band through a

reverse Auger process, the photocurrent can be increased (Fig. 1-2b).' 0, The latter is



also known as the multiple exciton generation (MEG) process. If all photons with

energies larger than twice of the bandgap generate two excitons, the theoretical limit

will be 45%,7 instead of the SQ limit of 31%.

a) V'> V
Hot Electron

Hot Electron

Charge
Separation

Hole

b)'>10
Hot Electron

Charge
Separation

Hole

Figure 1-2. Two schemes to exceed the QF limit: a) hot electron capture for enhancing
photovoltage and b) multiple exciton generation for enhancing photocurrent.

For understanding the hot electron capture and multiple exciton generation

processes, an analogy can be made between a semiconductor nanostructure composed

of electrons and nuclei and a simple heat engine composed of a working fluid and a

cylinder/piston setup. As shown in Fig. 1-3a, electrons flow through the external

circuit and do some useful electrical work due to the driving force (incident photons).

Their role is exactly the same as the working fluid pushing the piston of the heat

engine as shown in Fig. 1-3b. On the other hand, nuclei are necessary to hold those

electrons, which are similar to the cylinder containing the working fluid.



a) e-

Electron Driving Force

Nucleus

b)

Cylinder Working Piston
Fluid

Figure 1-3. Schematic plots of a) a semiconductor nanostructure composed of
electrons and nuclei and b) a simple heat engine composed of a working fluid and a
cylinder/piston setup.

With the analogy above, the conventional single-junction photovoltaic devices in

Fig. 1-1 are equivalent to a diabatic heat engine as shown in Fig. 1-4a, where the

cylinder temperature is To and the working fluid always cools down to this

temperature via a fast heat exchange with the cylinder before it pushes the piston and

does some useful mechanical work. The hot-electron capture mechanism in Fig. 1-2a

is equivalent to a heat engine, as shown in Fig. 1-4b, where the heat exchange rate

between the working fluid and the cylinder is small, so that the working fluid is

allowed to push the piston before its complete cooling to To. More useful work can be

extracted in this way due to a higher working pressure. The multiple exciton

generation mechanism is equivalent to a heat engine as shown in Fig. 1-4c, where the

working fluid is not allowed to push the piston before its temperature cools down to

To, as in the case of Fig. 1-4a. However, the working fluid molecules can cool down

through a decomposition reaction, which produces more independent molecules and

outputs more mechanical work with increased volume.



Cylinder Working Fluid Piston
T=TO T0 =TO
b)

Cylinder Working Fluid Piston
T=Tc) T,,x>To

c)

Working Fluid Molecules

Cylinder Working Fluid Piston Decompose whenT>2TO

T=TO Tff=To

Figure 1-4. Heat engine analogies of a) conventional single-junction photovoltaic
devices, b) the hot-electron capture mechanism and c) the multiple exciton generation
mechanism. In each case the same process is involved.

To design a good heat engine, both the proper properties of the working fluid and of

the thermal interaction between the working fluid and the cylinder/piston setup are

required. The same fundamentals are applicable to the development of an efficient

electricity generator based on semiconductor nanostructures. The difference between

the two systems is that, for the semiconductor nanostructures the liquid/gas working

fluid and the cylinder/piston setup are replaced by the "electron sea" and various

nuclei, which demonstrate strong quantum effects and can only be investigated

appropriately by quantum mechanics. Although the quantum theories and numerical

approaches for 3D, 2D and ID materials have been long established, computations

based on quantum theories for OD nanoclusters are relatively scarce. In some cases,

even the basic computational methods are missing. With the wider applications of

nanoclusters and the growing interest in semiconductor nanoclusters, it becomes very

important to build up a comprehensive computational and theoretical tool kit for two

important physical processes in nanoclusters, namely the dynamic properties of

electrons/holes (the working fluid) and the interaction between electrons/holes with



their environment - phonons (or the interaction between the working fluid and the

cylinder/piston setup).

There is only one fluid, namely the electron sea, which can be used as the energy

carrier. However, we do have different working fluids as the electrons behave quite

differently when they are excited in different ways. One possible way is to add an

electron to the system, or remove an electron from a multi-electron system. These

correspond to electron or hole excitations, also known as quasiparticle or one-particle

excitations. Another possible way is to promote an electron from the valence band to

the conduction band, which leads to an electron-hole pair with a coulomb interaction

between them. This state is known as an excitonic excitation. A collective oscillation

mode of a multi-electron system is also possible, which corresponds to a plasmon

excitation.

1.2 Objective of the thesis

In this doctoral thesis, most efforts are focused on the excitonic excitation, as it is

the media between the energy input (photons) and the energy output (electricity),

which plays the same role as the working fluid in the heat engine. More specifically,

we will study the dynamics of excitonic states, including how fast an exciton can

spontaneously split into two excitons through inelastic scattering, and how fast an

exciton can exchange energy with phonons through nonradiative relaxation. The heat

engine equivalent is shown in Fig. 1-4c.

It should be emphasized that an exciton excitation can be understood more readily

as the combination of two one-particle excitations. More importantly, the theories and

numerical simulations of excitonic states have to be built up based on those of

one-particle states. Therefore, this thesis will also cover the dynamics of the

one-particle excitation, although this type of excitation is rarely utilized in electricity

generation.



The purpose of the doctoral thesis is to integrate the state-of-the-art theoretical

approaches and to develop new theoretical and computational strategies based on the

many-body Green's function theory and perturbation theory. The approaches

developed will be applied to the quantitative investigation of the dynamics of

electrons and excitons in nanoclusters and molecules.

There are several reasons motivating us to develop such a comprehensive took kit

for the subject:

1. Although electronic energies in finite systems (OD materials without periodic

boundary conditions) have been studied intensively, efforts to investigate electronic

dynamics, i.e. inelastic scattering rates are rare. Until the work of this thesis, a well

recognized strategy for the calculation is very difficult to find.

2. Theoretical works on the dynamics of excitons in finite systems, i.e. inelastic

scattering rates of excitons in OD materials have not been reported. No literatures can

be found.

3. Although theories for single-phonon and multiple-phonon nonradiative relaxation

mechanisms have been established by physics-related and chemistry-related studies

respectively, there is no united theory or approach to combine both mechanisms in OD

materials such as nanoclusters and molecules.

4. Both electron-phonon and exciton-phonon interactions are all interpreted in the

framework of one-particle picture, which is problematic for nonradiative relaxation of

high-energy excitons.

1.3 Outline of the thesis

We shall first establish the computational methodology and approach, which are

described in chapters 2, 3, and 4. We then apply our approach to study some selected

nanoclusters and molecules to demonstrate the proof of concept of reducing electron

phonon interaction in chapters 5 and 6.

In chapter 2, the GW method based on the many-body Green's function theory is



introduced. The influence of the self-consistency of the one-particle Green's G on the

calculations of electronic inelastic scattering rates in nanoclusters is discussed. The

necessity of the self-consistency of G for the simulations of finite systems is also

discussed and further demonstrated via the calculations of the electronic inelastic

scattering rates in magnesium clusters.

In chapter 3, we establish a computation approach for solving the dynamic

Bethe-Salpeter equation (DBSE), one of the basic equations for the dynamics of

excitons. A simplification strategy is put forward for the estimation of the excitonic

inelastic scattering rates in OD finite systems. The excitonic inelastic decay rates in a

semiconductor nanocluster Si2o are investigated. Results obtained by our established

simplification strategy are shown to be very close to those obtained by the DBSE

method. With much less computational cost than DBSE, our method provides a fast

way for accurate calculations of the excitonic inelastic scattering rates. The approach

can be widely used for calculations of dynamics, i.e. excitonic inelastic scattering

rates in larger systems. Without our approach or simplification, calculations for

inelastic scattering rates in such systems are essentially infeasible.

In chapter 4, we establish a unified formulation for electron-phonon and

exciton-phonon interaction in nanoclusters by including both single-phonon decay

mechanism and multiple-phonon decay mechanisms. We show that the single-phonon

and multiple-phonon relaxation mechanisms should be studied separately, as they

correspond to two types of physical processes and have totally different spectral

lineshapes. The single-phonon relaxation mechanism shall correspond to a Lorentzian

function, which comes as the imaginary part of an electron-phonon self-energy term.

The multiple-phonon relaxation mechanism, on the other hand, shall be related to a

Gaussian function, since it is essentially a thermal process and involves an

anharmonic effect (displacement of the potential energy surface in finite systems). It

is also demonstrated that the formulas derived for the two relaxation mechanisms

share a general form at the delta-function limit.



In chapter 5, we propose a possible mechanism for reducing the electron-phonon

coupling in semiconductor nanoclusters by calculating some chalcogenides. The

strategy is based on the mechanism that the valence electrons in heavier atoms are

pushed farther away from nuclei by the core electrons and thus are less sensitive to

the movement of nuclei. This may suppress the energy exchange rate between

electrons and phonons, and lead to "quantum thermal insulation". This strategy is

called "valence-electron-separation". As an example, electronic and excitonic

nonradiative relaxation rates in lead chalcogenide nanoclusters (PbX)36 (X=S, Se and

Te) are calculated by the numerical methods developed in Chap. 4. The simulation

results show that electronic and excitonic nonradiative relaxation rates are lower in

clusters with heavier atoms, and thus demonstrate the feasibility of the

valence-electron-separation strategy.

In chapter 6, excitonic nonradiative relaxation rates in a porphyrin molecule and a

porphyrin derivative are calculated by the numerical methods developed in Chap. 4.

The simulation results show that the excitonic nonradiative relaxation rates in a

porphyrin derivative with heavier atoms are lower than those in a porphyrin molecule.

The results further demonstrate the strategy proposed in Chap. 5 that exciton-phonon

interaction can be reduced by pushing valence electrons away from their nuclei with

more core electrons in heavier atoms.

In chapter 7, a summary of the findings in this thesis is presented.

1.4 Contribution of the thesis

The thesis addresses the dynamics of excitons in nano-clusters from two different

aspects: the methodology and its applications.

Methodology

1. The numerical implementations for the calculation of the electronic inelastic

scattering rates in nanoclusters are developed based on the many-body Green's

function theory.



2. An efficient computational approach - a simplification strategy for the calculation

of excitonic inelastic scattering rates in nanoclusters is developed. This strategy

allows moderate computational resource for those tasks that were essentially

infeasible before.

3. The computational approach and strategy developed include both the single-phonon

and the multiple-phonon relaxation mechanisms for the study of nonradiative

relaxation rates of electronic and excitonic states in nanoclusters.

4. We uncover the fundamentally distinctive processes for the nonradiative relaxation

of one-particle states and two-particle states, which is attributed to significant

differences between the DOSs of one-particle states and two-particle states.

Application

1. A method or strategy is proposed to reduce the electron-phonon coupling in

nanoclusters to enhance the efficiency of nanocluster-based photovoltaics by pushing

valence electron away from nuclei with core electrons in heavy atoms.

2. The proposed method or strategy is demonstrated with the numerical simulations of

lead chalcogenide nano clusters.

3. The proposed method or strategy is demonstrated with the numerical simulations of

porphyrin molecule and a porphyrin derivative.



Chapter 2

Inelastic scattering relaxation rates of

electrons in nanoclusters studied by

many-body Green's function theory

2.1 Introduction

2.1.1 Inelastic scattering of one-particle states

One-particle excitations of a multi-electron system can be obtained by adding an

electron to the system, or removing an electron from it. A one-particle state can

further decay through two typical pathways, namely inelastic scattering and

nonradiative relaxation. Here inelastic scattering means that a high-energy

one-particle state jumps into a low-energy one-particle state, with its extra energy

promoting another electron from the valence band to the conduction band. The

nonradiative relaxation, on the other hand, means that a high-energy one-particle state

jumps into a low-energy one-particle state, with its extra energy promoting collective

oscillation modes of nuclei, namely phonons. During the nonradiative relaxation

process, some useful energy is dissipated due to the thermalization. In this chapter, we

solely work on the inelastic scattering process of one-particle states. The energy

exchange rate between the electrons and phonons will be discussed in Chap. 4.

Inelastic scattering relaxation of electrons in condensed matter systems is a

phenomenon that is technically and fundamentally important in many physical and

chemical processes.12 Inelastic scattering rates of hot electrons (holes) in bulk metals

and metallic surfaces have been widely investigated both experimentally and

theoretically for several decades. 13-15 As zero-dimensional materials, nanoclusters

demonstrate electronic structures distinct from their bulk counterparts.16 A natural



question arises about whether the dynamics of the electrons in a confined system is

also different from the bulk. Yet the understanding about the electronic inelastic

scattering processes in nanoclusters is quite limited.

It is known that, confined systems exhibit discrete electronic levels, which results

in fewer states available for the transition of electrons. Thus hot electrons may have

lower inelastic scattering relaxation rates as compared to electrons in the bulk. On the

other hand, the screening effect is weakened in small metallic clusters due to the

smaller number of electrons, which shall increase the inelastic scattering rates of

electrons. Therefore the inelastic scattering rates of a hot electron in a cluster can be

either smaller or larger than that in corresponding bulk materials due to the two

competing effects. 14

Experimentally, time-resolved two-photon photoemission (TR-2PPES) has been

applied to measure the relaxation dynamics of electrons in nanoparticles and

nanoclusters.17 TR-2PPES is a two-photon technique, which excites the sample into

its intermediate state with the first laser pulse and extracts a photoelectron from the

sample with the second laser pulse. The decay dynamics of the intermediate states of

materials can thus be characterized by varying the temporal delay between the two

laser pulses. However, even with such an advanced technique, the fundamentals for

the process remain unclear. Firstly, the intermediate state is still a neutral excited state,

containing an electron and a hole. This is essentially an excitonic state. Whether the

decay of this state is solely due to the electron or the hole cannot be distinguished.

Also, it is difficult to distinguish the decay of inelastic scattering and that of

nonradiative relaxation. Therefore numerical simulations based on fundamental

theories is essential for the understanding of the experimental results.

2.1.2 Methods for one-particle states

There are various theoretical approaches for the simulation of electronic properties

of a multi-electron system. Over the past several decades, the density functional



theory (DFT) has been widely used for calculating ground-state properties of

molecules and solids.' 8 Within the framework of DFT, the original many-body

system is replaced by a non-interacting reference system composed of independent

particles. Thus the complicated exchange-correlation term in the electronic

Hamiltonian becomes a simple local potential. This simplification reduces the

computational cost significantly, and thus enables the use of DFT, a prevailing

simulation method. However, there are two reasons to develop a more advanced

method for the problem encountered in this thesis. Firstly, a well known issue of DFT

is its tendency to underestimate the electronic band gaps. Actually the electronic

eigenvalues obtained by DFT usually differ notably from the excitation energies of

one-particle states obtained by photoemission experiments. Secondly, the original

exchange-correlation term in the electronic Hamiltonian is frequency-dependent,

while the local potential of DFT is not. Thus DFT is basically incapable of handling

any dynamic properties of one-particle states, such as electronic inelastic scattering

rates, which are exactly what we need.

The GW method was derived from many-body Green's function theory to

overcome the limitations and drawbacks of DFT. The name of GW comes from the

fact that the exchange-correlation term, which is over-simplified in DFT, is now

expressed as the product of a one-particle Green's function G and a dynamically

screened Coulomb interaction W. The concept was first applied to electron gas by

Quinn and Ferrell.' 9 In 1965, Hedin developed a systematic and rigorous method for

the expansion of the exchange-correlation term, and established a set of integral

equations.20 By taking the first term of the expansion, the GW approximation (GWA)

was formally introduced. The GW method is physically sound because it is

qualitatively valid in some limiting cases, including isolated atoms and an electron

gas. The GW method has been proven to be accurate for the simulations of electronic

energies of a vast range of materials.21 24 The superiority of the GW method over

DFT arises from the fact that the non-local and dynamic features of the self-energy

are preserved for each one-particle state in the GW implementation, but not in the



DFT scheme.

The dynamics of electrons, i.e. the inelastic scattering rates or inelastic scattering

lifetimes (inverses of the rates) in bulk materials, especially bulk metals, have been

investigated by the GW method.14" 5 Electronic inelastic scattering rates in

two-dimension (2D) and one-dimension (ID) structures, such as graphene25 26 and

carbon nanotubes27 have also been calculated with the GW method. Recently, effort

has been made to apply the GW method to the electronic inelastic scattering rates in a

finite jellium sphere in nanoscale.28 In such a zero-dimensional (OD) structure, it was

found that the electronic inelastic scattering lifetimes in a finite jellium nano-sphere

are in the femtosecond time scale. As far as we know, applications of the GW method

to study electronic inelastic scattering rates in OD nanoclusters have not been reported.

Furthermore, strategy and methodology for the simulations of electronic inelastic

scattering rates in nanoclusters cannot be found in literatures until now. As has been

introduced in Chap. 1, understanding of the electronic inelastic scattering rates in

nanoclusters (or quantum dots) is required to build efficient solar cells. Thus the

development of appropriate theoretical and numerical methods becomes necessary.

In this chapter, GW-based strategy for electronic inelastic scattering rates in finite

OD nanoclusters are discussed and established. Because almost all literature studying

the electronic inelastic scattering rates are only about metallic systems, metallic

nanoclusters are used as examples in this chapter in order to compare and verify the

calculations. We will start from many-body Green's function theory. After the

discussion of the self-consistency of G (one-particle Green's function), the inelastic

scattering lifetimes of electrons and holes in two Mg clusters are calculated, and the

physical characteristics of the electronic inelastic scattering decay in nanoclusters are

presented.



2.2 Many-body Green's function theory

2.2.1 One-particle Green's function

The concept of the Green's function (also known as the propagator) is the most

fundamental quantity in many-body theory. The one-particle Green's function is

defined as29

G(r,t;r',t')= -i(N,OIT[#I (r,t)# i(r',t')]IN,0) (2.1)

where IN, 0) is the ground state of a N-particle system. 1H (r, t) and (r', t')

are the field operators in the Heisenberg picture. Thus

IH (r ,t) = ef~t/h'V,_ (r) eiIt/t (2.2a)

-H itt - th

VIH it/hs ) eit'h (2.2b)

where Vs (r) and ^ i(r') are the corresponding field operators in the Schrodinger

picture, and H is the Hamiltonian of the system. #, (r,t) annihilates a particle (or

creates a hole) at r at time t, and is called annihilation operator. V1,f(r',t') creates a

particle at r' and t', and is called creation operator. T is the time-ordering operator,

LV/H ~ ~ ~ VI (r, t) H r J l7H (r', t') t t'T t) t' H VH(23
T(IH WH t' ') t

VIHH

Assume that we have a complete set of eigenstates {|M, i)) (ith excited state of a

system with M electrons). Then we can insert them between #H (r,t) and

VIH (r',t') in Eq. (2.1),



G( 0(t-t')(N,0| (r, t) IM,i)(M ,iI YIH (r',t')IN, 0)
M"i +6(t'--t)(N,0|#i(r', t')|IM, i)(M, ijf i(r,t)|N,0)]

where 0(t -t') is the step function and it has an integral representation

-iv (t-t')
0(t -t') =- im- dco e

7--O' - 2;ri (cO + ig)

The matrix elements and (M,ij#,^I(r',t')IN,0)

vanishing only when M=N+1. (N,0|1Ht(r',t')|M,J) and (M,ilH(r,t)IN,0)

are not vanishing only when M = N -1.

Substitute Eqs. (2.2) and (2.5) into Eq. (2.4) and perform a Fourier transformation.

We can then obtain

(2.6)G(r,r';E)= "&(r)p,,(r'),
nE-E,,+irl,,0

where E, and (p, are, respectively, the energy and wavefunction of the ith

quasiparticle (QP). The coefficient rl, is +1 for unoccupied states and -1 for

occupied states.

The equation of motion for an operator 0 in the Heisenberg picture is

i = 0$-50= 0,$% (2.7)

Substituting Eq. (2.1) into the equation of motion and performing a Fourier

transformation, we have

(2.8)

(2.4)

(2.5)

are not

(T^ + V, + V -E) G(r, r'; E) + fdr"E., (r, r"; E) G(r", r'; E) =8(r, r')

(N,0|#- (r,t)|M,i)



where T is the electron kinetic energy, V, is the external potential and VH is the

Hartree potential. EX, (r,r";E) is the exchange-correlation self-energy with all

nonlocal and dynamic properties preserved. Then one-particle energy E, and

wavefunction q, can be obtained by solving the quasiparticle (QP) equation

(I+ V, + V,), (r) + fdr'E (r,r';E,)p, (r') = E p, (r) (2.9)

2.2.2 Hedin's equations

Eq. (2.8) defines the exchange-correlation self-energy E. However it can not be

used to solve Eq. (2.9) where an explicit form of E,, is required for the numerical

implementation. To solve Eq. (2.9), the inverse dielectric function is introduced

.- 1 (1, 2) = 4 (1) (2.10)
SV,(2)

where 1 means (r,,ti), SVff (1) is the change of the effective potential at (r,ti)

due to the perturbation of the external potential SV,(2) at (r2, t2 ). We can also

define the reducible polarizability H (1,2) as

1(1,2) = 5n(l) (2.11)
SV,(2)

where Sn(l) is the change of the charge density at (ri,t,) due to the perturbation

of the external potential SV, (2) at (r2,t2). With rearrangement we can get a set of

coupled integral equations named after Hedin, 0

E, (1,2) = ijd(34)G(1,3)W (4,1*)1-(3,2; 4) (2.12a)



P(1,2)= -if d (34)G(1, 3)G(4,1*)F(3,4;2) (2.12b)

W(1,2) =V(1,2)+ fd(34)V(1,3)P(3,4)W(4,2) (2.12c)

F(1,2;3)=(1,2)S(1,3)+ d(4567) G(4,5)G(4,6)G(7,5)F(67;3) (2.12d)

where P(1,2) is the irreducible polarizability, W(1,2) is the screened Coulomb

interaction, V(1,2) is the Coulomb interaction, S(1,2) is the delta function, and

F (1,2;3) is the vertex function containing 3 variables, with the third one distinguished

from the first two by a semicolon. 1* means r, and ti+0*, the infinitesimal time 0* is

introduced to maintain the correct order when dealing with the time-ordering operator.

2.2.3 Approximation of F

Hedin equations are still too complicated to be solved. Thus an approximation has

to be made to simplify the equation set (2.12). Usually we can start with the

approximation for Eq. (2.12d), and the simplest one is

F(1,2;3) S(1,2)S(1,3). (2.13)

where S(1,2) is the delta function and it is not vanishing only when r = r2 and

t =t2 -

Then we have

P (1, 2)~z -iG (1, 2) G(2, 1*)= P (1, 2) (2.14)

where Po (1,2) is the independent-particle polarizability (no particle-particle

interaction), and its Fourier transformation can be written as3 0



P (r ,r '; E ) = 2 1 p , (r ) cp (r )q p (r') cp , (r ') E - E -6 e - 10 *)

(2.15)

where E is the energy, cp(r) and c are wavefunctions and energies of

one-particle states obtained by density functional theory (DFT). The subscript 'c' and

'v' stand for unoccupied states (conduction band) and occupied states (valence band).

Under this approximation, the screened Coulomb interaction and the

exchange-correlation self-energy becomes

W(1,2) V(1,2)+ d(34)V(1,3)U(3,4)V(4,2) (2.16)

E, (1,2)~ iG(1,2)W (2,1*) (2.17)

This is the so-called GW approximation (GWA). Note that the reducible polarizability

H (1,2) in Eq. (2.11) is solved from the random phase approximation (RPA):

[ (1,2) = P, (1,2)+ d (34) Po, (1,3)V(3,4)n (4,2). (2.18)

Thus the approximation Eq. (2.13) is noted as RPA/GWA. The Fourier transformation

of H can be expressed as the summation of electron-hole excitation modes 3'

fl(r,r';E) = 2 p, (r)p *(r') . , . , (2.19)
S A E-(co,-10) E+{mo,-10)

where

p, (r) < (r) (r) (2.20)

is the particle-hole amplitude for the sth particle-hole excitations. The eigenvectors



RVC and eigenvalues co, in Eqs. (2.19) and (2.20) are determined through Eq.

(2.18). Note that H~ reflects the behavior of the electron-hole excitations of a system,

and essentially involves two-particle properties. It will be discussed more in the next

chapter.

Another approximation for Eq. (2.12d) is based on the density functional theory

(DFT), where the exchange-correlation self-energy I,(1,2) is simplified to a local

exchange-correlation potential,

E.c (1,2)~ V, (1) o5(1,2). (2.21)

where V,(1) is the exchange-correlation potential from DFT. 5(1,2) means

S (r,, r2 )S(t, t2 ) Note that , (1,2) = ,, (r1,t;r2 ,t 2 ) is non-local and

time-dependent, while V, (1) is local and essentially time-independent.

Substitute Eq. (2.21) into Eq. (2.12d), we can get

F(1,2;3) ~(1,2),(1,3)-if d(45)S(1,2)f= (1)G(1,4)G(5,1*)F(4,5;3) (2.22)

where

(1)= " (2.23)
Sn(1)

Note that V is the exchange-correlation function in DFT, and f, is the derivative of V

of the electronic spatial density n .

Here Eqs. (2.16) and (2.17) still hold, while now the reducible polarizability IFI in

Eq. (2.14) should be solved from the time-dependent adiabatic local density

approximation (TDLDA)



n(1,2) = P (1,2)+J d(34)P (1,3)[V (3,4)+, f (3)c5(3,4)]vI(4,2). (2.24)

Thus the approximation Eq. (2.22) is noted as TDLDA/GWf, where F means that the

vertex function is more than just a delta function. The Fourier transformation of H

in this case still can be expressed as Eq. (2.19), but the numerical values may be

different.

It should be emphasized that RPA/GWA in Eq. (2.13) and TDLDA/GWF in Eq.

(2.24) are two different levels of approximation. It has been demonstrated that the

mixtures of the two methods, namely RPA/GWF or TDLDA/GWA, are not

suggested."

2.2.4 GWimplementations

The electronic energies of a many-body system can be obtained by solving the

quasiparticle (QP) equation Eq. (2.9). In practical implementation, this equation is

solved based on the results of the density functional theory (DFT)

(I + V, + V, ) (r) +V, (r) p (r) = eg, (r) (2.25)

where c, and (p are the eigenvalue and eigenfunction of the ith electronic state

obtained by DFT, respectively, and V, (r) is the exchange-correlation potential.

With the assumption that the DFT eigenfunctions agree well with the QP

wavefunctions in most cases, the QP energies are usually solved with a perturbative

method to the first order

(, (r, r'; E, )j I) - ( V, (r) cp= E, - e, (2.26)

The self-energy term (p| II,) in Eq. (2.26) can be separated as an

energy-independent exchange part (r|, ) and an energy-dependent correlation



part (q,|E | ) . The latter is evaluated as"

( c (r,r';E)(p, )= Z a"^' (2.27)
-E -E,-cos

where a., equals 2(p . Vjp,)(plvi , ) for the GWA implementation, and

2(q qp,|(V+f.)jp.,)(p lV cp,cp.) for the GWF implementation.

The imaginary parts of the QP energies can be obtained by applying analytical

continuation. of E, (r,r';E) in the complex energy plane, and the complex QP

energy E, -hy,, is calculated by solving a complex equation set numerically

e( ,|E, ( E, -i,)|,-(<p,|V| = E, -, (2.28a)

nimp, E.(E, -iq,r,)|,) = y,(2.28b)

where r, is exactly the relaxation rate of the ith electron (hole) due to the inelastic

electron-electron scattering. The corresponding lifetime is evaluated as30

r, =(2r,)' (2.29)

2.3 Numerical details

In this chapter we will use two Mg clusters, Mg1o and Mg4o, as examples to

demonstrate the method developed for the simulation of electronic inelastic scattering

rates in finite OD clusters. There are several reasons to choose Mg clusters. Firstly,

bulk magnesium is close to free electron gas (FEG), and any results about electronic

inelastic scattering rates in FEG in literature can be used as reference. Secondly, the

electronic inelastic scattering rates in bulk Mg have been calculated by the GW

method. Thus we can compare the difference between the electronic inelastic



scattering rates in OD and 3D systems. Thirdly, experimental data of ionization

potentials and electronic affinities of various Mg clusters have been invested

experimentally and theoretically, which can be used to check the accuracy of the GW

code developed by ourselves.

The ground state DFT calculations within the local density approximation (LDA)

are performed using the SIESTA code." The core electrons [1s 22s22p'] of Mg are

replaced by the nonlocal norm-conserving pseudopotential based on the

Troullier-Martins scheme. 36 A double-C polarization (DZP) basis set of numerical

atomic orbitals is used for the valance electrons of Mg. The cutoff radii are 10.0 a.u.

for both s- and p-orbitals. The structures are optimized by simulated annealing using

molecular dynamics with an exponential cooling schedule, followed by the

conjugated gradient algorithm with the maximum force tolerance of 0.01 eV/A. The

optimized structures of Mg1o and Mg 4o are illustrated in Fig. 2-1.

All integrals are evaluated on a uniform grid in real space with a grid spacing of 0.6

a.u., which has been tested to give QP energies with an accuracy of 0.1 eV. The

exchange integrals fdrJdr'p (r)pq(r)V(r,r')p,(r')qp,(r') are evaluated by

solving Poisson equations first with the multigrid method." The convergence of the

QP calculation usually requires a large number of unoccupied states for the evaluation

of the polarizability. Thus a COHSEX remainder scheme33 has been applied to

accelerate the convergence of the correlation part (g|Ijq.

Mg10 (C3) M4 (C)

Figure 2-1. Optimized structures of Mg1o and Mg4o. The labels in parentheses
correspond to the point group symmetries of the clusters.



2.4 Results and discussion

2.4.1 Effects of self-consistency on quasiparticle energies and lifetimes

In the quasiparticle (QP) calculations, a ready starting point is the approximation

for G

G(r, r';E)~ G. (r,r'; E)= "(r)rp, (r') (2.30)
nE - -,, + ir,, 0+

where -,, are DFT energies of one-particle states. From Go we can calculate W and

thus 1. and GW energies E,, of one-particle. However introduction of Eq. (2.30)

brings an uncertainty: whether we should recalculate every quantity with the updated

G until its convergence, namely self-consistency. It has been shown that the

self-consistency cycles including W (G-+W-+ Er -+G) may deteriorate the

agreements between the simulated results and experimental data. So in this study,

we take W as constant and focus on the effect of self-consistency of G (G-+ E -+G)

on the QP properties. For comparison, we solve Eq. (2.28) only once in the

non-self-consistent calculation. In the self-consistent calculation, however, G is

updated after each cycle until its convergence. We speculate the influence of the

self-consistency on the calculations of the QP lifetimes as follows.

According to Eqs. (2.27) and (2.28), the decay rate of the ith QP can be written as a

summation

S, =2 E a,,, 2 2 (2.31)
n 5 ( E, - E,, - co;, + y,

The quantity E, - E,, -co,q,, in each denominator indicates the coupling of the ith

QP with the nth state through the sth excitonic excitation of the system. A large



contribution is expected when E, - E, and oi, are very close to each other. If Go

is used, then E, -c, - co,q, will replace E, -E, - co,q, , which diminishes the

underlying physics of the summation, since the Kohn-Sham system used in DFT is

only an artificial non-interacting reference system, and the e., energies of DFT

electronic states, do not have any clear physical meaning.

Secondly, the self-consistency is better off in terms of the poles of the summation

S,. For a given QP with energy E,, simplifying E, to c,' changes the positions of

the poles from E, + c, to e + tq, . This only has a minor effect on

Re (p,| I p), which is determined by the ensemble of the poles including those lying

far away from E,. However, the simplification may cause considerable error to

Jim (Pi , IP )I, which is mostly determined by the arrangement of the poles in the

vicinity of E, . The effect is illustrated schematically in Fig. 2-2, where the

unoccupied (occupied) energy levels e,, obtained by DFT are shifted up (down) to

yield the QP energy levels E. Yet the poles e,, + ,, are not moved together,

leading to misplaced poles around a given energy level E,, especially for the highest

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital

(LUMO). In Fig. 2-2, the LUMO and HOMO QP energy levels are adjacent to some

of the poles e, + ,.. This situation will not happen if the poles E,, + co,,, are

instead used, since E, + coq, will move together with the E,, 's and maintain their

relative positions correctly.



0

0, '. 0

Ef
Pu-P

En+cogrin

Figure 2-2. Schematic plot for the relation among the DFT energies s, 's and hence

the derived poles e, + c,0,, the QP energies E, 's and hence the derived poles

E+ o~q, . Each color defines a set including an energy level and the poles

accompanying the energy level. To maintain the correct orders, E, 's should be used

together with E, + q, A mixture between E, 's and e,+ c,0, changes the pole

arrangement in the vicinity of a QP energy level, which may introduce notable errors
for the QP lifetime.

2.4.2 QP energies and lifetimes in Mg clusters

The QP energies and lifetimes of the HOMOs and LUMOs of the Mgio and Mg40

simulated by both the GWA and the GWf'-methods are listed in Table 2.1. The results

obtained without the self-consistency are denoted with Go. Eigenvalues from DFT

with local density approximation (LDA) are also listed. When the decay rate of a QP
is vanislhingly small, its lifetime is denoted by co, indicating a rather long lifetime if

only electron-electron inelastic scattering is considered. The relative effect of the

self-consistency over the non-self-consistency on the QP energies can be readily read

out from Table 2.1. In general, the energy differences between the results obtained

with and without the self-consistency are insignificant especially for the larger cluster



Mg 40, which is consistent with our analysis about Re(cp jgcp,) in the above section.

Table 2.1: QP energies and lifetimes of the HOMOs and LUMOs of Mg1o and Mg 40

clusters calculated by the GWA and the GWI" methods with both self-consistency
(denoted with G) and non-self-consistency (denoted with GO). The subscript in the
first column stands for the number of Mg atoms in the cluster. DFT/LDA energies are
also listed in the last column.

GoWA GWA GoWFT GWJT LDA

E(eV) r (fs) E(eV) r (fs) E(eV) r (fs) E(eV) r (fs) e(eV)
HOMOjo -5.80 00 -5.95 00 -5.41 00 -5.47 00 -4.26

LUMO10  -2.14 00 -2.06 00 -1.79 00 -1.49 00 -2.93

HOMO4 -5.16 6.4 -5.31 oo -4.73 16 -4.75 00 -3.98

LUMO40  -3.31 27 -3.35 oo -2.89 12 -2.79 00 -3.74

On the other hand, the net effect of the self-consistency on the QP lifetimes, is

strongly size-dependent. For Mgio, no change has been observed in both the GWA and

the GWF calculations. However, the results have been qualitatively changed in the

case of Mg 4o. As discussed in last section, the QP lifetime is very sensitive to the

poles in the vicinity of the QP energy. According to Fig. 2-2, the degree of the

misplacement of the poles around the HOMO and LUMO can be roughly estimated

by comparing the GW correction over DFT |AE, I = |E, - ej and the minimum

frequency co.m. of the reducible polarizability. The error of -r, is insignificant when

|AE, I is smaller or comparable with co., while it becomes significant when |AE, I

is larger than co. This can be verified by comparing |AEj in Table 2.1 with

aC 's, which are 1.50 (TDLDA) and 1.58 (RPA) eV for Mg1o, 0.27 (TDLDA) and

0.29 eV (RPA) for Mg 4o.

Table 2.1 also illustrates the numerical difference between the two QP methods

adopted in this chapter. The net effect of the GWf over the GWA is an upward energy

shift, almost rigid for both the HOMO and LUMO. Furthermore, the upward energy

shift is observed consistently for all occupied and unoccupied states as shown in Fig.



2-3, where the energy levels of Mg 40 obtained by the LDA, GWA and GWF methods

are plotted. This energy shift, a feature of the GWF method, has also been reported in

bulk silicon, 2 as well as in a benzene molecule.33 It can be explained using Eq. (2.27),

where the GWfT method adds a negative quantity 2(P,|f. p p )(PJVPg,') as an

extra term to each numerator and thus introduces unidirectio4al shifts to all E,'s.

Thomas et al. have measured the photoelectron spectra (PES) of Mgn clusters.39 The

first PES peak of Mgn~ can be used as a reference for the electronic affinity (EA) of

Mgn, neglecting the structural relaxation due to an extra electron. According to Ref 39,

the EAs of Mgio and Mg35 are about 1.70 and 2.85eV, respectively. To compare with

these data, we perform the calculations for Mg35. The EAs of Mgio and Mg 35

predicted by the GWF are 1.49 and 2.71 eV, respectively, and those obtained by the

GWA are 2.06 and 3.27 eV, respectively. We also test the basis completeness by

increasing the size of the basis set for the simulation of Mgio, and find that the

number of bases is not the source of the uncertainty for the EA of Mgio. (The

ionization potential of Mg1o obtained by the GWfT with the basis set 4Z4P is 1.45 eV,

which is slightly lower than that of the DZP result.) Jellinek et al. have calculated the

ionization potential (IP) of neutral magnesium clusters with the gradient-corrected

DFT.40 The IP of Mgio is obtained as 5.5 eV in Ref. 40, and 5.47 eV (GWF) and 5.95

eV (GWA) in this work. Summarizing above, we find that the GWF agrees with

currently available data better than the GWA. Therefore our discussion will focus on

the QP lifetimes of Mg 40 obtained by the self-consistent GW approach, since Mgio

does not have enough energy levels for drawing any convincing conclusions.
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Figure 2-3. Energy levels of Mg 40 calculated by the LDA, GWA and GWF methods.
The net effect of the GWF over the GWA is an almost rigid upward shift in energy.

Inelastic scattering lifetimes r, and scaled lifetimes r, (E, - EF )2 of hot electrons

and holes in Mg40 calculated by the GWF method are plotted versus the excitation

energy jE, -EFI in Figs. 2-4a and 2-4b, respectively. The behavior of electrons in

many bulk metals can be described as a free electron gas (FEG). In a high-density

FEQ the lifetimes of hot electrons with low excitation energies follow an inverse

quadratic law as derived by Quinn and Ferell19

rQF = 263r-/ (E, - E)' eV fs. (2.32)

where r, is the electron-density parameter defined as 1/W=(4/3) ,rr r, with W

being the average electron density. Eq. (2.32) indicates a constant scaled lifetime

r, (E, -EF ) 2 for all hot electrons, which is 22.8 fs eV2 for bulk magnesium with r,=

2.66. However, in the cluster Mg4o, the scaled QP lifetimes with low excitation

energies (|E, -EFl <2.1 eV ) are longer than the lifetime obtained from Eq. (2.32) and

are energy dependent. On the other hand, the pattern of scaled QP lifetimes with high

excitation energies (IE, - EFl |2.1 eV) are relatively flat. Thus the results indicate

that there are two energy regimes as illustrated in Fig. 2-4: a low energy regime (RLE)

47



and a high energy one (RHE), which will be discussed separately.
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Figure 2-4. a) QP lifetimes and b) scaled QP lifetimes in Mg4o obtained by the
self-consistent GWF approach. The vertical dashed line separates both plots into a low
energy regime and a high energy regime.

As a general trend, the scaled QP lifetimes in the RLE increase with

decreasing E, -EF|, and become notably longer than rQF. This is qualitatively

different from the result obtained in the bulk magnesium with the GW method.41 The

latter, shows that the inelastic lifetimes of electrons with low excitation energies are

close to (or shorter than) rQF. It has been noted that the QP scattering rate is

determined by the two competing factors: the number of states for possible transitions

of a hot electron, and the dynamical screening to the interaction between this hot

electron and other electrons. 14 As shown in Fig. 2-3, the energy states of a small

metallic cluster such as Mg4o are missing around the Fermi level due to the



confinement of the electrons, which is quite different from the bulk counterpart. This

reduces the number of states available for transitions of all hot electrons (holes) in a

cluster. The effect becomes dominant for those energy levels in the RLE with low

excitation energies, and thus leads to relatively long QP lifetimes, and the lower the

excitation energy, the longer the lifetime. Also in the RLE we find that the lifetimes of

hot electrons and hot holes with the same |E, - EF I are close to each other, which is

similar to the results obtained from the free-electron gas (FEG) in the low excitation

regime.19

In the regime RHE, the scaled lifetimes of hot electrons fluctuate in the range of 21

to 24 fs eV 2 with increasing |E -EF , which are close to 22.8 fs eV 2 calculated from

Eq. (2.32). In bulk Mg, the scaled lifetimes in the same energy regime increase from

25 to 30 fs eV 2 with increasing excitation energy.41 It is speculated that the slight

difference between the cluster and the bulk could be attributed to the electronic spill

over effect, as the electron wavefunctions can stretch outside of a finite potential well.

This effect is notable for small metallic clusters, and leads to lower electron densities

and thus to shorter QP lifetimes.

Note that our results here are different from those in Ref. 28, where shorter

lifetimes are found based on spherical jellium model calculations. The difference

could be attributed to the definition of the QP excitation energy. In Ref. 28, it is

defined as le, -F j, while for the nanocluster in this article, it is defined as |E,-EF,

which can be approximated as E, - e I + , - eF l. The GW correction term |E, - ,j

vanishes in an infinite uniform electron gas, yet it could be a large number in finite

systems and can also be also strongly size-dependent, as can be seen in Table 2.1.

The scaled lifetimes of hot holes in the RHE decrease slowly with increasing

|E, -EF1. They are shorter than those of hot electrons with the same |E, - EF , which

also has been found in the case of the FEG.14 In a finite system such as Mg 40, the



shorter hole lifetimes can be attributed to the smaller angular momentums of these

holes, which leads to more possible transitions than for electrons. This is an analogy

to the bulk, where we can attribute shorter hole lifetimes to the smaller momentums of

holes. 42 Note that in simple s-p systems, there are no localized d-electrons.

Correspondingly we have not observed any localized d-holes with longer lifetimes

than those of electrons, as has been demonstrated in noble metals.42 43

2.5 Conclusion

In this chapter, the GW method based on the many-body Green's function theory is

introduced. The influence of the self-consistency of the one-particle Green's G on the

calculations of electronic inelastic scattering rates in nanoclusters is discussed. The

necessity of the self-consistency of G for the simulations of finite systems is

suggested and further demonstrated via the calculations of the electronic inelastic

scattering rates in magnesium clusters.

In a nanocluster Mg4o, the inelastic scattering lifetimes of electrons and holes near

the Fermi level are found to be longer than those in a free electron gas (FEG) with the

same valence electron density, due to the lack of states available for any transitions. In

the high excitation energy regime, inelastic scattering lifetimes of hot electrons are

consistent with the inverse quadratic relation of Quinn and Ferrell.19 In this regime,

hot holes exhibit shorter scaled lifetimes compared with hot electrons, due to the

smaller angular momenta of holes.

The two different approximate levels of the GW method, GWA and GWF are tested.

It is found that the electronic energies of the GWI implementation are more close to

available experimental data. The superiority of GWF over GWA for finite systems is

consistent with the conclusions in the literature.12 '"3 Thus the GWF method will be

used in the following chapters without further justification.



Chapter 3

Inelastic scattering relaxation rates of

excitons in nanoclusters studied by

many-body Green's function theory

3.1 Introduction

3.1.1 Inelastic scattering of two-particle states

Two-particle excitations of a multi-electron system occur when an electron in the

valence band is promoted to the conduction band. Similar to a one-particle state, a

two-particle state can further decay through two typical pathways, i.e. inelastic

scattering and nonradiative relaxation. Here inelastic scattering means that a

high-energy two-particle state jumps into a low-energy two-particle state, while its

extra energy promotes another electron from the valence band to the conduction band.

The nonradiative relaxation, on the other hand, means that a high-energy two-particle

state jumps into a low-energy two-particle state, while its extra energy produces

collective oscillation modes of nuclei, namely phonons. During the nonradiative

relaxation process, some useful energy is dissipated through thermalization. In this

chapter, we focus on the inelastic scattering process of two-particle states. The energy

exchange rate between the excitons and phonons will be discussed in Chap. 4.

The inelastic scattering rate of an exciton represents the rate that the exciton

transfers its extra energy to another exciton. It can also be regarded as the rate that the

exciton splits into two excitons spontaneously. Recalling that excitons in photovoltaic

devices correspond to working fluids in heat engines, the splitting of excitons is

equivalent to the decomposition of molecules of the working fluid, which is of special

interest due to the potential to enhance the efficiencies for electricity generation.



Actually the strategy to improve the performance of photovoltaic devices based on the

splitting of excitons in semiconductor nanoclusters has been proposed, which is also

is known as the multiple exciton generation (MEG) process.7 More specifically,

during the MEG processes the initial energetic excitonic states created by an incident

photon split through the inelastic scattering process and thus increase the photocurrent.

Since MEG arises from excitonic inelastic scattering relaxation, the rate of MEG is

essentially the excitonic inelastic relaxation rate, or the inverse of the excitonic

inelastic scattering lifetime.

Investigations of the MEG processes in some semiconductor nanoclusters have

been reported in recent years,"45 yet the fundamental of the process is far from clear.

For example, there is still a controversy about the relation between the spatial

confinement and the MEG performance. 4'6,4 The uncertainty comes from the

following plausibility. Firstly, inside the semiconductor nanoclusters, the presence of

a nonradiative relaxation process competes with an inelastic scattering process, and

thus complicates the decay dynamics of high-energy excitons. Secondly, surrounding

the semiconductor nanoclusters, the chemicals on the cluster surface and the

solvent/substrate may significantly influence the excitonic states and the

exciton-phonon coupling. Thirdly, it is difficult to perform flawless experiments and

to obtain flawless experimental data. Ideally, each of the plausibilities shall be figured

out and investigated, so that we can study the specific physics. However, in practice,

all these issues are interwoven with each other and manifest themselves in

experiments and experimental data, and thus smear out the explanation of these data.

Under the circumstance, theoretical simulations based on first-principles calculations

become indispensible to provide insight into some of the physics underlying the MEG

phenomenon.

In this thesis, we work on the fundamentals of the dynamics of excitons, namely the

relaxation of excitons inside the semiconductor nanoclusters, including both inelastic

scattering processes and nonradiative relaxation processes. More broadly, the



dynamics of the two decay mechanisms are the intrinsic characteristics of the

semiconductor nanoclusters. These mechanisms are of great importance for any

electricity generators based on semiconductor nanoclusters.

In this chapter, we develop the methodology for calculating excitonic inelastic

scattering rates in nanoclusters. The exciton-phonon interaction will be discussed in

the next chapter.

3.1.2 Methods for calculating two-particle states

Before introducing the methods for two-particle states, we show how a two-particle

state is expressed. Assuming that there is a four-state system as shown in Fig. 3-la,

which has two occupied states eq (r) and (p (r) as the valence band, and two

unoccupied states eg (r) and cp (r) as the conduction band. This is the ground

state of the system and can be expressed as |ground). By neglecting the electronic

spin, the system has four one-particle states as shown in Fig. 3-lb, two hole states

(q (r) and (p (r) and two electron states qg (r) and qp (r). For simplicity, we

write them as |1), 12), |3) and 14). The four two-particle states of the system are

shown in Fig. 3-1c. They have to be expressed as the product of one valence

wavefunction and one conduction wavefunction, namely sq(r)( A(r'), qpi(r)e q(r'),

e2(r)(q(r') and q2(r)('(r'),or 11,3), 11,4), 12,3) and |2,4) forshort.
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Figure 3-1. a) A four-state system with two occupied states q (r) and qp (r) as the

valence band, and two unoccupied states (A (r) and pg(r) as the conduction band.

b) Two hole states g (r) and (, (r) and two electron states qA (r) and 4 (r) of

the system. c) Four two-particle states qc (r)( (r'), eg (r)qp (r'), (A (r)q( (r')

and g2 (r)p, (r') of the system.

Although li) are one-particle eigenstates, Ii, j) are not necessarily two-particle

eigenstates. Only with the independent-particle approximation, where the interaction

between any two particles is turned off, are Ii, j) the true two-particle eigenstates. It

should be pointed out that the independent-particle approximation is a very coarse

approximation and its results poorly agree with the experimental data. In all methods

with good accuracy, the interaction between |1 j) and |i', j') has to be taken into



account. This leads to an N-by-N matrix for a system with N two-particle states. The

eigenvalues and eigenvectors of the matrix are exactly the energies and wavefunctions

of the true two-particle eigenstates of the system. That is to say, a two-particle

eigenstate is always the linear combination of all 1i). For the system shown in Fig

3-1c, we have the kth Iexciton)= C |1,3)+c31,4)+c, 3 2,3)+c 4 2,4) for k=1...4.

As illustrated in Fig. 3-1c, an excitonic state in a multi-electron system essentially

involves the particle-hole excitations (or excitons), and can not be correctly

formulated by any method based on one-particle picture, including the DFT and GW

methods. An economic solution for the problem is the time dependent DFT (TDDFT),

a method frequently used together with the adiabatic local density approximation

(TDLDA).4 8 The TDLDA can produce the right excitonic energies for finite systems.

Another powerful yet more cumbersome approach based on the many-body

Green's-function theory is the Bethe-Salpeter equation (BSE).48 ,49 ,5 0 The BSE

explicitly includes the exchange and dynamic screened Coulomb interaction between

the two particles considered, and is the kind of standard for the simulation of excitons

in bulk materials where the TDLDA usually fails. Furthermore, the

frequency-dependent kernel of the BSE enables it to capture the dynamic features of

excitons, which is also beyond the scope of the TDLDA.

The excitonic energies in different semiconductor nanoclusters have been

investigated by BSE,' 5 yet so far no result has been reported on calculating

excitonic inelastic scattering rates in semiconductor nanoclusters by this advanced

method. A major reason is that BSE is a frequency-dependent equation, since its

kernel explicitly depends on the frequency. We call this original equation as dynamic

BSE (DBSE). For calculating excitonic energies, a simplification strategy which

converts the frequency-dependent terms into frequency-independent terms has been

proposed.4 9 We call this simplified equation as the static BSE (SBSE). This strategy

has been widely used in almost all BSE calculations, because now the excitonic

energies can be obtained just by diagonalizing a frequency-independent matrix.



Unfortunately, the corresponding simplification strategy for calculating excitonic

inelastic scattering rates has not been published. This means that we still have to use

the DBSE to calculate excitonic inelastic scattering rates. As will be shown later in

this chapter, solving the DBSE is extremely expensive in terms of computational cost,

since there are a large number of frequency-dependent terms to be evaluated. This

seriously hinders the application of the method for the simulation of excitonic

inelastic scattering rates in semiconductors nanoclusters, as well as in other materials.

In this chapter, we establish our computation methodology for the excitonic

inelastic relaxation rates. We demonstrate our method with a simple semiconductor

cluster, Si20. Our approach is aimed at a numerical simplification for use of the

dynamic BSE: Instead of solving the time-consuming DBSE, our method only

requires the excitonic wavefunctions obtained via TDLDA and the one-particle

inelastic scattering rates obtained via GWF. We demonstrate that the approximation

method provides results very close to those obtained by the DBSE. Our approach

allows the calculation of a relatively large system with the same computational

resources, or the computational cost can be reduced dramatically without significant

loss of accuracy for the calculation of the excitonic inelastic scattering rates.

Another important issue usually ignored in most BSE calculations in the literature

is the self-consistencies of the one-particle Green's function G and the reducible

polarizability H. The one-particle Green's function G contains energies and

wavefunctions of all one-particle states. The reducible polarizability H contains all

energies and wavefunctions of all two-particle states. In many-body Green's function

theory, G is a required input for the calculation of H, and H is a required input for the

calculation of G In this chapter, two numerical implementations for the

self-consistencies of G and H have been tested and a stable numerical program/routine

has been proposed.



3.2 Many-body Green's function theory

3.2.1 Two-particle Green's function

In the previous chapter, we have introduced the one-particle Green's function Eq.

(2.1) for calculation of the properties of the one-particle electron or hole. We rewrite

this equation here as

GI (1,2)=-i(N,OIT[# ()IHt (2)]IN,0) (3.1)

where 1 means (r,ti), and the subscript '1' indicates explicitly that it is the Green's

function for the one-particle case. A particle-hole excited state, also known as an

exciton, essentially involves two particles and can not be described properly by the

one-particle Green's function. Actually all one-particle methods, including DFT and

GW, are not suitable for simulation of the optical properties of materials. To retain the

characteristics of two-particle excitations, a two-particle Green's function has to be

introduced as

G2 (1,2;1',2')= (-)2 (N,0|T[IH ^ () 2) (2) (1')]IN,0) (3.2)

where N denotes the number of particle. Due to the time-ordering operator T,

G2 (1,2;1',2') has 24 possible arrangements based on the relative order of ti, t2, ti and

t2, instead of 2 possible arrangements in the case of G, (1,2). However, not all terms

are important, since some of them correspond to the states with two extra particles

|N +2, s) or with two extra holes IN -2, s). Numerial comparisons show that there

are only 8 important terms corresponding to the particle-hole excitations.50

3.2.2 Bethe-Salpeter equation

With G, and G2, we can define the two particle correlation function L (1,2;1',2')



L (1,2; 1', 2') = -G 2(1,2; 1', 2') + G1 (1,1') G, (2,2')

which satisfies the Bethe-Salpeter equation

L (1,2; 1', 2') = G (1, 2')G (2,1')+ Jd (33'44')G (1,3) G (3', 1') (3,4';3', 4)L (4,2;4', 2')

(3.4)

The integral kernel E(3,4'; 3', 4) in Eq (3.4) is a functional derivative

(3 4)= by, (3,3')
(3,4';3') 5G (4,4')

Which can be approximated as

(3.5)

(3.6)

where V is the Coulomb interaction and W is the screened Coulomb interaction

introduced in Eq. (2.12c).

The Fourier transformation of the terms related to the particle-hole excitations of L

can be written as',53

r.;(r, r2, I|t ,t.;c)= dt2 exp (-icot2)I?* (ritl,r2t2;rrty,ry )

-ex p im t - r , rr ; , ) (r 2 r T; - in ,| r

2 1 -)q +rr1 2

(3.7)+ X. ( r2, ;-)7(r,'rr;5)cxp -in,

where the time-dependent variables have been reorganized as

(3.3)

E(3,4';3f '4)~:- -0 (3,3'),5(4*,53')V (3,4) + 0(3,4),5(3',74') W(3*,73')

+iexp (-io (t I



ti tt =t 2 +t2 ' ,r =t- tV, r2 =t 2 - t2 . (3.8)
2 ' 2 '

means t2+S with ->0*. Here and xq(r,,r;t, -ti) denote the energy

and particle-hole amplitude of the qth excitation. With the quasiparticle

approximation, Xq can be expressed as

x, (rr';r)~ exp 2 ) xexp[-i(Ec, -ir,) r]0(r)-exp[-i(E, +ir)r]0(-r)

(3.9)

where A q in Eq. (3.9) is the eigenvector corresponding to X,. Note that the finite

QP lifetimes have been taken into account in Eq. (3.9). This approach has been

applied to the study of the dynamics of core-excitons in semiconductors by Strinati.54

By substituting Eqs. (3.6), (3.7) and (3.9) into Eq. (3.4) and projecting both sides onto

gc (Xi(g$ (Xr )Xr (X2 ,1 2 ;-5), the BSE Eq. (3.4) can be converted to a complex

eigenvalue problem

(Ec -ir)-(E, +ir,)] Ay + E X (Kxc, + K ,,)=(n, -i) (3.10)

where £q and Fq in the right hand side of Eq. (3.10) are the real and imaginary

energies of the qth exciton. In this study, only singlet excitations are considered, and

thus the exchange term Kvc in Eq. (3.10) is evaluated as 2(qg, |V pvr,). The

direct interaction term K ,, in Eq. (3.10) can be calculated as

_ nq -1, -'s -(Ee -E,) +, -1iq -Cs -( Ec- E,)

x({(g|pvl,)(p,\(V +f.)|~pepc)+{ g|I(V+f f), P,|V PC (3

(3.11)



where the screened interaction

W = V+((V+ f,)1-IV+ V1-I(V + f)]/2 (3.12)

has been substituted into Eq. (3.11). Note that W (the screened Coulomb interaction

defmed in Chap. 2) is written in a symmetric form, since the local

exchange-correlation effect f, has to be included to make Eq. (3.10) consistent

with the one-particle calculation implemented with the TDLDA/GWF method. In Eq.

(3.10), only the resonant part is taken into account, while the anti-resonant part is

neglected. This is the Tamm-Dancoff approximation (TDA), whose effect on the

excitonic energies is found to be negligible.4 9 Usually c, and p, come from the

reducible polarizability H- obtained by TDLDA.

3.2.3 Feynman Diagrams

Solution of the complex eigenvalue nq - iFq through Eq. (3.10) simultaneously

determines the excitation energy nq and the relaxation rate Eq of the qth exciton.

Actually Eq. (3.10) explicitly includes four terms related to the decay of the exciton,

which are illustrated by the Feynman diagrams in Fig. 3-2.

A B

C

Figure 3-2. Feynman diagrams of terms in Eq. (3.10) related to the decay of the
particle-hole excitations. Arrowed lines are Green's functions. Wiggled lines are
screened interactions. Diagrams A and B correspond to the diagonal elements in Eq.
(3.10). Diagrams C and D denote the screened particle-hole interaction in Eq. (3.11).



However, it is unfeasible to solve the DBSE Eq. (3.10) directly, since the matrix on

the left hand side is explicitly dependent on the eigenvalues Qq to be solved. Thus

Eq. (3.10) is usually simplified by taking the two approximations

Eq = yc = =0, (3.13a)

Qq ~_ Ec, - E, ~:t Ec - E,,, (3.13b)

which simplifies Eq. (3.10) to to an frequency-independent eigen-problem, as now the

left hand side is not dependent on Qq and Fq any more. Thus the original

equation becomes a static equation, namely the static BSE (SBSE). The reducible

polarizability I obtained from SBSE can be written in the same way as that from

TDLDA

rr'; E) = 2E 5qp(r)pq(r') 3, (r),(r (3.14)
H (r~r';EE2 (3.14

q E- -(nq-10* E +(, -'O0*_

where the particle-hole amplitudes Ziq (r) = xq (r,r;t =0) and the tilde distinguishes

the results of the BSE from those of the TDLDA. Note that in most cases LI in Eq.

(3.14) is different from H in Eq. (2.19). The issue for the self-consistency of the

reducible polarizability 1I will be discussed later in this chapter.

3.3 Numerical Details

In chapter 2, Mg clusters have been used as examples to illustrate the method

developed for the electronic inelastic scattering rates in finite OD nanoclusters.

Whereas, in the following chapters (Chaps. 4, 5 and 6), several semiconductor

nanoclusters and molecules are to be investigated. Therefore, in this chapter, a

semiconductor nanocluster, Si2 , will be simulated to demonstrate the methods

developed in Chaps. 2 and 3 for the electronic and excitonic inelastic scattering rates



in finite OD nanoclusters. We do not choose larger clusters in this chapter, since we

will solve the dynamic BSE as the benchmark for our simplification strategy. This is

an extremely time consuming process and it is feasible only for small clusters.

An LDA calculation for the ground state of Si20 is performed using the SIESTA

code. 5 The core electrons [ls 22s22p6] of Si are replaced by the nonlocal

norm-conserving pseudopotential based on the Troullier-Martins scheme.3 6 A

triple--function and single-polarization-function (TZP) basis set of numerical atomic

orbitals is used for the valance electrons of Si. Two stable geometric configurations of

Si2o have been reported in literatures, one with the C3, symmetry (Fig. 3-3a)55'56 and

the other with the C2h symmetry (Fig. 3-3b)57 . The former has been shown to be more

stable by the DFT with generalized gradient approximation (GGA) functionals, the

DFT with hybrid functionals and the coupled-cluster CCSD(T) method. In this work,

both configurations are calculated via DFT with LDA, and we find that the energy of

the C3, isomer is about 0.2 eV lower than the C2h one. Thus all numerical work and

discussion in the remaining part of this thesis will focus on the structure as shown in

Fig. 3-3a.

(a) Si2o (Cv) (b) Si20 (C 2h)

Figure 3-3. Optimized structures of two isomers of Si2o. The labels in parentheses
correspond to the point group symmetries of the clusters.

All integrals are evaluated on a uniform grid in real space with a grid spacing of 0.5

a.u., which has been tested to give QP energies with an accuracy of 0.1 eV. The



exchange integrals fdrf dr'p, (r)cp, (r) V(r,r')p, (r')p, (r') are evaluated by first

solving Poisson equations with the multigrid method.37 Here V (r, r') is the

Coulomb interaction. The convergence of the quasiparticle calculation usually

requires a large number of unoccupied states for the evaluation of the polarizability.

Thus a Coulomb-hole screened-exchange (COHSEX) remainder scheme33 has been

applied to accelerate the convergence of the correlation part (cp l; Icp).

The properties of the one-particle states are obtained by solving the quasiparticle

equation Eq. (2.9) introduced in Chap. 2

(I +V, +V, , (r)V + Hdr'(r,r';E,) (p, (r')= E,cp, (r) (3.15)

where T is the electron kinetic energy, V, is the external potential and V, is the

Hartree potential. After applying analytical continuation of Z, (r,r';E) in the

complex energy plane, the energy E, and the inelastic scattering rates y, of an

electronic state are obtained by solving a complex equation set numerically

Re(, jI (E, -i ry,)p- (P|V.|cPi,)= E, -s, (3.16a)

Im(p,|I, (E, -h,y, )|<pj = r, (3.16b)

3.4 Results and discussion

3.4.1 Self-consistency of G and H

In the last chapter, we have demonstrated that it is necessary to implement the

self-consistency of one-particle Green's function G for calculation of electronic

inelastic decay rates in finite systems.58 The reason is restated briefly here. The

inelastic decay rate of the ith QP can be written as a summation S,



S, =2 EE a.,,,2 (3.17)

Replacing G with Go changes the positions of the poles from En +ay, to

e,+ os, which may cause considerable error to Si, since S, is mostly determined

by the arrangement of the poles in the vicinity of E,. The effect is illustrated

schematically in Fig. 3-4, where unoccupied (occupied) energy levels e,'s obtained

by DFT are shifted up (down) to yield the QP energy levels E, 's. Yet the poles

en +coq, are not moved together, leading to misplaced poles around a given energy

level E,.

En
n s n nVV

E n+on

Figure 3-4. Schematic plot for the relation among the DFT energies e, and hence the

derived poles e, +,. , the QP energies E, and hence the derived poles

E, + cq, Each color defines a set including an energy level and poles accompanying

the energy level. To maintain correct orders, E, should be used together with correct

poles E, +cj, . A mixture between E, and e, +cs, changes the pole

arrangement in the vicinity of a QP energy level, which may introduce notable errors
for the QP lifetimes.

In one of our papers,58 we only implement the iteration (G -+ -> G) , with the



assumption that H =H TDLDA . Herein, we further extend our investigation about the

self-consistency of H . The reason for the implementation of the self-consistency of

H is similar to that of G. Since the inelastic decay rate of qth exciton can be written

as a summation 5,, which also has a set of poles. Replacing f, by co, thus

changes the positions of the poles, and causes error to S,

Note that G is related to all one-particle properties, namely QP energies E, in

IX, and QP energy differences (E. -E,) in the BSE kernel K. While H is

related to all two-particle properties, namely excitonic energies C, in both Y, and

K. If two different data sets (G',f') and (G",H") are used for E, and K,

respectively, numerical inconsistency will occur. This implies that the same G and H

shall be used in the calculation of IX, and K, which brings about a self-consistent

issue at a higher level, namely a cycle (G,fl) -* (E.,,K) -> (G,H). The relation of

the three self-consistent cycles are illustrated in Fig. 3-5, where the bold lines indicate

the iterative steps. The left part is the G cycle, where the self-consistent G is solved

with H as an argument. The right part is the fl cycle, where the self-consistent H

is solved with G as an argument. The central part is the GH cycle, which indicates

the convergence of all of the four quantities. This cycle is implemented in the way

G (H) -> H (G) -+ G (H) -+ H (G) --- , until the simultaneous convergence of both

Gand H.

G K

Figure 3-5. Schematic plot for the three self-consistent cycles. Bold lines indicate

iterative steps. The left part G -*E (H) -+ G -+--- is the G cycle. The right part



H -+ K (G) -+ H -+- -- is the H cycle. The central part is the GH cycle which is

implemented in the way G(H)- H- (G)-+G(H)-+H(G)----., until the

simultaneous convergence of both G and H .

The criteria for the convergence of G and H are required for the numerical

implementation. According to Eq. (2.6), G is characterized by the QP wavefunctions

p, (r) and the energies E,. Usually the QP wavefunctions can be assumed to be

identical to the LDA wavefunctions, then the convergence of G is simplified to the

convergence of E, . Similarly, the polarizability H is characterized by the

amplitudes p, (r) and the energies n,. However, the convergence of H has not

been well studied. Here we test two possible implementations: the full

self-consistency (FSC) and the partial self-consistency (PSC). In the FSC strategy,

both the convergence of p, (r) and R, are pursued, while in the PSC, only the

energies Q, are updated in each iteration, with p, (r) fixed to the TDLDA

amplitudes. The latter essentially takes the BSE kernel as a first order correction to

the TDLDA kernel, which is an analogy to the assumption made in the QP

calculations in Chap. 2 that the QP wavefunctions and the DFT wavefunctions are

identical. Note that only the static BSE is used in both the FSC and PSC tests, since

the dynamic BSE is much more time-consuming, and only has a minor effect on the

excitonic energies ,.

The QP energies and optical spectra obtained by the FSC implementation are

shown in the top and bottom diagrams of Fig. 3-6. The arrows between the two

diagrams signify the order of each numerical step. It is found that the QP energies

shift toward the Fermi level as the iteration progresses. Also, the optical spectra

change dramatically between two consecutive iterative steps. Both diagrams indicate

that the FSC is numerically unstable. On the other hand, results obtained by the PSC

implementation are more stable, as shown in Fig. 3-7 with the same style as Fig. 3-6.



In PSC both the QP energies and optical spectra change only slightly after each

iterative step, and converge after 2-3 cycles. Therefore our discussion about the

properties of QPs and excitons in the following sections will focus on the results

calculated by the PSC method.

The difference between the PSC and FSC methods in calculation is that: the

amplitudes p, (r) in PSC are fixed to TDLDA values during each iterative step, while

the amplitudes are not in FSC. Thus we analyze the p, (r) calculated by TDLDA

and those obtained by SBSE to reveal the crucial role of the issue. In Fig. 3-8, the

weights of largest transition components of the first three excitations calculated by the

TDLDA and SBSE are illustrated. It can be seen from Fig. 3-8 that both the TDLDA

kernel and the SBSE kernel tend to mix the independent-particle transitions. The

tendency of the mixture is much stronger in the case of SBSE, as the weight of the

largest transition component of each SBSE exciton is smaller than that of the

corresponding TDLDA exciton. This effect has been reported for BSE calculations of

various systems.5 2,5 9 It is speculated that the numerical instability of the FSC

implementation could be attributed to the differences of the transition weights

obtained by TDLDA and BSE. In fact, each amplitude p,(r) corresponds to a

vector R,, and the reducible polarizability H is a set composed of such vectors.

This means that any quantity depending on H is essentially a function of these

vectors. Since TDLDA and BSE are based on different frameworks

(independent-particle vs. quasiparticle), their vector sets also differ from each other,

as can be seen in Fig. 3-8. Change from the TDLDA vector set to the BSE vector set

seems to be too large for the iteration to remain in the numerical stability domain.
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Figure 3-6. QP energies (top) and optical spectra (bottom) obtained by the FSC
implementation. The arrows between the two diagrams signify the order of each
numerical step, namely LDA-TDLDA-GWF-BSE- GWF-BSE-GWF.
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Figure 3-7. QP energies
implementation. Plotted in

(top) and optical spectra
the same style as Fig. 3-6.

(bottom) obtained by the PSC

TDLDA
1.87 eV 2.14 eV 2.22 eV

0.937 0.891 0.758

SBSE
2.00 eV 2.12 eV 2.15 eV

0.870 0.587 0.342

Figure 3-8. Weights of the largest transition components of the first three excitons
obtained by TDLDA and static BSE. Excitonic energies are also given at the top. Bold
lines stand for degenerate E states, slim lines stand for non-degenerate A 1 states.
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3.4.2 QP energies and lifetimes in Si2o

The QP energies in Si2o as calculated by the GW- method have been illustrated in

Fig. 3-7. The vertical ionization potential obtained by LDA is 5.46 eV, while it is

adjusted to 7.22 eV by the GW' method. This number is close to the experimental

data (7.46-7.53 eV).60

Inelastic lifetimes r, of hot electrons and holes in Si2o are plotted versus the

excitation energy |E, - EF in Fig. 3-9a. In a high-density free electron gas (FEG),

lifetimes of hot electrons with low excitation energies follow an inverse quadratic

energy dependence law according to Quinn and Ferell.19

rQF = 263r-5 2(E, F)- eV 2 fs. (3.18)

where r, is the electron-density parameter defined as l/W=(4/3);r r, with W

being the average electron density. Eq. (3.18) implies a constant scaled lifetime

r, (E, - EF )2 for all hot electrons in the FEG Therefore we plot the scaled lifetimes

of both electrons and holes as a reference in Fig 3-9b, although silicon is a

semiconductor with a spatially non-uniform electron gas due to covalent bonds. We

find that the scaled hole lifetimes with low excitation energies (|E, - EF I<6.2 eV) are

longer than those with high excitation energies (IE, -EF l>6.2 eV ), and so do the

scaled electron lifetimes (with one exception) behave in the same way. This feature is

strikingly similar to that of the metallic cluster Mg4o simulated by the same method,"

where a low energy regime (RLE) and a high energy regime (RHE) have also been

observed. The similarity between the QP lifetimes in bulk silicon and those in the

jellium model has also been demonstrated by Fleszar and Hanke. 6
1 The same feature

has been observed for Mg40 , where the QP scaled lifetimes in the RLE are longer than

those in the RHE, and the reason is also attributed to the lack of electronic states

around the Fermi level available for the transitions of hot electrons (holes).



In the regime RHE, the scaled lifetimes of hot electrons fluctuate in the range of 90

to 150 fs eV 2, with an average of 104 fs eV2. The scaled lifetimes of hot holes in this

regime approach 30 fs eV2 smoothly with increasing jE, - EF1. QP lifetimes in bulk

silicon have been calculated in Ref. 61 and 62. According to Fig. 2 in Ref. 62, the

scaled lifetimes of electrons and holes are estimated to be 120 and 40 fs eV2

respectively, which are close to the results obtained in this study. This implies that

even in a cluster as small as Si2o, the scaled QP lifetimes in the RHE have already

approached the corresponding bulk values. The notably shorter lifetimes of hot holes

than those of hot electrons with the same |E, -EFI, can be attributed to the smaller

angular momentums of holes, or to the greater overlap among different hole states,

which leads to more possible transitions than for electrons. This is an analogy to the

behavior of the bulk, where one can attribute shorter hole lifetimes in simple s-p

systems (no localized d-states) to the smaller momenta of holes.42

It is interesting to compare the semiconductor cluster Si2o simulated in this study

with the metallic cluster Mg4o studied in Chap. 2, since both clusters have the same

number of valence electrons. In Mg40, the scaled lifetimes of hot electrons fluctuate in

the range of 21 to 24 fs eV2, while those of hot holes are around 12 fs eV 2 and

decrease slightly with increasing excitation energy |E, - EF . The results indicate that

at the same excitation energy IE, -EFI, the scaled QP lifetimes in Mg 4o are shorter

than those in Si20. One reason for this phenomenon is the larger HOMO-LUMO gap

in Si2o than that in Mg4o, which leads to fewer energy states, or decaying channels, for

QPs in Si20. However, even if one takes this issue into account by redefining the

excitation energy as E, - ELuo and EHOMo - E, for electrons and holes, the QP

inelastic scattering lifetimes in Si2o are still longer, which can be explained by the

higher electron density in Si2o and thus the stronger screening effects. The statement

can be verified by calculating the valence-electron densities in the two materials,

which are 8.6x 1022 cm3 for bulk Mg, and 20.Ox 1022 cm4 for bulk silicon.
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Figure 3-9. Energy dependence of both the a) QP lifetimes and b) scaled QP lifetimes
in Si2o obtained by the self-consistent GWF approach. The vertical dashed line
separates both plots into a low-energy regime and a high-energy regime.

3.4.3 Excitonic energies and lifetimes in Si20

The final excitonic energies and lifetimes are calculated using Eq. (3.10), in the

partially self-consistent way as has been implemented in Chap. 3.4.1. Thus only

complex eigenvalues are updated iteratively by the frequency-dependent DBSE

matrix elements, with eigenvectors fixed to the TDLDA amplitudes. To accelerate and

stabilize the self-consistency procedure, the initial guess for the imaginary part of the

excitation energy I, for a given exciton is taken as

T, =IRT42 (r +r) (3.19)
VC



The absorption spectra calculated by DBSE and SBSE, both with partial

self-consistency, are plotted in Fig. 3-10. Since the cluster Si2o is a prolate cluster with

C3, symmetry as shown in Fig. 3-3a, it exhibits A1 transitions (electric dipole

perturbation along the z-axis) and E transitions (electric dipole perturbation within the

xy-plane) with an energy dependence, which are illustrated in Figs. 3-10a and 3-10b,

respectively. As shown in Fig. 3-10, the absorptive features of the Ai transitions

emerge in a lower energy regime than the E transitions, which is attributed to the

larger dimension and thus less electronic confinement along the z-axis than those

along the x and y-axes. On the other hand, the DBSE and SBSE absorption spectra for

each irreducible representation are similar, indicating the negligible influence of the

dynamic screening effect on the excitonic energies. This observation is demonstrated

more clearly in Fig. 3-11 by plotting the energy differences between the DBSE and

SBSE contributions arising from the second term in Eq. (3.11), where the two

methods are different from each other. As shown in Fig. 3-11, the energy differences

vary from -0.2 to 0.1 eV, with the average of -0.07 eV, which is negligible. These

results demonstrate the feasibility of using the SBSE calculation technique, which has

been widely used for simulations of excitonic energies in bulk materials (3D), 63,64

graphene (2D),65'6 carbon nanotubes (ID),67 -68 molecules and clusters (OD). 69'70
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Figure 3-10. Absorption spectra of a) A l transitions and b) E transitions calculated by
the dynamic and static BSE, both with partial self-consistency. Absorption lines are
broadened by Gaussian lineshapes with a spectral width of 0.1 eV.
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Figure 3-11. Energy differences between the DBSE and SBSE contribution arising
from the second term in Eq. (3.11), with the negative sign included.



The excitonic inelastic scattering rates (MEG rates) F, of Ai and E transitions vs.

excitonic energies n, are plotted in log-log style in Fig. 3-12. Although the two

transition modes differ in terms of the positions of major absorption peaks, their

decay-rate patterns almost coincide with each other. The results indicate that the

excitonic lifetimes are geometry-insensitive, and are solely determined by the

excitation energy. We fit the data point with a simple rational function (Pad6 function

P2 )

y=2x+a+ b (3.20)
x+c

where x and y represent In (n/eV) and in (F/eV), respectively. The fitting

coefficients a, b and c are -4.49, -0.98 and -1.19. Here the coefficient of the linear

term is fixed to be 2, since it is easy to prove that the quadratic relation between the

excitonic decay rate and the excitonic energy will be approached at the high-energy

limit (large x) for both single-particle excitations and collective excitations, provided

that the quadratic relation between the QP decay rate and the QP energy is approached

at the high-energy regime as in this case. According to Eq. (3.20), excitons with

energies of 5.0, 6.0 and 7.0 eV shall have lifetimes 12, 4.2, 2.2 fs, respectively. The

results provide a general picture about the multiple exciton generation rates: the

process occurs on a time scale of several to several tens of femtoseconds in the silicon

cluster Si20 that was investigated.
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Figure 3-12. Log-Log plot of the excitonic inelastic decay rates 1-, of A, and E

transitions vs. excitonic energies r, . The solid line is the rational curve-fitting of the

data points.

The most interesting implication is how the estimated excitonic decay rates based

on Eq. (3.19) differ from those obtained by solving the dynamic BSE. If the results

calculated by the two approaches are close, then Eq. (3.19) can be used to replace

DBSE in the calculation of excitonic lifetimes. This can reduce the computational

time dramatically. Actually the difference of the two approaches can be understood in

terms of Feynman diagrams: Eq. (3.19) only takes into account the first two diagrams

in Fig. 3-2, while the dynamic BSE applied in this paper includes all of the four

diagrams in Fig. 3-2.

The ratios of the excitonic inelastic decay rates calculated with DBSE over those

obtained with Eq. (3.19) are plotted as a function of the excitonic energies in Fig. 3-12,

where the ratios are again geometrically insensitive according to the patterns of the A I

and E transitions. Furthermore, one can find that for excitons in the high-energy

regime (n,> 4.5 eV), the ratios of their inelastic excitonic decay rates can be fitted by

a constant (0.966) as shown by the horizontal solid line in that figure. The number for

this ratio is close to unity, indicating that Eq. (3.19) is a very good approximation to

the DBSE results for excitonic decay rates in the high-energy regime. The fitted

constant is slightly smaller than unity, meaning that the inclusion of the dynamic



screening effect (the last two diagrams in Fig. 3-2) reduces the excitonic decay rates

for most excitons. This is similar to the conclusion in Ref. 54, where the

core-excitation width r' is predicted to be smaller than the core-hole width r by

inclusion of the dynamic screening effects when solving the BSE. Note that the MEG

effect can only be observed for incident photons with energies larger than twice the

optical bandgap. For Si2o the optical bandgaps obtained by different methods

(TDLDA, SBSE and DBSE) are around 2.0 eV, which means that the excitonic MEG

energy threshold should be about 4.0 eV. Therefore the lower values in Fig. 3-13

located around 4.0 eV indicate that the approximation method tends to overestimate

the excitonic inelastic scattering rates, especially near the MEG energy threshold,

with the maximum factor of about 1.9 in our case.
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Figure 3-13. Ratios of the excitonic inelastic decay rates calculated with DBSE over
those estimated by Eq. (3-19) for A I and E transitions. The solid line is the constant
curve-fitting of the data points in the high-energy regime.

3.5 Conclusion

In this study, the excitonic inelastic decay rates in a semiconductor nanocluster Si2o

are investigated by the dynamic Bethe-Salpeter equation (DBSE). A simplification

strategy is proposed for the estimation of the excitonic inelastic scattering rates. The

results obtained by the simplification strategy are demonstrated to be very close to

those obtained by DBSE. With much less computational cost than DBSE, the



simplification strategy thus provides a fast way for accurate calculations of excitonic

inelastic scattering rates. This simplification strategy can be widely used for

calculations of excitonic inelastic scattering rates in larger systems. Without the

simplification, calculations for inelastic scattering rates in such systems are essentially

infeasible.

The implementations of the self-consistencies of the one-particle Green's function

G and the reducible polarizability H within the framework of the many-body

Green's-function theory are discussed. The one-particle Green's function G contains

energies and wavefunctions of all one-particle states. The reducible polarizability H

for excitonic transitions contains all energies and wavefunctions of all two-particle

states. In many-body Green's function theory, G and H are mutually dependent on

each other. The full self-consistency of H, where both the amplitudes p, (r) and the

energies R, are allowed to relax, is numerically unstable. On the other hand, the

partial self-consistency of H is stable where only the energies f, are allowed to

relax. Therefore the later one is suggested as a stable numerical routine.



Chapter 4

Nonradiative relaxation rates of electrons

and excitons in nanoclusters

4.1 Introduction

4.1.1 Single-phonon process vs. multiple-phonon process

The energy exchange rate between electrons and phonons plays a key role for

photovoltaic devices. This energy exchange rate corresponds to the heat transfer rate

between the working fluid and the cylinder/piston in the heat engine analogy. Actually

phonon-assisted relaxation of the electronic states is a general phenomenon observed

in almost all materials, including metals, semiconductors and organic molecules. The

phenomenon is of great interest and it has attracted attentions from both the physics

and chemistry researchers. It should be emphasized that the term "nonradiative

relaxation" may stand for different processes under different circumstances. In this

chapter, it is further categorized as a single-phonon relaxation process and a

multi-phonon relaxation process.

The single-phonon process means that an electron makes a phonon-assisted

transition from one electronic state transits to another electronic state, with the

electron emitting or absorbing a phonon at the same time. For physicists, the

theoretical work on this process originates from the investigation of the

temperature-dependence of the optical gaps of bulk silicon and germanium. This

process leads to the broadening of the electronic states in semiconductors. The

formula associated with this process was first developed by Fan in 195 1.71 Thus the

derived electron-phonon self-energy term is called the "Fan" term, and the imaginary

part of the Fan term is exactly the single-phonon relaxation rate. Note that the



temperature effect also manifests itself through the thermal expansion of the crystal

lattice, and through a Debye-Waller term corresponding to the elastic interaction

between electrons and phonons.12 However, the thermal expansion and Debye-Waller

terms only influence the real parts of the electronic energies, but do not contribute to

their imaginary parts. This means that the two effects are irrelevant for describing the

finite lifetimes of electronic states, and will not be covered in this thesis.

The multiple-phonon process means that an electron in one electronic state makes a

transition to another electronic state, with the quantum numbers of several coupled

phonon modes changed at the same time. In chemical terms, the theoretical work

describing this electronic process originates from the investigation of nonradiative

transitions of electronic states in large molecules. Usually the energy gap between

the first two electronic states is so large that it can not be matched just by the energy

of one phonon. Therefore a process involving multiple phonons is the only possible

relaxation mechanism. The formulas for the transition rates have been developed

based on the perturbation theory. It should be pointed out that the anharmonic effect

has to be taken into account for multiple-phonon processes, and such processes are

attributed to the displacement of the potential energy surface during the electronic

transitions.

Physical and chemical researches have tackled the electron-phonon interaction

from different aspects, as they are facing different problems and objectives. Now the

question is which aspect should we follow for the electron-phonon interaction in a

semiconductor nanocluster. A cluster is more like a bulk material so we should focus

on a single-phonon process, or if it is more like a molecule then we should focus on a

multiple-phonon process. The question has not been addressed in literature until the

work of this thesis. In this thesis, we suggest that both mechanisms should be included.

Because a nanocluster is essentially the transition form between a bulk material and a

molecule, it has all features of both forms.

The fact can be understood more readily with the schematic energy diagram of a



semiconductor nanocluster as shown in Fig. 4-1. In this cluster, an electron in the

electronic state on the top can jump to those states right below it through a

single-phonon process, as the energy gaps between these states and the top one are

smaller than the energy of one phonon cok. On the other hand, the electron in the

electronic state on the top also can jump to those states far below it through a

multiple-phonon process, since now the energy gaps between these states and the top

one are so large that single-phonon process is prohibited. According to Fig. 4-1, we

find that the final states available for a single-phonon process are fewer than those for

a multiple-phonon process. However, the single-phonon process is usually faster than

the multiple-phonon process. Therefore the contributions of the single-phonon process

and multiple-phonon process to the overall nonradiative relaxation rate of a high

energy state are predicted to be comparable in magnitude. This also supports our

speculation that it is important to include both the single-phonon and the

multiple-phonon mechanisms for the calculation of nonradiative relaxation rates of

electronic states in nanoclusters.

Figure 4-1. Schematic energy diagram of a semiconductor nanocluster. The top
electronic state (magenta one) can jump to the states right below it (red upper zone)
through a single-phonon process, or jump to the states far below it (orange lower zone)
through a multiple-phonon process. The energy criterion to distinguish between the

two mechanism is based on the single phonon frequency Com.



4.1.2 One-particle states vs. two-particle states

So far, all simulations of electron-phonon interactions are conducted in the

framework of a one-particle picture. Thus the nonradiative relaxation of an excited

state is always treated as the decay of an electron or a hole, even for an excitonic state.

Describing electrons and holes in a one-particle picture is justified, as electrons and

holes are essentially one-particle states. However, describing excitons in a

one-particle picture implies the independent-particle approximation introduced in

Chap. 3.1.1, where excitonic states can be written as IQ), instead of the linear

combination of |1, j). With this approximation, the decay of an excitonic state I ij )

does simplify to the decay of its electron component (I', j) -+i,if)) or its hole

component (Ii, ) ->i',ji).

The independent-particle approximation may hold for the first several excitonic

states, classified according to their energies, because in most cases they can be

approximated by li ). However, high-energy excitons shall always be expressed as

the linear combination of li, j). This means the one-particle picture is expected to

break down for these excitonic states. Therefore, we suggest treating all

exciton-phonon interaction in the framework of two-particle picture. Changing from

the one-particle picture to the two particle picture will lead to a significant influence

on the phonon-assisted relaxation rates of excitons. As will be shown in this chapter,

the two-particle density of state (DOS) can be regarded as the convolution of the

electron DOS and the hole DOS. Therefore the excitonic DOS is much larger than

electronic DOS, which leads to a significant difference between the relaxation rates of

excitons and those of electrons.



4.2 Electron-phonon interaction

4.2.1 Adiabatic approximation

The Hamiltonian of a system composed of electrons and nuclei can be expressed as

H =i(r)+f (Q)+ U(r,Q) (4.1)

where r and Q are the coordinates of electrons and nuclei, respectively, f(r) and

[ (Q) the kinetic energy operators of the electrons and nuclei, and U (r, Q) is the

total potential energy among all electrons and nuclei.

Within the framework of the Born-Oppenheimer approximation, 7 the

wavefunctions of electrons and nuclei are assumed to be independent. Thus the

wavefunctions D, (r,Q) and energies E, (Q) of electrons can be obtained for each

nuclear configuration Q by solving the electronic Schr6dinger equation

[f (r) + U (r, Q)] (D, (r, Q) = E, (Q) (D, (r, Q) (4.2)

The wavefunction V/(r,Q) of the whole system can be expanded with 1, (r,Q) as

the basis as

yV/(r,Q) =Z, (Q)a, (r,Q) (4.3)

Substituting this wavefunction into the Schr6dinger equation of the system

HyI(r,Q) = [f(r)+ft(Q)+U(r,Q)] V/(r,Q) = VVy(r,Q) (4.4)

and then projecting both sides onto the electronic wavefunction D, (q,Q), we will

obtain a set of coupled equations for X, (Q)



ZH, (Q)x, (Q) = VX, (Q) (4.5)

where V is the energy of the state v (q, Q), and Hj (Q) is the Hamiltonian

Hyj(Q) = Hjj(Q) + Hj (Q) (4.6)

where the unperturbed and perturbation Hamiltonian are

H Q=,E, (Q) -Z"(4.7a)
k ak Q2kC 

H (Q) -2 (4.7b)

where Mk are the masses of the normal coordinates Qk.

Within the framework of the adiabatic approximation, the non-adiabatic coupling

term H (Q) is neglected. Therefore the Hamiltonian matrix becomes diagonal,

and Eq. (4.5) is simplified to

I, (Q)_Z h2 (Q) =V, (Q) (4.8)
E,(Q)- 2 )

which implies the nuclei move on the adiabatic potential energy surface (PES)

E, (Q). The nuclear wavefunctions x, (Q) can be obtained by solving Eq. (4.6).

Within the harmonic approximation, all anharmonic effects are neglected. Thus

E, (Q) can be expressed as the linear combination of linear and quadratic terms,

E, (Q)= aeQ9+ Q + Zr, QkQ, (4.9)
k k k.I



where a4, ,, y, are coefficients. By choosing the equilibrium position as the

origin Q0, c can be eliminated. For normal coordinates Qk, bilinear terms vanish

and y =0 . Therefore Eq. (4.8) yields k independent one-dimensional

harmonic-oscillator equations, which have analytical solutions ,,, (Qk) in which

v, are the quantum numbers. Then the nuclear wavefunction X,, (Q) is expressed

as

.,1 (Q) = H,,Vk (Qk) (4.10)
k

where v=(vi,v
2 ,...,vk).

4.2.2 Perturbation theory

Within the framework of the perturbation approximation, the nonradiative

transition rate y, between any two adiabatic states X,, (Q)OD, (r,Q) and

X,. (Q)<D (r,Q) with energies ,,, and Vj1,, can be calculated with the Fermi

golden rule by taking H (Q) as the perturbation Hamiltonian,76,77

y, = 2rz P (Xjv. )H XI,. Y- Y,,,) (4.11)

where the summation is over all initial vibronic states v' weighted by the Boltzmann

factor P,, and all final vibrational states v". The perturbation term is

h 2 CD (9X, , h2 p

'X , =H i Xi(V = / kv (Mj'X,,- ; , (4.12)

The second term in Eq. (4.12) are usually neglected with the assumption that the

electronic wavefunctions are slowly varying functions of the normal coordinates Qk,



and Eq (4.12) becomes78'79

(xy.1 H Xj,, = -I h Di I aDI ,,l (4.13)

4.2.3 Single-phonon relaxation rates

The lineshape function is the crucial issue to evaluate y>, numerically, which is

essentially determined by the underlying decay mechanisms. As shown in Fig. 4-1, a

high-energy exciton can decay through both single-phonon and multiple-phonon

processes. Both should be considered. Here we propose an energy criterion to

distinguish between the two processes, AE, < hCok for single-phonon relaxation, and

AE,, > hwk for multiple-phonon relaxation.

For a single-phonon process, the decay only occurs between two electronic states

with an energy difference smaller than that of the kth phonon, hco.. In this case a

Lorentzian lineshape is applied and Eq. (4.11) is simplified to

I, -I C, )(, - +2 + (nk;21)2 + n r, (4.14)
k Mk (AEj - ho-) +(~ y ,+ hco,2

where C7 =(pja/@Qkjp,), AE9 =E, -E, and y" is the width of the Lorentzian

function corresponding to the ith electron, which is exactly the single-phonon decay

rate to be determined. Here nk is the average quantum number of the kth vibrational

mode at the thermal equilibrium. y3, can be found as the imaginary part of the

following self-energy term

ES* =j 20 C 2'r k nk e nk (4.15)



This term is close to the self-energy term in Ref. 71, with a difference in coefficients

arising from different perturbation mechanisms. Note that ZI corresponds to a

Feynman diagram similar to Y, in the GW case. Thus ySP = can be

evaluated numerically in the same manner as that for the QP inelastic scattering rates

in the GWF implementation.

4.2.3 Multiple-phonon relaxation rates

The multiple-phonon decay process is more complicated and can only be treated

properly by including anharmonic effects. Since a small cluster can be regarded as a

poly-atomic molecule, the dominant anharmonic effect is attributed to the

displacement of the potential energy surface for different electronic states.80 Within

the displaced potential surface approximation, the normal coordinates Qk and their

masses Mk and frequencies ao are assumed to be constant for all electronic and

excitonic states. Only the equilibrium positions Qk" change for different states,

namely Q,"' # Qkj. We can define the dimensionless displacements At as

A' = Mk 2 (Q''- "-Oj) (4.16)

which measures the displacement along the kth normal mode when the electron

changes from state i to statej.

Following Freed and Jortner , the transition rate between two states through the

multiple-phonon process is



h2 1 1
Mk hDjkJi7

(n,+1)exp (AEJ -hco EM)

2h(D) '
'n(ex E, +hm, --EL)

(4.17)

with

( 2  C ( A) (2 n 1+(Dj) 2 k k 2 +1

1
= exp(hwk/kBT)-1

E I EhmCa

Here the rearrangement energy E! will be neglected without significant influence

on computational results. Unlike r,1 j with a Lorentzian lineshape, y", exhibits

multiple Gaussian lineshapes, with spectral widths Dk temperature-dependent. Note

that both r3, and y,", share the same form as the peak intensities go to infinity

and the linewidths become 3-functions.

k_=Co 1 h,,+1) E, - E, -m) nS E, - E,+ (4.18)

It is the decay mechanism that determines how the delta functions are broadened.

The total relaxation rates of an electronic state through electron-phonon interaction

are expressed as the sum of all decay rates between this state and states with lower

energies



E-P _' (4.19)
j.I'EO'jI<eO/I

4.3 Numerical details

A small silicon cluster, Si20 , has been used in the previous chapter (Chap. 3) to

demonstrate our methods developed for the electronic and excitonic inelastic

relaxation rates. With the simplification strategy proposed in Chap. 3, now we can

handle relatively large clusters. In this chapter, a larger silicon cluster, Si46 will be

simulated as an example to show the approaches developed in this chapter for the

calculation of the nonradiative relaxation rates of electrons and excitons in

nanoclusters. There are two reasons to switch from Si20 to Si4 6. Firstly, we need a

large nanocluster to narrow the distribution of the data points, which will facilitate the

discussion. Secondly, Si2o has degenerate states because of its C3v symmetry. Thus the

calculation of the electron-phonon interaction shall take into account the Jahn-Teller

effect explicitly, which complicates the study dramatically. On the other hand, Si4j

does not have any degenerate state because of its C2v symmetry. Thus we can focus on

the nonradiative relaxation rates for Si46.

The ground state LDA calculation is performed using the SIESTA code.35 The core

electrons [1s 22s22p6 ] of Si are replaced by the nonlocal norm-conserving

pseudopotential based on the Troullier-Martins scheme. A quintuple-(

double-polarization (5Z2P) basis set of numerical atomic orbitals is used for the four

valence electrons of Si. The optimized structure of Si46 is illustrated in Fig. 4-2, which

has the C2v symmetry.



Si46 (C2 )

Figure 4-2. Optimized structure of Si46 with the C2, symmetry.

All integrals are evaluated on a uniform grid in real space with a grid spacing of 0.5

a.u. The exchange integrals fdrJdr'p, (r)ip, (r) V(r,r') q (r')p, (r') are evaluated

by first solving Poisson equations with the multigrid method." The convergence of

the QP calculation usually requires a large number of unoccupied states for the

evaluation of the polarizability. Thus a Coulomb-hole screened-exchange (COHSEX)

remainder scheme33 has been applied to accelerate the convergence of the correlation

part ((,|lj|,).

The properties of the one-particle states are obtained by solving the quasiparticle

equation introduced in Chap. 2

(I + V + VH)r, (r)+ Jdr'l. (r,r';E,), (r') = EP, (r) (4.20)

After applying analytical continuation of 1, (r,r';E) in the complex energy plane,

the energy E, and the inelastic scattering rates y, of an electronic state are obtained

by solving a complex equation set numerically

Re (p, 1. (E, -i,i,)|,-(P I,|V.|, P= E, -e, (4.21a)

Im(p,I (E, -it1r,)I (, = Y, (4.21b)



The inelastic scattering rates of excitons are calculated with the approximation

method developed in Chap. 3 (Eq. 3.19)

1, =ZIR-1 (y, +r,) (4.22)
V,C

in which R" are the coefficients of the linear combination of the sth exciton

obtained by TDLDA, namely

p (r) = Rcp*(r)(pc (r) (4.23)
v,c

The normal coordinates Qk and frequencies cok are obtained by diagonalizing

the mass-weighed second-order force matrix (Hessian matrix)."' The second order

derivatives 02U/OX,8Xj are calculated with a finite difference approach. Here U is

the total potential energy among all electrons and nuclei. X, are nuclear Cartesian

coordinates. A unitary matrix without translational and rotational vectors is used to

transform the Hessian matrix to a block diagonal matrix with each block

corresponding to an irreducible representation.81 Block off-diagonal elements are

small and are thus eliminated to ensure that each Q, belongs to a specific irreducible

representation exclusively.

The force on the ith atom due to the jth electronic state is calculated as f/ by our

modified version of the SIESTA code. The calculation sums up all the energy

derivatives associated with the jth electronic state, namely those from the kinetic

energy, the non-local pseudopotential energy, Hartree energy, exchange-correlation

energy and basis overlap." Then the shift of the ith atom due to the jth electronic state

is estimated as AXK ~ " n =1,2,3

Therefore the shift along the kth normal coordinate due to the jth electronic state



AQj can be obtained by the inner product between AXi and Qk, where Qk is the

vector representation of Qk in Cartesian coordinates. Here we do not take into

account the Jahn-Teller effect, since the silicon cluster investigated here does not have

degenerate electronic states. The pseudo-Jahn-Teller effect is not included either.

Therefore we only need to calculate those AQk belonging to the irreducible

representation with the total symmetry, namely A, of the C2v point group, since the

square of each irreducible representation of the C2v point group is A1.

The derivative K((P'|/OQkk, is evaluated by a finite difference method, which is

more accurate than the frequently used perturbation method in literature. In the

SIESTA code, the molecular orbitals are expressed as the linear combination of

atomic orbital (LCAO),

p, (r) = c,,,#,, (r) (4.24)
m

where #m (r) is the mth atomic orbital. Then we have

a, (r) #aci,, (r)+ c 8# (r) (4.25)

and

(L/XM )= c,, # (r), (r)dr + cj,,c,,m .(r) ,,(r) dr (4.26)

Here we only take into account the internal conversion and neglect the intersystem

crossing between singlet and triplet states arising from the spin-orbit coupling. The

derivation and numerical treatment for excitonic states are similar to those of

electronic states. First the force on the ith atom due to the jth excitonic state is

calculated as



F/l = JjR 1 (fi --fi ) (4.27)
v,C

from which AX/, AQj, A'- and EJ can be obtained in exactly the same

manner as in the case of electrons. The coupling term between the two excitonic states

is approximated as

(PI pa|8Q PIA = E RcR c, (Sw. S(p|I 8aQk\ p,, S,) +s p, (g Q |/ aQk . (4.28)
v,c v',C'

Then Eqs. (4.14) and (4.17) can be extended to the calculation of excitonic

nonradiative transition rates.

4.4 Results and discussions

4.4.1 Electronic relaxation dynamics in Si clusters

The inelastic scattering rates y's of electrons and holes in the cluster Si46

calculated by the GWF method are plotted versus the excitation energy IE, -EFl in

log-log style in Fig. 4-3. Note that all relaxation rates are given in units of eV, which

can be easily converted to fs- by being divided by h = 0.658 eV -fs. Our calculations

show that the inelastic scattering rates of electrons and holes in Si4 are similar to Si20

which was presented in Chap. 3. Specifically, the electrons and holes in Sie approach

the quadratic law of Quinn and Ferell in the high-energy regime (jE, -EF >6 eV)

r, = 263r~/ (E, -EF) eV2 fs. (4.29)

where r, = (27/4)' is the inelastic scattering lifetime.
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Figure 4-3. Log-log plot of inelastic scattering rates r's of electrons (hollow circles)

and holes (solid diamonds) in Si4 vs. energy from the Fermi level.

The single-phonon nonradiative relaxation rates ysp of electrons and holes in Si46

versus the excitation energy jE, -EFI obtained at 0 K by Eq. (4.14) are plotted in Fig.

4-4a. Note that some data points in Fig. 4-3 do not have corresponding points in Fig.

4-4a, since rs' for those states vanishes. This arises from the fact that the energy

gaps between two neighboring states in a confined system may be larger than the

maximum phonon frequency and thus the single-phonon relaxation mechanism

between such two states is strictly prohibited. The multiple-phonon nonradiative

relaxation rates r' at OK in Si4 are presented in Fig. 4-4b. The pattern of Y is

quite dispersive. For some electron (or hole) states, the relaxation rates of the

multiple-phonon process are even comparable to those of the single-phonon process.

More importantly all electronic states (except the HOMO and LUMO) can decay

through the multiple-phonon relaxation process, which is an alternative nonradiative

decay pathway when the single-phonon process is absent. Therefore the

multiple-phonon decay pathway is an important relaxation mechanism and should

always be included for the study of nonradiative rates for finite systems.
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Figure 4-4. Log-log plots of a) Single-phonon nonradiative relaxation rates 7" and

b) multiple-phonon nonradiative relaxation rates rw of electrons (hollow circles) and

holes (solid diamonds) in Si, at 0 K.

The patterns of ry and rm in Figs. 4-4a and 4-4b are more dispersive than that

of r in Fig. 4-3. The reason is that the single-phonon relaxation can only happen

between a state and those states with energies below it yet not too far away (within the

phonon energy hco,). Therefore an electron in a given electronic state may have

many strongly coupled states available for the single-phonon relaxation and thus

exhibit a large r". On the hand, it may only have one or two weakly coupled states

and thus present a small rSP. I means that VS is essentially a local quantity in

terms of energy and is dependent upon the case being studied. This explains why the



pattern of ys' is so dispersive and even two states with close excitation energies

E, -EFI may have quite different y5. Note that although the multiple-phonon

relaxation can happen in principle between a state and any states with energies far

below it, in practice there is still an upper limit for the energy gaps, as r"' decreases

exponentially with increasing energy gap. It means that ys' is a semi-local quantity

in terms of energy and is also dependent upon the case being studied. Therefore the

same interpretation applies to y . The local single-phonon relaxation and

semi-local multiple-phonon relaxation processes distinguish notably from the inelastic

scattering relaxation, where an electron in an electronic state can transit to those states

with energies far below the initial state, namely no upper limit for energy gaps.

Therefore, the higher the energy of the initial state, the larger the inelastic scattering

rate is. In this case, the absolute excitation energy IE, - EFl does matter.

The ratios r'srSP+mp (7 sP+MP =SP + P r ) are plotted in Fig. 4-5 for the

comparison of the inelastic scattering rates and the nonradiative relaxation rates of

electronic states in Si6. The patterns for r*,v" are even more dispersive than

that of r', with some data points above unity and the others below. This implies

that inelastic scattering is highly possible to happen for some electronic states, while

nonradiative relaxation will dominate the others. However, the data in Fig. 4-5

suggest that the inelastic scattering relaxation is a more significant effect, since the

logarithmic mean of data in Fig. 4-5 are larger than unity. In addition, nonradiative

relaxation progresses in a cascade style. Thus an electronic state with a high excitation

energy may pass through several intermediate electronic states during its nonradiative

relaxation. The inelastic scattering decay will happen sooner or later, as long as one of

these intermediate states favors inelastic scattering more. Therefore it is reasonable to

assume that inelastic scattering can always occur for electronic states with high

excitation energy.
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Figure 4-5. Log-log plot of the ratios y'/ry" for electrons (hollow circles) and

holes (solid diamonds) in Si, at 0 K, where ysJ** = y"+ yM.

The temperature effect is studied by recalculating r, YA" and yB/rP+ at

300 K. The results are illustrated in Figs. 4-6 and 4-7. Here we assume that the

electronic scattering rates are temperature-independent. As the temperature changes

from 0 to 300 K, all y and y" are enhanced with a factor ranging from 1 to 3.

Usually the temperature enhancement of y is larger than the corresponding

enhancement of yS', since the increased temperature not only elevates the average

quantum number n. of each normal mode for both r' and y", but also

increases the thermal broadening factor D* in Eq. (4.17) solely for yr . Results in

Fig. 4-7 show that the ratios of y"/r**" are reduced at 300K compared to the

ratios of y"s/r+*I at OK as shown in Fig. 4-5. Yet it is still essential to include the

multiple-phonon mechanism for calculations of rs/SP+ y and y

97
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Figure 4-6. Log-log plots of a) Single-phonon nonradiative relaxation rates r'P and

b) multiple-phonon nonradiative relaxation rates r"'' of electrons (hollow circles) and

holes (solid diamonds) in Si, at 300 K.
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Figure 4-7. Log-log plot of the ratios y"/r*** for electrons (hollow circles) and

holes (solid diamonds) in Si4, at 300 K, where 7S'"* = y+ r".

We have introduced in Chap. 1 that there are different possible ways to excite a

multi-electron system. One possible way is to add an electron to the system, or

remove an electron from it to excite a hole. These excitations exactly correspond to

the electronic states discussed here. It should be pointed out that these electronic

states are essentially charge-non-conserved one-particle excitations, which are not

directly involved in most optical applications of semiconductor nanoclusters. Actually

in photovoltaic systems based on semiconductor nanoclusters, most incident photons

just induce charge-conserved excitonic (electron-hole) excitations. Therefore the

relaxation dynamics of excitons is of greater importance, which will be addressed in

the next section.

4.4.2 Excitonic relaxation dynamics in Si clusters

The inelastic scattering rates l' (capital letter stands for excitons) of excitons in



Si46 calculated by the approximation method of Eq. (4.22) are plotted versus the

excitation energy Q in log-log style in Fig. 4-8, where the solid line is the curve

fitting of 17s by a simple rational function (Pad6 function Ip2)

y's =2x+a+
x+c

(4.30)

where x and y represent In (Q/eV) and In (Is/eV), respectively. The fitting

coefficients a, b and c are -5.00, -0.22 and -0.40, respectively. The factor of the linear

term in x is fixed to be 2, since it is easy to prove that the quadratic relation between

the excitonic decay rate and the excitonic energy will be approached at the

high-energy limit (large x), provided that the quadratic relation between the QP decay

rate and the QP energy is approached at the high energy regime.
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Figure 4-8 Log-log plot of the inelastic scattering rates I'S of excitons in Si46 vs.
exciton energy. The solid line is the curve-fitting.

The single-phonon nonradiative relaxation rates FSP of excitons in Si 46 at 0 K

obtained by Eq. (4.14) are plotted versus the excitation energy Q, in Fig. 4-9a,



where the FSP points are found to be energy-dependent in the low-energy regime.

Unlike FS shown in Fig. 4-8, such an energy-dependence diminishes in the

high-energy regime and the pattern of pSP becomes flat, although the data

distribution is still wide. This is attributed to the large excitonic density of state (DOS)

in the high-energy regime that quickly saturates the exciton-phonon interaction. The

effect of the excitonic DOS will be discussed with more details in the next section.

According to the pattern shown in Fig. 4-8a, we fit the data with an exponential

function

ySP = + A p e)It (4.3 a)

where ySP represents log(FSP/eV), n is the excitonic energy, and yo', ASp,

n' and tSP are fitting parameters. The fitting curve is plotted in Fig. 4-8a as a solid

line. Here y' = -0.826, which leads to the converged I"S that is estimated to be

0.149 eV.

The multiple-phonon nonradiative relaxation rates IF of excitons in Si 46 at 0 K

obtained by Eq. (4.17) are presented in Fig. 4-9b. It can be seen that the pattern of

Fw is similar to that of Fsp as shown in Fig. 4-9a. Thus the data are fitted with the

same equation

yo = y"+ A e (4.3 1b)

Here y = -0.767, which yields the converged F" to be 0.170 eV. Note that fI

are always comparable to 7 in the full energy range studied. This again

demonstrates the necessity to include the multiple-phonon decay mechanism for the

simulation of nonradiative relaxation rates. Furthermore, both J7 SP and rw in the

two clusters range from 0.1 to 1000 meV, which correspond to nonradiative relaxation

lifetimes ranging from several picoseconds to about a femtosecond. Such a fast

nonradiative relaxation process implies that the phonon bottleneck does not apply in



the present structure Si46. Some previous research has also predicted similar results in

other semiconductor nanoclusters.
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Figure 4-9. a) Single-phonon nonradiative relaxation rates IFS and b)
multiple-phonon nonradiative relaxation rates F' of excitons in Si46 at 0 K. Solid
lines are curve fitting based on Eq. (4.31).

The ratios Fls/fSP+MP (FSP+MP = pSP + P ) are plotted in Fig. 4-10 for the

comparison of the inelastic scattering rates and the nonradiative relaxation rates of

excitonic states in Si46. The ratio fS/''" in Fig. 4-10 increases steadily with

increasing excitonic energy. It is consistent with the fact that rJ increases almost

quadratically with increasing excitonic energy (Fig. 4-8), while p SP and MP

approach a constant in the high-energy regime (Fig. 4-9). It should be emphasized

here that most ratios f[s/FsP+MP for excitons are smaller than unity, which notably

differs from y'/sP+'P for electronic states (Fig. 4-5). This again can be attributed



to large excitonic DOS and will be addressed in the next section.
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Figure 4-10. The ratios 71 /F SP+MP for excitons in Si46 at 0 K, where

rP P= sPSI + pMP

The temperature effect is investigated by recalculating F" , F" and

rIs/pSP+P at various temperatures. The influence of the temperature on the

nonradiative relaxation of excitons can be tracked as the average ratios F'/Trs_

and Tr"'ro , which are plotted versus temperature in Fig. 4-11. Assume that all

phonon frequencies can be represented by a characteristic phonon frequency aiMp for

the single-phonon relaxation process. According to Eq. (4.14), we can get

/_S ~V(2 2+1 ~ + CS" (4.32a)

where Wsp is the average quantum number of the characteristic phonon frequency

5' . The last approximate equality in Eq. (4.32a) is valid only in the high
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temperature limit. CsP is a fitting constant and it vanishes only in the ideal case. A similar

equation can be written to define the characteristic phonon frequency E' for the

multiple-phonon relaxation process.

(4.32b)

The two data sets in Fig. 4-11 are fitted based on Eqs. (4.32a) and (4.32b).

According to the coefficients of TE , the two characteristic phonon frequencies CO

and 5' for single-phonon and multiple-phonon relaxation processes are obtained

as 319 and 95 cm-1. Numerically, EJ' and E" are just the inverse of the weighed

average of the inverse phonon frequencies, and thus have some important physical

information over the selected temperature range for the cluster investigated.

IC
I-

4

2

0 1 2 3 4
Temperature (10' K)

Figure 4-11. The average ratios ]F/E_0 and TI)/r$ versus temperature for

Ff/T ~(2Ww +1)~ + C O



Si46.

The phonon density of state (DOS) of Si46 is plotted vs. wavenumber in Fig. 4-12,

where the locations of E5s and VP are also given as dashed lines. It is found that

5' is located at the high-frequency regime of the phonon DOS spectrum. This

implies that the high-frequency phonons contribute more to the single-phonon

relaxation process than the low-frequency phonons. On the other hand, E5  emerges

at the low-frequency regime, close to the minimum phonon frequency. We thus

speculate that the multiple-phonon relaxation proceeds mostly through the

low-frequency phonons.

-MP ' SP0.6 o

E

E 0.4

C' 0.3-
0
o 0.2

0.1

0 100 200 300 400 500

Wavenumber (cm~1)

Figure 4-12. The phonon density of state (DOS) of Si46, the locations of a' and

W' are indicated as dashed lines.



4.4.3 Comparison between the electronic and excitonic nonradiative relaxation

dynamics

The nonradiative relaxation dynamics of electronic states and excitonic states

discussed in the two previous sections have demonstrated notable differences as can

be seen by comparing Figs. 4-4 and 4-5 with Figs. 4-9 and 4-10. The observations are

solely attributed to the difference between the electronic DOS and the excitonic DOS

illustrated in Figs. 4-13a and 4-13b. It can be seen from Fig. 4-13 that the electronic

DOS is in the order of tens per eV, while the excitonic DOS is around several

hundreds per eV, namely one order of magnitude larger than the electronic DOS, and

the excitonic DOS increases almost linearly with increasing exciton energy. The

difference between the two types of DOS can be understood easily with a simple

model, where the DOS of electrons is g, (E), and DOS of holes is g, (E). Then the

DOS of excitons g, (E) can be expressed approximately as a convolution of g, (E)

and g,(E)

g .(E);t f dE'g, (E'+ E)g, (E') (4.33)

Eq. (4.33) explains why g (E) is a function that is one order or magnitude higher

than g, (E) and g, (E), since the former is generated through the product of the

later two. As a convolution, g. (E) is also much smoother than g., (E) and

g, (E). As long as g, (E) and g, (E) do not vary too dramatically in the energy

range studied, we may further simply them as

(C (EF>0)

F (E)0= (4.34a)
0 (E<O)

g, (E)= (4.34b)
C2 (E < 0)



Thus the convolution of g, (E) and g, (E) becomes a linear function C1C2E,

which also explains the quasi-linear relation between g, (E) and E shown in Fig.

4-13b.
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Figure 4-13. a) Electronic density of state (DOS) vs. energy deference from the Fermi
level and b) Excitonic DOS of Si, vs. exciton energy.

With the understanding of the difference between the electronic DOS and excitonic

DOS, we revisit Fig. 4-4 and Fig. 4-9. In the case of nonradiative relaxation of

electrons and holes (Fig. 4-4), the electronic DOS is not large enough to saturate

every electronic state. (Here "saturate" means to provide all possible final states for

the nonradiative decay of a given initial state.) Therefore, some states may present

relatively low single-phonon or multiple-phonon relaxation rates due to lack of decay



pathways, which may occur even for those states with large excitation energies. In the

case of nonradiative relaxation of excitons, however, the excitonic DOS increases

quickly with increasing excitation energy and saturates those high-energy excitons

very effectively. In summary, the calculation and analysis in the study uncover an

important discovery: The nonradiative relaxation of excitons should always be

investigated within the two-particle framework, otherwise the underlying physics will

be missed and suspicious or plausible computational results will be presented.

4.5 Conclusion

We have established the computational methodology for electron-phonon and

exciton-phonon interaction in nanoclusters. Using this method, we have investigated

the dynamics of electrons and excitons in a silicon cluster of Si6. The nonradiative

relaxation rates of electrons and excitons are calculated. It is suggested that the

single-phonon and multiple-phonon relaxation mechanisms should be studied

separately, as the two mechanisms correspond to two types of physical processes and

have totally different spectral lineshapes. The single-phonon relaxation mechanism

shall correspond to a Lorentzian function, which can be accounted for by the

imaginary part of an electron-phonon self-energy term. The multiple-phonon

relaxation mechanism, on the other hand, shall be related to a Gaussian function,

which corresponds to the thermal process and involves the anharmonic effect

(displacement of the potential energy surface in finite systems). It is also

demonstrated that the formula derived for the two relaxation mechanisms share a

general form at the delta-function limit.

A simple energy criterion distinguishing the single-phonon relaxation and

multiple-phonon relaxation has been proposed for practical implementation of the

computation. Our numerical results show that the multiple-phonon relaxation rates

always exist and are comparable to the corresponding single-phonon relaxation rates,

for both electrons and excitons in the system studied (Si46). Therefore it is necessary



to include the multiple-phonon relaxation mechanism when studying the nonradiative

relaxation in small systems such as semiconductor nanoclusters.

Another important argument of this chapter is that the nonradiative relaxation of

electronic states and that of excitonic states should always be distinguished, as the

density of state (DOS) of excitons has been shown and proven to be much larger than

the DOS of electrons. This leads to a significant difference between the relaxation

dynamics of electrons and excitons. Electronic states, even those with high excitation

energy, may present relatively slow nonradiative relaxation rates due to the lack of

final states available for the decay transitions. For excitonic states, however, the

nonradiative relaxation rate increases and converges quickly with increasing exciton

energy, due to the large excitonic DOS.

The temperature effect of the nonradiative relaxation of excitons in Si4 has been

investigated quantitatively. According to the average phonon frequencies derived from

the data in the high-temperature regime, we speculate that both high- and

low-frequency phonons contribute almost equally to the single-phonon relaxation

pathway of excitons in Siu6, while low-frequency phonons are the major sources for

the multiple-phonon relaxation mechanism.

The inelastic scattering rates of electrons and excitons are calculated using our

developed code which is based on many-body Green's function theory. These results

are also compared with the corresponding nonradiative relaxation rates. For the

electronic states in Si6, the inelastic scattering decay is predicted to be a major decay

mechanism. However, nonradiative relaxation rates are larger than inelastic scattering

rates for most excitonic states in Si6, due to the large excitonic DOS.
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Chapter 5

Relaxation dynamics of electrons and

excitons in lead chalcogenide quantum dots

5.1 Introduction

The fundamentals and numerical implementation methodology for calculating

nonradiative relaxation rates of electrons and excitons in semiconductor nanoclusters

have been developed in the last chapter. Physically, the nonradiative relaxation rate is

equivalent to the thermal exchange rate between the working fluid and the

cylinder/piston system in the heat engine, an analogy discussed in Chapter 1. A

practical question for a photovoltaic system is whether there is any strategy or method

that can systematically minimize the energy exchange rate between electrons and

phonons, so that any energy-conversion system based on this strategy can output more

useful work and thus enhance the efficiency.

We start from an ideal case, where N electrons are constrained by a long stiff rod

with positive charges uniformly distributed on it, as shown in Fig. 5-la. Two

schematic electronic wavefunctions are illustrated as the solid and dashed lines. The

electrical potential due to the positive charges on the rod is shaded. The displacement

of the rod along the x-direction can not couple the two electronic states, since the

electrical potential does not change if the rod is very long. Therefore the coupling

between the electrons and the movement of the rod disappear, and the rod behaves as

an ideal adiabatic cylinder in the heat engine analogy.

Unfortunately such a positive charged rod does not exist in nature. What exists is a

system with positive charges distributed on different nuclei as discretized particles, as

shown in Fig. 5-lb. By assuming that the electronic wavefunctions do not change, the

movement of one nucleus changes the local electrical potential, namely the potential

term of the electronic Hamiltonian. In this case, an electron-phonon coupling can



occur due to the nonvanishing q , where p, and (p, are electronic

wavefunctions, and the Qk are nuclear coordinates as defined in Chap. 4. Therefore

any external effects applied to drive the electrons to flow as electricity will suffer

some energy loss due to the energy leakage from the electrons to the phonons.

A possible solution to this issue is to pull the electrons away from these nuclei, as

shown in Fig. 5-1c. The electron-phonon coupling still exists in this case, yet the

coupling strength is reduced dramatically due to the large distance between the

electrons and nuclei. Practically, this strategy can be realized by introducing heavier

atoms, whose core electrons push the valence electrons away from the nuclei. The

valence-electron-separation effect may suppress the influence of the movement of

nuclei on the valence electrons and this effect thus reduces the energy exchange rates

between electrons and phonons. It is the quantum counterpart of the classical thermal

insulation between the working fluids and the cylinder, and thus it can be regarded as

"quantum thermal insulation".

a) Electron
Wavefunctions

Potential due to
positive charges

% ------ on the rod

x

b)
%

Potential due to
positive charges

% ~on the nuclei

x

C)

Increased distance leads to weaker
% % electron-phonon interaction

__ ~ Potential due to
positive charges
on the nuclei

x
Figure 5-1. Schematic plots of a) electrons and a long stiff rod with positive charges
uniformly distributed on it, b) electrons and positive charges discretized on different
nuclei and c) electrons and positive charges discretized on different nuclei, but
separated by a large distance, which leads to weaker electron-phonon interaction.



As an example of the valence-electron-separation, the radial wavefunctions of s-

and p-orbitals of isolated sulfur, selenium and tellurium atoms obtained by the DFT

code ATOM35 are plotted in Figs. 5-2a and 5-2b. It is found that in heavier atoms, the

major peaks of valence atomic orbitals are farther away from the nuclei. The

molecular orbitals, which are obtained as the linear combination of these atomic

orbitals, should also be farther away from the nuclei in a system composed of heavier

atoms. Thus for systems with elements in the same columns of the periodic table,

lower electron-phonon relaxation rates are anticipated in those containing heavier

atoms due to the larger valence-electron-separation effect.
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Figure 5-2. Radial wavefunctions of a) s- and b) p-orbitals of valence electrons in
isolated sulfur, selenium and tellurium atoms obtained by DFT, where each of these
elements are chalcogen elements.



5.2 Numerical details

All methods required for the simulation of dynamics in finite OD nanoclusters have

been developed in Chaps. 2, 3 and 4. Now we can apply the tool kit for a realistic

problem: lead chalcogenide nanoclusters, which are frequently used in solar cells.

Both the inelastic scattering rates and nonradiative relaxation rates of excitons in such

nanoclusters are very interesting and have drawn a lot of attention. Bulk lead

chalcogenides (PbS, PbSe and PbTe) have a rocksalt structure. Small cubes of this

kind of lattice, such as (PbX)4 and (PbX) 32 (X=S, Se and Te), exhibit Td symmetry

with triple degenerate states. To avoid any degeneracy, a structure preserves the

rocksalt lattice and with only the D2h symmetry, (PbX) 36 is used in this chapter. The

valence-electron-separation effect proposed in the last section will be investigated by

comparing the nonradiative relaxation rates of excitons in three clusters: (PbS) 36,

(PbSe)36 and (PbTe)36.

Note that Pb itself is a heavy atom and shall also have some contribution to the

valence-electron-separation effect, which can be studied by replacing Pb with Sn or

even Ge. However, SnX and GeX (X=S, Se and Te) are rarely reported for multiple

exciton generation applications. Therefore in this thesis, we focus on the effect of the

chalcogen elements.

The ground state LDA calculation is performed using the SIESTA code." The core

electrons of Pb, S, Se and Te are replaced by the nonlocal norm-conserving scalar

relativistic pseudopotential based on the Troullier-Martins scheme. 36 A quintuple-4

polarization (5ZP) basis set of numerical atomic orbitals is used for the valence

electrons of all elements involved in the simulation. The optimized structure of the

(PbX)36 (X=S, Se and Te) cluster is illustrated in Fig. 5-3, which has the same crystal

lattice as the corresponding bulk PbX structure, namely the rocksalt structure. The

structure exhibits D2h symmetry and thus there are no degenerate electron, exciton,

phonon states. This lack of degenerate states facilitates our study dramatically since



we can focus the discussion solely on the valence-electron-separation effect, without

considering the Jahn-Teller effect arising from the degeneracy.

(PbX)36 (DM)

=Pb

=S, Se, Te

Figure 5-3. Optimized structure of (PbX)36 with the D2h symmetry.

All integrals are evaluated on a uniform grid in real space with a grid spacing of 0.5

a.u.. The exchange integrals Jdr dr'p (r) , (r) V(r,r')p, (r')q p, (r') are evaluated

by first solving Poisson equations with the multigrid method.37 A Coulomb-hole

screened-exchange (COHSEX) remainder scheme33 has been applied to accelerate the

convergence of the correlation part (q,|yI|I,).

The properties of the one-particle states are obtained by solving the quasiparticle

equation introduced in Chap. 2

(f +V, +VH)p, (r)+ fdr'I. (r,r';E,)a (r') = Ep, (r) (5.1)

After applying analytical continuation of 1, (r,r';E) in the complex energy plane,

the energy E, and the inelastic scattering rates y, of an electronic state are obtained

by solving a complex equation set numerically

Re (p, I. (E, -iy, )| (p, - I{V., = E, -, (5.2a)

Im(p, I. (E, - i,y,)I |p, = y, (5.2b)



The inelastic scattering rates of excitons are calculated with the approximation

method developed in Chap. 3:

' i=ER- (y, + y,) (5.3)

where Rvc are the coefficients of the linear combination of the sth exciton obtained

by TDLDA, namely

p, (r) R" p*, (r)(pc (r) (5.4)

Following the methods in Chap. 4, the single-phonon relaxation rates of electrons

are calculated by

y'= Z ' hI Ck I hak ) 2 + n (y," 2(5.5)
+41.<E| k M- ( AEU - hmk V ySP (AE,+ hcok 2+ rp2

where Mk are the masses of the normal coordinates Qk while

Ck =(pI|/QkI, p, and AE, = E, - E S . ysp is the width of the Lorentzian

function corresponding to the ith electron, which is exactly the single-phonon decay

rate to be determined. The multiple-phonon relaxation rates of electrons are evaluated

as

(nk+1)exp (AEJ -hk) 20

h2 1 ____ 2h2(D) 2  (5.6)
b ugCM*k hD, [2g (AEj + hmc2 ' (56

+nk eX 2k)
2hp2D

with



(DQ co(A'j (2nk + 1)( 2 kE Ik ) (2k

n = xp (hikmkBT) -1

For excitonic states,

C = (p, Ia/aQkp)= Zs, (A, Z a/ aQk I, S,{g ( ,l aQkI|v) (5.7)
VC ,'C'

5.3 Results and discussion

5.3.1 Electronic relaxation dynamics in (PbX)35 clusters

The inelastic scattering rates rs of electrons and holes in (PbX) 36 (X=S, Se and

Te) calculated by the GWF method are plotted versus the excitation energy |E, - EFI

in log-log style in Figs. 5-4a to 5-4c. In general, the ris values of the three clusters are

close to each other in the energy range of 3.5 - 6.0 eV, because the three clusters have

the same number of valence electrons (360) and similar lattice arrangements. The only

difference is that r1s of the clusters with heavier elements can extend into the lower

energy regime.
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Figure 5-4. The inelastic scattering rates r's of electrons (hollow circles) and holes

(solid diamonds) vs. excitation energy for the three clusters a) (PbS)36, b) (PbSe)36

and c) (PbTe)36.

The single-phonon nonradiative relaxation rates rSP of electrons and holes in

(PbX)a6 (X=S, Se and Te) at 0 K obtained by Eq. (5.5) are plotted versus the

excitation energy |E, - EF I in Figs. 5-5a to 5-5c. Sparser data points can be found for



clusters with heavier atoms, implying that more electronic states have vanishing rSP.

This result is attributed to the lower phonon frequencies of clusters with heavier

atoms, which are less capable of covering the gap between any two neighboring

electronic states for the single-phonon decay pathway. Note that this is just an

additional effect of using heavy atoms, which is a different effect from the

valence-electron-separation mechanism discussed in Chap. 5.1.

The multiple-phonon nonradiative relaxation rates y"M at OK for the three

clusters are presented in Figs. 5-5d to 5-5f. Since the patterns of y" are quite

largely dispersive, it is difficult to compare r in the three clusters quantitatively.

However, Figs. 5-3d to 5-3f still demonstrate two reasons to include the

multiple-phonon decay pathway for the study of nonradiative rates for finite systems.

Firstly, the relaxation rates of the multiple-phonon process are comparable to those of

the single-phonon process for some electronic states. Secondly, and more importantly,

all electronic states (except for the HOMO and LUMO levels of each cluster) can

decay through the multiple-phonon relaxation pathway, which is an alternative

nonradiative decay pathway when the single-phonon relaxation process is absent due

to large energy gaps.
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Figure 5-5. Single-phonon nonradiative relaxation rates r of electrons (hollow

circles) and holes (solid diamonds) at 0 K vs. excitation energy in a) (PbS) 36, b)

(PbSe)36 and c) (PbTe) 36. Multiple-phonon nonradiative relaxation rates r' of

electrons (hollow circles) and holes (solid diamonds) at 0 K vs. excitation energy in d)
(PbS)36, e) (PbSe)36 and f) (PbTe) 36.

The corresponding ratios r/yP+"* (rp"' = y+ r") in the three clusters are

plotted in Figs. 5-6a to 5-6c for the comparison of the inelastic scattering rates and the
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nonradiative relaxation rates of electronic states. The patterns of rS/SP+MP of the

three clusters are similar to that of Si46 shown in Fig. 4-5, and so are the conclusions.

Furthermore, the valence-electron-separation effect can be found by comparing Figs.

5-6a through 5-6c: the figures show that yIsySP+MP of (PbTe) 36 are approximately

one order of magnitude higher than those of (PbS)36. This implies that rMP' in

(PbTe) 36 are indeed smaller than those in (PbS) 36 , since y's in the two clusters are

close to each other. The valence-electron-separation effect as well as the temperature

effect will be further discussed in the next subsection, 5.3.2.
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Figure 5-6. The ratios rS/S+Mp for electrons (hollow circles) and holes (solid

diamonds) vs. excitation energy in a) (PbS) 36, b) (PbSe) 36 and c) (PbTe) 36 at 0 K,

where ySP+MP SP +rM.

5.3.2 Excitonic relaxation dynamics in (PbX) 36 clusters

The inelastic scattering rates 1-'s of excitons in (PbX) 36 (X=S, Se and Te)

calculated by the approximation method given by Eq. (5.3) are plotted versus the



exciton energy Q in log-log style in Figs. 5-7a to 5-7c, where the solid lines are the

curve fitting of I'S by a simple rational function (Padd function 1p2)

y =2x+a+ "
x+c

(5.8)

where x and y represent In(i/eV) and ln(Fs/eV), respectively. The fitting

coefficients a, b and c are given in Table 5.1.

Table 5.1. Fitting coefficients a, b and c in (PbX) 36 (X=S, Se and Te) for Eq. (5.8)

(PbS) 36

-2.32

-0.22

-0.35

(PbSe)36

-2.40

-0.14

-0.40

(PbTe) 36

-2.27

-0.16

-0.39

For the comparison of Fs in the three clusters, the three fitting curves in Fig. 5-7

are re-plotted in Fig. 5-8, where we can see that the IF' values for these three

clusters, like ys, are again very close to each other over the full energy range of

interest.
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Figure 5-7. Exciton energy dependence of inelastic scattering rates Ils of excitons
in a) (PbS) 36, b) (PbSe) 36 and c) (PbTe)36. The solid lines are the curve-fittings based
on Eq. (5.8).
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Figure 5-8. Fitted inelastic scattering rates rI of excitons vs. exciton energy for
(PbS)36 , (PbSe)36 and (PbTe)36.

The single-phonon nonradiative relaxation rates Tp of excitons in (PbX)36 (X=S,

Se and Te) at 0 K obtained by Eq. (5.5) are plotted versus the excitation energy Q,

in Figs. 5-9a to 5-9c. The multiple-phonon nonradiative relaxation rates F" of

excitons in these three clusters at 0 K are plotted in Figs. 5-9d to 5-9f. Similar to Si46

discussed in the last chapter, all three (PbX) 36 clusters exhibit energy-dependent rs

and IF in the low-energy regime. The energy-dependence diminishes in the

high-energy regime and the patterns of IF' and FT become flat due to the large

excitonic density of state (DOS) that saturates the exciton-phonon relaxation

pathways. The patterns of both IF' and r" are fitted numerically with an

exponential function

ys = y,,+ A*e 1 (5.9a)

y' = y"+ A'e (5.9b)



where y' and y' represent log (FSP/eV) and log (F"/eV), while f is the

excitonic energy. The quantities yo , Asp, f2" tSP and their multiple-phonon

counterparts are fitting parameters. The fitting curves are also plotted in Figs. 5-9a to

5-9f as solid lines.

SP
The converged relaxation rates at 0 K, namely F' = 10Yo for single-phonon

decay and Fl = 10o for multiple-phonon decay, are listed in Table 5.2 for all three

clusters. According to Figs. 5-9a to 5-9f and Table 5.2, Fw are always comparable

to psp over the full energy range which is important for all three clusters. The

results demonstrate again that it is necessary to include the multiple-phonon decay

mechanism for the simulation of nonradiative relaxation rates.

Valence-electron-separation effect is also proved, as clusters with heavier atoms

exhibit lower F and F' values.

Table 5.2. Converged relaxation rates r" and rf in (PbX)36 (X=S, Se and Te) at

OK

(PbS)36  (PbSe) 36  (PbTe)36

FpP (eV) 0.133 0.0514 0.0189

FM' (eV) 0.234 0.0665 0.0199
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Figure 5-9. Single-phonon nonradiative relaxation rates FSP of excitons at 0 K vs.
exciton energy in a) (PbS)36, b) (PbSe)36 and c) (PbTe)36. Multiple-phonon
nonradiative relaxation rates Fm of excitons at 0 K vs. exciton energy in d) (PbS) 3 6,
e) (PbSe)36 and f) (PbTe) 36. Solid lines are fitting curves based on Eq. (5.9).

The ratios J7 I/fsP+MP (SP+MP =S7-P +rP) are plotted in Figs. 5-10a to 5-10c vs.

exciton energy for the comparison of the inelastic scattering rates and the nonradiative

relaxation rates of excitonic states in the three clusters. From Figs. 5-10a and 5-10c,

one can find that the ratio J7 1s/FsP**t of (PbTe) 36 is approximately one order of



magnitude higher than that of (PbS) 36, which is mostly due to smaller FSP+MP of

(PbTe) 36. The ratios here, however, are notably smaller than those in Figs. 5-6a to 5-6c.

This is attributed to the significantly larger DOSs of the excitonic states than those of

the electronic states. The detailed analysis for the DOS effect has been discussed in

the last chapter for Si46.
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Figure 5-10. The ratios pIS/FS+)W for exctions vs. exciton energy in a) (PbS) 36, b)

(PbSe)36 and c) (PbTe) 36 at 0 K, where rF" = r7 +r .

The temperature effects are investigated by re-calculating rs and T" at



various temperatures. Similar to the case of Si46 , we here focus our study on the

temperature dependence of the average ratios rf/fvf and rw/Fp , which are

plotted versus temperature for the three clusters in Figs. 5-1 la to 5-lic. According to

Eqs. (5.5) and (5.6),

/SP/ (25" 1) ~2 B + (5. 1Oa)

T /rspo (2Ww + 1) ~ _ (5.1Ob)

where the last approximate equality is valid only in the high temperature limit.

The characteristic phonon frequencies, 5' and 5  for single-phonon and

multiple-phonon relaxation processes, can be determined through the coefficients of

the TV2 terms in Eqs. (5.10a) and (5.10b). Estimated i5" and aff in the three

clusters are listed in Table 5.3. The phonon DOSs of the three clusters are plotted in

Figs. 5-12a to 5-12c, where the locations of 3sP's and @'w's are also given as

dashed lines. It is found that the maximum phonon frequencies are lower for clusters

with heavier chalcogen atoms as expected. Also, the relative positions of 5"'s and

@ 's suggest that the single-phonon relaxation process is more dominated by the

high-frequency phonons while the multiple-phonon relaxation process is more

dominated by the low-frequency phonons.

Table 5.3. Characteristic phonon frequencies 0' and 5 in (PbX)36 (X=S, Se

and Te)
(PbS)36  (PbSe) 36  (PbTe)36

&5" (cm1) 229 132 75.1

@5M (cm's) 75.0 37.1 19.6
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Figure 5-11. The average ratios rf/'. 0 and r^/v' versus temperature for a)

(PbS) 36, b) (PbSe)36 and c) (PbTe)36.
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Figure 5-12. Phonon DOSs of a) (PbS) 36, b) (PbSe) 36 and c) (PbTe)36 vs. wavenumber

and the locations of 5' and &' are indicated as dashed lines.

5.4 Conclusion

We have presented a possible mechanism for reducing the electron-phonon

coupling in semiconductor nanoclusters. The strategy is based on the physics that the

valence electrons in heavier atoms are pushed farther away from the nuclei by the

core electrons and thus are less sensitive to the movement of nuclei. This may



suppress the energy exchange rate between the electrons and phonons, and lead to

"quantum thermal insulation".

Electronic and excitonic nonradiative relaxation rates in lead chalcogenide

nanoclusters (PbX)36 (X=S, Se and Te) have been calculated by our numerical

methods developed in Chap. 4. Our simulation results show that the electronic and

excitonic nonradiative relaxation rates are lower in clusters with heavier atoms, and

that they thus demonstrate the valence-electron-separation effect. As a by-product,

heavier atoms also exhibit a mass effect by reducing the maximum phonon frequency.

This effect makes the single-phonon relaxation decay process unlikely for electronic

states due to the relatively large energy gaps. For excitonic states, on the other hand,

such an effect is insignificant.

The results obtained in this chapter (chapter 5) are consistent with the conclusions

drawn in the last chapter (chapter 4). Firstly, the multiple-phonon relaxation rates

always exist and are comparable to the corresponding single-phonon relaxation rates,

for both electronic and excitonic states in nanoclusters. Secondly, the nonradiative

relaxation of electronic states and that of excitonic states should always be

distinguished, due to the significant difference between the electronic DOS and

excitonic DOS. Thirdly, two characteristic phonon frequencies j5"' and 5' can

be defined according to the temperature-dependence of the nonradiative relaxation

rates. It is speculated that the single-phonon relaxation process in nanoclusters is

always dominated by high-frequency phonons while this is not the case for the

multiple-phonon relaxation process.

The inelastic scattering rates of electrons and excitons in the lead chalcogenide

nanoclusters (PbX) 36 (X=S, Se and Te) are calculated by the many-body Green's

function theory discussed in Chaps. 2 and 3. The electronic and excitonic inelastic

scattering rates do not differ too much in clusters with different chalcogen elements,

since the three clusters have the same number of valence electrons (360) and similar



lattice arrangements. The results imply that the valence-electron-separation effect has

a negligible effect on the energy exchange rates among electrons and excitons.
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Chapter 6

Relaxation dynamics of excitons in

porphyrin and a porphyrin derivative

6.1 Introduction

In Chaps. 3 and 4, we developed simulation methods for calculating the inelastic

scattering rates and nonradiative relaxation rates of excitons in nanoclusters. In Chap.

5, we demonstrated that the energy exchange rates between excitons and phonons in

semiconductor nanoclusters can be reduced by introducing heavier atoms into the

system. The physics behind this idea is to push the valence electrons away from the

nuclei by core electrons, so that the movements of these nuclei can not couple any two

valence electronic states effectively.

In addition to inorganic semiconductor nanoclusters, there is another nature type of

semiconductor system at the nanoscale, namely organic semiconductor molecules. In

this chapter, we apply our computational approach to a typical organic semiconductor

molecule, porphyrin. As shown in Fig. 6-1, there are fourteen H atoms in a porphyrin

molecule. Here twelve side H atoms can be substituted by halogen atoms. The two H

atoms at the center act like protons in sulfuric acid and can be dissociated in alkaline

solution. After the dissociation of these two H atoms, the porphyrin structure can be

coordinated with metal cations, such as Zn2+, Mg2+



H / H

N-H H-N

H H
N

H H

H H

Figure 6-1. Chemical structure of a porphyrin molecule.

By replacing the 12 side H atoms with halogen atoms and the 2 central H atoms

with a metal atom, a porphyrin derivative structure is produced. Investigations of the

nonradiative relaxation rates of excitons in a pristine porphyrin molecule and a

porphyrin derivative uncovers the exciton-phonon interaction in organic molecules

and could lead to methods to reduce the phonon effect in organic semiconductor

molecules with the strategy proposed in Chap. 5.

6.2 Numerical details

The ground state LDA calculation is performed using the SIESTA code." The core

electrons of C, N, F, Cl and Zn are replaced by the nonlocal norm-conserving

pseudopotential based on the Troullier-Martins scheme. 36 A quadruple-(polarization

(4ZP) basis set of numerical atomic orbitals is used for the valence electrons of all

elements involved in the simulation. The optimized structures of porphyrin and a

porphyrin derivative, whose side H atoms are replaced by F and Cl atoms, and the

center H atoms are replaced by a Zn ion, are illustrated in Fig. 6-2. The two structures

are denoted by Por and ZnPorFCl in later discussions. Both structures exhibit the D2h



symmetry and thus there are no degenerate electron, exciton, or phonon states. This

facilitates our study dramatically since we can focus the discussion solely on the

valence-electron-separation effect, without considering the Jahn-Teller effect arising

from the degeneracy.

a) b)

*N (=Cl

46 = H =Zn
Porphyrin (D2) Porphyrin derivative(Da)

Por ZnPorFCI

Figure 6-2. Optimized structure of a porphyrin molecule and a porphyrin derivative,
both with the D2h symmetry.

All integrals are evaluated on a uniform grid in real space with a grid spacing of 0.3

a.u.. The exchange integrals fdr dr'p (r)p, (r) V(r,r')p, (r')p (r') are evaluated

by first solving Poisson equations with the multigrid method.37 A Coulomb-hole

screened-exchange (COHSEX) remainder scheme33 has been applied to accelerate the

convergence of the correlation part (|Ip

The properties of the one-particle states are obtained by solving the quasiparticle

equation introduced in Chap. 2

(T + VH) , (r)+ fdr'T,, (r,r';E,)q (r')= E(, (r) (6.1)

After applying the condition of analytical continuation of 1,(r, r';E) in the complex

energy plane, the energy E, and the inelastic scattering rates y, of an electronic

state are obtained by solving a complex equation set numerically



eqI <p . (E, -ir,y,)|<p,-( , IV|p) = E, -s, (6.2a)

hn p,\I Y-.{ E, -h97,||<p I i)= y, (6.2b)

The inelastic scattering rates of excitons are calculated with the approximation

method developed in Chap. 3

l', =jjRj 2 (ye + y,) (6.3)

where R c are the coefficients of the linear combination of the sth exciton obtained by TDLDA,

namely

p, r) = R ,'p (r)pc (r) (6.4)

Following the methods in Chap. 4, the single-phonon relaxation rates of electrons

are calculated by

S 2 (nk )yn (65)7! ='j J Eij kMk k (AE, -hcot) 2 
( s)2 (AE + hk,;2 + (ri) 2  *)

where M, are the masses of the normal coordinates Qk , while

CkiJ = (pj8/QI jp,) , and AE, = E, - Ej . rSP is the width of the Lorentzian

function corresponding to the ith electron, which is exactly the single-phonon decay

rate to be determined. The multiple-phonon relaxation rates of electrons are evaluated

as

( AE,, -hck)
(n.+ 1) exp ( 2

Jf kMk/ D , vThP kx (A1j +h ok)
%2 212h 2 (Dk) 2



with

( D,$= cof(A'" (2n, + 1

n= exp (hcok/kBT) -1

For excitonic states,

Ckj ={ (p,| II8Qk|p,) =p Z RR ,(3,,,,{ a||Qk|)+, (e ,e,%Q|,,)) (6.7)
VC V',C'

for valence and conducton band constituent states v and c.

6.3 Results and discussions

As the electronic density of states of Por and ZnPorFCl are very low and

discontinuous, we only discuss the excitonic density of states of these two compounds.

The absorption spectra of Por and ZnPorFCl are given in Fig. 6-3a, where we can see

that the absorption spectra of the two compounds only slightly differ in terms of the

positions and strengths of the major peaks in these spectra, which can be attributed to

the similarity of the structures of the two compounds. The excitonic DOSs of the two

compounds are plotted in Fig. 6-3b. It can be seen that the excitonic DOS of

ZnPorFCl is larger than that of Por, as there are more valence electrons in ZnPorFCl.
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Figure 6-3. a) Absorption spectra and b) excitonic DOSs of Por and ZnPorFCl plotted
vs. exciton energy.

The single-phonon nonradiative relaxation rates F' of excitons in Por and

ZnPorFCl at 0 K obtained by Eq. (6.5) are plotted versus the excitation energy R, in

Figs. 6-4a and 6-4b. The multiple-phonon nonradiative relaxation rates [MP of

excitons in these three clusters at 0 K are plotted in Figs. 6-4c to 6-4d. It can be seen

that the patterns of fr and r" for the two compounds are even more dispersive

than those of Si46 (Fig. 4-9) and (PbX)36 (Fig. 5-9). This is attributed to the fact that

the excitonic DOSs of the two organic compounds are smaller and less regular than

those for the inorganic quantum dots. In spite of the large data dispersion, the values

of Te" and Fw for ZnPorFCl are found to be lower than those for Por, especially

in the high-energy regime where nonradiative relaxation are close to be saturated. The

results thus further demonstrate the concept of reducing the electron-phonon

interaction by the valence-electron-separation effect.



The temperature effect on the relaxation rates has also been investigated by

recalculating JSP and IF for the excitons in the two compounds at 300 K. The

results are given in Figs. 6-5a to 6-5d. Being different from Si46 and (PbX) 3 6, the FSP

and F" of the two compounds are not sensitive to the temperature. Increasing the

temperature from 0 to 300 K has negligible effect on nonradiative relaxation rates.

This is attributed to the higher phonon frequencies of the two organic structures

compared to those of inorganic nanoclusters. Thus the occupation numbers of most

phonon modes still remain 0 at 300 K.

Por

a)

C)

3 4 5 6 7
Exciton Energy (eV)

ZnPorFCI

2 3 4 5 6 7
Exciton Energy (eV)

Figure 6-4. Single-phonon nonradiative relaxation rates T" of excitons as a
function of exciton energy at 0 K in a) Por and b) ZnPorFC. Multiple-phonon
nonradiative relaxation rates F" of excitons as a function of exciton energy at 0 K
in c) Por and d) ZnPorFCl.
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Figure 6-5. Single-phonon nonradiative relaxation rates 1~" of excitons as a
function of exciton energy at 300 K in a) Por and b) ZnPorFCl. Multiple-phonon
nonradiative relaxation rates 1F' of excitons as a function of exciton energy at 300
K in c) Por and d) ZnPorFCl.

The phonon DOSs of Por and ZnPorFCl are plotted vs. wavenumber in Figs. 6-6a

and 6-6b. The two type of spectra exhibit significant differences in the high-frequency

regime. As shown in Fig. 6-6a, Por has two groups of vibrational peaks in the

high-frequency regime (> 3000 cm-1), the left one is for the in-plane stretch modes of

the side H atoms, the right one is for in-plane stretch modes of the center H atoms.

With the H atoms being replaced by heavier atoms, these peaks shift to the

low-frequency regime, as shown in Fig. 6-6b. This is due to the mass effect discussed

in Chap. 5. The effect, in principle, suppresses the single-phonon process due to the

fewer excitonic states available for single-phonon decay pathway. However, relatively

large excitonic DOS of ZnPorFCl will enhance the single-phonon process by

providing more excitonic states per unit energy range. This means that the effects of
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the reduced phonon frequencies and increased excitonic DOS are opposite to each

other. Thus the reduction of SP is mostly attributed to the

valence-electron-separation effect, which is the only possible reason for the reduction

of W" .

0 1000 2000 3000 4000
Wavenumber (cm-)

Figure 6-6. Phonon DOSs of a) Por and b) ZnPorFCl as a function of wavenumber.

The inelastic scattering rates IF' of excitons in Por and ZnPorFCl calculated by

the approximation method Eq. (6.3) are plotted versus the excitation energy n in

Figs. 6-7a to 6-7b. Both patterns are very dispersive. Excitons with close exciton

energies may have F's varying over three orders of magnitude, which are quite

different from those of Si46 (Fig. 4-7) and (PbX) 36 (Fig. 5-8). No curve-fitting can be

made, but qualitatively, the inelastic scattering relaxation dynamics in the two

compounds are close to each other.
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Figure 6-7. Inelastic scattering rates 1rs of excitons in a) Por and b) ZnPorFCl as a
function of exciton energy.

6.4 Conclusion

Excitonic nonradiative relaxation rates in a porphyrin molecule and in a porphyrin

derivative have been calculated by the numerical methods developed in Chap. 4. Our

simulation results show that the excitonic nonradiative relaxation rates in a porphyrin

derivative with heavier atoms are lower than those in a porphyrin molecule. The

results here further demonstrate the strategy proposed in Chap. 5 that the

exciton-phonon interaction can be reduced by pushing the valence electrons away

from the nuclei with more core electrons being contained in heavier atoms.



Chapter 7

Summary

The dynamics of electrons and excitons in semiconducting nanoclusters are of

increasing interest and importance, owing to their various applications or potential

applications for solar energy harvesting, such as in multiple exciton generation and

hot-electron capture. Although the theories and numerical approaches for bulk

semiconductors have been long established, the theoretical research and

computational research focusing on semiconductor nanoclusters are much less

developed. For some important physical processes, even the calculation methods have

not been well established. Thus it becomes urgent to build up a comprehensive

theoretical tool kit covering the two important physics issues, namely the dynamic

properties of the electrons and excitons and their interaction with phonons.

In chapters 2, 3 and 4, the computational approaches and methods for each

processes are developed. In chapter 2, the numerical implementations for the

calculation of the electronic inelastic scattering rates in nanoclusters are developed

based on the many-body Green's function theory. In chapter 3, a computational

approach and strategy for the calculation of the excitonic inelastic scattering rates in

nanoclusters is developed. This strategy simplifies the calculation effectively, and

augments the capability of computational resources significantly, which is

demonstrated by some computational tasks that are essentially infeasible without

these simplifications. In chapter 4, a method or strategy is developed to include both

the single-phonon and the multiple-phonon nonradiative relaxation mechanisms for

the nonradiative relaxation rates of the electronic and excitonic states in nanoclusters.

We demonstrate that the nonradiative relaxation of one-particle states and two-particle

states are strictlydistinctive due to the significant difference between the DOSs of

one-particle states and two-particle states.



In chapters 5 and 6, a strategy is proposed to reduce the electron-phonon coupling

in nanoclusters by pushing the valence electron away from the nuclei with the core

electrons in heavy atoms. With the methods developed in Chaps. 2-4, the strategy is

demonstrated with the numerical simulations of lead chalcogenide nano clusters, and

is further demonstrated with the numerical simulations of the porphyrin molecule and

a porphyrin derivative.

The strategy proposed in Chaps. 5 and 6 may some day be applied to build

photovoltaics such as multi exciton generation (MEG) systems with higher

efficiencies. More broadly, the methods developed in Chaps. 2-4 are very fundamental

and they shall benefit more areas and applications involving photons, electrons,

excitons and phonons in zero-dimensional materials.
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