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Abstract

This dissertation presents three separate–but related–contributions to the art of un-
derwater navigation. These methods may be used in postprocessing with a human in
the loop, but the overarching goal is to enhance vehicle autonomy, so the emphasis is
on automated approaches that can be used in realtime. The three research threads
are: i) in situ navigation sensor alignment, ii) dead reckoning through the water col-
umn, and iii) model-driven delayed measurement fusion. Contributions to each of
these areas have been demonstrated in simulation, with laboratory data, or in the
field–some have been demonstrated in all three arenas.

The solution to the in situ navigation sensor alignment problem is an asymptot-
ically stable adaptive identifier formulated using rotors in Geometric Algebra. This
identifier is applied to precisely estimate the unknown alignment between a gyrocom-
pass and Doppler velocity log, with the goal of improving realtime dead reckoning
navigation. Laboratory and field results show the identifier performs comparably to
previously reported methods using rotation matrices, providing an alignment estimate
that reduces the position residuals between dead reckoning and an external acoustic
positioning system. The Geometric Algebra formulation also encourages a straight-
forward interpretation of the identifier as a proportional feedback regulator on the
observable output error. Future applications of the identifier may include alignment
between inertial, visual, and acoustic sensors.

The ability to link the Global Positioning System at the surface to precision dead
reckoning near the seafloor might enable new kinds of missions for autonomous un-
derwater vehicles. This research introduces a method for dead reckoning through
the water column using water current profile data collected by an onboard acoustic
Doppler current profiler. Overlapping relative current profiles provide information to
simultaneously estimate the vehicle velocity and local ocean current–the vehicle veloc-
ity is then integrated to estimate position. The method is applied to field data using
online bin average, weighted least squares, and recursive least squares implementa-
tions. This demonstrates an autonomous navigation link between the surface and the
seafloor without any dependence on a ship or external acoustic tracking systems.
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Finally, in many state estimation applications, delayed measurements present an
interesting challenge. Underwater navigation is a particularly compelling case because
of the relatively long delays inherent in all available position measurements. This re-
search develops a flexible, model-driven approach to delayed measurement fusion in
realtime Kalman filters. Using a priori estimates of delayed measurements as aug-
mented states minimizes the computational cost of the delay treatment. Managing
the augmented states with time-varying conditional process and measurement mod-
els ensures the approach works within the proven Kalman filter framework–without
altering the filter structure or requiring any ad-hoc adjustments. The end result is
a mathematically principled treatment of the delay that leads to more consistent es-
timates with lower error and uncertainty. Field results from dead reckoning aided
by acoustic positioning systems demonstrate the applicability of this approach to
real-world problems in underwater navigation.

Thesis Supervisor: Dana R. Yoerger
Title: Senior Scientist, Woods Hole Oceanographic Institution
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Chapter 0

Introduction

“ Billy Cruiser says that the best navigators

are not always certain of where they are,

but they are always aware of their uncertainty.

Frank Bama in Where is Joe Merchant? [1]

”
This dissertation presents three separate–but related–contributions to the art of un-

derwater navigation. These methods may be used in postprocessing with a human

in the loop, but the overarching goal is to enhance vehicle autonomy, therefore the

emphasis is on automated approaches that can be used in realtime.

Despite many years of study, underwater navigation remains a rich and unsolved

problem. The research presented here draws from fields such as estimation and fil-

tering theory that have strong historical ties to navigation. It also applies techniques

from less conventional fields, like Geometric Algebra. The end result is:

• a simple solution to an essential in situ navigation sensor alignment problem,

• a promising approach to dead reckoning through the water column, extending

the autonomous navigation capabilities of many underwater vehicles, and

• a straightforward, efficient, and mathematically principled technique for han-

dling measurements that are delayed in time.
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The methods presented here are developed for the challenging task of underwater

navigation, but much of this research can and should be applied to problems in other

fields.

This chapter first motivates the need for automated realtime underwater naviga-

tion, then briefly reviews the background of the problem to provide context. The

thesis statement follows, including specific objectives and contributions of this re-

search. The chapter ends with a brief outline of the dissertation structure to provide

a roadmap for the reader.

0.1 Motivation

Seventy percent of the earth’s surface is covered by water. The surface of the ocean

is studied by ships, and some of its properties can be measured or estimated using

remote sensing techniques. However, the rapid attenuation of electromagnetic waves

in water effectively limits most remote sensing to a thin surface layer–there is so much

more beneath.

The seafloor is mapped in low resolution using sonars and other sensors from

surface ships. This data reveals a system of mid-ocean ridges that circle the globe

like the stitching on a baseball. These observations helped the shape the theories of

plate tectonics and continental drift. Nowadays, ocean research on the surface, at the

seafloor, and in the water column is important for understanding the effects of global

warming and pollution.

Underwater vehicles–both manned and unmanned–are critical in our efforts to ex-

plore and study the depths of the ocean. Most underwater sensors possess a relatively

small field of view; this means they must be carried over large distances to achieve

high spatial coverage and resolution. Dynamic changes in the ocean environment

also drive a desire to achieve high temporal resolution. Oceanographic submersibles

like Alvin and Sentry (Figure 0-1) collect vast amounts of physical, chemical, and

biological data during their missions below the surface. This data is much more valu-

able when it can be precisely referenced in space and time. This gives rise to the
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Figure 0-1: The AUV Sentry (left) and the HOV Alvin (right) are oceanographic
submersibles operated by the National Deep Submergence Facility (NDSF) at the
Woods Hole Oceanographic Institution (WHOI). photo credit: C. German, WHOI

maxim: The data is only as good as the navigation. The key to good navigation is

understanding the strengths and limitations of the sensors and algorithms that solve

the navigation problem. As we send these vehicles on longer, more difficult missions,

we rely on increasing autonomy. This means that each vehicle must navigate its en-

vironment in realtime and without intervention from humans or relying on external

systems and infrastructure. We need tools and techniques for automated realtime

underwater navigation.

0.2 Context

This section briefly reviews the background of the underwater navigation problem.

It highlights some of the challenges a navigator faces in the underwater environment,

and the resources the navigator can rely upon.
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Localization–simply knowing where you are–remains a challenging problem for

underwater vehicles. Current state-of-the-art underwater navigation systems fuse

measurements from acoustic beacons, a pressure sensor, a Doppler sonar, a North-

seeking gyrocompass, and an inertial measurement unit (IMU). Auxiliary sensors like

a magnetic compass or an inclinometer are often included as backup. The inertial

measurement unit provides acceleration data at a fast update rate, but is subject to

inaccuracies from integration error and drift bias over longer timescales. The com-

pass (or gyrocompass) and doppler sonar provide heading and velocity information

for dead reckoning. The pressure sensor constrains the estimate of vehicle depth.

Long baseline (LBL) or ultra-short baseline (USBL) acoustic tracking systems pro-

vide position measurements. These sensors are each subject to different weaknesses

in terms of noise, drift, update rate, and range. The key task of the navigator is to

intelligently combine information from all available sensors.

0.2.1 Acoustic positioning systems

Although the Global Positioning System (GPS) has greatly simplified localization in

the air and on the surface of the planet, its electromagnetic signals do not penetrate

the oceans. Instead, underwater navigators must rely on other means to determine

position. Depth is determined from measurements of pressure, temperature, and

conductivity [2]. Long baseline (long baseline (LBL)) acoustic positioning uses travel

times to and from multiple transponders to estimate the position of a vehicle relative

to those beacons. Ultra-short baseline (USBL) acoustic tracking sytems use travel

time and phase from a ship-mounted transducer to compute range, bearing, and

azimuth to a submerged transponder. With the growing use of acoustic modems,

new techniques using one-way travel times and precision synchronous clocks allow

multiple vehicles to serve as navigational beacons for each other.

Long Baseline Acoustic Positioning
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LBL positioning uses ranges from two or more fixed underwater acoustic transponders

to localize another transponder, usually on a submerged vehicle or instrument package

[3]. The globally referenced transponder positions are surveyed by a ship when the

LBL net is deployed. In spherical LBL positioning1, the vehicle interrogates the net

with an acoustic signal, and each transponder replies in a unique way. Given an

estimate of the sound speed through the water, the measured two-way travel times

produce estimates of the slant range between the vehicle and each transponder.

Each range imposes a spherical constraint–the vehicle must lie on the sphere with

radius equal to the range to that transponder. Two spheres intersect on a circle,

three spheres intersect at two points, and four spheres intersect at a single point.

In practice, the depths of the transponder and the vehicle are well-known, so the

spherical constraints can be collapsed to circular constraints and only three ranges

are required. The problem can now be solved by trilateration. The problem can also

be solved using a single baseline (two transponders) assuming you know what side of

the baseline the vehicle is on. If more ranges are recieved than required, the standard

approach is nonlinear least squares.

The standard LBL system for field deployments in the deep ocean has a nominal

operating frequency of 12 kHz2 [3,4], with range up to 10 km and precision3 of 0.1-10

m [6,7]. The update rate and measurement latency in this system depend on the range

and local sound velocity profile, typically varying from 1 to 20 seconds. Chapter 3

in this dissertation proposes a model-driven approach to deal with this measurement

latency in an asynchronous unscented Kalman filter (UKF).

LBL works like an acoustic version of GPS underwater–you just have to provide

your own transponders (as opposed to using satellites). The cost is in the ship time

spent deploying and surveying the beacons4–once that is done, the ship is free to

1Hyperbolic LBL positioning, on the other hand, uses a passive receiver and synchronized beacons.
The receiver position is calculated using the difference in ranges to the two beacons [4, 5]. We will
focus on spherical LBL for the remainder of this section.

2As previously mentioned, the vehicle interrogates the net at one frequency, and each transponder
replies at a unique frequency–the signals in this system range from 7 kHz to 15 kHz, but the nominal
operating frequency is 12kHz.

3range and geometry-dependent
4and recovering them afterward
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leave the area for other tasks. An AUV can continue to operate untended without

position updates from the ship and without its navigation error growing unbounded.

This flexibility makes LBL a good solution when operations will be in the same area

for several days.

To avoid the time and cost of deploying and surveying multiple beacons during

extended mapping operations, several single-beacon methods have been proposed.

These approaches are enabled by improved dead reckoning (DR) capabilities of under-

water vehicles. They trade the spatial separation of ranges to multiple transponders

at one time in traditional LBL for temporal separation of multiple ranges to a sin-

gle transponder. In synthetic long baseline (SLBL), an error-state extended Kalman

filter (EKF) provides corrections to the DR navigation system based on ranges to

a single transponder measured from different positions at different times [8]. By

plotting multiple ranges from one beacon along the dead reckoned vehicle trajectory,

virtual long baseline (VLBL) enables the computation of a ‘running fix’ of the vehicle

position [9]. With tight integration to an inertial navigation system (INS), the un-

derwater transponder positioning (UTP) principle [10,11] also leverages the changing

pose of the vehicle relative to the transponder to estimate vehicle position. In each

of these methods, the geographic position of the transponder must still be surveyed.

Ultra-Short Baseline Acoustic Tracking

When a surface ship is in the area, it can track an underwater vehicle using an ultra-

short baseline (USBL) system (e.g., [10, 12]). A ship-mounted transducer acousti-

cally interrogates a transponder mounted on the vehicle; the multi-element transducer

measures the travel time and the phase of the reply, enabling the system to calcu-

late range, bearing, and azimuth to the transponder. This relative position is then

combined with ship position from GPS and orientation from a gyrocompass to com-

pute a geographic position fix for the submerged transponder. If the vehicle requires

realtime position measurements, the computed geographic fix can be downlinked via

tether (in the case of remotely operated vehicles (ROVs)) or acoustic modem (for

manned submersibles or AUVs).
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This mode of operations is attractive because it does not require time to deploy and

recover a transponder net–the entire infrastructure consists of a single hull-mounted

transducer that moves with the ship. However, precision navigation requires careful

calibration of alignment, lateral offsets, and timing between the GPS, gyrocompass,

and USBL transducer. Since some ships and systems will move the transducer be-

tween operations5, this calibration may need to be done at each new site.

One potential drawback of USBL is that the ship must remain in the operating

area to track the vehicle. This is not a concern for typical ROV operations, where

the vehicle is tethered to the ship anyway, or in many HOV operations, where the

ship remains in the area for safety reasons. It is, however, a fundamental limitation

for operations with AUVs–once the vehicle is on its mission, the ship could be free to

perform other tasks if it did not have to stay in the area to tend to the AUV.

Again, the finite speed of sound in water ensures that any USBL measurements

will come with a finite delay. Depending on the water depth, sound velocity profile,

and logistical constraints, it will be on the order of 1−10 seconds between the time a

position fix is valid and the time it is available to the vehicle. USBL-aided DR is used

as an example for the model-driven delayed measurement fusion approach proposed

in Chapter 3 of this dissertation.

0.2.2 Dead Reckoning

In its most basic form, dead reckoning (DR) computes a new position estimate by

integrating vehicle course and speed over the elapsed time, and adding that change

in position to the previous position estimate. This is essentially integrating the first-

order kinematic equations in time. In order to perform DR, the navigator needs

measurements or estimates of the vehicle’s:

• previous position,

• orientation (just heading in two dimensions), and

5This is especially true when the USBL transducer is mounted on a retractable mast under the
keel or off the side of the ship. This is often done in practice to achieve better acoustic performance
below the sea surface and further away from ship noise.
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• velocity (vector in two or three dimensions).

The navigator may use the scalar speed and vector course made good in an equivalent

formulation. The orientation measurements typically come from a gyrocompass, an

attitude and heading reference system (AHRS), or a magnetic compass (e.g., flux-

gate). The velocity is often measured using a Doppler velocity log (DVL), but may

also be measured by alternate means (such as a pitot tube), or estimated using a

dynamic model and measurements of propeller torque and/or shaft speed. The DVL

is preferred for velocity measurement because it measures the three components of

velocity relative to the seafloor (assumed to be stationary) rather than the speed

relative to the water (which may be moving).

DR navigation systems can run at high rates (updating at 1 Hz or faster) so

they enable closed-loop control. The required quantities can all be measured by

sensors internal to the vehicle, so DR does not require any external infrastructure.

This is advantageous for autonomous and robust operations. However, there are

some disadvantages. All forms of DR suffer from integration drift–the errors and

uncertainties in velocity and orientation accumulate in the position estimate. This

means that the errors and uncertainties in the position estimate grow unbounded in

time. For precise navigation, DR systems must be periodically reset or aided with

position fixes.

Compass

The purpose of a compass is to tell the navigator which direction is North–this defines

the vehicle attitude relative to a known reference. A magnetic compass orients itself

relative to the Earth’s magnetic field; a North-seeking gyrocompass aligns itself with

the Earth’s rotation. Both sensors have different strengths and weaknesses.

Digital magnetic compasses and AHRS are small, rugged, inexpensive (< $100−
$2000), and have low power consumption (< 1 W). These sensors use fluxgate or

magneto-inductive magnetometers to provide moderately accurate measurements of

heading (0.3◦ − 3◦), pitch, and roll (0.2◦ − 2◦). Although these sensors are common

on underwater vehicles, many factors can hurt their accuracy [6, 7]:
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• magnetic signature of the vehicle structure and systems; this can be partially

mitigated by hard- and soft-iron corrections in calibrating the compass, but

such calibration does not account for dynamic effects, such as turning on and

off motors and other subsystems,

• local magnetic anomalies (e.g., buried cables and pipelines or mineral deposits

along mid-ocean ridges or near hydrothermal venting sites),

• alignment with respect to the vehicle reference frame; this must be well-calibrated

either in the laboratory or using an in-situ technique such as those presented

in [13, 14] or [15] and chapter 1 of this dissertation.

Despite these shortcomings, magnetic compasses remain standard equipment on most

oceanographic systems due to their small size, low power consumption, and relatively

inexpensive cost. Some underwater vehicles (e.g., Jason, Sentry, Nereus) use a gyro-

compass as the primary reference, but retain a magnetic compass as backup.

North-seeking gyrocompasses use the earth’s rotation to find true North–they do

not need to correct for magnetic declination. They are also unaffected by magnetic

fields caused by the vehicle and surrounding environment. These factors, along with

the superior dynamic heading accuracy (0.1◦ or better) make them ideal for high-

precision applications [7]. Although mechanical gyrocompasses have been used on

surface vessels since the early 1900s, their size, power requirements, and cost prevent

their use on small underwater vehicles. Optical gyroscopes measure the interfer-

ence pattern of two laser beams traveling in opposite directions around a ring. This

interference pattern changes based on the rotation rate and the properties of the

ring according to the Sagnac effect. Three or more of these optical gyros can be

mounted together to observe the three-dimensional rotation rate–this forms an opti-

cal gyrocompass. Both ring-laser gyroscope (RLG) and fiber-optic gyroscope (FOG)

operate under these principles with slight differences in implementation. They offer

increased performance over magnetic compasses, but at the expense of increased size,

cost (> $10, 000), and power consumption (∼ 10 W). These systems still need to be

carefully aligned with other sensors (especially the DVL), either in laboratory condi-
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tions for integrated units (e.g., [16]) or using in-situ methods in applications where

the sensors are independently housed and mounted some distance from each other

(e.g., [13–15] and chapter 1 of this dissertation).

Doppler Velocity Log

A Doppler velocity log (DVL) provides accurate measurements of three-component

vehicle velocity over ground within bottom lock range. This range varies with DVL

frequency; it is about 250 meters for a 300 kHz DVL [17].

Bottom-lock DVLs have become standard equipment on most oceanographic un-

derwater vehicles. They are used in DR [18, 19], in combined LBL/DR navigation

systems [20,21], or as an aiding input to an INS [10,22]. In some cases, upward-looking

DVLs have been used to measure vehicle velocity relative to overhead ice [23].

The instrument velocity is calculated from the frequency shift in an acoustic signal

sent from the DVL to the seafloor, and reflected back to the DVL. A DVL has

multiple transducers oriented at different angles so that it can measure the frequency

shift along different acoustic beams, then combine the measurements to provide the

three-component velocity measurement.

For precision navigation, the alignment of the DVL beams within the instrument

is critical. Brokloff describes a matrix algorithm for Doppler navigation in [18]. This

algorithm is an improvement on the standard Janus equations which were previously

used in marine vehicle navigation. It provides a rigorous mathematical treatment of

the different reference frames used in Doppler navigation, and also allows for correc-

tions in transducer-instrument alignment. This algorithm reduced the mean position

error in a navigated mission from 0.51 to 0.33 percent distance traveled, and reduced

the standard deviation from 0.26 to 0.23. These errors may seem small, but they are

important in precision underwater navigation, as error accumulates over the course

of a several kilometer mission.

The hardware and operating principles for a DVL and an acoustic Doppler current

profiler (ADCP) are the same–comparing the Doppler shift of an acoustic signal

along four different beams gives the velocity of an acoustic scatterer relative to the

26



instrument (or vice versa). For a DVL in bottom-lock, the scatterer is the seafloor;

for an ADCP, the scatterers are particles suspended in the water column. The same

instrument can measure the relative velocity of the bottom and the ocean current.

This has led to some adaptations of DVL-based DR when the vehicle is out of

bottom lock range. An accurate measurement of through-the-water vehicle velocity

can be made by averaging ADCP measurements over several depth cells. When an

ADCP makes concurrent water-profile and bottom-track measurements, the effect of

local currents can be estimated. Then, when bottom lock is lost, high-quality velocity

estimates can be maintained for a short term [24]. This is often termed ‘water track’

and the water velocity is measured and averaged over a ‘water reference layer’ [17].

More recently, researchers have begun to use data from relative water current pro-

files (i.e., velocity measurements in many discrete range bins) to simultaneously es-

timate vehicle velocity and ocean current. This can be considered an extension of

the Lowered Acoustic Doppler Current Profiler (LADCP) concept used in physical

oceanography [25–27]. The problem has been studied using an online bin-average

approach [28, 29], an IMU-coupled information filter (IF) implementation [30, 31],

weighted least squares (WLS), and recursive least squares (RLS) techniques [29].

This is also the topic of chapter 2 in this dissertation.

0.2.3 Inertial Navigation

An IMU contains sensors that measure acceleration and rotation rates in a strap-

down package. These sensors are combined with a computer in an INS, so that the

measurements can be integrated to provide an inertial pose (position and orientation)

estimate from an entirely internal system.

An INS is essentially a second-order DR navigation system–it is subject to the

same integration drift and unbounded growth in error and uncertainty as any other

DR navigation system. For this reason, an INS in an underwater vehicle is usually

aided by measurements from a gyrocompass or AHRS, a DVL, and some combination

of acoustic positioning, terrain relative navigation, or visually aided navigation. These

external measurements are fused with the inertial estimate to limit the growth of error
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and uncertainty in the estimate.

0.2.4 Terrain-Relative Navigation

Given a map of the surrounding environment, a vehicle can localize itself by matching

observations from its sensors to areas on the map. Terrain relative navigation (TRN)

was originally developed for cruise missile navigation [32,33] but has also been applied

to underwater navigation problems. One advantage of terrain relative navigation

(TRN) is that there is no infrastructure requirement–it does not rely on systems

external to the vehicle. However, it does require a map.

In some situations, an a priori map is available, (e.g., [34,35]). It is more common

that an a priori map is not available–either the mission is to explore a new area, or to

measure and characterize changes in the terrain. In this case, the vehicle might gen-

erate incremental maps from sensor data on the fly (e.g., [10,36]) or use simultaneous

localization and mapping (SLAM) techniques (e.g., [37–39]).

The terrain may be characterized by sonar range measurements to the seafloor [10,

32, 33, 36, 38–41] or photographs of the seafloor [42–45]. For some missions, AUVs

have navigated relative to sonar maps of moving targets like icebergs [46, 47]. The

reference for TRN may not even be a conventional map–one of the earlier underwater

applications was for submarine navigation relative to the gravitational field of the

Earth [35]. Recent work has begun to characterize the performance of TRN using

less costly sensors with lower quality measurements–this has the potential to be an

enabling technology for inexpensive AUVs that still require long-term autonomous

navigation capabilities [32, 33].

All TRN techniques are limited by the range of the sensors that measure the

terrain. This is typically O(10 − 100 m) for sonar and < 10 m for photography6. In

cases without an a priori map, TRN will produce a self-consistent vehicle trajectory

and map for the mission, but there will still be uncertainty in the geographic location

unless there is another external position measurement7.

6Primarily limited by attenuation of light in water.
7e.g., LBL, USBL, or GPS at the surface while the seafloor is within range of the terrain sensor
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0.2.5 NDSF AUV Sentry

Most of the data used in this dissertation was collected by the AUV Sentry during

oceanographic field deployments. The navigational data in Chapter 1 and Chapter 3

is standard and collected during every dive the vehicle makes. The ADCP was re-

configured during several ascents at the end of science missions to collect the relative

water current profiles for Chapter 2. This section gives an introduction to Sentry and

its systems–sections within each chapter will review the details on the sensors and

systems specific to the problem studied in that chapter.

Sentry is a deep submergence AUV designed by the WHOI Deep Submergence

Laboratory (DSL) and operated as part of the NDSF. It is the successor to the au-

tonomous benthic explorer (ABE) [48,49], with many design improvements to address

the needs of the oceanographic community. Two pairs of control fins with thrusters

enable close bottom-following and control at zero speed. The large separation be-

tween the center of buoyancy and center of gravity makes Sentry very stable in pitch

and roll–this is desirable for high resolution mapping with multibeam or camera. The

outer hull is streamlined in the forward direction for efficiency during long surveys,

and streamlined in the vertical direction for fast descent and ascent at the beginning

and end of dives up to 6500 m in depth. Science missions often include high-resolution

bathymetry, seafloor photography, geomagnetics, and chemical sensing, or some com-

bination. When equipped with a redox potential (eH) probe [50], Sentry is an effective

tool for hydrothermal prospecting. More recently, Sentry has used an in-situ mass

spectrometer [51] to track and characterize hydrocarbon plumes [52], including the

submerged plume from the blowout of the Deepwater Horizon’s Macondo well [53].

Sentry’s navigation sensor suite includes: an INS with fiber-optic gyroscope (IXSEA

PHINS), a 300 kHz DVL/ADCP (Teledyne RD Instruments Workhorse Navigator),

a pressure depth transducer (Paroscientific Digiquartz), an LBL positioning system

(WHOI), a USBL tracking system with an integrated acoustic modem (Sonardyne),

and a backup magnetic compass (PNI). Since the FOG and DVL provide high-

accuracy inputs, the standard realtime navigation is dead reckoning without external
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Figure 0-2: NDSF AUV Sentry being raised for launch. Two pairs of control fins with
thrusters enable close bottom-following. The large separation between the center of
buoyancy and center of gravity makes Sentry very stable in pitch and roll–this is
desirable for high resolution mapping with multibeam or camera.
photo credit: Dana Yoerger, WHOI ABE/Sentry group

aiding. Navigation data is postprocessed after a dive to fuse external position inputs

before mapping timeseries data to geographic locations.

This high-quality navigation suite makes Sentry an ideal platform for evaluat-

ing alternate navigation methods and state estimators before implementing them on

vehicles with lower quality sensors.

The standard science sensor suite includes: a conductivity/temperature probe,

precision magnetometers, a 400 kHz multibeam sonar, and a 12-bit color camera.

Sentry serves the oceanographic community, with limited extra payload for systems

provided by scientists on each cruise. The vehicle has also carried redox potential

(eH) probes, dissolved oxygen sensors, an in-situ mass spectrometer, a sub-bottom

profiler, a sidescan sonar, and a stereo camera system.

0.3 Thesis Statement

This research explores three related hypotheses with the goal of improving the real-

time performance and increasing the level of automation in underwater navigation:
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1. Rotors in Geometric Algebra can be used to formulate an elegant, efficient,

and stable realtime alignment estimator suitable for in-situ use on underwater

vehicles.

2. Relative water current profile data collected by a vehicle-mounted acoustic

Doppler current profiler can provide estimates of the global vehicle velocity

and position during descent and ascent phases of a mission.

3. Mathematically rigorous treatment of measurement delays in multi-sensor fusion

Kalman filters can be achieved through state augmentation and conditional

time-varying models without altering the underlying framework.

0.3.1 Objectives

This research has several objectives related to each hypothesis above.

Rotor identification

• formulate an adaptive identifier using rotors in Geometric Algebra (GA) for

sensor alignment

• prove asymptotic stability

• demonstrate rotation identification in simulation

• demonstrate DVL/FOG alignment identification

– using archival data from a laboratory ROV

– using data from an AUV deployed in the field

Independent navigation during descent and ascent

• formulate online bin average, least squares, and recursive least squares ap-

proaches

• collect data from AUV ascents
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• demonstrate dead reckoned ascent using data from an AUV deployed in the

field

Fusing delayed measurements

• formalize an efficient model-driven approach that works within the Kalman

filter (KF) framework

• characterize performance of delayed measurement fusion using a simulation of

a canonical system

• demonstrate model-driven fusion of delayed acoustic positioning measurements

using data from an AUV deployed in the field performing

– USBL-aided DR

– asynchronous LBL-aided DR

0.4 Dissertation Structure

This chapter has provided a high-level introduction to underwater navigation and

an explicit statement of the thesis. The following chapters present each individual

contribution in detail:

Chapter 1 Navigation sensor alignment

This is a basic problem in any multi-sensor system–any uncertainties here pro-

pogate through the navigation system to the final result. Here I propose a stable

online method for in-situ alignment identification, and demonstrate it on data

from underwater vehicles in the laboratory and in the field. (Some of this work

is previously reported in [15].)

Chapter 2 Dead reckoning through the water column

The ability to link GPS at the surface to precision DR near the seafloor might

enable new kinds of missions for AUVs. This chapter introduces a method to

DR through the water column using water current profile data collected by
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an onboard sensor, and provides an autonomous navigation link between the

surface and the seafloor without any dependence on a ship or external acoustic

tracking beacons. (Some of this work is previously reported in [28, 29].)

Chapter 3 Model-driven delayed measurement fusion

In many state estimation applications, delayed measurements present an in-

teresting challenge. Underwater navigation is a particularly compelling case

because of the relatively long delays inherent in all available position mea-

surements. Here I propose an entirely model-driven approach to delayed mea-

surement fusion based on state augmentation with a mathematically rigorous

treatment of the delay. (Some of this work is previously reported in [54].)

The last chapter of this dissertation briefly recapitulates the conclusions of each chap-

ter, and highlights some promising areas for future work.
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Chapter 1

Navigation Sensor Alignment

Using Rotors

Hypothesis

Rotors in Geometric Algebra can be used to formulate an elegant, efficient, and stable

realtime alignment estimator suitable for in-situ use on underwater vehicles.

1.1 Introduction

Rotations are ubiquitous in robotics and engineering. Two examples are: industrial

robot arms move by rotating many different single degree-of-freedom joints, and the

misalignment between different sensors is the rotation between their internal reference

frames. We use Geometric Algebra (GA) to formulate a novel adaptive identifier for

unknown rotations, and apply it to an important problem in underwater navigation.

We develop this identifier using rotors, which provide an elegant and efficient treat-

ment of rotations (in multiple dimensions). More importantly, the GA formulation

expose the geometric nature of the problem, and encourage an intuitive solution.

The remainder of this introduction motivates and explicitly defines the general

problem of identifying an unknown three-dimensional rotation, then reviews exist-

ing approaches to rotation identification and other related work. To keep this paper

35



self-contained, section 1.2 provides a brief primer on the basics of GA, which may

be unfamiliar to many readers. This can be considered a section on the mathemat-

ical preliminaries for our approach–we only use GA basics in the formulation and

stability analysis of the identifier. Section 1.3 details the rotor identifier, including

the formulation, geometric intuition, a proof of asymptotic stability, and simulation

results. In section 1.4, we apply the new identifier to estimate the fine misalignment

between two important sensors in underwater navigation. We translate in-situ mea-

surement data into a form usable by the identifier using integration by parts. We

then demonstrate and characterize the performance of the identifier using data from

a remotely operated vehicle (ROV) in controlled laboratory conditions (Section 1.5),

and using field data from an autonomous underwater vehicle (AUV) operating in the

deep ocean (Section 1.6).

1.1.1 Motivation

This study is motivated by a common practical problem–identifying the unknown

alignment of two sensors using only the measurements from those sensors. This prob-

lem is of particular importance in robotic vehicle navigation, where data from many

separate sensors must be fused in a common frame of reference. In dead reckoning,

for example, a small alignment error leads to a large systematic position error in

time. Accurate identification of sensor alignment is therefore of utmost importance,

especially in applications like underwater navigation, where position updates may be

severely limited.

1.1.2 Problem: to identify a rotation from a pair of vectors

Consider two misaligned sensors that provide vector measurements. If the measure-

ment from the first sensor is u and the measurement of the second sensor is y, then

the relationship between the measurements is written:

y = R (u) , (1.1)
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Figure 1-1: The rotation between two vectors in two dimensions (a) is described
by a single parameter, the angle ϕ. The rotation is inherently constrained to the
two-dimenstional plane. Identifying this rotation becomes more difficult in three
dimensions–the plane of rotation is no longer constrained by the space (b). The
input vector (red) could rotate along an infinite number of paths (purple) to reach
the output vector (blue).

where R (·) is a linear operator that describes the unknown rotation between the co-

ordinate frames of the sensors. The goal in aligning the measurements is to identify

the unknown R (·). This problem is simple in two dimensions–the rotation is fully

described by a single parameter (Figure 1-1a). But it is important to note the prob-

lem is underconstrained in higher dimensions–two vectors in 3-space do not uniquely

identify a rotation (Figure 1-1b).

Given enough measurements, this problem can be solved in Linear Algebra (LA)

using a conventional ordinary least squares (LS) approach to estimate the matrix that

best transforms the inputs u into the outputs y:

y = Mu (1.2)

but the result may not technically describe a rotation. Ordinary LS makes no guar-

antee that M will be a rotation matrix.

If the input/output relationship is restricted to rigid body rotations, the solution

must be part of the special orthogonal group.

y = Ru : R ∈ SO(3). (1.3)

In three dimensions, this is a subgroup of 3× 3 matrices subject to two constraints:

orthogonality columns of the matrix are orthogonal (i.e., independent)
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normality scale and chirality1 are preserved

These constraints define the group of rotation matrices:

SO(3) ≡
{

R : R ∈ R
3×3, RTR = I3×3, det (R) = 1

}

. (1.4)

The goal of the alignment problem in LA is to identify the matrix that best transforms

u into y, subject to the constraints of the special orthogonal group.

We propose a novel alternative approach using GA and encoding the rigid body

transformation in a rotor. The rotor acts on any element of GA by a double-sided

application of the geometric product:

y = RuR̃, u = R̃yR, R ∈ Spin(3). (1.5)

The algebraic structure of rotors inherently constrains all estimates to the group of

rigid-body rotations. The approach presented here also provides a clear interpretation

of the identifier using the first-order kinematics of the rotor estimate.

1.1.3 Related Work

This work is motivated by the practical problem of in-situ estimation of navigation

sensor alignment for dead reckoning (DR) for underwater vehicles. The problem

of Doppler velocity log (DVL)/fiber-optic gyroscope (FOG) alignment was first ad-

dressed by Kinsey & Whitcomb in [13,55]. They use measurements from an external

positioning system to observe the output of the DR plant. Using integration by parts,

they are able to write the plant in the identifier form (1.3), and then apply standard

and novel techniques to estimate the alignment.

This problem is a specific example of the more general problem of estimating rigid

body rotations from a collection of uncertain data. Approaches to this problem can

be loosely divided into batch methods and online methods. Much of the previous

1i.e., right-handed or left-handed. This mathematical property is also sometimes called orienta-
tion, but we will reserve that term to describe rotational position since that is more in line with its
common use in geometry and navigation.
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literature has studied the problem using LA, but there are also some examples of

batch methods in GA. This section summarizes the related work in the literature.

Linear algebra, batch methods

Standard approaches to identify the matrix transforming input data to output data

include ordinary least squares and recursive least squares methods [56]. These meth-

ods are well-studied and their behavior is well characterized, but the solution is not

guaranteed to describe a rigid body rotation. That is, these methods may not actually

give a rotation matrix.

To enforce the orthogonality constraint on the LS solution, Arun et. al. introduce

an application of singular value decomposition (SVD) in [57].

Umeyama adapted the LS-SVD approach in [58] to also enforce the normality

constraint. The LS solution is now fully constrained to SO(3). This constrained least

squares (CLS) method is the present standard batch method for rotation identifica-

tion.

In [13,55], Kinsey & Whitcomb apply the LS-SO(3) batch method to estimate the

alignment between DVL and FOG in underwater navigation. The DR trajectories cal-

culated using the estimated alignment agreed with long baseline (LBL) observations

much better than those calculated using a rough visual alignment.

Linear algebra, online methods

The rotation identification problem is closely related to the attitude control problem.

Bullo & Murray study control on SO(3) and SE(3) using Lie groups2 in [60]. They

recognize the geodesic length as a natural error metric on SO(3). Assuming full state

feedback, they use Lyapunov theory to prove the stability of a family of proportional

and proportional-derivative control laws.

In [14,61] Kinsey & Whitcomb report an adaptive identifier on SO(3), and prove

its asymptotic stability using Lyapunov theory. They compare its performance to the

2Lie groups are actually closely related to rotors, and any Lie algebra can be expressed as a
bivector algebra [59].
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LS methods in [13, 55] with favorable results.

More recently, Troni & Whitcomb have applied the LS methods and adaptive

identifier to identify the alignment between DVL and inertial navigation system

(INS) [62, 63]. This method no longer requires position measurements, so it has

no dependencies external to the vehicle, making it a strapdown solution. Instead, it

makes the mild assumption that the accelerometers and gyrocompass in the INS are

internally aligned and calibrated. This extra assumption is almost trivial since it is

done in manufacturing and does not need to be done in situ.

Geometric algebra, batch methods

Batch methods for rotor identification in GA have also been developed recently. Do-

ran studied the estimation of an unknown rotor from noisy data in the context of

camera localization in [64]. Buchholz and Sommer investigate the related problem of

averaging in Clifford groups [65].

1.1.4 Contributions

The online GA method detailed in this chapter is an asymptotically stable adap-

tive identifier and was originally proposed in [15]. This method works recursively

on input/output vector pairs and it uses a more compact and efficient encoding of

rotations than the LA methods. Furthermore, since rotors are inherently constrained

to represent rigid-body motions, no extra steps are required to constrain the solu-

tion. The rotor identifier is similar to the SO(3) adaptive identifer developed in [14],

but the GA formulation provides more meaningful and intuitive error measures (Sec-

tion 1.3.2) than LA approaches. This encourages a geometric understanding of the

problem and leads to a straightforward kinematic identification algorithm.

Table 2.1 compares this research to the related literature. The main contribution

of this work is the formulation of an online adaptive identifier using rotors. One of

the main advantages of using GA is the clarity it brings to the mathematical formu-

lation of the identifier and the proof of asymptotic stability3. The GA formulation

3A proof of exponential stability would require a complete observation of the rotation for each

40



T
ab

le
1.
1:

C
om

p
ar
is
on

of
ro
to
r
id
en
ti
fi
er

to
re
la
te
d
w
or
k
.
F
il
le
d
ci
rc
le
s
d
en
ot
e
fe
at
u
re
s
or

ch
ar
ac
te
ri
st
ic
s
p
os
es
se
d
b
y
th
e
w
or
k
,

em
p
ty

ci
rc
le
s
d
en
ot
e
fe
at
u
re
s
th
at

ar
e
m
is
si
n
g
or

n
ot

d
em

on
st
ra
te
d
,
an

d
a
d
as
h
m
ea
n
s
th
at

ca
te
go
ry

is
n
ot

ap
p
li
ca
b
le
.

method

batch

online

constraints

orthogonality

chirality

stability

asymptotic

exponential

uses

partialobservations

geodesicerror

representation

application

or
d
in
ar
y
L
S
(e
.g
.,
[5
6]
)

•
◦

◦
◦

-
-

•
◦

m
at
ri
x

ge
n
er
al

A
ru
n
,
et
.
a
l.
[5
7]

•
◦

•
◦

-
-

•
◦

m
at
ri
x

m
ac
h
in
e
v
is
io
n

U
m
ey
am

a
[5
8]

•
◦

•
•

-
-

•
◦

m
at
ri
x

m
ac
h
in
e
v
is
io
n

D
or
an

[6
4]

•
◦

•
•

-
-

◦
◦

ro
to
r

m
ac
h
in
e
v
is
io
n

B
u
ch
h
ol
z
&

S
om

m
er

[ 6
5]

•
◦

•
◦

-
-

◦
•

m
at
ri
x
&

ro
to
r

ge
n
er
al

K
in
se
y
&

W
h
it
co
m
b
[ 1
3,
55
]

•
◦

•
•

-
-

•
◦

m
at
ri
x

F
O
G
/D

V
L
D
R

T
ro
n
i
&

W
h
it
co
m
b
[6
2,
63
]

•
◦

•
•

-
-

•
•

m
at
ri
x

IN
S
/D

V
L
D
R

B
u
ll
o,

et
.
a
l.
[6
0,
66
]

◦
•

•
•

•
•

◦
•

L
ie

gr
ou

p
sa
te
ll
it
e
co
n
tr
ol

K
in
se
y
&

W
h
it
co
m
b
[1
4,
61
]

◦
•

•
•

•
◦

•
◦

m
at
ri
x

F
O
G
/D

V
L
D
R

S
ta
n
w
ay

&
K
in
se
y
[1
5]

&
th
is
ch
ap

te
r

◦
•

•
•

•
◦

•
•

ro
to
r

F
O
G
/D

V
L
D
R

41



makes it easier to see how a simple proportional feedback regulator on the observable

output error can provide asymptotically stable identification. This clarity encourages

a more geometric understanding of the problem, and may simplify enhancements and

extensions of the identifier in the future.

1.2 Geometric Algebra Primer

This section provides an introduction to the GA tools used in this dissertation. It

is included because many readers may not be familiar with GA. It can be viewed

as a section on the mathematical preliminaries necessary to formulate the rotation

identifier and prove its stability. We only need the very basics of GA to do this.

For a more complete introduction to GA, the reader should refer to the introduc-

tory texts by Hestenes [67], Doran & Lasenby [68], or Dorst, Fontijne, & Mann [69].

Gull, et al., also provide an excellent short introduction in [70], and Bayro-Corrochano

discusses several engineering applications in [71–74]. Here, we will only cover the very

basics necessary for multiplying vectors and for representing rotations.

1.2.1 Multiplying Vectors

Every vector has two intrinsic properties: magnitude and direction. The products

defined in GA describe relationships between these properties. We will define the inner

product, the outer product, and the geometric product. These products then expand

the language of GA to include elements of lower and higher grade (i.e., dimension),

and even elements of mixed grade.

update of the estimate. Bullo assumes this in [60], but we cannot assume this in the FOG/DVL
alignment problem that we apply the rotor identifier to in this research, because the observation of
the rotation comes from pairs of input/output vectors (see section 1.1.2).
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Figure 1-2: The geometric product is the sum of symmetric and antisymmetric parts:
the inner product of two vectors (a) is symmetric and produces a scalar, the outer
product of two vectors (b) is antisymmetric and produces a bivector.

Inner Product

We will start with a familiar concept–the inner product of two vectors is commutative,

and defines a scalar α (grade 0):

a · b = b · a = α = |a||b| cosϕ, (1.6)

where ϕ is the angle between a and b. The inner product vanishes if the vectors are

perpendicular, but if they are parallel, it becomes the product of the magnitudes.

This provides one way to define the magnitude of a vector:

|a| = √
a · a. (1.7)

This inner product should be familiar to the reader since it is essentially the same as

in Linear Algebra.

Outer Product

The outer product of two vectors is anticommutative and defines a new entity called

a bivector4 B (grade 2):

a ∧ b = −b ∧ a = B = |a||b| sinϕB̂. (1.8)

4Bivectors in GA are analogous in many ways to skew-symmetric matrices in LA, and both are
related to Lie algebras.
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This bivector can be thought of as a directed plane segment in much the same way

as a vector is a directed line segment. Unit bivectors, like B̂, define a direction and

have a magnitude of one. New bivectors can be generated by addition or subtraction.

The outer product is associative and can be used to build up even higher-grade

elements, like trivectors T (grade 3):

(a ∧ b) ∧ c = a ∧ (b ∧ c) = T = βI. (1.9)

Trivectors are the highest grade element inG3, the three-dimensional Euclidean model

of GA. Every trivector can be written as a scalar (e.g. β) times the unit trivector, so

the unit trivector is called the pseudoscalar and denoted by I. Since no set of four

or more vectors in G3 is independent5, the outer product of four or more vectors is

always zero.

Geometric Product

The inner and outer products complement each other: one lowers the grade while

the other raises it, one is commutative while the other is anticommutative. They are

combined in the geometric product:

ab = a · b+ a ∧ b = b · a− b ∧ a = α +B =M, (1.10)

which produces a multivector M that contains both scalar and bivector parts.

The geometric product is actually the most basic product in GA. The inner and

outer products can be derived axiomatically as the symmetric and antisymmetric

components of the geometric product [67, 68].

a · b = 1

2
(ab+ ba) (1.11a)

a ∧ b = 1

2
(ab− ba) (1.11b)

5This is true for any three-dimensional linear space.
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The geometric product itself is generally neither commutative nor anticommuta-

tive. But reversing the order of factors is still an important operation, known as

reversion:

reverse(ab) = ba = (ab)∼ = M̃. (1.12)

Sometimes it is useful to separate a multivector into parts of just one grade (i.e., se-

lect only the grade 2 part, the bivector). This operation is called grade selection, and

denoted by angle brackets with the grade as a subscript:

〈M〉0 = α, 〈M〉2 = B. (1.13)

In general, a multivector can be a sum of elements of all grades: A = α+a+B+βI.

It may seem odd at first to add together elements of different grades, but it is really no

different than adding together the real and imaginary parts of a complex number [70].

In fact, the constructs of GA are closely related to complex numbers and quaternions,

which brings us to the topic of rotations.

1.2.2 Rotating vectors

Rotations in GA are encoded by special elements called rotors. These describe a

rotation in a plane, rather than around an axis–this extends more readily to spaces

that are not 3D Euclidean (i.e., 2D plane, 4D projective, or 5D conformal). Any

multivector can be transformed using rotors: simply left-multiply by the rotor, and

right-multiply by its reverse:

M ′ = RMR̃. (1.14)

This double-sided application of the geometric product is sometimes called the versor

or sandwich product. This transformation works equally well in two dimensions, three

dimensions, or even more6.

6In fact, rotors in Conformal Geometric Algebra describe general rigid body motions, encoding
both rotation and translation in a single entity [68, 75].
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Figure 1-3: Three main methods of composing rotors: (a) from two vectors using the
concept of repeated reflections, (b) from a bivector using the exponential map, or (c)
from two or more other rotors as a chain.

Definition

The set of rotors, or proper unitary spinors, is given by the normalized elements of the

even subalgebra G+. In a three-dimensional Euclidean space, they form the group:

Spin(3) ≡
{

R : R ∈ G
+
3 , RR̃ = R̃R = 1

}

, (1.15)

which is isomorphic to the quaternions H, but with emphasis on geometric interpreta-

tion and easily extended to higher dimensional spaces. Spin(3) provides a double-cover

over SO(3).

Three-dimensional rotors have four coefficients: one scalar and three bivectors.

The orthogonality constraint is implicit in the structure. The unit norm constraint is

simple to enforce, but often unneccesary because of good numerical stability proper-

ties [76–78]. In contrast, rotation matrices have nine coefficients, and orthonormality

is more difficult to ensure.

Composition

There are three main methods to compose a rotor (Figure 1-3): (i) using the concept

of repeated reflections, (ii) as the geometric exponential of a bivector, or (iii) chaining

together a sequence of multiple rotors. We use all of them in the formulation and

stability proof of the identifier.
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Repeated reflections

The Cartan-Dieudonné theorem states that any Euclidean transformation can be

expressed by a combination of reflections [79]. This suggests the first method of rotor

composition: repeated reflections.

The sandwich product using a unit vector on each side:

z = n̂un̂. (1.16)

produces a reflection. Any combination with an even number of reflections will pro-

duce a proper7 rotation. So rotors are the geometric product of an even number of

unit vectors:

y = RuR̃ = m̂n̂un̂m̂. (1.17)

An even number of repeated reflections (as opposed to a single reflection) are required

to ensure right-handed coordinates remain right-handed.

This method of composing a rotor is particularly useful when you need to calculate

the ‘shortest’ rotor between two vectors. Choose the first unit vector in the direction

of the first vector. Then add the two vectors and normalize the sum to get the

second unit vector. This one points in the direction that bisects the angle between

the original vectors, as shown in Figure 1-3a.

Bivector exponential

In the second rotor composition method, a bivector encodes the plane and angle

(i.e., the direction and magnitude) of the rotation. The rotor that generates this

rotation is the exponential8 of the bivector:

R = exp

(

−1

2
θB̂

)

= e−
1

2
B, (1.18)

7Conversely, an odd number of reflections produces an improper rotation, or rotoreflection.
8The concept of an exponential function is easily generalized to operate on multivectors, see [67]

or [68].
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where the factor of 1/2 is because we multiply the rotor twice (once on each side) and

the negative sign is a convention so that positive angles produce a counterclockwise

(i.e., right-handed) rotation.

It is also useful to define a multivector logarithm so that the bivector B can be

determined from the rotor R. This actually has some subtle points, but is well-defined

for rotors. We adopt the definition given in [67] and denote the rotor logarithm:

B = −2 lnR. (1.19)

Rotor chains

The rotor group is closed under multiplication with the geometric product. This leads

to a third way to compose rotors–as a chain of two or more other rotors:

Ra

(

RbuR̃b

)

R̃a = (RaRb) u
(

R̃bR̃a

)

= RabuR̃ab. (1.20)

The geometric product of two rotors will always produce another rotor. This property

is very useful for discrete-time kinematics.

GA is a much richer topic–the interested reader should refer to texts referenced

at the beginning of this section. Having covered the very basics, we now have all the

tools we need to build our identifier and study its properties.

1.3 Asymptotically Stable Rotor Identifier

Here we propose an adaptive identifier based on first-order rotor kinematics and a

geometric interpretation of identification error. We will begin by defining the rotation

plant in terms of input and output vectors. Then we discuss several possible error

metrics, with emphasis on the geometric meaning of each of them. We use first-

order rotor kinematics and a proportional gain error-state feedback regulator (ESFR)

to formulate a rotor identifier, then prove its asymptotic stability using Lyapunov

theory. This section concludes with a brief discussion of gain selection.
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1.3.1 Plant Definition

Given known input u and output y signals of the same grade9, the plant:

y = RuR̃, (1.21)

describes the rotation from input to output. The unknown rotor R ∈ Spin(3) is a

stationary element of the even subalgebra, and encodes a rigid body rotation. The

goal of the method proposed here is to identify this unknown rotor, R.

We will define the time-varying estimate of the rotor as S(t) ∈ Spin(3). The

expected plant output is then:

v = SuS̃. (1.22)

We will call (1.22) the identification plant.

The goal of the identifier is to drive the estimated rotor S toward the actual rotor

R. Since each timestep provides an incomplete observation of the actual rotor, we

achieve this using feedback on the output error. The action of the identifier drives

the expected output v toward the observed output y.

1.3.2 Error Metrics

This problem has two types of error: the parameter error describes the difference

between the estimated and actual values; the output error describes the difference

between the estimated and observed outputs. These errors can be parameterized in

several ways–GA encourages a geometric interpretation of each parameterization and

of the relationships between them. Defining an error rotor is natural because the

goal is to identify a rotor in the first place. A bivector error can be directly applied

to drive the first order kinematics as a rotational velocity. Finally, a scalar error is

most convenient for summarizing performance and in Lyapunov analysis. Here we

9 We focus on vector signals (u, y ∈ 〈G3〉1) for the remainder of this paper. However, the methods
presented here should apply equally well to bivectors or to higher-grade multivectors, so long as the
grade of the output is the same as the grade of the input–otherwise (1.21) and (1.22) would not
describe rotations.
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define these three error metrics for both types of error. We discuss their geometric

interpretation and the relationships between them.

Parameter Error

Define the parameter error rotor:

Q = RS̃ : Q ∈ Spin(3). (1.23)

This definition gives the ‘difference’ between the estimated rotor and the actual rotor.

Applying the parameter error rotor directly to the estimated output will rotate it into

the actual output:

QvQ̃ = (RS̃)(SuS̃)(SR̃)

= RuR̃ = y

The error rotor is the geometric operator that resolves the difference between the

identification plant and the actual plant.

The parameter error bivector is derived from the natural logarithm of the param-

eter error rotor:

X = −2 ln(Q) : Q = e−
1

2
X . (1.24)

This metric encodes both the magnitude and direction of the error, which can be

interpreted as the angle and the rotation plane.

The magnitude of the parameter error is a scalar:

χ = ||X||1/2 =
√

XX̃. (1.25)

This is the natural distance measure on S3, and concisely summarizes the error state.

It is distilled down to the angle between the estimate and the truth, and is analogous

to the distance measure defined in [60]. As a scalar, χ is convenient for visualization

and for stability analysis, but the lack of directional information makes it less useful
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for feedback.

Output Error

Since a pair of input/output vectors does not uniquely define a rotation, the param-

eter error is only partially observed at each timestep. We define output errors to

characterize the observable part of the misalignment.

The output error rotor is defined:

P = m̂n̂ =
y + v

|y + v|
v

|v| : P ∈ Spin(3), (1.26)

so that it rotates the estimated output v directly into the measured output y along

the shortest path on the sphere10. Note that (1.26) uses the concept of repeated

reflections (1.17) to compose P .

The output error bivector is defined analogously to its parameter error counter-

part11:

Y = −2 ln(P ). (1.27)

This bivector form of the output error encodes information on both magnitude and

direction–we will show in section 1.3.3 how it can be used as a rotational velocity to

drive the identification plant kinematics.

Similar to (1.25), the output error angle is:

ψ = ||Y ||1/2 =
√

Y Ỹ . (1.28)

Again, this scalar provides a useful summary of the parameter error, but the lack of

directional information makes it unsuitable for feedback.

Each of these error measures is valid, and each has a different use and interpre-

10In [69], Dorst gives an alternate form for the ‘shortest’ rotor between two vectors:
R = (1 + ba) /

√

2 (1 + a · b) This is equivalent to (1.26) for a = v and b = y.
11There are, of course, alternate ways to define the output error bivector. We have chosen to

define Y this way for consistency with X in (1.24) and so that its magnitude leads directly to
the arc length of the error. Moreover, (1.26) normalizes the vectors y + v and v to emphasize the
difference in direction and not magnitude. This is one difference from the approach in [14].
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tation. Note that the error rotors tend toward unity as S → R, while the bivectors

and angles tend toward zero.

Partial observation and error bivectors

The output error bivector is only part of the parameter error bivector–there may

also be an unobserved component, Z, orthogonal to the observed output error. This

is because a rotation defined only by two vectors is not unique, as noted earlier

in section 1.1.2. The parameter error bivector is the sum of these two parts:

X = Y + Z, where: Z ⊥ Y. (1.29)

Note that the orthogonality condition is a weak constraint on the unobserved component–

Z can have any magnitude12 or direction as long as it is not parallel to Y .

Despite this limitation, a straighforward proportional gain feedback regulator on

the observed output error is an asymptotically stable adaptive identifier.

1.3.3 Proportional Gain Identifier

Now that we have a clear understanding of the underlying geometry of this problem,

we can formulate a simple identifier based on proportional feedback into the first

order kinematics of the system.

First-Order Kinematics

We are interested in the time derivative of the rotor estimate S(t) ∈ Spin(3). Recall

the exponential parameterization of the rotor:

S(t) = e−
1

2
B(t). (1.30)

12Strictly speaking, the bivector errors may have any magnitude. In practice, this is limited to
the interval [0, 2π).
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Since B describes the rotation angle, dB/dt describes the rotational velocity. We will

adopt the notation:

Ḃ = Ω = Iω, (1.31)

where Ω is the natural bivector form of the rotational velocity. The dual form, with

rotational velocity encoded by a vector ω multiplied by the pseudoscalar I, may be

more familiar to some readers.

Direct application of the chain rule gives the first order rotor differential equa-

tion13:

d

dt
(S(t)) =

dB

dt

dS

dB
(1.32)

Ṡ = −1

2
ΩS. (1.33)

We can now use the output error bivector Y defined in (1.27) as a rotational velocitiy

to drive the kinematics of the identification plant (1.22).

Identifier update law

We formulate the rotor identifier as an output error feedback regulator with propor-

tional gain:

Ω(t) = κp(t)Y (t) : κp(t) > 0 ∀ t. (1.34)

The continuous-time update law becomes:

Ṡ = −κp
2
Y S, and ˙̃S =

κp
2
S̃Y. (1.35)

Error due to finite precision numerical integration is of little concern–the algebraic

structure of the rotor ensures that it remains orthogonal, and the unit norm constraint

can be enforced by periodic renormalization if necessary. This chapter also provides

an exact discrete-time update in a later section.

13Hestenes gives an indirect calculation in [67], initially solving for the rotational velocity expressed
in a different reference frame.
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Parameter Error Evolution

The evolution of the estimate is characterized by the time derivative of the parameter

error rotor:

Q̇ = ṘS̃ +R ˙̃S = R ˙̃S. (1.36)

Substituting the update law (1.35) gives the continuous-time system:

Q̇ = R
(κp
2
S̃Y

)

=
κp
2
QY. (1.37)

This looks very similar to the first-order rotor differential equation (1.33). In fact, (1.37)

simply states that the rotational velocity of the parameter error is proportional and

opposite to the rotational velocity of the estimate.

Q̇ = −1

2
ẊQ, (1.38)

−Ẋ = 2Q̇Q̃ = κpQY Q̃ = Ω′, (1.39)

where Ω′ is the rotational velocity expressed in the reference frame of R.

Discrete-time implementation

Most applications will provide measurements of the input u and the output y in

discrete time, so it makes sense to develop a discrete-time version of the proportional

update law (1.35).

Define the discrete update of the rotor estimate:

δS = SkS̃k−1 : Sk = (δS)(Sk−1). (1.40)

Assuming the gain and rotational velocity of the rotor estimate are constant over the

timestep, we use Euler’s method to integrate (1.35) directly:

δS =

δt
∫

0

(

−κp
2
Y S

)

dτ = e−
1

2
(κpδt)Y . (1.41)
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Figure 1-4: The components of the estimated rotor S computed by the proportional
gain rotor identifier converge to the components of the unknown rotor R (marked by
dash-dot lines).

This discrete-time form of the rotor identifier was implemented in C using a base

library generated by Gaigen2.5 [80], the latest version of the GA implementation

generator [81, 82].

Figure 1-4 shows the four components of the estimated rotor S converging toward

the true rotor R in a simulation using the discrete-time rotor identifier. In other

simulations, several levels of random Gaussian noise were added to the output y.

Figure 1-5 shows how the scalar parameter error χ decreases in time until it reaches

the level of the noise.

1.3.4 Asymptotic Stability

We employ Lyapunov theory [83, 84] to prove the stability of (1.35). This involves

identifying an energy-like scalar function of the error, then showing that the time

derivative of this function does not increase.
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Figure 1-5: Evolution of the scalar parameter error when the input/output vector
pairs are corrupted by additive white noise. The estimated rotor converges to the
actual rotor until χ approaches the noise floor. The estimate then oscillates around
the truth with magnitude controlled by the gain and the noise level.

Lyapunov Candidate Function

We choose a Lyapunov candidate using the natural distance measure on S3, which is

the parameter error angle χ:

V =
1

2
χ2. (1.42a)

This function is analagous to the Lyapunov functions employed in [14, 60]. By ex-

panding the parameter error angle χ the Lyapunov candidate function can also be

written directly in terms of the parameter error rotor:

V = 2 lnQ ln Q̃, (1.42b)

or the parameter error bivector:

V =
1

2
‖X‖2 = 1

2
XX̃. (1.42c)
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This last bivector form will be most useful for studying the Lyapunov derivative, as

detailed in the next section.

All forms of the Lyapunov candidate function (1.42) are equivalent and positive

(semi-)definite14, and therefore satisfy the first requirement of a Lyapunov candidate.

In this particular problem:

V = 0 ⇐⇒ Q = 1, S = R, and (1.43a)

V > 0 ∀Q 6= 1, S 6= R. (1.43b)

Note also that ln(·) is defined over the entire sphere S3, even at ±nπ, so that this

Lyapunov candidate is continuous and singularity-free.

Lyapunov Derivative

To prove asymptotic stability, we must show that the Lyapunov function decreases

monotonically. We consider its time derivative:

V̇ =
d

dt

(

1

2
XX̃

)

(1.44)

=
1

2

(

ẊX̃ +X ˙̃X
)

(1.45)

Recalling that the reverse of a bivector is its negative15, we obtain

V̇ = −1

2

(

ẊX +XẊ
)

. (1.46)

This is the Lyapunov derivative.

X and Ẋ do not commute in the geometric product, but since they are both

bivectors (i.e., elements of the same grade), they can be decomposed into parallel and

perpendicular parts:

Ẋ = Ẋ‖X + Ẋ⊥X (1.47)

14 Note that χ ≥ 0 already, so it is not strictly necessary to square it–we do so to encourage the
intuition that this is like a potential energy.

15In G3, the three dimensional Euclidean Geometric Algebra. (This is not necessarily true in GAs
with other signatures.)
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Since orthogonal (independent) bivectors anticommute:

XẊ⊥X = −Ẋ⊥XX, (1.48)

and parallel (dependent) bivectors commute:

XẊ‖X = Ẋ‖XX, (1.49)

the Lyapunov derivative can be rewritten:

V̇ = −1

2

((

Ẋ‖X + Ẋ⊥X

)

X +X
(

Ẋ‖X + Ẋ⊥X

))

(1.50)

= −Ẋ‖XX = −Ẋ ·X = −〈ẊX〉0, (1.51)

which reduces to a scalar, as expected. Substituting (1.39) gives the Lyapunov sta-

bility criterion:

V̇ = κpY‖XX = κpY ·X = κp〈Y X〉0 ≤ 0. (1.52)

Note that the equality happens only when the output error bivector (and hence, the

rotational velocity of the estimate) is orthogonal to the parameter error bivector.

This stability criterion is related to an extension of Gauss’ Lemma given in [66].

It simply states that the component of rotational velocity which is not orthogonal

to the error bivector must be parallel (and not antiparallel) to it. This condition is

satisfied by the rotational velocity defined in (1.34) as a positive proportional gain

applied to the output error bivector defined in (1.27). If the output error had been

defined in the opposite sense, the stability criterion (1.52) would simply require that

the proportional gain be negative instead of positive.

An alternate form of this stability criterion follows after recalling that the output

error bivector is a partial observation of the parameter error bivector. Substitut-
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ing (1.29) into (1.46) gives:

V̇ = −1

2

(

Ẋ (Y + Z) + (Y + Z) Ẋ
)

. (1.53)

Substituting the time derivative of the parameter error bivector (1.39) gives:

V̇ = −1

2
κp (Y (Y + Z) + (Y + Z)Y ) (1.54)

=
1

2
κp (2Y Y + Y Z + ZY ) . (1.55)

The last two terms cancel since the observed output error is orthogonal to the unob-

served portion of the parameter error and orthogonal bivectors anticommute:

Z ⊥ Y =⇒ ZY = −Y Z (1.56)

=⇒ ZY + Y Z = 0 (1.57)

So the Lyapunov derivative reduces to a function of the scalar output error:

V̇ = κpY Y = −κpY Ỹ = −κp‖Y ‖2 (1.58)

= −κpψ2 ≤ 0. (1.59)

This form of the stability criterion is equivalent to (1.52).

1.4 Application to Dead Reckoning

for Underwater Navigation

The previous sections have motivated and developed an asymptotically stable rotor

identifier with the intent of using it to estimate sensor alignment in-situ. This section

identifies DR for underwater vehicle navigation as an example application, and details

laboratory and field experiments to identify the rotation between reference frames of

two critical sensors. We demonstrate improved navigation accuracy, characterized by
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Figure 1-7: Phase-space trajectory of the Lyapunov function V for twenty tests with
random data. As the rotor estimate S evolves in time, the system approaches equi-
librium at the origin.

lower residuals in observations on the DR vehicle position.
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1.4.1 Dead Reckoning and the Identification Plant

Position-velocity form using Linear Algebra

The first-order kinematic equation for a vehicle moving in the navigation frame (de-

noted by a superscript n) is:

pn(t) = pn(0) +

t
∫

0

un(τ)dτ, (1.60)

where p is the position vector and u is the velocity vector.

Rotating the velocities into the vehicle frame (denoted by a superscript v) gives

the first-order DR equation:

pn(t) = pn(0) +

t
∫

0

Rv
n(τ)u

v(τ)dτ (1.61)

61



The DVL reports velocities in the instrument frame, so (1.61) is rewritten:

pn(t) = pn(0) +

t
∫

0

Rv
n(τ)R

i
vu

i(τ)dτ (1.62)

where Rv
i ∈ SO(3) is the matrix describing the time invariant rotation from instru-

ment coordinates to vehicle coordinates. This is the rotation we are trying to identify.

The position of the vehicle in the navigation frame, pn, is measured by LBL or

ultra-short baseline (USBL). The rotation from the vehicle frame to the navigation

frame is computed from the attitude measured by the North-seeking gyrocompass16,

and can be expressed by the rotation matrix Rv
n(τ). The DVL measures the vehi-

cle velocity in the instrument frame, ui(τ). We are left with the unknown sensor

alignment, expressed by the rotation matrix Rv
i .

The task now is to transform (1.62) with the available inputs into a form compat-

ible with the identifier plant. Here we review the approach taken in [13, 14]17.

Differentiating (1.62) in time gives:

ṗn(t) = Rv
n(t)R

i
vu

i(t) (1.63)

Rotating both sides of the equation into the vehicle frame:

Rn
v(t)ṗ

n(t) = Ri
vu

i(t) (1.64)

brings us to the form of the identification plant.

However, the signal ṗn(t) is not generally available in situ in the field. Numerical

differentiation of LBL position measurements in the field is impractical due to delays

and relatively high noise level. However, integrating the left hand side of (1.64) by

16This can be applied with any attitude/orientation reference (e.g. magnetic compass, attitude
and heading reference system (AHRS), gyrocompass, FOG, ring-laser gyroscope (RLG), inertial
measurement unit (IMU), or INS). The application in this research is to identify the misalignment
between a FOG-based North-seeking gyrocompass and a DVL, so we will use the acronym FOG for
brevity.

17A formulation of the DR or INS equations in GA may be an interesting topic for future research.
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parts gives:

∫

Rn
v(τ)ṗ

n(τ)dτ = Rn
v(t)p

n(t)−
∫

Ṙn
v(τ)p

n(τ)dτ + const. (1.65)

This removes the unavailable signal ṗn(τ), but introduces the new parameter Ṙn
v(τ).

The new signal may be measured directly by the FOG, or it may be numerically

differentiated (since the update rate is higher, delay is negligible, and noise is lower

for the FOG than with LBL).

Since Rv
i is stationary the integral of the right hand side of (1.64) is:

∫

Ri
vu

i(τ)dτ = Ri
v

∫

ui(τ)dτ (1.66)

And now we have an equation in the form of the identifier plant using measurements

that are available in situ:

Rn
v(t)p

n(t)−
∫

Ṙn
v(τ)p

n(τ)dτ + const. = Ri
v

∫

ui(τ)dτ (1.67)

This maps to the identifier (1.3):

y = Ru (1.68)

with the input:

u =

∫

ui(τ)dτ (1.69)

the output:

y = Rn
v(t)p

n(t)−
∫

Ṙn
v(τ)p

n(τ)dτ + const. (1.70)
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In all laboratory and field experiments, the means of the input u and output y are

shifted to zero so that only the rotation remains. This is the form Kinsey &Whitcomb

used in [13, 14] to identify the alignment between a FOG and DVL.

1.4.2 Renavigation and performance metrics

The goal of the DVL/FOG alignment problem is to improve DR navigation. To

experimentally validate the rotor identifier, we compare DR trajectories calculated

with the rotor alignment estimate to LBL observations. We will characterize the

improvement in DR performance gained by using the rotor alignment estimate versus

a visual alignment estimate. We will also compare to the alignment methods in [13,14].

All of this analysis is done in post-processing by renavigating the same raw sensor

data using each alignment estimate.

Position residual

First, we calculate the difference between the DR estimate and the LBL measurement

of vehicle position–this is the position residual18:

p̃ = pn
DR − pn

LBL (1.71a)










x̃

ỹ

z̃











=











xnDR − xnLBL

ynDR − xnLBL

znDR − znLBL











(1.71b)

As an example, (Figure 1-9) shows the components of the position residual in lab-

oratory experiment 070. We will use several aspects of this position residual as

performance metrics.

Residual component distributions

The components of the position residual (1.71b) are sorted into bins, and the distri-

bution is plotted for the residual along each direction. The horizontal axis will show

18The tilde decoration here on p̃ denotes the residual, not the reversion operation in GA.
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Figure 1-9: Components of the position residual from laboratory experiment 070. In
the left column, residuals from DR with the visual alignment estimate are plotted in
gray. In the right column, residuals from DR with the ID-Spin(3) alignment estimate
are plotted in green. Note that the vertical component of the residual from the visual
alignment is much larger than the others, and that the ID-Spin(3) alignment reduces
it considerably.
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Figure 1-10: Distributions of the position residual components from laboratory ex-
periment 070.

the residual, and the vertical axis will show the frequency–this is normalized so that

it integrates to one. (Figure 1-10)
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Residual component standard deviations

To summarize the residual component distributions, we compute standard deviation

of the residual in each direction. These are collected into the residual component

standard deviation vector19:

σ =











σx

σy

σz











=











std (xnDR − xnLBL)

std (ynDR − ynLBL)

std (znDR − znLBL)











(1.72)

The Euclidean norm of this vector:

‖σ‖2 =
√
σσT (1.73)

is termed the standard deviation vector norm20. This provides a convenient scalar per-

formance metric that is suitable for computing ensemble statistics for cross-validation

of each alignment estimate across the other datasets.

Residual magnitude distribution

Alternatively, we may consider the Euclidean norm of the position residual at each

point in time:

‖p̃‖2 =
√

p̃p̃T . (1.74)

Since the magnitude of p̃ is always positive, this produces a one-sided distribution

(Figure 1-11). Again, the frequency axis is normalized so that the distribution inte-

grates to one.

We will also study the integral of this distribution–the cumulative residual mag-

nitude distribution. This provides another perspective on the residual–it shows the

fraction of the residuals that fall below a certain magnitude. For example, Figure 1-12

19This is called the error vector in [13, 14, 85].
20This is called the error vector norm in [13, 14, 85].
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Figure 1-11: Distribution of the position residual magnitude from laboratory experi-
ment 070.
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Figure 1-12: Cumulative distribution of the position residual magnitude from labo-
ratory experiment 070.

shows that half of the position residual vectors are less than 5.3 centimeters long, and

90% of them are less than 9.4 centimeters long.

Mean and median residual magnitude

Since the residual magnitude distribution is one-sided, we will use its mean and

median to summarize it. For self-validation tests (renavigating the same dataset that
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was used to estimate the rotation) we will show standard deviations as well.

Different alignment methods

We will compare DR trajectories using four alignment methods:

visual This is the initial alignment estimate with beam 3 of the DVL pointing down

and toward the forward starboard quarter. The alignment mark on the DVL

housing points straight ahead–the DVL coordinate frame is misaligned from the

FOG coordinate frame by 45◦ (π/2 rad) in heading and 0◦ in roll and pitch.

LS-SO(3) The batch method from [58] to estimate the rotation matrix using LS

constrained to SO(3) as applied to DVL/FOG alignment in [13, 55].

ID-SO(3) The adaptive identifier on SO(3) from [14, 61]. This has been slighly

modified by normalizing the input u and output y fed to the identifier. This

change preserves directional information in the measurements, but changes the

behavior of the identifier with respect to gains. It was necessary for the identifier

to work on field datasets from Sentry.

ID-Spin(3) The adaptive identifier on Spin(3), the group of rotors in G3. This is

the method detailed in [15] and earlier in this chapter.

1.5 Laboratory Experiments

This section evaluates the performance of the rotor identifier on the FOG/DVL align-

ment problem using data from controlled experiments with a laboratory ROV. This

data is from the same series of six experiments used in [13,14,85], and results from the

rotor identifier are compared to those from the CLS and SO(3) alignment methods

reported there.

Section 1.5.1 briefly reviews the experimental setup and conditions21 given in [13,

14,85]. The rotor identification results and renavigated trajectories from each exper-

21By necessity, much of this is paraphrased from [13, 14, 85]; it is reviewed here for completeness.
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Figure 1-13: The Johns Hopkins University ROV is a laboratory system outfitted
with sensors similar to those typically found on oceanographic research vehicles. It
is a testbed vehicle used for for dynamics, control, and navigation studies for deep
submergence vehicles. (photo credit: JHU DSCL)

iment are given in section 1.5.2, and alignment cross-validation between the different

experiments is discussed in section 1.5.3.

1.5.1 JHU Hydrodynamics Test Facility and JHUROV

Data in these experiments was collected in the Hydrodynamics Test Facility at the

Johns Hopkins University (JHU). JHUROV (Figure 1-13) is a testbed vehicle for

dynamics, control, and navigation studies for deep submergence vehicles. It is in-

strumented with sensors similar to those found on vehicles in the field, except that

some of the laboratory systems have shorter range and higher precision. The sensors

relevant to this study are listed in Table 1.2.

The pressure depth transducer (Paroscientific Digiquartz) is precise to 10 parts
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Table 1.2: Navigation sensors on JHUROV used in laboratory experiments. (adapted
from [13, 14, 85])

quantity sensor sample rate precision range

(x, y) position
300 kHz LBL

5 Hz 5e−3 m 100 m
(Marquest) SHARPS

depth
pressure transducer

7 Hz 1e−4 m 10 m
(Paroscientific Digiquartz)

orientation
fiber-optic gyroscope (FOG)

10 Hz
0.01◦ 360◦

(IXSEA PHINS) 1.7e−4rad 2πrad

velocity
1200 kHz DVL

10 Hz 0.3% ∼ 30 m
(TRDI WHN)

per million over a depth of 10 meters at 7 Hz. A two-beacon 300 kHz LBL system

(Marquest) provides (x, y) position measurements at rates up to 18 Hz. Combined

with the depth constraint, the position is accurate to within 7 mm at one standard

deviation [85]. Velocity over ground is measured by a 1200 kHz DVL (Teledyne

RD Instruments Workhorse Navigator) with precision22 better than 0.3% at 5-10 Hz.

Vehicle heading is measured within 0.05◦ and roll & pitch within 0.01◦ at a rate of 10

Hz by a FOG (Ixsea PHINS). In these experiments, the FOG did not record angular

rates, so they are obtained by numerical differentiation [85].

More details on the Hydrodynamics Test Facility and JHUROV can be found

in [85, 86].

1.5.2 Alignment identification and renavigated trajectory

The rotor identifier was used to estimate DVL/FOG alignment on JHUROV on each

of six laboratory experiments. The closed-loop trajectories were each 40 minutes long

to collect enough data for the LS estimator while avoiding potential problems from

unmodeled DR integration drift [85]. Data from expt070 was used to introduce the

renavigation error metrics in section 1.4.2.

Figure 1-14 shows the normalized distribution of the residual magnitude. The DR

track using the visial alignment estimate disagrees with the LBL observations by more

than one meter in some places. The alignment estimated by the rotor identifier brings

22standard deviation of error in velocity component measured along a single acoustic beam
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Figure 1-14: Residual magnitude distribution or JHUROV laboratory dataset 070,
renavigated using different DVL/FOG alignment estimates. The lower figure is a
zoom into the left side of the upper figure, to see the small differences between the
alignment methods. Vertical lines indicate the mean of the residual magnitude. Note
that the rotor identifier presented here performs comparably to the LS-SO(3) batch
method in [13] and the ID-SO(3) method with normalized inputs, adapted from [14].
All three methods perform significantly better than the visual alignment estimate.
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Figure 1-15: Cumulative residual magnitude distribution for JHUROV laboratory
dataset 070, renavigated using different DVL/FOG alignment estimates. The lower
figure is a zoom into the left side of the upper figure, to see the small differences be-
tween the alignment methods. Note that the rotor identifier presented here performs
comparably to the LS-SO(3) batch method in [13] and the ID-SO(3) method with
normalized inputs, adapted from [14]. All three methods perform significantly better
than the visual alignment estimate.

all residuals within fourteen centimeters, and the rotor identifier performs comparably

to LS-SO(3) and ID-SO(3) methods.

Figure 1-15 shows the normalized cumulative distribution of the residual magni-

tude. This plot makes it easy to determine what fraction of the residuals fall below a

particular level. For example, 50% of the residuals in expt070 fall below 5.3 cm when
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DR uses the alignment estimate from the rotor identifier, but that same fraction of

residuals extends as high as 53 cm magnitude using the visual alignment estimate.

The other laboratory datasets show similar results. When using the alignment

from the rotor identifier:

• The residual component distributions are narrower, closer to zero from both

sides.

• The one-sided residual magnitude distribution is weighted to the left, in the

range of centimeters rather than tens of centimeters.

• The residual magnitude cumulative distribution becomes much steeper and

moves toward the upper left corner, showing again that the residuals are much

smaller.

The effect of using the ID-SO(3) or ID-SO(3) alignment estimate is similar–the rotor

identifier performs comparably to these previous results.

Table 1.3 shows the summarized statistics of the renavigation residuals for all six

laboratory experiments. In this data, the residuals in depth are the largest starting

with the visual alignment estimate, and using the alignment estimated by the rotor

identifier reduces them considerably. Using the alignment estimated by the rotor

identifier reduces the standard deviation vector norm to 10-15% of its original value

with the visual alignment estimate. The mean and median of the magnitude of the

residuals are similarly reduced. Figure 1-16 shows these quantities graphically. Again,

the rotor identifier performs comparably to the previously reported rotation matrix

methods, and all of these perform better than the original visual alignment method.

Of course, the performance improvement will always depend on how close the visual

alignment estimate is in the first place.

1.5.3 Cross-validation

It is reasonable to ask how the alignment estimated using one dataset performs on

another. If the sensors are not moved between experiments, the estimated alignment
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Figure 1-16: Self-validation of alignment estimates for each laboratory dataset.
Barplot shows the normalized standard deviation vector norm as defined in (1.73)
and represent the improvement in navigation over the original (visual) alignment
estimate. Boxplot shows the residual norm for each experiment.
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should perform comparably on other trajectories. Figure 1-17 shows the normalized

standard deviation vector magnitude using the alignment estimated from each labo-

ratory dataset to renavigate the trajectory of each other dataset for each of the three

different alignment methods. The plots show fairly uniform levels with some lower

magnitudes along the diagonal. This should be expected, and indicates that the best

renavigation performance is on the same dataset used for the estimate. Figure 1-18

collects this data into ensembles and displays the statistics for each alignment estimate

renavigating every other dataset. The normalized standard deviation vector magni-

tude is comparable across alignment estimates–this indicates good cross-validation

of the estimates. Again, the rotor identifier performs comparably to the previously

reported rotation matrix methods.

1.5.4 A note on transient response

Unlike batch methods for estimating a rotation, the adaptive identifiers are dynamic

systems. It can be important to consider the transient response of such systems,

especially when they will be subject to unknown excitation (e.g. measurement noise).

Figure 1-19 compares the time history of the ID-SO(3) and ID-Spin(3) identifiers on

expt070, using a scalar (geodesic) residual with the estimate from the batch LS-SO(3)

method as a reference. It is important to note that this is experimental data without

a ground truth, so the LS-SO(3) may not be more correct than either of the others.

Both adaptive identifiers initially converge toward the same rotation estimate as

the LS-SO(3) method, within about 10−3 radians. The interesting event to note is

that the identifier estimates fluctuate between input/output vector pairs 4000 and

8000. The magnitude of the input u and output y is initially large, and both pass

through zero near vector pair 6000, before increasing in magnitude again. This is

because the means of u and y were set to zero when mapping the DR measurements

into the form of the identifier (Section 1.4.1). As u and y pass through zero, any noise

in the measurements becomes proportionally larger, and the identifiers will react to

that noise.

This problem can be handled pragmatically in this application by averaging the
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Figure 1-17: Cross-validation of alignment estimates on each other laboratory dataset.
Colors indicate the magnitude of the normalized standard deviation vector.
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Figure 1-18: Cross-validation statistics of alignment estimates over all laboratory
datasets. The alignment estimate from one dataset was used to renavigate the data
from all other datasets. Bars show the mean normalized magnitude of the standard
deviation vector, and whiskers indicate the standard deviation of this magnitude
across the other datasets. Boxplots show the median, first quartile, and total range
of the normalized magnitude of the standard deviation vector.
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Figure 1-19: Scalar residual with respect to alignment estimated by LS-SO(3) method.

estimated rotor23 over several timesteps. This particular behavior may not be im-

portant in other applications of rotation identification–it depends on how the inputs

and outputs vary. Nevertheless, it raises an interesting question: what modifications

might enable the rotor identifier to reject noise better? One approach might involve

adding some damping to the system–using both proportional and derivative gains in

the output error feedback regulator. This seems like an obvious next step, but keep

in mind that is due mostly to the clarity offered by the GA formulation–this behavior

of the transient response was effectively illustrated with a scalar residual, and the

simple interpretation of the identifier as a regulator was enabled by working in rotors

and bivectors.

1.6 Field Experiments

This section evaluates the performance of the rotor identifier on the FOG/DVL align-

ment problem using data from field deployments of the oceanographic AUV Sentry.

Results from the rotor identifier are compared to those from the CLS and SO(3)

alignment methods reported in [13, 14].

23 This is another area where the GA formulation is useful–it is much easier to average rotors
than rotation matrices (see, e.g. [64, 65]).
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Table 1.4: Navigation sensors on Sentry used in field experiments.
quantity sensor sample rate precision range

(x, y) position
12 kHz LBL

0.1 Hz ∼ 0.25 m > 10000 m
(WHOI)

depth
pressure transducer

7 Hz 0.02 m 6500 m
(Paroscientific Digiquartz)

orientation
fiber-optic gyroscope (FOG)

10 Hz
0.01◦ 360◦

(IXSEA PHINS) 1.7e−4rad 2πrad

velocity
300 kHz DVL

2 Hz 0.3% ∼ 200 m
(TRDI WHN)

Section 1.6.1 briefly reviews Sentry and its navigation sensors. The rotor identi-

fication results and renavigated trajectories from each experiment are given in sec-

tion 1.6.2, and alignment cross-validation between the different experiments is dis-

cussed in section 1.6.3.

1.6.1 Sentry field deployments on the H̊akon Mosby mud

volcano

The rotor identifier was applied to navigational data from Sentry field deployments on

the H̊akon Mosby mud volcano in the Barents Sea. These dives were part of a research

cruise led by Dr. Antje Boetius with the goal of characterizing the bathymetry, sub-

bottom composition, and chemistry surrounding the mud volcano. The Sentry team

deployed and surveyed a LBL net of three transponders for six24 dives on the same

site.

A brief overview of the AUV Sentry (Figure 1-20) is given in section 0.2.5. Specific

to the problem in this section, we will be using navigational data from the sensors

listed in Table 1.4, comparing DR vehicle trajectories to LBL observations.

81



Figure 1-20: The NDSF AUV Sentry is an unmanned oceanographic research vehicle
that dives as deep as 6500 meters to perform various scientific missions. Sentry
navigates primarily by DR with a FOG and DVL. The FOG is located in the main
pressure housing, roughly amidships and just below the name label. The DVL is
on the keel just aft from the bow. The large separation between these sensors on a
vehicle that may deform under extreme pressure (even slightly), motivates our study
of stable, in-situ sensor alignment methods. (photo credit: D Yoerger, ABE/Sentry
Group, WHOI)

1.6.2 Alignment identification and renavigated trajectory

Figure 1-21 shows the normalized distribution of each component of the residual, and

Figure 1-22 shows the normalized distribution of the residual magnitude for Sen-

try075. The magnitude distribution of the residuals is shifted slightly left (i.e.,

smaller) when using the alignment from the rotor identifier vs. the visual estimate.

This is also reflected in the mean of the distribution. Again, the rotor identifier

performs comparably to the previously reported rotation matrix methods.

Figure 1-23 shows the normalized cumulative distribution of the residual magni-

tude. This plot makes it easy to determine what fraction of the residuals fall below

a particular level. For example, 50% of the residuals in Sentry075 fall below 3.3 m

when DR uses the alignment estimate from the rotor identifier, but that same fraction

24The last dive of the cruise, Sentry078, was terminated early due to an actuator failure and
imminent weather. Data from that dive is not used in this section.
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Figure 1-21: Distributions of residual components for Sentry075, renavigated using
different DVL/FOG alignment estimates. Note that the rotor identifier presented
here performs comparably to the LS-SO(3) batch method in [13] and the ID-SO(3)
method with normalized inputs, adapted from [14].

83



0 2 4 6 8 10

residual norm, ‖p̃‖2 [m]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

n
o
rm

a
li
ze
d
d
en
si
ty

visual

LS-SO(3)

ID-SO(3)

ID-Spin(3)

Figure 1-22: Residual magnitude distribution for Sentry075, renavigated using differ-
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Figure 1-23: Cumulative residual magnitude distribution for Sentry075, renavigated
using different DVL/FOG alignment estimates. Note that the rotor identifier pre-
sented here performs comparably to the LS-SO(3) batch method in [13] and the
ID-SO(3) method with normalized inputs, adapted from [14].
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of residuals extends to 5.7 m magnitude using the visual alignment estimate. This

represents a modest improvement, and indicates that the initial visual estimate was

very close.

Table 1.5 shows the summarized statistics of the renavigation residuals for all five

field experiments25. Figure 1-24 shows these quantities graphically. Again, the rotor

identifier performs comparably to the previously reported rotation matrix methods.

For some dives, these perform only slightly better than the original visual alignment

method. This indicates that the visual alignment estimate was very close to begin

with, and finer alignment is difficult to observe in these trajectories.

1.6.3 Cross-validation

Again, it is reasonable to ask how the alignment estimated using one dataset performs

on another. Figure 1-17 shows the normalized standard deviation vector magnitude

using the alignment estimated from each laboratory dataset to renavigate the tra-

jectory of each other dataset for each of the three different alignment methods. The

alignment estimated on dive 073 produces decent navigation across all other dives

except for 075. This may be an artifact of the specific trajectories, but warrants

future attention. The alignment estimates from Sentry075 perform well across all

other dives. The estimates from dive 076, on the other hand, do not do well in cross

validation. Sentry came in contact with the seafloor several times during low altitude

operations in dive 076. The DR data from that dive is suspect, but still included here

for completeness.

Figure 1-26 collects this data into ensembles and displays the statistics for each

alignment estimate renavigating every other dataset. The normalized standard de-

viation vector magnitude varies across alignment estimates–staying close to one for

the most part. The alignment estimates from dive 076 still perform poorly, probably

due to low altitude and contact with the bottom. The statistics from dive 073 also

show that the identified estimates tend to do worse than the visual estimate across

25Sentry came in contact with the seafloor several times during low altitude operations in dive
076. The DR data from that dive is suspect, but still included here for completeness.
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Figure 1-24: Self-validation of alignment estimates for each field dataset.

the other datasets. Sentry 073 covered more distance at higher altitude, with little

change in depth–a trajectory that may not have provided enough information for any

of the identifiers. Again, the rotor identifier performs comparably to the previously

reported rotation matrix methods.

1.7 Discussion and Conclusions

This chapter has presented a novel alternative approach to the sensor alignment

problem. Rotations are encoded using rotors in Geometric Algebra, so that algebraic
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Figure 1-26: Cross-validation statistics of alignment estimates over all field datasets.
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structure implicitly constrains parameter estimates to describe rigid body rotations.

We proposed a stable adaptive identifier in section 1.3, and proved its stability using

Lyapunov theory on the continuous-time system. We then provided an equivalent

discrete-time implementation of the identifier. Numerical simulations illustrated the

behavior of the identifier under persistent excitation. These simulations showed that

the identifier provides an accurate estimate of the true rotor, up to the level of noise in

the input signals. Section 1.4.2 provided the necessary information to apply the rotor

identifier to the DVL/FOG alignment problem for DR in underwater navigation, and

defined several performance metrics. Section 1.5 applied the rotor identifier to identify

DVL/FOG alignment on an ROV operating in controlled laboratory conditions, and

section 1.6 demonstrated the rotor identifier using field data from the AUV Sentry.

In the end, the rotor identifier improved DR performance comparably to previously

reported rotation matrix methods. The Geometric Algebra formulation provides a

clear kinematic interpretation of the proposed rotor identifier, which provides accu-

rate, stable alignment estimates. It may offer a clearer path forward in improving

online alignment identifiers, including, for example, enhanced noise rejection using a

proportional-derivative feedback formulation. It may also prove useful in formulating

an identifier for full rigid body motions–including rotation and translation–which can

be encoded using rotors in higher dimensions.

90



Chapter 2

Dead Reckoning Through the

Water Column

Hypothesis

Relative water current profile data collected by a vehicle-mounted acoustic Doppler

current profiler can provide estimates of the global vehicle velocity and position during

descent and ascent phases of a mission.

2.1 Introduction

This chapter presents methods for dead reckoning through the water column, pro-

viding a navigation link between Global Positioning System (GPS) at the surface

and dead reckoning (DR) at the seafloor, without relying on external systems. The

methods use overlapping water profile measurements from an acoustic Doppler cur-

rent profiler (ADCP) to simultaneously estimate the vehicle velocity and the ocean

current profile.

Despite recent advances in technology and processing, underwater navigation re-

mains a challenging problem. Signals from the GPS are only available at the beginning

and the end of a mission, when the vehicle is on the surface. When it is near the

seafloor, a vehicle can estimate its position by dead reckoning with a compass and a
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Doppler velocity log (DVL) in bottom-lock. In some cases, the vehicle can further

improve its position estimate using information from the terrain (e.g., bathymetry or

photography). Inertial navigation can provide good navigation in the short-term, but

quality sensors are expensive and the solution is subject to drift in the long term..

There is a significant portion of each mission–during the descent and the ascent–where

GPS and bottom-lock DVL measurements are unavailable, and the vehicle will drift

in the ocean current.

Underwater vehicles currently rely on acoustic positioning methods for localization

in the water column. Popular approaches include long baseline (LBL) transponder

nets, or ship-mounted ultra-short baseline (USBL) tracking systems with an acoustic

modem to downlink position fixes. However, these systems both require valuable ship

time. This external dependence also limits the autonomy of the underwater vehicle.

This chapter proposes a method to enhance the independent navigation capability of

underwater vehicles, and discusses the challenges encountered in making this method

work in the field.

The remainder of this section introduces the basic idea of DR using water profile

data from an ADCP, then briefly reviews related work in the literature. Section 2.2

outlines the concept of operations. Section 2.3 gives details on the setup and imple-

mentation for three different approaches to solve the problem. Section 2.4 illustrates

real-world performance and challenges using field data collected by the autonomous

underwater vehicle (AUV) Sentry fromWoods Hole Oceanographic Institution (WHOI).

Finally, Section 2.5 summarizes the results of the field experiences and discusses the

feasibility of an underwater navigation system operating entirely independent of ex-

ternal acoustic tracking.
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2.1.1 To navigate from the surface to the seafloor and back

Many underwater vehicles use a DVL for DR when they are near the seafloor1. The

hardware and operating principles for a DVL and an ADCP are the same–comparing

the Doppler shift of an acoustic signal along four different beams gives the velocity

of an acoustic scatterer relative to the instrument. For a DVL in bottom-lock, the

scatterer is the seafloor; for an ADCP, the scatterers are particles suspended in the

water column. The same instrument can measure the relative velocity of the bottom

and the ocean current.

Overlapping water current profiles measured by a vehicle-mounted ADCP can

provide simultaneous estimates of the local ocean current and the vehicle velocity.

This velocity can then be used for dead reckoning. It could also be used as an aiding

input to an inertial navigation system (INS), but the method proposed here does not

rely on an INS–it only requires an ADCP, depth sensor, and attitude reference. The

goal is to develop a method that is applicable to many types of underwater vehicles

with different grades of sensors, but flexible enough to be fused with other navigation

methods where resources permit.

The approach presented here relies on three basic assumptions:

1. The vehicle starts or ends its transit with a global velocity estimate (e.g., from

GPS or DVL bottom lock).

2. The vehicle can measure overlapping partial ocean current profiles relative to

its own motion.

3. The ocean current may vary with depth, but the current at each depth is slowly

varying in time. (i.e., The current is constant over the timescale of the ascent,

on the order of minutes.)

If these conditions are satisfied, the vehicle can maintain an estimate of its global

velocity as well as the ocean current as it transits through the water column.

1i.e., within the frequency dependent bottom-track range of the DVL: ∼ 246 meters for a 300
kHz DVL, ∼ 94 meters for a 600 kHz DVL, or ∼ 25 meters for a 1200 kHz DVL (assuming 50 VDC
supply) [17].
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2.1.2 Related Work

The physical oceanography community has used ship-mounted ADCPs for many years

to measure current profiles in the open ocean. In deep water the limited range2 of the

ADCP prevents a ship-mounted instrument from obtaining a full current profile. Re-

searchers address this shortcoming by mounting an ADCP on an instrument package

that is lowered from the ship on a cable. The current profile from the Lowered Acous-

tic Doppler Current Profiler (LADCP) was initially computed by depth-averaging the

vertical shear across the individual ensembles [25, 26]. The present standard least

squares (LS) batch processing method, proposed in [27], is more flexible for incor-

porating additional constraints, like bottom-track velocities and average velocity of

the instrument package. This LADCP method is the standard approach to measure

current profiles in the deep ocean.

Recently, there has been interest in using the DVL already onboard most deep

submergence vehicles as an ADCP to simultaneously estimate vehicle velocity and

ocean current. The vehicle velocity can then be used for DR through the water

column. That is the goal of the research presented in this chapter. Preliminary

work toward this goal was presented in in [28], demonstrating an online bin-average

implementation in simulation and on field data collected by an AUV. An alternative

approach, presented in [30], couples ADCP current profiles with inertial measurement

unit (IMU) measurements in an information filter (IF) framework. This IF approach

was later demonstrated on shallow field deployments with a high-frequency (1200

kHz) ADCP in [31]. Field experiences navigating the ascent from several deep dives

with a low-frequency (300 kHz) ADCP are reported in [29], using the online bin

average approach, as well as LS and recursive least squares (RLS) formulations of the

problem.

2The nominal water profiling range of a 300 kHz ADCP is 135 meters, but actual usable range
depends on supply voltage and bin size [17].
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Table 2.1: Comparison of DR through the water column to related work. Filled
circles denote features or characteristics posessed by the work, empty circles denote
features that are missing or not demonstrated, and a dash means that category is not
applicable.
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Firing [25] ◦ • • ◦ • ◦ ◦ ◦ shear
Fischer & Visbeck [26] ◦ • • ◦ • ◦ ◦ ◦ shear
Visbeck [27] • • • ◦ • • ◦ ◦ LS
Medagoda, et. al. [30, 31] • • • • • • • • IF
Stanway [28, 29, 87] • • • ◦ • • • • avg., LS, RLS

2.1.3 Contributions

Table 2.1 compares this research to the related literature. Prior to beginning this

research, there existed no methods for dead reckoning through the water column

using current profiles measured by an ADCP. The initial contribution was simply

recognizing the possibility that this could work. Designing and implementing the

simple online bin average approach to the problem was the second contribution. This

was originally reported in [28] and is detalied in section 2.3.1. The batch weighted

least squares (WLS) approach to the LADCP problem was modified in [29] to handle

systems with different size profile and ensemble bins–this is detailed in section 2.3.2. It

was also adapted in [29] to an online approach using RLS, as detailed in section 2.3.3.

Each of the methods is demonstrated on field data from ascents at the end of Sentry

missions in section 2.4. The operational challenges reported in that section are also

an important contribution to the topic of DR through the water column.

The work by Medagoda, et. al. [30, 31] began independently, but at the same

time as the research presented here. The main differences are that the problem is

formulated within an IF, and tightly coupled to measurements from an INS3. The IF

3There is no fundamental reason that an IF could not be used without an INS, or that the online
bin average, LS, and RLS methods presented here could not incorporate inertial measurements.
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formulation in [30,31] and the bin-average and LS approaches presented here can be

viewed as complementary approaches to the same problem.

2.2 Concept of Operations

Figure 2-1 illustrates the concept of DR through the water column during the descent

phase of an underwater vehicle deployment. The vehicle starts at the surface with

GPS and a partial observation of the current profile. This measurement, uwp, is a

combination of the vehicle velocity uv(t), the ocean current in each depth bin uc(z),

and measurement noise un(t):

uwp(t, z) = uc(z)− uv(t) + un(t) (2.1)

As the vehicle descends, it loses GPS, but it observes a new current profile, which

partially overlaps the earlier current profiles. The overlapping section contains infor-

mation about the present vehicle velocity, in addition to refining the estimate of the

ocean current at the overlapping depths. When the vehicle reaches the seafloor, it

can use DVL bottom-track velocities to constrain the ocean current profile and then

continue dead reckoning as usual.

2.3 Implementation

This section details three different approaches to solve the problem of DR through

the water column: an online bin-average method, a batch WLS method, and a RLS

method. Each approach has advantages and drawbacks. The batch WLS method

is appropriate for postprocessing or when the vehicle only needs an estimate of its

position upon reaching the seafloor or the surface. The online bin-average and RLS

methods are more suitable for realtime navigation, especially on platforms with lim-

ited computational resources available for navigation (e.g., small AUVs or underwater

gliders).
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2.3.1 Online bin-average

This method is intended to be as computationally simple as possible while still en-

abling DR through the water column. Essentially, it estimates the vehicle velocity as

the average difference between the observed velocity and the weighted average of past

velocities, but only uses the observation bins that overlap with past observations.

Algorithm

Initialize the current estimate ûc and bin weights W at zero. The algorithm is then

a simple loop for each ADCP measurement. Choose the correct depth zi for each

current bin using the vehicle depth zv and the range to each measurement bin rbi:

zi = zv(t) + rbi, i = (0, . . . , n) (2.2a)

update the vehicle velocity estimate ûv:

ûv(t) =

∑n
i=0W (zi) (ûc(zi)− um(t, zi))

∑n
i=0W (zi)

(2.2b)

update the water velocity estimate ûc for each bin i:

ûc(zi) =
W (zi)ûc(zi) + um(t, zi) + ûv(t)

W (zi) + 1
(2.2c)

increment the bin weights W :

W (zi) =W (zi) + 1 (2.2d)

integrate vehicle velocity to get vehicle position x̂v:

x̂v(t) = x̂v (t− δt) +

t
∫

t−δt

ûv(τ)δτ (2.2e)
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Figure 2-2: Current profile and vehicle state estimated by bin-average algorithm
in simulation. The solid black line is the truth, and the dashed green line is the
estimate. The magenta dotted segments on the current profile represent noisy single
water profile measurements.

and repeat for each timestep and measurement ensemble. Note that this implementa-

tion uses the vehicle and water velocities in a stationary reference frame (e.g., North,

East, Down), so the measured velocities must be rotated into this stationary frame

using data from the attitude reference.

Simulation

The bin-average approach presented in the previous section was implemented in sim-

ulation using a simple vehicle descent model. The current was restricted to the

x-direction, and modeled as a randomly generated decreasing sinusoid. The vehicle

descended at a rate of 0.27 m/s, and was forced in the x-direction by the current.

The simulation generated ADCP water profile measurements with 1-meter bin size

and zero-mean, σ = 0.13 m/s, random noise.

Figure 2-2a shows that the current profile is identified well, while Figure 2-2b

shows the estimated vehicle velocity follows the actual velocity closely. The actual

and estimated vehicle position are shown in Figure 2-2c. The errors residuals for the

estimated current profile, vehicle velocity, and dead-reckoned position are shown in
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Figure 2-3: Error residuals in online bin average simulation results. The estimates of
the current profile and vehicle velocity are reasonable, but noisy. The level of noise in
both estimates is lower than the measurement noise in the single-ping ADCP water
profiles. Since the position estimate is a result of DR, it is subject to integration
drift. In this simulation, the final position error is 2-3% the length of the descent.

Table 2.2: Online bin-average water profile navigation error metrics.
error in µ σ

uv 0.00675 0.0163 m/s
uc 0.00574 0.0136 m/s
xv 39.8 23.1 m

Figure 2-3, and error statistics are given in Table 2.2.

It should be emphasized that this simulation restricted the current profile and

vehicle velocity to the x-direction. It did not consider any effects of noise in the

attitude sensor. The primary purpose of this simulation is to show that the ADCP

water profile measurements and the simple online bin-average algorithm can provide

adequate velocity estimates for dead reckoning.
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2.3.2 Batch weighted least squares

If the vehicle only needs to localize itself at the end of a water column transit4, the

problem of DR though the water column is essentially equivalent to the LADCP

problem, but focused on the vehicle velocities rather than the current profile. It can

be formulated and solved as a LS or WLS problem [27]:

Ax = b, (2.3)
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, (2.4)

where b is the concatenation of the water profile measurement ensembles uwp and

bottom track measurement ensembles ubt. The influence matrixA couples the current

profile and vehicle velocities in the solution x to the measurement data. The solution

to this least squares problem minimizes the square of the estimation error:

x̂ = argmin
x

||b−Ax||2 . (2.5)

In a simple discretized problem with equal bin spacing for the ensembles and the

profile, the influence matrix is sparse and filled by ones and zeros. More generally, the

ensemble and profile bins will have different sizes. The implementation in this paper

computes the influence of each current profile bin on each ensemble water profile bin

based on the distance between the ensemble and profile bin center depths, divided by

4i.e., once it reaches the seafloor after a descent, or once it surfaces after an ascent.
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the profile bin spacing:

ai,j =
1− |ze,i − zp,j|

∆zp
(2.6)

This works like a radial basis function with linear interpolation–one might also con-

sider quadratic or Gaussian basis functions. All negative influence coefficients in the

water profile block of the matrix are set to zero, and the sum of each row should be

equal to one.

The upper right block of the influence matrix couples the ensemble water profile

bins to the vehicle motion. Recalling the water profile measurement equation 2.1,

the influence coefficients in this block are negative one wherever the vehicle velocity

maps to an ensemble, and zero otherwise.

For ensembles with bottom track data, the influence matrix is expanded with a

lower block. This is filled with zeros on the left, and a diagonal of negative ones

on the right. The influence coefficients are negative here because the ADCP records

bottom track velocities relative to a stationary instrument.

Figure 2-4 depicts an influence matrix for a simple example with thirteen profile

bins spaced four meters apart. The example shows two measurement ensembles with

four bins spaced at three meters and including bottom track data. The instrument

is at 25 meters when the first ensemble is measured, and 23 meters when it measures

the second.

Once the influence matrix has been set up, the problem can be solved using

normal LS techniques. When one type of measurement is trusted more than another,

WLS should be used. Each measurement is then weighted by the reciprocal of its

standard deviation. (e.g., bottom-track velocities with σ ∼ 0.002 m/s vs. water

profile velocities with σ ∼ 0.02 m/s.)

2.3.3 Recursive least squares

The batch LS method in the previous section is suitable when the vehicle only needs

to know its velocity and position at the end of a water column transit. When the

vehicle needs incremental updates (e.g., for control) a recursive least squares (RLS)
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Figure 2-4: Influence matrix A for a simple system with 13 profile bins spaced 4
meters apart, and two measurement ensembles with 4 water profile bins spaced 3
meters apart, including bottom track data.

approach is more appropriate. This is also true when the memory available for the

computation is limited, as in a low-power, long range AUV or glider.

Recursive least squares depends on the ability to track an estimate of the state

x and its error covariance P. With this information, an optimal gain can be cal-

culated any time new data is available, without starting the whole calculation from

scratch [56].

The innovation νk in the new data is defined as:

νk = bk −Akxk−1. (2.7)

Given the measurement covariance matrix Rk, the optimal gain can be calculated a

priori:

Kk = Pk−1A
T
k

(

AkPk−1A
T
k +Rk

)−1
, (2.8)
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so that the updated state estimate is:

xk+1 = xk +Kkνk, (2.9)

and the updated covariance is:

Pk = (I−KkAk)Pk−1. (2.10)

This form of RLS estimator essentially repeats the measurement update step of the

Kalman filter (KF), without the process update [88]. In signal processing literature,

equation 2.5 is sometimes called the ‘data matrix form’ of the LS estimation prob-

lem [89], so equations 2.7–2.10 can be considered the ‘data matrix form’ of the RLS

filter or estimator.

In this research, the RLS estimator is implemented by initializing a full solution

vector x0 of zeros, and calculating the influence matrix Ak for each measurement

ensemble based on the measured depth of the instrument. An alternate implementa-

tion might only store the instrument velocities at the current timestep, and include a

process update equation–this would produce an augmented state Kalman filter (KF).

2.4 Field Experiences

This section discusses some of the operational and practical challenges involved in

measuring water current profiles from the AUV Sentry. Several field deployments

illustrate lessons learned with respect to ADCP configuration and data quality. We

also present estimated current profiles and dead reckoned vehicle trajectories for each

dive. We compare these estimates to position fixes measured by external acoustic

tracking systems.
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2.4.1 The AUV Sentry

Sentry is a deep submergence AUV operated by the WHOI DSL. It is the successor

to the autonomous benthic explorer (ABE) [48], with many design improvements to

address the needs of the oceanographic community. Sentry mission tasks include high-

resolution bathymetry, seafloor photography, geomagnetics, and chemical sensing.

Sentry’s navigation sensor suite includes: an INS with fiber-optic gyroscope (IXSEA

PHINS), a 300 kHz DVL/ADCP (Teledyne RD Instruments Workhorse Navigator),

a pressure sensor (Paroscientific Digiquartz), an LBL positioning system (WHOI),

a USBL tracking system (Sonardyne), and a backup magnetic compass (PNI). The

standard science sensor suite includes: a conductivity/temperature probe, precision

magnetometers, a 400 kHz multibeam sonar, and a 12-bit camera. Sentry has also

carried redox potential (eH) probes, dissolved oxygen sensors, an in-situ mass spec-

trometer, a sub-bottom profiler, and sidescan sonar.

Working with multiple sonars

High-resolution bathymetric mapping is one of the primary science tasks for Sentry.

The 400 kHz multibeam sonar collects soundings of the seafloor, which are combined

with vehicle navigation to produce detailed maps for scientists and for joint operations

with other vehicles (e.g., DSV Alvin or ROV Jason).

This presents a minor challenge for DR with the 300 kHz Doppler sonar–the

broadband signal can show up in the multibeam soundings. Careful timing and

a low-latency trigger input allow interleaving so that the multibeam and Doppler

signals do not interfere with each other. However, this also constrains the repetition

rate of both sensors. The nominal sample rate of the sonars is 2 Hz during standard

operations.

Navigated ascent

When configured to measure both bottom track and water profile data, the ADCP

actually uses two different types of pings for each measurement ensemble. The bottom
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track ping is longer and the seafloor is a reasonably strong acoustic scatterer, so the

ADCP can produce high accuracy velocity measurements at relatively long range.

The length of the water profile ping is limited by the ensemble bin spacing. These

two types of pings are interleaved when the ADCP collects both bottom track and

water profile data. Even if the ensemble has just one ping of each type, this halves

the effective data rate. The bottom-track ping is sent first, and the ensemble data is

reported after the water profile return is received, introducing additional latency.

This lower data rate and measurement latency could potentially degrade the per-

formance of Sentry’s navigation during the main mission, so the data sets for DR

through the water column are currently restricted to the ascent.

Doppler sonar configuration

The ADCP has many parameters that can be adjusted in its firmware. However,

these settings cannot be altered online–the instrument must stop recording data any

time a parameter needs to be changed.

The water profile settings are important for navigating through the water column.

The ADCP is set to record only one ping per ensemble so that it reports data at its

highest rate. The correlation magnitude threshold and echo intensity threshold are

both set to zero so that the ADCP does not throw out any data on its own. This

means that the data will need to be prefiltered before using it for navigation, but it

also ensures that we have the data needed for developing and tuning the navigation

process. The number and spacing of the water profile bins were varied between dives,

and the actual values are noted in the following subsections.

2.4.2 Sentry 059: Galápagos Ridge

Sentry dive 059 was a bathymetry and photography mission on the Galápagos ridge

during the GRUVEE2010 research cruise led by chief scientist John Sinton. At the

end of the mission, Sentry ascended from 1600 meters with an average depth rate

of -0.62 m/s. The ADCP interleaved bottom pings and water pings for the entire
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Figure 2-5: Echo intensity from water profile measurements during ascent from Sentry
dive 059. Note the bands of slightly increased echo intensity in ensembles 450–850.

ascent. Each ensemble measured 41 water profile bins at a spacing of 2 meters. Low

echo intensity and correlation magnitude, coupled with high error velocity, meant

that much of the data beyond bin 20 was ignored.

Bottom-track interference

Figures 2-5, 2-6, and 2-7 show the echo intensity, correlation magnitude, and error

velocity of the water profile pings from beam 1 at the beginning of the ascent. Signif-

icant interference is visible in ensembles 450 through 850, marked by increased echo

intensity and error velocity, with irregular correlation magnitude.

The ADCP measured these ensembles 6.25–9.5 minutes into the ascent, starting

just after Sentry ascended past 230 meters above the seafloor. This is also at the limit

of the bottom-track range. When it loses bottom-lock, the ADCP begins searching

for the bottom again, but the vehicle continues to ascend and the instrument stays

out of range.

Late returns from bottom track pings are the likely cause of interference in these

ensembles. It is possible that the internal theshold filters of the ADCP, limiting

the range of acceptable correlation magnitude or error velocity, would reduce this
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Figure 2-6: Correlation magnitude from water profile measurements during ascent
from Sentry dive 059. Note the decreased correlation magnitude in near bins (0-
10) during ensembles 450–650. The correlation magnitude is increased in outer bins
(20-40) for the same timeframe and extending to ensemble 800.
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Figure 2-7: Error velocity from water profile measurements during ascent from Sentry
dive 059. The magnitude of the error velocity is high for almost measurements further
out than bin 20, and there are bands of incresed error velocity nearer than bin 20 for
ensembles 450–850.
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Figure 2-8: Estimated ocean current profile and vehicle velocity during ascent from
Sentry dive 059.

interference, but that does not work for this dataset.

Figure 2-8 shows the estimated current profile and vehicle velocity when the in-

put data are limited to those with error velocity less than 0.1 m/s, and correlation

magnitude greater than 72. The online bin average and LS estimates of the north-

ward current and instrument velocity are similar, but the eastward components are

very different in some places. Figure 2-9 plots the resulting vehicle trajectory esti-

mates, with corresponding USBL position fixes for comparison. It seems likely that

the eastward velocities estimated by LS are more correct, but it is also clear that this

dataset does not provide good overall navigation. Later dives used different ADCP

parameters to improve echo intensity and correlation magnitude.
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Figure 2-9: Estimated vehicle trajectory during ascent from Sentry dive 059.

2.4.3 Sentry069: Juan de Fuca

Sentry dive 069 was a 500 meter deep bathymetry mission on Hydrate Ridge during

the ENLIGHTEN10 research cruise led by chief scientist John Delaney. Sentry inter-

leaved bottom pings and water pings for the first 5 minutes of the ascent. There was

a brief data gap while the ADCP was reconfigured to stop collecting bottom track

data. This was an attempt to avoid the possible bottom-track interference encoun-

tered in earlier ascents. Each ensemble measured 21 water profile bins at a spacing

of 3 meters.

Figure 2-10 plots the estimated ocean current profile and instrument velocity

through the ascent. The estimates from batch LS, RLS, and the online bin average

approach are in close agreement. The ADCP data quality for this dive was much

higher, primarily due to the larger ensemble bin spacing, which led to increased echo

intensity and correlation magnitude with decreased error velocities. This comes at

the price of lower spatial resolution, but almost none of the data had to be thrown

out as it had in dive 059.

The integrated vehicle trajectory is shown in figure 2-11. Again, the estimates

provided by the three different approaches are nearly identical. Position fixes from
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Figure 2-10: Estimated ocean current profile and instrument velocity during ascent
from Sentry dive 069. The estimates from batch LS, RLS, and the online bin average
approach are indistinguishable at this scale on this relatively shallow dive.
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Figure 2-11: Estimated vehicle trajectory during ascent from Sentry dive 069. The
three dead reckoning methods agree closely. Unfortunately, the USBL data are widely
scattered and do not provide a good basis for comparison during this short ascent.

the shipboard USBL system are also shown, but unfortunately these data are widely

scattered and poor quality during the short ascent.

2.4.4 Sentry085: Kermadec Arch

Dive 085 was a bathymetry mission to 1000 meters depth off the coast of of New

Zealand during a research cruise led by chief scientist Cornel de Ronde.

Again, Sentry interleaved bottom pings and water pings for the first 5 minutes of

the ascent. Each ensemble measured 27 water profile bins at a spacing of 3 meters.

There was a brief data gap while the ADCP was reconfigured to stop collecting bottom

track data.

This dataset highlights one of the weaknesses of the simple online bin average

approach–a few bits of bad data when the instrument was near 800 meters deep have

thrown off the ocean current estimate (and thus the instrument velocity measurement)

for the remainder of the ascent. The LS estimator was less suceptible.

The integrated position estimates tell a similar story–the LS trajectory is qual-

itatively similar to the shape traced out by the USBL fixes. Figure 2-13 shows a
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Figure 2-12: Estimated ocean current profile and vehicle velocity during ascent from
Sentry dive 085. (RLS estimates are not plotted because they are nearly identical
to the LS.) The online bin average estimated instrument velocity shows an anomaly
near 800 meters depth. This highlights a weakness in that method–a few bits of bad
data can cascade to throw off the entire estimated ascent.
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Figure 2-13: Estimated vehicle trajectory during ascent from Sentry dive 085.

map-view of the ascent trajectory, while Figure 2-14 plots the individual North and

East components.

2.5 Discussion and Conclusions

This chapter has proposed a method for dead reckoning through the water column

using overlapping water profile measurements collected by a vehicle-mounted ADCP.

Field experiences with the deep submervence AUV Sentry, using a 300 kHz ADCP,

have shown that there are some practical challenges to address before this technique is

ready for serious use in autonomous navigation. High data quality must be provided

throughout the entire water column transit–this may be enabled in the future by

adapting ADCP configuration parameters on-the-fly. It would be very advantageous

to be able to avoid the interference from searching for bottom-track by disabling it

without needing to stop water pings.

Although this technique is not quite ready for field service on deep AUVs, it holds

great promise. Dead reckoning using ADCP water profile measurements enhances the

autonomy of underwater vehicles because it enables underwater navigation without

dependence on external systems. It provides a link between GPS at the surface and
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Figure 2-14: North and East components of estimated vehicle trajectory during ascent
from Sentry dive 085.

DR or terrain-relative navigation near the seafloor.
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Chapter 3

Model-Driven Delayed

Measurement Fusion

Hypothesis

Mathematically rigorous treatment of measurement delays in multi-sensor fusion

Kalman filters can be achieved through state augmentation and conditional time-

varying models without altering the underlying framework.

3.1 Introduction

If a measurement is delayed in time, how should a realtime state estimator process use

the information contained in that measurement to update the current state estimate?

This chapter presents a flexible, model-driven approach to efficiently and effectively

fuse delayed measurements in realtime. The specific motivation for this study is

acoustic position aiding for underwater navigation.

Efficiency and effectiveness are two important properties for a realtime state es-

timator. In this context, efficiency means that the fusion process should avoid dupli-

cated effort (i.e., repeated computations) whenever and wherever possible. We also

want to avoid increasing the dimension of the problem (i.e., the length of the state

vector) any more than necessary. We only want to carry enough extra information to
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fuse the delayed measurement in a principled manner, and leave behind any informa-

tion we won’t use. Effectiveness means (at least) that fusing a delayed measurement

should reduce the uncertainty in the state estimate. It can also relate to the ease of

operating and designing the filter. The model-driven approach presented here handles

delayed measurements more efficiently and effectively than previous methods.

The remainder of this section introduces the general problem in more detail. Sec-

tion 3.1.1 outlines the common methods for measuring position underwater, and goes

into more detail on two acoustic tracking methods that will serve as application ex-

amples for the proposed delayed measurement fusion approach. Section 3.1.2 briefly

reviews related work, and section 3.1.3 enumerates the contributions of this research.

We classify and briefly discuss different types of measurement delays in section 3.2.

We present the details of model-driven delayed measurement fusion in section 3.3,

reviewing some key concepts of the Kalman filter before proposing two specific modi-

fications to compensate for measurement delay. Section 3.4 walks through a canonical

example, using a damped harmonic oscillator with delayed position measurements to

illustrate the process proposed here.

Then we apply the proposed model-driven delayed measurement fusion approach

to the real-world problem of underwater navigation. We present ultra-short baseline

(USBL)-aided dead reckoning (DR) as a loosely coupled example in section 3.5, and

long baseline (LBL)-aided DR as a more tightly integrated example in section 3.6.

Both examples are demonstrated on field data from the National Deep Submergence

Facility (NDSF) autonomous underwater vehicle (AUV) Sentry.

3.1.1 Delayed measurements in underwater positioning

For oceanographic underwater vehicles, it is as important to know the location where

measurements or samples were collected as it is to collect the data in the first place.

Localization is also important in most military and offshore industry applications.

After all, knowing where you are is often the first step in getting where you need to

be.

Precise, robust underwater navigation relies on many measurements, fused in an
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intelligent way, to produce an accurate state estimate. Realtime navigation relies

on DR–measuring vehicle orientation with a compass or gyrocompass and measuring

vehicle velocity with a Doppler velocity log (DVL) or estimating it from a dynamic

model. This is essentially integrating the first-order kinematics of the vehicle forward

in time. Inertial navigation integrates forward from the second-order kinematics–

using accelerometers to measure acceleration, and gyroscopes to measure angular

rates. These are both attractive options because they require no external infrastruc-

ture and can operate at high update rates. However, without position measurements,

any inertial navigation or dead reckoning system will accumulate error and uncertainty

over time. Including position aiding makes the navigation solution more accurate and

robust in the long term.

Since the radio frequency signals of Global Positioning System (GPS) do not

penetrate the ocean surface, underwater navigators must rely on other means to

determine position. Depth is determined from measurements of pressure, tempera-

ture, and conductivity [2]. Long baseline (LBL), short baseline (SBL), or ultra-short

baseline (USBL) acoustic positioning systems provide measurements in the North-

East plane. More recently, terrain-relative techniques using bathymetry and/or pho-

tography have been developed to provide relative position measurements [38, 45, 90]

for navigation aiding.

The methods summarized above all provide relative position information in the

local navigation frame. They must be geo-referenced to provide positions in the global

frame: LBL beacons must be surveyed, SBL and USBL systems must be coupled to

GPS and attitude sensors, and terrain-relative navigation must be over known terrain

or have known boundary conditions.

With the exception of depth measurements, all of these methods for determining

position have inherent latency. There is a finite delay between the time a measure-

ment is valid and the time it is available. The delays associated with (x, y) position

measurements underwater are on the order of seconds, and in some cases longer. It

is important to understand these delays, and properly account for them, in order to

achieve precise and robust navigation.
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3.1.2 Related Work

The Kalman filter

The Kalman filter (KF) [91] is an optimal recursive estimator for a linear system with

stochastic inputs. It fuses state measurements of a system with estimates provided

by a model of that system in proportion to the covariances of the measurements and

the estimates. Many implementations use simple kinematic process models to provide

state estimates. The KF has been continually expanded, modified, and re-explained

in the past 50 years. A good introduction to Kalman filtering methods is given in [88].

The extended Kalman filter for nonlinear systems

The Extended Kalman filter (EKF) is a generalization of the Kalman filter to deal

with nonlinear systems. It linearizes the system at the current estimated state, then

analytically propagates a Gaussian random variable through the linearized transition

equations. Although this process can be complicated, the EKF is the de facto stan-

dard for many estimation applications. It has been widely applied to AUVs, both as

a real-time estimator (e.g., [92]) and as a postprocessing filter-smoother (e.g., [49]).

It is also used in many of the single-range LBL systems mentioned in section 0.2.1.

Sigma point Kalman filters for nonlinear systems

Julier and Uhlmann introduced the unscented transform (UT) as a new approach to

pass important statistics of a random variable through a general nonlinear transfor-

mation [93–95]. It was extended to the unscented Kalman filter (UKF) for filtering

nonlinear systems in [96, 97]. It has since been shown to outperform the extended

Kalman filter (EKF) in many situations [96–98].

The UKF has been classified as an example of sigma point filtering [99–101]. The

sigma point approach uses a weighted, deterministic sampling scheme to propagate

estimated error through nonlinear system dynamics. This is essentially a formalism

to perform weighted statistical linear regression (WSLR) as a random variable passes

through many general transformations. It provides improved performance in highly
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nonlinear systems, and does not require analytical derivation of Jacobians for the

process model. This makes it attractive in a ‘black-box’ sense, and should simplify

its application to a coupled nonlinear system like an underwater vehicle.

Handling delayed measurements

The simplest way to deal with a measurement delay is simply to ignore it and fuse

the measurement as if it is an observation of the system state at the current instant.

This is the standard approach, but if the delay is significant it will produce inaccurate

estimates. A brute force approach would recalculate the state estimates over the entire

delay interval after the measurement arrives. This would provide accurate estimates,

but at increased computational cost. Depending on the length of the delay, this

approach can become impractical or untractable. Here we will review some more

principled methods to account for the delay.

State augmentation is a standard method to handle situations where the current

state of a system is correlated to another variable–including its past state. This

has been applied to linear systems with single or multiple delays (e.g., [102]). Used

carefully, state augmentation can enable a KF to handle delayed measurements.

Leonard & Rikoski use an EKF with augmented states representing the past tra-

jectory of a mobile robot in [103]. These augmented states are used in feature ini-

tialization for concurrent mapping and localization–enabling the robot to use data

from multiple timesteps for improved data association and decision making. In [104],

Rikoski applies this approach to handle time-of-flight measurements in LBL acoustic

positioning for an underwater vehicle1. The augmented state includes the full state

at the instant the robot interrogates the net, as well as the full state at the instant it

receives the reply from each transponder.

Ridao, et al.use a bounded circular buffer of past poses2 to fuse USBL position

1Section 3.6 explores a similar application–formulated independently of Rikoski’s work–using the
model-driven delayed measurement fusion approach presented in this chapter for LBL-aided DR.

2Since the delayed USBL measurements only relate to the position of the remotely operated
vehicle (ROV) and not its velocity, Ridao, et al.use the 4-element pose vector for each augmented
state, instead of the full 8-element state vector. This reduces the dimension of the filter–and saves
some computation cost–but still uses more resources than strictly necessary.
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measurements with DR based on an attitude and heading reference system (AHRS)

and a DVL in [105]. They assume that the clocks of the USBL system and the vehicle

are synchronized3, and validate the method using a tethered ROV. This approach

has the advantage that it imposes an upper limit on the growth of the state and filter

dimension. To ensure the appropriate state will be in the buffer when the delayed

measurement arrives, the buffer must include all past poses up to the maximum delay

length–this increases the dimension of the filter and the computation cost. For this

approach to work, the bounded circular buffer must always contain more past vehicle

poses than the fusion step of the filter requires–so by definition, this implementation

uses more resources than necessary.

To reduce this extra cost, Challa suggests a variable dimension augmented state

KF in [102]. Instead of storing all the past states over the entire delay interval, this

filter adaptively augments only the essential past states–the ones that the delayed

measurement will observe4. This results in a more efficient filter with comparable

estimation accuracy.

Approaching the problem from a different direction, some researchers use a stan-

dard KF formulation during the delay interval, then calculate a different correction

term when fusing the delayed measurement.

Hilton, et al. apply this to tracking problems with time-delayed measurements

in [106]. Assuming constant-velocity tracking, they back-propogate the state estimate

through linearized system dynamics to the instant the delayed measurement was valid.

They then minimize the trace of the covariance to solve for a modified Kalman gain.

Simulations showed that this approach outperformed several ad-hoc methods, and

nearly recovered the performance of a filter with no delay in its measurements.

In [22, 78], Farrell uses an error state EKF for sensor fusion aboard an AUV–

aiding an inertial navigation system (INS) with velocity measurements from a DVL,

3This restriction is not necessary if the USBL system can report the time it is interrogated, see
section 3.5.

4Although Challa’s work does not investigate measurements that are composite observations of
the state at two distinct instants, the variable dimension augmented state KF has a similar delay
treatment to Rikoski [104]. This variable dimension approach is also similar to the work by van der
Merwe, et al., which is discussed later in this section.
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heading measurements from a magnetometer, depth measurements from a pressure

sensor, and two-way travel time measurements from four LBL transponders5. The

measurement delay compensation uses a wait-and-correct strategy. Any time the

vehicle interrogates the LBL net, the error state accumulates until the end of that

LBL measurement cycle. In the meantime, navigation relies entirely on the INS–

measurements from other aiding sensors are not fused during the delay interval. This

effectively reduces the aiding rate to the rate of the slowest sensor–including mea-

surement delays. While this approach may be suitable for a system with high quality

inertial navigation, it may not perform well on a system with a low-grade INS, and

is not directly applicable to any system without inertial sensing.

Alexander proposed an approach in [107] where a correction term was added to

the estimates of a linear KF once the delayed measurement was available. The covari-

ance, however, was updated early, when the measurement should have been valid–this

resulted in sub-optimal fusion of any measurements during the delay interval. Larsen,

et al., reformulated this approach in [108] to make it easier to implement. That study

also suggested a two-filter method to optimally fuse all measurements, with or with-

out delay. This modified two filter method achieved the same low estimation error

as brute-force recalculation, but at reduced computational cost. It was applied to

vision-aided navigation for an autonomous unmanned ground vehicle (UGV) in [109].

van der Merwe, et al. adapted Larsen’s two-filter method to nonlinear systems

using a sigma point Kalman filter (SPKF) with augmented states instead of separate

filters6 [99–101], bringing the ‘filter and correct’ approaches back to state augmenta-

tion. This delayed-state SPKF was applied to navigate an autonomous helicopter un-

manned aerial vehicle (UAV) with fast dynamics and a slow GPS receiver. Although

5The LBL measurement equation in [22, 78] deals with the fact that a two-way travel time is
a composite observation of the vehicle state at two distinct instants by back-propogating the state
estimate at the reply instant through linearized vehicle kinematics to the interrogation instant.

6Although delay compensation can be achieved with state augmentation, care must be taken
when initializing or updating the augmented states. The method given in equations 5.63 and 5.64
of [99] produces a covariance matrix with four identical blocks–this is guaranteed to be singular.
The model-driven delayed measurement fusion method presented in this chapter avoids this issue by
using appropriate time-varying conditional process models to initialize and update the augmented
states.
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the delay was only on the order of 50 ms, compensating for it reduced estimation

error in position, velocity, and attitude.

3.1.3 Contributions

The method proposed in this chapter is an efficient, flexible, and mathematically prin-

cipled approach to delayed measurement fusion. It is based on state augmentation–

adding only the minimal amount of extra memory necessary to deal with delays. It

works entirely within the KF framework–using time-varying conditional models to

manage the augmented states–separating the user from any external or ad hoc ad-

justments to the state estimate or filter covariance.

Table 3.1 compares the model-driven approach to other related work in the litera-

ture. The main points are the minimal increase in dimension and the ability to work

entirely within a single KF. It should work with any7 kind of KF, and is demonstrated

here using the classical KF for linear systems and the SPKF for nonlinear systems.

The previous literature that includes delay compensation can be loosely divided

into methods using state augmentation, and methods that use an external process to

back-propogate or wait-and-correct. For a filter with an original state dimension N ,

the state augmentation approaches use a filter of dimension 2N to handle the delay8.

The external processes in the other methods also have calculations on the order of

N , for an effective dimension ∼ 2N . The model-driven approach proposed here, on

the other hand, produces a filter with dimension N +M , where M is the dimension

of the delayed measurement, and usually M < N .

Many of these approaches can be extened to deal with multiple delayed measure-

ments. This ability comes with additional increase in dimension, associated with D,

the number of delayed measurements. The numbers in Table 3.1 denote this ad-

ditional cost only for work where support for multiple delayed measurements was

demonstrated.

7including an EKF, although that has not been demonstrated here and remains for future work
8Ridao uses a filter with dimension N +LP , where L is the maximum delay length, and P is the

dimension of a reduced state (the pose). In practice, the maximum delay length may be very large,
so even though P < N , LP is likely greater than N , and the total filter dimension is N +LP ≫ 2N .
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The methods relying on external processes have the additional downside that

they are not integrated into the filter structure, and therefore less portable to other

applications and other types of KF (e.g. SPKFs for nonlinear systems.)

The approach presented here handles delayed measurements in a mathematically

principled way with a modest increase in filter dimension (and associated compu-

tational complexity). Its flexibility allows it to be applied to linear or nonlinear

systems, in synchronous or asynchronous filters. The next few sections will show how

the model-driven approach makes delay treatment simple for the user reduces error

and uncertainty in state estimates.

3.2 Types of measurement delay

Any single measurement may be subject to several distinct delays of different types:

physical, communications, hardware/firmware, and processing.

Physical delays are governed by the laws of nature. One example is the travel time

delay for an electromagnetic or acoustic wave. Little can be done to reduce physical

delays without changing operations–minimizing the distance to acoustic beacons, for

example. These delays are negligible in some cases (e.g. GPS localization of an auto-

mobile), but significant in others (e.g. long-range LBL localization of an underwater

vehicle).

Communications delays are primarily due to network latency. This means they

overlap a bit with physical delays, but they also include delays from dropped packets

or incomplete feedback.

Hardware and firmware delays are often included to protect equipment and en-

sure reliable operation. Examples include the blanking time an acoustic transceiver

waits before listening for a return, and the turn around time a transponder waits

before sending a reply. These delays usually have recommended values and limited

adjustability.

Finally, processing delays are dictated by the complexity of the problem and the

algorithm used to solve it. Much can (and has) been done to minimize this type of

126



delay in modern systems, and computers are only getting faster. However, embedded

devices with limited processing power can still impose non-negligible delays. This was

the case in the first application of a SPKF to a delayed measurement problem [100,

101].

3.3 Model-driven delayed measurement fusion

This section proposes a new, entirely model-based, approach to delayed measurement

fusion. This flexible approach can treat multiple delayed measurements with lengths

that vary in time–it can even handle measurements with multiple delays. Perhaps

most importantly, this approach handles delayed measurements in a mathematically

principled fashion without changing the underlying structure of the KF framework.

This section presents the theory behind model-driven delayed measurement fusion.

We begin by reviewing the underlying KF framework and the key concepts behind it.

Then we carefully define the nomenclature and notation for the timeline of delayed

and undelayed measurements. Then we show how state augmentation can be used to

store the necessary information for delayed measurement fusion. Then we show how

conditional, time-varying process and measurement models can be used to manage the

augmented states and delayed measurements without changing the KF framework.

The next section will walk through an example application using a damped harmonic

oscillator.

3.3.1 Timeline and nomenclature for delayed measurements

Before diving into the details of delayed measurement fusion, it will be helpful to

take a moment and carefully define our reference frame and nomenclature. Data

from several different instants of time are used, so it is important to orient ourselves

and be consistent.

Consider the relevant instants in time looking back from the time of fusion, as

illustrated in Figure 3-1:
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· · · xk−l xk−l+1 · · · xk−1 xk xk+1

· · · yk−l yk−l+1 · · · yk−1 yk yk+1

· · · x̂k−l x̂k−l+1 · · · x̂k−1 x̂k x̂k+1

delayed

Figure 3-1: Timeline and nomenclature for delayed measurements, looking back in
time from the fusion instant k. A delayed measurement with latency of l timesteps
is an observation of the system state at time k − l. Other measurements may be
available to the filter in the intermediate period between timestep k− l and the fusion
timestep k, when the delayed measurement becomes available. In some situations,
more delayed measurements related to the same system state at k− l may arrive after
even longer delays.

trigger timestep k − l

The delayed measurement is an observation of the state of the system at this

instant. The measurement will not be available to the filter until l timesteps

later.

intermediate timestep k − l +m

Other measurements (especially from other sensors) may be available in the

interval between the time the measurement is valid and the time it is available

to the filter.

fusion timestep k

The delayed measurement, an observation of the past state of the system xk−l,

becomes available to the filter. The information in this measurement should be

used to update the current estimate of the state: x̂k → x̂k+1.

afterward timestep k + n

In some situations9, there may be more observations of the previous system

state. These should be handled in the same way as the first delayed measure-

ment.

9e.g., the LBL-aided DR example in section 3.6
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Alternately, looking forward from the instant that the measurement observes the

system, the relevant timestps are k, k+m, k+ l, k+ l+ n. The dummy indices m,n

will change as the system and filter state evolve. They help provide precise notation,

but may never be explicitly tracked or used by the filter. The latency l may not be

constant, or even explicitly known.

With this nomenclature in mind, we can discuss the KF framework and propose a

specific method for dealing with delayed measurements without altering that frame-

work.

3.3.2 The Kalman filter framework

Our goal is to effectively and efficiently fuse delayed measurements into the current

state estimate of a dynamic system. To encourage understanding and simplify expo-

sition, we will begin with a linear discrete state space model (DSSM).

xk+1 = Akxk +Bkuk +Gkvk (3.1)

yk = Ckxk +wk (3.2)

The system state xk is driven by the known control input uk and the unknown

process noise vk ∼ N (0,Qk). Observations yk are a function of the current state,

with random measurement noise wk ∼ N (0,Rk).

Given these observations, the Kalman filter (KF) provides an optimal estimate of

the system state. Many different derivations exist, see for example [88, 91].

The KF is often presented in two steps: predict and update. The prediction step

computes a priori estimates of the state, its covariance, and the observation:

x̂−
k+1 = Akx̂

+
k +Bkuk (3.3a)

P−
k+1 = AkP

+
k A

T
k +Qk (3.3b)

ŷk+1 = Ckx̂
−
k+1 (3.3c)
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Adjusting the prediction: innovations

The first key concept of KFs is the innovation–this is simply the difference between

predicted and observed measurements of the system state:

ỹk = yk − ŷk, (3.4)

this is also called the measurement residual. In the KF framework, the filter doesn’t

really care about the exact value of any given measurement–it really only wants to

know how far off the prediction was–this is the key that will enable us to handle

measurements with delays. The update step of the KF applies the optimal gain to

the innovation to compute a posteriori estimates of the state and covariance:

x̂+
k = x̂k +Kk (yk − ŷk) (3.5)

P+
k = (I−KkCk)P

−
k , (3.6)

which brings us to the second key concept: the optimal Kalman gain.

The optimal Kalman gain: a ratio of uncertainties

Given a state estimate with some quantified uncertainty and an observation of that

state with some other uncertainty, an optimal approach to fuse these two bits of

information is to weight them by the ratio of uncertainties. This is the approach used

in the KF framework.

A minimum mean-squared error (MMSE) derivation of the KF (e.g., [99]) gives

the Kalman gain [97, 101]:

Kk = P−
x̃kỹk

(

P−
ỹkỹk

)−1
(3.7a)

where x̃−
k , ỹ

−
k are the residuals of the a priori estimates of the state and the observa-

tion, and their (cross-) covariances are P−
x̃kỹk

,P−
ỹkỹk

.
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· · · xk−1 xk xk+1 · · ·

· · · yk−1 yk yk+1 · · ·

· · · x̂k−1 x̂k x̂k+1 · · ·

Figure 3-2: Simple graph representation of a KF. The unobserved true state x is
a Markov process and the noisy measurements y are the observations of a hidden
Markov model. The KF used these observations to estimate the state x̂.

This is equivalent to the standard form given in most texts (e.g., [88]):

Kk = P−
k C

T
k

(

CkP
−
k C

T
k +Rk

)−1
(3.7b)

In (3.7a), we see that the key to correctly fusing any measurement is to have an

estimate of its cross-covariance with the state. With a delayed measurement, you

simply need to use the correct cross-covariance.

Implications of the Markov Assumption

One basic assumption of the KF is that the system state is a Markov process–that

is, a process with no memory. The standard KF can be viewed as an estimator

operating on the observations from a hidden Markov model (HMM) (Figure 3-2).

Each measurement is an observation of the current system state, and by the Markov

assumption:

conditional on the current state, the future states of the system are inde-

pendent of all the past states.

This poses a problem for fusing delayed measurements, where some sort of memory

is required to properly relate the delayed measurement to a past system state. A

delayed measurement violates the Markov assumption. One way to get around this is

to augment the filter state vector with extra variables to maintain information about

a specific past state.
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3.3.3 Maintaining the delayed innovation and cross-covariance:

state augmentation

State augmentation expands the filter dimension to include extra information (in this

case, related to a specific system state in the past.) This additional information a is

concatenated to the original state x to produce the augmented state vector xa:

xa =





x

a



 (3.8)

=
[

x1 x2 · · · xM | a1 a2 · · · aL

]T

(3.9)

van der Merwe, et. al. used this approach in [99–101] to fuse latent GPS mea-

surements of the position of a helicopter UAV. In that study, the augmented states

included a full copy of the original state vector, here we employ a subtly different

approach.

Delayed innovation

We specifically use a priori estimates of future measurements as augmented states.

At the trigger instant:

x̂a
k =





x̂k

ŷ−
k+m



 (3.10)

or at the fusion instant

x̂a
k =





x̂k

ŷ−
k−l



 (3.11)

This maintains all the information necessary to fuse the delayed measurement later.

And, it keeps the filter dimension small10–this is important for realtime operations on

10Using a priori estimates of future measurements as the augmented states ensures a near-minimal
increase in filter dimension. In some specific cases (e.g., overconstrained LBL with more than 4
transponders) the dimension could be mildly decreased further. The difference is small compared
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a wide variety of platforms, or if the KF is the kernel of a more intensive process (e.g.,

to update the particles in a particle filter). This approach also pre-computes so that

the innovation can be calculated immediately and the processing delay of the filter

itself is minimized. A more subtle advantage is that it helps ensure that the filter

remains stable–introducing the measurement noise into the augmented covariance

(detailed in the next section) helps keep it from becoming singular.

Cross-covariances

The full augmented covariance matrix Pa−
k is:

Pa−
k =





P
x̃
−

k
x̃
−

k
P

x̃
−

k
ỹ
−

k+m

P
ỹ
−

k+m
x̃
−

k
P

ỹ
−

k+m
ỹ
−

k+m



 . (3.12)

It contains the original covariance matrix Px̃kx̃k
, the covariance of the delayed

innovation P
ỹ
−

k+m
ỹ
−

k+m
, and the cross-covariances between them P

x̃
−

k
ỹ
−

k+m
= PT

x̃
−

k
ỹ
−

k+m

.

Recalling (3.7a), we see that the augmented covariance matrix maintains all the

information necessary to fuse the delayed measurement.

3.3.4 Driving the new filter: time-variant conditional process

and measurement models

As mentioned earlier, an augmented state means process and measurement models

need to be adjusted anyway–why not use this to our advantage and define these

models to handle the augmented states and delayed measurements without any ad-hoc

adjustments to the filter?

Trigger process model

The filter needs a way to choose between different process models. In the examples

of this chapter, the trigger is obvious and can be provided by the system–in other

to storing the full past state as in [99–101], or multiple past states as in [105] or a pose graph
implementation.
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cases, one might have to use additional augmented states to estimate the time of the

trigger condition.

The trigger process model is always the same. The first part is simply the original

process model. The second part is the measurement model for the (expected) delayed

measurement. This is flexible enough to work with many kinds of systems, but specific

enough to ensure both the original and augmented states are updated properly.

The measurement error covariance matrix should be added11 to the augmented

state covariance, just as if it were a regular measurement.

Loosely-Coupled Measurements

In this case, the delayed measurement is some direct (linear) function of state(s). An

example would be a USBL system that provides a fully-computed geographic position

fix.

The augmented state is the a priori estimate of the delayed measurement, so the

delayed innovation is straightforwarrd:

ỹk = yk − ŷ−
k (3.13)

= yk −Cselect
k x̂a

k− (3.14)

where Cselect
k is simply a matrix of ones and zeros that selects the appropriate entry

in the augmented state vector.

Tightly-Coupled Measurements

This approach involves a more complex measurement model. For example, the full

interrogation-response time for a particular transponder in an LBL net.

In this case, the delayed measurement may combine several augmented states (i.e.,

from multiple delays) or may combine delayed and undelayed information:

ỹk = yk −
(

Cselect
k xa−

k + hundelayed(xa−
k )

)

(3.15)

11or equivalently treated, if the measurement noise is not strictly additive
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We will revisit this kind of measurement in section 3.6.

3.4 A canonical example:

the damped harmonic oscillator

We introduce the model-driven delayed measurement fusion approach using a simple

one-dimensional system, showing the natural progression from the standard KF to

our new delayed measurement filter. Along the way, we use simulations to study the

behavior of a KF without delayed measurements, a KF with delayed measurements

that ignores the delay, and the new filter that compensates for measurement delays.

We also use this example to discuss an alternative ad-hoc approach to compensate

for measurement latency.

3.4.1 System Dynamics

The dynamics of a generalized damped harmonic oscillator (DHO) are described by

the second-order differential equation:

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) = u(t) + v(t), (3.16)

where ζ is the damping coefficient, ωn is the natural frequency, u(t) is a known control

input signal, and v(t) is an unknown environmental disturbance. For this example,

we will assume zero control:

u(t) = 0 ∀ t, (3.17)

and mutually uncorrelated additive white Gaussian process noise:

v(t) ∼ N (0, σv) , E [v (t1) v (t2)] = 0 ∀ t1 6= t2. (3.18)

This simple system may not be intellectually stimulating when taken alone, but
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its simplicity makes it ideal for illustrating the progression of methods for fusing more

complex types of measurement sequences with and without delay.

If the system is a point mass connected to a linear spring and damper, the gener-

alized variable ξ represents position, ξ̇ is velocity, and ξ̈ is acceleration.

3.4.2 Discrete State Space Model

The system dynamics (3.16) are written in state space form as:





ẋ1

ẋ2



 =





0 1

−ω2
n −2ζωn









x1

x2



+





0

1



 v (3.19)

where x1 = ξ, and x2 = ξ̇.

Direct Euler integration12 gives an approximate DSSM for the dynamic process:





ξk+1

ξ̇k+1



 ≃





1 ∆t

−ω2
n∆t 1− 2ζωn∆t









ξk

ξ̇k



+ vk (3.20a)

xk+1 = Axk + vk (3.20b)

This process model predicts the future state, given the current state.

3.4.3 Full measurements

Now assume that the system has sensors to measure its position ξ and velocity ξ̇.

Both measurements are corrupted by mutually uncorrelated additive Gaussian white

noise:

w ∼ N (0,R) , R =





σw1
0

0 σw2



 (3.21a)

E
[

(wi) (wj)
T
]

= 0 ∀ i 6= j (3.21b)

12For continued simplicity, we use Euler integration to move from continuous to discrete time.
This is also known as a zero-order-hold approach. Alternative approaches, for example using Tustin’s
method (bilinear interpolation), or the exact matrix exponential, may prove valuable in future studies
of delayed measurement fusion.

136



The filter receives instantaneous measurements from both sensors at each timestep.

This direct13 measurement model is:





y1

y2



 =





1 0

0 1









ξ

ξ̇



+





w1

w2



 (3.22a)

yk = Cxk +wk, (3.22b)

3.4.4 Fusing measurements with different sampling periods

In many practical applications, engineers need to fuse multiple types of measurements,

each with different sampling frequencies. To enable this, we must make a slight

modification to the standard KF problem presented above.

The physical system has not changed, so the process model (3.20) stays the same.

However, the measurement system has changed, so the measurement model (3.22b)

must also change to reflect this.

Measurement Selection Matrix

In a linear (or linearized) system, we can simply pre-multiply the measurement matrix

by a selection matrix:

yk = Cselect
k Cxk +wk. (3.23)

The selection matrix is a matrix of ones and zeros. It varies in time so that (3.23)

generates the appropriate a priori measurement estimates to compare with the actual

measurements.

For example, at discrete time instant k, the velocity sensor provides a measure-

ment, but the position sensor does not. In this case, the selection matrix would

13Again, a direct measurement model may not be the most intellectually stimulating, but it serves
our purposes well here. We will consider a more complex type of measurements in the LBL-aided
DR example in section 3.6.
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be:

Cselect
k =

[

0 1
]

, (3.24)

so that the measurement model (3.23) would expand to:

yk =
[

0 1
]





1 0

0 1









ξ

ξ̇



+





w1

w2



 (3.25a)

and the measurement would be:

yk = ξ̇ + w2. (3.25b)

If both position and velocity measurements are available at the next timestep,

k + 1, the selection matrix would become the identity matrix, Cselect
k+1 = I2×2.

Time-Variant Measurement Models

The selection matrix approach presented above works well for linear (or linearized)

measurement models, but must be generalized for nonlinear models. This actually

turns out to be very simple.

Consider (3.23) again. The selection matrix and measurement matrix can be

combined into a single, time-varying measurement matrix:

Ck ≡ Cselect
k C. (3.26a)

For our example above:

Ck =
[

0 1
]





1 0

0 1



 (3.26b)

=
[

0 1
]

(3.26c)
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Table 3.2: Simulation parameters used in damped harmonic oscillator example.

ωn ζ σv1
σv2

σw1
σw2

Tx1
Tx2

l

rad/s - m m/s m m/s s s s

1 0.1 10−6 10−2 0.1 0.1 0.42 0.01 0.40

Any linear, time-variant measurement process can be described using a selection

matrix or a time-variant measurement matrix. A general, nonlinear, time-variant

measurement process requires general, nonlinear, time-variant measurement models.

The selection matrix is useful for introduction to the concepts, but since time-variant

models are more general, we’ll use those for the majority of the remaining text.

Simulation

Here we study a simulation of the KF estimating the states of a DHO using position

and velocity measurements with different sampling periods. The simulation parame-

ters are given in Table 3.2. The position measurement updates at a lower rate than

the velocity measurement: fx1
≪ fx2

, Tx1
≫ Tx2

. This will be our baseline sim-

ulation for comparing filters with delayed measurements in sections 3.4.5 and 3.4.6.

There are two different measurement models, and therefore two different measure-

ment matrices:

Cfast =
[

0 1
]

(3.27a)

Cslow =





1 0

0 1



 (3.27b)

such that:

yfast = ξ̇ + w2 (3.27c)

yslow =





ξ

ξ̇



+





w1

w2



 (3.27d)
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Figure 3-3: Damped harmonic oscillator simulation with a KF estimating position
and velocity. The black line (covered) shows true states, red dots are the noisy
measurements, and the green line shows estimates from the KF. Subplots on the
right show error residuals for the measurements (red) and the KF estimates (green).
The blue line is the 1σ confidence interval of the KF estimate.

As the KF runs through each timestep, the correct time-varying conditional mea-

surement model is chosen and the underlying machinery of the KF stays the same.

Figure 3-3 shows typical filter performance for the parameter values listed in Table 3.2.

3.4.5 Fusing delayed measurements without compensation

Practical applications of KFs, especially in underwater navigation, often have to

handle delayed measurements. It is important to deal with these measurements in a

mathematically rigorous way.

Here, we consider the case where the position measurement has a finite nonzero

delay, l > 0, but it is fused as if it has no delay. In this case, (3.27d) should actually

be rewritten:

yslow
k =





ξk−l

ξ̇k



+wk, (3.28)
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Figure 3-4: KF performance degrades considerably when position measurements are
delayed, but the delay is not accounted for. The percentage of errors outside the 1σ
confidence interval is higher than expected–the filter is over-confident.

and the filter adjusted accordingly. However, the untreated filter implementation is

the same as the zero delay case (Section 3.4.4), because it ignores the measurement

latency.

Figure 3-4 shows the filter performance for the exact same inputs as Figure 3-3,

but with the position measurements delayed by 0.4 seconds. This even uses the same

values for process and measurement noise. The important thing to note is that the

improper treatment of delayed measurements has made the filter overconfident–many

more actual errors fall outside the 1σ confidence bound than should. A delay almost as

long as the measurement period itself may seem drastic, but this example is intended

to illustrate the worst case, and then show how proper treatment of latency rectifies

the issue.

3.4.6 Fusing delayed measurements with compensation

Finally, consider the case with l > 0, but with proper treatment of delayed measure-

ments using the model-driven approach proposed in section 3.3.

To be able to efficiently fuse delayed measurements, we need:
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• the innovation, and

• the cross-covariance

of the delayed measurement. We keep track of these, without altering the underlying

KF machinery, by using state augmentation and time-variant conditional process and

measurement models.

State Augmentation

The original system state defined in (3.20) is augmented with an a priori estimate of

the delayed measurement:

x̂a
k ≡





x̂k

ŷ−
k+m



 (3.29)

The integer m is a dummy counter–its value need not be known14, but it is included

in the notation to emphasize the fact that the extra state variable is an estimate of a

measurement the filter will receive in the future.

The augmented covariance matrix is:

Pa
k =





Px̃kx̃k
Px̃kỹk+m

Pỹk+mx̃k
Pỹk+mỹk+m



 (3.30a)

=













σ2
ξ̃k

P ˜̇
ξk ξ̃k

Pỹ−
k+m

ξ̃k

P
ξ̃k

˜̇ξk
σ2
˜̇ξ

P
ỹ−
k+m

˜̇ξk

Pξ̃kỹ
−

k+m
P ˜̇

ξkỹ
−

k+m

σ2
ỹ−
k+m













. (3.30b)

When the delayed measurement becomes available, m = 0 and the filter will be

able to calculate the innovation using the augmented state from (3.29):

ỹk = yk − ŷ−k+m (3.31)

14 In fact, m does not even need to be kept track of. The specifics will depend on how the delayed
measurement is related to the system state. In the USBL-aided DR and LBL-aided DR examples
in sections 3.5 and 3.6, the navigator never needs to know m.
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and the Kalman gain using the appropriate cross-covariance from (3.30b):

Kk =
(

P−
x̃kỹk+m

)(

P−
ỹk+mỹk+m

)−1

(3.32)

Time-Variant Conditional Process Models

Since the original state has been augmented, the process model must be modified to

take this into account. A trigger process model also needs to be defined to allow the

filter to update the augmented state.

The standard augmented process model leaves the a priori estimate of the delayed

measurement unchanged:

x̂a−
k+1 = As

kx̂
a+
k (3.33a)

=











1 ∆t 0

−ω2
n∆t 1− 2ζωn∆t 0

0 0 1











x̂a+
k (3.33b)

The trigger process model replaces the old measurement estimate with a new one

based on the current state:

x̂a−
k+1 = Atx̂a+

k (3.34a)

=











1 ∆t 0

−ω2
n∆t 1− 2ζωn∆t 0

1 0 0











x̂a+
k (3.34b)

with the same process noise covariance matrix for every step:

Qa
k =











σ2
v1

0 0

0 σ2
v2

0

0 0 0











(3.35)
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Time-Variant Conditional Measurement Models

The velocity sensor runs faster than the delayed position sensor–its measurement

model is:

ŷ−
k = Cfastx̂a−

k (3.36a)

=
[

0 1 0
]











ξ̂−k
ˆ̇ξ−k

ŷ−k+m











(3.36b)

when a delayed measurement is available, an alternate measurement model selects its

a priori estimate from the augmented state:

ŷ−
k = Cslowx̂a−

k (3.37a)

=





0 0 1

0 1 0















ξ̂−k
ˆ̇ξ−k

ŷ−k+m











(3.37b)

switching Ck between Cfast and Cslow based on the conditions of the available mea-

surements ensures that:

• the appropriate innovation is calculated, and

• the correct portions of the augmented covariance matrix are used in calculating

the Kalman gain.

Simulation

Figure 3-5 shows the filter performance for the exact same inputs as Figure 3-3 and

Figure 3-4. This time, the position measurements are still delayed by 0.4 seconds,

but we use the model-driven approach proposed in section 3.3 to compensate for the

delay.

The triggers for switching between conditional process or measurement matrices

are problem-specific. In this example, we have assumed that the filter has knowledge
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Figure 3-5: Delayed measurements are properly treated using state augmentation and
conditional system models.

of which timesteps it will eventually have delayed measurements for. In practice this

is often known, or can at least be estimated. In this example, we used Atrigger once

every Tx1
= 0.42 seconds.

Note that in Figure 3-5 the filter performance is comparable to the case with

no delay. By fusing the delayed measurements in a principled and mathematically

rigorous way, we approach the performance of a filter fusing undelayed measurements.

3.4.7 Some comments on alternate approaches

This section presents alternative approaches to delayed measurement fusion. These

ad hoc approaches appear to be simpler and more straightforward, especially when

applied to the simple example system. However, they miss some key advantages of

the more general and flexible method presented in section 3.3.

Given a system with frequent velocity measurements with no delay, and infrequent

position measurements that arrive after an unknown delay, one might consider simply

running the filter in the past and integrating forward in time whenever an estimate of

the current state is needed. If the delayed position measurement relates to timestep

k− l, an external process would calculate the a priori estimate of the current position
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as:

ξ(t) = ξ(tk−l) +

tk
∫

tk−l

ξ̇(τ)dτ (3.38)

or in discrete time:

ξ̂−k+1 = ξ̂−k−l +

k
∑

j=k−l

ˆ̇
ξ+j ∆t (3.39)

The external process would have to recompute the sum at each timestep in the interim

(between when the measurement is valid and when it is available), but that means

storing the velocity at all timesteps in the interval, and recomputing the sum is

unneccessary duplicated effort.

Another approach might be to keep a running average of the velocity, so that

updating the second term on the right hand side of (3.39) could be done faster.

This also requires keeping track of the number of timesteps since the last position

measurement. This method only requires two extra pieces of data. If this running

average and timestep counter were kept within the filter, the process and measurement

equations would become nonlinear and unnecessarily complicated. Otherwise, an

external process would still be required to deal with the running average.

The model-based approach to delayed measurement fusion takes care of all this

automagically. The filter itself tracks position ξ and velocity ξ̇, effectively increment-

ing through (3.39) at each timestep. By keeping the a priori estimate ŷ−k+m as an

additional state–only keeping one additional piece of information for each delayed

measurement–the filter is able to compute the correct innovation and gain to fuse

the information when the delayed measurement arrives. The key here is that the

KF never really adjusts a posteriori estimates based on measurements–it works using

innovations.
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3.5 USBL-aided Dead Reckoning

in Two Dimensions

In this example, we study a submerged vehicle navigating by DR with position aiding

from a surface tender using a USBL acoustic tracking system and an acoustic modem.

To keep this example as simple as possible–and focus on the delayed measurement

component of the problem–we will only consider the two-dimensional navigation prob-

lem. We make the following assumptions about measurements:

1. accurate depth (so that we may remove it from the problem),

2. accurate attitude (so that roll and pitch are compensated and we can operate

in the local level frame),

3. the topside portion of the USBL measurement is treated as a black box (dis-

cussed in more detail in the next section).

3.5.1 Mission Scenario

The USBL system uses two-way travel time to estimate the range to a beacon, and the

phase difference between signals at multiple receivers to estimate azimuth and bearing

angles. This relative position measurement is combined with the GPS position of the

tender. The tender transmits the resulting geodetic position fix to the submerged

vehicle via acoustic modem. This is a real-world example of a delayed state problem

and a good example for model-driven delayed measurement fusion.

This mission scenario is becoming more commonplace in both oceanographic and

commercial sectors. The advantage of USBL is that it does not require ship time to

deploy and survey transponder beacons, so it is extremely portable form one site to

another. However, it does require careful calibration of sensor offsets and alignment

between the transducer head, GPS, and an attitude reference. It also requires that

the ship remains in the same area as the vehicle to maintain good tracking during a

mission. This is a non-issue for most tethered and manned vehicles, but other options

such as LBL may be more appropriate for certain types of AUV deployment.

147



GPS

in
terrogate

GPS

rep
ly

GPS

d
o
w
n
lin
k

Figure 3-6: Typical measurement and communication cycle for USBL-aided DR.
First (a), the surface tender interrogates the USBL beacon on the submerged vehicle.
The beacon replies (b), and the USBL system reports range, bearing, and azimuth
from the transducer head to the beacon. This information is fused with the GPS
position and gyrocompass attitude of the tender to compute the geodetic position of
the beacon. Finally (c), the position fix is transmitted to the vehicle via an acoustic
modem. This cycle has a total measurement delay on the order of seconds to tens of
seconds, depending on the distance between the tender and the submerged vehicle.
In general, both the vehicle and the ship are moving throughout this measurement
cycle.

The observation cycle in this scenario is a simple direct-path acoustic measure-

ment. First, the surface tender interrogates a transponder on the submerged vehicle.

This signal travels through the water column at the depth-averaged sound speed, c̄,

arriving at the vehicle after a one way travel time delay, τinterrogate. The transpon-

der on the vehicle then waits for a predefined turn-around-time, τtat, before replying.

The reply arrives back at the ship transceiver after another one way travel time delay,

τreply. Processing the solution for the position fix incurs another (hopefully negligi-

ble) delay of length τprocessing. Finally, the ship sends the computed fix to the vehicle,

and it arrives after a third one way travel time delay, τdownlink. This cycle may be

interrupted for many varied reasons (e.g. downlink a command rather than a fix,

lost packets, environmental or ship noise), so the vehicle should not rely on position

updates for safe operation.

148



USBL-aided DR actually has two delayed measurement processes. The topside

process occurs on the ship, and estimates the geographic position of the transpon-

der. The delays associated with this are τinterrogate, τtat, and τreply. As mentioned

earlier, the topside process is treated as a black box in this example–this would be

an interesting research thread to investigate in the future. The vehicle receives a

fully computed geographic fix. Its measurement process is only concerned with the

delays: τreply, τprocessing, and τdownlink. One convenient result of this decoupling is that

the measurement delay in the process on the vehicle can be completely removed in

postprocessing. We will make use of this when comparing the performance of filters

with and without delay compensation.

First-order, two-dimensional kinematic process model

We want to estimate the position of a submerged vehicle by dead reckoning with

position aiding from delayed USBL fixes. We will use a first-order kinematic process

model, with velocity and orientation as inputs. Since depth and attitude are reli-

ably estimated using onboard sensors, we will examine the simplified two-dimensional

problem on a local North-East plane.

The position of the vehicle in the plane evolves with the first-order differential

equation:




ẋ

ẏ



 =





cosψ − sinψ

sinψ cosψ









u

v



 , (3.40)

where x is positive North, y is positive East, and ψ is the vehicle heading. Veloci-

ties u and v are defined in the vehicle reference frame as forward and starboard, in

accordance with [110].

Define the state vector:

x =





x

y



 (3.41)
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and the input vector:

u =











u

v

ψ











(3.42)

so that the DSSM is:

xk+1 = f (xk,uk, vk) (3.43)

= xk + (Rn

v
)k





u1 + v1

u2 + v2





k

∆t (3.44)

where Rn

v
is the rotation matrix from the vehicle frame to the navigation frame:

Rn

v
=





cos (u3 + v3) − sin (u3 + v3)

sin (u3 + v3) cos (u3 + v3)



 (3.45)

and v is process noise.

USBL measurement model

A USBL system could report data as raw two-way travel time and phase information.

In this case, the user would have to integrate platform state to compute a position

fix at each beacon. Most commercial systems will output a relative or absolute fix

in geodetic coordinates. This relieves the user of some responsibility, but now the

system must be treated as a black box.

In this section, we use USBL as an example of a decoupled15 measurement. The

USBL sends fully-resolved position fixes to the vehicle, so it has a direct, but delayed,

measurement model:

yUSBL
k = hUSBL (xk−l,wk) (3.46)

15This is called decoupled because each element of the measurement vector corresponds to exactly
one element of the state vector.
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=
[

xk−l +w1,k yk−l +w2,k

]T

(3.47)

· · · xk−l xk−l+1 · · · xk−1 xk xk+1

· · · yk−l yk−l+1 · · · yk−1 yk yk+1

· · · x̂a
k−l x̂a

k−l+1 · · · x̂a
k−1 x̂a

k x̂a
k+1

trigger

fuse

downlink

Figure 3-7: Graph of USBL-aided DR. The USBL measurement is a simple obser-
vation of the system state at an instant in the past. It draws a diagonal connection
(red) from a past state to the current measurement. The trigger conditional process
model and fuse conditional measurement model manage the augmented states that
serve as extra memory, allowing the system to store information about the system
state at the instant k − l, when the USBL transponder on the vehicle replied to an
interrogation from the surface ship.

3.5.2 Delay Compensation

Augmented state

Applying the model-driven approach to delayed measurement fusion, we augment the

state vector with an a priori estimate of the delayed measurement:

x̂a−
k =





x̂−
k

ŷ−
k+m



 =

















x̂−k

ŷ−k

x̂−k+m

ŷ−k+m

















(3.48)

Conditional process models

The augmented standard process model is now:

x̂a−
k+1 = f a

(

x̂a+
k ,uk

)

(3.49a)
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=





f
(

x̂+
k ,uk

)

ŷ−k+m



 (3.49b)

= x̂a+
k +

















Rn
v (u3 + v3)k





u1 + v1

u2 + v2





k

0

0

















∆t (3.49c)

and the trigger process model (to update the augmented states) is:

x̂a−
k+1 = fu

(

x̂a+
k ,uk

)

(3.50a)

=





f
(

x̂+
k ,uk

)

hUSBL
(

x̂+
k , vk

)



 (3.50b)

=





I2×2 02×2

I2×2 02×2



xa+
k +

















Rn
v (u3 + v3)k





u1 + v1

u2 + v2





k

0

0

















∆t (3.50c)

The condition that chooses the correct process model will vary from problem to

problem. In this example, if the submerged vehicle receives a query ping on the USBL

transponder, it knows to expect a measurement in the future yk+m, that relates to the

state now xk. So, a query ping serves as the trigger16 to activate conditional process

model (3.50c) for one timestep.

Conditional Measurement Models

This particular (simplified) problem only has delayed measurement updates, so the

only conditional measurement model is:

yk = hselect (xk,wk) , (3.51a)

16This assumes that the USBL transponder onboard the vehicle can signal the vehicle when it has
been interrogated. This may not be true for all USBL systems, but there is no fundamental reason
preventing it.
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ŷ−
k =

[

02×2 I2×2

]

x̂a
k, (3.51b)

= ŷ−
k+m. (3.51c)

Recall that the dummy index m is zero when the delay is over and the measurement

is fused.

Now that the augmented state vector is defined, along with appropriate con-

ditional process and measurement models, this delayed-state sigma point Kalman

filter (DS-SPKF) can be applied to filter real data. We will use field data from a

recent deployment of the AUV Sentry in this example.

3.5.3 Sentry059: Galápagos Ridge

Dive 059 was a standard bathymetric mapping survey along a portion of the Galápagos

rift. Figure 3-8 shows a map view of the first survey block, which provides the

navigation dataset for this example. The dive starts in the Northwest corner with a

short lead-in to the first survey block. Tracklines are oriented East-West, progressing

Southward in a classical lawnmower pattern. The block ends with a Northward

crossing line to provide data for later adjustments based on the multibeam data.

The goal here is to characterize the relative performance of two UKFs: one ig-

noring measurement latency, and the other using augmented states and conditional

models to treat the delayed measurements properly. Since this dataset consists of

real DR and USBL field measurements, there is no absolute ground truth to use as a

baseline. Instead, we adopt a three filter approach: one idealized filter serves as the

basis from which to compare the other two. All filters are UKFs operating with the

same process noise and measurement noise (Table 3.3).

The first filter is the baseline, it operates in postprocessing with complete knowl-

edge of the measurement delays. This filter receives measurements at the instant they

are valid, and fuses them immediately. We will call it the zero delay filter because it

is analogous to the zero delay case in the earlier DHO example.

The second filter is a traditional UKF based on (3.44) and (3.47). It receives
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Figure 3-8: Map view of the first survey block on Sentry dive 059. The tracklines
in this block are oriented East-West, which is convenient for comparing filters with
and without delay compensation since delays manifest as alongtrack error. USBL
fixes are shown as blue dots. The black, red, and green lines are position estimates
given by the UKF with no delay, untreated delay, and treated delay, respectively. The
estimates are indistinguishable at this scale–Figure 3-9 shows the differences between
them.
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Table 3.3: Timing, process noise, and measurement noise parameters used in renavi-
gation of dive 059.

T fast T slow l σv1
, σv2

σv3
σw1

, σw2

s s - m/s rad m

0.2 O(1− 10) 20-30 0.04 0.001 5.0

measurements after the USBL has computed a fix and it has been sent to the vehicle

via acoustic modem17. However, this filter ignores the fact that these measurements

are delayed, so we call its estimates ‘untreated.’

The third filter uses the delayed-state Kalman filter (DS-KF) approach. It receives

identical measurements at the same time as the second filter, but calculates the correct

delayed residual before fusing them with the current state. We call the estimates from

this filter ‘treated.’

We compare the relative performance of filters 2 and 3 by examining the position

residuals of the treated and untreated estimates. These residuals are defined:

runtreated = xzero delay − xuntreated (3.52)

rtreated = xzero delay − xtreated (3.53)

Recall that these are not residuals relative to a ground-truth.

Figure 3-9 shows absolute values for North and East residuals, as well as the

magnitude of the total two-dimensional residual vector. The untreated estimates

are worse alongtrack (i.e. East-West) than across-track (i.e North-South). This is

expected because the delayed measurements correspond to spatial errors opposite the

direction of travel. Note that the treated estimates are much closer to the baseline

by all measures. Furthermore, the residuals of the treated measurements are lower

than the USBL measurement noise standard deviation.

17Automatic acoustic downlink of position fixes was not implemented for dive 059, so this timing
has been estimated based on two-way travel times measured during the dive.
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Figure 3-9: Absolute values of position residuals from the UKF estimates with un-
treated delay (red) and treated delay (green), plotted on a log scale. The baseline is
given by position estimates of the UKF postprocessed with zero delay. 1σ, 2σ, and
3σ confidence intervals of the zero delay filter are shown in black for reference.
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3.6 LBL-aided Dead Reckoning

in Three Dimensions

This section demonstrates the model-driven approach to delayed measurement fu-

sion on another application in underwater navigation–LBL-aided dead reckoning. We

will briefly review long baseline acoustic navigation, then define the standard kine-

matic process model, then define the LBL measurement model. We then define an

augmented state and adjusted process and measurement models to support asyn-

chronous, delay-compensated aiding from the LBL system. We demonstrate the de-

layed measurement SPKF using navigational data from Sentry dive 073–a preliminary

bathymetric mapping mission within a three-transponder LBL net.

3.6.1 Mission Scenario

Long baseline acoustic positioning (LBL) provides delayed, but drift free, measure-

ments of vehicle position at a low update rate. In precision underwater navigation,

LBL measurements bound the error growth of high-rate DR or INS navigation.

LBL positioning uses ranges from two or more fixed underwater acoustic transpon-

ders to localize another transponder, usually on a submerged vehicle or instrument

package [3]. The globally referenced transponder positions are surveyed by a ship

when the LBL net is deployed. In spherical LBL positioning18, the vehicle interro-

gates the net with an acoustic signal, and each transponder replies in a unique way.

Given an estimate of the sound speed through the water, the measured two-way travel

times produce estimates of the slant range between the vehicle and each transponder

in the net.

LBL works like an acoustic version of GPS underwater–you just have to provide

your own beacons (satellites). The cost is in the ship time spent deploying and

surveying the transponders19–once that is done, the ship is free to leave the area for

18Hyperbolic LBL positioning, on the other hand, uses a passive receiver and synchronized beacons.
The receiver position is calculated using the difference in ranges to the two beacons [4, 5]. We will
focus on spherical LBL for the remainder of this section.

19and recovering them afterward
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other tasks. An AUV can continue to operate unattended without position updates

from the ship and without its navigation error growing unbounded. This flexibility

makes LBL a good solution when operations will be in the same area for several days.

However, the travel times and subsequent slant ranges used in LBL positioning are

inherently delayed. This motivates an explicit and rigorous treatment of the delay,

and makes LBL-aided DR an interesting example application for the model-driven

approach to delayed measurement fusion presented in section 3.3.

Second-order, three dimensional kinematic process model

Using the standard notation for a submerged body [110, 111], the state is:

x =
[

ηT
1 νT

1 ηT
2

]T

(3.54a)

=
[

x y z u v w φ θ ψ
]T

(3.54b)

The positions x, y, z are positive North, East, and Down in the local navigation

frame. The velocities u, v, w are positive forward, starboard, and toward the keel in

the moving vehicle frame. And, the Euler angles20 φ, θ, ψ describe roll, pitch, and

heading.

The process model is:

x̂−
k+1 = f

(

x̂+
k ,uk, vk

)

(3.55)

= x̂+
k +





(Rn

v
)k (x̂3:6)

+
k

uk + vk



∆t (3.56)

where (Rn

v
)k ∈ SO(3) is the rotation matrix from the vehicle frame to the navigation

frame, calculated from the Euler angles.

20Alternate attitude representations are better, but Euler angles are used in this example because
1) this is standard, so it will be most accessible 2) the fiber-optic gyroscope (FOG) on Sentry ouputs
Euler angles in its standard configuration 3) the FOG measurement is precise enough that it is
effectively driving the attitude variables as a control input.
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DVL measurement model

The measurement equation for DVL bottom-track velocities in instrument coordinates

is:

yDVL
k = hDVL, i (xk,wk) (3.57a)

= Ri
v











uk

vk

wk











+wk (3.57b)

ŷ−
k = Ri

v











û−k

v̂−k

ŵ−
k











(3.57c)

where Ri
v is the rotation matrix describing the misalignment between vehicle and

DVL instrument reference frames.

FOG measurement model

The measurement equation for vehicle orientation from the FOG is:

yFOG
k = hFOG (xk,wk) (3.58a)

=











φk

θk

ψk











+wk (3.58b)

ŷ−
k =











φ̂−
k

θ̂−k

ψ̂−
k











(3.58c)

Standard LBL measurement model

Traditional LBL without delay compensation Figure 3-10 assumes that the vehicle

and beacon are stationary over the interrogation period and that returns from all

159



interrogate

reply

inte
rrog

ate

rep
ly

Figure 3-10: LBL acoustic positioning using two-way travel times from multiple un-
derwater transponders. The vehicle interrogates the net, and each transponder replies
on its own unique frequency. The two-way travel times give estimated ranges to each
transponder. Combined with the known positions of the transponders, the ranges
provide an observation of the vehicle position.

beacons are available at the same time. The position of the vehicle is then calculated

by trilateration. If more ranges are available, the problem is solved using nonlinear

least squares (LS) [112]:

x̂k = argmin
xk

n
∑

i=0

∥

∥

∥

∥

(

c̄

τtwtt

)

i

− ‖xbi − xk‖
∥

∥

∥

∥

(3.59)

We could use LBL measurements like this in the same loosely-coupled fashion that we

used USBL measurements in section 3.5. However, the complex nature of the delay

in LBL measurements suggests a different way.

Asynchronous LBL measurement model

Here we use LBL-aiding as an example of a more tightly integrated measurement.

We update the position estimate of the vehicle asynchronously, fusing travel time

innovations as the response from each beacon in the net is received. One advantage

of this approach is that the navigator can perform a partial position update even if
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it only gets a return from one transponder. In section 3.6.2 we will adapt this to

explicitly account for the measurement latency.

The measurement is the two-way travel time:

yLBL
k = hLBL (xk,wk) (3.60a)

= 2c̄ (rv
b)k + τturn +wk, (3.60b)

so the a priori estimate is:

ŷ−
k = hLBL

(

x̂−
k

)

(3.61a)

= 2c̄ (r̂v
b)k + τturn, (3.61b)

where c̄ is the average soundspeed21, τturn is the turn-around-time for the beacon, and

the range from the vehicle to the beacon is geometrically defined:

(

rb
v

)

k
= (rv

b)k =

√

(xbi − xk) (xb − xv)T , (3.62)

(

r̂b
v

)

k
= (r̂v

b)k =

√

(

xbi − x̂−
k

) (

xb − x̂−
k

)T
. (3.63)

Realtime multipath and outlier rejection

The noise in LBL travel times is non-gaussian and multimodal [112, 114], outliers

cannot simply be rejected using the confidence bounds of the KF. Here we use the

field-proven three-test architecture from [112]. For a travel time to be considered

valid, it must pass three tests: a median test, a bounce test, and a wrap test. The

last two are a specific implementation of range gating for multipath, while the median

test removes obvious outliers. This is an online method, making it a good match to

run within the LBL measurement model of the asynchronous filter presented here.

21Depending on signal path and sound velocity profile, this could be a complicated function with
many different possible values for the interrogation and response. Here we assume direct-path for
simplicity. Multipath and parallel hypothesis [113] LBL measurement models are a topic of future
research.
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3.6.2 Delay Compensation

Careful thought about the nature of a two-way travel time LBL measurement leads

to the realization that a two-way travel time is really the sum of two one-way travel

times. This may seem obvious, but consider: it is actually the sum of two different

one-way travel times22 (see Figure 3-11):

interrogation the travel time from the vehicle to the beacon, and

reply the travel time from the beacon back to the vehicle.

Assuming the beacon is stationary (as we have been all along), each of these travel

times can be estimated independently by the vehicle in realtime. The interrogation

travel time is based on the range from the vehicle to the beacon at the instant the

vehicle pings the net:

yowtt
k−l = τ biinterrogate = howtt (xk−l,xbi, c(z)) , (3.64a)

=
1

c̄
‖rbi

k−l‖2, (3.64b)

=
1

c̄

√

(xk − xbi)(xk − xbi)
T . (3.64c)

The reply travel time is based on the range from the beacon to the vehicle at the

instant the vehicle receives the return:

yowtt
k = τ bireply = howtt (xk,xbi, c(z)) , (3.65a)

=
1

c̄
‖rbi

k ‖2, (3.65b)

=
1

c̄

√

(xk − xbi)(xk − xbi)
T . (3.65c)

22This is not a novel observation, but many existing implementations ignore this fact. Explicit
delay compensation is necessary to handle an LBL measurement this way. After formulating the
problem independently using the model-driven approach presented in this research, it was brought
to my attention that a similar treatment existed in [104]. That work uses state augmentation with
a full state copy to handle delayed measurements, as discussed in section 3.1.2.
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These combine in the LBL measurement of the true two-way travel time:

ytwtt
k = htwtt (xk,xk−l,xbi , c(z)) , (3.66a)

= τ biinterrogate + τtat + τ bireply, (3.66b)

= howtt (xk−l,xbi , c(z)) + ttat + howtt (xk,xbi , c(z)) , (3.66c)

= τtat +
1

c̄

(

√

(xk − xbi)(xk − xbi)
T +

√

(xk − xbi)(xk − xbi)
T
)

, (3.66d)

which replaces the earlier form (3.61b) that did not capture the delay.

With a more complete understanding of the two-way travel time measurement, we

are now ready to apply the model-driven approach to delayed measurement fusion.

Augmented state

The LBL measurement equation (3.66) is an example of a composite measurement

delay–the actual measurement is a combination of delayed and undelayed parts (Fig-

ure 3-12). Instead of using an a priori estimate of the whole two-way travel time as

the augmented state, we will only use the part we can calculate at the trigger instant

(k − l). This is the interrogation travel time, or the one-way travel time from the

vehicle to the beacon. We will have one augmented state for each beacon in the net23:

x̂a
k =























x̂k

τ b1interrogate

τ b2interrogate
...

τ
bj
interrogate























=























x̂k

ŷ
owtt,1−
k+m

ŷ
owtt,2−
k+m

· · ·
ŷ
owtt,j−
k+m























(3.67)

23 In applications with four or more beacons, using the vehicle position for the augmented states
would lower the dimension of the filter slightly. The measurement model would then need to compute
a priori estimates of one-way travel times for both interrogation and reply before calculating the
two-way travel time and the measurement innovation. The difference in dimensionality is so small
that this becomes a matter of personal preference.
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· · · xk−l xk−l+1 · · · xk−1 xk xk+1

· · · yk−l yk−l+1 · · · yk−1 yk yk+1

· · · x̂a
k−l x̂a

k−l+1 · · · x̂a
k−1 x̂a
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k+1

trigger

fuse

interrogation
reply

Figure 3-12: Graph of asynchronous LBL-aided DR. The LBL measurement is a
composite observation of the system state at two distinct instants, and involves both
diagonal and vertical connections (red). The trigger conditional process model and
fuse conditional measurement model manage the augmented states that serve as extra
memory, allowing the system to store information about the system state at the
interrogation instant k − l.

LBL interrogation process model

We update the augmented state for each of the beacons individually at the interro-

gation instant. Keeping the convention of looking back in time on the trigger, the

interrogation instant is (k − l), and the conditional process model at that instant is:

x̂a−
k−l =























x̂a+
k−l−1

howtt (x̂k−l−1,xb1, c(z))

howtt (x̂k−l−1,xb2, c(z))
...

howtt
(

x̂k−l−1,xbj , c(z)
)























(3.68)

The default process model simply leaves the augmented states unchanged, as usual.

Delay-compensated, asynchronous LBL measurement model

Just as with the uncompensated asynchronous LBL model, we fuse the information

from each two-way travel time as it becomes available. The difference is that we use

the augmented states and (3.66) to compute the a priori estimate of the full mea-

surement, and compute the travel time innovation based on that. The measurement
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equation is:

ŷ−
k = ha−twtt (x̂a

k,xbi, c(z)) (3.69a)

= τ biinterrogate + τtat + τ bireply, (3.69b)

= hselect (x̂a
k, bi) + τtat + howtt (x̂a

k,xbi, c(z)) , (3.69c)

where hselect (x̂a
k, bi) simply selects the interrogation one-way travel time for the rele-

vant transponder from the augmented states.

The filter continues to run until it receives a reply from another beacon, at which

time it fuses that measurement. The augmented states are not updated until the

interrogation at the beginning of the next LBL cycle.

3.6.3 Sentry073: H̊akon Mosby Mud Volcano

This section evaluates the performance of the asynchronous LBL-aided DR filter using

navigational data from field deployments of the oceanographic AUV Sentry. We will

compare the estimates from the fully delay compensated filter to two different filters:

interrogate assumes the two-way travel time is an observation of the system state

only at the time the vehicle interrogates the net24, and

reply assumes the two-way travel time is an observation of the system state only at

the time the vehicle receives the reply.

Unfortunately, due to the complex nature of LBL measurement delay, it is not possible

to implement a comparable filter with the delays artificially removed25 as we did in

section 3.5.3.

The LBL-aided DR filter was used to renavigate data from Sentry073, the initial

multibeam survey during a research cruise in September/October 2010 on the H̊akon

24Note that this filter still requires delay treatment, because the two-way travel time measurement
is not available at the interrogation instant.

25One might consider doing this in a more traditional LBL system with explicit calculation of
geographic position fixes, but that is not directly comparable to the asynchronous approach taken
here.
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Figure 3-13: Map view of the initial multibeam survey mission Sentry dive 073.
The tracklines in this block are oriented North-South. The locations of the three
transponders in the 12 kHz LBL net are marked by colored circles. The black line
marked PPL uses the DSL standard postprocessing with traditional LBL and explicit
position fixes. The green line is the fully delay compensated realtime LBL-aided DR
filter detailed in this section. The fundamental difference in LBL measurement fusion
makes a direct comparison of these two trajectories questionable, but the PPL track
is useful as a sanity check for the realtime filter.

Mosby mud volcano in the Barents Sea. These dives were part of a research cruise

led by Dr. Antje Boetius with the goal of characterizing the bathymetry, sub-bottom

composition, and chemistry surrounding the mud volcano.

Figure 3-13 shows the trajectory of Sentry during this first dive, and the locations

of the three transponders in the LBL net that the Sentry team deployed and surveyed

prior to the dive. After two crossing lines at the beginning of the dive, the tracklines

are primarily North-South, covering over 68 kilometers at an average speed of 1 m/s

and and average depth of 1245 m. Figure 3-14 shows the components of the vehicle

position throughout the dive.
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Figure 3-14 shows the horizontal26 components of the difference between vehicle

position estimated by the fully delay compensated filter and the filters assuming τ twtt

is based solely on the interrogation state and assuming τ twtt is based solely on the reply

state, respectively. The position estimates of the different filters vary on the order of

1-10 m, with a periodicity that may be linked to the change in directions progressing

through tracklines. Unfortunately, without an independent ground truth, it is difficult

to say with certainty which estimate is most correct–the measurement equation (3.66)

for the fully delay compensated filter certainly reflects the true nature of the two-way

travel time most closely. Figure 3-16 shows the filter confidence intervals in North

and east directions throughout the course of the dive. Despite having the same filter

parameters and receiving the exact same measurements from all navigational sensors,

the filters with LBL measurement models based solely on interrogation state and

reply state have larger confidence intervals than the fully delay compensated filter.

This indicates that the models in the fully delay compensated filter may be more

consistent with the measurements it is receiving.

3.7 Discussion and Conclusions

We’ve presented a flexible, model-driven approach to fuse information from delayed

measurements in realtime. We used the proven framework of Kalman filter, and our

model-driven approach does not change any of the underlying machinery of the KF.

The delay treatment is mathematically rigorous and optimal for linear systems–it is a

tractable, efficient, and principled approach for nonlinear systems. We characterized

the estimation error using a simulation of a simple canonical system, then applied the

approach to the real-world problem of navigating an underwater vehicle in the deep

ocean, both with a decoupled example (USBL-aided DR) and with a more integrated

example (LBL-aided DR).

This is really just the beginning. With a straightforward approach to delayed

26We don’t show the vertical component simply because undelayed measurement from the pressure
depth sensor constrain this state similarly for all three filters.
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measurement fusion based on the workhorse KF framework, future directions to in-

vestigate might include:

• principled delay treatment in internal estimates of the shipboard USBL system

• other operations concepts and associated delay structures (e.g., USBL on a

tethered vehicle like an ROV)

• more complicated acoustic travel time models using raytracing

• incorporating measurements from bounce (return) paths of LBL without needing

any additional augmented states.

• incorporating wrapped LBL replies in very long range missions by using addi-

tional augmented states

• using the asynchronous LBL example presented here, with explicit delay com-

pensation, in a single transponder or mobile transponder navigation scenario
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Chapter 4

Discussion and Conclusions

This dissertation has presented details on three contributions to the art of automated

realtime underwater navigation. The theory behind each of these contributions has

been explained in detail. And each contribution has been demonstrated in simula-

tion, with laboratory data, or in the field. Some of these contributions have been

demonstrated in all three arenas.

Here we briefly review the results and conclusions from each chapter, and comment

on promising future directions for each research thread.

Navigation Sensor Alignment

We presented the Doppler velocity log (DVL)/fiber-optic gyroscope (FOG) sensor

alignment problem and posed it as a general rotation identification problem. After

expressing the problem in Geometric Algebra (GA), we proposed a simple adaptive

identifier and proved its asymptotic stability. We demonstrated this identifier in

simulation, then applied it to DVL/FOG alignment on underwater vehicles in the

laboratory and in the field. Using the alignment estimated by the rotor identifier in

dead reckoning (DR) improved agreement of the position estimate with long baseline

(LBL) observations. The rotor identifier performed comparably to previously reported

techniques based on rotation matrices.

Future directions one might take with the rotor identifier include:
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• investigation of the acceleration-velocity form of DVL/inertial navigation system

(INS) alignment as studied using rotation matrices in [62, 63]

• a proportional-derivative form of the identifier for enhanced noise rejection and

increased control of identifier dynamics

• an identifier on the full group of rigid-body motions–rotation as well as translation–

using rotors in a higher dimensional GA

• applications to align other sensors (camera, multibeam, etc. . . )

Finally, the clarity and intuition gained by posing the rotation identification problem

in GA has proven useful in this first application of GA to underwater robotics. It is

possible that similar benefits are waiting if we apply GA to other underwater problems

(e.g., hydrodynamics, the full six degree-of-freedom navigation equations, or control

problems)

Dead reckoning through the water column

We proposed a method for dead reckoning through the water column using overlapping

water profile measurements collected by a vehicle-mounted acoustic Doppler current

profiler (ADCP). We demonstrated this proof of concept using three implementations:

• an online bin average approach,

• a batch weighted least squares (WLS) approach, and

• an online recursive least squares (RLS) approach.

We applied these implementations to data from the ascent at the end of several

Sentry missions, and compared the DR track to external ultra-short baseline (USBL)

observations where possible.

Although this technique is not quite ready for field service on deep autonomous

underwater vehicles (AUVs), it holds great promise. Dead reckoning using ADCP

water profile measurements enhances the autonomy of underwater vehicles because it
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enables underwater navigation without dependence on external systems. It provides

a link between Global Positioning System (GPS) at the surface and DR or terrain-

relative navigation near the seafloor.

Future work in this thread should focus on demonstrating a full operation–from

surface to seafloor and back–on a small AUV, possibly with higher frequency ADCP.

Model-driven delayed measurement fusion

We’ve presented a flexible, model-driven approach to fuse information from delayed

measurements in realtime. We used the proven framework of Kalman filter, and

our model-driven approach does not change any of the underlying machinery of the

Kalman filter (KF). We demonstrated the approach in simulation on a damped har-

monic oscillator (DHO), and showed that the filter with explicit delay compensation

approached the performance of a filter without any measurement delay. We replicated

this result using real-world data from Sentry for USBL-aided DR, then applied it to

asynchronous LBL-aided DR, again using field data from Sentry.

With a straightforward approach to delayed measurement fusion based on the

workhorse KF framework, future directions to investigate might include:

• rigorous delay treatment in internal estimates of the shipboard USBL system

• other operations concepts and associated delay structures (e.g., USBL on a

tethered vehicle like an remotely operated vehicle (ROV))

• more complicated acoustic travel time models using raytracing

• incorporating measurements from bounce (return) paths of LBL without needing

any additional augmented states.

• incorporating wrapped LBL replies in very long range missions by using addi-

tional augmented states

• using the asynchronous LBL example presented here, with explicit delay com-

pensation, in a single transponder or mobile transponder navigation scenario
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The sigma point Kalman filter (SPKF) foundation of the USBL-aided DR and LBL-

aided DR field examples is ideally posed to leverage high-fidelity dynamic vehicle

models. Including these (instead of a simple kinematic model) will make each filter

implementation vehicle- or application specific, but promises the added benefit of

robustness to sensor outages and potentially increased capability for fault detection.

In the end, I find the more I know, the less I know. This dissertation has raised

more questions than it has answered, but it has answered the ones it set out to.

Underwater navigation remains an interesting and challenging field, one simply has

to choose the next topic and dive in.
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LADCP lowered acoustic Doppler current profiler

INS inertial navigation system

IMU inertial measurement unit

FOG fiber-optic gyroscope

RLG ring-laser gyroscope

AHRS attitude and heading reference system

LADCP Lowered Acoustic Doppler Current Profiler
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GA Geometric Algebra

LA Linear Algebra

SVD singular value decomposition

MMSE minimum mean-squared error

LS least squares

WLS weighted least squares

RLS recursive least squares

CLS constrained least squares

WSLR weighted statistical linear regression

KF Kalman filter

ESFR error-state feedback regulator

EKF extended Kalman filter

UT unscented transform

SUT scaled unscented transform

UKF unscented Kalman filter

SPKF sigma point Kalman filter

DS-KF delayed-state Kalman filter

DS-SPKF delayed-state sigma point Kalman filter

IF information filter

DSSM discrete state space model

HMM hidden Markov model

JHU Johns Hopkins University

DHO damped harmonic oscillator
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Appendix A

Sigma Point Kalman Filters

This appendix is included to give the reader a basic introduction to the unscented

Kalman filter (UKF), which was used as the underlying framework for USBL-aided

dead reckoning in section 3.5 and LBL-aided dead reckoning in section 3.6.

A.1 The Unscented Transform

Julier & Uhlmann introduced the scaled unscented transform as a general method for

approximating nonlinear transformations of random variable distributions in [93,95].

It is a derivative-free method, in that it requires no analytical Jacobians, only a

forward model of the transformation. It performs weighted statistical linear regression

(WSLR) on a small set of deterministically selected sample points to approximate the

moments of the transformed random variable distribution.

Consider a random variable x ∈ Rp. The scaled unscented transform parameters

α, β, κ, define the sigma point scaling factor:

ς = α
√
p+ κ (A.1)

and the sigma point weights:

γ = ς2 = α2 (p+ κ) (A.2)
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wm
0 =

γ − p

γ
(A.3)

wc
0 = wm

0 + 1− α2 + β (A.4)

wm
i = wc

i =
1

2γ
i = 1, . . . , 2p+ 1 (A.5)

Refer to [95, 99] for guidance on selecting appropriate parameters.

The scaled unscented transform (SUT) begins by deterministically sampling the

original random variable. This generates 2p+ 1 sigma points:

X =
[

x̄ x̄+ ς
√
Px x̄− ς

√
Px

]

(A.6)

where x̄ denotes the expected value of the random variable x, and
√
Px is the matrix

square root of the covariance (e.g. by Cholesky decomposition).

The nonlinear function g (x,u) then transforms these sigma points:

Y = g (X ,u) (A.7)

and the first two characteristic moments of the transformed random variable are

approximated by the weighted sample mean and covariance of the transformed sigma

points :

ȳ ≃
2p
∑

i=0

wm
i Yi (A.8)

Pỹỹ ≃
2p
∑

i=0

wc
i (Yi − ȳ) (Yi − ȳ)T (A.9)

where Yi denotes the i-th column of the transformed sigma point matrix.

A.2 The Unscented Kalman Filter

The predict step of the unscented Kalman filter (UKF) is simply a recursive applica-

tion of the SUT to propagate the state vector xk through process and measurement
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models. Equation (3.7a) then gives the Kalman gain, and the a priori predictions are

updated using the measurement when it is available.

The UKF handles general process and measurement noise through state augmen-

tation [93,98,99]. This ensures that uncertainty in noise is treated in the same manner

as uncertainty in state.

In this study, we augment the state first with the delayed measurements, then

with the noise variables:

xa
k =

















xk

yd
k+n

vk

wk

















=











xs

xv

xw











k

(A.10)

The state prediction step is:

X
a
k =

[

x̂a+
k x̂a+

k + ς
√

P+
x
a
k

x̂a+
k − ς

√

P+
x
a
k

]

(A.11)

X
s−
k+1 = f (X s

k,uk,X
v
k) (A.12)

x̂s−
k+1 =

2p
∑

i=0

wm
i X s−

i,k+1 (A.13)

P−
x̃
s
k+1

=

2p
∑

i=0

wc
i

(

X s−
i,k+1 − x̂s−

k+1

) (

X s−
i,k+1 − x̂s−

k+1

)T
(A.14)

the measurement prediction and calculation of the Kalman gain can be done before

the measurement is actually received:

Y
−
k+1 = h

(

X
s−
k+1,uk,X

w
k+1

)

(A.15)

ŷ−
k+1 =

2p
∑

i=0

wm
i Y−

i,k+1 (A.16)

P−
ỹk+1

=

2p
∑

i=0

wc
i

(

Y−
i,k+1 − ŷ−

k+1

) (

Y−
i,k+1 − ŷ−

k+1

)T
(A.17)

P−
x̃
s
k+1

ỹk+1
=

2p
∑

i=0

wc
i

(

X s−
i,k+1 − x̂s−

k+1

) (

Y−
i,k+1 − ŷ−

k+1

)T
(A.18)

Kk+1 = P−
x̃
s
k+1

ỹk+1

(

P−
ỹk+1

)−1

(A.19)
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Now the filter is ready to update the a priori estimates as soon as it receives the

measurement:

x̂s+
k = x̂s−

k +Kk

(

yk − ŷ−
k

)

(A.20)

P+
x̃
s
k
= P−

x̃
s
k
−KkP

−
ỹk
KT

k = P−
x̃
s
k
−P−

x̃
s
k
ỹk
KT

k (A.21)

This is the cycle of the UKF: sample, predict, update, repeat.

Note that the noise states and covariances are not modified by this algorithm.

The sigma points they generate are important for accurate and robust prediction,

but not directly used during the update step.
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