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Fuel Consumption Prediction Methodology for Early
Stages of Naval Ship Design

Abstract

In recent years, fuel consumption has increased in importance as a design parameter in
Navy ships. Economical fuel consumption is important not only for operating cost
measures but also for ship endurance tankage requirements. Minimizing fuel
consumption has many benefits for both naval and commercial ships. This thesis work
will suggest a new comprehensive approach to early-stage ship design to determine fuel
consumption for the whole system.

A hull must be designed to work harmoniously with an optimized propulsor and
propulsion plant to ensure best performance and to comply with imposed design
requirements. Thus, this work will address three main aspects of the fuel consumption
equation:

" Ship's resistance is calculated using a computational fluid dynamics simulation of
the vessel in calm water at various speeds up to maximum speed.

" Propeller performance is based on propeller curves for the chosen propulsor.
" Efficiencies of the drive train and electrical production and distribution system are

calculated for all operating conditions. Note that for an electric-drive ship, the
non-propulsion electrical loads must be included in the calculations.

These three major components of the ship efficiency equation are assessed for each speed
and battle condition of the mission profile. In addition, the corresponding operating
conditions for each piece of machinery will be specified to estimate the total fuel
consumption and tankage required.

In this thesis work, I will suggest a design methodology to determine hull resistance and
total power for a given ship with a specified operational profile. The total power for the
operational profile will be translated to fuel consumption, thus producing annual fuel
consumption requirements and recommended tankage to support the operational needs.

Thesis advisor: Chryssostomos Chryssostomidis
(Professor of Mechanical and Ocean Engineering)
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Chapter 1 - Introduction

Fuel consumption became in the last few years a critical design parameter in early

phases of ship design. Naval ships, which have a large spectrum of operational

requirements, need to be also designed to optimize fuel consumption. This thesis work

will suggest a new comprehensive approach to ship design in the aspects of still water

resistance, propeller optimization, drive train efficiencies and design (to comply to the

operational needs) and fuel consumption for the whole system.

Throughout history, ship resistance predictions during design were the key to a

successful design. Many methods were developed for that need; some examples include

analytic, numerical, and parametric (based on history and experience). Resistance

predictions are the base to machinery and drive train design, speed assessments, tankage,

annual fuel usage and life cycle cost (LCC) predictions and many more important

parameters leading to critical decision making through the design process.

Even today, early stages of design, and preliminary design of a ship, are based on

databases of former designs, and empirical calculation based on very few characteristic

parameters of the ship.

As years went by, computational science gained power and became a key player in the

fields of computational fluid dynamics (CFD) with use of finite volume methods (FVM),

and panel method calculations. Even so, it is still uncommon to find the use of CFD

methods for preliminary design.

This thesis work suggests a methodology for early design resistance calculation based on

commercial CFD software (STAR CCM+) being used as a replacement for an expensive

tow tank test which is usually done in much later stages of design. The results, which are

well correlated with tow-tank tests, prove the efficiency (price of calculation vs. accuracy

of results) of the method, which is also the foundation for annual fuel consumption

prediction (for a specific operational profile), endurance, and tankage calculations.



This thesis lays out the whole methodology starting with the CFD-based resistance

calculation, through engine load predictions and fuel consumption assessment for given

conditions.

In an era where fuel consumption is a critical parameter in design, and has many

environmental aspects, an early accurate prediction is valuable and desired. The thesis is

organized as follows: Chapter 1 provides a graphical view of the methodology for a

model ship based and Full scale based methodology. Chapter 2 describes the CFD

resistance calculation for a model ship Chapter 3 demonstrates the transformation from

model scaled ship to full scale, and calculates the bare hull resistance. Chapter 4 shows

the calculation made for the propeller power, efficiencies and cavitation. Chapter 5

discusses the drive train, efficiencies, and power distribution methods and calculates the

total brake power requests from the engines. Chapter 6 applies the calculation for the

ship's fuel consumption and Chapter 7, by using the Navy data sheet, demonstrates the

tankage requirements for the ship. Chapter 8 discusses the annual fuel use.

Chapter 9 gathers the conclusions and summation for the report.

Chapter 10 describes further research that is recommended to be complimentary to the

work done for this report.

An overview of the methodology is presented on the following pages.



The methodology used for this work (Using model Scale):

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

---- ---- --- ---- ---- --- -- - ---- ---

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
--------------- I ------------------------------------



The methodology for a Full scale ship:

---------------------------------------------------------------------

- -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



Chapter 2 - Bare-Hull Resistance Calculations

2.1. Background

A ship's hull is a complex structure moving in a stochastic environment like the ocean

causing precise resistance calculations to be the "Holy Grail" of ship designers. While

traversing the ship design spiral, the naval architect will use various methods to predict

the ship's resistance, starting from basic statistical methods based on similarity, data

bases, and empirical calculations, through complicated CFD software models, tow tanks

for scaled models, and finally a prototype. Despite this process, the ships resistance is

known just for the conditions tested, while being exposed in reality to a changing

environment and randomly changing conditions. And yet, within that uncertainty, a ship

designer should be able to predict the ship's behavior and make sure it complies with

specifications.

Ship's resistance force, which is the force needed to tow a ship at a defined speed in

water, can be separated into different significant components (Larsson and Raven, 2010):

- Frictional resistance: The ship's hull is moving through a viscous fluid. On the

hull, the speed of the water equals the hull's speed (no relative motion). Within a

thin layer defined as the boundary layer, viscous forces apply on the hull. The

frictional resistance includes the flat plate friction (25%-65% of the total

resistance) and a roughness factor (5%- 10% of the total resistance).

" Residuary Resistance: All components of resistance not included in frictional

resistance, including the form effective pressure resistance (known also as viscous

pressure resistance), the form effective friction, and the wave-breaking and wave-

pattern resistance.

Alternatively, the total resistance can be divided into viscous resistance (sum of all the

members described above but the two wave-related parts) and wave-making resistance,
which includes the two members related to waves.



The resistance is often calculated for a bare hull, so resistance components must be added

for the appendages and for air resistance of the freeboard and superstructure.

In the early stages of design, after the hull, the propulsors and the drive train are

preliminarily designed, it is very common to use a tow tank to validate earlier

assumptions and refine the calculation for ship resistance.

Tow tank experiments are an expensive procedure, and some of the tests need to be

repeated for statistical analysis (for results deviation and error assessment). Therefore a

cheaper, faster and, most importantly, as accurate method to predict full scale resistance

forces is highly desired.

CFD (Computational Fluid Dynamics) methods are considered a very powerful,

relatively cheap and accurate tool to use for such calculations.

The methodology presented herein will use STAR-CCM+C© software to calculate the

total resistance of the hull and will be demonstrated on a scaled hull of the DTMB 5415

at scale of 1:24.824. From the scaled hull results the total resistance of a full scale ship

will be calculated in a similar process of extrapolating the resistance coefficients from the

tow tank results from the scaled model to the real ship.

2.2. The CFD Model

As mentioned, the program that was used for the CFD calculation was STAR-CCM+C, a

Generic RANS (Reynolds-Averaged Navier Stokes) Finite Volume solver with the

mixture of fluids approach for considering two different fluids - air and water in our case

- including pre- and post-processors. Further details can be found in the Gothenberg and

Lyngby workshops (Gothenberg workshop, 2010).

The method of modeling we adopt, common in standard CFD programs, is to define the

volume of fluid around the body as a control volume using the following process:

a. Import the hull geometry.



b. Build the boundaries of the domain surrounding the hull (can be any desired

shape).

c. Subtract the hull geometry from the domain volume.

d. Create the surface and volume meshes.

e. Define the physics and boundary conditions.

f. Define the characteristics.

Each one of the steps needs careful attention to fit the problem.

2.2.1. Hull Geometry

The methodology suggested should be valid for any mono-hull ship. The model tested for

the calculation in this work is the DTMB (David Taylor Model Basin) #5415 which is an

unclassified hull similar to the DDG-51 combatant. The reason for choosing this specific

hull model was the large amount of data available for validation of the predictions,

including tow tank test results for different scale models.

Figure 1 - Hull DTMB 5415

Hull parameters (Basic condition):

Parameter Symbol Full scale Model

Scale factor A - 24.824

Length between perpendiculars L (m) 142.0 5.720

Length at water level LWL(m) 142.0 5.720

Overall length Los(m)

Breadth B(m) 18.09 0.76

Draft T(m) 6.16 0.248

Trim angle (deg) 0.0 0.0

Displacement A(t) 8636.0 0.549

Volume V(m 3 ) 8425.4 0.549



Wetted surface Sw(m 2) 2949.5 4.786

Table 1 - DTMB 5415 parameters

The hull geometry was originally modeled in a CAD program (Rhinocerosc) in full scale

and was scaled to the right model size.

Then it was meshed to an STL (Stereo lithographic triangular elements) format file so it

can be imported into Star-CCM+.

Figure 2 - Hull DTMB 5415 (STL mesh)

While meshing, it is important to pay attention to areas that might experience flow

acceleration, high turbulence, or create vortices such as sonar dome/bulbous bow, bilge

keels and around any complicated geometry.

Figure 3 - Sonar dome finer mesh



Another point to notice is that the geometry model, which is made up of surfaces, must be

closed without overlapping or incorrectly connected surfaces. Any case where the

surfaces are connected poorly will result problems while generating the volume mesh for

the CFD calculation.

Star-CCM+ includes a surface/element fixing tool, but it is highly recommended to

import the CAD in a final form so element and surface adjustments will not be a

necessity.

2.2.2. Control volume - Volume of fluid

One of the most important decisions taken into the design of the domain of fluid and air

around the hull is its optimal size. A volume which is too large will add many elements

(cells), hence many unnecessary equations to solve, for less interesting parts of the

problem. Even selecting a gradual growth of cell size from the hull outwards might not

help or may even reduce the accuracy in points of interest.

A volume that is too small will have an effect on the results due to the influence of

conditions imposed on the boundaries that normally are true at infinite distance.

Therefore, the size should be just right and planned carefully. Trial and error can verify

that the volume is not too small.

For the DTMB 5415, the width of the volume to port and starboard was selected as the

same dimension as the tow tank, which is 9 meters (y = ±4.5).

For the X dimension, one ship's length towards the bow (X+) was modeled, measured

from mid-ship, and about two ship's lengths towards the stem, measured also from mid-

ship.

On the vertical axis, it is recommended to define the water-plane as the symmetry plane

for water and air; that choice makes the calculation of the free surface more accurate

since the elements are either air or water and not mixed (water and air elements have a

separating surface at the waterplane).



Figure 4 - Control volume around the hull (side view)

Symmetry

Figure 5 - Control volume around the hull (top view)

Outlet

4),



2.2.3. Boundary Conditions

The boundary conditions on each surface are set up as follows:

Hull - The boundary condition on the hull is a no-slip condition (zero relative speed) and

no flow penetration into the wall (in the normal direction).

Inlet - At the inlet, the flow velocity is uniform and defined. The frontal area of the

boundary block was defined as a velocity inlet condition, with the magnitude of the

velocity set equal to the ship speed and the direction defined as into the block. The height

of water plane and hydrostatic pressure are also defined for the inlet plane.

Outlet - On the outlet area surface, a pressure outlet was defined to allow continuous

flow simulation exiting the block, with zero gradient on the flow variables and mean

hydrostatic pressure. The initial condition was defined as hydrostatic pressure only.

Symmetry plane - The model was designed for half the ship, which allows better mesh

around the hull for given number of cells. A symmetry plane was defined to reflect all

data for the other side of the ship.

Top - Defined as pressure outlet to avoid any influence of the boundary on the air flow.

Side wall - Defined as a symmetry wall to create conditions close to unbounded fluid.

Despite this, it is clear that numeric inaccuracies will create reflections from the wall

making it closer to a real tow tank condition. A wall condition could also be defined but,

due to the Venturi effect that can create transverse forces (due to acceleration of fluid

between the hull and the wall), it seemed less accurate.

Bottom - We chose a symmetry boundary condition (that is equivalent to a slipping wall

condition) to avoid unnecessary calculations of the boundary layer effect in this region.

Allocation of the surfaces is shown in Figures 4 and 5.



2.2.4. Meshing and Evaluating Mesh Quality

The key to create an accurate calculation with FVM (Finite Volume Methods) is the

quality and efficiency of the mesh.

A mesh that is too fine (with very small cells) might produce good results but the time it

takes to run can be very long and will require small time steps to satisfy the Courant

number criteria. On the other hand, a coarse mesh might produce faster calculations but

result in incorrect results or even a total crash of the simulation.

For Star-CCM+C, and most other CFD programs, a mesh can be imported from meshing

programs like Gambit, GridGen and many others, but Star-CCM+ also includes a

meshing module to create the surface and volume meshes. We used the Star-CCM+

meshing module to mesh the DTMB 5415.

For a model of a ship it is highly important to base the size of the cells on physical

understanding of the problem and the properties of the mesh. Gradual growth of cell size

reduces the total number of elements inside the volume of fluid while allowing smaller

elements to be close to area of interest, e.g. for the boundary layer next to the hull.

The process of meshing is based on the hull surface mesh, which should be very fine, and

the control volume walls, which can be coarse.

If frictional resistance is an important parameter (and for a ship it is), the boundary layer

should be meshed correctly. An important parameter to evaluate the quality of the mesh

in the boundary layer around the hull is called y+ which is a non-dimensional description

of distance from a wall in relation to local height of the boundary layer and wall shear

stress parameters. The expression of distance from the wall in y+ units is important in

defining velocity and turbulence distributions in a universal form suited to wall functions.

A very important requirement in the application of wall functions in CFD is that the

computational cells adjacent to the wall have a height, usually expressed in y+ units,

compatible with the wall functions being employed (A. de Souza, 2005).



An important parameter is the wall shear stress r, (drag per unit area). Like any other

stress this has dimensions of [density]x[velocity]2 and hence it is possible to define an

important velocity scale called the friction velocity u, (can also be written u*):

UT = -

Using speed and kinematic viscosity, v, it is possible to form a viscous length scale

1V = v/uT. Hence, we may define non-dimensional velocity and distance from the wall

in so-called wall units:

U+= U
UT

and:

+ y -Yu
yV

Where y is the normal distance from the

reference velocity.

The value of y+ should be under 100 for

number wall function is used as in our case.

values on the hull.

wall to the wall-cell centroid and U is the

good quality results when high Reynolds

Star-CCM+C can show rather simply the y+

Another important parameter that should be checked for mesh/time step evaluation is the

Courant number, which indicates the relation between the speed of fluid particles and the

size of the elements.

For a given flow the Courant number can be calculated as follows:

n

Axi



where:

- u is the velocity in direction xi.

- At is the time step.

- Ax is the length interval

- i is the dimension index (ID, 2D or 3D).

It is recommended to keep the courant number lower then 1 by adjusting element size or

time step size.

When the model is running, the number of inner iterations and the time step will affect

the ability to converge. A large number of inner iterations or the selection of a small time

step might help the solution to converge but will increase the calculation time

significantly. For that reason the time step should be as large as possible (within

allowable Courant number), and the number of inner iterations should be kept low,

viewed during the run, and adjusted for optimal value (between 2 to 5).

In any case, it is recommended for any FVM method to check the convergence of

numerical results with respect to the mesh density (mesh sensitivity analysis). The mesh

should produce converged results, such that a finer mesh will make very little change in

the accuracy, and a coarser mesh might reduce the accuracy more significantly. The mesh

that should be chosen should be the coarsest mesh that achieves convergence.

2.2.5. Modeling the Physics

Modeling the physics of the problem has an extensive impact on the results. Users must

have a thorough understanding of the models used, and of their limitations and

assumptions. In this section two significant physical models are discussed: the volume of

fluid method and the k-Epsilon turbulence method.

2.2.5.1 Volume of Fluid (VOF) Method

In computational fluid dynamics, the volume of fluid method (or in short VOF method) is

a numerical technique for tracking and locating the free surface (or fluid-fluid interface).



It belongs to the class of Eulerian methods which are characterized by a mesh that is

either stationary or is moving in a certain prescribed manner to accommodate the

evolving shape of the interface. As such, VOF is an advection scheme - a numerical

recipe that allows the programmer to capture the shape and position of the interface, but it

is not a standalone flow solving algorithm. The Navier-Stokes equations describing the

motion of the flow have to be solved separately. The same applies for all other advection

algorithms.

The method is based on the idea of so-called fraction function C, which is defined as the

integral of the fluid's characteristic function in the control volume (namely, the volume of

a computational grid cell). Basically, when the cell is empty, with no traced fluid inside,

the value of C is zero; when the cell is full, C = 1; and when the interface cuts through the

cell, then 0 < C < 1. C is a discontinuous function since its value jumps from 0 to 1 when

the argument moves into the interior of a traced phase.

The fraction function, C, is a scalar function. While the fluid moves with velocity in

three dimensions:,

V = [u(x, y, z), v(x, y, z), w(x, y, z)],

every fluid particle retains its identity, i.e. when a particle is a given phase, it does not

change phase. For example, a particle of air that is part of an air bubble in water remains

an air particle, regardless of the bubble movement. Thus we must disregard processes

such as the dissolving of air in water. For this to be so, then the substantial derivative of

fraction function C needs to be equal to zero:

-+ V - AC = 0.
at

2.2.5.2 Turbulence Model: K-Epsilon (k - E)

Solving the full time-dependent fluctuating state of the turbulence within the fluid can be

a very complicated procedure, and for most applications it is unnecessary. Models based



on mean flow without solving the full state first can be applied and provide sufficiently

good results.

The K-Epsilon model selected for this calculation is based on the mean Kinetic Energy of

the fluid such that:

1
K = (kinetic Energy/unit mass) = -(U

2 + V 2 + W 2 )2

k = mean turbulant kinetic energy = (u 2 + P-2 + W2),

where U,V and W are the flow velocity components, and u', v', and w' the average

turbulent boundary layer velocity.

The instantaneous Kinetic Energy k(t) is the sum of K and k.

k(t) = K + k

The dissipation rate of k is epsilon (E). And:

k 2
pt = turbulent viscosity oc

We then solve two partial differential equations for k and E:

(pk) + div(pkU)
at

--E)+ div(pEU) =

= div [-- grad [k]]

div rtgrad [E] +

+ 2ptEi; Ej; - pE

E E£2
CpEi;Ei; - C2p

Uk L.O(Prandtl number)

UE1.3 (Prandtl number)

where



C1 ~ 1.44

C2 ~ 1.92

The values are the default values for this turbulence model, as given in the Star-CCM+C

User Manual (eqn 412).

The CFD program solves the equations at each iteration and calculates the mean viscosity

and thus equivalent stresses in the turbulent flow.

2.3. Preparing the CFD Results

When creating the CFD cases, the form of the plots and outputs should be clearly decided

in advance. Properly choosing the output parameters will make sure that they are

calculated during the process and saved in the results database.

For the cases created for this thesis, the following parameters were pre-defined for

review:

- frictional resistance force in the x direction (selected only on hull cells).

- pressure forces in the x direction (selected only on hull cells).

- total force in the x direction (summing the frictional and pressure).

- pitching moment (y direction).

- lift force on the hull (z direction).

The graphical views selected for visualization were:

- Convective Courant number (the speed vs. cell size parameter).

- y+ non-dimensional turbulence (boundary layer mesh evaluation).

- Elevation of the free surface.

Some of the parameters were chosen with the intention to use them for the resistance

calculations and others were chosen for evaluation and control of the results during the

run of the CFD model.



For easier terminology and commonality to the final methodology, the speeds referenced

will be the correlated ship speeds and not the model speed (unless specified otherwise).

2.4. CFD Results

For each (ship) speed from 10 knots to 30 knots (with a 5 knot step), a CFD model was

built. The running trim and sinkage were taken from the tow tank test results (reference)

average values and applied to the CFD model. The output requested from the CFD run

was:

- frictional resistance force (continuously measured)

- pressure resistance force (continuously measured).

- total resistance force (continuously calculated).

- water surface elevation contour plot.

Calculating for speeds lower than 10 knots could not be compared to the tow tank results.

The tow tank results for speeds lower than 10 knots seemed not accurate enough for a fair

comparison. The result from the towing tank experiments shows a higher resistance force

at 5 knots then in 10 knots which does not make real sense.

2.4.1. Speed of 30 Knots (Fr=0.41)

For the speed of 30 knots (Fr=0.41), Figure 6 shows a typical free wave pattern generated

by the hull.
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Figure 6 -30 knots water surface elevation

The peak height of the bow wave as seen in figure 7, created at a constant speed of 30

knots was 0.155 meters. The value is normalized by the length of the ship with a resulting

non-dimensional value of 0.027.

Poton( (im)
-0.072209 -0.0265% 0.019018 0.06463 1 0.11025 0.15586

Figure 7 -30 knots, Bow wave
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Figure 8 -30 knots, Resistance force components plot

Figure 8 shows an oscillation in the results for the pressure force, which makes the total

force oscillate as well. The phenomenon of the oscillation will be discussed and

elaborated in the next chapters of this report.

Input and results are summarized in Table 2. Note that the raw CFD results as presents in

figure 8 were for half the hull (symmetry assumption for calculation efficiency). The

results in table 2 are already multiplied by factor of two.

Model Ship Speed Froude Trim (deg) Sinkage (m) Friction Pressure Total

speed(m/s) (kts) Number (constant) (constant) Force Force Resistance

R3(N) Rp(N) RN)

3.071 30 0.41 -0.42 0.026 64 82 164

Table 2 - 30 kts CFD result summary

2.4.2. Speed of 25 Knots (Fr=0.34)

This section provides the results for the speed of 25 knots (Fr=0.34).
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Figure 9 - 25 knots water surface elevation
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Figure 10 - 25 knots Bow wave
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Figure 11 - 25 knots Resistance force components plot

Table 3 - 25 kts CFD result summary
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Model Ship Speed Froude Trim (deg) Sinkage (m) Friction Pressure Total

speed(m/s) (kts) Number (constant) (constant) Force Force Resistance

Rf(N) Rp(N) RT(N)

2.54 25 0.34 0.08 0.016 45 32 77



2.4.3. Speed of 20 Knots (Fr=0.28)

This section provides the results for the speed of 20 knots (Fr-0.28).

Centrod(21 (m)
0.020271 0.047540 0.074809 0.10208

Figure 12 -20 knots water surface elevation

Figure 13 - 20 knots Bow wave
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Figure 14 - 20 knots Resistance force components plot

Table 4 -20 kts CFD result summary

2.4.4. Speed of 15 Knots (Fr=0.20)

This section provides the results for the speed of 15 knots (Fr-0.20).

Centrod(? (m)
-0.022291 00.389669 0.024084-0.045478 0.047272 0.070459

Figure 15 - 15 knots water surface elevation
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Model Ship Speed Froude Trim (deg) Sinkage (m) Friction Pressure Total

speed(m/s) (kts) Number (constant) (constant) Force Force Resistance

Rf(N) Rp(N) RT(N)

2.097 20 0.28 0.108 0.001 31.12 13.04 44.16
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Figure 16 -15 knots Bow wave

Figure 17 - 15 knots Resistance force components plot

Model Ship Speed Froude Trim (deg) Sinkage (m) Friction Pressure Total

speed(m/s) (kts) Number (constant) (constant) Force Force Resistance

Rf (N) Rp(N) R-(N)

1.501 15 0.2 0.061 0.053 16.22 6.4 22.62

Table 5 - 15 kts CFD result summary

2.4.5. Speed of 10 Knots (Fr=0.14)

For the speed of 10 knots (Fr-0.14), Figure 18 clearly shows the wake form and waves

from bow and stem, but also another wave (low amplitude) running from the inlet

-0.045478

-0 R
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Rt
-25 

1~m~ic

-0.022291 0.00089669 0.024W



backwards. The wave was assumed to be generated from a numeric error in the inlet. It

didn't seem to decay in time, so further investigation is needed. Despite this spurious

wave, the simulation indicated the average value clearly.

-0.028849
Centrold( (M)

-0.015317 -0.0017849 0.011747 0.025279

Figure 18 - 10 knots water surface elevation
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Figure 19 - 10 knots Bow wave
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Figure 20 - 10 knots Resistance force components plot

Model Ship Speed Froude Trim (deg) Sinkage (m) Friction Pressure Total

speed(m/s) (kts) Number (constant) (constant) Force Force Resistance

Rf(N) Rp(N) RT(N)

1.03 10 0.14 0.028 0.0025 8.26 3.88 12.14

Table 6 - 10 kts CFD result summary

2.5. Comparing CFD to Tow Tank results

2.5.1. Total resistance comparison

Keeping in mind that one of the goals of the methodology presented in that thesis is to

replace early stage tow tank experiments with a CFD model, it is necessary to show that

the CFD results are accurate enough when compared to the results found in the tow tank.

As mentioned in earlier chapters, the hull that was tested to demonstrate the method was

the DTMB 5415 (U.S. Combatant).

Table 7 summarizes the results. The total absolute error for higher speeds (above 20 kts,

Fr-0.28) is relatively low - less than 5%. For lower speeds (10 kts and less) we know

that the tow tank results may present large errors themselves so no comparison runs were

made using CFD.

CA Q,4P6w/,
V V V V V V

Rp_AVG

- - RtAVG

-- f

-- p



Fr Tow tank CFD Error

Ship Speed (kts) Rf(N) Rr(N) Rt(N) Rf(N) Rr(N) Rt(N) Rf% Rr% Rt%

10.0 0.13 8.470 1.424 9.894 8.200 4.000 12.200 3.182 -180.839 -23.309

15.0. 0.20 16.561 4.646 21.207 16.220 6.400 22.620 2.061 -37.760 -6.663

20.0 0.28 29.605 13.429 43.034 31.120 13.040 44.160 -5.117 2.898 -2.616

25.0 0.34 43.652 29.875 73.527 44.800 30.000 74.800 -2.630 -0.418 -1.731

30.0 0.41 62.491 90.189 152.680 64.000 82.000 146.000 -2.414 9.080 4.375

Table 7 - Comparing CFD results to Tow Tank Results

The tow tank results for the frictional resistance are the ITTC '57 line. Calculation of the

ITTC line is described in Section 2.5. It seems that the ITTC '57 friction line calculation

closely approximates the frictional resistance found using the CFD process; differences

are very small for this type of hull.

The higher error results occurred in the pressure resistance part of the total resistance.

It can clearly be shown on a comparative resistance curve (Figures 21, 22 and 23) that the

total resistance predictions using CFD nicely approximate the tow tank experiments.

The tow tank results present the total resistance force. For comparison sake, the total

resistance can be separated into frictional resistance (calculated by the ITTC '57) and

pressure resistance (calculated by subtracting the friction resistance from the total). If

from some reason the ITTC '57 formula under-predicts the friction resistance, then the

residual resistance part will be larger, and the opposite for over-prediction. That is the

reason that the real comparison between the experiment and the CFD calculation will be

for the total resistance only. For our case it shows that when the frictional resistance

calculated by CFD is larger (negative error sign) then the pressure resistance prediction

error will have the opposite sign (positive error sign).
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Figure 21 -Friction Resistance (CFD vs. Tow Tank)
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Figure 22 - Pressure Resistance curve (CFD vs. Tow tank)



Figure 23 - Total Resistance Curve (CFD vs. Tow Tank)

2.5.2. Wave pattern comparison

The results from the tow tank experiments presented two different analyses for the waves

generated by the hull: Wave elevation profile along the hull, and longitudinal wave cuts

at three given lateral distances from the hull centerline.

Wave elevation profile - Along the hull.

The wave elevation contour along the hull was measured in the tow tank experiment for

two speeds, 20 knots (Fr=0.28) and 30 knots (Fr-0.41). The results were presented in a

non-dimensional form, normalized by the length of the ship.

The results in figures 24 and 25 show the tow tank results vs. the CFD results for the

speeds discussed above:

Total resistance
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Figure 24 - Wave elevation profile (Fr=0.28)

xai

Figure 25 - Wave elevation profile (Fr=0.41)

Figure 24 shows a good correlation of the CFD results with the tow tank measurements,
in terms of the first bow wave (peak height) and the wave profile over the entire ship

length.

Figure 25 shows some differences, especially at the bow and stem. It seems that the stern

wave is not well captured. The difference in the peak height of the bow wave can be

partially ascribed to the difficulty to capture and measure the wave which is breaking, as

can be seen in Figure 7. The difference at the stem could be also due to underestimating

the bow wave which interferes differently with the stern waves.

Longitudinal Wave Cuts

The wave cuts were measured for one speed only - 20 knots (Fr=0.28) - at three different

lateral distances from the hull centerline (Y/L=0.082, 0.172, 0.301), as shown in figure



26. Figures 27 and 28 show comparisons of the CFD and tow tank wave cuts at Y/L =

0.082 and 0.172 respectively.

Figure 26 - Wave cut locations

Figure 27 - Wave cut Y/L=0.082

Figure 28 - Wave cut Y/L=0.172
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The wave cut for Y/L=0.301 was not used for comparison due to the coarseness of the

CFD mesh that was used in the far field of the domain for optimizing the number of

elements. It can be seen in Figures 27 and 28 that wave cuts from the CFD results are not

smooth curves, but show discrete steps. Each step corresponds to a constant value that is

equal to the height of the volume cells used in that area; larger steps indicate larger

elements. In the CFD model, it was decided to create a fine mesh near the hull, and a

coarse mesh farther away, so wave cuts farther from the hull will have even larger steps.

In the tow-tank report (Olivieri, 2001), the author added a photo of the bow wave at

Fr-0.28. The visual comparison in Figure 29 between the CFD and tow-tank results

shows a similar bow wave length along the bow and a similar crest length. Note that the

sonar dome appears different in the two images due to the refraction of the light as it

passes through the water surface in the experiment.

Figure 29 - Bow wave, Fr=0.28 (CFD vs. Tow tank)



2.6 From Model to Ship (Bare Hull)

Since the CFD example run in this work was a scale-model vessel, in order to validate the

numerical results, before continuing calculations, the resistance must be projected from

the small scale-model to a full size ship as done in tow tank tests. Please note that this

section applies to this example only; in full use of this methodology, the CFD model

would be full-size and no scaling would be required. The development in this section is a

standard method found in many Naval Architecture texts; we refer to (Zubaly 1996).

Based on similarity coefficients, the non-dimensional Froude and Reynolds numbers are:

V
En = and

VL
Rn = -- ,

where V is ship or model speed, g is the gravitational constant, L is ship or model length

between perpendiculars, and v is viscosity of the fluid. It is impossible to achieve

complete dynamic similitude of the Reynolds and Froude numbers simultaneously

between the scale model and the full scale ship due to the inability to change viscosity

and gravity in a way that will compensate for the scale difference. Therefore, we separate

the Reynolds-dependent part (frictional resistance) and the Froude-dependent part

(residual resistance):

Ctotai = C(Rn) + C(Fn) = CFriction + CResidual = CF + CR CT

For the scale model:

CTM = CFM + CRM

And for the full size ship:

CTS = CFS + CRS



The model is scaled to match Froude numbers, so the Reynolds-dependent resistance is

calculated instead of scaled. Since we have similitude in the Froude number and not in

Reynolds number, we can say:

CFM * CFS

CRM CRS

We get CTM from the CFD/Tow tank model and calculate CFM using the ITTC 1957 line

(ITTC 7.5-02-03-01.1, 2002):

0.075
CF = ( _ogR, - 2)2'

Thus, residual resistance is calculated to be:

CRM = CTM - CFM-

Although both the frictional and the pressure-caused forces can be obtained directly from

the CFD model, we chose to use the ITTC 1957 line to calculate frictional resistance in

this case for sake of consistency.

Calculating the ship's frictional force coefficient using the ITTC1957 line and assuming

that the residual coefficient of the resistance force is equal for the ship and the model, we

can find the total resistance coefficient for the ship:

( 0.075 )+C
CTS = (logR- + CM + CA,

where CA is the correlation allowance used for a non-perfectly-smooth hull, and is usually

taken as 0.0005 (NAVSEA, 1984). The US Navy Design Data Sheet on calm-water

resistance, DDS-051 (NAVSEA, 1984), recommends adding 0.0007 as the correlation

allowance for two years without dry docking and cleaning (yielding a total correlation

allowance of 0.0012). In this work a value of 0.0005 was used for a new hull.



Chapter 3 - Full-Scale Total Resistance

3.1 Background

For a given hull, the bare-hull resistance for ship's speed from zero to maximum desired

speed is calculated using STAR-CCM+ CFD software by following the procedure

described in Chapter 2 with a full-scale model of the vessel. To obtain total resistance,

we must add appendage and air resistance, which are calculated as described in this

chapter.

3.2 Appendage Drag

The bare-hull resistance indeed has the largest contribution to the total resistance, but

other external appendages can add 10%-30% to the total resistance.

The formula suggested in DDS-051, the U.S. Navy Design Data Sheet for calculating

calm-water resistance (NAVSEA, 1984), is based on empirical data collected from other

ships and calculates the added power required to overcome the resistance of the

appendages:

L - VD - V - CD(AP)
PE(AP) =K

1

where

L- is the ship length between perpendiculars.

D, - is the propeller diameter

V - is the ship speed

CD(AP) - Is the drag coefficient found from Figure 30

K1 - is the unit conversion constant.
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Figure 30 -Appendage Resistance Coefficient

Using Figure 30, for a ship with a fixed-pitch propeller and a length of 466 feet, the value

for the appendage drag coefficient is 2.3.

3.3 Still-Air Drag

Still-air drag does not have an extensive effect on the ship's resistance, especially at

lower speeds. Regardless, the DDS-051 suggests a formula to calculate the effective

power of the air resistance:

PE(AA) . - - CAA -,
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Ay - is the above-water transverse area

CAA - is the air drag coefficient (taken as 0.7 for destroyers or 0.75 for auxiliary ships)

X 10,

2.5 F

5 10 15 20 25

Speed(kts)

Figure 31 - Full Scale Ship Resistance Force

3.4 Total (Propulsion) Effective Power

The ship's total effective power at each speed is the power that the propellers will have to

deliver into the water to overcome the resistance forces. It is common to calculate the

effective power as (Zubaly, 1996):

EHP = R * VS

where Rs is the ship's total resistance (N) and Vs is the ship's speed.

The total EHP will have to include also the added power for appendages and air drag

EHPt = EHP + PE(AP) + PE(AA)

The resistance force and the total effective power (EHP) are shown in Table 9.

-Total resistance
0

-- Appendage resistance
- Airresistance

y

'



Ship Speed Fr Bare hull Appendage Air Drag Total EHP (HP)

(kts) resistance (N) Resistance (N) (N) Resistance (N)

10 0.13 0.12e+06 0.26e+05 0.37e+04 0.15e+06 1.08e+03

15 0.20 0.30e+06 0.59e+05 0.83e+04 3.71e+06 3.84e+03

20 0.28 0.58e+06 1.Oe+05 1.48e+04 7.04e+06 9.72e+03

25 0.34 1.07e+06 1.6e+05 2.3e+04 1.26e+06 2.18e+04

30 0.41 2.27e+06 2.3e+05 3.3e+04 2.54e+06 5.26e+04

Table 8 - Total Resistance and Effective power

3.5 Total Thrust

Total thrust required is greater than the resistance calculated due to the thrust deduction

coefficient t:

T = S
(1 - t)

where T is the total thrust that the propeller is required to supply. The resistance of a

self-propelled ship is different from that of a towed ship because the presence of an

operating propeller changes the pressure distribution of the water around the hull, so the

real thrust will be somewhat higher than the towed bare-hull thrust; t, the thrust deduction

coefficient, accounts for this change.



Chapter 4 - Propeller Calculations

4.1 Propeller Load points

In the process of designing a new ship, the propeller design becomes a critical factor for

testing feasibility of the design.

The interaction between the hull, propellers and engines should be carefully investigated

and defined in a way that will produce an effective hull form that can accommodate

engines and supporting machinery units with propellers that can efficiently deliver the

power requested.

Generally speaking, increasing the propeller's diameter and decreasing the rotational

velocity will produce higher propeller efficiency. Since the hull's shape and propeller

proximity usually limit the allowable size of the propeller, the efficiency of the propeller

is relatively low (around 70% at optimal conditions).

It would be possible to design a new propeller for the ship using software such as MIT's

OpenProp, an open source propeller design tool (Kimball and Epps 2010); however, this

is beyond the scope of the current project. For simplicity purposes, the propeller that was

Figure 32 - DDG-51 propellers (Jansengineering, 2009)



selected for the calculation was the same propeller that was used for the self-propulsion

tow tank experiments. The characteristic parameters of the propellers were taken from

the self-propulsion test report (Borla 1984).

The propellers used for the tests were from series 4876 and 4877 (Borla 1984). The full-

scale diameter was set to be 5.18 meters (17 feet), which is the same size that is installed

on the DDG-51 (Kravitz 2011), shown in Figure 33.

Figure 33 - 4876/4877 Propeller parameters, (Borla 1984)

The following coefficients are commonly used in propeller design (Woud and Stapersma,

2008):

PropeUers 4876 4 4877
Dimter 8.701 in. (221.01 m) Pitch 13.475 in. (342.26 m)
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Advance coefficient:

Thrust coefficient:

Torque coefficient:

CT KT T
8.12.7T ~p-V 2.R 2

KQ Q
LQ 16-2. 2 3'.PTVa RP

where Vs is ship speed, n is propeller rotation rate, Dp is propeller diameter, T is thrust

developed at the corresponding advance coefficient, p is water density, V = Vs (1 - w) is

the mean speed of the wake the propeller encounters, w is the wake fraction which

accounts for the variation in speed of inflow to the propeller, R, is the propeller radius,

and Q is the torque. Since Vs, R,, and T are already known, J and n can be calculated for

the desired speeds and KT, KQ and rJo can be determined using Figure 33. The results for

the full-scale ship are presented in Table 10.

Speed (kts) Advance Ratio KT KQ r7o n(RPM)

(J)

0 -

5 1.187 0.218 0.0538 0.768 25.09

10 1.256 0.184 0.0474 0.778 47.41

15 1.244 0.190 0.0486 0.777 71.83

20 1.228 0.198 0.0500 0.775 96.98

25 1.194 0.215 0.0531 0.770 124.68

30 1.106 0.257 0.0609 0.745 161.59

Table 9 - Propeller parameters results

vs
n-Dp



Figure 34 - Points of interest on propeller curves

Given J allows the calculation of KQ and the propeller rotational velocity (revolutions per

minute) so the torque (Q) can be calculated by:

Q = KQ - p -n 2 DS

And the power that needs to be produced:

Pp = 2 -r -n - Q (i)

Using the resistance values from Table 9 and the propeller speeds from Table 10, we use

Equation (i) to find the required propeller power. Assuming the shaft transmission

efficiency is equal to 1, this is the power required as the output of the propulsion motor.

Results are listed in Table 11.



Table 10 - Power delivered by propellers

4.3 Cavitation

Fitting a propeller to the ship is a complicated process that takes many factors into

account:

a. Hull clearance: Propeller blade tips should have a sufficient clearance from the

hull above.

b. Propeller Clearance: If the ship has more than one shaft, the designer must make

sure that the distance between the shafts and propellers will not create any

interaction, and disturbance on the propellers.

c. Cavitation: At higher speed of rotation, back cavitation may occur on the blades

and create few unwanted phenomenon: 1. Pitting the blade - the collapse of the

boiled pressurized water bubble can cause a substantial damage to the blade

surface. 2. Thrust breakoff - a degradation in the propeller performance.

Since the design and optimization of a propeller are not within the scope of this work,

calculating and presenting the cavitation behavior of the propeller in different speeds as a

parameter for comparison and evaluation is suggested.

A very common criterion to compare propellers from a cavitation point of view is

the Burrill curves as presented in many Naval Architecture texts. The curves are a

Speed (kts) n(RPM) Ppx104 (HP)

0 - -

5 24.76 0.0246

10 46.41 0.1462

15 70.43 0.5206

20 95.28 1.3193

25 122.98 2.9782

30 160.89 7.4294



logarithmic representation of empiric parametric characteristics of the propeller, and

present lines of constant blade back cavitation, as can be seen in Figure 35:
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Figure 35 - Burrill Curves for Cavitation (Burrill, 1962)



Figure 36 - Burrill Curves for Cavitation with AE.DDG51

It is clear that for the chosen propeller, which is not optimized for the hull, to expect that

more than 10% of the blade will be covered by back cavitation. Lower speeds seem to be

well below the line of the 2.5% and less.

It is also noticeable that the line that corresponds to naval warships is very close to the

10% back cavitation line, which confirms that the results are reasonable.

The influence of the cavitation on the performance (Thrust breakdown) should be small

and can be calculated as part of a future development of this work, as suggested in the

"Future Research" chapter.



Chapter 5 - Drive Train and Power

5.1 Machinery Configuration

The DDG51 operated by the US Navy has a mechanical drive train consisting of 4 LM-

2500 gas turbines as prime movers (with a mechanical reduction gear box) and 3 Allison

(AL501-K34) Gas Turbine generators for all ship service loads as shown in Figure 37.

Ship service load

Figure 37 - Original DDG51 Drive Train

For this project, we assume an electric-drive ship with the propulsion and ship service

load supplied by 4 LM-2500 gas turbine generators via a single electrical distribution

system as shown in Figure 38.

Ship Service Loads

A

Figure 38 - Electric Drive DDG51 Drive Train



5.2 Total Engine Brake Power Calculation

Fuel consumption for an engine (gas turbine) is a function of the power it produces and

the rotational speed of its shaft (RPM). Chapters 2 and 3 show the methodology used for

finding the thrust required for a given speed, and Chapter 4 calculates the power that is

needed to be delivered to the propeller to create this thrust. This chapter will discuss the

methodology to calculate the total brake power that the engines deliver.

5.2.1 Operational Assumptions

Naval ships operate at various conditions during their service time, and even during a

single mission. For example, operating in peacetime, battle condition, or at anchor will

drastically change the equipment that is in use and the power demands of that equipment.

For this project, we use the following five primary operational conditions:

a. Shore power - The ship is moored pierside, connected to a base utility

power grid. At this condition, the generators produce none of the power

for the ship's systems.

b. Anchor - The ship is at sea, but not moving, so the power produced by

the generators is used for ship service loads and auxiliary systems only.

None of the power is used for propulsion.

c. Peacetime Cruise - Power is produced for propulsion (speed dependent)

and for basic ship service loads only.

d. Wartime Cruise - Power is produced for propulsion (speed dependent)

and ship service loads, with fully functional weapon and defense

systems, prepared to be activated at any given time.

e. Battle - Power is produced for propulsion (speed dependent) and ship

service loads with all weapons and defense systems operating. Power

generation is in a high-redundancy configuration so all generators are

operating regardless of the power required.

To meet the power requirements of the different operational conditions at various speeds,

the number of gas turbine generators in use must be selected. When a ship has multiple



shafts and multiple generators, a large number of combinations for operating the ships

machinery can be created that would satisfy the power requirements. Some will be more

efficient than others, and sometimes less efficient configurations will be chosen for

operational considerations such as redundancy, engine hour limits, and others.

We make the following assumptions for our notional electric-drive destroyer:

a. No trailing shaft condition - both shafts are active at all times. This assumption is

made for an electric-drive ship since any generator can deliver power to both

electric motors with relatively low losses. This assumption will not be valid for a

mechanical drive train in which a gas turbine is directly connected to only a single

shaft, thus placing the engine load in an inefficient range for low speeds.

b. All generators are connected, and can deliver power to any electric motor.

c. While operating, all of the generators on line carry the same load (equal power is

produced by each generator).

5.2.2 Operational Machinery Configurations

From the assumptions above, the machinery operational matrix was created, defining the

number of generators that are operated for each of the operational condition and ship

speed configurations as shown in Table 11.

Peacetime Wartime
Speed(kts) Shore Pwr Anchor cuie Cruise Battle

Cruise Cruise
0 0 1 1 2 4
5 0 0 1 2 4

10 0 0 1 2 4
15 0 0 1 2 4
20 0 0 1 2 4
25 0 0 2 3 4
30 0 0 4 4 4

Table 11 - Machinery configuration

The data was assumed for the calculations only. It is not correlated to any real

documented machinery operational data, and can be changed easily in the Matlab code

for future calculations.



5.2.3 Propulsion Power

The propulsion power is the portion of power that is used for moving the ship through the

water. The thrust is created by electric power delivered to the electric motor, which

rotates the shaft and propeller at the proper rotational speed.

In Chapters 2 through 4, the required thrust for each ship speed and the correlated

rotational speed for the shaft and propeller were calculated. The total power required

from the gas turbines for propulsion only is calculated by the power delivered from the

propeller to the water, divided by the efficiencies up the line to the gas turbine. These

efficiencies include the motor and motor drive; the transmission system, the generator

and rectifier if applicable, and the gas turbine.

The electric

We use the

Table 12.

motor efficiency, 77pmm, is a function of the power delivered to the propeller.

generic values given by DDS-200-1 (NAVSEA 2011) and interpolated into

Speed(kts) Shore Pwr Anchor Peacetime Wartime Battle

Cruise Cruise

0 N/A N/A 0.84 0.84 0.84

5 N/A N/A 0.85 0.85 0.85

10 N/A N/A 0.88 0.88 0.88

15 N/A N/A 0.89 0.89 0.89

20 N/A N/A 0.91 0.91 0.91

25 N/A N/A 0.94 0.94 0.94

30 N/A N/A 0.94 0.94 0.94

Table 12 - Electric Motor Efficiency

Dividing the value of TBP(HP) by the number of running engines (Table 11) produces

the total brake power for propulsion loaded on each running engine. The results are

gathered into Table 13.



Speed (kts) Shore Pwr Anchor Peacetime Wartime Battle

Cruise Cruise

0 0 0 0 0 0

5 0 0 0.0259 0.0129 0.0065

10 0 0 0.1539 0.0769 0.0385

15 0 0 0.5482 0.2741 0.1371

20 0 0 1.3887 0.6943 0.3472

25 0 0 1.5675 1.0450 0.7837

30 0 0 1.9551 1.9551 1.9551

Table 13 - Propulsion power per engine online (x10 4 HP)

5.2.4 Ship Systems Electric Load

The ship systems electric load is mostly utilized for weapon systems operation and

auxiliary systems.

It is assumed here that the ship loads do not change with ship's speed, only with battle

condition; thus each operational state (Battle, Wartime Cruise, etc.) has a characteristic

load that is constant with speed. This load is shown in Table 14.

Shore Pwr Anchor Peacetime Wartime Battle

Cruise Cruise

Ship Electric 0 6000 11000 13000 14000

Load (HP)

Table 14 - Ship Electric Load (HP)

Detailed analysis of the electrical distribution system is beyond the scope of this project.

To obtain an appropriate efficiency for distribution of power to the ship service loads, we

used the notional electrical distribution systems proposed for use in the Electric Ship

Research and Development Consortium (ESRDC 2011) and the associated efficiencies

for specific pieces of equipment as determined during the analysis for (Chioccio, 2011).

We assumed a constant efficiency for the electrical distribution system of rmvac = 0.94



for a medium voltage DC (MVDC) distribution system and

7,mvac = 0.98 for a medium voltage AC (MVAC) distribution system. This calculation is

shown in Appendix B.

5.2.5 Total Brake Power

The total brake power is the power produced by the engines, before being used,

transformed or distributed to other systems/consumers, and is usually referred to as BHP

(Brake Horsepower) when using horsepower units.

From all power calculations through the drive train components, the brake power is the

last one calculated, summing the ship's service electric loads (divided by the electric load

efficiencies) and the propulsion power load (divided by the electric/mechanical

efficiencies).

The Total Brake power is calculated as follows:

T otal ship load power
Total Brake Power(MVDC) = Propulsion brake power +

1lmvdc

Total ship load power
Total Brake Power(MVAC) = Propulsion brake power +

mvac

Note that the efficiency for the propulsion power is the same for MVDC and MVAC.

This is because the propulsion motors are driven by a variable-frequency motor drive. In

the MVAC system, a rectifier is required prior to the motor drive; in the MVDC system,

the power is rectified before transmission, so the efficiencies are the same. This rectifier

efficiency is included in the motor efficiency described above. While there is some slight

difference in the cable losses in the transmission of the power from the generators to the

motors, the difference is negligible for this study.

The results for MVDC are shown in Table 15.



Speed (kts) Shore Pwr Anchor Peacetime Wartime Battle

Cruise Cruise

0 0 0.638 1.170 1.383 1.489

5 0 0 1.196 1.408 1.515

10 0 0 1.324 1.536 1.643

15 0 0 1.718 1.931 2.037

20 0 0 2.558 2.771 2.878

25 0 0 4.305 4.518 4.624

30 0 0 8.990 9.203 9.309

Table 15 - Propulsion power MVDC(x10 4 HP)

The results for MVAC are shown in Table 16.

Speed (kts) Shore Pwr Anchor Peacetime Wartime Battle

Cruise Cruise

0 0 0.612 1.122 1.326 1.1.428

5 0 0 1.148 1.352 1.454

10 0 0 1.276 1.480 1.582

15 0 0 1.670 1.874 1.976

20 0 0 2.511 2.715 2.817

25 0 0 4.257 4.461 4.563

30 0 0 8.942 9.146 9.249

Table 16 - Propulsion power MVAC(x10 4 HP)



Chapter 6 - Fuel Consumption Prediction

Fuel consumption prediction for an engine, and especially for a gas-turbine engine, is a

complicated process that needs to take many factors into account in order to get a good

estimation.

The fuel consumption of a gas turbine is a function of the power, the RPM, the inlet

temperature of the air, and more. High temperatures may lower the maximum power of

the turbine, and change its fuel consumption. For the sake of this calculation, and

without data to describe the ambient temperatures the ship might operate in, it was

decided to calculate for the optimal conditions of 59F.
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The gas turbines, as described earlier in this report, were standard LM-2500 GT with the

SFC (Specific Fuel Consumption) curve in Figure 39.

To produce AC power, the generator is operated at a constant speed of 3600 rpm. For a

DC distribution system, the power is rectified immediately after being generated, so

frequency can vary and the gas turbine can thus be operated at the most efficient speed

for its load. Thus, interpolating Figure 39 for constant speed of 3600 rpm and for most

efficient speed produces the SFC curves shown in Figure 40 for the MVAC and MVDC

power distribution systems.

0.6 -

0.5 1 1.5
PowetHP)

2 2.S 3
x10'

Figure 40 - MVDC and MVAC S.F.C curves

Figure 40 shows clearly, that for low power loads, MVDC will

MVAC. At high power loads (above 20,OOOHP per engine) the

since the RPM will get closer.

consume less fuel then

S.F.C will be the same

Table 17 and 18 show the specific fuel consumption values per engine hp-hour for the

power requirements at each speed and battle condition for MVDC and MVAC

respectively.

-- -MVDC
-MVAC

I I I I I



Speed (kts) Shore Pwr Anchor Peacetime Wartime Battle

Cruise Cruise

0 0 0.583 0.463 0.567 0.724

5 0 0 0.460 0.563 0.717

10 0 0 0.446 0.542 0.690

15 0 0 0.414 0.485 0.627

20 0 0 0.380 0.436 0.551

25 0 0 0.394 0.427 0.459

30 0 0 0.390 0.388 0.387

Table 17 - MVDC S.F.C (lb per hp-hour)

Speed (kts) Shore Pwr Anchor Peacetime Wartime Battle

Cruise Cruise

0 0 0.678 0.497 0.654 0.926

5 0 0 0.491 0.647 0.913

10 0 0 0.469 0.616 0.858

15 0 0 0.424 0.530 0.744

20 0 0 0.382 0.454 0.622

25 0 0 0.396 0.439 0.485

30 0 0 0.391 0.389 0.388

Table 18 - MVAC S.F.C (lb per hp-hour)

It is clear to see from Figure 40 and Tables 17 and 18 that when engines are highly

loaded, the specific fuel consumption in MVDC is similar to MVAC, while at lower

loading conditions, the difference is significant. Table 19 compares the SFC for MVDC

and MVAC as a percentage of increased SFC from MVDC to MVAC.

Speed (kts) Shore Pwr Anchor Peacetime Wartime Battle

Cruise Cruise

0 N/A 16% 7.2% 15% 27.8%



5 N/A N/A 6.8% 14.8% 27.2%

10 N/A N/A 5.3% 13.7% 24.3%

15 N/A N/A 2.4% 9.2% 18.6%

20 N/A N/A 0.4% 4.0% 13.0%

25 N/A N/A 0.57% 2.9% 5.5%

30 N/A N/A 0.23% 0.2% 0.19%

Table 19 - SFC percent difference between MVDC and MVAC

Since the number of working engines for each operational configuration was determined

arbitrarily (without any formal Navy document to confirm) the numbers for the real ship

will probably be different. The trend however is clear - MVDC is using the engines more

efficiently at lower loads.



Chapter 7 - Tankage

The formal Navy document for tankage calculation is the DDS-200 (NAVSEA, 2011).

The document suggests different methods for calculation of required fuel tank capacity.

In this work we demonstrate the methodology for endurance fuel capacity calculation.

The document (DDS-200) suggests an operational profile for DDG-51 slightly different

than the one we selected in earlier stages of the research. Since the methodology can be

adapted to any operational profile, any ship, and any power management configuration,

the tankage was calculated for the operational profile that was used so far.

The DDS-200 recommends calculating the amount of fuel required for three possible

scenarios, and using the largest of the three results to size onboard storage tanks. The

three scenarios include:

1. Range: Traveling at endurance speed for the ship's required range (we use 5000

nautical miles at 16 knots)

2. Surge to theatre: traveling at maximum sustained speed for a surge range (we use

2000 nautical miles at 30 knots)

3. Operational presence: conduct operations for a specified number of days without

refueling (this requires a specific mission profile over a typical day)

Due to the difference in the operational profiles, this work did not include the Operational

Presence calculation.

The results calculated for cases 1 and 2, for MVAC and MVDC are shown in Table 20.



MVDC MVAC

Peace time War time Battle Peace time War time Battle

cruise cruise cruise cruise

Endurance Tankage 1,336 1,656 2,166 1,318 1,689 2,398

Surge to theatre Tankage 1,294 1,317 1,328 1,290 1,312 1,322

Table 20 - Fuel Tankage (Meters tons)

With the assumption of Peace Time Cruise as the guiding condition for endurance

tankage, the result will be 1,336 tons for MVDC and 1,318 for MVAC.



Chapter 8 - Annual Fuel Consumption

One important parameter, calculated for the ship's LCC (Life Cycle Cost) is the annual

fuel usage - the tonnage of fuel used by one ship in one year (of active service, not

including repairs, or docked periods).

The goal is to have a gross assessment of the annual fuel usage, which can be used to

compare different ships or different variants.

The annual fuel consumption is calculated using the following equation:

[Operational Profile] - [S. F. C] - [Power] - [Total Time] = Annual Fuel Usage,

where "Operational Profile" is the percentage of time spent in a typical year at each

speed/condition, SFC is the specific fuel consumption (fuel consumed per hour of

operations per unit of power) of all online gas turbine generators at the power level

required for that speed/condition, "Power" is the power required to meet the speed and

battle condition, and "Total Time" is one year. Every point on the operational profile

has a correlated value of specific fuel consumption (as seen in tables 17 and 18).

For MVDC:
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= 16,746 Tons

For MVAC, applying the same process described above produced 17,275 Tons.



Chapter 9 - Summary and Conclusions

The results for the methodology presented can be separated to 3 different aspects

addressed below.

9.1. CFD case preparation:

- Star-CCM+C that was used for the resistance CFD calculation, was a very friendly

platform to work with, even though some of the functions operate as "black box" which

makes it harder to understand.

- The geometry file used for the hull has a critical importance for a successful process.

A hull with bad properties may fail the process or impose wrong answers.

- A strong computer that allows parallel computing is essential for the speed of the

process.

9.2. The CFD Calculation and Results:

- The average results for the resistance forces, generated with Star-CCM+C, seem

accurate enough (compared to the towing tank results) to be used as the resistance

predictor for the fuel consumption prediction methodology.

- For lower speeds (10 knots and lower) CFD might even be a more accurate prediction

for the resistance then towing tank experiments. The towing tank report that was used as

a reference (Olivieri,1991) proves low accuracy at low speeds.

- Despite the oscillation in the pressure force result, the average value was a good

approximation. The occurrence of the oscillation was not fully investigated and will have

to be revisited.



9.3. The Fuel Consumption Calculation:

- Figure 40 shows clearly a significant difference between MVDC and MVAC specific

fuel consumption when the engines are running at low loads.

- Electrical production and transmission is more efficient for MVDC than MVAC and

improved efficiencies can be seen for items such as variable frequency drives or variable

speed pumps or fans; however, for this example ship, in-zone electrical loads are less

efficient for MVDC because power is rectified then inverted by the distribution system,

which is not required in MVAC. Due to this, fuel requirement calculations can show

some interesting results. In our case, the annual fuel consumption is lower (more

efficient) for the MVDC version, but onboard tankage is higher because the onboard

tankage calculation is performed at a more efficient point in the SFC curve.

- Annual fuel usage includes only consuming fuel from the ships tanks for power and

propulsion. But in 53% of the time, the ship is supplied with external power and its fuel

consumption for the sake of the calculation herein, is assumed to be zero. If the

calculation is done for LCC, it is important to include the cost of power consumed at all

times.

- The Matlab code permits changes in the number of engines that are online for a given

speed and battle condition combination. It would be possible to use this code for an

optimization process to adjust the number of engines online to ensure that the engines are

loaded properly when taking operational condition into consideration. It is also important

to note that the operational profile has a significant effect on the overall efficiency

results.



Chapter 10 - Future Research

From the research done in the process of developing the methodology described in this

report, a few ideas for further research came up and may contribute to a better

understanding of the results:

1. Oscillating force results: From all the CFD runs, it was clear that the pressure

force calculated in the program is disturbed by some perturbation/numeric error

that creates an oscillatory behavior in the water. It is highly recommended to

further discuss and search for the reason for it. Then, it will be useful to eliminate

or shrink the phenomenon. Changing the mesh and the size of the domain seems

like the first step that needs to be done for better understanding of the case.

2. Free Hull in Pitch and Heave: The cases that were tested in the scope of this

report were predefined to be fixed in space, with the trim angle and sinkage taken

from the average values of the tow tank experiments. As was observed in the

results during the run, it might be interesting to check further the proximity of the

CFD prediction for heave and pitch motion, relative to the tow tank experiment.

3. Full Scale Hull: Since one basic goal of this research was to prove that the CFD

program could predict resistance accurately for use in the fuel prediction

methodology, the selected hull was a model size hull (with existing data base to

compare). Further research should run a full-scale hull and determine the accuracy

of such prediction.

4. Cavitation Thrust Breakdown: Using the Burrill cavitation criteria shows some

cavitation at high speeds. A future research can calculate the degradation of thrust

due to the cavitation.

5. Different Hull Type: It might be also interesting to see how accurate a CFD

prediction can be for different hull types such as Catamaran, SWATH, Planning

hull and more.
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Appendix A - Matlab Code

% FUEL CONSUMPTION PREDICTION METHODOLOGY FOR EARLY STAGES OF NAVAL
SHIP DESIGN

%
%

%__/ \__/Tl\_
%--_-- ---__ ______\ Eran Gheriani --- ---

%- - - ---- ------- --- -----

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%

%Main file
clear all
close all
clc

%Constants:

Lm=5.72;
Tm=0.248;
Am=4.786;
Bm=0. 76;

%Length of model (m)
%Draft of model (m)
%Underwater are of model (m^2)
%Beam of model (m)

Gama=24.824;

Ls=Lm*Gama;
Bs=Bm*Gama;
Ts=Tm*Gama;
As=Am*Gama^A2;
Dp=5.18;
z=2;
ne=4;
in2m=0.0254;

rhosw=1025;
rhofw=997;

Temp=25;
Rho air=1;
A us=400;

%Scale of model

%Length of ship (m)
%Beam of ship (m)
%Draft of ship (m)
%underwater area of ship (m^ 2)
%propeller diameter
%number of shafts
%number of gas turbine

%sea water density (kg/m^3)
%tow tank water density (kg/m^3)

%water temperature (C)
%Air density (kg/m^3)
%Upper structor front projected area (m^2)

%Viscousity formula from ITTC 1978 (doc 7.5-02)

ni_fw=((0.585e-3*(Temp-12)-0.03361)*(Temp-12)+1.235)*10e-6;
%kinematic viscousity of fresh water
nisw=((0.659e-3*(Temp-10)-0.05076)*(Temp-1)+1.7688)*10e-6;
%kinematic viscousity of Sea water

g=9.81; %gravity acceleration m/sec^2

%convert from knots to m/skts2ms=0.51444;



%Mult factor to convert from lb to kg

%Hours per year

Vskts=[0 5 10 15 20 25 30];
Vs=Vskts*kts2ms;
Vk=10;
(m/s)

% Enter experiment data results:

Vm=[0 0.51 1.03 1.54 2.097 2.54 3.071];
(m/s)
Rfm=[0 2 9 18 30 43 64];
force (N)
Rpm=[0 1 1.4 5 13 30 90];
force (N)
Rtm=Rfm+Rpm;
(N)

%f igure(1)
%plot(Vm, Rtm)

Fr-t=Vm/sqrt(g*Lm);

%ship speed in knots
%convert ship speeds to m/s
%wind velocity-assumed constant

%Speeds at tow tank

%tow tank Friction

%tow tank pressure

%tow tank total force

%Calculating the Resistance dimensionless coefficients:

Vsref=[4 8 12 16 20 24 28 32];
%reference speed from other report
R_ref=[26127.5 94773 201843.4 369106.7 652573.9 1001668.6 1756114.3
3060610.3]; %reference Resistance force from other report

L_Vm=length(Vm);
for i=1:1:L Vm

Cf m(i)=Rfm(i)/(0.5*rhofw*Am*Vm(i)^2);
resistance coeff
Cp m(i)=Rpm(i)/(0.5*rhofw*Am*Vm(i)^2);
resistance coeff

%Calculating frictional

%Calculating pressure

end

Rem=Vm*Lm/ni fw;
Re s=Vs*Ls/nisw;

%Model Reynolds number
%Ship Reynolds number

%Calculating resistance coefficients for the ship

for i=1:1:L Vm
Cfs(i)=0.075/(log10(Res(i))-2)^2;
Cp-s(i)=Cp m(i);
Cas(i)=0.0005;
Cts(i)=Cfs(i)+Cps(i)+Cas(i);

hp2kw=1/0.745;
%lb2kg=0.45359;

time=365*24;



Rts(i)=0.5*rhosw*As*Vs(i)^2*Ct-s(i); %Total bare-hull
resistance force (N)

end

%Calculating Air resistance by DDS-051-1

R_air=0.7*(Rhoair/2)*A-us.*Vs.^2;

%Calculate Hull appendages by DDS-051-1

%Calculat TOTAL ship resistance:
R_app=142*5.18*Vs.^2*2.3*10.76*7.36*745/100000;
%Appendages power calculation
R_compare=Rapp./Rt_s;
R_total=Rts+Rair+R app;
R_total(l)=0;

figure(1)
plot(Vskts,Rtotal,'r')
xlabel('Speed(kts)')
ylabel('Total Ship resistance (N)')
hold on
scatter(Vs_kts,R_total)
plot(Vskts,R app,'g')
plot(Vskts,R air,'m')
legend('Total resistance','','Appendage resistance','Air
resistance','Location','northwest')

for i=1:1:length(Vs)
EHP(i)=R total(i)*Vs(i)*1.341/(1000); % total propulsion EHP in

HorsePower
end

figure(10)
scatter(Vskts,EHP,'b')
hold on
plot(Vskts,EHP,'r')
xlabel('speed(knots)')
ylabel('E.H.P(HP)')

%Efficiencies and propeller data:

ethar=0.985; %from Julies paper or the
values vary from 0.935 to 0.950, i assumed constant
t=0.05;
w=0.015;
ethah=(1-t)/(1-w);

NGT=[0 1 1 2 4;0 0 1 2 4;0 0 1 2 4;0 0 1 2 4; 0 0 1 2 4;0 0 2 3 4;0 0



4 4 4]; %Total number of gas turbines on-line matrix

NS=[2 2 2 2 2 2 2]; %# of shafts
(1=trailing shaft,2=two shafts)

%Net=NGT_Sl+NGTS2;

T=(1/(1-t))*(Rtotal); %T is the Total Thrust
created by propellers to move ship @ Vs

for i=1:1:length(Vs)
T_Sl(i)=T(i)/(NS(i)); %T_Si is the Thrust per

shaft assuming equal power on for two shafts
T_Sl(isnan(TS1))=0;

end
T;
T Sl;
T./T_Sl;
%Input - Propeller Kt,Kq,J from Experiment prop 4876/4877

J=[O.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.75 0.8 0.85 0.9 0.95 1.00 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
1.5 1.55 1.6];
Kt=[0.7615 0.7475 0.7315 0.7130 0.6935 0.6715 0.6490 0.6255 0.6015
0.5765 0.5515 0.5265 0.5010 0.4760 0.4510 0.4265 0.4015 0.3775 0.3540
0.3300 0.3070 0.2835 0.2605 0.2365 0.2125 0.1875 0.1625 0.1355 0.1075
0.077 0.0445 0.009 -0.0295];
Kq=0.l*[1.457 1.426 1.3935 1.3595 1.324 1.288 1.251 1.2125 1.174 1.1345
1.095 1.056 1.015 0.975 0.935 0.8955 0.8555 0.8155 0.776 0.736 0.696
0.655 0.614 0.571 0.5265 0.4805 0.431 0.379 0.3225 0.2620 0.1955 0.1225
0.042];
etha_0=[0.0 0.042 0.084 0.125 0.167 0.207 0.248 0.287 0.326 0.364 0.401
0.436 0.471 0.505 0.537 0.569 0.598 0.627 0.653 0.678 0.702 0.724 0.743
0.759 0.771 0.778 0.780 0.769 0.74 0.678 0.543 0.181 0];
EA=47.722*in2m^2*Gama^2; %expanded area
PA=22324*Gama^2/1000000; %projected area
%Plotting Kt,Kq,etha_0 for the given propeller:

%Input - propeller Kt,Kq,J optional propeller 4119
%J=[0.5 0.7 0.833 0.9 1 1.1];
%Kt=[0.28 0.205 0.15 0.125 0.075 0.03];
%Kq=0.1*[0.46 0.36 0.28 0.24 0.18 0.11];
%etha_0=[0.4844 0.6344 0.7102 0.7460 0.6631 0.4775];

figure(3)
plot(J,Kt,'b')
hold on
plot(J,10*Kq,'g')
hold on
plot(J,etha_0,'m')

xlabel('J')
ylabel('Kt,lOKq,Ethao')
legend('Kt','lOxKq','Etha')
grid on



for i=1:1:length(J)
Ct(i)=Kt(i)*8/(J(i)^ 2*pi);
Cq(i)=Kq(i)*16/(J(i)^2*pi);

end

% calculating Ct at ship speeds:
for i=1:1:length(Vs)

Va(i)=Vs(i)*(1-w);
Ctl(i)=T_Sl(i)/(0.5*rho sw*Va(i)^2*pi*(Dp/2)^2);
Cql(i)=T_Sl(i)/(0.5*rhosw*Va(i)A2*pi*(Dp/2)^3);

end

% Calculating J at points of interest (interpolation)
Js=pchip(Ct,J,Ctl);

% Plotting the points of interest on the Ctl(J) curve
figure(4)
plot(J,Ct)
xlabel('J')
ylabel('Ct')
hold on
scatter(Js,Ctl)
set(gca,'ylim',[0 10])
grid on

% Claculating the RPM

for i=1:1:length(Js)
n(i)=Vs(i)/(Js(i)*Dp);

end

rpm=n*60; %from rotations per second
to rpm
Kql=interpl(J,Kq,Js);
Ktl=interpl(J,Kt,Js);
%Find open water efficiencty for speeds of interest:
etha_00=pchip(J,etha_0,Js);

figure(3)
hold on
scatter(Js,etha_00)
hold on
scatter(Js,10*Kql)
hold on
scatter(Js,Ktl)

%CALCULATING CAVITATION:

H=5.5; % head of water to center of prop
rhokgL=1.025;
for i=1:1:length(n)



sigma07(i)=((188.2+19.62*H)/((Va(i))^2+(4.836*n( i)^ 2*D p^2)));
thau07(i)=2*T_Sl(i)/(1000*PA*rho_kgL*((Va(i))^2+(4.836*n(i)A2*Dp^2)));
end

Burill=importdata('burill_export txt.txt');
figure(7)
loglog(Burill(:,1),Burill(:,2),'y')
hold on
loglog(Burill(:,3),Burill(:,4),'m')
loglog(Burill(:,5),Burill(:,6),'c')
loglog(Burill(:,7),Burill(:,8),'r')
loglog(Burill(:,9),Burill(:,10),'Color',[1,0.8,0.6])
loglog(Burill(:,11),Burill(:,12),'g')
loglog(Burill(:,13),Burill(:,14),'b')
loglog(Burill(:,15),Burill(:,16),'k')
loglog(sigma07,thauO7,'b.-')
legend('2.5% back cavitation','5% back cavitation','10% back
cavitation','20% back cavitation','30% back cavitation','min
limit','max limit','war-ship','A.E DDG51 ','Location','SouthEast')
grid on
xlabel('sigma')
ylabel('Tau')
axis([0.05 2.0 0.05 0.5])
hold on

for i=1:1:length(n)
for j=1:1:5
Q(i,j)=Kql(i)*rho_sw*n(i)A2*Dp^5;
P(i,j)=0.97*NS(i)*(2*pi*n(i)*Q(i,j)*1.341/(1000)); %Power

for ship in HP
Pl(i,j)=P(i,j)/2; %Power

per one electric motor

Pl(isnan(P1))=0;
end

end
Pl;

%Electric Motor Efficienct interpolation:

Pmm=[0.85 0.89 0.90 0.91 0.92 0.94 0.94 0.94];
Power=[108 867 2925 3550 6933 13542 23400 30000];
Ethapmm=pchip(Power,Pmm,P1);
Ethapmm(isnan(Ethapmm))=1;

%Total propultion break power calculation

for i=1:1:length(n)
for j=1:1:5
TBP(i,j)= P(i,j)/(ethar*ethah*Ethapmm(i));

%break power needed for propulsion per shaft
TBP(isnan(TBP))=0;

%TBP(i,j)=BP_Sl(ifj)*NS(i);



%Total propulsion power
PPE(i,j)=TBP(i,j)/NGT(i,j);

%Power per gas turbine (total/#of turbines)
P_CHECK(i,j)=EHP(i)/(etha_00(i)*ethah*etha_r);
XXX(i,j)=PCHECK(i,j)/P(i,j);
end

end
PPE(isnan(PPE))=0;
TBP(1)=0;

%Fuel efficiency for MVDC propulsion (Minimum values for)

sfcpower=[925.985 1500.341 2071.479 3049.242 4025.615 5899.941 7540
9151.668 13051.87 16055 20760 23841.914 27000.316]; %from SFC curve -
minimum points
SFC=[1.5 1.2 1.0 0.8 0.7 0.6 0.55 0.5 0.45 0.425 0.4 0.39 0.38];
eff mvdc=1/0.94;
%Data from Julie
%Fitting a curve

%SFCpchip = pchip(sfcpower,SFC,PPE); % Piecewise Cubic Hermite
Interpolating Polynomial -- very safe way to extrapolate data
%SFC intrp = interpl(sfcpower,SFC,PPE,'linear','extrap'); % linear
interpolation/extrapolation

%Fuel efficiency for MVAC propulsion(Constent turbine rpm=3600):

sfcpowerl=[1798.342 2401.73 3169.678 4486.158 5747.782 7880.051
9038.964 11068.52 14579.076 17266.877 21435.695 23958.918 27085.496];
SFC1=[1.5 1.2 1 0.8 0.7 0.6 0.55 0.5 0.45 0.425 0.4 0.39 0.38];
effmvac=1/0.98;
%Data from Julie

%SFCpchip = pchip(sfcpowerl,SFC1,PPE); % Piecewise Cubic Hermite
Interpolating Polynomial -- % very safe way to extrapolate data
%SFC intrp = interpl(sfcpowerl,SFC1,PPE,'linear','extrap'); % linear
interpolation/extrapolation

%SFCspeedl=interpl(sfcpowerl,SFC1,PPE) %SFC - lb/hp-hr

figure(6)
plot(sfcpower,SFC)
hold on
plot(sfcpowerl,SFC1,'r')
plot(sfcpower,SFC,'b')
xlabel('Power(HP)')
ylabel('S.F.C (lb/HP*hr)')



legend('MVDC','MVAC')
%scatter(PPE,SFCpchip,'ro')
%scatter(PPE,SFC_intrp,'bs')

%Statistics battle condition/speed/percentage
%battle BC=5
%wartime cruise BC=4
%peacetime cruise BC=3
%anchor BC=2
%shore Bc=1

%The statistic data matrix:

SM=0.01*[53 1.58 0 0 0 ;0 0 6.79 5.15 0.11;0 0 4.74 3.59 0.07;0 0 6.4
4.86 0.1;0 0 6.02 4.57 0.09;0 0 1.54 1.17 0.02;0 0 0.13 0.1 0];

%Electrical power only

EP=[O 6000 11000 13000 14000;0 6000 11000 13000 14000;0 6000 11000
13000 14000;0 6000 11000 13000 14000;0 6000 11000 13000 14000;0 6000
11000 13000 14000;0 6000 11000 13000 14000];

%EPkw=hp2kw*EPhp;

for j=1:1:5
for i=1:1:length(Vs)

TEPImvdc(i,j)=EP(i,j)*eff-mvdc+TBP(i,j); %no 20%
margin on electric power

TEPpl-mvdc(i,j)=TEP-mvdc(i,j)/NGT(i,j); %total
electrical and propulsion power per engine

TEPImvac(i,j)=EP(i,j)*eff mvac+TBP(i,j); %no 20%
margin on electric power

TEPpl-mvac(i,j)=TEP-mvac(i,j)/NGT(i,j); %total
electrical and propulsion power per engine

end
end
TEP-mvdc(:,1)=0;
TEP-mvac(:,1)=0;

TEPpl-mvdc(:,1)=0;
TEPpl-mvac(:,1)=0;

for i=2:1:7
TEP_mvdc(i,2)=0;
TEPpl-mvdc(i,2)=0;



TEP_mvac(i,2)=O;
TEPpl-mvac(i,2)=0;

end

SFCtotalmvdc= pchip(sfcpower,SFC,TEPpl-mvdc); %SFC - lb/hp-hr
for MVDC
SFCtotalmvac= pchip(sfcpowerl,SFCl,TEP_pl-mvac); %SFC - lb/hp-hr
for MVAC

for j=1:1:5
for i=1:1:length(Vs)

Totalfuel MVDC(i,j)=SFC total_mvdc(i,j)*SM(i,j)*TEP_pl mvdc(i,j)*NGT(
i,j)*0.00045359237; %total fuel use in mTON per hour operational
profile use

Totalfuel MVAC(i,j)=SFC totalmvac(i,j)*SM(i,j)*TEPpl mvac(i,j)*NGT(
i,j)*0.00045359237; %total fuel use in mTON per hour operational
profile use

end
end

%Annual use MVDC:
fprintf('The Annual Fuel Consumption For MVDC \n')
Totalfuel MVDC(isnan(TotalfuelMVDC))=l;
Total fuel MVDC
Annual_use_MVDC=sum(Total fuelMVDC(:))*365*24

%Annual use MVAC:
fprintf('The Annual Fuel Consumption For MVAC \n')
TotalfuelMVAC(isnan(TotalfuelMVAC))=1;
Total fuel MVAC
Annual_use_MVAC=sum(Total fuelMVAC(:))*365*24

%Percenatge of fuel per Speed:

totalfuelperstate mvdc=100*Total fuel MVDC.*365*24/Annual use MVDC
totalfuelperstatemvac=100*Total fuelMVAC.*365*24/Annual useMVAC

total_p mvdc=sum(total_fuelperstatemvdc(:));
%check for sum of 100%
total_p-mvac=sum(total_fuelperstatemvac(:));
%check for sum of 100%

X factor=totalfuelper statemvac./totalfuelper_statemvdc;

total hrs=365*24*sum(SM(:))-365*24*SM(1,1)



%Edurance fuel consumption 20kts for 5000NM

ssfactor=1.1; %sea state factor

v ind=5;
C=3;

End time=5000/20;
EndurancefuelMVDC=End time*SFCtotal_mvdc(v_ind,C)*TEP_pl-mvdc(vind,
C)*NGT(v-ind,C)*0.4536/1000; %metric tonns
EnduranceTankageMVDC=ssfactor*1.05*EndurancefuelMVDC;

EndurancefuelMVAC=End time*SFCtotalmvac(vind,C)*TEPpl-mvac(v_ind,
C)*NGT(v-ind,C)*0.4536/1000; %metric tonns
EnduranceTankageMVAC=ssfactor*1.05*EndurancefuelMVAC;

fprintf('The Fuel Consumption For Endurance MVDC(250 hours at 20
kts)is: ')
Endurance fuelMVDC

fprintf('\n The tankage for endurance MVDC is: ')
EnduranceTankageMVDC

fprintf('\n The Fuel Consumption For Endurance (250 hours at 20 kts)is:

Endurance fuelMVAC

fprintf('\n The tankage for endurance MVAC is: ')
EnduranceTankageMVAC

fprintf('the ratio between the MVAC and MVDC SCFs:')
SFC ratio=SFC total mvac./SFC total mvdc

%%Surge to theatre fuel consumption 30kts for 2000NM
%fprintf('Surge to theatre (30kts fo 2000NM) fuel tankage:')
End time 1=2000/30;
EndurancefuelMVDC=Endtimel*SFCtotalmvdc(7,C)*TEPpl-mvdc(7,C)*NG
T(7,C)*0.4536/1000; %metric tonns
Surgeto theatre_TankageMVDC=ssfactor*l.05*EndurancefuelMVDC;

EndurancefuelMVAC=End time l*SFCtotalmvac(7,C)*TEPpl-mvac(7,C)*NG
T(7,C)*0.4536/1000; %metric tonns
Surgeto theatreTankage MVAC=ss factor*l.05*EndurancefuelMVAC;



MVAC MVDC
Equipment Name Anchor (kW) Cruise (kW) WarCruise (kW) Battle (kW) MVAC eta MVDC eta Anchor (kW) Cruise (kW) WarCruise (kW) Battle (kW) Anchor (kW) Cruise (kW) WarCruise (kW) Battle (kW)
Load DCZLlV 35 75 75 75 0.97 0.9409 36.08247423 77.31958763 77.31958763 77.31958763 37.19842704 79.71091508 79.71091508 79.71091508
Load DC Z1L2 V 0 300 300 300 0.97 0.9409 0 309.2783505 309.2783505 309.2783505 0 318.8436603 318.8436603 318.8436603
Load AC Z1L3 V 320 300 300 300 0.99 0.912673 323.2323232 303.030303 303.030303 303.030303 350.6184581 328.7048045 328.7048045 328.7048045
Load AC Z1L4 V 195 200 200 200 0.99 0.912673 196.969697 202.020202 202.020202 202.020202 213.6581229 219.1365363 219.1365363 219.1365363
Load AC Z1L5-NV 137.5 435 435 435 0.99 0.912673 138.8888889 439.3939394 439.3939394 439.3939394 150.6563687 476.6219665 476.6219665 476.6219665
LoadAC Z1L6_NV 3.5 0 0 0 0.99 0.912673 3.535353535 0 0 0 3.834889385 0 0 0

LoadDCZ2L1_NV 0 0 0 0 0.97 0.9409 0 0 0 0 0 0 0 0

Load DC Z2L2 V 10 40 40 40 0.97 0.9409 10.30927835 41.2371134 41.2371134 41.2371134 10.62812201 42.51248804 42.51248804 42.51248804

LoadACZ2L3_V 465 700 700 700 0.99 0.912673 469.6969697 707.0707071 707.0707071 707.0707071 509.4924469 766.9778771 766.9778771 766.9778771
Load AC Z2L4 V 150 375 375 375 0.99 0.912673 151.5151515 378.7878788 378.7878788 378.7878788 164.3524022 410.8810056 410.8810056 410.8810056
Load AC Z2LS NV 200 180 180 180 0.99 0.912673 202.020202 181.8181818 181.8181818 181.8181818 219.1365363 197.2228827 197.2228827 197.2228827
LoadACZ2L6_NV 17.5 20 20 20 0.99 0.912673 17.67676768 20.2020202 20.2020202 20.2020202 19.17444693 21.91365363 21.91365363 21.91365363

Load DC Z3L1 V 10 20 20 20 0.97 0.9409 10.30927835 20.6185567 20.6185567 20.6185567 10.62812201 21.25624402 21.25624402 21.25624402

Load AC Z3L2_V 600 600 600 600 0.99 0.9312 606.0606061 606.0606061 606.0606061 606.0606061 644.3298969 644.3298969 644.3298969 644.3298969
LoadAC Z3L3_V 275 950 950 950 0.99 0.912673 277.7777778 959.5959596 959.5959596 959.5959596 301.3127374 1040.898547 1040.898547 1040.898547
Load AC Z3L4_NV 187.5 375 375 375 0.99 0.912673 189.3939394 378.7878788 378.7878788 378.7878788 205.4405028 410.8810056 410.8810056 410.8810056
LoadACZ3LSNV 2 0 0 0 0.99 0.912673 2.02020202 0 0 0 2.191365363 0 0 0

LoadDC Z4L1_V 0 30 30 30 0.97 0.9409 0 30.92783505 30.92783505 30.92783505 0 31.88436603 31.88436603 31.88436603
Load AC Z4L2 V 100 240 240 240 0.99 0.912673 101.010101 242.4242424 242.4242424 242.4242424 109.5682682 262.9638436 262.9638436 262.9638436
Load-AC-Z4L3 V 207.5 825 825 825 0.99 0.912673 209.5959596 833.3333333 833.3333333 833.3333333 227.3541564 903.9382123 903.9382123 903.9382123
LoadACZ4L4 NV 110 335 335 335 0.99 0.912673 111.1111111 338.3838384 338.3838384 338.3838384 120.525095 367.0536983 367.0536983 367.0536983
LoadAC Z4L5_NV 2 0 0 0 0.99 0.912673 2.02020202 0 0 0 2.191365363 0 0 0

Load DC ZSL1 V Radar 2000 3000 3000 3000 0.97 0.97 2061.85567 3092.783505 3092.783505 3092.783505 2061.85567 3092.783505 3092.783505 3092.783505
Load DC V Pulse 0 2000 4000 5000 0.97 0.97 0 2061.85567 4123.71134 5154.639175 0 2061.85567 4123.71134 5154.639175

5,028 11,000 13,000 14,000 5,121 11,225 13,287 14,318 5,364 11,700 13,762 14,793
6000 11000 13000 14000 0.982 0.980 0.978 0.978 0.937 0.940 0.945 0.946
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