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Abstract

Robots that can function in human-centric domains have the potential to help
humans with the chores of everyday life. Moreover, dexterous robots with the
ability to reason about the maneuvers they execute for manipulation tasks
can function more autonomously and intelligently. This thesis outlines the
development of a reasoning architecture that uses physics-, social-, and agent
capability-based knowledge to generate manipulation strategies that a
dexterous robot can implement in the physical world. The reasoning system
learns object affordances through a combination of observations from human
interactions, explicit rules and constraints imposed on the system, and
hardcoded physics-based logic. Observations from humans performing
manipulation tasks are also used to develop a unique manipulation repertoire
suitable for the robot. The system then uses Bayesian Networks to
probabilistically determine the best manipulation strategies for the robot to
execute on new objects. The robot leverages this knowledge during
experimental trials where manipulation strategies suggested by the
reasoning architecture are shown to perform well in new manipulation
environments.
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CHAPTER 1

Introduction

1.1 Background

Robots that can function in human-centric domains have the potential

to help humans with the chores of everyday life. Environments such as

schools, homes, offices, or hospitals can reveal a wide range of possible

applications for robotic assistance. For example, robots with manipulation

skills could retrieve objects for elderly persons with limited mobility,

manipulate tools to assist doctors during surgery, or even handle hazardous

materials in environments that are too dangerous for humans.

However, challenges typically arise for robotic manipulation in human

environments because these spaces are often unpredictable, dynamic, and

difficult to model. Fortunately, many aspects of these settings can be

exploited and used to the robot's advantage. For instance, people often

populate human-centric domains, thus robots can occasionally rely on the

guidance and assistance from a human partner to complete a task. Also,

objects in the environment may exhibit unique characteristics and inherent



physical properties that the robot can identify to reduce the cognitive load

required to manipulate such objects.

1.2 Motivation

Humans, animals, and dexterous robots are creatures that all have

uniquely different techniques for manipulating objects. So a simple task like

moving a ball on the floor from point A to point B may involve extremely

different maneuvers depending on the creature's action repertoire. For

instance, a human may pick up the ball at point A, carry it as he/she walks to

the goal, then place it on the ground at point B. A dog might bite the ball,

carry it in its mouth, then release the ball at point B. And a robot may push

the object with its end-effector as it navigates to point B. In each case, a

different maneuver arises because of the creature's own set of manipulation

abilities.

The manipulation strategy may also change depending on inherent

physical properties of the object, e.g. geometry, size, orientation, etc. These

physics-based properties are known as object affordances [1], [2] and can be

used by dexterous creatures to determine the action possibilities on an object.

For example, if the ball from the above task were now a heavy bowling ball,

then the human may roll the ball to the goal instead of carrying it. Or if the

ball were now a huge, lightweight beach ball, then the dog from above might

tap the ball with its nose to roll it to the goal because the ball is now too large

to fit in its mouth.



Social factors also play a role in determining manipulation strategies.

For instance, let us now assume that our task is to place a mug into a

trashcan. Since the trashcan is simply a receptacle, very little thought is

given to how we approach the trashcan or the way that we drop the object

into it. However, if we are now giving the mug to a human receiver, then we

would most likely approach the human from the front and we might deliver

the mug such that the handle is exposed for the human to grasp easily, which

may require re-grasping of the object. So our manipulation actions may

change to consider human safety and comfort. There has also been work done

on understanding non-verbal cues, like eye contact and body pose, which can

occur while coordinating object hand-offs with a human partner [3]. Further,

shared attention between agents plays a vital role in manipulating an object

of mutual interest [4], [5]. In particular, dexterous robots must be aware of

postural cues and gaze direction to perform successful object hand-offs to

humans or other robots. For example, if the human is occupied or not facing

the robot during the time of object hand-off, then the robot must think

intelligently about alternative strategies.

Also, educational, manipulative toys are useful for helping babies and

toddlers develop manipulation skills. Often times, these toys feature simple

objects such as balls, blocks, and cylinders. Through trial and error, children

play with these objects repetitively until they are able to utilize concrete

strategies for grasping these objects [6]. As their dexterity develops, they are



then able to grasp more intricately shaped objects. They can manipulate

these new objects by leveraging previously learned grasping techniques [7].

This method of learning to grasp simple objects then applying that knowledge

to new objects that have similar physical features can be useful for dexterous

robots.

1.3 Significance

If robots are to perform manipulation tasks in human-centric domains,

then they must be able to reason about the maneuvers that they implement

in these challenging workspaces. Therefore, I propose the research question:

How can a dexterous robot utilize physics-, social-, and capability-based

knowledge of its environment for object manipulation?

The core contribution of this work is the development of a reasoning

architecture that allows a dexterous robot to generate successful

manipulation strategies using social contexts, the manipulation capabilities

of itself and its partner, and knowledge of object affordances in the

manipulation environment. This work is unique in that it fuses these three

research concepts together, which has yet to be fully explored in robotic

manipulation.

This work also provides a foundation for generating strategies used in

future interactions from previously solved manipulation tasks. For example,

learned physics-based reasoning patterns may be detected from past object

interactions and applied to new objects with similar physical properties.



Additionally, the reasoning architecture is versatile in that it can be

expanded to include new factors that might influence the manipulation

strategies performed in new environments.

1.4 Related Work

1.4.1 Naive Physics

Schmolze and Davis [8], [9] proposed using basic physical properties of

objects to formalize human commonsense knowledge, but these works do not

consider the complexities that arise when implementing such an expansive

corpus on a humanoid robot. Further, these research approaches are limited

because it is difficult to encapsulate a clearly defined body of knowledge that

is consistent, comprehensive in scope, and universal among different people.

Also, problems arise when trying to distinguish between truly naive physics

and formal physics because it is difficult to discern beliefs about the physical

world that are taught by an expert versus those that are formed through

exploration.

1.4.2 Object Affordances

The use of object affordances for robotic manipulation was done in [10],

[11], and [12]. In [10], affordances were taught to a robotic manipulator

through probabilistic relational models. However, the research platform used

is a single, whole-arm manipulator so bimanual manipulation maneuvers

were not considered. Also, the probabilistic relational models learned by the

robot are only used to ascertain object affordances, not for motion planning of



manipulation strategies. In [11] and [12], robots learned manipulation skills

through imitation and previous exploration. Again, these works use a single,

whole-arm manipulator as its research platform, thus, do not consider the

complexities of bimanual manipulation. Also, these works differ in that they

assume an accurate geometric model of manipulation objects is not available.

In my approach, manipulation plans are generated based on fully described

geometric models. Further, the robot's motor controllers used in these works

rely heavily on tactile feedback from hand and finger sensors, whereas my

robot platform uses vision-based sensing for object detection. Moreover, these

works do not consider object exchange to human partners, or generalize a full

repertoire of manipulation skills for robots.

1.4.3 Human-Robot Coordination

Non-verbal cues, timing, and coordination in human-robot

manipulation was explored in [3], [13], and [14]. In [3] and [14], object

exchange between partners was investigated with regards to social and

physical cues exclusively. However, these works do not consider how physical

object properties can influence manipulation maneuvers when handing off

objects to humans. In [13], interactive manipulation between a human and

humanoid robot was explored where the interaction was represented solely

by means of mathematically representing relative configurations between the

human's and robot's hands. This approach does not consider the influence of

non-verbal cues from human partners during object exchange. It also differs



in that its proposed techniques are valid for cooperation tasks that are not

properly defined, whereas, my approach assumes that manipulation tasks are

be described wholly.

1.4.4 Agent Ability

The consideration of agent capabilities in robotic manipulation was

demonstrated in [15] and [16]. The hand and arm capabilities of a robotic

manipulator are learned through a representation scheme, which visualizes

and inspects directional structures in the robot's own workspace. However,

these works do not explore object exchange between human and robot

partners, therefore, it does not consider the workspace constraints or

capabilities of a human receiver.



CHAPTER 2

Research Platforms

2.1 Codebase

Figure 2-1: RiD1 System Architecture Overview.

The codebase used throughout this research is R1D1, a java-based

cognitive architecture used for designing synthetic brains for virtual and

physical creatures in complex environments [17]. R1D1 allows creatures to

detect information about its workspace through internal and/or external

sensors, formulate beliefs about the workspace from that perceptual data,



generate task-dependent motor actions, and execute those actions in the

workspace. Figure 2-1 illustrates the complete behavior system pipeline.

2.2 Physical Robots

The research platforms used are two mobile, dexterous, and social

(MDS) robots [18] with varying manipulation, navigation, and social abilities.

Figure 2-2 shows Nexi and Xylo, the MDS fleet used throughout this

research.

Figure 2-2: MDS robots: Nexi (left), Xylo (right).

2.2.1 Nexi

Nexi is a 47-inch tall humanoid with a mobile base, 4-fingered end

effectors with partial range of motion, and a socially expressive face. Figure

2-3 shows a close-up of Nexi's face and end effectors. Nexi is equipped with

with two stereo cameras in her eyes, Figure 2-3(a), which are used for vision



(a) (b)

Figure 2-3: (a) Nexi's face, (b) Nexi's hands.

and human face detection. Nexi's end effectors, Figure 2-3(b), feature four-

digit hands with opposable thumbs, which are connected to a wrist joint with

a wide range of motion. Her fingers are covered with rubber to reduce

slippage between object surfaces. Also, her hands are naturally fixed in a U-

shaped configuration, which can be challenging when flat-palmed

manipulation techniques are preferred.

2.2.1 Xylo

Figure 2-4: Xylo's torso with ball-and-stick end-effectors.



Xylo is 22-inch tall, static, headless humanoid with ball-and-stick end

effectors, Figure 2-4. For stability purposes, Xylo must always be placed on

top of a supporting structure. Thus, the height of Xylo's end effectors are

affected by the height of his support. Xylo's end effectors consist of aluminum

rods encased by a thick foam shell with rubber balls attached at the ends.

The foam and rubber covering reduce slippage between object surfaces.

2.3 Objects

(a)(eb

(C)

Figure 2-5: Object set for manipulation training. (a) Box, (b) Flat plate, (c) Cylinder, (d) Foam
Ball, (e) Ring on rope.

The manipulation object set used to train the robot is shown in Figure

2-5. It consists of a 2-foot length by 1.5-foot width by 1.5-foot height

cardboard box, a 1.5-foot by 2.5-foot cardboard plate, a 6-inch diameter by 4-

foot long foam cylinder, a 6-inch diameter foam ball, and a 12-inch outer



diameter foam ring connected by a flexible rope, Figure 2-5(a-e) respectively.

These objects are used to develop Nexi's manipulation skills.

Figure 2-6: Object set for experimentation. (a) Balls on rope, (b) Box with handles, (c) Half
cylinder, (d) Inflatable ball.

The object set used for is experimentation shown in Figure 2-6. It

consists of two 3-inch diameter foam balls connected by a flexible rope, a 14-

inch length by 9-inch width by 10-inch height cardboard box with 2 handles

made out of foam rings, a 6-inch diameter by 1.5-foot length foam cylinder

sliced in half lengthwise, and a 36-inch diameter inflatable ball, Figure 2-6(a-

d) respectively. These objects are used during experimentation only. They are

unique because they are either hybrids of the objects in the training set, or

they contain similar physical properties as objects in the training set, as

shown in Figure 2-7. For example, the half cylinder is a hybrid of the cylinder



and the flat plate, Figure 2-7(a), but the inflatable ball is merely a larger

version of the foam ball, Figure 2-7(c).

x 6
(C)

Figure 2-7: Example of hybrid objects. (a) Flat plate and cylinder produces the half cylinder,
(b) Box and ring on rope produces the box with handles, (c) Inatable ball is 6 times the

volume of the foam ball.

During training and experimentation, the objects are initially oriented

in various configurations. Also, the robot may navigate to these objects using

a defined navigation approach direction. Appendix B shows a complete table

of the object orientation conventions and navigation approach directions. The

orientation and navigation approach directions were defined ad hoc for the

purposes of this research.



2.4 Supporting Structures

The supports for the objects are shown Figure 2-8 and include a

hanging support for objects with complex geometry, a hanging support for

objects with simple geometry, a post, a table, and the floor, Figure 2-8(a-e)

respectively.

Figure -8: Strctures sed to upport bjects.( Hanigspor o)ag ojcs b

Figure 2-8: Structures used to support objects. (a) Hanging support for large objects, (b)
Hanging support for small objects, (c) Post, (d) Table, and (e) The floor.

2.5 Research Environment

The research environment is a 15-foot by 12-foot room surrounded by a

Vicon Motion Capture System [19]. Robots, humans, and objects are tagged

with small, round, reflective markers that are captured by the Vicon system

and their position and orientation data is tracked. As defined for this

research, a scene in the environment consists of a single manipulator agent

(Nexi), three receiver agents (Xylo, a human, and a receptacle), and objects of



assorted shapes, sizes, and orientations that are supported by various

structures. A given workspace scene will be any combination of entries

selected from each of the five columns illustrated in Table 2.1.

Table 2.1: Possible combinations of a given task environment

MANIPULATOR RECEIVER OBJECT OBJECT OBJECT
AGENT AGENT ORIENTATION SUPPORT

Nexi Xylo Flat plate Upright Hanging

Human Inflatable Flat 'able
baill _ _ _ _ _ _ _ _ _ _

Receptacle Foam ball Upside-down Floor

Balls on Post
Rope

Ring on rope

Box with
handles

Cylinder

Box

Half
Cylinder

The role of the manipulator agent, which can only be Nexi, is to

manipulate objects in its environment and deliver them to the receiver agent.

The role of the receiver agent, which can be human, Xylo, or a receptacle, is

to receive objects from the manipulator agent.



CHAPTER 3

Task Description

3.1 Research Goal

The research goal is to develop a reasoning mechanism that allows a

dexterous robot to generate manipulation strategies with considerations to its

own manipulation skills, physical properties of objects in its environment,

and the capabilities of agents that receives these objects. The robot develops

manipulation skills by mimicking human actions and through self-

exploration during training sessions. The robot then applies these skills to

future manipulation tasks where new objects have similar features as objects

previously explored. Sections 4.10 and 5.1 describe the training sessions and

Table 3.1: List of Agent Descriptors

AGENT PROPERTIES

agent name is a physical human is a virtual human
is a virtual robot is a physical robot type of end-effectors

number of end-effectors number of arms agent is manipulator

agent is receiver shoulder heighthes arm length in inchesagent is ~ground in inches amlnt nice

can manipulate objects is mobile agent height in inches
can manipulate has tactile sensors on end-

magnetscan bend forward effectors
has tactile sensors on has whole-body tactile has whole-arm tactile

head sensors sensors

has a face has eyes area of agent palms in
square inches



Table 3.2: List of Physical Object Properties

OBJECT PHYSICAL PROPERTIES

object name has handles number of actual volume in cubic
handles inches

volume of
bounding box that weight in pounds has a sharp is a box
surrounds object feature
in cubic inches

has a box feature is a pyramid has a pyramid is a 3D polygon
feature

has a 3D polygon is a 2D polygon has a 2D polygon is a cylinder
feature feature

has a cylinder is a cone has a cone is a sphere
feature feature

has a sphere .has a toroid center of mass relative

feature is a toroid feature to Vicon centroid in
inches

center of mass
relative to the is rigid is flexible has a cavity

ground in inches

volume of cavity can conduct locations of active temperature in
in cubic inches electricity conductive Celsius

components ____________

has magnetic locations of has reflective locations of reflective
features magnetic features features features

object material object colors has a flat surface locations of flat
composition surfaces

is a solid is a liquid is a gas has a light source

is toxic to humans has a smell is edible to is alive
and animals humans

experimental research task in detail. The reasoning mechanism takes in a

scene as its input, which consists of full descriptions of the manipulator

agent, the receiver agent, objects to be manipulated, and any rules or

constraints imposed on the system. For instance, a description of the

manipulator and receiver agents includes parameters such as: its shoulder

height from the ground and arm length to calculate its manipulation range of

motion, physical details about its end effectors to determine how it interacts

the objects, and a label that classifies the agent as human, robot, or



receptacle since these distinct categories will imply different methods for

interacting with objects. Table 3.1 shows the list of factors that describe an

agent in the environment 1 . Table 3.2 lists the descriptions of an object with

regards to unique geometric, spatial, and sensorial properties2. For this

research, these parameters and descriptors are represented symbolically and

hardcoded into the reasoning architecture.

3.2 Hypotheses

3.2.1 Hypothesis I

Hypothesis I involves the system's ability to create a manipulation

repertoire for the robot. Nexi's skillset of maneuvers depends on the

manipulation techniques used by human test subjects in a pilot study where

they are instructed to manipulate various objects. Observations from the pilot

study were represented symbolically in the reasoning architecture and these

human maneuvers were translated into appropriate movements for the robot.

I predict that all of the translated maneuvers will be kinematcially robust for

the robot to use in future experimentation. Further, I predict that the

repertoire developed for the robot will be sufficient to successfully manipulate

all objects used in future experimentation.

3.2.2 Hypothesis II

1 Every agent descriptor listed in the table may not be used by the reasoning system.
2 Every object property listed in the table may not be used by the reasoning system.



Hypothesis II outlines the reasoning architecture's ability to generate

successful manipulation strategies for the robot to execute in new

manipulation tasks. I predict that the system will always select successful

strategies from the robot's manipulation repertoire to be used in new

manipulation scenarios. Further, I believe that if multiple strategies are

possible for a given scene, then the system will accurately rank these

maneuvers in order of increasing complexity for the robot while considering

imposed system constraints.

3.2.3 Hypothesis III

Hypothesis III highlights how successful the robot is at executing

strategies proposed by the reasoning architecture in the physical

environment. I hypothesize that the robot will eventually execute proposed

manipulation strategies successfully. I believe that the robot may fail at

successful execution upon initial attempts due to sensor inaccuracies.

However, I predict that recalibration of the robot's motor controllers and

vision sensors will prevent these failures on repeated manipulation attempts.

3.2.4 Hypothesis IV

Hypothesis IV focuses on the fluidity between the robot and human receiver

agents during object exchange. I predict that the robot will never need to

resort to giving a verbal utterance to grab the attention of a human receiver

agent. I believe that the system will adequately detect the attentiveness of

the human receiver and that occupied humans will pause their actions just in



time for successful object exchange. Thus, no verbal statements will be

spoken between manipulator and receiver agents. I further predict that

humans will experience object exchange in a natural way when receiving

objects from a robot partner.

3.3 System Constraints

3.3.1 Workspace Limitations

Many physical descriptors of agents and objects must be declared a

priori due to sensor limitations. The Vicon Motion Capture System is useful

for tracking positions and orientations of agents and objects, but it does not

extract unique object features like handles. Further, human receiver agents

are required to interact only within the limits of their own workspace. They

are not allowed to enter the robot's workspace or any other domain in the

research environment.

3.3.2 Robot Platform Constraints

Nexi's eye cameras are used solely for human face detection, not for

feature extraction. Vision-based object recognition is a challenging problem,

which will not be addressed in this work. Therefore, many descriptors of

objects and agents must be hardcoded as stated in Section 3.1.

Further, Nexi is equipped with current sensors in her fingers, which

allows her to detect fluctuations in current draw from her hand motors as she

manipulates objects. However, this is a limited tactile sensing ability since it

does not accurately detect contact forces and moments. Thus, the Vicon



system is heavily relied upon for accurately tracking object positions and

orientations.

3.3.3 Reasoning Architecture Constraints

Imposing constraints and rules on the reasoning mechanism can

circumvent sensor limitations. A list of system constraints imposed on the

Table 3.3: Constraints Imposed on the Reasoning Architecture

REASONING SYSTEM CONTRAINTS

Constraint #1 The manipulator agent may translate an object in any direction
before, during, or after manipulation.

Constraint #2 The manipulator agent may not rotate an object around any axis
located on the object's body before, during, or after manipulation.

Constraint #3 The manipulator agent may not touch the supporting structures in
the environment to aid in object manipulation.

Constraint #4 Any object configurations that cause dynamic instability between
object and support are not considered for experimentation.

Any object with at least one handle must be manipulated such that
Constraint #5 at the time of object delivery to a human receiver agent, at least

one handle is available for the receiver agent to grab.

system is listed in Table 3.3. For instance, if objects have features like knobs,

grippers, handles, or levers, then humans typically prefer to grasp these

features on the object for their own safety and comfort. Therefore, Constraint

#5 is imposed, a the rule that states:

Any object with at least one handle, must be manipulated such that at the time
of object delivery to a human receiver agent, at least one handle is available for
the receiver agent to grab.

This rule is imposed to consider human safety and comfort during object

exchange for objects like the box with handles, Figure 2-6(b). However, this

rule may imply that regrasping of the object is necessary. For example, a



human manipulator may grasp an object with both handles for its own

comfort, but might then reorient the object upon delivery to a human receiver

to leave one handle exposed, as shown in Figure 3-1. Thus, object

(b)

Figure 3-1: Action sequence illustrating object regrasping. (a) Human grabs object with two
hands, (b) Human begins to reorient object for partner, (c) Human releases one hand from

object, (d) Human delivers object to partner.

reorientation is required. However, object regrasping requires precise

coordination and sensing abilities of the dexterous agent. This is a

challenging problem in robotic manipulation [20] and will not be addressed

here. Therefore, grasping strategies like those in Figure 3-1 are not allowed

for the purposes of this research.

To sidestep regrasping maneuvers, the following constraints are imposed

on the reasoning system:

The manipulator agent may translate the object in any direction before, during,
or after manipulation.



The manipulator agent may not rotate the object around any axis located on the
object's body before, during, or after manipulation.

With these constraints, agents like Nexi, who lack sophisticated tactile

sensing, can still deliver objects with graspable features to human receivers

given their own unique limitations. Examples of these constraints are

(a) Maneuver not alowed.

(b) Maneuver alowed.

Figure 3-2: Rotation constraints imposed on the reasoning system. (a) Invalid maneuver, (b)
Valid maneuver.

illustrated in Figure 3-2. The problem here is that the human manipulator

would prefer to grab the mug by the handle for easier grasping. However, the

mug is positioned on the table such that the handle is not easily accessible for

the human. In Figure 3-2(a), the manipulator rotates the mug around a

vertical axis on the object's body so that the handle is more easily accessible.

However, this maneuver is a direct conflict of Constraint #2 and will not be



allowed. In Figure 3-2(b) on the other hand, the manipulator slides, or

translates, the object forward so that the mug is closer to his body. Although

the handle is still not in the best configuration for the human to grasp

effortlessly, translating the object does help by bringing the object closer

within the human's arm and end effector range of motion. Further, this

strategy does not conflict with Constraints #1 or #2. Again, maneuvers like

those in Figure 3-2(b) may not be realistic for human grasping, but these

maneuvers, which are bounded by constraints listed in Table 3.3, are useful

for robotic agents with limited tactile sensing.



CHAPTER 4

Methodology

A stated above, a given research workspace consists of a scene which

can be any combination of manipulator agent, receiver agent, object, object

orientation, and supporting structure, as shown in Table 2.1. For a given

scene, the research task is for the manipulator agent to manipulate objects in

the environment and deliver them to the receiver agent. The manipulator

agent, i.e. Nexi, executes this task by using manipulation strategies

generated by the reasoning system.

4.1 System Architecture Overview

Figure 4-1: Overview of System Architecture.



Figure 4-1 shows the entire research architecture pipeline. Data is

collected from videotaped experiments where human test subjects

manipulate objects and deliver them to receiver agents. This data is

transcribed and used to help determine a manipulation repertoire for Nexi

and to aid the robot in learning object affordances [21], Figure 4-1(a). Sensor

data from the Vicon system and the robot's eye cameras are interpreted in

the R1D1 perception system, Figure 4-1(b). This sensor data is used to

determine the location and orientation of items of interest in the

environment. Additional physics principles about objects and constraints

imposed on the system are hardcoded into R1D1 as shown in Figure 4-1(c)

and Figure 4-1(d). The results from the human pilot study, the sensor data,

and the hardcoded parameters are then fused in the R1D1 belief system,

Figure 4-1(e), where beliefs are generated regarding spatial information

about items of interest, drives and motivations of agents, and other task-

specific information about the workspace. A series of decision-making tools,

called Bayesian Networks [22], [23], then use these beliefs to generate

manipulation strategies for the manipulator agent to use in the workspace,

Figure 4-1(f) and Figure 4-1(g). The R1D1 action system, Figure 4-1(h), is

then responsible for planning and selecting appropriate actions that the robot

will use to execute the manipulation strategy. Finally, the R1D1 motor

system uses a hybrid of synthesized motions and direct motor control to allow

the robot to perform the selected actions in the physical environment, Figure



4-1(i) and Figure 4-1(k). While the robot performs navigation and

manipulation skills, it uses feedback from internal and external sensors to

detect changes in its environment, Figure 4-1(j). A detailed explanation of the

research architecture is discussed in the remainder of this chapter.

4.2 Manipulation Strategies

Figure 4-2: Example situation in which Nexi should deliver the upright cylinder on the floor
to a bin.

In order for the reasoning architecture to propose manipulation

solutions, a manipulation strategy must be clearly defined. For this work, a

full manipulation strategy is defined as an 8-part action sequence that allows

a manipulator agent to deliver objects to a receiver agent. This sequence

includes: 1) a navigation approach direction to the object, 2) an extending

hand action for the object, 3) a pickup maneuver for the object, 4) a retracting

hand action for the object, 5) a navigation approach direction to the receiver

agent, 6) an extending hand action for delivery to the receiver agent, 7) a

releasing maneuver for hand-off to the receiver agent, and 8) a retracting



hand action after objects are delivered to the receiver agent. For example,

Figure 4-2 shows an example situation in which Nexi's task is to deliver the

cylinder, in the upright orientation and supported by the floor, to a receptacle

receiver agent. Table 4.1 shows an example solution to

Table 4.1: An 8-step manipulation sequence generated for the situation described in Figure
4-2

MANIPULATION SEQUENCE STRATEGY IMPLEMENTED
1) Navigation aperah direction Approach object from any

to object. direction.
2) Animation playback for hand Extend forward with both hands.

extension.
3) IK grasp maneuver. Bimanual Smash

4) Animation playback for hand Upward Bimanual Retractretraction.
5) Navigation approach direction Approach receiver from any

to receiver agent direction.
6) Animation playback for hand Extend upwards with both hands.

extension.
7) IK release maneuver. Open Fingers

8) Animation playback for hand Bimanual Outward Retract
retraction.

situation as an 8-step manipulation sequence. Conventions and descriptions

of grasp maneuvers are outlined in detail in Section 4.3. Figure 4-3 shows the

robot performing the proposed manipulation strategy in the physical

environment.



Figure 4-3: Nexi performing the manipulation sequence outlined in Table 4.1.

4.3 Manipulation Repertoire Development

Nexi's manipulation repertoire is established by a combination of exact

mimicry of observed human actions and translating certain human actions to

suit the kinematics of Nexi's end effectors. First, a pilot study was done

where human participants were required to deliver several objects to various

receiver agents. The objects used for the pilot study included many items that

are not part of the object sets in Figure 2-5 and Figure 32-6, like credit cards,

books, wine glasses, etc. These trials were videotaped and the manipulation

maneuvers of the human were interpreted and categorized to produce a set of

manipulation skills that Nexi could implement. Figure 4-4 shows strategies

used by the human participant.



Figure 4-4: Manipulation maneuvers from a human test subject. (a) Toss, (b) Scoop, (c) Hang,
(d) Bimanual Power Grab, (e) Bimanual Retract Downward, (f) Push and Collect, (g)

Unimanual Power Grab, (h) Overhead Lift.



Clearly, the abilities of a human will be vastly different and more

extensive than that of a robot. So the reasoning mechanism finds feasible

maneuvers from the human dataset that are kinematically robust for the

robotic to use. To do this, I first transcribed observed human actions and fed

these descriptors into the reasoning architecture as input. The system then

uses pre-programmed logic to determine if maneuvers are suitable for Nexi.

It filters these human actions by considering factors listed in Table 3.1 such

as tactile sensing, end effector dynamics, and the manipulator agent's arm

range of motion. Figure 4-5 shows the pseudo-code for a portion of

UNE PSEUDO.CODE
1: WHILE (grasping)
2: IF {action requires whole-body manipulation)
3: ELSE IF (action requires whole-arm manipulation)
4: ELSE IF (action requires flat, open palmed hands)
5: -+ THEN {action Is Invalid for robot)
6:
7: WHILE {navigating)
8: IF (action requires approach behind a human)
9: -+ THEN (action Is Invalid for robot)
10:
11: WHILE (entire action)
12: IF (action requires object re-grasping)
13: IF (alternaive actions are possible)
14: -+ THEN {use alternative action for robot)
15: ELSE IF (alternative actions are not possible)
16: -+ THEN {action is invalid for robot)

Figure 4-5: Pseudo-code of the logic used for repertoire determination.

the logic used by the reasoning system. For example, it was observed that the

human participant sometimes used whole-arm and whole-body manipulation



to complete tasks. Because these maneuvers require whole-body tactile

sensing, which Nexi does not have, these maneuvers get eliminated from the

robot's manipulation skillset. This is expressed in lines 1-5 in Figure 4-5. The

system also filters out any strategies that conflict with the constraints in

Table 3.3 as shown in lines 11-16 in Figure 4-5.

Finally, the system generates an inventory of manipulation skills

available for Nexi to use in future manipulation tasks. Table 4.2 lists and

describes Nexi's manipulation repertoire and Figure 4-6 illustrates the robot

performing these actions in the physical environment.

Table 4.2: Manipulation Repertoire for Nexi

MANEUVER MANEUVER NAME DESCRIPTION
NUMBER ______ ______________

The robot grabs one end of the object, pushes It
I Push and Colect across a surface, then uses her other hand to grab

the other end of the object.

2 Bimanual Smash The robot performs a bimanual power grasp.

3 Un iual Powr The robot performs a power grasp with one hand.Grab _____________________

4 Upwad Bimna The robot retracts both hands upward.

5 DowwardThe robot retracts both hands downward.Bknianuai Retract

6 Upward n ual The robot retracts one hand upward.

7 Dnnara The robot retracts one hans downward.

6 Open Fingers The robot opens her Ingers.
9 Close Fingers The robot closes her fingers.
10 Hang The robot hangs objects onto supports.

Bianual Outward The robot reracts her hands away from
I1 Retact otr to release an object.
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Figure 4-6: The 11 maneuvers in Nexi's manipulation repertoire. (a) Maneuver 1, (b)
Maneuver 2, (c) Maneuver 3, (d) Maneuver 4, (e) Maneuver 5, (f) Maneuver 6, (g) Maneuver

7, (h) Maneuver 8, (i) Maneuver 9, (j) Maneuver 10, (k) Maneuver 11.



4.4 Object Affordances

Observations from the pilot data are also used by the reasoning system

to learn object affordances [10], [21] and factors in the scene that may affect

Nexi's manipulation strategy. These observations are used in conjunction

with known physics-based logical rules that are hardcoded into the reasoning

mechanism. These rules, which come from [8], [9], [24], [25], and [26], are

expressed symbolically in R1D1. Appendix F lists these physics-based rules3 .

For instance, we know from physics that round objects can roll on a surface

[25]. So we can state in the reasoning system that if the manipulation object

is a round, or has a round feature, then a particular action may cause the

object to roll if it supported by a surface. So if the object in question is a

cylinder, which has a round feature, then it has the potential to roll.

However, from the pilot data, it was observed that a cylinder could

only roll on a surface from a tapping action if it is laying flat. If the cylinder

is in the upright orientation, a tapping action would cause it to fall, not roll,

as shown in Figure 4-7. So the reasoning system uses a hybrid of hardcoded

physics-based reasoning and observations from human object interactions to

determine that a manipulator agent can tap a cylinder and cause it to roll

only if the cylinder is in the flat orientation and supported by a surface.

3 Not all rules listed in Table V are used by the reasoning mechanism for strategy generation.
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Figure 4-7: Observations from human interactions with a cylinder. (a) Tapping causes the
cylinder to fall if it is upright initially, (b) tapping causes the cylinder to roll is it is flat

initially.

This process of learning affordances through a hybrid of observations

from human interactions and hardcoded physics-based logic is used

extensively to build a physics-based reasoning architecture. The robot can

then leverage this knowledge corpus for future object interactions.

4.5 Bayesian Networks

Once a physics-based knowledge corpus is established, the next step is

to determine a way for the robot to make decisions about which maneuvers to

select in their action repertoire for a given scene. Bayesian Networks (BN)

are powerful statistical tools that are used extensively throughout robotics for

representing beliefs [27]. BNs are probabilistic graphical models that

represent a set of variables and their conditional dependencies [22], [23]. For

example, BNs are used in the medical field as a way for doctors to diagnose



patients. BNs can determine the probability that a patient has condition X

given that the patient has symptoms A, B, and C [28], [29]. This logic is used

similarly for our reasoning architecture to determine the probability that the

appropriate manipulation maneuver should be X given that factors A, B, and

C are present in the scene. In the context of this analogy, X represents just

one step in the 8-step manipulation sequence discussed in Section 4.2. And

factors A, B, and C represent the descriptors, constraints, and rules

presented in Table 3.1, Table 3.2, Table 3.3, and Appendix F. Since only one

BN is generated for each step in the 8-step manipulation sequence, a total of

8 BNs must be used by the reasoning system in order to determine a full

manipulation strategy, as seen in Figure 4-1(f).

For this research, the variables in the BNs are the physics-, social-,

and capability-based factors that are present in the manipulation

environment. Factors such as, the kinematics and dynamics of the

manipulator agent's end effectors, the geometry of the objects, the structures

supporting the objects in the scene, the rules and constraints imposed on the

system, etc. are all represented symbolically in R1D1 as variables in the BNs.

A single BN is a graph comprised of nodes whose values represent data

from the factors discussed above. These nodes are linked through a

probabilistic network that can determine how the values of all other nodes

affect one node in particular. For this research, the BNs use observations

from the pilot study in Section 4.3 and manipulation training sessions



discussed in Section 4.10 to perform its analysis. The system finds the

probability that a particular manipulation action was used given the values

of certain factors in previous manipulation tasks. Thus, the probabilistic

nature of the network becomes more statistically significant as more trials

are performed and catalogued.

Figure 4-8 shows a segment 4 of a BN used by the reasoning system to

(b) BIMAAL HANG PUSH AND
COLLECT

Figure 4-8: A segment of a Bayesian Network used by the reasoning system. (a) Factors that
influence manipulation strategies (b) A portion of Nexi's manipulation repertoire.

determine step 3 in a manipulation sequence, i.e. the IK grasp maneuver.

Ellipses are used to denote continuations of nodes in the network. Figure 4-

8(a) indicates a cluster of nodes that represents the physics-, social-, and

capability-based factors and their unique values. Figure 4-8(b) indicates a

4 Due to the expansive nature of the BN graphs, it is difficult to show the network in its entirety.
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cluster of nodes that represents the maneuvers available in Nexi's

manipulation repertoire. Each factor node can influence other factors nodes,

maneuver nodes, or both. The goal is for the reasoning system to determine

the best strategy for the robot to execute during a new manipulation task.

Therefore, it determines which maneuver yields the highest probability of

success when the factor nodes occupy certain values for a given scene. This

analysis is based on the probabilities detected from previous interactions.

The maneuvers get ranked in order of decreasing success rate and the

reasoning system suggests that the robot execute the maneuver with the

highest probability of success. The reasoning system does this for each of the

8 BNs to suggest a full 8-step manipulation strategy.

JavaBayes [30] is a software toolkit that allows Java developers to

create, modify, and export BNs. It calculates statistical probabilities and

expectations, and performs robust analysis on BNs created by the user. For

this research, JavaBayes is used to create and analyze Bayesian models and

serves as an intermediary between the belief system and action system in

R1D1. The reasoning architecture takes in perceptual data from the

environment, i.e. the physics-, social-, and capability-based factors discussed

above, then generates beliefs about the best possible manipulation strategy

for the robot to perform for a given task. R1D1 then translates these beliefs

into motor actions that the manipulator agent can perform on objects in the

physical world.



4.6 Vision Pipeline

4.6.1 Vicon Object Recognition

As stated previously, position and orientation data is sent to robot via

a Vicon motion capture system. The Vicon system consists of nine cameras

with pulsating light emitting diodes that can track reflective markers, which

are easily attachable to clothing and other materials. The positions of these

reflective markers are tracked with high accuracy and often within a few

millimeters of error tracking at a rate of 100-120 Hertz [19]. Objects,

supports, and both the manipulator and receiver agents in the environment

are tagged with these reflective markers that are detected by the Vicon

system's cameras. Human agents may wear hats and gloves covered with

reflectors to detect their head and hand locations.

Huma n's Human
line of sight Head

Robot's line
of sight

Robot Human

Robot Object hn
hand

Figure 4-9: Graphic visualization of the Vicon systema tracking an object, two agents,
agents' hands, and forward vectors representing the agent's line of sight.



Figure 4-9 shows a graphic visualization of the Vicon system tracking objects

and agents, which are tagged with reflective markers. The Vicon data is fed

into the robot's perception system where it is interpreted, then used to tell

the robot where items of interest are located in the workspace, Figure 4-1(b).

This data is also used as visual feedback for the robot to execute motor

actions in the physical environment, Figure 4-1().

In order to extract unique features on objects in the environment, the

raw Vicon data undergoes a series of manipulations via 3D vector algebra in

the R1D1 perception system. Figure 4-10 shows an example of the feature

extraction process for the box with handles. The Vicon system sends the

v=omerker objeW center
cenroid of fma

handle Right
grasp target rap et

Figure 4-10: Feature extraction using Vicon. (a) Object in the physical environment, (b) Vicon
marker centroid and bounding box, (c) Extracted features from Vicon centroid.

position of individual markers as well as the centroid of these markers to the

R1D1 perception system. Next, a bounding box which represents the

rectangular volume that encapsulates the object gets created by manually

recording the spatial limits of the object's geometry, Figure 4-10(b). Once

bounding boxes and marker centroids are established, the Vicon marker

centroid is manually manipulated in the perception system using 3D



transformation matrices to distinguish object features, Figure 4-10(c). This

allows the robot to track unique features on the objects like surfaces, edges,

and graspable structures like handles, given the position and orientation

data of the object.

4.6.2 Human Face Detection & Shared Attention

As stated above, human agents may wear hats and gloves covered with

reflectors to detect their head and hand locations, Figure 4-11. This allows

Figure 4-11: Hats and gloves tagged with reflective markers.

the robot to determine the position and orientation of a human's hands

during object exchange and a forward vector which is an approximation of the

human's line of sight. The line of sight vector is calculated in R1D1 by

algebraically manipulating the Vicon marker centroid between reflective dots

on the hats. This vector is approximated such that it can be used universally,

irrespective of the varying head profiles among different humans.



Nexi is equipped with two Point Grey stereo cameras [31] that run

human face detection algorithms similar to those used in [32], [33], [34].

Figure 4-12 shows an example of human face detection as seen

Figure 4-12: Human face detection through Nex's eye cameras.

through Nexi's eye cameras. When the robot detects a human face, a red half-

square is drawn around it to indicate its position. The robot uses these

methods to determine a human receiver agent's readiness to receive an

object. For example, as the robot approaches a human receiver for object

drop-oftP, she looks in the direction of the human's face (as reported from

Vicon) to see if the human is ready to receive the object. If the robot detects a

human face, then it assumes that the human receiver is engaged for object

hand-off and proceeds to deliver the object. When the robot reaches its final

navigation goal, it extends its arms towards the human receiver's hands (as

reported from Vicon) and waits 2 seconds for the human to grab the object.

5 Robots are trained to always approach humans from the front.



After 2 seconds has passed, the robot opens its fingers releasing the object. It

is assumed that 2 seconds is a sufficient amount of time for the human to

grab the object. The robot immediately retracts its arms upon releasing the

object.

If the robot does not detect a human face during the approach, then it

gives a verbal utterance, like "Here you go!," to get the human's attention

before object delivery. It is assumed that this utterance is sufficient to get the

human's attention. Once the robot makes this statement, it performs the

same object delivery maneuver discussed previously.

4.7 Navigation

Robot navigation is performed using a standard A* (a-star) navigation

planner [35], [36] implemented in R1D1. For a given environment, the

algorithm treats the receiver agents, the table support, and the post support

as obstacles. The navigation target can be the location of the manipulation

object or the location of the receiver agent depending on which step in the

manipulation strategy the robot is performing. These locations are reported

from the Vicon system. While approaching the navigation goal, the robot

utilizes two factors that ensure appropriate arrival, a safe navigation

approach distance and final orientation vector. The approach distance factor

determines the best range between the robot and the receiver agent or objects

to allow for safe manipulation. The orientation vector determines how the

robot should orient its body to ensure that it is facing the navigation target



upon arrival. Both of these factors are determined through trial and error

and hardcoded into the navigation planner. The robot is trained to approach

objects and receptacles from the direction that is most appropriate for

manipulation, but to always approach humans from the front. Figure 4-13

shows a top view of example navigation paths generated in R1D1 when a

robot delivers an object to a receptacle, Figure 4-13(a), and to a human,

Figure 4-13(b).
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Figure 4-13: Example navigation paths generated in R1Di. (a) Robot delivers object to a
receptacle. (b) Robot delivers object to a human.

4.8 Manipulation

4.8.1 Animation Playback

Robotic manipulation is performed through a hybrid of animation

playback using Maya software [37] and direct motor control in R1D1, as

shown in Figure 4-14. Once a full manipulation repertoire is established,

Maya is used to generate animations for virtual creatures that mimic the



observed human motor actions. These virtual animations can then be played

back on the
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Figure 4-14: Navigation and Manipulation Pipeline.

physical robot [38]. These animations are used for the actions that occur

before and after actual object grasping, i.e. arm extension and arm retraction.

Arm extension animations position the robot's end-effectors from an idle

position to a location near the grasp target for object pick-up or to a location

near the receiver agent for object drop-off. Arm retraction animations

position the end-effectors from locations on the actual grasp object to

locations that allow the robot to safely navigate while carrying objects and to

avoid any obstacles in the environment. Arm extension and retraction

animations are created with consideration to the robot's kinematics to ensure

that the robot's hands and arms do not collide with obstacles in the

environment like the table support, the post support, the receptacle, or a

human receiver agent. These animations also leverage the safe navigation

distance factor discussed above to prevent obstacle collision. Further, items

like the table, the post, and the receptacle are carefully selected for the



environment so that their sizes and geometry decrease the likelihood of

collision with the robots' arms and hands.

4.8.2 Inverse Kinematics & PID Control

Once arm extension animations are played back, Nexi then uses

inverse kinematics (IK) [39] and proportional-integral-derivative (PID)

control [39], implemented in R1D1, to position her end-effectors to a final

position and orientation on the grasp target. Reflective markers are placed in

random locations on the objects. The Vicon system finds the centroid of these

markers and reports the location and orientation of this centroid to the R1D1

perception system, Figure 4-1(b). However, this reflective marker centroid

may not represent the physical object's center of mass or any graspable

feature on the object. Therefore, we alter this marker centroid using vector

algebra in R1D1 to extract unique graspable features on the objects like

corners, handles, and surfaces. This algebraic manipulation process is done

for each object and fed to the reasoning system a priori, as discussed in

Section 4.6.1. The robot also has reflective markers on her hands. So end-

effector centroids are also generated by the Vicon system, which represent

the robots' left and right hands. The [K and PID control move the end-effector

centroids from their locations at the end of the extension animation to

graspable features located on the object in question. The end-effector

centroids land on the objects with desired orientations, which are determined

through trial and error during manipulation training sessions, as discussed



in Section 4.10. Maya animations are then used to close the robots' fingers as

well as retract the objects from their supports with the retracting animations

discussed above.

4.9 Agent Capabilities

4.9.1 Robot Range of Motion

The reasoning system allows Nexi to determine if objects in the

environment can be safely manipulated given the range of motion in her

arms. To do this, the system finds a vertical range H in which Nexi can safely

manipulate the object if it is located within H. Figure 4-15(a) shows an arc

(a) (b)
Figure 4-15: (a) Nexi's true arm range of motion, (b) Nexi's safe graspable range of motion.

that represents Nexi's true arm range of motion when the arm is fully

extended. The origin of this arc is measured from Nexi's shoulder joint and its

length extends to the ends of her end effectors. As seen in Figure 4-15(b), this

arc is then reduced by 30% to determine a safe range of motion which

prevents current spikes in Nexi's arm motors caused by torque maxima when



the arms are fully extended at the arc limits6. A safe vertical range H is then

found from the distance between the two vertical limits of the safe range of

motion arc. H is 3.4 feet and is measured from a vertical distance of 3 inches

from the ground. Thus, Nexi can safely manipulate any object located within

H.

It is assumed that Nexi will always navigate to target items such that

her body is always directly in front of objects and agents in the environment,

thus, a horizontal grasp range of motion does not need to be considered.

Further, the positions of all receiver agents in the environment are carefully

selected such that object exchange happens within Nexi's safe graspable

range of motion, so the robot does not need to perform this calculation when

approaching receiver agents for object delivery.

(a) (b)

Figure 4-16: (a) Cylinder in the flat orientation outside of Nexi's graspable range of motion,
(b) Cylinder in the upright orientation inside Nexi's graspable range of motion.

To further ensure that Nexi can grasp objects, a rule is imposed which

states that for any object orientation, at least 31% of the object's vertical

6 The determination of this criterion is discussed in Section 4.10.2.



dimension D must be located within the safe grasp range H in order for Nexi

to be able to manipulate the object 7. For example, Figure 4-16(b) shows that

Nexi is capable of manipulating the cylinder placed on the floor in the upright

position since at least 31% of D is within Nexi's safe graspable range of

motion H. However, when placed in the flat position on the floor, the cylinder

is not within Nexi's safe graspable range of motion no matter how close the

robot navigates to the object as shown in Figure 4-16(a).

4.9.2 Grasp Capacity

The reasoning architecture uses a surface area metric to determine if

the robot should grasp objects bimanually or unimanually. Figure 4-17

32.7 In2

Figure 4-17: (a) Snapshot of palm, (b) Fitting points to the palm extremities, (c) Area
calculation of palm polygon.

illustrates how this process is performed. First, an outline of the manipulator

agent's end effector is created with the fingers spread open as wide as

possible, Figure 4-17(a). Next, a polygon is generated by connecting the

extreme points of the end effector, Figure 4-17(b). Finally, the area of this

The determination of this criterion is discussed in Section 4.10.2.



polygon is calculated and represents the manipulator agent's palm surface

area P, as seen in Figure 4-17(c). A similar analysis was performed on Nexi's

end effectors and it was determined that Nexi has a P value of 16.92 in 2. P is

compared with the surface area of each object and if P is at least 84% greater 8

than the surface area of the object, then the system determines that the

manipulator agent is capable of grasping the object with only one hand, i.e.

unimanually. If P is less than 84% greater than the surface area of the object,

then the system determines that the manipulator agent must grasp the

object with two hands, i.e. bimanually. The weight of the object would

typically contribute to this metric also, however, for the purposes of this

research, all objects are extremely lightweight and are chosen to ensure that

the robot's arm and hand motors are powerful enough to overcome load

torques.

4.9.3 Receiver Agent Capability

Because humans have extremely advanced dexterity and are capable of

whole-body maneuvers like reaching, squatting, and bending over, the

reasoning system assumes that human receiver agents have an unbounded

range of motion for receiving objects. Again, the only criterion employed is

that Nexi must manipulate objects with at least one handle such that the

handle exposed for the human to grab upon object exchange.

8 The determination of this criterion is discussed in Section 4.10.2.



The reasoning architecture utilizes two distinct criteria for delivering

objects to Xylo. Xylo's arms are held at a fixed distance of 22 inches apart.

Thus, the reasoning system determines that if the largest horizontal

dimension L on the object is at least 23 inches in length, then the object can

(6)

Figure 4-18: (a) Failure to lay the upright cylinder on Xylo, (b) Successfully laying the flat
cylinder on Xylo, (c) Successfully hanging the ring on rope on Xylo.

be laid on Xylo's arms, Figure 4-18(b). The system adds an extra inch to the

fixed distance of Xylo's arms in order to ensure safe support. Figure 4-18(a)

shows an example where the object falls between Xylo's arms because it does

not meet the L criterion.



If the object has a ring feature, and may or may not fulfill the L

criterion, another criterion is applied which states that objects with ring

features can be looped around Xylo's end effectors as seen in Figure 4-18(c).

The dimensions of the receptacle are carefully chosen to guarantee

that Nexi will be able to clear the receptacle's height upon object delivery.

The only criterion utilized by the reasoning system is that Nexi must grasp

objects and retract them from their supports in such a way that leaves

enough clearance for the height of the receptacle. Further, any arm retracting
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Figure 4-19: (a) Nexi unsafely clears receptacle height (b) Nexi safely clears receptacle
height.

action must occur within Nexi's safe graspable range of motion. Figure 4-19

shows examples of both a safe and unsafe clearance of the receptacle's height.

For instance, as seen in Figure 4-19(a), grasping the at the top of the cylinder



on the floor is not preferred because Nexi must then lift her arms outside of

her safe graspable range of motion in order to clear the receptacle's height.

4.10 Manipulation Training

The training object set from Figure 2-5 was used to teach the robot

how to manipulate objects. Nexi was placed in the research environment and

objects were placed in front of her in various orientations on various

supports. Through trial and error, Nexi manipulated the objects and the data

was recorded, transcribed, and represented symbolically in the reasoning

architecture. Appendix A shows the full list of object combinations used for

manipulation training. Appendix Orientations illustrates the conventions

used for object orientation. Nexi performed each object combination three

times to test the repeatability of the maneuver used.

4.10.1 Learning Affordances

In addition to learning object affordances through the pilot study

discussed in Section 4.4, Nexi learns about object affordances through her

own exploration. Using every maneuver in her manipulation repertoire,

discussed in Section 4.3, she repeatedly tries to manipulate the object set.

After each set of three trials, Nexi's attempts were labeled with a success rate

S which took the value of 0, 1, or 2. If S= 0, then the maneuver used was a

failure and should not be used to manipulate the object. If S = 1, then the

maneuver used could possibly manipulate the object, but has a low



probability of success due to potential instabilities between the object and the

robot's end effectors. If S =2, then the maneuver used successfully

Figure 4-20: (a) Failed maneuver (S = 0), (b) Semi-successful maneuver (S = 1), (c) Extremely
successful maneuver (S = 2).

manipulates the object with minimal or no potential instabilities. Figure 4-20

highlights some sample trials where Nexi attempted to manipulate the box.

In Figure 4-20(a), she attempts to grasp the box unimanually. There is no

way possible that this maneuver will successfully pick up the box, so it is

labeled S= 0. In Figure 4-20(b), she now attempts to grasp the box

bimanually with her fingers opened. It is possible that this maneuver will

work, but through repetition, it is learned that the maneuver has a high

probability of failure due to the small number of contact points between

Nexi's fingers and the box's surface. Thus, it is labeled S = 1. In Figure 4-

20(c), Nexi attempts to grasp the box bimanually with her fingers closed. This



maneuver successfully manipulates the box and creates more contact

between her fingers and the object surface, thus reducing potential

instabilities. Therefore, it is labeled S = 2. Through this method of

reinforcement learning [40], Nexi learns about the interaction between her

end effectors and object features which can be used for future manipulation

attempts on the experimental object set.

4.10.2 Determining Metrics

Additional testing was performed during the training process to

determine certain metrics used by the reasoning architecture. For instance,

to determine a safe range of motion for Nexi, as illustrated in Figure 4-15, an

extreme for the motion arc was found by enforcing that arms could not extend

behind the robot. At the other motion arc extreme, the specifications of Nexi's

shoulder motors [41] were used to calculate a maximum angle that the arm

could traverse while holding a 2-lb load such that it does not exceed the

torque and current limits of the motor. Thus, the safe range of motion H is

the vertical distance between these two extremes of the motion arc.

To determine the criterion shown in Figure 4-16, the cylinder and ring

on rope objects were placed in the flat orientation and supported by an

adjustable hanging support. Nexi was required to grasp each object as it was

raised and lowered to various heights. The vertical dimension D of each

object, 6 in. and 2 in. respectively for the cylinder and ring on rope, was fixed

and the height of the object for each successful trial was noted. These heights



were then used to find a ratio between D and Nexi's safe range of motion H.

It was determined that if at least 31% of D was within H, then successful

manipulation was possible.

To determine if the robot should grasp objects unimanually or

bimanually, a surface area criterion is used. Once a grasp polygon is

determined for Nexi, as demonstrated in Figure 4-17, trials are performed

where the robot is required to grasp four different balls of increasing surface

area on a table. Balls 1-4 had surface areas of 6.79 in 2, 11.522 in 2, 20.143 in 2,

and 25.804 in2 respectively. Nexi could manipulate balls 1 and 2 with one

hand, but needed two hands for balls 3 and 4. Since ball 3 was the cut off

between unimanual and bimanual grasping, Nexi's hand polygon area, 16.92

in2, was divided by the surface area of ball 3, 20.143 in2 , which yielded a

value 0.84. Thus, a 84% surface area ratio between the robot's hand and the

object of interest was used to determine the use of bimanual or unimanual

manipulation.

4.10.3 Ranking Strategies

Once the robot manipulated all objects in the training set, it sometimes

discovered that different strategies could be used to successfully manipulate

the same object in a given configuration. Therefore, it is necessary to have a

metric that ranks the proposed strategies used for future manipulation

attempts. The reasoning architecture takes in factors such as the maneuver

success rate S, the handle criteria (Criteria #5) from Table 3.3, the



capabilities of receiver agents, and maneuvers that require the least arm

usage (bimanual vs. unimanual) for the robot to determine a rank number R

for each proposed strategy. For instance, if a scene has n possible proposed

manipulation strategies, a strategy with rank number R = 1 implies that it is

the preferred strategy for manipulation. The system then ranks the

remaining strategies R = 2, 3, 4, etc., in order of decreasing favor, until all n

proposed strategies have been ranked. If the reasoning system determines

that there are multiple strategies with R = 1 within n, then the system

selects an R = 1 strategy to employ at random. However, this case was never

seen in experimental trials.

Figure 4-21: (a) Unimanual grasp at rope, (b) Bimanual grasp at rope, (c) Unimanual grasp
at handle, (d) Bimanual grasp at handle.

Figure 4-21 shows examples of successful manipulation strategies for the ring

on rope supported by a hanging structure. Table 4.3 shows the resulting

rankings generated by the reasoning system for each strategy in



Table 4.3: Rankings generated for the ring on rope supported by a hanging structure

STRATEGY STRATEGY STRATEGY STRATEGY
(a) (b) (c) (d)

XYLO R=2 R=3 R=1 R=4
RECEPTACLE R=1 R=4 R=2 R=3

HUMAN R=1 R=2 R=3 Invalid

Figure 4-21 with consideration to each receiver agent.

In general, unimanual manipulation strategies are preferred over

bimanual strategies because they require less effort by the robot. Also,

Criteria #5 from Table 3.3, which states that handles must always be free for

human receivers, always trumps any other factor when determining rank.

And because object delivery to the receptacle is fairly easy for Nexi, in these

cases, the only significant factor in ranking strategies is the ease of

manipulation for the robot.

According to Table 4.3 and Figure 4-21, for object delivery to Xylo,

strategy (c) is preferred because it involves unimanual manipulation as

opposed to strategies (b) and (d) which involve two hands. Also, strategy (c)

involves grasping at the handle, which will make it easier for Nexi to place

around Xylo's end effector as opposed to strategy (a) where the object could

act as a pendulum and swing forcefully making it more difficult to hook the

handle around Xylo's arm.

According to Table 4.3 and Figure 4-21, for object delivery to a human,

strategy (a) is preferred because if leaves the entire handle open for the



human to grab as opposed to strategy (c). Strategy (a) is also easier for the

robot because it is performed unimanually as opposed to strategy (b). And

strategy (d) is invalid because it does not leave any part of the handle free to

grab, which is a direct conflict of Criteria #5 from Table 3.3.

4.10.4 Error Correction

Error correction was done with the aid of human intervention. During

the experimental trials9, if the robot failed to successfully manipulate an

object, upon pick up or delivery, a human participant clicked a button on a
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Figure 4-22: Screenshot of the Java dialogue box for error correction.

Java dialogue box within the reasoning system. Figure 4-22 shows a screen

shot of the dialogue box. The participant was asked to determine whether

they believed that the failure was caused by an incorrect proposed

manipulation strategy or from perceptual errors caused by the vision sensors.

If the participant clicked "FAILURE FROM SENSOR ERROR", Nexi is

stopped and I then performed a homing routine that calibrates the robot's

body motors. This attempts to reduce sensor noise caused by repeated use of

the robot. After the recalibration routine is complete, the robot is triggered by

9 A detailed outline of the experimental setup is discussed in Chapter 5.



the reasoning system to perform the exact same proposed manipulation

strategy as before. If the robot still failed to execute the manipulation and the

human participant believed sensor error was the cause, then that trial was

deemed to be caused by sensor error and the robot performed no alterative

strategies.

If the human participant clicked "FAILURE FROM POOR

MANIPULATION STRATEGY', this implied that the proposed strategy

ranked with R = 1 failed. Thus, the robot was stopped and I entered the

experimental environment and reset the scene so that the object was in its

initial configuration. The robot then attempted to perform the R = 2 strategy.

If the human participant felt that the R = 2 strategy was also a failure, then I

reset the scene again and the robot attempted the R = 3 strategy and so forth.

Every failed attempt was deemed an unfit manipulation strategy for the

scene, including trials where only a single strategy, with R = 1, was proposed

by the reasoning architecture.



CHAPTER 5

Experimentation

5.1 Experimental Setup

Table 5.1: Possible scene combinations for experimentation

MANIPULATOR RECEIVER OBJECT OBJECT OBJECT
AGENT AGENT ORIENTATION SUPPORT

Nexi Xylo with Upright HangingHandles

Human Inflatable Flat Table

Receptacle Upside-down Floor

Balls on
Rope __ __

A given research workspace for experimentation consists of a scene

which can be any combination of manipulator agent, receiver agent, object,

object orientation, and support, as shown in Table 5.1. And for a given scene,

the research task is for the Nexi to manipulate objects in the environment

and deliver them to the receiver agent. All scene combinations from Table 5.1

are considered for experimentation.

5.1.1 Santa's Workshop Task

The experimental environment consists of Nexi, objects in certain

configurations supported by various structures, two human participants,



Figure 5-1: Example experimental setup. (a) Xylo as Santa's elf, (b) Receptacle as a Toy for
Tots box, (c) Human participant A as Santa's helper, (d) Table for completed toys, (e) Nexi as

the robot Santa, (f) Human participant B as Santa's inspector, (g) Manipulation object
(Inflatable ball in the flat orientation supported by the floor), (h) Spare toy box.

Xylo, and a receptacle, as shown in Figure 5-1. A mock Santa's Workshop

scenario is used to describe the research task where participants are told that

the goal is to help Santa Claus build and sort as many toys as possible for

distribution to the children of the world. Appendix C shows the prompt given

to human participants that describes the Santa's Workshop task in detail.

Nexi, Figure 5-1(e), acts as Santa Claus and her role is grasp toys, i.e. the

experimental object set, Figure 5-1(g), from their supporting structures and

deliver them to either Xylo, a receptacle, or human Participant A to be sorted.

Xylo, Figure 5-1(a), acts as one of Santa's elves, and his role during the task

is to remain static and receive toys from Nexi. The receptacle, Figure 5-1(b),

acts as a Toys for Tots bin and its role is also to remain static and to collect



any toys that Nexi may drop inside it. Participant A acts as Santa's helper,

Figure 5-1(c), and the helper's role during the task is to build as many toys as

possible from of a box of random toy parts, Figure 5-1(h), and place them on a

nearby table, Figure 5-1(d), when they are finished building each toy.

Participant A is also told that Nexi may deliver toys to them throughout the

task while they are constructing. If this occurs, then they must receive the

toy from Nexi and place it on the nearby table. Participant B, Figure 5-1(f),

acts as Santa's inspector throughout the task. The inspector's role is ensure

quality control by monitoring Nexi as she manipulates objects and delivers

them to receiver agents. Participant B sits at a station equipped with a

computer that runs the error detection interface discussed in Section 4.10.4.

They were instructed to watch for failed object manipulation attempts by

Nexi and to make judgments about the type of failure that was detected. If

Participant B felt that Nexi's failure was caused by a faulty vision sensor and

not the attempted manipulation strategy, then they were instructed to click

the box on the Java dialogue window that says, "FAILURE FROM SENSOR

ERROR", as shown in Figure 4-22. On the other hand, if Participant B felt

that Nexi's failure was a result of an insufficient proposed manipulation

strategy, then they were told to click the box on the Java dialogue window

that says, "FAILURE FROM POOR MANIPULATION STRATEGY." My role

as the experimenter was to operate the reasoning system, generate different

scene combinations, and to create those scenes in the physical environment



by placing objects in their appropriate configuration. As described in Section

4.10.4, I also intervened during manipulation failures. 12 randomly

generated scene combinations were used for each experiment.

After the task was complete, both participants were asked to fill out a

questionnaire regarding the Santa's Workshop task. Appendix D shows the

questionnaire. Analysis of the human questionnaire data is discussed in

Chapter 6.

5.1.2 Random Scene Combination Generation

According to Table 5.1, there exists 180 combinations of possible

manipulation environments [42]. MATLAB [43] and Microsoft Excel [44]

software was used to generate and categorize these combinations. Each

scenario was labeled with a unique number to distinguish it from other

scenarios. A random number generator in Java was integrated into the

reasoning system for testing purposes.

During testing, the reasoning system generates a random number that

is within the limits of the number of possible scene combinations. From there,

the system matches this random digit with the appropriate scene according to

the catalogued Excel spreadsheet of combinations. When the system displays

the given scene in the Java console, the experimenter creates the scene in the

physical environment with the objects, orientations, and supports. Once the

correct scene is established, the experimental task if for the manipulator

agent, Nexi, to manipulate the objects in the environment and deliver them



to a receiver agent. The experimental task is always the same, only the

environment changes between experimental trials. This process of randomly

generating a scene, creating that scene in the physical world, and performing

the research task is repeated until all 12 scene combinations have been

considered per experiment.

5.2 Combination Reduction

Certain factors about the workspace can lead to reductions in the

number of possible scene combinations to be considered for experimentation.

For example, some scene combinations get eliminated because of symmetry in

the object's geometry. Table 5.1 shows that every object has three possible

orientations10 , upright, upside-down, and flat as shown in

C-- O---o 6
(a) (b) (C)

Figure 5-2: Orientations for the balls connected by rope. (a) Flat, (b) Upside-down, (c)
Upright.

Appendix B. Figure 5-2 shows the possible orientations for the balls on rope

object. Note that the flat orientation, Figure 5-2(a), is the same as the upside-

down orientation, Figure 5-2(b). Because these orientations are the same,

10 Orientation conventions are defined ad hoc.



only the flat and upright orientations are considered during experimentation.

This analysis is done for other objects with similar geometry.

Further, scenes that contain impossible or dynamically unstable object

and support configurations are eliminated. For instance, the balls on rope

object in Figure 5-2 can only exist naturally in the upright configuration,

Figure 5-2(c), i.e. if it is attached to a hanging support. However, because it is

not a rigid structure it cannot exists naturally in the upright orientation on

the floor, the table, or the post. Other scene combinations that contain

similar impossible or unstable initial conditions are also eliminated.

As stated previously, there exists 180 combinations of possible

manipulation environments. However, after using the combination reduction

techniques discussed above, there exists 60 possible scene combinations used

for testing. Appendix E shows the table of experimental combinations used.

Thus, several human test subjects were recruited until all 60 scene

combinations in Appendix E were tested.

5.3 System Evaluation

The reasoning architecture will be evaluated based on the following

criteria:

1) How well does the reasoning architecture develop a manipulation
repertoire for Nexi?

2) How well does the reasoning architecture generate strategies to
successfully accomplish the manipulation task?



3) What is Nexi's success rate for executing proposed manipulation
maneuvers in the physical environment?

These criteria will be examined using results from the human pilot study, the

robot's manipulation training sessions, observations from experimental trials,

and questionnaire responses from human test subjects.



CHAPTER 6

Results

6.1 Participant Demographics

To perform the experiments, human test subjects were recruited from

the MIT and greater Boston area. There were 13 people in total, 9 men and 4

women, and the mean age was 32.6 years. Participants were randomly

assigned to play the role of Santa's helper or Santa's inspector. It was

sometimes difficult to schedule two human test subjects to perform the task

during the same time block. For instance during experimental trials, 5 dyads

were tested and three participants did not have a partner. Thus, 8 total

experiments were performed. In the cases were only one participant was

available, the task was split up into two sessions. In the first session, the

human test subject played the role of Santa's inspector and the robot only

delivered objects to Xylo and the bin, which eliminated the need for a human

receiver. In the second session, I played the role of Santa's inspector while the

human participant played the role of Santa's helper.

6.2 Example Scenarios



The following four scenarios highlight a sample of data collected from

the experimental trials. For each scenario, only rank R = 1 manipulation

strategies proposed by the reasoning architecture are featured. For

simplicity, these scenarios feature the same object, the box with handles.

Scenarios A, B, and C highlight successful strategies, however in Scenario D,

one step in the manipulation sequence is deemed impossible to execute, thus

the entire strategy cannot be performed. The robot does not perform any

manipulation strategy that has at least one impossible step in its sequence.

6.2.1 Scenario A: Box with handles, flat, to the receptacle

Table 6.1: Proposed manipulation strategy for Scenario A

MANIPULATION SEQUENCE STRATEGY IMPLEMENTED
(R =1)

1) Navigation approach direction Approach object from the front.
to object.

2) Animation playback for hand Extend forward with both hands.
extension.

3) IK grasp maneuver. Bimanual Smash
4) Animation playback for hand Upward Bimanual Retractretraction.
5) Navigation approach direction Approach receiver from any

to receiver agent direction.
6) Animation playback for hand Extend outwards with both

extension. hands.
7) IK release maneuver. Open Fingers

8) Animation playback for hand Bimanual Outward Retract
retraction.
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Figure 6-1: Manipulation sequence for Scenario A.

Scenario A consists of the box with handles in the flat orientation

being supported by the table and the receptacle as the receiver agent. Table

6.1 and Figure 6-1 illustrate the R = 1 manipulation strategy proposed by the

system. In step #1, the robot is suggested to approach the object from the

front in order to successfully perform the Bimanual Smash maneuver on the

objects handles in step #3. Because the receiver agent is the receptacle, step

#5 suggests that the navigation approach direction does not matter, thus,

Nexi can approach the receiver from any direction. The robot then dumps the

objects inside the receptacle as shown in steps #6 - #8.

6.2.2 Scenario B: Box with handles, upright, to Xylo

Scenario B consists of the box with handles hanging in the upright

orientation and Xylo as the receiver agent. Table 6.2 and Figure 6-2 illustrate

the R = 1 manipulation strategy proposed by the system. In step #1, the robot

is suggested to approach the object from the front in order to successfully

perform the Bimanual maneuver in step #3. The robot performs this

maneuver in order to leave one handle on the object free so that



Table 6.2: Proposed manipulation strategy for Scenario B

MANIPULATION SEQUENCE STRATEGY IMPLEMENTED
(R =1)

1) Navigation ch direction Approach object from the front.

2) Animatin playback for hand Extend forward with both hands.
exomion. __

3)IK grasp maneuver. Bimanual Smash
4) Animation playback for hand Downward Bimnnl Retrac

5) Navigation approach direction Approach receiver from the
to receiver agent front.

6) Animatin playback for hand Extend outwads with both
extesion. hands.

7) IK release maneuver. Hang

8) Animation playback for hand Bimanual Outward Retract
retcon. ___

Figure 6-2: Manipulation sequence for Scenario B.

it can be hung on one of Xylo's end effectors as presented in step #7. Because

Xylo is the receiver agent, step #5 suggests that Nexi approach Xylo from the

front.

6.2.3 Scenario C: Box with handles, flat, to a human



Table 6.3: Proposed manipulation strategy for Scenario C

MANIPULATION SQUENCE STRATBGY IMM T
(A -1)

5) Naviga piuh dhodo Approch rcsbj from the
se, uuivmraat ________. _

2)AKimbaa " for hand Exd p ss wi boh hnds.
5)AmimadWa fohad BAppmeh Ouard Remtao

-77777~77- 2$ ,,z
Figure 6-3: Manipulation sequence for Scenario C.

Scenario C consists of the box with handles in the flat orientation

being supported by the table and a human as the receiver agent. Table 6.3

and Figure 6-3 illustrate the R = 1 manipulation strategy proposed by the

system. In step #1, the robot is suggested to approach the object from the side

in order to successfully perform the Bimanual Smash maneuver on the sides

of the object, which do not have handles, as shown in step #3. The robot



performs this maneuver in order to leave the handles on the object exposed so

that the human receiver can grasp the object easily, as outlined in steps #6 -

#7. This complies with Constraint #5 in Table 3.3. Because the receiver agent

is a human, step #5 suggests that the robot approach from the front.

6.2.4 Scenario D: Box with handles, hanging flat, to Xylo

Table 6.4: Proposed manipulation strategy for Scenario D

MANIPULATION SEQUENCE STRATEGY IMPLEMENTED
(R = 1)

1) Navigation approach direction Approach object from any
to object. direction.

2) Animation playback for hand Extend upward with both hands.
extension.

3) IK grasp maneuver. Bimanual Smash
4) Animation playback for hand Downward Bimanual Retract

retraction.

5) Navigation approach direction Approach receiver from the
to receiver agent front.

6) Animation playback for hand Extend upwards with both hands.
extension.

7)IK release maneuver. IMPOSSIBLE

8) Animation playback for hand Bimanual Outward Retract
retraction.
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Figure 6-4: Invalid maneuvers. (a) Invalid maneuver since the object will fall, (b) Another
invalid maneuver since the object will fall, (c) Invalid maneuver due to regrasping.

Scenario D consists of the box with handles in the flat orientation

being supported by a hanging support and Xylo as the receiver agent. Table

6.4 and Figure 6-4(a) illustrate the R = 1 manipulation proposed by the

system. Since the object is hanging, step #1 suggests that the navigation

approach direction does not matter, thus, Nexi is told to approach the object

7 777711177-



from any direction. In step #3, the robot can perform the Bimanual Smash

maneuver on any two opposing sides of the object, e.g. either the sides with

handles or the sides without handles. This all depends on the initial

navigation approach direction. In step #5, the robot is advised to approach

Xylo from the front, but #7 shows that it is impossible to successfully deliver

the object to Xylo given its initial configuration. Using criteria discussed in

Section 4.9.3, the system reasons that the object would fall if Nexi tries to lay

it on Xylo because the horizontal distance between Xylo's arms is larger than

the width of the object. This is also shown in Figure 6-4(b), which illustrates

the R = 2 proposed strategy. Further, as seen in Figure 6-4(c), attempting to

hang the object on Xylo's end effectors would require an object regrasp, which

is a direct violation of Constraint #2 from Table 3.3. Thus, the robot cannot

execute any strategies and Scenario D is deemed impossible to complete by

the reasoning architecture.

6.3 Experimental Results

This Section outlines the results obtained from experimental trials. 82

total trials were generated among the 8 experiments performed. Table 6.5

describes the results from the 13 questionnaires collected from human test

subjects. Point values were assigned to each response on the questionnaire; 1

= Strongly Disagree, 2 = Disagree, 3= Neutral, 4 = Agree, 5 = Strongly Agree.

The minimum, maximum, mean, and standard deviation values of all

responses were tabulated for each question.



Table 6.5: Analysis of questionnaire responses

Question Sze Min Max Mean SD

1 The robot grabbed every toy successfully each time. 13 1 4 2 1.043907845

2 If you were playing the role of Santa, you would have grabbed the toy 13 2 5 4 1.126601424
the exact same way as the robot. 1_1

3 The robot's failures were caused mainly because she used an incorrc 13 1 3 2 0.800640769
way of grabbing the toys.

4 There were better ways for the robot to grab the toys that she did not 13 1 5 2 1.3634421use.
5 The robot delivered toys to Xyle successfully. 13 4 5 5 0.506369664
6 The robot failed to grab the toys most of the time. 13 1 5 3 1.450022104
7 It was difficult to keep track of the errors the robot made. 13 1 1 1 0
8 You could have done a better job of grabbing the toys than the robot. 13 1 5 3 1.739436965
9 The robot delivered toys to the Toys for Tots bin successfully. 13 4 5 5 0.43852901

10 The robot's failures were caused mainly because her hands could not fit 13 1 4 2 1.091928428
around the shape of the toys.

11 The robot delivered toys to the human helper successfully. 13 4 5 5 0.43852901

12 There would be more toys sorted if you were playing Santa instead of 13 4 5 5 0.277350098
the robot.

13 The robot's failures were caused mainly because her hands were 13 3 5 5 0.630425172
slightly off when she tried to grab the toys.

14 If you were playing the role of Santa, more toys would have been 13 5 5 5 0sorted successfully.

15 The robot interrupted you many times when you were trying to build 13 1 2 1 0.277350096
toys.

16 The robot should have dropped the toys on the floor next to you when 13 3 5 4 0.5914469
she approached your post instead of handing them off to you.

17 it was difficult to take toys from the robot. 13 1 3 1 0.650443636

18 You could not take toys from the robot many times because you were 13 1 3 1 0.650443636
busy building toys.

19 You had to take objects from the robot In ways that did not feel natural. 13 1 2 1 0.277350098

20 You took objects from the robot in natural way. 13 3 5 S 0.554700196
21 Receiving toys would have been easier if the robot were a human. 13 1 3 2 0.660225292
22 The robot delivered toys to you easily. 13 3 5 5 0.776250026

23 The robot sometimes had to speak in order to get your attention when 13 1 1 1 0
delivering toys.

The data from the following four figures comes from observations

during the 82 experimental trials. Figure 6-5 shows the overall success rate

for Nexi executing manipulation strategies in the physical environment,

irrespective of whether the failure was caused by sensor error or a poor

manipulation strategy. Figure 6-6 shows a comparison of the type of failure

modes experienced by the robot, either sensor error failure or faulty strategy

failure. Figure 6-7 highlights the robot's rate of success when grasping objects



from their supports. Figure 6-8 showcases the robot's success rate for

delivering objects to receiver agents.

Figure 6-5: Overall success rate for manipulation execution.

Figure 6-6: Comparison of failure modes.
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Figure 6-7: Success rate for object pickup.

Figure 6-8: Sucem rate for object delivery.

6.3.1 Repertoire Development

As stated in Section 5.3, the first benchmark for evaluating the

reasoning system is: How well does the reasoning architecture develop a

manipulation repertoire for Nexi? Figure 6-9 compares the average responses

to questions regarding the effectiveness of the robot's manipulation repertoire

at solving the manipulation task (questions Q2 an Q4). Many people felt that

Success Rate for Object Pickup
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Figure 6-9: Mean responses to questions regarding the effectiveness of the robot's
manipulation skillset.

the robot's skillset was sufficient (mean response = 4) for accomplishing the

given task. Only a few participants felt that Nexi's repertoire was not

sufficient (mean response = 2). This shows that the general trend was that

Nexi came equipped with a satisfactory collection of dexterous maneuvers to

solve the research task, which validates Hypothesis I.

6.3.2 Strategy Generation

Questions Regarding the Usefulness
of Proposed Strategies
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Figure 6-10: Mean responses to questions regarding the usefulness of proposed manipulation
strategies.



As mentioned in Section 5.3, the second benchmark for evaluating the

reasoning system is: How well does the reasoning architecture generate

strategies to successfully accomplish the manipulation task? Figure 6-10

shows the mean values for questions pertaining to the usability of

manipulation strategies generated by the reasoning architecture (questions

Q1, Q5, Q9, and Q11). Figure 6-11 shows the mean responses to questions

regarding the uselessness of proposed strategies (questions Q3, Q6, and Q16).

Questions Regarding the
Inapplcablifty of Propsed Strategies
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Figure 6-11: Mean responses to questions regarding the inapplicability of proposed
anipulation strategies.

Overall, people felt that proposed strategies were useful (Mean = 4.25) to

robot whereas fewer people felt that these strategies were useless (Mean = 3).

Although there is only a moderate difference between the mean values in

Figure 6-10 and Figure 6-11, the general trend is that participants believed

that strategies performed by the robot were useful at solving the

manipulation tasks. These results reasonably validate Hypothesis II.



According to participants who played the role of Santa's helper in the

experimental task, receiving objects from the robot was relatively easy.

Figure 6-12 represents the mean replies to questions concerning the difficulty

of receiving objects from the robot (Q16, Q17, Q18, Q15, Q19, and Q23).

Figure 6-13 denotes the mean responses to questions that consider the

easiness of object exchange with the robot (Q11, Q20, and Q22).

Questions Regarding the Dificulty of
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Figure 6-12: Mean responses to questions regarding the difficulty of receiving objects from
the robot.
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Figure 6-13: Mean responses to questions regarding the ease of receiving objects from the
robot.



People largely felt that is was not difficult to exchange objects with the robot

(Mean = 4) as opposed to only of few people who did (Mean = 1.6). Despite a

few outlier responses, this shows a significant trend that participants felt

comfortable receiving objects from Nexi and did so in a natural and fluid

manner. Further, it was noted that robot did not need to give any verbal

utterances to catch the attention of the human upon object delivery. All

participants stopped what they were doing when Nexi approached their

station. These results validate Hypothesis IV.

6.3.3 Successful Strategy Execution

As indicated in Section 5.3, the third benchmark for evaluating the

reasoning system is: What is Nexi's success rate for executing proposed

manipulation maneuvers in the physical environment? Figure 6-5 shows that

robot was only 44% successful at performing manipulation. However, this low

success rate encompasses all failures caused by sensor errors and inadequate

strategies, as well as failures during both object grasping and object delivery

attempts.

Figure 6-7 and Figure 6-8 denote the success rates for when the robot

attempted to grasp objects from their supports versus when the robot

delivered objects to receiver agents. It is shown that the robot had a 54%

success rate for object grasping and an 89% success rate for object delivery.

This suggests that the robot struggled much more to manipulate objects, but

was incredibly effective at delivering objects to the appropriate receivers.
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Finally, Figure 6-6 compares the failure modes that were caused by

sensing errors versus those caused by inadequate strategies suggested by the

reasoning scheme. The data suggests that 91% of failures were caused by

perceptual errors in the robot's vision sensors whereas only 9% of failures

were caused by a lacking manipulation strategy. Further, Figure 6-14

summarizes the mean responses from human participants which considers

Questions Regarding the Type of
Failure Nexi Experienced
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Figure 6-14: Comparison of the responses to the robot's failure modes.

questions regarding their interpretation of the failure modes experienced by

the robot, i.e. whether they were from sensor error (Q13) or from a poor

strategy (Q10). The overall trend is that people felt that the robot failed to

perform manipulation maneuvers due to sensor errors (Mean = 5) rather than

inadequate strategies suggested by the reasoning architecture (Mean = 2),

which reasonably validates Hypothesis III.

6.4 Discussion
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The results presented above provide evidence that the reasoning

architecture developed in this work helps the robot solve new manipulation

tasks by leveraging a corpus of physics-, social-, and capability-based

knowledge.

Results from Section 6.3.1 indicate that the reasoning system excels at

developing a manipulation repertoire for Nexi to use during future

manipulation tasks. This suggests that system accurately interprets and

transforms observed human actions into robust maneuvers, given the unique

kinematics of the robot. Thus, Hypothesis I is strongly validated.

Results from Section 6.3.2 reveal that people generally felt that the

robot's attempted strategies could have successfully performed the

manipulation tasks. These outcomes moderately validate Hypothesis II.

However, only a small difference is found in the mean responses of

participants who felt this way (Mean = 4.25) and the responses of those who

did not (Mean = 3). I believe this small gap is a result of the broad nature of

certain questions that are relevant to this topic. For instance, Q1 states, "The

robot grabbed every toy successfully each time." The mean response to this

statement was 2, meaning that people strongly disagreed with this

statement. Although this question is relevant to investigation of

manipulation strategy generation, it does not explicitly explain the cause of

manipulation successes. Thus, this brought down the average to 4.25 for

questions regarding successful strategy generation. Additionally, Q16 states,

102



"The robot should have dropped the toys on the floor next to you when she

approached your post instead of handing them off to you." The mean response

to this statement was 4, meaning that people strongly agreed. Again, this is

valid for examining strategy generation, but the robot was never trained to

drop objects on the floor when delivering them to a human. Thus, the average

for questions concerning poor strategy generation increased to 3. Therefore,

there was a smaller gap between the two average values (Mean = 4.25 and

Mean = 3).

Results from 6.3.2 also express that the manipulation strategies

spawned by the reasoning system are exceptionally useful for object hand-offs

to human partners. Overall, participants experienced natural, fluid object

exchanges with the robot. This is indicated by the mean responses from

human test subjects who experienced positive interactions with Nexi (Mean =

4), versus the mean responses of those who did not (Mean = 1.6).

Additionally, the robot did not need to rely on a verbal utterance to grab its

partner's attention during any of the experimental trials. These results

successfully validate Hypothesis IV.

Hypothesis III can be reasonably validated from outcomes in Section

6.3.3. The data indicates that although the robot had a low overall success

rate for accomplishing manipulation tasks (44% success rate), the majority of

failures were caused by perceptual errors in the robot's vision sensors (91%

sensor failures) versus insufficient manipulation strategies generated by the
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reasoning scheme (9% strategy failures). The data also suggests that the

robot was exceedingly effective at delivering objects to receivers agents (89%

delivery success), but struggled much more to grasp objects from their

supporting structures (11% grasp success). This could be because it is much

easier for the robot to dump an object into a static receptacle or give an object

to a human partner who may take a more dominant role in the exchange

process, thus requiring less dexterity from the robot.
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CHAPTER 7

Conclusions and Future Work

7.1 Contributions

The research question proposed was: How can a dexterous robot utilize

physics-, social-, and capability-based knowledge of its environment for object

manipulation? The approach to this problem was the development of a

reasoning architecture that uses object affordances, social contexts, and agent

capabilities to determine probabilistic factors that are used in a Bayesian

network system that selects appropriate manipulation maneuvers in a given

workspace. This contribution is unique in that it fuses these three research

concepts together, which has yet to be fully explored in robotic manipulation.

7.1.1 Physics-Based Reasoning

Physics-based reasoning was showcased by the reasoning system's

ability to determine a manipulation repertoire for Nexi as well as the robot's

ability to apply previously learned information to new manipulation tasks.

The robot learned about object affordances through a combination of self-

exploration during manipulation training and knowledge observed from a

pilot study where a human test subject manipulated various objects. This
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knowledge was represented symbolically and used as input for a system of

Bayesian networks in the reasoning architecture. The system then used

outcomes from the Bayesian analysis to propose manipulation strategies for

the robot to execute when manipulating new objects whose affordances are

hybrids of previously manipulated objects previously. According to results of

experimental trials, it was found that the system successfully developed a

manipulation repertoire for Nexi and the robot performed reasonably well in

new manipulation environments using her knowledge corpus.

7.1.2 Social-Based Reasoning

Social-based reasoning was demonstrated through Nexi's ability to

deliver objects to a human receiver while considering factors that arise when

performing object exchange with a human. Nexi considered grasping

constraints imposed by the reasoning system, face detection from vision

sensors, and the attentiveness of the human participant to coordinate

successful object hand-offs. Results from questionnaires presented to human

participants in experimental trials showed that the robot performed

exceptionally well when delivering objects to them. Moreover, participants

felt that they experienced natural, fluid interactions with Nexi.

7.1.3 Capability-Based Reasoning

Capability based reasoning was showcased by the system's ability to

generate successful manipulation strategies given constraints in the

environment and kinematic limitations of the robot. Metrics determined
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through manipulation training sessions were used by the Bayesian network

system to determine valid maneuvers for the robot to execute for new

manipulation tasks. Results from experimental trials showed that the system

reasonably generated effective maneuvers for the robot to perform. However,

the robot did not successfully execute these strategies in the physical

environment as frequently due to sensor inaccuracies.

7.2 Research Limitations

7.2.1 Physics Simulators

One weakness of this work is that the physical properties of objects,

like volume, weight, and unique geometric features, must be hardcoded.

Future work could include the integration of the robots on-board cameras for

object feature extraction. The use of a physics simulator [45], [46] or a

commonsense reasoning architecture [47] could also potentially be integrated

into the reasoning architecture. This could simplify the process of learning

object affordances during manipulation training.

7.2.2 Tactile Sensing

Nexi lacks sophisticated tactile sensing in her palms and fingers. As

opposed to a capacitive sensing scheme, Nexi uses the current draw in her

hand motors to approximate the tactile forces. However, this is not an

accurate way to determine the forces and moments experienced by Nexi's

hands during object manipulation. To sidestep these limitations, rules and

constraints were imposed on the system so that Nexi could grasp objects
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given her unique manipulation repertoire. With enhanced tactile sensors,

maneuvers like object re-grasping and re-orientation could be considered.

As stated in Section 4.7, navigation waypoints and graspable points of

interest on objects are determined through trial and error in order to train

the robots. Location and orientation inaccuracies of points of interest in the

environment are remedied by iteratively tweaking navigation and

manipulation parameters in R1D1. However, feedback from additional

sensors could correct perceptual errors caused by noisy Vicon and robot eye

cameras in real-time during task execution.

7.2.3 Limited Repertoire Development

Nexi's manipulation skillset is limited to the maneuvers that it saw a

human perform during a pilot study. For this work, only two human test

subjects were used for the pilot trials. Clearly, manipulation maneuvers will

vary between different people, thus, if more human subjects were tested, then

the robot's own manipulation repertoire could expand.

7.3 Future Research Endeavors

7.3.1 Spatial Reasoning

For this work, objects and receiver agents are located in open spaces so

that the robot can easily manipulate objects without bypassing obstructions

in the environment. However, another layer of reasoning that could be

integrated into the architecture is spatial reasoning, as demonstrated in [48]

and [49]. The spatial reasoning logic could determine maneuvers that the
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robot could perform to circumvent obstacles when objects and agents are

partially or fully occluded by supporting structures or other items in the

environment.

7.3.2 Robotic Receiver Agents

Figure 7-1: MDS platforms Nexi and Maddox. (a) Nexi and her end effectors, (b) Maddox and
his end effectors.

Our research group's 2nd generation MDS platform, called Maddox,

could also be used for this work. Figure 7-1(b) shows Maddox and his end

effectors. This work does not consider Nexi or Maddox as receiver agents

because of complexity. However, it is important in robotic manipulation to

explore the unique dynamics and coordination difficulties that arise when

dexterous robots act as agents to receive objects from other agents,

particularly other robots, as demonstrated in [50]. Also, as displayed in

Figure 7-1, Maddox's hands are capable of positioning themselves in fully

109



open configurations, as opposed to Nexi whose hands are naturally fixed in a

U-shaped configuration. Thus, Maddox has the potential to perform more

complex dexterous maneuvers than Nexi. Further, if Maddox acted as a

manipulator agent, then an entirely new manipulation repertoire would be

established which could be vastly different than that of Nexi's.

7.4 Broader Impacts

As stated before, robots that can perform everyday manipulation tasks

in human-centric environments have the potential to help humans. Robots

must be able to reason about the maneuvers that they implement despite the

challenging environments that they are expected to operate in.

7.4.1 Cultural Implications

Societal norms can sometimes have a major impact on the

manipulation strategies that people choose to implement. These cultural

Figure 7-2: Japanese custom of receiving and delivering objects biananualy.

routines can trump any physics- or logic-based reasoning used for object

manipulation in social settings. For instance, when giving out a business
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card, most people from the United States of America would deliver the card to

the receiver using one hand. Logically, this makes sense because the card is

small and lightweight. However, in Japan it is customary to give out and

accept business cards with two hands [51]. Generally speaking in Japanese

culture, delivering and receiving objects viewed as gifts bimanually is a sign

of respect [52], as seen in Figure 7-2. Robots that interact in culturally

diverse environments must be aware of such traditions.

Figure 7-3: Women from Tanzania carrying large objects.

In many African, Caribbean, and Latin American countries [53], people

carrying large objects using whole-body manipulation with their head as a

support is common, Figure 7-3. However, many people from other parts of the

world [54] are more likely to perform whole-body manipulations using their

chest, stomach, shoulders, or sides as supports, Figure 7-4. In the context of
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Figure 7-4: Child from the U.S.A. carrying large objects.

human-robot teaming for object manipulation, knowledge of these cultural

differences may alter the way the robot offers support to its human partner.

This information is not necessarily useful to the robot when considering its

own manipulation strategies because whole-body manipulation with its head

as a support may cause major instabilities or damage to the robot. However,

this information becomes important for the robot when assisting a human

with a whole-body manipulation. For example, if a robot in Tanzania is

delivering an object to a human who intends to perform a whole-body

manipulation, then the robot knows that there is a high probability that the

human will support the object with their head. Therefore, the robot may

extend its arms at a higher elevation to get closer to the region of interest for

object exchange. On the contrary, a robot in the United States assisting with

the same task may extend its arms at a much lower elevation because it is
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aware that the human is more likely to support the object with their torso

instead.

Figure 7-5: Waiter serving food in a formal dining setting.

In formal dining situations, like those in Figure 7-5, many servers are

trained to serve food from either the left or right side of the diner and to

collect items from the opposite side of the diner [55]. The appropriate side for

which the waiter should serve and collect items differs according the

country's rules of etiquette [56]. Again, from a purely logical standpoint, a

navigation approach to the left or to the right of the diner is sufficient to

deliver the items, however the rules of dining protocol supersede those of

logic. If robots are to act as servers in formal dining situations, then they

must be aware of these cultural practices.

7.4.2 Future Scenarios

Imagine an environment where a dexterous robot assists a human

during a cooking task. As the robot delivers ingredients and tools to the

human chef, it must consider the physical properties of the objects to
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determine its best strategies to manipulate these items. Further, in the social

context, the robot should consider the chefs safety and comfort during object

hand-off, e.g. it should manipulate objects like a knife such that the handle is

available for the chef to grab, not the sharp end. Further, the robot assistant

must also consider the cook's attentiveness and readiness to receive these

items. If the cook is occupied and cannot receive the object at the time of

delivery, then the robot must reason about strategies to either attract the

cook's attention or perform alternative actions until the cook is ready to

receive the objects.

Or imagine a disaster scenario where robots are working alongside

other robots and humans to rescue victims and find potential hazards, like

bombs and toxic materials. Dexterous robots must consider their own

manipulation abilities and those of others in these complex domains. For

instance, robots may be better equipped to handle dangerous, brute force

tasks like hazard removal while humans handle more delicate manipulation

tasks like taking human vitals in the hot zone.

In both of these future scenarios, object affordances, social contexts,

and agent abilities all play a key role in determining the manipulation

strategies implemented by robots.
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Appendices

Appendix A: Manipulation Training Scene Combinations

OBJECT SUPPORT ORIENTATION NAVIGATION
1 cyinde floor_ flatfAPPROACH

1 cylinder floor flat front
2, cylinder floor fiat side
3 cylinder floor upright front
4 cylinder table flat front
5 cylinder table flat side
6 cylinder table upright front
7 cylinder hang flat front
8 cylinder hang flat side
9 cylinder hang upright front
10 ring on rope floor flat side
11 ring on rope floor flat front
12 ring on rope table flat side
13 ring on rope table flat front
14 ring on rope hang flat side
15 ring on rope hang flat front
16 ring on rope hang upright front
17 ring on rope hang upright side
18 flat plate floor flat front
19 flat plate floor flat side
20 flat plate table flat front
21 flat plate table flat side
22 flat plate hang flat front
23 flat plate hang flat side
24 flat plate hang upright front
25 flat plate hang upright side
26 flat plate post flat front
27 flat plate post flat side
28 box floor flat front
29 box table flat front
30 box hang flat front
31 ball floor flat front
32 ball table flat front
33 ball hang flat front
34 ball post flat front

115



Appendix B: Object Orientation and Navigation Conventions

ORIENTATION NAVIGATION
APPROACH

OBJECT FLAT UPRIGHT UPSIDE FRONT SIDE
-DOWN

Cylinder Same as
Flat

Half
Cylinder
Ring on Same as

Rope Flat

Balls on Same as
Rope 0 _{ Flat 0- 0 0 0

Box Same as Same as Same as
Flat Flat Front

Box with Same asHandles Flat
Flat Plate Same as

Flat

Foam
Ball

Inflatable
Ball

0 Same as
Flat

Same as
Flat

Same as
Flat

Same as
Flat

0 Same as
Front

Same as
Front
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Appendix C: Santa's Workshop Task Prompt

In this task, you will be working in Santa's Workshop. The goal is to
build and sort as many toys as possible for the children of the world. A robot
Santa will repeatedly grab toys from a holding station and deliver them to a
nearby sorting station. The sorting station will contain 3 posts which has, 1)
one of Santa's elves named Xylo, 2) a Toys for Tots box, and 3) Santa's helper.
The robot Santa will decide which of these three posts he delivers toys to. You
will play the role of either Santa's helper or Santa's inspector.

Instructions for Santa's Helper

Your role as Santa's helper is to build as many toys as possible using the
spare parts in the toy box next to your post. There are no limitations
regarding the type of toys you can build. Once you are finished building a toy,
you must place it on the table beside you and start building the next toy.
Throughout the task, the robot Santa may come over to your post and deliver
toys to you. If this happens, then you must take the toy from the robot and
place it on the table beside you. After this exchange, you can continue
building toys.

Instructions for Santa's Inspector

Your role as the inspector is to ensure quality control of the toy sorting
process. You will sit at a station equipped with a computer and watch as the
robot Santa repeatedly takes toys from the holding station over to the sorting
station. If the robot fails to successfully pick up a toy or deliver it to the
sorting station, then you must track this error. If you feel that the way the
robot attempted to grab the toy was ok, but it failed because its hands were
not close enough to the toy, then you must click the box on the computer
screen that says, "FAILURE FROM SENSOR ERROR". However, if you feel
that the failure was because there is no way possible for the robot to
successfully grab the toy using with the grasping technique that it tried, then
you must click the box on the computer screen that says, "FAILURE FROM
POOR MANIPULATION STRATEGY." It is important to watch the robot
carefully so that you can correctly identify the type of error.
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Appendix D: Santa's Workshop Task Questionnaire

Complete this section only if you played the role of Santa's helper

STRONGLY DISAGREE NEUTRAL AGREE STRONGLY
DISAGREE AGREE

If you were playing the role of
Santa, more toys would have been

sorted successfully.

The robot interrupted you many
times when you were trying to

build toys.

The robot should have dropped
the toys on the floor next to you
when she approached your post
Instead of handing them off to

you.

It was difficult to take toys from
the robot.

You could not take toys from the
robot many times because you

were busy building toys.
You had to take objects from the
robot in ways that did not feel

natural.

You took objects from the robot in
natural way.

Receiving toys would have been
easier If the robot were a human.
The robot delivered toys to you

easily.

The robot sometimes had to speak
in order to get your attention

when delivering toys.
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Complete this section only if you played the role of Santa's inspector

STRONGLY DISAGREE NEUTRAL AGREE STRONGLY
DISAGREE AGREE

The robot grabbed every toy successfully
each time.

If you were playing the role of Santa, you
would have grabbed the toys the exact

same way as the robot.

The robot's failures were caused mainly
because she used an incorrect way of

grabbing the toys.

There were better ways for the robot to
grab the toys that she did not use.

The robot delivered toys to Xylo
successfully.

The robot failed to grab the toys most of
the time.

It was difficult to keep track of the errors
the robot made.

You could have done a better job of
grabbing the toys than the robot.

The robot delivered toys to the Toys for
Tots bin successfully.

The robot's failures were caused mainly
because her hands could not fit around

the shape of the toys.

The robot delivered toys to the human
helper successfully.

There would be more toys sorted If you
were playing Santa instead of the robot.

The robot's failures were caused mainly
because her hands were slightly off when

she tried to grab the toys.
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Appendix E: Scene Combinations Used for Experimentation

OBJECT SUPPORT ORIENTATION RECEIVER

1 1/2 cylinder floor flat bin
2 1/2 cylinder floor flat human
3 1/2 cylinder floor flat x

4 1/2 cylinder floor upright bin
5 1/2 cylinder floor upright human
6 1/2 cylinder floor upright xylo
7 1/2 cylinder floor upside-down bin
8 1/2 cylinder floor upside-down human
9 1/2 cylinder floor upside-down xylo
10 1/2 cylinder table flat bin
11 1/2 cylinder table flat human
12 1/2 cylinder table flat xylo
13 1/2 cylinder table upright bin
14 1/2 cylinder table upright human
15 1/2 cylinder table upright xylo
16 1/2 cylinder table upside-down bin
17 1/2 cylinder table upside-down human
18 1/2 cylinder table upside-down xylo
19 1/2 cylinder hang flat bin
20 1/2 cylinder hang flat human
21 1/2 cylinder hang flat xylo
22 1/2 cylinder hang upright bin
23 1/2 cylinder hang upright human
24 1/2 cylinder hang upright xylo
25 1/2 cylinder hang upside-down bin
26 1/2 cylinder hang upside-down human
27 1/2 cylinder hang upside-down xylo
28 balls on rope floor flat bin
29 balls on rope floor flat human
30 balls on rope floor flat xylo
31 balls on rope table flat bin
32 balls on rope table flat human
33 balls on rope table flat xylo
34 balls on rope hang flat bin
35 balls on rope hang flat human
36 balls on rope hang flat xylo
37 balls on rope hang upright bin
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39 balls on rope hang upright xylo

40 box w/ handles floor flat bin
41 box w/ handles floor flat human
42 box w/ handles floor flat xylo
43 box w/ handles table flat bin
44 box w/ handles table flat human
45 box w/ handles table flat xylo
46 box w/ handles hang flat bin
47 box w/ handles hang flat human
48 box w/ handles hang flat xylo
49 box w/ handles hang upright bin
50 box w/ handles hang upright human
51 box w/ handles hang upright xylo
52 inflatable ball floor flat bin
53 inflatable ball floor flat human
54 inflatable ball floor flat xylo
55 inflatable ball table flat bin
56 inflatable ball table flat human
57 inflatable ball table flat xylo
58 inflatable ball hang flat bin
59 inflatable ball hang flat human
60 inflatable ball hang flat xylo
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Appendix F: Physics-Based Logical Rules

PHYSICS-BASED LOGICAL RULES
Rule #1 Liquids assume the shape of the container that houses them.

Rule #2 If an object has a cavity, it may be used as a container to hold
other objects.

Rule #3 If an object is not supported, it will fall downwards under the
influence of gravity.

Rule #4 A pendulum may experience oscillatory motion if it is supported
by its pivot point.

Rule #5 Objects attached by a flexible member are constrained to move in
space by the motion limits of the member.

A translational force may cause a flat surface to slide on top of
Rule #6 another flat surface if the force overcomes the static friction

between the surfaces.

Rule #7 An object has 6 degrees of freedom (translations and rotations
about the x, y, and z axes) unless it is constrained by a support.

Rule #8 Humans usually prefer to grab objects by their handles, grips, or
levers.

Rule #9 Round objects can roll if they are supported by a surface.

Rule #10 If the sum of forces and moments experienced by a body is
equilibrium, the body will be at rest.

Rule #11 An object A may fit into the cavity of object B if object A's volume
is smaller than object B's volume.

Rule #12 A body's center of mass is the average location of all the mass on
that body.

Rule #13 A magnet is a material that produces a magnetic field.
Rule #14 Opposite magnetic poles attract each other.

Rule #15 Similar magnetic poles repel each other.
Rule #16 Many metals attract magnets.

Rule #17 Humans cannot manipulate extremely hot objects with their bare
hands

Rule #18 Humans cannot manipulate extremely cold objects with their
bare hands

Rule #19 If the sum of forces and moments experienced by a body is not
equilibrium, the body will move.

Rule #20 Gases assume the shape of the container that houses them.
Rule #21 Solids have a definite size and shape.

Rule #22 Solids do not assume the shape of the container that houses
them.

Rule #23 A triangle has 3 sides and 3 corners.

Rule #24 A square has 4 sides and 4 corners.
Rule #25 A rectangle has 4 sides and 4 corners.

Rule #26 A cone may remain at rest if it is supported by a surface on its
flat side.

Rule #27 A pyramid may remain at rest if it is supported by a surface on
_ its flat side.
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Rule #28
A body is dynamically unstable if its center of gravity is not

directly above the center of its support polygon with respect to
the suDDorting surface.

Rule #29 A body that does not have a round feature will not roll about an
axis attached to itself if it experienced by a force on a surface.

A body may rotate about a pivot point on the supporting surface
Rule #30 if it is experienced by a force hat causes a positive moment with

respect to its mass center.

Rule #31 Many metals conduct electricity.

Rule #32 Foam is a deformable material.
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