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Solutions to Problem Set 1 

Problem 1. Identify exactly where the bugs are in each of the following false proofs. 

(a) 1 

3 > 2


3 log10(1/2) > 2 log10(1/2)


log10(1/2)3 > log10(1/2)2


(1/2)3 > (1/2)2 

Therefore, 

False Theorem 1.1. 

1/8 > 1/4. 

Solution. log x < 0, for 0 < x < 1, so since both sides of the inequality “3 > 2” are being 
multiplied by the negative quantity log10(1/2), the “>” in the second line should have been “<.” 

(b) You are richer than you think:2 

False Theorem 1.2. 

1¢ = $0.01 = ($0.1)2 = (10¢)2 = 100¢ = $1. 

Solution. $0.01 = $(0.1)2 �= ($0.1)2 because the units $2 and $ don’t match (just as in physics 
the difference between sec2 and sec indicates the difference between acceleration and velocity). 
Similarly, (10¢)2 �= 100¢. � 

(c) Theorem 1.3. If x is a real number and (2x − 5)/(x − 4) = 3, then x = 7. 

Copyright ©  2002, Prof. Albert R. Meyer. 
1 Stueben, Michael and Diane Sandford. Twenty Years Before the Blackboard, Math. Assoc America, ©1998, p.??. 
2Stueben, Michael and Diane Sandford. ibid, p.27. 



� 

2 Solutions to Problem Set 1 

False proof. Suppose x = 7. Then 

2x − 5 2(7) − 5 9
= 3.= = 

x − 4 7 − 4 3 

Thus, if (2x − 5)/(x − 4) = 3, then x = 7. 

Solution. This proof is a typical example of circular reasoning. We suppose x = 7 and then 
conclude that x = 7. So, all we have done is not contradict our supposition. Unlike a proof by 
contradiction, which shows our assumption is false, not arriving a contradiction does not show 
our assumption is true. 

In particular, the proof is of the form: 

P (x), (P (x) −→ Q(x)) 
Q(x) −→ P (x) 

where 

P (x) ::= x = 7, 

Q(x) ::= 
2x − 5 

= 3 
x − 4 

The given “proof” does demonstrate that the second premise is true. However, the conclusion 
does not follow. � 

Problem 2. Rosen, Ex 1.2.8(b) 

Solution. We construct a truth table for each implication and note that the column for the whole 
proposition contains only T’s. The truth value for each sub-proposition is shown directly below 
the highest-level logical connective in that expression. The numbers at the bottom of each column 
show the order in which the table is constructed. Since p, q, and r are given, the values are filled 
in in step 0. In step 1, we compute the values for the propositions p → q, q → r, and p → r. In 
step 2, we compute the truth values for the proposition that has ∧ as its highest-level connective. 
Finally, in step 3, we compute the truth values for the whole expression. Note, only the columns 
in boldface need appear in the final table. 

p q r [(p → q) ∧ (q → r)] → (p → r) 
T T T T T T T T 
T T F T F F T F 
T F T F F T T T 
T F F F F T T F 
F T T T T T T T 
F T F T F F T T 
F F T T T T T T 
F F F T T T T T 
0 0 0 1 2 1 3 1 
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Problem 3. Rosen, Ex 1.3.14(a,f,n,h) 

Solution. The answers to this exercise are not unique; there are many ways of expressing the same 
propositions symbolically. Note that C(x, y) and C(y, x) are equivalent. 

a) ¬I(Jerry) 

f) ∃x¬I(x) 

n) ∃x∃y(x �= y ∧ ∀z¬(C(x, z) ∧ C(y, z))) 

h) ∃x∀y(x = y ↔ I (y)) � 

Problem 4. Rosen, Ex 1.4.14 

Solution. The union of all the sets in the power set of a set X must be exactly X . In other words, 
we can unambiguously recover X from its power set. Therefore the answer is yes. � 

Problem 5. Rosen, Ex 1.5.26 

Solution. There are precisely two ways that an element can be in either A or B but not both. It 
can be in A but not in B, which is equivalent to saying that it is in A − B. Or it can be in B but 
not in A, which is equivalent to saying that it is in B − A. Therefore, an element is in A
 B if and

only if it is in (A − B) ∪ (B − A). � 

Problem 6. Rosen, Ex 1.6.12 

Solution. a) f (n) = n + 17 

b) f (n) = �n/2� 

c) We let f (n) = n − 1 whenever n is even and f (n) = n + 1 whenever n is odd. Thus we have 
f (1) = 2,f (2) = 1,f (3) = 4,f (4) = 3, and so on. Note that f is just one function, even though its 
definition uses two formulas, depending on the parity of n. 

d) f (n) = 17 � 



4 Solutions to Problem Set 1 

Problem 7. Prove that 

gcd(a, b) = gcd(b, a − b) 

for all a, b ∈ Z. Hint: See Rosen, §2.4 Lemma 1. 

Solution. We show that the common divisors of a and b are the same as the common divisors of 
b, a − b; then the result follows, since if all of the common divisors of these two pairs are the same, 
so are the greatest common divisors. 

So suppose d divides both a and b. Then d also divides a − b, and hence d is a common divisor of 
b and a − b. Conversely, assume d divides both b and b − a. Then it divides b − (a − b) = a. Hence 
d divides both a and b as required. This shows that any common divisor of a and b is a common 
divisor of b and a − b and vice versa, hence completing the proof. � 

Problem 8. Rosen, Ex 3.1.18(b) 

Solution. Suppose that 3n + 2 is even and that n is odd. Since 3n + 2 is even, so is 3n. Subtracting 
an odd number from an even number yields an odd number, so we conclude that 2n = 3n − n is 
odd. Since 2n clearly cannot be odd, we have reached a contradiction. Hence our supposition was 
wrong, and the proof is now complete. � 
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