Solutions to Problem Set 1

Problem 1. Identify exactly where the bugs are in each of the following false proofs.

(a) 1

$$\begin{split} 3 &> 2\\ 3 \log_{10}(1/2) &> 2 \log_{10}(1/2)\\ \log_{10}(1/2)^3 &> \log_{10}(1/2)^2\\ (1/2)^3 &> (1/2)^2\\ \end{split}$$
 Therefore,

False Theorem 1.1.

1/8 > 1/4.

Solution. $\log x < 0$, for 0 < x < 1, so since both sides of the inequality "3 > 2" are being multiplied by the negative quantity $\log_{10}(1/2)$, the ">" in the second line should have been "<."

(b) You are richer than you think:²

False Theorem 1.2.

$$1 \mathfrak{e} = \$0.01 = (\$0.1)^2 = (10\mathfrak{e})^2 = 100\mathfrak{e} = \$1.$$

Solution. $\$0.01 = \$(0.1)^2 \neq (\$0.1)^2$ because the units $\2 and \$ don't match (just as in physics the difference between sec^2 and sec indicates the difference between acceleration and velocity). Similarly, $(10\mathfrak{e})^2 \neq 100\mathfrak{e}$.

(c) Theorem 1.3. If x is a real number and (2x - 5)/(x - 4) = 3, then x = 7.

Copyright © 2002, Prof. Albert R. Meyer.

¹ Stueben, Michael and Diane Sandford. Twenty Years Before the Blackboard, Math. Assoc America, ©1998, p.??.

²Stueben, Michael and Diane Sandford. *ibid*, p.27.

False proof. Suppose x = 7. Then

$$\frac{2x-5}{x-4} = \frac{2(7)-5}{7-4} = \frac{9}{3} = 3.$$

Thus, if (2x - 5)/(x - 4) = 3, then x = 7.

Solution. This proof is a typical example of circular reasoning. We suppose x = 7 and then conclude that x = 7. So, all we have done is not contradict our supposition. Unlike a proof by contradiction, which shows our assumption is false, *not* arriving a contradiction does *not* show our assumption is true.

In particular, the proof is of the form:

$$\frac{P(x), \quad (P(x) \longrightarrow Q(x))}{Q(x) \longrightarrow P(x)}$$

where

$$P(x) ::= x = 7,$$

 $Q(x) ::= \frac{2x - 5}{x - 4} = 3$

The given "proof" does demonstrate that the second premise is true. However, the conclusion does not follow.

Problem 2. Rosen, Ex 1.2.8(b)

Solution. We construct a truth table for each implication and note that the column for the whole proposition contains only T's. The truth value for each sub-proposition is shown directly below the highest-level logical connective in that expression. The numbers at the bottom of each column show the order in which the table is constructed. Since p, q, and r are given, the values are filled in in step 0. In step 1, we compute the values for the proposition $p \rightarrow q, q \rightarrow r$, and $p \rightarrow r$. In step 2, we compute the truth values for the proposition that has \land as its highest-level connective. Finally, in step 3, we compute the truth values for the whole expression. Note, only the columns in **boldface** need appear in the final table.

p	q	r	[(p	\rightarrow	q)	\wedge	(q	\rightarrow	r)]	\rightarrow	(p	\rightarrow	r)
Т	Т	Т		Т		Т		Т		Т		Т	
Т	Т	F		Т		F		F		Т		F	
Т	F	Т		F		F		Т		Т		Т	
Т	F	F		F		F		Т		Т		F	
F	Т	Т		Т		Т		Т		Т		Т	
F	Т	F		Т		F		F		Т		Т	
F	F	Т		Т		Т		Т		Т		Т	
F	F	F		Т		Т		Т		Т		Т	
0	0	0		1		2		1		3		1	

Problem 3. Rosen, Ex 1.3.14(a,f,n,h)

Solution. The answers to this exercise are not unique; there are many ways of expressing the same propositions symbolically. Note that C(x, y) and C(y, x) are equivalent.

a) $\neg I(\text{Jerry})$ f) $\exists x \neg I(x)$ n) $\exists x \exists y (x \neq y \land \forall z \neg (C(x, z) \land C(y, z)))$ h) $\exists x \forall y (x = y \leftrightarrow I(y))$

Problem 4. Rosen, Ex 1.4.14

Solution. The union of all the sets in the power set of a set X must be exactly X. In other words, we can unambiguously recover X from its power set. Therefore the answer is yes.

Problem 5. Rosen, Ex 1.5.26

Solution. There are precisely two ways that an element can be in either *A* or *B* but not both. It can be in *A* but not in *B*, which is equivalent to saying that it is in A - B. Or it can be in *B* but not in *A*, which is equivalent to saying that it is in B - A. Therefore, an element is in $A \bigoplus B$ if and only if it is in $(A - B) \cup (B - A)$.

Problem 6. Rosen, Ex 1.6.12

Solution. a) f(n) = n + 17

b) $f(n) = \lceil n/2 \rceil$

c) We let f(n) = n - 1 whenever n is even and f(n) = n + 1 whenever n is odd. Thus we have f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 3, and so on. Note that f is just one function, even though its definition uses two formulas, depending on the parity of n.

d) f(n) = 17

Problem 7. Prove that

gcd(a,b) = gcd(b,a-b)

for all $a, b \in \mathbb{Z}$. *Hint:* See Rosen, §2.4 Lemma 1.

Solution. We show that the common divisors of *a* and *b* are the same as the common divisors of *b*, a - b; then the result follows, since if all of the common divisors of these two pairs are the same, so are the greatest common divisors.

So suppose *d* divides both *a* and *b*. Then *d* also divides a - b, and hence *d* is a common divisor of *b* and a - b. Conversely, assume *d* divides both *b* and b - a. Then it divides b - (a - b) = a. Hence *d* divides both *a* and *b* as required. This shows that any common divisor of *a* and *b* is a common divisor of *b* and a - b and vice versa, hence completing the proof.

Problem 8. Rosen, Ex 3.1.18(b)

Solution. Suppose that 3n + 2 is even and that n is odd. Since 3n + 2 is even, so is 3n. Subtracting an odd number from an even number yields an odd number, so we conclude that 2n = 3n - n is odd. Since 2n clearly cannot be odd, we have reached a contradiction. Hence our supposition was wrong, and the proof is now complete.