Solutions to Problem Set 1

Problem 1. Identify exactly where the bugs are in each of the following false proofs.
(a) ${ }^{1}$

$$
\begin{aligned}
3 & >2 \\
3 \log _{10}(1 / 2) & >2 \log _{10}(1 / 2) \\
\log _{10}(1 / 2)^{3} & >\log _{10}(1 / 2)^{2} \\
(1 / 2)^{3} & >(1 / 2)^{2}
\end{aligned}
$$

Therefore,

False Theorem 1.1.

$$
1 / 8>1 / 4
$$

Solution. $\log x<0$, for $0<x<1$, so since both sides of the inequality " $3>2$ " are being multiplied by the negative quantity $\log _{10}(1 / 2)$, the " $>$ " in the second line should have been " $<$."
(b) You are richer than you think: ${ }^{2}$

False Theorem 1.2.

$$
1 \not \subset=\$ 0.01=(\$ 0.1)^{2}=(10 \not \subset)^{2}=100 ¢=\$ 1 .
$$

Solution. $\$ 0.01=\$(0.1)^{2} \neq(\$ 0.1)^{2}$ because the units $\2 and $\$$ don't match (just as in physics the difference between $\sec ^{2}$ and \sec indicates the difference between acceleration and velocity). Similarly, $(10 \not \subset)^{2} \neq 100 \notin$.
(c) Theorem 1.3. If x is a real number and $(2 x-5) /(x-4)=3$, then $x=7$.

[^0]False proof. Suppose $x=7$. Then

$$
\frac{2 x-5}{x-4}=\frac{2(7)-5}{7-4}=\frac{9}{3}=3 .
$$

Thus, if $(2 x-5) /(x-4)=3$, then $x=7$.
Solution. This proof is a typical example of circular reasoning. We suppose $x=7$ and then conclude that $x=7$. So, all we have done is not contradict our supposition. Unlike a proof by contradiction, which shows our assumption is false, not arriving a contradiction does not show our assumption is true.
In particular, the proof is of the form:

$$
\frac{P(x), \quad(P(x) \longrightarrow Q(x))}{Q(x) \longrightarrow P(x)}
$$

where

$$
\begin{aligned}
P(x) & ::=x=7, \\
Q(x) & ::=\frac{2 x-5}{x-4}=3
\end{aligned}
$$

The given "proof" does demonstrate that the second premise is true. However, the conclusion does not follow.

Problem 2. Rosen, Ex 1.2.8(b)
Solution. We construct a truth table for each implication and note that the column for the whole proposition contains only T's. The truth value for each sub-proposition is shown directly below the highest-level logical connective in that expression. The numbers at the bottom of each column show the order in which the table is constructed. Since p, q, and r are given, the values are filled in in step 0 . In step 1, we compute the values for the propositions $p \rightarrow q, q \rightarrow r$, and $p \rightarrow r$. In step 2, we compute the truth values for the proposition that has \wedge as its highest-level connective. Finally, in step 3, we compute the truth values for the whole expression. Note, only the columns in boldface need appear in the final table.

p	q	r	\rightarrow	\wedge	\rightarrow	\rightarrow	\rightarrow	r
T	T	T	T	T	T	T	T	
T	T	F	T	F	F	T	F	
T	F	T	F	F	T	T	T	
T	F	F	F	F	T	T	F	
F	T	T	T	T	T	T	T	
F	T	F	T	F	F	T	T	
F	F	T	T	T	T	T	T	
F	F	F	T	T	T	T	T	
0	0	0	1	2	1	3	1	

Problem 3. Rosen, Ex 1.3.14(a,f,n,h)
Solution. The answers to this exercise are not unique; there are many ways of expressing the same propositions symbolically. Note that $C(x, y)$ and $C(y, x)$ are equivalent.
a) $\neg I$ (Jerry)
f) $\exists x \neg I(x)$
n) $\exists x \exists y(x \neq y \wedge \forall z \neg(C(x, z) \wedge C(y, z)))$
h) $\exists x \forall y(x=y \leftrightarrow I(y))$

Problem 4. Rosen, Ex 1.4.14
Solution. The union of all the sets in the power set of a set X must be exactly X. In other words, we can unambiguously recover X from its power set. Therefore the answer is yes.

Problem 5. Rosen, Ex 1.5.26
Solution. There are precisely two ways that an element can be in either A or B but not both. It can be in A but not in B, which is equivalent to saying that it is in $A-B$. Or it can be in B but not in A, which is equivalent to saying that it is in $B-A$. Therefore, an element is in $A \bigoplus B$ if and only if it is in $(A-B) \cup(B-A)$.

Problem 6. Rosen, Ex 1.6.12
Solution. a) $f(n)=n+17$
b) $f(n)=\lceil n / 2\rceil$
c) We let $f(n)=n-1$ whenever n is even and $f(n)=n+1$ whenever n is odd. Thus we have $f(1)=2, f(2)=1, f(3)=4, f(4)=3$, and so on. Note that f is just one function, even though its definition uses two formulas, depending on the parity of n.
d) $f(n)=17$

Problem 7. Prove that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-b)
$$

for all $a, b \in \mathbb{Z}$. Hint: See Rosen, $\S 2.4$ Lemma 1.
Solution. We show that the common divisors of a and b are the same as the common divisors of $b, a-b$; then the result follows, since if all of the common divisors of these two pairs are the same, so are the greatest common divisors.

So suppose d divides both a and b. Then d also divides $a-b$, and hence d is a common divisor of b and $a-b$. Conversely, assume d divides both b and $b-a$. Then it divides $b-(a-b)=a$. Hence d divides both a and b as required. This shows that any common divisor of a and b is a common divisor of b and $a-b$ and vice versa, hence completing the proof.

Problem 8. Rosen, Ex 3.1.18(b)
Solution. Suppose that $3 n+2$ is even and that n is odd. Since $3 n+2$ is even, so is $3 n$. Subtracting an odd number from an even number yields an odd number, so we conclude that $2 n=3 n-n$ is odd. Since $2 n$ clearly cannot be odd, we have reached a contradiction. Hence our supposition was wrong, and the proof is now complete.

[^0]: Copyright © 2002, Prof. Albert R. Meyer.
 ${ }^{1}$ Stueben, Michael and Diane Sandford. Twenty Years Before the Blackboard, Math. Assoc America, ©1998, p.??.
 ${ }^{2}$ Stueben, Michael and Diane Sandford. ibid, p.27.

