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Massachusetts Institute of Technology

6.042J/18.062J, Fall ’02: Mathematics for Computer Science

Professor Albert Meyer and Dr. Radhika Nagpal


Solutions to In-Class Problems — Week 4, Fri 

Definition: The graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic iff there is a bijection 
f : V1 → V2 such that for all u, v ∈ V1, the edge (u, v) ∈ E1 ←→ (f (u), f (v)) ∈ E2. 

Problem 1. Let Ln be the n + 1-vertex simple “line” graph consisting of a single simple path of 
length n. For example, L4 is shown in the figure below: 

� � � � � 
The line graph L4 

Let’s say a simple graph has “two ends” if it has exactly two vertices of degree one, and all its 
other vertices have degree two. In particular, for n ≥ 1, the graph Ln has two ends. Consider the 
following false theorem. 

False theorem: Every simple graph with two ends is isomorphic to Ln for some n ≥ 1. 

(a) Draw a diagram of the smallest simple graph with two ends which is not isomorphic to any 
line graph. � 

Solution. 
The smallest two-ended graph not isomorphic to any line graph. 

(b) Explain briefly, but clearly, where the following proof goes wrong: 

False proof: We prove by induction on the number, n ≥ 1, of edges in a simple graph, that every 
two-ended graph with n edges is isomorphic to Ln. 

(Base case n = 1): A simple graph with one edge can only consist of the two vertices connected by 
that edge and some number of vertices not attached to any edge, i.e., vertices of degree zero. Since 
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a two-ended graph cannot have vertices of degree zero, the only two-ended graph with one edge 
must consist solely of the two vertices connected by the edge, which makes it isomorphic to L1. 

(Induction case): Assume that n ≥ 1 and every two-ended graph with n edges is isomorphic to Ln. 
Now let Gn be any two-ended graph with n ≥ 1 edges. By hypothesis, Gn is isomorphic to Ln. 
Suppose an edge is added to Gn to form a two-ended graph Gn+1. 

Since Gn is isomorphic to Ln, it consists of a simple path of length n. The only way to add an 
edge to the path and preserve two-endedness is to have that edge go from one end—that is, one 
of the degree-one vertices—to a new vertex, lengthening the path by one. That is, the resulting 
n + 1-edge graph must be a simple path of length n + 1, so it is isomorphic to Ln+1. Q.E.D. 

Solution. The inductive case is argued in an incorrect way. The inductive case must consist of a 
proof for any n ≥ 1 that if Gn+1 is two-ended then Gn+1 ∼ Ln+1 (A ∼ B is a notation for “A is 
isomorphic to B”), using the assumption that for every two-ended Gn, Gn ∼ Ln (alternatively, in 
strong induction, we can use an assumption that for every k, 1 ≥ k ≥ n, if Gk two-ended then 
Gk ∼ Lk ). 

The false proof above does not argue that at all. Instead, it states that if one takes a two-ended Gn 

which is isomorphic to Ln, and extends it by an edge to form a two-ended (n + 1)-edge graph G� , 
then G� ∼ Ln+1. This is true, but to transform this argument into an inductive proof, one would 
have to argue that every two-ended (n + 1)-edge graph Gn+1 can be formed in this way, i.e. by 
adding another edge to some two-ended graph Gn. However, this cannot be argued because it is 
not true. For example, in the solution to part (a), we have a two-ended graph G4 which cannot be 
formed by adding an edge to some two-ended G3. � 



� � � � � �

� � 
� � 

Solutions to In-Class Problems — Week 4, Fri 3 

(c) Here is another argument for the same False Theorem. Explain exactly where it goes wrong. 

False proof 2: Same induction hypothesis and base case as in part (b). 

(Induction case): For any n ≥ 1, let Gn+1 be any two-ended graph with n + 1 edges. Let Gn be the 
graph which results from removing one of the degree-one vertices v of Gn+1 and the edge {v, w}
attached to it. So Gn no longer has the vertex, v, of degree one. But the degree of w is one less in Gn 

than it was in Gn+1, so Gn still has two vertices of degree one and one fewer vertex of degree two. 
Therefore Gn is also two-ended. By induction Gn consists of a simple path of length n. But Gn+1 

is obtained by attaching an edge from one end of the path to a vertex v not on the path, thereby 
lengthening the path by one. So Gn+1 is isomorphic to a simple path of length n + 1; that is, it is 
isomorphic to Ln+1. Q.E.D. 

Solution. The claim 

Gn still has two vertices of degree one and one fewer vertex of degree two. 

is wrong. The degree of w is one less in Gn than it was in Gn+1, hence it can be equal to one if it 
was two in Gn+1, but it can also be equal to zero if it was one in Gn+1. The false proof above is 
wrong because it ignores this this second possibility. For example, if we take Gn+1 = G4 from the 
solution to part (a): � 

w v� � 
Graph Gn+1 

We see that if you remove v then w will have degree zero in a resulting graph Gn: 

w �� �� 
Graph Gn 

Obviously, Gn is not two-ended. � 

(d) Describe how to make a small revision to one of the false proofs above so that it becomes a 
correct proof of the theorem “Every connected simple graph with two ends is isomorphic to Ln for 
some n ≥ 1.” 

Solution. The proof in part (c) can be easily fixed if the graphs are connected, because then the 
quoted false claim will be true. Here is an example of how one could inject into the proof from 
part (c) an argument justifying the claim for the case of connected graphs: 

[...But the degree of w is one less in Gn than it was in Gn+1.] Since Gn+1 was two-
ended, w must be of degree either one or two in Gn+1. However, it cannot be of degree 
one because then vertices v and w would be connected only to each other and discon
nected from the rest of the graph, which would contradict the assumption that Gn+1 is 
connected. Therefore, w must have degree two in Gn+1, and hence has degree one in 
Gn. Hence, [ Gn still has two vertices of degree one and one fewer vertex of degree two. 
Therefore...] 
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The false proof in part (b) cannot be easily fixed. If we tried to use its structure to prove that 
all connected two-ended graphs are linear graphs, we would have to supply the argument that 
every connected two-ended graph can be formed by adding an edge to some connected two-ended 
graph with one less edge. To argue that would be as complicated as the above proof. � 

Problem 2. Let G1 and G2 be two graphs that are isomorphic to each other. Argue why if there is 
a cycle of length k in G1, there must be a cycle of length k in G2. 

Solution. From the definition of isomorphism we know that for two vertices u and v (u, v) ∈ 
G1 ←→ (f (u), f (v)) ∈ G2. We select the vertices v1, v2, ..., vk on G1 that form a cycle of length k. 
Since we know that (vi, vi+1) ∈ G1 for 1 ≤ i < k and (vk , v1) ∈ G1, then (f (vi), f (vi+1)) ∈ G2 for 
1 ≤ i < k and (f (vk), f (v1)) ∈ G2. Thus, there is a cycle of length k in G2. 

Problem 3. Prove that definition 1 implies definition 2. 

Definition 1: A tree is an acyclic graph of n vertices that has n − 1 edges.


Definition 2: A tree is a connected graph such that ∀u, v ∈ V , there is a unique path connecting u to

v. 

Solution. In this solution we will prove that both definitions are equivalent. 

In general, when we want to show the equivalence of two definitions, we must show that if the 
first definition is met, so is the second, and vice versa. 

(1) =⇒ (2) Suppose that G is an acyclic graph with |E| = |V | − 1. We need to demonstrate the 
following two facts: 

1. There is a unique path connecting any pair of vertices The proof is by contradiction. Suppose 
that there exists a pair of vertices (u, v) with two distinct paths p1 and p2 connecting u to v. 

p1 p2In more “graphic” terms, we have u � v and u � v. Let 
← 
p2 be the reverse of path p2 (which 

p1takes us from v to u). Then u � v 
← 
p2� u is a cycle from u back to u, which contradicts the fact 

that G is an acyclic graph. Therefore, we conclude that there exists a unique path between 
any two pairs of vertices. 

2. G is connected We want to prove that an acyclic graph G with n vertices and n − 1 edges is 
connected. The proof is by induction on the number of vertices of G. 
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Base case: For n = 1 and n = 2 the claim holds, since in both cases, a graph with n − 1 
edges is connected. 

Inductive step: Assume that the claim is true for all graphs up to size n. Consider an 
acyclic graph G with n+1 vertices and n edges. At least one of the vertices must have degree 
1 (see note 1). Now take that vertex of degree 1 and remove it, along with the associated edge. 
The graph G� that remains has n vertices and n − 1 edges and is connected according to our 
induction hypothesis. We then restore the vertex we removed to get back to G and notice 
that G must also be connected because the subgraph G� is connected, and the vertex v we 
just took out is connected to the subgraph through its edge. 

(2) =⇒ (1) Starting from a graph G that satisfies the second definition,we want to show that the 
following two things must be true: 

1. G is acyclic We can prove this by conradiction. Suppose that there is a cycle in G, and take any 
pair (u, v) of vertices in the cycle. Since we are in a cycle, we know that there’s a path p1 

connecting u to v and another, different path p2 connecting v to u. But then taking path p2 

in reverse would take us from u to v, which contradicts the assumption that there’s a unique 
path connecting every pair of vertices. Therefore, we conclude that G must be aclyclic. 

2. G has n − 1 edges . We know that G is a connected graph and above we showed that it must 
also be acyclic. In class we showed that an acyclic graph with n vertices needs at least n − 1 
edges to be connected. We now need to prove that it can have at most n − 1 edges (otherwise, 
it will not be acyclic). The proof is by induction on n. 

Base case: For n = 0 and n = 1, a connected, acyclic graph can have at most n − 1 edges. 

Inductive step: Assume that all connected, acyclic graphs with n vertices or less have ≤ 
n − 1 edges. Consider a connected, acyclic graph G with n + 1 vertices. Remove a vertex v 
along with all incident edges. This will create k ≥ 1 connected components2. Each connected 
component is connected (by definition) and acyclic (since G was acyclic). Therefore by our 
induction hypothesis, the ith connected component (1 ≤ i ≤ k) can have at most |Vi| − 1 
edges. Thus the total number of edges will be at most n − k. Now, we bring back the vetex 
we removed along with all its incident edges. Notice that since G is acyclic, the vertex cannot 
be connected to each component with more than one edges3. This means that the number of 
new edges is at most k, which brings our total number of edges to at most n − k + k = n. 
Thus, the claim holds for G as well. 

1Since there are n edges, the sum of the degrees of the vertices is 2n. There are n + 1 vertices, which means that 
at least one vertex must have degree either 0 or 1 (if they all had degree 2 or more, the sum of the degrees would be 
≥ 2n + 2). The 0-degree vertex is actually imposible, because the subgraph of n vertices would have n edges, and this 
would create a cycle (see the second inductive proof). Therefore, at least one vertex has to have degree exactly 1. 

2the case k = 1 corresponds to the situation in which the removal of the vertex leaves us with a connected subgraph 
(one piece) 

3If there were two edges connecting the vertex to a connected component, we could go from the vertex to the 
connected component through the first edge, then find a path to the second connection point [guaranteed to exist b/c 
we are in a connected component] and return to the original vertex through the second edge. This would contradict 
the assumption that our original graph was acyclic 
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Problem 4. An edge of a connected graph is called a cut-edge if removing the edge disconnects the 
graph. 

� ��A � 
��� �� �� 

B �� � 
(a) In the above figure, are either A or B cut-edges? Explain. 

Solution. A is not a cut-edge, B is. 

If we remove the edge A the two vertices remain connected because there is another path between 
those vertices. If we remove B there is no path from the end vertices to each other, hence the 
vertices get disconnected thus disconnecting the graph. 

More succinctly, A is part of a cycle and B is not. � 

(b) Prove that in an undirected connected graph, an edge e is a cut-edge if and only if no simple 
cycle contains e. 

Solution. Proof. Since there is an if and only if we need to prove both sides of the implication — 
that if an edge is part of a simple cycle then it can not be a cut-edge, and if an edge is not part of 
a simple cycle then it must be a cut-edge. We will use both directions of this implication to prove 
parts b) and c). 

First, we prove that if e is contained in a simple cycle, then e is not a cut-edge. Since G is connected, 
there exists a path P between every pair of distinct vertices u and v. We must show that there 
still exists a path between u and v after edge e is removed. Let e, e1, e2, . . . , en be the edges in a 
simple cycle containing e. Since the cycle is simple, none of the edges e1, e2, . . . , en are equal to 
e. Therefore, we can construct a new path that connects u and v, but does not contain edge e by 
substituting either e1, e2, . . . , en or en, en−1, . . . , e1 in place of edge e in the path P .This shows that 
the graph remains connected after edge e is removed, and so edge e is not a cut-edge. 

Next, we prove that if e is not a cut-edge, then e is contained in a simple cycle. We will make use 
of Theorem 1 on page 469 of Rosen (p.464 in ed.3), which states that there is a simple path between 
every pair of distinct vertices in a connected graph. Since e is not a cut-edge, the graph obtained 
by removing edge e is connected. So by the theorem, there exists a simple path P connecting the 
endpoints of edge edge e even after edge e is removed from the graph. Adjoining edge e to path 
P gives a simple cycle containing edge e. 
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(c) Using the previous part, argue that in a tree every edge is a cut-edge but in an n × n mesh no 
edge is a cut-edge. Why might this be important? 

Solution. For the tree we can simply state that since a tree is acyclic, every edge is a cut-edge. 

For a mesh, when n = 1, the claim is trivially true because the mesh contains no edges. But if 
n > 1, every edge is part of a cycle: consider a horizontal edge between adjacent nodes a1, a2 

on the same row. Consider the two nodes b1, b2 either immediately above or immediately below 
a1, a2. Then b1 is connected to b2 (adjacent nodes on same row); a1 is connected to b1 and a2 is 
connected to b2 (adjacent nodes on same column). So a1 − b1 − b2 − a2 forms a cycle. Likewise, 
every vertical edge is part of a square cycle. So every edge is part of a cycle, and hence cannot be 
a cut-edge. In fact the non-border edges are part of many cycles. 

Cut-edges can be an important concept because they point out weak points that can cause total 
failure — consider the graph of utility lines or a network of processors in a parallel computer. The 
more edges you need to remove in order to disconnect the graph the better. � 
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