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Random Variables and Expectation 

1 Random Variables 

When we perform an experiment, we expect the results to be observable—did the player hit a 
home run or not?—or measurable—how far did the ball travel? how fast was the pitch? To de-
scribe the behavior of such probabilistic experiments with measurable outcomes, we use random 
variables. 

For example, consider the experiment of tossing three independent, unbiased coins. We can define 
C to be the number of heads which appear, and M to be 1 iff all three coins match and 0 otherwise. 
Any outcome of the coin flips uniquely determines C and M . C can take the values 0,1,2, and 3, 
and M the values 0 an 1. 

We use the notation [C = 2] for the event that there are two heads. Similarly, [C ≥ 2] is the event 
that there are at least two heads, and [C ∈ {1, 3}] is the event that there are an odd number of 
heads. 

Now consider the event that the product of C and M is positive; we write this one as [C · M > 0]. 
Since neither C nor M take negative values, C · M > iff both C > 0 and M > 0—in other words, 
there is a head, and all three dice match. So saying C · M > 0 is just an obscure way of saying that 
all three coin flips come up heads. That is, the event [C · M > 0] consists of the single outcome 
HHH. 

When the meaning is clear, we often omit the square brackets denoting events. For example, we 
say “the event C = 0” instead of “the event [C = 0],” or Pr {C = 0} instead of Pr {[C = 0]}. 

Saying that each outcome uniquely determines C and M means that we can think of C and M as 
functions from outcomes to their values. The natural sample space, S, for this experiment consists 
of eight outcomes: HHH, HHT, HTH, etc. For example, C(HHH) = 3, C(HTH) = 2, C(TTT) = 0. Similarly, 
M (HHH) = 1, M (HTH) = 0, M (TTT) = 1. 

We can formalize the idea of a random variable in general as follows. 

Definition 1.1. A random variable over a given sample space is a function that maps every outcome 
to a real number. 

Notice that calling a random variable a “variable” a misnomer: it is actually a function. 

We will use the random variables C and M as continuing examples. Keep in mind that C counts 
heads and M indicates that all coins match. 
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1.1 Indicator Random Variables 

Indicator random variables describe experiments to detect whether or not something happened. 
The random variable M is an example of an indicator variable, indicating whether or not all three 
coins match. 

Definition 1.2. An indicator random variable is a random variable that maps every outcome to either 
0 or 1. 

Indicator random variables are also called Bernoulli or characteristic random variables. Typically, 
indicator random variables identify all outcomes that share some property (“characteristic”): out-
comes with the property are mapped to 1, and outcomes without the property are mapped to 
0. 

1.2 Events Defined by a Random Variable 

There is a natural relationship between random variables and events. Recall that an event is just a 
subset of the outcomes in the sample space of an experiment. 

The relationship is simplest for an indicator random variable. An indicator random variable parti
tions the sample space into two blocks: outcomes mapped to 1 and outcomes mapped to 0. These 
two sets of outcomes are events. For example, the random variable M partitions the sample space 
as follows: 

HHH��TTT� HHT� HTH HTT��THH THT TTH� 
mapped to 1 mapped to 0 

Thus, the random variable M defines two events, the event [M = 1] that all coins match and the 
event [M = 0] that not all coins match. 

The random variable C partitions the sample space into four blocks: 

TTT TTH� THT HTT� THH� HTH HHT� HHH���� �� �� ���� 
mapped to 0 mapped to 1 mapped to 2 mapped to 3 

Thus, the random variable C defines the four events [C = i] for i ∈ {0, 1, 2, 3}. These are the events 
that no coin is heads, that one coin is heads, that two coins are heads, and finally that three coins 
are heads. 

A general random variable may partition the sample space into many blocks. A block contains all 
outcomes mapped to the same value by the random variable. 

1.3 Probability of Events Defined by a Random Variable 

Recall that the probability of an event is the sum of the probabilities of the outcomes it contains. 
From this rule, we can compute the probability of various events associated with a random vari
able. For example, if R : S → R is a random variable and x is a real number, then 

Pr {R = x} = Pr {w} . 
w∈[R=x] 
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For example, we can compute Pr {C = 2} as follows: 

Pr {C = 2} = Pr {w} (def of Pr {}) 
w∈[C=2] 

= Pr {THH} + Pr {HTH} + Pr {HHT} (the 3 outcomes in [C = 2]) 
1 1 1 3 

=
8

+
8

+
8 

= 
8 
. 

Note that each outcome has probability 1/8, since the three coins are fair and independent. 

Similarly, we can compute Pr {M = 1} and Pr {C ≥ 2} 

Pr {M = 1} = 

=


=


Pr {C ≥ 2} =


= 

= 

Pr {w} 
w∈[M =1] 

Pr {HHH} + Pr {TTT}
1 1 1 

= 
8

+
8 4 

. 

Pr {w} 
w∈[C≥2] 

Pr {THH} + Pr {HTH} + Pr {HHT} + Pr {HHH}
1 1 1 1 1 

= 
8

+
8

+
8

+
8 2 

. 

The justification for each step is the same as before. 

It’s common in such calculations to group outcomes by their value. For instance, we could also 
have calculated: 

Pr {C ≥ 2} = Pr {C = 2} + Pr {C = 3} 

= Pr {THH, HTH, HHT} + Pr {HHH}
3 1 1 

= 
8

+
8

=
2 

Similarly, we find the probability of the event that C ∈ {1, 3}. 

Pr {C ∈ {1, 3}} = Pr {C = 1} + Pr {C = 3} 

= Pr {TTH, THT, HTT} + Pr {HHH}
3 1 1 

= = 
8

+
8 2 

. 

In general, for a set A = {a0, a1, . . . } of real numbers, Pr {R ∈ A} can also be evaluated by sum
ming over the values in A. That is, 

Pr {R ∈ A} = Pr {R = a} . 
a∈A 
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1.4 Conditional Probability 

Mixing conditional probabilities and events involving random variables creates no new difficul
ties. For example, Pr {C ≥ 2 | M = 0} is the probability that at least two coins are heads (C ≥ 2), 
given that all three coins are not the same (M = 0). We can compute this probability using the 
familiar Product Rule: 

Pr {C ≥ 2 | M = 0}	 = 

= 

= 

1.5 Independence 

Pr {C ≥ 2 ∧ M = 0}
Pr {M = 0}

Pr {{THH, HTH, HHT}}
Pr {{THH, HTH, HHT, HTT, THT, TTH}}
3/8 1 

= 
6/8 2 

. 

1.5.1 Independence for Two Random Variables 

Definition 1.3. Two random variables R1 and R2 are independent1 if for all x1, x2 ∈ R such that 
Pr {R2 = x2} �= 0, we have: 

Pr {R1 = x1 | R2 = x2} = Pr {R1 = x1} 

As with independence of events, we can also formulate independence of two random variables in 
terms of the conjunction of events: 

Definition 1.4. Two random variables R1 and R2 are independent if for all x1, x2 ∈ R , we have: 

Pr {R1 = x1 ∧ R2 = x2} = Pr {R1 = x1} · Pr {R2 = x2} . 

Definition 1.3 says that the probability that R1 has a particular value is unaffected by the value of 
R2, reflecting the intuition behind independence. Definition 1.4 has the slight technical advantage 
that it applies even if Pr {R2 = x2} = 0. Otherwise, the two definitions are equivalent, and we will 
use them interchangably. 

1.5.2 Proving that Two Random Variables are Not Independent 

Are C and M independent? Intuitively, no: the number of heads, C, not only affects, but com
pletely determines whether all three coins match, that is, whether M = 1. To verify this, let’s use 

1This definition works for sample spaces S = {w0, w1, . . . } of the kind we consider in 6.042. For more general 
sample spaces, the definition is that 

Pr {y1 ≤ R1 ≤ x1 | y2 ≤ R2 ≤ x2 } = Pr {y1 ≤ R1 ≤ x1} 

for all y1, x1, y2 , x2 ∈ R and Pr {y2 ≤ R2 ≤ x2} �= 0. 
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the first definition 1.3 of independence. We must find some x1, x2 ∈ R such that the condition in 
the first definition is false. For example, the condition does not hold for x1 = 2 and x2 = 1: 

3 1
Pr {C = 2 ∧ M = 1} = 0 but Pr {C = 2} · Pr {M = 1} =

8 
· 
4 
�= 0 

The first probability is zero because we never have exactly two heads (C = 2) when all three coins 
match (M = 1). The other two probabilities were computed earlier. 

1.5.3 A Dice Example 

Suppose that we roll two fair, independent dice. We can regard the numbers that turn up as 
random variables, D1 and D2. For example, if the outcome is w = (3, 5), then D1(w) = 3 and 
D2(w) = 5. 

Let T = D1 + D2. Then T is also a random variable, since it is a function mapping each outcome 
to a real number, namely the sum of the numbers shown on the two dice. For outcome w = (3, 5), 
we have T (w) = 3 + 5 = 8. 

Define S as follows: 

S ::=

1 if T = 7,

0 if T �= 7.


That is, S = 1 if the sum of the dice is 7, and S = 0 if the sum of the dice is not 7. For example, for 
outcome w = (3, 5), we have S(w) = 0, since the sum of the dice is 8. Since S is a function mapping 
each outcome to a real number, S is also a random variable. In particular, S is an indicator random 
variable, since every outcome is mapped to 0 or 1. 

The definitions of random variables T and S illustrate a general rule: any function of random vari
ables is also random variable. 

Are D1 and T independent? That is, is the sum, T , of the two dice independent of the outcome, D1, 
of the first die? Intuitively, the answer appears to be no. To prove this, let’s use the Definition 1.4 
of independence. We must find x1, x2 ∈ R such that Pr {x2} �= 0 and the condition in the second 
definition does not hold. 

For example, we can choose x1 = 2 and x2 = 3: 

1
Pr {T = 2 | D1 = 3} = 0 �= 

36 
= Pr {T = 2} . 

The first probability is zero, since if we roll a three on the first die (D1 = 3), then there is no way 
that the sum of both dice is two (T = 2). On the other hand, if we throw both dice, the probability 
that the sum is two is 1/36, since we could roll two ones. 

Are S and D1 independent? That is, is the probability of the event, S, that the sum of both dice 
is seven independent of the outcome, D1, of the first die? Once again, intuition suggests that the 
answer is “no”. Surprisingly, however, these two random variables are actually independent! 

Proving that two random variables are independent requires some work. Let’s use Definition 1.3 
of independence based on conditional probability. We must show that for all x1, x2 in R such that 
Pr {D1 = x2} �= 0: 

Pr {S = x1 | D1 = x2} = Pr {S = x1} . 
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First, notice that we only have to show the equation for values of x2 such that Pr {D1 = x2} �= 0. 
This means we only have to consider x2 equal to 1, 2, 3, 4, 5, or 6. If x1 is neither 0 nor 1, then the 
condition holds trivially because both sides are zero. So it remains to check the equation for the 
cases where x1 ∈ {0, 1} and x2 ∈ {1, 2, 3, 4, 5, 6}, that is, a total of 2 · 6 = 12 cases. 

Two observations make this easier. First, there are 6 · 6 = 36 outcomes in the sample space for this 
experiment. The outcomes are equiprobable, so each outcome has probability 1/36. The two dice 
sum to seven in six outcomes: 1 + 6, 2 + 5, 3 + 4, 4 + 3, 5 + 2, and 6 + 1. Therefore, the probability 
of rolling a seven, Pr {S = 1}, is 6/36 = 1/6. 

Second, after we know the result of the first die, there is always exactly one value for the second 
die that makes the sum seven. For example, if the first die is 2, then the sum is seven only if the 
second die is a 5. Therefore, Pr {S = 1 | D1 = x2} = 1/6 for x2 = 1, 2, 3, 4, 5, or 6. 

These two observations establish the independence condition in six cases: 

1 
Pr {S = 1 | D1 = 1} = 

6
= Pr {S = 1} 

1 
Pr {S = 1 | D1 = 2} = 

6
= Pr {S = 1} 

. . . 
1 

Pr {S = 1 | D1 = 6} = 
6

= Pr {S = 1} 

The remaining cases are complementary to the the first six. For example, we know that Pr {S = 0} = 
5/6, since the complementary event, S = 1, has probability 1/6. 

5 
Pr {S = 0 | D1 = 1} = 

6
= Pr {S = 0} 

5 
Pr {S = 0 | D1 = 2} = 

6
= Pr {S = 0} 

. . . 
5 

Pr {S = 0 | D1 = 6} = 
6

= Pr {S = 0} 

We have established that the independence condition holds for all necessary x1, x2 ∈ R. This 
proves that S and D1 are independent after all! 

1.5.4 Mutual Independence 

The definition of mutual independence for random variables is similar to the definition for events. 

Definition 1.5. Random variables R1, R2, . . . are mutually independent iff 

Pr [Ri = xi] = Pr {Ri = xi} , 
i i 

for all x1, x2, · · · ∈ R. 
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For example, consider the experiment of throwing three independent, fair dice. Random variable 
R1 is the value of the first die. Random variable R2 is the sum of the first two dice, mod 6. Random 
variable R3 is the sum of all three values, mod 6. These three random variables are mutually 
independent. Can you prove it? 

2 Probability Density Functions 

A random variable is a function from the sample space of an experiment to the real numbers. As 
a result, every random variable is bound up in some particular experiment. Often, however, we 
want to describe a random variable independent of any experiment. This consideration motivates 
the notion of a probability density function. 

Definition 2.1. The probability density function (pdf) for a random variable R is the function fR : 
range (R) → [0, 1] defined by: 

fR(x) ::= Pr {R = x} 

It’s sometimes convenient to apply fR to values that are not in the range of R. By convention, we 
say fR equals zero for such values. 

The probability density function is also sometimes called the point density function. A consequence 
of this definition is that
 fR(x) = 1, since we are summing the probabilities of all outcomes in x 
the sample space. 

Definition 2.2. The cumulative distribution function for a random variable, R, is the function FR : 
R → [0, 1] defined by: 

FR(x) ::= Pr {R ≤ x} = 
y ≤ x, 

y ∈ range (R) 

fR(y). 

Note that neither the probability density function nor the cumulative distribution function in
volves the sample space of an experiment; both are functions from R to [0, 1]. This allows us to 
study random variables without reference to a particular experiment. In these Notes, we will look 
at three distributions and will see more in upcoming lectures. 

2.1 Bernoulli Distribution 

For our first example, let B be a Bernoulli (indicator) random variable that is 0 with probability 
p and 1 with probability 1 − p. We can compute the probability density function fB at 0 and 1 as 
follows: 

fB (0) = Pr {B = 0} = p, 

fB (1) = Pr {B = 1} = 1 − p. 

Similarly, we can compute the cumulative distribution function FB : 

FB (0) = Pr {B ≤ 0} = p, 

FB (1) = Pr {B ≤ 1} = 1. 
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2.2 Uniform Distribution 

Next, let U be a random variable that is uniform on {1, . . . , N }. That is, U takes on value k with 
probability 1/N for all 1 ≤ k ≤ N . Its probability density and cumulative distribution functions 
are: 

1 
fU (k) ::= Pr {U = k} = 

N
, 

k 
FU (k) ::= Pr {U ≤ k} = 

N
, 

for 1 ≤ k ≤ N . 

Uniform distributions are very common. For example, the outcome of a fair die is uniform on 
{1, . . . , 6}. An example based on uniform distributions will be presented in the next section. But 
first, let’s define the third distribution. 

2.3 Binomial Distribution 

We now introduce a third distribution, called the binomial distribution. This is the most important 
and commonly occurring distribution in Computer Science. 

Let H be the number of heads in n independent flips of a coin. The density function of H is called 
a binomial density function. The coin need not be fair; we allow biased coins where the probability 
is p that a Head will come up. To determine exactly what the density function of H is, we need to 
know the two parameters n and p. 

More generally, the binomial distribution describes the probabilities for all possible numbers of oc
currences of independent events, for example the number of faulty connections in a circuit where 
the probabilities of failure for the individual connections are independent. 

Definition 2.3. The unbiased binomial density function is the function fn : R → [0, 1] defined by 

fn(k) ::= 
n

k


2−n 

where n is a positive integer parameter.


The general binomial density function is the function fn,p : R → [0, 1] defined by


fn,p(k) ::= 
n

k


p k (1 − p)n−k 

where parameter n is a positive integer and 0 < p < 1. 

The unbiased binomial density function is the special case of the general binomial density function 
where the coin is fair, viz., the parameter p is equal to 1/2. 
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3 Examples Involving Probability Distributions 

3.1 Uniform Distributions and the Numbers Game 

Suppose we are given two envelopes, each containing an integer in the range 0, 1, . . . 100, and we 
are guaranteed that the two integers are distinct. To win the game, we must determine which 
envelope contains the larger number. Our only advantage is that we are allowed to peek at the 
number in one envelope; we can choose which one. Can we devise a strategy that gives us a better 
than 50% chance of winning? 

For example, suppose we are playing the game and are shown the two envelopes. Now we could 
guess randomly which envelope contains the larger number, and not even bother to peek in one 
envelope. With this strategy, we have a 50% chance of winning. 

Suppose we try to do better. We peek in the left envelope and see the number 12. Since 12 is a 
small number, we guess that the right envelope probably contains the larger number. Now, we 
might be correct. On the other hand, maybe the the person who wrote the numbers decided to be 
tricky, and made both numbers small! Then our guess is not so good! 

An important point to remember is that the integers in the envelope might not be random. We 
should assume that the person who writes the numbers is trying to defeat us; she may use ran
domness or she may not— we don’t know! 

3.1.1 A Winning Strategy 

Amazingly, there is a strategy that wins more than 50% of the time, regardless of the integers in 
the envelopes. Here is the basic idea: 

Suppose we somehow knew a number x between the larger and smaller number. Now we peek 
in an envelope and see some number. If this number is larger than x, then it must be the larger 
number. If the number we see is smaller than x, then the larger number must be in the other 
envelope. In other words, if we know x, then we are guaranteed to win. 

Of course, we do not know the number x, so what can we do? Guess! 

With some positive probability, we will guess x correctly. If we guess correctly, then we are guar
anteed to win! If we guess incorrectly, then we are no worse off than before; our chance of winning 
is still 50%. Combining these two cases, our overall chance of winning is better than 50%! 

This argument may sound implausible, but we can justify it rigorously. The key is how we guess 
the number x. That is, what is the probability density function of x? The best answer turns out to 
be a uniform density. 

Let’s describe the strategy more formally and then compute our chance of winning. Call the 
integers in the envelopes y and z and suppose y < z. For generality, suppose that each number is 
in the range 0, 1, . . . , n. Above, we considered the case n = 100. The number we see by peeking is 
denoted r. Here is the winning strategy: 

1. Guess a number x from the set 

1 1 1
1 − 

2 
, 2 − 

2 
, . . . , n − 

2 
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x too low

x just right

x too high

r=y

r=y

r=y

r=z

r=z

r=z

1/2

1/2

1/2

1/2

1/2
1/2

y/n

(z-y)/n

(n-z)/n

win

lose

win

lose

win

win

outcome

y/2n

y/2n

(z-y)/2n

(z-y)/2n

(n-z)/2n

(n-z)/2n

probabilty

Figure 1: This is the tree diagram for the Numbers Game. 

with the uniform distribution. That is, each value is selected with probability 1/n. (We pick 
x to be something-and-a-half simply to avoid ties with integers in the envelopes.) 

2.	 Peek into a random envelope. We see a value r that is either y or z. Each envelope is chosen 
with probability 1/2, and the choice is independent of the number x. 

3. Hope that y < x < z. 

4.	 If r > x, then guess that r is the larger number, that is the envelope we peeked into is the 
one that contains the larger number. On the other hand, if r < x, then guess that the larger 
number is in the other envelope. 

We can compute the probability of winning by using the tree diagram in Figure 1 and the usual 
four-step method. 

Step 1: Find the sample space. We either choose x too low, too high, or just right. Then we either 
choose r = y or r = z. As indicated in the figure, this gives a total of six outcomes. 

Step 2: Define events of interest. We are interested in the event that we correctly pick the larger 
number. This event consists of four outcomes, which are marked “win” in the figure. 

Step 3: Compute outcome probabilities. As usual, we first assign probabilities to edges. First, we 
guess x. The probability that our guess of x is too low is y/n, the probability that our guess is too 
high is (n − z)/n, and the probability of a correct guess is (z − y)/n. We then select an envelope; 
r = y and r = z occur with equal probability, independent of the choice of x. The probability of 
an outcome is the product of the probabilities on the corresponding root-to-leaf path, as shown in 
the figure. 

Step 4: Compute event probabilities. The probability of winning is the sum of the probabilities of the 
four winning outcomes. This gives: 
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y z − y z − y n − z
Pr {winning} =

2n 
+

2n 
+

2n 
+

2n 
n + z − y

= 
2n 

1 z − y

2

+ 
2n


=


1 
2

+ 
1

2n


≥


In the final equality, we use the fact that the larger number z is at least 1 greater than the smaller 
number y, since they must be distinct. 

We conclude that the probability of winning with this strategy is at least 1/2 + 1/2n, regardless of 
the integers in the envelopes! 

For example, if the numbers in the envelopes are in the range 0, . . . 100, then the probability of 
winning is at least 1/2 + 1/200 = 50.5%. Even better, if the numbers are constrained to be in the 
range 0, . . . , 10, then the probability of winning rises to 55%! By Las Vegas standards, these are 
great odds! 

3.1.2 Optimality of the Winning Strategy 

What strategy should our opponent use in putting the numbers into the envelopes? That is, how 
can he ensure that we do not get, say, a 60% chance of winning? 

Of course, our opponent could try to be clever, putting in two low numbers and then two high 
numbers, etc. But then there is no guarantee that we will not catch on and start winning every 
time! 

It turns out that our opponent should also use a randomized strategy involving the uniform dis
tribution. In particular, he should choose y from {0, . . . n − 1} uniformly, and then let z = y + 1. 
That is, he should randomly choose a pair of consecutive integers like (6, 7) or (73, 74) with the 
uniform distribution. 

Claim 3.1. If the opponent uses the strategy above, then Pr {we win} ≤ 1/2 + 1/2n for every strategy we 
can adopt. 

Claim 3.1 is not hard to prove once we define just what a “strategy” can be, but we won’t elaborate 
that here. One of consequence is that both our strategy above of guessing x and the opponent’s 
strategy above are optimal: we can win with probability at least 1/2 + 1/2n regardless of what our 
opponent does, and our opponent can ensure that we win with probability at most 1/2 + 1/2n 
regardless of what we do. 

3.2 Binomial Distribution Examples 

3.2.1 The Space Station Mir 

The troubled space station Mir has n parts, each of which is faulty with probability p. Assume that 
faults occur independently, and let the random variable R be the number of faulty parts. What 
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is the probability density of R, that is, what is Pr {R = k}? We can answer this with the usual 
four-step method, though we will not draw a tree diagram. 

Step 1: Find the sample space. We can characterize Mir with a string of W ’s and F ’s of length n. A 
W in the i-th position indicates that the i-th part is working, and an F indicates that the i-th part 
is faulty. Each such string is an outcome, and the sample space S is the set of all 2n such strings. 

Step 2: Define events of interest. We want to find the probability that there are exactly k faulty parts; 
that is, we are interested in the event that R = k. 

Step 3: Compute outcome probabilities. Since faults occur independently, the probability of an 
outcome such as FWFWW is simply a product such as p(1 − p)p(1 − p)(1 − p) = p2(1 − p)3 . Each 
F contributes a p term and each W contributes a (1 − p) term. In general, the probability of an 
outcome with k faulty parts and n − k working parts is pk (1 − p)n−k . 

Step 4: Compute event probabilities. 

We can compute the probability that k parts are faulty as follows: 

Pr {R = k} = p k (1 − p)n−k (1) 
w∈[R=k] 

= (# of length-n strings with k F ’s) · p k (1 − p)n−k (2) 
n 

= p k (1 − p)n−k (3)
k 

Equation (1) uses the definition of the probability of an event. Then (2) follows because all terms 
n

in the summation are equal, and then (3) follows because there are strings of length n with k 
k 

occurrrences of F . 

We can now see that the probability density for the number of faulty parts is precisely the general 
binomial density: 

n 
fR(k) ::= Pr {R = k} = 

k
p k (1 − p)n−k = fn,p(k). 

As a “sanity” check, we should confirm that the sum, k fR(k), of these probabilities is one. This 
fact follows from the Binomial Theorem: 

n � � 
n

1 = (p + (1 − p))n = p k (1 − p)n−k . 
k 

k=0 

In general, the binomial distribution arises whenever we have n independent Bernoulli variables 
with the same distribution. In this case, the Bernoulli variables indicated whether a part was faulty 
or not. As another example, if we flip n fair coins, then the number of heads has an unbiased 
binomial density. 

3.2.2 Leader Election 

There are n persons in a room. They wish to pick one of themselves as their leader. They wish 
to do this in a fair and democratic way, so that each and everyone has the same chance to be the 
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leader. The scheme they employ is for everyone to toss a coin. If exactly one person tosses a head 
that person is elected the leader. If no persons or more than one person tosses heads then they 
repeat the entire process. 

If the coins they use have probability p of coming up heads then what should p be to maximize 
the probability of selecting a leader in a given round? If n coins are tossed then the probability 

n
of having exactly one head is 

1 
p(1 − p)n−1 . Notice that if p is too large then the likelihood 

of tossing multiple heads becomes high, whereas if p is too small then no one tosses a head. By 
differentiating the probability w.r.t. p and then equating to 0, we find that the maximum occurs 
when p = 1/n. Hence, they should use coins so that the probability of coming up heads is 1/n. 
When they use such coins then the probability of selecting a leader in a given round is � � 

1 1n 
1 n 

(1 − )n−1 ∼ 1/e. 
n 

Leader election is a very common and important idea in distributed computing. One example is 
how a set of devices that share a single communication channel (whether wireless or an ethernet 
cable) may decide which device gets to broadcast. If more than one device broadcasts at the same 
time, the message will be lost. So the devices keep trying to elect a leader and when they succeed, 
the leader gets to broadcast on the channel.2 An interesting question is: given some probability of 
successfully choosing a leader in a given round, how many rounds do we expect the devices have 
to try before they successfully send a message? We’ll consider this type of question in later Course 
Notes. 

4 The Shape of the Binomial Distribution 

The binomial distribution is somewhat complicated, and it’s hard to see its qualitative behavior 
for large k and n. 

For example, suppose I flip 100 coins. Here are some basic questions we might ask: 

• what is the most likely number of heads? 

• what the probability of exactly 50 heads? 

• the probability of exactly 25 heads? 

• the probability of less than 25 heads? 

• probability of exactly 25 heads, given at most 25? 

To answer these questions, we will develop some closed form approximations that will help us 
understand the properties of the binomial density and cumulative distribution. Let’s first consider 
the case when the coin is fair: the unbiased density, namely, 

n 
2−nfn,1/2(k) ::= 

k
. 

2Ethernet uses a variant of this idea called binary exponential backoff, where the bias p of the leader election coin is 
constantly adjusted because n is unknown. Probabilistic analysis is an important part of Network theory. 
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4.1 The central term 

Where is fn,p(k) maximized? It’s shown in Spring ’02, Problem Set 9 that fn,p(k) increases until 
k = p(n + 1), and decreases after. So for p = 1/2, the central term is essentially at k = n/2. Now, 
by Stirling’s formula we have � �n √ n � � 2πn � 

n n! e 2 
= = 

n/2 (n/2)!(n/2)! 
∼  � �n/2 

2 πn 
2n . 

n√ 
πn  

2e 

So 

2 
fn,1/2(n/2) ∼ 

πn
. (4) 

√ 
Note this is an asymptotic bound. For n = 100 (our question about coins) we have 1/ 50π ≈ 
0.079788, so the probability of throwing exactly 50 heads in 100 tosses is about 8%. In fact, the 
bound given above is very close to the true value; in this case, the exact answer is 0.079589 . . . . In 
general, to determine the accuracy of this estimate we’ll need to use the form of Stirling’s formula 
that gives upper and lower bounds, which we consider below. 

4.2 The tails 

We can generalize the estimate of the central term at (1/2)n to terms at factors other than 1/2. 
Namely, we estimate fn,1/2(αn) when α �= 1/2 by first estimating the binomial coefficient 

Lemma. 

n � 
∼ 2nH(α)/ 2πα(1 − α)n (5)

αn 

where 

H(α) ::= −(α log2 α + (1 − α) log2(1 − α)). 

Proof. 

n n! 
::= 

αn (αn)!((1 − α)n)! � �n √ n 
2πn 

e 
∼ � �αn � �(1−α)n √ αn � (1 − α)n 

2παn 2π(1 − α)n 
e e � 

1 
�n � 

= 
αα(1 − α)(1−α) 

/ 2πα(1 − α)n 

2−(α log2 α+(1−α) log2(1−α))n/ 2πα(1 − α)n= 

= 2nH(α)/ 2πα(1 − α)n. 
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Figure 2: The Entropy Function

H(α) is the known as the entropy function. Its graph is shown in Figure 2. It is only defined for
0 ≤ α ≤ 1, and takes values between 0 and 1 with its maximum at H(1/2) = 1. The entropy
function plays an important role in thermodynamics and in information theory.

For example, the entropy function arises in the study of how much information is carried in a

binary string with a fraction α of the bits set to one. Since there are
�

n

αn

�
such n-bit strings, they

can be numbered using nH(α) + o(log n)-bit binary numbers. So the information carried by these
n-bits can be “compressed” into nH(α) bits. This observation underlies information-theoretic
bounds on the rate at which bits can be reliably communicated over an unreliable communication
channel.

With estimate (5) of the binomial coefficient, we conclude

fn,1/2(αn) =
�

n

αn

�
2−n ∼ 2−n(1−H(α))/

�
2πα(1− α)n. (6)

For α = 1/2, this approximation (6) matches our estimate (4) above. But now we can also estimate
the probability of throwing exactly 25 heads in 100 tosses. In this case, we substitute n = 100, and
α = 1/4 into (6) and obtain 1.913 · 10−7. The odds are less than 1 in 5 million for throwing exactly
25 heads in 100 tosses!

The estimate in (6) also provides some important qualitative understanding of the binomial den-
sity. Note that for α �= 1/2, we have 1−H(α) > 0, so

fn,1/2(αn) = O(2−�n)

for 1−H(α) > � > 0. In other words, for α �= 1/2,
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fn,1/2(αn) is exponentially small in n. 

This means that as n increases, the values any fixed fraction away from n/2 rapidly become less 
likely, and the likely values concentrate more and more tightly around n/2. 

To handle the general case, we define a generalized entropy function 

H(α, p) ::= −(α log2 p + (1 − α) log2(1 − p)). 

Then a Stirling formula calculation like the ones above yields 

∼1 � �� � � 
fn,p(αn) = 2−n(H(α,p)−H(α)) e an−aαn−a(1−α)n / 2πα(1 − α)n (7) 

The an symbols arise from the error in Stirling’s approximation; an denotes a value between 
1/(12n + 1) and 1/12n. 

The important properties of H(α, p) are: 

H (α, α) = H(α), (the ordinary entropy function) (8) 
H (α, p) > H(α) ≥ 0, for 0 < p < 1, 0 ≤ α ≤ 1, p �= α (9) 

H(α, 1/2) = 1. (10) 

We observed that the maximum value of fn,p(αn) occurs when α = p. For example, in the Mir 
problem, each part is faulty with probability p, so we would expect pn faulty parts to be the 
likeliest case. Substituting α = p into (7) and then using equation (8) gives: 

1 
fn,p(pn) ≤ � . 

2πp(1 − p)n 

The two sides of this inequality are actually asymptotically equal. 

As in the unbiased case, the main term in our approximation (7) of fn,p(αn) is the power of 2. If 
p = α, then H(p, α) = H(α) and the exponent is 0. However, if p �= α, then by equation (9), this 
term is of the form 2−cn for c = H (α, p) − H(α) > 0. Again, this tells us that as n grows large, 
fn,p(αn) shrinks exponentially, indicating that the values any fixed fraction away from pn rapidly 
become less likely, and the likely values concentrate more and more tightly around pn. That is, 
the general binomial density peaks more and more sharply around pn and has the shape shown 
in Figure 3. 

4.3 The Cumulative Distribution Function 

4.3.1 25 Heads in 100 Tosses 

What is the probability of tossing 25 or fewer heads? Of course, we could sum the probability of 
zero heads, one head, two heads, . . . , and 25 heads. But there is also a simple formula in terms of 
the probability density function. 
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f    (alpha n)n,p

n
tail tail

peak

Figure 3: This diagram shows the approximate shape of the binomial density function, fn,p(αn).√ 
The horizontal axis goes from 0 to n. The central peak is centered at α = p and has height Θ(1/ n) 
and width Θ(

√ 
n). The “tails” on either side fall off very quickly. 

Lemma. 

1 − α 
Fn,p(αn) ≤ 

1 − α/p 
fn,p(αn) (11) 

for α < p. 

This Lemma can be proved by considering the ratio of successive values of fn,p. The successive 
ratios from 0 to pn are approximately constant, so the sum of these values can be bounded by an 
increasing geometric series. We omit the details. 

We can now bound the probability of throwing 25 or fewer heads by plugging in the values n = 100, 
α = 1/4, and p = 1/2. This gives: 

3/4
Pr {at most 25 heads} = F100,1/2(

1 · 100) ≤ 
1/2 

f100,1/2(25) = 
3 · 1.913 . . . · 10−7 .

4 2 

In other words, the probability of throwing 25 or fewer heads is at most 1.5 times the probability 
of throwing exactly 25 heads. Therefore, we are at least twice as likely to throw exactly 25 heads 
as to throw 24 or fewer! This is somewhat surprising; the cases of 0 heads, 1 head, 2 heads, . . . , 24 
heads are together less likely than the single case of 25 heads. This shows how quickly the tails of 
the binomial density function fall off! 

4.3.2 Transmission Across a Noisy Channel 

Suppose that we are transmitting bits across a noisy channel. (For example, say your modem uses 
a phone line that faintly picks up a local radio station.) Suppose we transmit 10, 000 bits, and each 
arriving bit is incorrect with probability 0.01. Assume that these errors occur independently. What 
is the probability that more than 2% of the bits are erroneous? 
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We can solve this problem using our bound (11) on Fn,p. However, one trick is required because 
of a technicality: this bound only holds if α < p, so we switch to working with correct bits instead 
of erroneous bits. 

Pr {> than 2% errors} = Pr {≤ 98% correct} = Fn,0.99(0.98n) ≤ 1.98
2−0.005646·10,000 

0.3509
√

10, 000 
≤ 2−60 

The probability that more than 2% of the bits are erroneous is incredibly small! This again demon
strates the extreme improbability of outcomes on the tails of the binomial density. 

5 Expected Value 

The expectation of a random variable is a central concept in the study of probability. It is the average 
of all possible values of a random variable, where a value is weighted according to the probability 
that it will appear. The expectation is sometimes also called the average. It is also called the expected 
value or the mean of the random variable. These terms are all synonymous. 

5.1 Two Equivalent Definitions 

Definition 5.1. The expectation, E [R], of a random variable, R, on sample space, S, is defined as: 

E [R] ::=
 R(s) · Pr {s} . (12) 
s∈S 

Another equivalent definition is:


Definition 5.2. The expectation of random variable, R, is:


E [R] ::=
 r · Pr {R = r} . (13) 
r∈range(R) 

Actually, there is a technicality implicit in both these definitions that can cause trouble if ignored. 
In both series (12) and (13), the order of the terms in the series is not specified. This means that 
the limits of these series are not well-defined unless the series are absolutely convergent, i.e., the 
sum of the absolute values of the terms converges. For absolutely convergent series, the order 
of summation does not matter—the series converges to the same value, or else always diverges, 
regardless of the order in which the terms are summed. 

Definition 5.2 is equivalent to Definition 5.1, because each can be obtained from the other simply 
by grouping the terms in the series that have the same R value. Regrouping the terms is justified 
because the series are supposed to be absolutely convergent. Namely, letting r take values over 
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range (R) we have 

E [R] = R(s) · Pr {s} (Def. 5.1) 
s∈S 

= R(s) · Pr {s} (reordering terms) 
r s∈[R=r] 

= r · Pr {s}
r s∈[R=r] 

= r Pr {s} (factor out constant r) 
r s∈[R=r] 

= r Pr {R = r} . (Def. of Pr {[R = r]}) 
r 

Like other averages, the expected value of a random variable doesn’t say anything about what 
will happen in one trial. For example, the “average” American mother has 2.1 children, but ob
viously none of them has exactly this number. So we don’t expect to see the expected value of a 
random variable in one trial. Remembering that “expected” value really means “average” value 
may reduce confusion about this point. 

But over a large number of independent trials, we do expect the values to average out close to 
the expected value. We’ll examine this connection between the average of a large number of 
independent trials and the expectation in detail in Course Notes 12. 

5.2 Expected Value of One Die 

Suppose we roll a fair, six-sided die. Let the random variable R be the number that comes up. 
We can compute the expected value of R directly from the definition of expected value. Using the 
second version of the definition: 

6 

E [R] = i · Pr {R = i}
i=1 

1 2 3 4 5 6 
= 

6
+

6
+

6
+

6
+

6
+

6 
= 3.5 

The average value thrown on a fair die is 3.5. Again, on one trial—a single die roll—we will never 
get an outcome closer to the expected value than 1/2. But over many die rolls, the values will 
almost surely average to a number very close to 3.5. 

By itself, the mean of a random variable doesn’t say too much about the distribution of values 
of the variable. Random variables with very different distributions can have the same mean. For 
example, a nonstandard die with half its sides marked 1 and the other half marked 6 will also have 
expectation 3.5. 
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5.3 Expected Value of an Indicator Variable 

The expected value of an indicator random variable for an event is just the probability of that 
event. Namely, let IA is the indicator random variable for event A, that is, IA = 1 iff A occurs, 
otherwise IA = 0. 

Lemma 5.3. If IA is the indicator random variable for event A, then 

E [IA] = Pr {A} . 

Proof. 

E [IA] = 1 · Pr {IA = 1} + 0 · Pr {IA = 0} (Def. 5.2) 
= Pr {IA = 1} 

= Pr {A} . (Def. of IA) 

5.4 The Median is Not the Mean 

Expected value, average, and mean are the same thing, but median is entirely different. The 
median is defined below, but only to make the distinction clear. After this, we won’t make further 
use of the median. 

Definition 5.4. The median of a random variable R is the unique value r in the range of R such 
that Pr {R < r} ≤ 1/2 and Pr {R > r} < 1/2. 

For example, with an ordinary die, the median thrown value is 4, which is not the same as the 
mean 3.5. The median and the mean can be very far apart. For example, consider a 2n-sided die, 
with n 0s and n 100s. The mean is 50, and the median is 100. 

5.5 Modified Carnival Dice 

Let’s look at a modified version of Carnival Dice. The player chooses a number from 1 to 6. He 
then throws three fair and mutually independent dice. He wins one dollar for each die that matches 
his number, and he loses one dollar if no die matches. 

This is better than the original game where the player received one dollar if any die matched, and 
lost a dollar otherwise. At first glance the new game appears to be fair; after all, the player is now 
“justly compensated” if he rolls his number on more than one die. In fact, there is still another 
variant of Carnival Dice in which the payoff is $2.75 instead of $3 if all three dice match. In this 
case, the game appears fair except for the lost quarter in the rare case that all three dice match. 
This looks like a tiny, tolerable edge for the house. 

Let’s check our intuition by computing the expected profit of the player in one round of the $3 
variant of Carnival Dice. Let the random variable R be the amount of money won or lost by the 
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player in a round. We can compute the expected value of R as follows: 

E [R] = −1 · Pr {0 matches} + 1 · Pr {1 match} + 2 · Pr {2 matches} + 3 · Pr {3 matches}� 
5 
�3 � 

1 
�� 

5 
�2 � 

1 
�2 � 

5 
� � 

1 
�3 

= −1 · + 1 · 3 + 2 · 3 + 3 · 
6 6 6 6 6 6 

−125 + 75 + 30 + 3 
= 

216 
−17 

= 
216 

Our intuition was wrong! Even with a $3 payoff for three matching dice, the player can expect to 
lose 17/216 of a dollar, or about 8 cents, in every round. This is still a horrible game for the player! 

The $2.75 variant is deceptive. One is tempted to believe that a player is shortchanged only a 
quarter in the rare case that all three dice match. This is a tiny amount. In fact, though, the player 
loses this tiny amount in addition to the comparatively huge 8 cents per game! 

6 Expectation of Natural Number-valued Variables 

When the codomain of a random variable is N, there is an alternative way to compute the expected 
value that can be convenient. We can compute the expected value of a random variable R by 
summing terms of the form Pr {R > i} instead of terms of the form Pr {R = i}. Remember, though, 
that the theorem only holds if the codomain of R is N! 

Theorem 6.1. If R is a random variable with range N, then 
∞ 

E [R] = Pr {R > i} . 
i=0 

Proof. We will begin with the right-hand expression and transform it into E [R]. Because R is 
natural number valued, we can expand Pr {R > i} into a series: 

Pr {R > i} = Pr {R = i + 1} + Pr {R = i + 2} + Pr {R = i + 1} + · · · . 

So, 
∞ 

Pr {R > i} = Pr {R > 0} + Pr {R > 1} + Pr {R > 2} + · · · 
i=0 

= Pr � {R = 1} + Pr {R = �� 2} + Pr {R = 3} + · · � · 
Pr{R>0} 

+ Pr � {R = 2} + Pr {R = 3} + · · � · 
Pr{R>1} 

+ Pr � {R = �� 3} + · · � · 
Pr{R>2} 

= Pr {R = 1} + 2 · Pr {R = 2} + 3 · Pr {R = 3} + · · · 
∞ 

= i · Pr {R = i}
i=0 

= E [R] . 
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6.1 Mean Time to Failure 

The Mir space station computer is constantly on the blink. Fortunately, a failure is not catastrophic. 
Suppose that Mir’s main computer has probability p of failing every hour, and assume that failures 
occur independently. How long should a cosmonaut expect to wait until the main computer fails? 

Let the random variable R be the number of hours until the first failure; more precisely, assuming 
that the hours are numbered 1, 2, 3, . . . , then R is the number of the hour in which the first failure 
occurs. 

We want to compute the expected value of R. It turns out to be easy to compute Pr {R > i}, the 
probability that the first failure occurs sometime after hour i. Since the range of R is N, we can 
therefore apply Theorem 6.1 to comput the expected number of hours. 

We can compute Pr {R > i} with the usual four-step method. 

Step 1: Find the Sample Space. We can regard the sample space as a set of finite strings W nF for 
n ∈ N. A W in the ith position means that the main computer is working during hour i. An F in 
the n + 1st position means that the computer went down during hour n + 1. 

Step 2: Define Events of Interest. We are concerned with the event that R > i. This event consists of 
all outcomes with no F in the first i positions. 

Step 3: Compute Outcome Probabilities. We want to compute the probability of a particular outcome 
W nF . We reason that since the probability of a W is (1 − p) and of F is p, then we shall define 

Pr {W nF } ::= (1 − p)n p. 

Step 4: Compute Event Probabilities. We want to compute Pr {R > i}. There is no F in the first 
position of an outcome string with probability 1 − p. Since failures occur independently, if there 
is no F in first position, then the probability of F the second position is 1 − p, etc. Now we 
can multiply conditional probabilities: the probability that there is no F in the first i positions is 
(1 − p)i . Therefore, 

Pr {R > i} = (1 − p)i . (14) 

Now we have 
∞ 

E [R] = Pr {R > i} (Thm 6.1) 
i=0 

∞ 

(1 − p)i (by (14)) 
i=0 

1 
=

1 − (1 − p) 
(sum of geometric series) 

1 
= . 

p 

So we have shown that the expected hour when the main computer fails is 1/p. For example, if 
the computer has a 1% chance of failing every hour, then we would expect the first failure to occur 
at the 100th hour, or in about four days. On the bright side, this means that the cosmonaut can 
expect 99 comfortable hours without a computer failure. 



Course Notes 11-12: Random Variables and Expectation 23 

6.2 Waiting for a Baby Girl 

A couple really wants to have a baby girl. There is a 50% chance that each child they have is a 
girl, and the genders of their children are mutually independent. If the couple insists on having 
children until they get a girl, then how many baby boys should they expect to have first? 

This is really a variant of the previous problem. The question, “How many hours until the main 
computer fails?” is mathematically the same as the question, “How many children must the cou
ple have until they get a girl?” In this case, a computer failure corresponds to having a girl, so we 
should set p = 1/2. By the preceding analysis, the couple should expect a baby girl after having 
1/p = 2 children. Since the last of these will be the girl, they should expect just 1 baby boy. 

This strategy may seem to be favoring girls, because the couple keeps trying until they have one. 
However, this effect is counterbalanced by the small possibility of a long sequence of boys. 

Suppose the couple has a 3/4 chance of having a boy instead of 1/2. Then what is the expected 
number of children up to and including the first girl? 

Let R be the number of children up to and including the first girl. Then 

1
E [R] = 

1/4 
= 4. 

That is, the expected number of boys before the first girl is 3. 

7 An Expectation Paradox 

Here is a game that reveals a strange property of expectations. 

First, you think of a probability distribution function on the natural numbers. This distribution 
can be absolutely anything you like. For example, you might choose a uniform distribution on 
1, 2, . . . , 6, giving something like a fair die. Or you might choose a binomial distribution on 
0, 1, . . . , n. You can even give every natural number a non-zero probability, provided, of course, 
that the sum of all probabilities is 1. Next, I pick a random number z according to whatever 
distribution you invent. In the final stage, you pick a random number y according to the same 
distribution. If your number is bigger than mine (y > z), then the game ends. Otherwise, if our 
numbers are equal or mine is bigger (y ≤ z), then you pick again, and keep picking until you get 
a value that is bigger than z. 

What is the expected number of picks that you must make? 

Certainly, you always need at least one pick—and one pick won’t always work—so the expected 
number is greater than one. An answer like 2 or 3 sounds reasonable, though you might suspect 
that the answer depends on the distribution. The real answer is amazing: the expected number of 
picks that you need is always infinite, regardless of the distribution you choose! This makes sense if 
you choose, say, the uniform distribution on 1, 2, . . . , 6. After all, there is a 1/6 chance that I will 
pick 6. In this case, you must pick forever— you can never beat me! 

To calculate the expected number of picks, let’s first consider the probability that you need more 
than one pick. By symmetry there is at least a 50-50 chance that my z is greater than or equal 
to your y, and you will have to pick again. In other words, you need more than one pick with 
probability at least 1/2. 
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What is the probability that you need more than two picks? Here is an erroneous argument. 

False proof. On the first pick, you beat me with probability at most 1/2. On the second pick, you 
beat me with probability at most 1/2. The probability that you fail to beat me on both picks is at 
most 

1 1 1 · = 
2 2 4 

. 

Therefore, the probability that you need more than two picks is at most 1/4. 

The problem with this reasoning is that beating me on your second pick is not independent of 
beating me on your first pick, so multiplying the probabilities of these two events isn’t valid. It’s 
going to be harder to beat me on your second pick: the fact that you are picking a second time 
implies that z beat a randomly chosen y. So this means z is likely to be a harder-than-average 
number to beat on the next pick. 

Here is a correct argument: the probability that you need more than two picks is the same as the 
probability that if I pick z and you independently pick y1 and y2, then z is greater than or equal 
to the maximum of z, y1, and y2. But by symmetry, each of these number choices is as likely as 
any of the others to equal their maximum. So the probability that any one of them is equal to their 
maximum is at least 1/3—it will actually be even larger than 1/3 because of the possibility of ties 
for the maximum. So in particular, the probabilty that z is the maximum, and hence that you need 
more than two picks, is at least 1/3. 

Similarly, we can see that the probability that you need more than i picks is at least 1/(i + 1)—just 
replace “2” by “i” and “3” by “i + 1” in the previous argument for more than two picks. So if we 
let T be the random variable equal to the number of picks you need to beat me, then 

1
Pr {T > i} ≥ 

i + 1 
. (15) 

This argument also shows your chance of needing more picks will be even larger when there are 
ties. So you should choose a distribution such�that ties are very rare. For example, you might 
choose the uniform distribution on 1, . . . , 10100 . In this case, the probability that you need more 
than i picks to beat me is very close to 1/(i + 1) for reasonable i. For example, the probability 
that you need more than 99 picks is almost exactly 1%. This may sound very promising to you; 
intuitively, you might expect to win within a reasonable number of picks on average. But now 
we can verify the claim that, contrary to intuition, the expected number of picks that you need in 
order to beat me is infinite. The proof is simple: 

Proof. 

∞ 

E [T ] = Pr {T > i} (Thm. 6.1) 
i=0 
∞� 1 ≥ 

i + 1 
(by (15)) 

i=0 

= ∞. (sum of Harmonic series) 
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This phenomenon can cause all sorts of confusion. For example, suppose we have a commu
nication network. Assume that a packet has a 1/i chance of being delayed by i or more steps. 
This sounds good; there is only a 1% chance of being delayed by 100 or more steps. But, by the 
argument above, the expected delay for a packet is actually infinite! 

8 Linearity of Expectation 

8.1 Expectation of a Sum 

Expected values obey a simple, very helpful rule called Linearity of Expectation. Its simplest form 
says that the expected value of a sum of random variables is the sum of the expected values of the 
variables. 

Theorem 8.1. For any random variables R1 and R2, 

E [R1 + R2] = E [R1] + E [R2] . 

Proof. Let T ::= R1 + R2. The proof follows straightforwardly by rearranging terms using Defini
tion 5.1 of E [T ]. 

E [R1 + R2] ::= E [T ] 

T (s) · Pr {s} (Def. 5.1) 
s∈S 

::=


(R1(s) + R2(s)) · Pr {s} (Def. of T ) 
s∈S 

=


R1(s) Pr {s} + 
s∈S 

R2(s) Pr {s} (rearanging terms) 
s∈S 

=


= E [R1] + E [R2] . (Def. 5.1) 

Similarly, we have 

Lemma 8.2. For any random variable, R, and constant, a ∈ R, 

E [aR] = a E [R] . 

The proof follows easily from the definition of expectation, and we omit it. 

Combining Theorem 8.1 and Lemma 8.2, we conclude 

Theorem 8.3. [Linearity of Expectation] 

E [a1R1 + a2R2] = a1 E [R1] + a2 E [R2] 

for all random variables R1, R2 and constants a1, a2 ∈ R. 
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In other words, expectation is a linear function. The same rule holds for more than two random 
variables: 

Corollary 8.4. For any random variables R1, . . . , Rk , and constants a1, . . . , ak ∈ R, 

E

k 

i=1 

aiRi =

k 

i=1 

ai E [Ri] . 

Corollary 8.4 follows from Theorem 8.3 by a routine induction on k which we omit. 

The great thing about linearity of expectation is that no independence is required. This is really useful, 
because dealing with independence is a pain, and we often need to work with random variables 
that are not independent. 

8.2 Expected Value of Two Dice 

What is the expected value of the sum of two fair dice? 

Let the random variable R1 be the number on the first die, and let R2 be the number on the second 
die. We observed earlier that the expected value of one die is 3.5. We can find the expected value 
of the sum using linearity of expectation: 

E [R1 + R2] = E [R1] + E [R2] = 3.5 + 3.5 = 7. 

Notice that we did not have to assume that the two dice were independent. The expected sum 
of two dice is 7, even if they are glued together! (This is provided that gluing does not change 
weights to make the individual dice unfair.) 

Proving that the expected sum is 7 with a tree diagram would be hard; there are 36 cases. And if 
we did not assume that the dice were independent, the job would be a nightmare! 

8.3 The Hat-Check Problem 

There is a dinner party where N men check their hats. The hats are mixed up during dinner, so 
that afterward each man receives a random hat. In particular, each man gets his own hat with 
probability 1/N . What is the expected number of men who get their own hat? 

Without linearity of expectation, this would be a very difficult question to answer. We might try 
the following. Let the random variable R be the number of men that get their own hat. We want 
to compute E [R]. By the definition of expectation, we have: 

E [R] =

N 

k · Pr {R = k} . 
k=0 

Now we are in trouble, because evaluating Pr {R = k} is a mess and we then need to substitute 
this mess into a summation. Furthermore, to have any hope, we would need to fix the probability 
of each permutation of the hats. For example, we might assume that all permutations of hats are 
equally likely. 
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Now let’s try to use linearity of expectation. As before, let the random variable R be the number of 
men that get their own hat. The trick is to express R as a sum of indicator variables. In particular, 
let Ri be an indicator for the event that the ith man gets his own hat. That is, Ri = 1 is the event 
that he gets his own hat, and Ri = 0 is the event that he gets the wrong hat. The number of men 
that get their own hat is the sum of these indicators: 

R = R1 + R2 + · · · + RN . 

These indicator variables are not mutually independent. For example, if N − 1 men all get their 
own hats, then the last man is certain to receive his own hat. So RN is not independent of the 
other indicator variables. But, since we plan to use linearity of expectation, we don’t care whether 
the indicator variables are independent, because no matter what, we can take the expected value 
of both sides of the equation above and apply linearity of expectation: 

E [R] = E [R1 + R2 + · · · + RN ] = E [R1] + E [R2] + · · · + E [RN ] . 

Now by Lemma 5.3, the expected value of an indicator variable is always the probability that the 
indicator is 1. In this case, the quantity Pr {Ri = 1} is the probability that the ith man gets his own 
hat, which is just 1/N . We can now compute the expected number of men that get their own hat: 

E [R] = E [R1] + E [R2] + · · · + E [RN ] 

=

1 

N 
+


1 

N 
+ · · · +


1 

N 
= 1.


We should expect exactly one man to get the right hat! 

Notice that we did not assume that all permutations of hats are equally likely or even that all 
permutations are possible. We only needed to know that each man received his own hat with 
probability 1/N . This makes our solution very general, as the next example shows. 

8.4 The Chinese Appetizer Problem 

There are N people at a circular table in a Chinese restaurant. On the table, there are N different 
appetizers arranged on a big Lazy Susan. Each person starts munching on the appetizer directly 
in front of them. Then someone spins the Lazy Susan so that everyone is faced with a random 
appetizer. What is the expected number of people that end up with the appetizer that they had 
originally? 

This is just a special case of the hat-check problem, with appetizers in place of hats. In the hat 
check problem, we assumed only that each man received his own hat with probability 1/N ; we 
made no assumptions about how the hats could be permuted. This problem is a special case, 
because we happen to know that appetizers are cyclically shifted relative to their initial position. 
(We assume that each cyclic shift is equally likely.) Our previous analysis still holds; the expected 
number of people that get their original appetizer is one. 

Of course the event that exactly one person gets his original appetizer never happens: either 
everyone does or no one does. This is another example of the important point that the “expected 
value” is not the same as “the value we expect,” since the expected value may never occur! 



� 

� 

� � � � � 

� 

� � � � � 

28 Course Notes 11-12: Random Variables and Expectation 

8.5 Expected Number of Events that Occur 

We can generalize the hat-check and appetizer problems even further. Suppose that we have a 
collection of events in a sample space. What is the expected number of events that occur? For 
example, Ai might be the event that the ith man receives his own hat. The number of events 
that occur is then the number of men that receive their own hat. Linearity of expectation gives a 
general solution to this problem: 

Theorem 8.5. Given any collection of events A1, A2, . . . , AN , the expected number of these events that 
occur is 

N 

Pr {Ai} . 
i=1 

The theorem says that the expected number of events that occur is the sum the probabilities of 
the events. For example, in the hat-check problem the probability of the event that the ith man 
receives his hat is 1/N . Since there are N such events, the theorem says that the expected number 
of men that receive their hat is N (1/N ) = 1. This matches our earlier result. No independence 
assumptions are needed. 

The proof follows immediately from Lemma 5.3 and the fact that R is the sum of the indicator 
variables for the Ai. That is, 

R = IAi , 
i 

and so 

E [R] = E IAi = E [IAi ] = Pr {Ai} . 
i i i 

8.6 Expectation of a Binomial Distribution 

Suppose that we independently flip n biased coins, each with probability p of coming up heads. 
What is the expected number that come up heads? 

Let Hn,p be the number of heads after the flips. Then Hn,p has the binomial distribution with 
parameters n and p. Now let Ik be the indicator for the kth coin coming up heads. By Lemma 5.3, 
we have 

E [Ik ] = p. 

But 
n 

Hn,p = Ik , 
k=1 

so by linearity 
n n n 

E [Hn,p] = E Ik = E [Ik ] = p = pn. 
k=1 k=1 k=1 

That is, the expectation of a n, p-binomially distributed variable is pn.
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9 Conditional Expectation 

Just like event probabilities, expectations can be conditioned on some event.


Definition 9.1. We define conditional expectation, E [R | A], of a random variable, R, given event, A:


E [R | A] ::= r · Pr {R = r | A} . 
r 

In other words, it is the expected value of the variable R once we skew the distribution of R to be 
conditioned on event A. 

Example 9.2. Let D be the outcome of a roll of a random fair die. What is E [D | D ≥ 4]? 

6 6 

i · Pr {D = i | D ≥ 4} = i · 1/3 = 5 
i=1 i=4 

Since E [R | A] is just an expectation over a different probability measure, we know that the rules

for expectation will extend to conditional expectation. For example, conditional expectation will

also be linear


Theorem 9.3.


E [a1R1 + a2R2 | A] = a1 E [R1 | A] + a2 E [R2 | A] . 

A real benefit of conditional expectation is the way it lets us divide complicated expectation cal
culations into simpler cases. 

Theorem 9.4. [Law of Total Expectation] If the sample space is the disjoint union of events A1, A2, · · · , 
then 

E [R] = E [R | Ai] Pr {Ai} . 
i 

Proof. 

E [R] = r · Pr {R = r}
r 

= r · Pr {R = r | Ai} Pr {Ai}
r i 

= r · Pr {R = r | Ai} Pr {Ai}
r i 

= r · Pr {R = r | Ai} Pr {Ai}
i r 

= Pr {Ai} r · Pr {R = r | Ai}
i r 

= Pr {Ai} E [R | Ai] 
i 

(Def. 5.2)


(Total Probability)


(distribute constant r)


(exchange order of summation)


(factor constant Pr {Ai})


(Def. 9.1).
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Example 9.5. Half the people in the world are male, half female. The expected height of a randomly 
chosen male is 5�11�� , while the expected height of a randomly chosen female is 5�5�� . What is the 
expected height of a randomly chosen individual? 

Let H (P ) be the height of the random person P . The events M =“P is male” and F =“P is 
female” are a partition of the sample space (at least for the moment—though with modern science 
you never know). Then 

E [H] = E [H | M ] Pr {M } + E [H | F ] Pr {F }
1 1 

= 5�11�� · 
2 

+ 5�5�� · 
2 

= 5�8�� 

We will see in the following sections that the Law of Total Expectation has much more power than 
one might think. 

10 The Expected Value of a Product 

10.1 The Product of Independent Expectations 

We have determined that the expectation of a sum is the sum of the expectations. The same is not 
always true for products: in general, the expectation of a product need not equal the product of 
the expectations. But it is true in an important special case, namely, when the random variables 
are independent. 

Theorem 10.1. For any two independent random variables, R1 and R2, 

E [R1 · R2] = E [R1] · E [R2] . 

Proof. We apply the Law of Total Expectation by conditioning on the value of R1. 

E [R1 · R2] = E [R1 · R2 | R1 = r] · Pr {R1 = r} (Def. 9.1) 
r∈range(R1) 

= E [r · R2 | R1 = r] · Pr {R1 = r}
r 

= r · E [R2 | R1 = r] · Pr {R1 = r} (Thm 9.3) 
r 

= r · E [R2] · Pr {R1 = r} (R2 independent of R1) 
r 

= E [R2] r · Pr {R1 = r} (factor out constant E [R2]) 
r 

= E [R2] · E [R1] . (Def. 5.2) 

Theorem 10.1 extends to a collection of mutually independent variables. 



� � � � 

� � 
� � 

� 

Course Notes 11-12: Random Variables and Expectation 31 

Corollary 10.2. If random variables R1, R2, . . . , Rk are mutually independent, then 

k k 

E Ri = E [Ri] . 
i=1 i=1 

We omit the simple proof by induction on k. 

10.2 The Product of Two Dice 

Suppose we throw two independent, fair dice and multiply the numbers that come up. What is the 
expected value of this product? 

Let random variables R1 and R2 be the numbers shown on the two dice. We can compute the 
expected value of the product as follows: 

E [R1 · R2] = E [R1] · E [R2] = 3.5 · 3.5 = 12.25. 

Here the first equality holds by Theorem 10.1 because the dice are independent. 

Now suppose that the two dice are not independent; in fact, assume that the second die is always 
the same as the first. In this case, the product of expectations will not equal the expectation of the 
product. 

To verify this, let random variables R1 and R2 be the numbers shown on the two dice. We can 
compute the expected value of the product without Theorem 10.1 as follows: 

E [R1 · R2] = E R2 (R2 = R1)1 

6 

= i2 · Pr R2 = i2
� 

(Def. 5.2)1 
i=1 

6 

= i2 · Pr {R1 = i}
i=1 

12 22 32 42 52 62 

=
6

+
6

+
6

+
6

+
6

+
6 

= 15 
1 
6 

�= 12 
1 
4 

= E [R1] · E [R2] . ((10.2)) 

11 Expectation of a Quotient 

11.1 A RISC Paradox 

The following data is taken from a paper by some famous professors. They wanted to show that 
programs on a RISC processor are generally shorter than programs on a CISC processor. For 
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this purpose, they applied a RISC compiler and then a CISC compiler to some benchmark source 
programs and made a table of compiled program lengths. 

Benchmark RISC CISC CISC/RISC 
E-string search 150 120 0.8 
F-bit test 120 180 1.5 
Ackerman 150 300 2.0 
Rec 2-sort 2800 1400 0.5 
Average 1.2 

Each row contains the data for one benchmark. The numbers in the second and third columns are 
program lengths for each type of compiler. The fourth column contains the ratio of the CISC pro-
gram length to the RISC program length. Averaging this ratio over all benchmarks gives the value 
1.2 in the lower right. The authors conclude that “CISC programs are 20% longer on average”. 

However, some critics of their paper took the same data and argued this way: redo the final 
column, taking the other ratio, RISC/CISC instead of CISC/RISC. 

Benchmark RISC CISC RISC/CISC 
E-string search 150 120 1.25 
F-bit test 120 180 0.67 
Ackerman 150 300 0.5 
Rec 2-sort 2800 1400 2.0 
Average 1.1 

From this table, we would conclude that RISC programs are 10% longer than CISC programs on 
average! We are using the same reasoning as in the paper, so this conclusion is equally justifiable— 
yet the result is opposite! What is going on? 

11.2 A Probabilistic Interpretation 

To resolve these contradictory conclusions, we can model the RISC vs. CISC debate with the ma
chinery of probability theory. 

Let the sample space be the set of benchmark programs. Let the random variable R be the length 
of the compiled RISC program, and let the random variable C be the length of the compiled CISC 
program. We would like to compare the average length, E [R], of a RISC program to the average 
length, E [C], of a CISC program. 

To compare average program lengths, we must assign a probability to each sample point; in effect, 
this assigns a “weight” to each benchmark. One might like to weigh benchmarks based on how 
frequently similar programs arise in practice. Lacking such data, however, we will assign all 
benchmarks equal weight; that is, our sample space is uniform. 

In terms of our probability model, the paper computes C/R for each sample point, and then av
erages to obtain E [C/R] = 1.2. This much is correct. The authors then conclude that “CISC 
programs are 20% longer on average”; that is, they conclude that E [C] = 1.2 E [R]. 

Similarly, the critics calculation correctly showed that E [R/C] = 1.1. They then concluded that 
E [R] = 1.1 E [C], that is, a RISC program is 10% longer than a CISC program on average. 

These arguments make a natural assumption, namely, that 
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False Claim 11.1. If S and T are independent random variables with T > 0, then 

E	
S 

= 
E [S] 

T E [T ] 
. 

In other words False Claim 11.1 simply generalizes the rule for expectation of a product to a rule 
for the expectation of a quotient. But the rule for requires independence, and we surely don’t 
expect C and R to be independent: large source programs will lead to large compiled programs, 
so when the RISC program is large, so the CISC would be too. 

However, we can easily compensate for this kind of dependence: we should compare the lengths 
of the programs relative to the size of the source code. While the lengths of C and R are dependent, 
it’s more plausible that their relative lengths will be independent. So we really want to divide the 
second and third entries in each row of the table by a “normalizing factor” equal to the length of 
the benchmark program in the first entry of the row. 

But note that normalizing this way will have no effect on the fourth column! That’s because the 
normalizing factors applied to the second and and third entries of the rows will cancel. So the inde
pendence hypothesis of False Claim 11.1 may be justified, in which case the authors’ conclusions 
would be justified. But then, so would the contradictory conclusions of the critics. Something 
must be wrong! Maybe it’s False Claim 11.1 (duh!), so let’s try and prove it. 

False proof. 

S 1
E = E S · 

T T � 
1 
� 

= E [S] · E (independence of S and T ) (16)
T 

1 
= E [S] · 

E [T ] 
. (17) 

E [S]
= 

E [T ] 
. 

Note that line (16) uses the fact that if S and T are independent, then so are S and 1/T . This 
holds because functions of independent random variables yield independent random variables, 
as shown in Spring ’02 Class Problems 10-1, problem 4. 

But this proof is bogus! The bug is in line (17), which assumes 

False Theorem 11.2. � 
1 
� 

1
E 

T 
= 

E [T ] 
. 

Here is a counterexample:
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Example. Suppose T = 1 with probability 1/2 and T = 2 with probability 1/2. Then 

1 1

=


E [T ] 1 · 1 2
2 + 2 · 1


2

=


3

3
�=
4

1 1 1 1


=

1 
· 
2

+
2 
· 
2
� 

1 
�


= E . 
T 

The two quantities are not equal, so False Claim 11.2 really is false. 

Unfortunately, the fact that Claim 11.1 and 11.2 are false does not mean that they are never used! 

11.3 The Proper Quotient 

We can compute E [R] and E [C] as follows: 

E [R] = i · Pr {R = i} 
i∈Range(R) 

150 120 150 2800

= + + +


4 4 4 4

= 805


E [C] = i · Pr {C = i} 
i∈Range(C) 

120 180 300 1400

= + + +


4 4 4 4

= 500


Now since E [R] / E [C] = 1.61, we conclude that the average RISC program is 61% longer than 
the average CISC program. This is a third answer, completely different from the other two! Fur
thermore, this answer makes RISC look really bad in terms of code length. This one is the correct 
conclusion, under our assumption that the benchmarks deserve equal weight. Neither of the ear
lier results were correct—not surprising since both were based on the same false Claim. 

11.4 A Simpler Example [Optional] 

[Optional] 

The source of the problem is clearer in the following, simpler example. Suppose the data were as follows. 

Benchmark Processor A Processor B B/A A/B 
Problem 1 2 1 1/2 2

Problem 2 1 2 2 1/2

Average 1.25 1.25 
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Now the data for the processors A and B is exactly symmetric; the two processors are equivalent. Yet, from the third 
column we would conclude that Processor B programs are 25% longer on average, and from the fourth column we 
would conclude that Processor A programs are 25% longer on average. Both conclusions are obviously wrong. 

The moral is that one must be very careful in summarizing data, we must not take an average of ratios blindly! 

12 Infinite Linearity of Expectation 

We know that expectation is linear over finite sums. It’s useful to extend this result to infinite 
summations. This works as long as we avoid sums whose values may depend on the order of 
summation. 

12.1 Convergence Conditions for Infinite Linearity 

Theorem 12.1. [Linearity of Expectation] Let R0, R1, . . . , be random variables such that 
∞ 

E [|Ri|] 
i=0 

converges. Then 
∞ ∞ 

E Ri = E [Ri] . 
i=0 i=0 �∞Proof. Let T ::= i=0 Ri. 

We leave it to the reader to verify that, under the given convergence hypothesis, all the sums in 
the following derivation are absolutely convergent, which justifies rearranging them as follows: 

∞ ∞ 

E [Ri] = Ri(s) · Pr {s} (Def. 5.1) 
i=0 i=0 s∈S 

∞ 

= Ri(s) · Pr {s} (exchanging order of summation) 
s∈S i=0 

∞ 

= Ri(s) · Pr {s} (factoring out Pr {s}) 
s∈S i=0 

= T (s) · Pr {s} (Def. of T ) 
s∈S 

= E [T ] (Def. 5.1) 
∞ 

= E Ri . (Def. of T ). 
i=0 

Note that the finite linearity of expectation we established in Corollary 8.4 follows as a special 
case of Theorem 12.1: since E [Ri] is finite, so is E [|Ri|], and therefore so is their sum for 0 ≤ i ≤ n. 
Hence the convergence hypothesis of Theorem 12.1 is trivially satisfied if there are only finitely 
many Ri’s. 
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12.2 A Paradox 

One of the simplest casino bets is on “red” or “black” at the roulette table. In each play at roulette, 
a small ball is set spinning around a roulette wheel until it lands in a red, black, or green colored 
slot. The payoff for a bet on red or black matches the bet; for example, if you bet $10 on red and 
the ball lands in a red slot, you get back your original $10 bet plus another matching $10. 

In the US, a roulette wheel has 2 green slots among 18 black and 18 red slots, so the probability of 
red is p ::= 18/38 ≈ 0.473. In Europe, where roulette wheels have only 1 green slot, the odds for 
red are a little better —that is, p = 18/37 ≈ 0.486—but still less than even. To make the game fair, 
we might agree to ignore green, so that p = 1/2. 

There is a notorious gambling strategy which seems to guarantee a profit at roulette: bet $10 on 
red, and keep doubling the bet until a red comes up. This strategy implies that a player will leave 
the game as a net winner of $10 as soon as the red first appears. Of course the player may need an 
awfully large bankroll to avoid going bankrupt before red shows up—but we know that the mean 
time until a red occurs is 1/p, so it seems possible that a moderate bankroll might actually work 
out. (In this setting, a “win” on red corresponds to a “failure” in a mean-time-to-failure situation.) 

Suppose we have the good fortune to gamble against a fair roulette wheel. In this case, our ex
pected win on any spin is zero, since at the ith spin we are equally likely to win or lose 10 · 2i−1 

dollars. So our expected win after any finite number of spins remains zero, and therefore our ex
pected win using this gambling strategy is zero. This is just what we should have anticipated in a 
fair game. 

But wait a minute. As long as there is a fixed, positive probability of red appearing on each spin 
of the wheel—even if the wheel is unfair—it’s certain that red will eventually come up. So with 
probability one, we leave the casino having won $10, and our expected dollar win is obviously 
$10, not zero! 

Something’s wrong here. What? 

12.3 Solution to the Paradox 

The expected amount won is indeed $10. 

The argument claiming the expectation is zero is flawed by an invalid use of linearity of expecta
tion for an infinite sum. To pinpoint this flaw, let’s first make the sample space explicit: a sample 
point is a sequence BnR representing a run of n ≥ 0 black spins terminated by a red spin. Since 
the wheel is fair, the probability of BnR is 2−(n+1). 

Let Ci be the number of dollars won on the ith spin. So Ci = 10 · 2i−1 when red comes up for 
the first time on the ith spin, that is, at precisely one sample point, namely Bi−1R. Similarly, 
Ci = −10 · 2i−1 when the first red spin comes up after the ith spin, namely, at the sample points 
BnR for n ≥ i. Finally, we will define Ci by convention to be zero at sample points in which the 
session ends before the ith spin, that is, at points BnR for n < i − 1. 

The dollar amount won in any gambling session is the value of the sum 
�∞ 

i=1 Ci. At any sample 
point BnR, the value of this sum is 

10 · −(1 + 2 + 22 + · · · + 2n−1) + 10 · 2n = 10, 
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which trivially implies that its expectation is 10 as well. That is, the amount we are certain to leave 
the casino with, as well as expectation of the amount we win, is $10. 

Moreover, our reasoning that E [Ci] = 0 is sound, so 

∞ ∞ 

E [Ci] = 0 = 0. 
i=1 i=1 

The flaw in our argument is the claim that, since the expectation at each spin was zero, therefore 
the final expectation would also be zero. Formally, this corresponds to concluding that 

E [amount won] = E

∞ 

i=1 

Ci =

∞ 

i=1 

E [Ci] = 0. 

The flaw lies exactly in the second equality. This is a case where linearity of expectation fails to 
hold—even though both 

�∞ 
i=1 Ci] are finite—because the convergence hypothi=1 E [Ci] and E [ 

�∞ 

esis needed for linearity is false. Namely, the sum 

∞ 

E [|Ci|] 
i=1 

does not converge. In fact, the expected value of |Ci| is 10 because |Ci| = 10 · 2i with probability 
2−i and otherwise is zero, so this sum rapidly approaches infinity. 

Probability theory truly leads to this apparently paradoxical conclusion: a game allowing an 
unbounded—even though always finite—number of “fair” moves may not be fair in the end. 
In fact, our reasoning leads to an even more startling conclusion: even against an unfair wheel, as 
long as there is some fixed positive probability of red on each spin, we are certain to win $10! 

This is clearly a case where naive intuition is unreliable: we don’t expect to beat a fair game, and 
we do expect to lose when the odds are against us. Nevertheless, the “paradox” that in fact we 
always win by bet-doubling cannot be denied. 

But remember that from the start we chose to assume that no one goes bankrupt while executing 
our bet-doubling strategy. This assumption is crucial, because the expected loss while waiting for 
the strategy to produce its ten dollar profit is actually infinite! So it’s not surprising, after all, that 
we arrived at an apparently paradoxical conclusion from an unrealistic assumption. 

This example also serves a warning that in making use of infinite linearity of expectation, the 
convergence hypothesis which justifies it had better be checked. 

13 Wald’s Theorem 

13.1 Random Length Sums 

Wald’s Theorem concerns the expected sum of a random number of random variables. For exam
ple, suppose that I flip a coin. If I get heads, then I roll two dice. If I get tails, then I roll three dice. 
What is the expected sum of the dice that I roll? Wald’s Theorem supplies a simple answer: the 



� 

� 

38 Course Notes 11-12: Random Variables and Expectation 

average number of dice I roll is 2 1/2, and the average value of a single die roll is (1+2+ . . . +6)/6 
= 3 1/2, so the expected sum is (2 1/2)(3 1/2) = 8 3/4. 

In the previous example, we are summing up only two or three values. In the next example, there 
is no bound on how many values we sum up: 

Example 13.1. Repeatedly roll a die until it shows 6. What is the expected sum of the numbers 
shown in this process? 

We can think of each die roll as a random variable: for every positive integer i, let Xi be the 
outcomes of the ith roll. For definiteness, say Xi = 0 if we roll a 6 in fewer than i rolls. So each 
Xi is a random variable taking values 0,1, . . . ,6. Define Q = min {i | Xi = 6}. So Q is another 
random variable whose possible values are all positive integers. 

The random variable whose expectation we want to calculate is the sum 

X1 + X2 + · · · + XQ = 
Q 

i=1 

Xi. 

Now we know the expected value of each Xi is 3.5, and we also know the expected number of 
rolls to roll a 6 is 6 (as with the earlier Mir example). Wald’s theorem allows us to conclude that 
the expected sum is 6 · 3.5 = 21. 

The general situation to which Wald’s Theorem applies is in computing the total expected cost of 
a step-by-step probabilistic process, where the cost of a step and the number of steps to complete 
the process may depend on what happens at each step. 

Suppose the expected cost of each step is the same. Then it’s reasonable to think that the expected 
cost of the process is simply this expected cost of a step, times the expected number of steps. In 
particular, if the cost of the ith step is a random variable, Ci, and Q is the integer-valued positive 
random variable equal to the number of steps to complete the process, then the total cost for 
completing the process is precisely C1 + C2 + · · · + CQ. So we reason that 

E [C1 + C2 + · · · + CQ] = (Expected cost of a step) · E [Q] . 

Actually we don’t care about the cost of steps which are not performed. What we really want to 
say is that if the expected cost of each step is the same, given that the step is performed, then the 
equation above seems reasonable. That is, we only require that E [Ci | Q ≥ i] is the same for all i. 

Theorem 13.2. [Wald] Let C1, C2, . . . , be a sequence of nonnegative random variables, and let Q be a 
positive integer-valued random variable, all with finite expectations. Suppose that 

E [Ci | Q ≥ i] = µ 

for some µ ∈ R and for all i ≥ 1. Then 

E [C1 + C2 + · · · + CQ] = µ E [Q] . 

Proof. Let Ik be the indicator variable for the event [Q ≥ k]. That is, Ik = 1 if the process runs for 
at least k steps, and Ik = 0 if the process finishes in fewer than k steps. So 

C1 + C2 + · · · + CQ = 
∞ 

k=1 

Ck Ik . (18) 
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Since all the variables are nonnegative, all the sums and expectations in the following derivation 
are well-defined, and if any of them is finite, then they all are: 

E [C1 + C2 + · · · + CQ] 
∞ 

= E Ck Ik ((18)) 
k=1 

∞ 

= 
k=1 
∞ 

= 
k=1 
∞ 

= 
k=1 
∞ 

= 
k=1 
∞ 

= 
k=1 
∞ 

= 
k=1 

E [Ck Ik ] (Infinite Linearity Theorem 12.1)


E [Ck Ik | Ik = 1] · Pr {Ik = 1} + E [Ck Ik | Ik = 0] · Pr {Ik = 0} (Total expectation)


E [Ck · 1 | Ik = 1] · Pr {Ik = 1} + E [Ck · 0 | Ik = 0] · Pr {Ik = 0}


E [Ck | Ik = 1] · Pr {Ik = 1} + 0


E [Ck | Q ≥ k] · Pr {Q ≥ k} (Def. of Ck)


µ · Pr {Q ≥ k}


∞ 

= µ · Pr {Q ≥ k} 
k=1 
∞ 

= µ · Pr {Q > k} 
k=0 

= µ · E [Q] . 

(Def. of µ) 

(factoring out constant µ) 

(Q ≥ k + 1 iff Q > k) 

(Theorem 6.1). 

As a simple application of Wald’s Theorem, we can give another proof of the result about mean 
time to failure: 

Corollary 13.3. In a series of independent trials with probability p > 0 of failure at any given trial, the 
expected number of trials until the first failure is 1/p. 

Proof. Define the cost Ci of the ith trial to be zero if it succeeds and one if it fails. Let Q be the time �Qto the first failure. So i=1 Ci = 1. 

Since the trials are independent, E [Ci | Q ≥ i] = p for all i. Now Wald’s Theorem applies: � 
Q � 

1 = E Ci = E [C1] · E [Q] = p · E [Q] , 
i=1 

and so 
1

E [Q] = . 
p 
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13.2 The Paradox Again [Optional] 

[Optional] 

Played on a fair roulette wheel, our bet-doubling strategy is a step-by-step random process, where the expected cost of 
a step and the expected number of steps are both finite. In this case, the expected cost is the expected amount won on 
the step, namely zero, and the expected number of steps is the expected number of spins until red occurs, which we 
know is 1/(1/2) = 2. So applying Wald’s Theorem, 

E [amount won] = E [gain on the first spin] · E [number of spins] = 0 · 2 = 0, 

which is again what we naively would have anticipated in a fair game. 

Of course, we know this isn’t so. The problem this time is that the cost of a step is negative half the time, and we 
have proved Wald’s Theorem only for nonnegative random variables. Indeed, bet-doubling is an example where the 
conclusion of Wald’s Theorem fails to hold for random variables that are not nonnegative. 

14 Building a System 

Wald’s Theorem turns out to be useful in analyzing algorithms and systems. The following prob
lem was incorrectly solved in a well-known 1962 paper, The Architecture of Complexity, by Herbert 
Simon, who later won the Nobel Prize in economics. The paper is one of the regular readings 
in 6.033. 

Suppose that we are trying to build a system with n components. We add one component at 
a time. However, whenever we add a component, there is a probability p that the whole system 
falls apart and we must start over from the beginning. Assume that these collapses occur mutually 
independently. What is the expected number of steps required to finish building the system? 

14.1 The Sample Space 

We can regard the sample points in this experiment as finite strings of S’s and F ’s. An S in the ith 
position indicates that a component is successfully added in the ith step. An F in the ith position 
indicates that the system falls apart in the ith step. For example, in outcome SSFSF . . . we add 
two components, and then the system collapses while we are adding the third. So we start over 
from scratch. We then add one component successfully, but the system collapses again while we 
are adding the second. We start over again, etc. 

Using this notation, the system is completed after we encounter a string of n consecutive S’s. This 
indicates that all n components were added successfully without the system falling apart. For 
example, suppose we are building a system with n = 3 components. In outcome SSFSFFSSS, 
the system is completed successfully after 9 steps, since after 9 steps we have finally encountered 
a string of three consecutive S’s. 
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14.2 Tries 

Define a “try” to be a sequence of steps that starts with a system of zero components and ends 
when the system is completed or collapses. Let Rk be the number of steps in the kth try; Rk ::= 0 
in case the system is completed before the kth try. Also, let Q be the number of tries required 
to complete the system. The number of steps needed to build the system is then T ::= 

�Q 
k=1 Rk . 

For example, if we are building a system with n = 3 components, then we can break outcome 
SSFSFFSSS into tries as shown below: 

S S � �� � F S S� �� F� S F ���� � �� S� 
R1 = 3 R2 = 2 R3 = 1 R4 = 3 
failure failure failure success! 

In the above example, four tries are required to complete the system, so we have Q = 4. The 
number of steps needed to complete the system is: 

T =

k=1 

Rk = R1 + R2 + R3 + R4 = 3 + 2 + 1 + 3 = 9 

14.3 Applying Wald’s Theorem 

Our goal is to determine E [T ], the expected number of steps needed to complete the system, which 
we will do by applying Wald’s Theorem. 

Each Rk is nonnegative, so the first requirement for applying Wald’s Theorem holds. 

Since each try starts in the same way and has the same stopping condition, each of the random 
variables Rk have the same distribution, given that the kth try actually occurs. In particular, the 
expectation of each try has the same value, µ, providing that the try occurs. Of course µ is finite, 
because every try lasts at most n steps. So the second condition of Wald’s Theorem is satisfied, 
namely, there is a constant µ ∈ R such that 

E [Rk | Q ≥ k] = µ, 

for all k ≥ 1. Finally, we must show that that E [Q] is finite. We will do this by actually computing 
it. 

14.4 The Expected Number of Tries 

Let’s compute E [Q], the expected number of tries needed to complete the system. 

First, we will compute the probability that a particular try is successful. A successful try consists of 
n consecutive S’s. The probability of an S in each position is 1−p. The probability of n consecutive 
S’s is therefore (1 − p)n; we can multiply probabilities, since system collapses during a try occur 
mutually independently. 

Now, if a try is successful with probability (1 − p)n , what is the expected number of tries needed 
to succeed? We already encountered this question in another guise. Then we asked the expected 
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number of hours until Mir’s main computer went down, given that it went down with probability 
q in each hour. We found that the expected number of hours until a main computer failure was 
1/q. Here we want the number of tries before the system is completed, given that a try is successful 
with probability (1 − p)n . By the same analysis, the expected number of tries needed to succeed is 
1/(1 − p)n . Therefore, we have: 

1
E [Q] = 

(1 − p)n . (19) 

This also shows that Q is finite, provided p �= 1. 

14.5 The Expected Length of a Try 

Notice that the expected number, µ, of steps in a try, given that the try occurs, simply equals E [R1], 
since the first try always occurs. Using the shortcut from Theorem 6.1 to compute the expectation 
of R1, we can write: 

µ = Pr {R1 > i} = Pr {R1 > i} . 
i=0 i=0 

The second equality holds because a try never lasts for more that n steps, so Pr {R1 > n} = 0. 

Now we must evaluate Pr {R1 > i}, the probability that a try consists of more than i steps. This is 
just the probability that the system does not collapse in the first i steps, which is (1−p)i . Therefore, 
Pr {R1 > i} = (1 − p)i . Substituting this into the equation above and summing the resulting 
geometric series gives the expected number of steps in a try: 

µ = (1 − p)i 

i=0 

1 − (1 − p)n 

= 
1 − (1 − p) 
1 − (1 − p)n 

(20)= 
p 

14.6 The Expected Number of Steps 

Now we can apply Wald’s Theorem and compute the expected number of steps needed to com
plete the system: 

E [T ] =µ E [Q] 
1 − (1 − p)n 

= 
p 

1 − (1 − p)n 

= 
p(1 − p)n 

1 
= 

p(1 − p)n − 

(Wald’ Theorem 13.2.) 
1 · 

(1 − p)n (by (20) and (19)) 

1 
p 



Course Notes 11-12: Random Variables and Expectation 43 

For example, suppose that there is only a 1% chance that the system collapses when we add a 
component (p = 0.01). The expected number of steps to complete a system with n = 10 compo
nents is about 10. For n = 100 components, the number of steps is about 173. But for n = 1000 
components, the number is about 2,316,257. As the number of components increases, the num
ber of steps required increases exponentially! The intuition is that adding, say, 1000 components 
without a single failure is very unlikely; therefore, we need a tremendous number of tries! 

14.7 A Better Way to Build Systems 

The moral of this analysis is that one should build a system in pieces so that all work is not lost in 
a single accident. 

For example, suppose that we break a 1000 components system into 10 modules, each with 10 
submodules, each with 10 components. Assume that when we add a component to a submodule, 
the submodule falls apart with probability p. Similarly, we can add a submodule to a module in 
one step, but with probability p the module falls apart into submodules. (The submodules remain 
intact, however.) Finally, we can add a module into the whole system in one step, but the system 
falls apart into undamaged modules with probability p. 

Altogether, we must build a system of 10 modules, build 10 modules consisting of 10 submodules 
each, and build 100 submodules consisting of 10 components each. This is equivalent to building 
111 systems of 10 components each. The expected time to complete the system is approximately 
111 · 10.57 = 1173 steps. This compares very favorably with the 2.3 million steps required in the 
direct method! 


	Random Variables
	Indicator Random Variables
	Events Defined by a Random Variable
	Probability of Events Defined by a Random Variable
	Conditional Probability
	Independence
	Independence for Two Random Variables
	Proving that Two Random Variables are Not Independent
	A Dice Example
	Mutual Independence


	Probability Density Functions
	Bernoulli Distribution
	Uniform Distribution
	Binomial Distribution

	Examples Involving Probability Distributions
	Uniform Distributions and the Numbers Game
	A Winning Strategy
	Optimality of the Winning Strategy

	Binomial Distribution Examples
	The Space Station Mir
	Leader Election


	The Shape of the Binomial Distribution
	The central term
	The tails
	The Cumulative Distribution Function
	25 Heads in 100 Tosses
	Transmission Across a Noisy Channel


	Expected Value
	Two Equivalent Definitions
	Expected Value of One Die
	Expected Value of an Indicator Variable
	The Median is Not the Mean
	Modified Carnival Dice

	Expectation of Natural Number-valued Variables
	Mean Time to Failure
	Waiting for a Baby Girl

	An Expectation Paradox
	Linearity of Expectation
	Expectation of a Sum
	Expected Value of Two Dice
	The Hat-Check Problem
	The Chinese Appetizer Problem
	Expected Number of Events that Occur
	Expectation of a Binomial Distribution

	Conditional Expectation
	The Expected Value of a Product
	The Product of Independent Expectations
	The Product of Two Dice

	Expectation of a Quotient
	A RISC Paradox
	A Probabilistic Interpretation
	The Proper Quotient
	A Simpler Example [Optional]

	Infinite Linearity of Expectation
	Convergence Conditions for Infinite Linearity
	A Paradox
	Solution to the Paradox

	Wald's Theorem
	Random Length Sums
	The Paradox Again [Optional]

	Building a System
	The Sample Space
	Tries
	Applying Wald's Theorem
	The Expected Number of Tries
	The Expected Length of a Try
	The Expected Number of Steps
	A Better Way to Build Systems


