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Deviation from the Mean


1 What the Mean Means 

We have focused on the expectation of a random variable because it indicates the “average value” 
the random variable will take. But what precisely does this mean? 

We know a random variable may never actually equal its expectation. We also know, for example, 
that if we flip a fair coin 100 times, the chance that we actually flip exactly 50 heads is only about 
8%. In fact, it gets less and less likely as we continue flipping that the number of heads will exactly 
equal the expected number, e.g., the chance of exactly 500 heads in 1000 flips is less than 3%, in 
1,000,000 flips less than 0.1%, . . . . 

But what is true is that the fraction of heads flipped is likely to be close to half of the flips, and the 
more flips, the closer the fraction is likely to be to 1/2. For example, the chance that the fraction of 
heads is within 5% of 1/2 is 

• more than 24% in 10 flips, 

• more than 38% in 100 flips, 

• more than 56% in 200 flips, and 

• more than 89% in 1000 flips. 

These numbers illustrate the single most important phenomenon of probability: the average value 
from repeated experiments is likely to be close to the expected value of one experiment. And it gets 
more likely to be closer as the number of experiments increases. This result was first formulated 
and proved by Jacob D. Bernoulli in his book Ars Conjectandi (The Art of Guessing) published 
posthumously in 1713. In his Introduction, Bernoulli comments that1 

even the stupidest man—by some instinct of nature per se and by no previous instruc­
tion (this is truly amazing)—knows for sure that the more observations . . . that are 
taken, the less the danger will be of straying from the mark. 

But he goes on to argue that this instinct should not be taken for granted: 

Copyright ©  2002, Prof. Albert R. Meyer. 
1These quotes are taken from Grinstead & Snell, Introduction to Probability, American Mathematical Society, p. 310. 
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Something further must be contemplated here which perhaps no one has thought 
about until now. It certainly remains to be inquired whether after the number of ob­
servations has been increased, the probability . . . of obtaining the true ratio . . . finally 
exceeds any given degree of certainty; or whether the problem has, so to speak, its own 
asymptote—that is, whether some degree of certainty is given which one can never ex­
ceed. 

Here’s how to give a technical formulation of the question Bernoulli wants us to contemplate. 
Repeatedly performing some random experiment corresponds to defining n random variables 
equal to the results of n trials of the experiment. That is, we let G1, . . . , Gn be independent random 
variables with the same distribution and the same expectation, µ. Now let An be the average of 
the results, that is, 

An ::= 

� n 
i=1 Gi 

n 
.


How sure we can be that the average value, An, will be close to µ? By letting n grow large enough, 
can we be as certain as we want that the average will be close, or is there is some irreducible 
degree of uncertainty that remains no matter how many trials we perform? More precisely, given 
any positive tolerance, �, how sure can we be that the average, An, will be within the tolerance of 
µ as n grows? In other words, we are asking about the limit 

lim Pr {|An − µ| < �} . 
n→∞ 

Bernuolli asks if we can be sure this limit approaches certainty, that is, equals one, or whether it 
approaches some number slightly less than one that cannot be increased to one no matter how 
many times we repeat the experiment. His answer is that the limit is indeed one. This result is 
now known as the Weak Law of Large Numbers. Bernoulli says of it: 

Therefore, this is the problem which I now set forth and make known after I have 
pondered over it for twenty years. Both its novelty and its very great usefulness, cou­
pled with its just as great difficulty, can exceed in weight and value all the remaining 
chapters of this thesis. 

With the benefit of three centuries of mathematical development since Bernoulli, it will be a lot 
easier for us to resolve Bernoulli’s questions than it originally was for him. 

2 The Weak Law of Large Numbers 

The Weak Law of Large Numbers crystallizes, and confirms, the intuition of Bernoulli’s “stupidest 
man” that the average of a large number of independent trials is more and more likely to be within 
a smaller and smaller tolerance around the expectation as the number of trials grows. 

Theorem 2.1. [Weak Law of Large Numbers] Let G1, . . . , Gn, . . . be independent variables with the same 
distribution and the same expectation, µ. For any � > 0, 

lim 
n→∞ 

Pr

� n 

i=1 Gi 

n 
− µ
� ≤ �
 = 1.
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This Law gives a high-level description of a fundamental probabilistic phenomenon, but as it 
stands it does not give enough information to be of practical use. The main problem is that it 
does not say anything about the rate at which the limit is approached. That is, how big must n 
be to be within a given tolerance of the expected value with a specific desired probability? This 
information is essential in applications. For example: 

•	 Suppose we want to estimate the number of voters who are registered Republicans. Exactly 
how many randomly selected voters should we poll in order to be sure that 99% of the time, 
the average number of Republicans in our poll is within 1/2% of the actual percentage in 
the whole country? 

•	 Suppose we want to estimate the number of fish in a lake. Our procedure will be to catch, 
tag and release 500 fish caught in randomly selected locations in the lake at random times of 
day. Then we wait a few days, and catch another 100 random fish. Suppose we discover that 
10 of the 100 were previously tagged. Assuming that our 500 tagged fish represent the same 
proportion of the whole fish population as the ones in our sample of 100, we would estimate 
that the total fish population was 5000. But how confident can we be of this? Specifically, how 
confident should we be that our estimate of 5000 is within 20% of the actual fish population? 

•	 Suppose we want to estimate the average size of fish in the lake by taking the average of the 
sizes of the 500 in our initial catch. How confident can we be that this average is within 2% 
of the average size of all the fish in the lake? 

In these Notes we will develop three basic results about this topic of deviation from the mean. The 
first result is Markov’s Theorem, which gives a simple but coarse upper bound on the probability 
that the value of the random variable is more than a certain multiple of its mean. Markov’s result 
holds if we know nothing more than the value of the mean of a random variable. As such, it is 
very general, but also is much weaker than results which take more information about the random 
variable into account. 

In many situations, we not only know the mean, but also another numerical quantity called the 
variance of the random variable. Our second basic result is Chebyshev’s Theorem, which combines 
Markov’s Theorem and information about the variance to give more refined bounds. 

The third basic result we call the Pairwise Independent Sampling Theorem. It provides the addi­
tional information about rate of convergence we need to calculate numerical answers to questions 
such as those above. The Sampling Theorem follows from Chebyshev’s Theorem and properties 
of the variance of a sum of independent variables. 

Finally, the Weak Law of Large Numbers will be an easy corollary of the Pairwise Independent 
Sampling Theorem. 

2.1 Markov’s Theorem 

We want to consider the problem of bounding the probability that the value of a random variable 
is far away from the mean. Our first theorem, Markov’s theorem, gives a very rough estimate, 
based only on the value of the mean. 

The idea behind Markov’s Theorem can be explained with a simple example of I.Q. measurment. 
I.Q. was devised so that the average I.Q. measurement would be 100. Now from this fact alone we 
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can conclude that at most 1/2 the population can have an I.Q. of 200 or more, because if more than 
half had an I.Q. of 200, then the average would have to be more than (1/2)200 = 100, contradicting 
the fact that the average is 100. So the probability that a randomly chosen person has an I.Q. of 
200 or more is at most 1/2. Of course this is not a very strong conclusion; in fact no I.Q. of over 
200 has ever been recorded. But by the same logic, we can also conclude that at most 2/3 of the 
population can have an I.Q. of 150 or more. I.Q.’s of over 150 have certainly been recorded, though 
again, a much smaller fraction of the population actually has an I.Q. that high. 

But although these conclusions about I.Q. are weak, they are actually the strongest possible general 
conclusions that can be reached about a random variable using only the fact that its mean is 100. 
For example, if we choose a random variable equal to 200 with probability 1/2, and 0 with prob­
ability 1/2, then its mean is 100, and the probability of a value of 200 or more is really 1/2. So we 
can’t hope to get a upper better bound on the probability of 200 than 1/2. 

Theorem 2.2 (Markov’s Theorem). If R is a nonnegative random variable, then for all x > 0 

E [R]
Pr {R ≥ x} ≤ . 

x 

Proof. We will show that E [R] ≥ x Pr {R ≥ x}. Dividing both sides by x gives the desired result. 

So let Ix be the indicator variable for the event [R ≥ x], and consider the random variable xIx. Note 
that R ≥ xIx, because if R(w) ≥ x then xIx(w) = x · 1 = x, and if R(w) < x then xIx(w) = x · 0 = 0. 
Therefore, 

E [R] ≥ E [xIx] 
= x E [Ix] 
= x Pr {R ≥ x} . 

(R ≥ xIx)

(linearity of expectation)


(E [Ix] = Pr {Ix = 1})


Markov’s Theorem is often expressed in an alternative form, stated below as a corollary. 

Corollary 2.3. If R is a nonnegative random variable, then for all c > 0 

1
Pr {R ≥ c · E [R]} ≤ . 

c 

Proof. In Markov’s Theorem, set x = c · E [R]. This gives: 

E [R] 1
Pr {R ≥ c · E [R]} ≤ 

c · E [R]
= . 

c 

2.1.1 Examples of Markov’s Theorem 

Suppose that N men go to a dinner party and check their hats. At the end of the night, each man 
is given his own hat back with probability 1/N . What is the probability that x or more men get 
the right hat? 
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We can compute an upper bound with Markov’s Theorem. Let the random variable, R, be the 
number of men that get the right hat. In previous notes, we used linearity of expectation to show 
that E [R] = 1. By Markov’s Theorem, the probability that x or more men get the right hat is: 

E [R] 1
Pr {R ≥ x} ≤ = . 

x x 

For example, there is no better than a 20% chance that 5 men get the right hat, regardless of the 
number of people at the dinner party. 

The Chinese Appetizer problem is very similar. In this case, N people are eating Chinese appetiz­
ers arranged on a circular, rotating tray. Someone then spins the tray so that each person receives 
a random appetizer. What is the probability that everyone gets the same appetizer as before? 

There are N equally likely orientations for the tray after it stops spinning. Everyone gets the right 
appetizer in just one of these N orientations. Therefore, the correct answer is 1/N . 

But what probability do we get from Markov’s Theorem? Let the random variable, R, be the num­
ber of people that get the right appetizer. We showed in previous notes that E [R] = 1. Applying 
Markov’s Theorem, we find: 

E [R] 1
Pr {R ≥ N } ≤ 

N 
= 

N
. 

In this case, Markov’s Theorem is tight! 

On the other hand, Markov’s Theorem gives the same 1/N bound for the probability everyone 
gets their hat in the hat check problem. But in reality, the probability of this event is 1/N !. So 
Markov’s Theorem in this case gives probability bounds that are way off. 

2.1.2 Why R Must be Nonnegative 

The proof of Markov’s Theorem requires that the random variable, R, be nonnegative. The fol­
lowing example shows that the theorem is false if this restriction is removed. Let R be -10 with 
probability 1/2 and 10 with probability 1/2. Then we have: 

1 1
E [R] = −10 · 

2 
+ 10 · 

2 
= 0 

Suppose that we now tried to compute Pr {R ≥ 5} using Markov’s Theorem: 

E [R] 0
Pr {R ≥ 5} ≤ 

5 
=

5
= 0. 

This is the wrong answer! Obviously, R is at least 5 with probability 1/2. Remember that Markov’s 
Theorem applies only to nonnegative random variables! 

On the other hand, we can still apply Markov’s Theorem to bound the probability that an arbitrary 
variable like R is 5 more. Namely, given any random variable, R with expectation 0 and values 
≥ −10, we can conclude that Pr {R ≥ 5} ≤ 2/3. 

Proof. Let T ::= R + 10. Now T is a nonnegative random variable with expectation E [R + 10] = 
E [R] + 10 = 10, so Markov’s Theorem applies and tells us that Pr {T ≥ 15} ≤ 10/15 = 2/3. But 
T ≥ 15 iff R ≥ 5, so Pr {R ≥ 5} ≤ 2/3, as claimed. 
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2.1.3 Deviation Below the Mean 

Markov’s Theorem says that a random variable is unlikely to greatly exceed the mean. Corre­
spondingly, there is a theorem that says a random variable is unlikely to be much smaller than its 
mean. 

Theorem 2.4. Let L be a real number and let R be a random variable such that R ≤ L. For all x < L, we 
have: 

L − E [R]
Pr {R ≤ x} ≤ 

L − x
. 

Proof. The event that R ≤ x is the same as the event that L − R ≥ L − x. Therefore: 

Pr {R ≤ x} = Pr {L − R ≥ L − x} 

≤ 
E [L − R] 

. (by Markov’ Theorem) (1)
L − x 

Applying Markov’s Theorem in line (1) is permissible since L−R is a nonnegative random variable 
and L − x > 0. 

For example, suppose that the class average on the 6.042 midterm was 75/100. What fraction of 
the class scored below 50? 

There is not enough information here to answer the question exactly, but Theorem 2.4 gives an 
upper bound. Let R be the score of a random student. Since 100 is the highest possible score, we 
can set L = 100 to meet the condition in the theorem that R ≤ L. Applying Theorem 2.4, we find: 

100 − 75 1
Pr {R ≤ 50} ≤ 

100 − 50 
= 

2 
. 

That is, at most half of the class scored 50 or worse. This makes sense; if more than half of the class 
scored 50 or worse, then the class average could not be 75, even if everyone else scored 100. As 
with Markov’s Theorem, Theorem 2.4 often gives weak results. In fact, based on the data given, 
the entire class could have scored above 50. 

2.1.4 Using Markov To Analyze Non-Random Events [Optional] 

[Optional] 

In the previous examples, we used a theorem about a random variable to conclude facts about non-random data. For 
example, we concluded that if the average score on a test is 75, then at most 1/2 the class scored 50 or worse. There is 
no randomness in this problem, so how can we apply Theorem 2.4 to reach this conclusion? 

The explanation is not difficult. For any set of scores S = {s1 , s2, . . . , sn}, we introduce a random variable, R, such that 

(# of students with score si)Pr {R = si} = 
n 

We then use Theorem 2.4 to conclude that Pr {R ≤ 50} ≤ 1/2. To see why this means (with certainty) that at most 1/2 
of the students scored 50 or less, we observe that 

Pr {R ≤ 50} = Pr {R = si } 
si ≤50 � (# of students with score si )

= 
n 

si ≤50 

1 
= (# of students with score 50 or less). 

n 
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So, if Pr {R ≤ 50} ≤ 1/2, then the number of students with score 50 or less is at most n/2. 

3 Chebyshev’s Theorem 

We have versions of Markov’s Theorem for deviations above and below the mean, but often we 
want bounds that apply in both directions, that is, bounds on the probability that |R − E [R]| is 
large. 

It is a bit messy to use Markov’s inequality directly to bound the probabilty that |R − E [R]| ≥ 
x, since we then would have to compute E [|R − E [R]|]. However, since |R| and hence |R|k are 
nonnegative variables for any R, Markov’s inequality also applies to the event [|R|k ≥ xk ]. But 
this event is equivalent to the event [|R| ≥ x], so we have: 

Corollary 3.1. For any random variable R, any positive integer k, and any x > 0, 

E |R|k 

Pr {|R| ≥ x} ≤ 
xk . 

The special case of this corollary when k = 2 can be applied to bound the random variable, R − 
E [R], that measures R’s deviation from its mean. Namely 

Pr {|R − E [R]| ≥ x} = Pr 
� 
(R − E [R])2 ≥ x 2

� 
≤ 

E (R − 

x2 

E [R])2 

, (2) 

where the inequality (2) follows from Corollary 3.1 applied to the random variable, R − E [R]. So 
we can bound the probability that the random variable R deviates� from its mean by more than x 
by an expression decreasing as 1/x2 multiplied by the constant E (R − E [R])2 . This constant is 
called the variance of R. 

Definition 3.2. The variance, Var [R], of a random variable, R, is: 

Var [R] ::= E (R − E [R])2
� 
. 

So we can restate (2) as 

Theorem 3.3 (Chebyshev). Let R be a random variable, and let x be a positive real number. Then 

Var [R]
Pr {|R − E [R]| ≥ x} ≤ 

x2 . 

The expression E (R − E [R])2 for variance is a bit cryptic; the best approach is to work through 
it from the inside out. The innermost expression, R − E [R], is precisely the deviation of R from 
the mean. Squaring this, we obtain, (R − E [R])2 . This is a random variable that is near 0 when R 
is close to the mean and is a large positive number when R deviates far above or below the mean. 
The variance is just the average of this random variable, E (R − E [R])2 . Therefore, intuitively, 
if R is always close to the mean, then the variance will be small. If R is often far from the mean, 
then the variance will be large. For this reason, variance is useful in studying the probability that 
a random variable deviates far from the mean. 
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3.1 Example: Gambling Games 

The relevance of variance is apparent when we compare the following two gambling games. 

Game A: We win $2 with probability 2/3 and lose $1 with probability 1/3. 

Game B: We win $1002 with probability 2/3 and lose $2001 with probability 1/3. 

Which game is better financially? We have the same probability, 2/3, of winning each game, but 
that does not tell the whole story. What about the expected return for each game? Let random 
variables A and B be the payoffs for the two games. For example, A is 2 with probability 2/3 and 
-1 with probability 1/3. We can compute the expected payoff for each game as follows: 

2 1
E [A] = 2 · 

3 
+ (−1) · 

3 
= 1, 

2 1
E [B] = 1002 · 

3 
+ (−2001) · 

3 
= 1. 

The expected payoff is the same for both games, but they are obviously very different! This dif­
ference is hidden by expected value, but captured by variance. We can compute the Var [A] by 
working “from the inside out” as follows: 

1 with probability 2 
3A − E [A] = −2 with probability 1 
3 

1 with probability 2 
3(A − E [A])2 =

4 with probability 1 
3 

2
E 
� 
(A − E [A])2

� 
= 1 · 

3 
+ 4 · 1 

3 
Var [A] = 2. 

Similarly, we have for Var [B]: 

B − E [B] = 

(B − E [B])2 = 

E (B − E [B])2
� 

= 

Var [B] = 

1001 with probability 2 
3 

−2002 with probability 1 
3 

1, 002, 001 with probability 2 
3 

4, 008, 004 with probability 1 
3 

2 1
1, 002, 001 · 

3 
+ 4, 008, 004 · 

3 
2, 004, 002. 

The variance of Game A is 2 and the variance of Game B is more than two million! Intuitively, 
this means that the payoff in Game A is usually close to the expected value of $1, but the payoff 
in Game B can deviate very far from this expected value. 

High variance is often associated with high risk. For example, in ten rounds of Game A, we expect 
to make $10, but could conceivably lose $10 instead. On the other hand, in ten rounds of game B, 
we also expect to make $10, but could actually lose more than $20,000! 
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4 Properties of Variance 

4.1 Why Variance? 

The definition of variance of R as E
 (R − E [R])2 may seem rather arbitrary. The variance is the

average of the square of the deviation from the mean. For this reason, variance is sometimes called 
the “mean squared deviation.” But why bother squaring? Why not simply compute the average 
deviation from the mean? That is, why not define variance to be E [R − E [R]]? 

The problem with this definition is that the positive and negative deviations from the mean exactly 
cancel. By linearity of expectation, we have: 

E [R − E [R]] = E [R] − E [E [R]] . 

Since E [R] is a constant, its expected value is itself. Therefore 

E [R − E [R]] = E [R] − E [R] = 0. 

By this definition, every random variable has zero variance. That is not useful! Because of the 
square in the conventional definition, both positive and negative deviations from the mean in-
crease the variance; positive and negative deviations do not cancel. 

Of course, we could also prevent positive and negative deviations from cancelling by taking an ab­
solute value. That is, we could define variance to be E [|R − E [R]|]. There is no great reason not to 
use this definition. However, the conventional version of variance has some pleasant mathemati­
cal properties that the absolute value variant does not. For example, for independent random vari­
ables, the variance of a sum is the sum of the variances; that is, Var [R1 + R2] = Var [R1]+ Var [R2]. 
We will prove this fact below. 

4.2 Standard Deviation 

Due to squaring, the variance of a random variable may be very far from a typical deviation from 
the mean. For example, in Game B above, the deviation from the mean is 1001 in one outcome 
and -2002 in the other. But the variance is a whopping 2,004,002. From a dimensional analysis 
viewpoint, the “units” of variance are wrong: if the random variable is in dollars, then the expec­
tation is also in dollars, but the variance is in square dollars. For this reason, people often describe 
random variables using standard deviation instead of variance. 

Definition 4.1. The standard deviation of a random variable R is denoted σR and defined as the 
square root of the variance: 

σR ::= Var [R] =
 E [(R − E [R])2]. 

So the standard deviation is the square root of the mean of the square of the deviation, or the “root 
mean square” for short. It has the same units—dollars in our example—as the original random 
variable and as the mean. Intuitively, it measures the “expected (average) deviation from the 
mean,” since we can think of the square root on the outside as cancelling the square on the inside. 
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mean

0 100stdev

Figure 1: The standard deviation of a distribution says how wide the “main” part of it is. 

Example 4.2. The standard deviation of the payoff in Game B is: 

σB = Var [B] = 2, 004, 002 ≈ 1416. 

The random variable B actually deviates from the mean by either positive 1001 or negative 2002; 
therefore, the standard deviation of 1416 describes the situations reasonably well. 

As can be seen in Figure 1, the standard deviation measures the “width” of the main part of the 
distribution graph. 

4.3 An Alternative Definition of Variance 

There is an equivalent way to define the variance of a random variable that is less intuitive, but is 
often easier to use in calculations and proofs: 

Theorem 4.3. 

Var [R] = E R2
� 
− E2 [R] , 

for any random variable, R. 

Here we use the notation E2 [R] as shorthand for (E [R])2 . 

Remember that E R2 is generally not equal to E2 [R]. We know the expected value of a product 
is the product of the expected values for independent variables, but not in general. And R is not 
independent of itself unless it is constant. 

Proof. Let µ = E [R]. Then 

Var [R] = E (R − E [R])2
� 

(Def. 3.2 of variance) 

= E (R − µ)2
� 

(Def. of µ) 

= E R2 − 2µR + µ 2
� 

= E R2
� 
− 2µ E [R] + µ 2 (linearity of expectation) 

= E R2
� 
− 2µ 2 + µ 2 (definition of µ) 

= E R2
� 
− µ 2 

= E R2
� 
− E2 [R] . (definition of µ) 
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[Optional] 

Theorem 4.3 gives a convenient way to compute the variance of a random variable: find the expected value of the 
square and subtract the square of the expected value. For example, we can compute the variance of the outcome of a 
fair die as follows: � 1 91

E R2� 
= 

6
(12 + 22 + 32 + 42 + 52 + 62) = 

6 
, � �2

1 49
E2 [R] = 3

2 
=

4 
, 

Var [R] = E R2� 
− E2 [R] = 

91 − 
49 

= 
35 

. 
6 4 12 

This result is particularly useful when we want to estimate the variance of a random variable from a sequence x1, x2, . . . , xn, 
of sample values of the variable. 

Definition 4.4. For any sequence of real numbers x1, x2, . . . , xn, define the sample mean, µn, and the sample variance, vn, 
of the sequence to be: � n 

i=1 xi 
µn ::= , 

n� n 
i=1(xi − µn)2 

vn ::= . 
n 

Notice that if we define a random variable, R, which is equally likely to take each of the values in the sequence, that is 
Pr {R = xi} = 1/n for i = 1, . . . , n, then µn = E [R] and vn = Var [R]. So Theorem 4.3 applies to R and lets us conclude 
that � n 2 �� n �2 

vn = i=1 xi − i=1 xi 
. (3) 

n n 

This leads to a simple procedure for computing the sample mean and variance while reading the sequence x1, . . . , xn 

from left to right. Namely, maintain a sum of all numbers seen and also maintain a sum of the squares of all numbers 
2seen. That is, we store two values, starting with the values x1 and x1. Then, as we get to the next number, xi, we add 

2it to the first sum and add its square, xi , to the second sum. After a single pass through the sequence x1, . . . , xn, we 
2wind up with the values of the two sums 

� n
i=1 xi and 

� 
i
n 
=1 xi . Then we just plug these two values into (3) to find the 

sample variance. 

4.3.1 Expectation Squared [Optional] 

[Optional] 

The alternate definition of variance given in Theorem 4.3 has a cute implication: 

Corollary 4.5. If R is a random variable, then E R2 
� 
≥ E2 [R]. 

Proof. We first defined Var [R] as an average of a squared expression, so Var [R] is nonnegative. Then we proved that 
Var [R] = E R2

� 
− E2 [R]. This implies that E R2

� 
− E2 [R] is nonnegative. Therefore, E R2

� 
≥ E2 [R]. 

In words, the expectation of a square is at least the square of the expectation. The two are equal exactly when the 
variance is zero: 

E R2� 
= E2 [R] iff E R2� 

− E2 [R] = 0 iff Var [R] = 0. 
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4.3.2 Zero Variance 

When does a random variable, R, have zero variance? . . . when the random variable never deviates 
from the mean! 

Lemma 4.6. The variance of a random variable, R, is zero if and only if R = E [R] for all outcomes with 
positive probability. 

The final phrase is a technicality; for an outcome with zero probability, R can take on any value 
without affecting the variance. 

Proof. By the definition of variance, Var [R] = 0 is equivalent to the condition E (R − E [R])2 = 0. 

The inner expr�ession, (R − E [R])2 , is always nonnegative because of the square. As a result, 
E (R − E [R])2 = 0 if an only if (R − E [R])2 = 0 for all outcomes with positive probability. Now, 
the conditions (R − E [R])2 = 0 and R = E [R] are also equivalent. Therefore, Var [R] = 0 iff 
R = E [R] for all outcomes with positive probability. 

4.3.3 Dealing with Constants 

The following theorem describes how the variance of a random variable changes when it is scaled 
or shifted by a constant. 

Theorem 4.7. Let R be a random variable, and let a and b be constants. Then 

Var [aR + b] = a 2 Var [R] . (4) 

This theorem makes two points. First, adding a constant b to a random variable does not affect the 
variance. Second, multiplying a random variable by a constant changes the variance by a square 
factor. 

Proof. We will transform the left side of (4) into the right side. The first step is to expand Var [aR + b] 
using the alternate definition of variance. 

Var [aR + b] = E (aR + b)2
� 
− E2 [aR + b] . 

We will work on the first term and then the second term. For the first term, note that by linearity 
of expectation, 

E (aR + b)2
� 

= E a 2R2 + 2abR + b2
� 

= a 2 E R2
� 
+ 2ab E [R] + b2 . (5) 

Similarly for the second term: 

E2 [aR + b] = (a E [R] + b)2 = a 2E2 [R] + 2ab E [R] + b2 . (6) 
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Finally, we substract the expanded second term from the first. 

Var [aR + b] = E (aR + b)2
� 
− E2 [aR + b] 

= a 2 E R2
� 
+ 2ab E [R] + b2 − 

(a 2E2 [R] + 2ab E [R] + b2) 

= a 2 E R2
� 
− a 2E2 [R] 

= a 2(E R2
� 
− E2 [R]) 

= a 2 Var [R] 

(Theorem 4.3) 

(by (5) and (6)) 

(Theorem 4.3) 

A similar rule holds for the standard deviation when a random variable is adjusted by a constant. 
Recall that standard deviation is the square root of variance. Therefore, adding a constant b to 
a random variable does not change the standard deviation. Multiplying a random variable by a 
constant a multiplies the standard deviation by a. So we have 

Corollary 4.8. The standard deviation of aR + b equals a times the standard deviation of R. 

4.4 Variance of a Sum 

Earlier, we claimed that for independent random variables, the variance of a sum is the sum of the 
variances. An independence condition is necessary. If we ignored independence, then we would 
conclude that Var [R + R] = Var [R] + Var [R]. However, by Theorem 4.7, the left side is equal to 
4 Var [R], whereas the right side is 2 Var [R]. This implies that Var [R] = 0, which, by Lemma 4.6, 
holds only if R is constant. 

However, mutual independence is not necessary: pairwise independence will do. This is useful to 
know because there are some important situations involving variables that are pairwise indepen­
dent but not mutually independent. Matching birthdays is an example of this kind, as we shall 
see below. 

Theorem 4.9. [Pairwise Independent Additivity of Variance] If R1, R2, . . . , Rn are pairwise independent 
random variables, then 

Var [R1 + R2 + . . . + Rn] = Var [R1] + Var [R2] + · · · + Var [Rn] . 

Proof. By linearity of expectation, we have �� n �2 
� 

n n 
 

E Ri = E  RiRj  

i=1 i=1 j=1 

n n 

= E [RiRj ] (linearity) 
i=1 j=1 

n 

= E [Ri] E [Rj ] + E Ri 
2 . (pairwise independence) (7) 

1≤i�=j≤n i=1 
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In (7), we use the fact from previous Notes that the expectation of the product of two independent 
variables is the product of their expectations. 

Also, �
n 

� � �� ��2n 

E2 Ri = E Ri 

i=1 i=1 �� �2n

= E [Ri] (linearity) 
i=1 

n n 

= E [Ri] E [Rj ] 
i=1 j=1 

n 

= E [Ri] E [Rj ] + E2 [Ri] . (8) 
1≤i�=j≤n i=1 

So, �� n �� �� n �2 
� �� � 

n 

Var Ri = E Ri − E2 Ri (Theorem 4.3) 
i=1 i=1 i=1 

n 

= E [Ri] E [Rj ] + E Ri 
2 − 

1≤i�=j≤n i=1 

n  E [Ri] E [Rj ] + E2 [Ri] (by (7) and (8)) 
1≤i�=j≤n i=1 

n n 

= E Ri 
2 − E2 [Ri] 

i=1 i=1 
n 

= (E R2 
i − E2 [Ri]) (reordering the sums) 

i=1 
n 

= Var [Ri] . (Theorem 4.3) 
i=1 

4.5 Variance of a Binomial Distribution 

We now have enough tools to find the variance of a binomial distribution. Recall that if a random 
variable, R, has a binomial distribution, then 

n
Pr {R = k} = 

k
p k (1 − p)n−k 

where n and p are parameters such that n ≥ 1 and 0 < p < 1. 
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We can think of R as the sum of n independent Bernoulli variables. For example, we can regard R 
as the number of heads that come up when we toss n independent coins, where each coin comes 
up heads with probability p. Formally, we can write R = R1 + R2 + · · · + Rn where 

1 with probability p,
Ri = 

0 with probability 1 − p. 

Now we can compute the variance of the binomially distributed variable R. 

Var [R] = Var [R1] + Var [R2] + . . . + Var [Rn] (Theorem 4.9) 
= n Var [R1] (Var [Ri] = Var [Rj ]) 

= n(E R2 − E2 [R1]) (Theorem 4.3)1 

= n(E [R1] − E2 [R1]) (R2 = R1)1 

= n(p − p 2). (E [R1] = Pr {R1 = 1} = p) 

This shows that the binomial distribution has variance p(1−p)n and standard deviation 
� 

p(1 − p)n. 
In the special case of an unbiased binomial distribution (p = 1/2), the variance is n/4 and the stan­
dard deviation is 

√ 
n/2. 

5 Applications of Chebyshev’s Theorem 

There is a nice reformulation of Chebyshev’s Theorem in terms of standard deviation. 

Corollary 5.1. Let R be a random variable, and let c be a positive real number. 

1
Pr {|R − E [R]| ≥ cσR} ≤ 

c2 . 

Here we see explicitly how the “likely” values of R are clustered in an O(σR)-sized region around 
E [R], confirming that the standard deviation measures how spread out the distribution of R is 
around its mean. 

Proof. Substituting x = cσR in Chebyshev’s Theorem gives: 

Var [R] σ2 1RPr {|R − E [R]| ≥ cσR} ≤ 
(cσR)2 =

(cσR)2 = 
c2 . 

5.1 I.Q. Example 

Suppose that, in addition to the average I.Q. being 100, we also know the standard deviation of 
I.Q.’s is 10. How rare is an I.Q. of 200 or more? 

Let the random variable, R, be the I.Q. of a random person. So we are supposing that E [R] = 100, 
σR = 10, and R is nonnegative. We want to compute Pr {R ≥ 200}. 
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We have already seen that Markov’s Theorem 2.2 gives a coarse bound, namely, 

1
Pr {R ≥ 200} ≤ 

2 
. 

Now we apply Chebyshev’s Theorem to the same problem: 

Var [R] 102 1
Pr {R ≥ 200} = Pr {|R − 100| ≥ 100} ≤ 

1002 = 
1002 = 

100 
. 

The purpose of the first step is to express the desired probability in the form required by Cheby­
shev’s Theorem; the equality holds because R is nonnegative. Chebyshev’s Theorem then yields 
the inequality. 

So Chebyshev’s Theorem implies that at most one person in a hundred has an I.Q. of 200 or more. 
We have gotten a much tighter bound using the additional information, namely the variance of R, 
than we could get knowing only the expectation. 

5.2 A One-Sided Bound 

Chebyshev’s Theorem gives a “two-sided bound”. That is, it bounds the probability that a random 
variable deviates above or below the mean by some amount. What if we want only a one-sided 
bound? For example, what is the probability that a random variable deviates above the mean by 
some amount? 

This question is often answered incorrectly. The erroneous argument runs as follows. By Cheby­
shev’s Theorem, R deviates above or below the mean by some amount with probability p. There-
fore, R deviates above the mean by this amount with probability p/2, and R deviates below the 
mean by this amount with probability p/2. 

While this argument is correct for a probability distribution function that is symmetric about the 
mean, it is not correct for random variables that are more likely to deviate above the mean than 
below. For example, in the I.Q. question, some people deviate 100 points above the mean; that 
is, there are people with I.Q. greater than 200. However, by assumption everyone has a positive 
I.Q.; no one deviates more than 100 points below the mean. For this reason it turns out we could 
actually improve the bound of Section 5.1 slightly—from 1 in 100 to 1 in 101. In general, there is 
a Chebyshev bound for the one-sided case that slightly improves our two-sided bound, but we 
don’t need to go into it. 

6 Deviation of Repeated Trials 

Using Chebyshev’s Theorem and the facts about variance and expectation, we are finally in a 
position to be show how the average of many trials approaches the mean. 

6.1 Estimation from Repeated Trials 

For example, suppose we want to estimate the fraction of the U.S. voting population who would 
favor Al Gore over George Bush in the year 2004 presidential election. Let p be this unknown 



� 

� 

� 

� � 

� � � 

� 

� � 

Course Notes 13-14: Deviation from the Mean 17 

fraction. Let’s suppose we have some random process—say throwing darts at voter registration 
lists—which will select each voter with equal probability. Now we can define a Bernoulli variable, 
G, by the rule that G = 1 if a random voter most prefers Gore, and G = 0 otherwise. In this case, 
G = G2 , so 

G2
� 

= E [G] = Pr {G = 1} = p,E


and


G2
� 
− E2 [G] = p − p 2 = p(1 − p).Var [G] = E


To estimate p, we take a large number, n, of sample voters and count the fraction who favor Gore. 
We can describe this estimation as taking independent Bernoulli variables G1, G2, . . . , Gn, each 
with the same expectation as G, computing their sum 

Sn ::= 
n 

i=1 

Gi, (9) 

and then using the average, Sn/n, as our estimate of p. 

More generally, we can consider any set of random variables G1, G2, . . . , Gn, with the same mean, 
µ, and likewise use the average, Sn/n, to estimate µ. One of the properties of Sn/n that is critical 
for this purpose is that Sn/n has the same expectation as the Gi’s, namely, 

E

Sn 

n 
= µ, (10)


Proof.


E

Sn 

n 
= E


�� n 
i=1 Gi 

n 
(by def. (9) of Sn) � n 

i=1 E [Gi] 
n 

(linearity of expectation)
=

n 
i=1 µ 
n 

=


nµ
= 

n 
= µ.


Note that the random variables Gi need not be Bernoulli or even independent for (10) to hold, 
because linearity of expectation always holds. 

Now suppose the Gi’s also have the same deviation, σ. The second critical property of Sn/n is that 

Var

Sn 

n 
=


σ2 

n 
. (11)
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This follows as long as the variance of Sn is the sum of the variances of the Gi’s. For example, 
by Theorem 4.9, the variances can be summed if the Gi’s are pairwise independent. Then we 
calculate: 

Var	
Sn = 

n 
1 
2 Var [Sn] (Theorem 4.7) 

n 
n1 � 

= 
n2 Var Gi (def (9) of Sn) 

i=1 
n1 � 

= 
n2 Var [Gi] (variances assumed to add) 

i=1 

1 σ2 

= · nσ2 = . 
n2 n 

This is enough to apply Chebyshev’s Bound and conclude: 

Theorem 6.1. [Pairwise Independent Sampling] Let 

n 

Sn ::= Gi 

i=1 

where G1, . . . , Gn are pairwise independent variables with the same mean, µ, and deviation, σ. Then 

Pr 
��� Sn − µ��� ≥ x ≤ 

1 � σ �2 
. (12) 

n n x 

Proof. 

Pr 
��� Sn − µ��� ≥ x ≤ 

Var [Sn/n] 
. (Chebyshev’s bound, Theorem 3.3) 

n x2 

= 
σ2/n 

(by (11)) 
x2 

1 � σ �2 
= . 

n x 

Theorem 6.1 finally provides a precise statement about how the average of independent samples 
of a random variable approaches the mean. It generalizes to many cases when Sn is the sum of 
independent variables whose mean and deviation are not necessarily all the same, though we shall 
not develop such generalizations here. 

6.2 Birthdays again 

We observed in lecture that the expected number of matching birthday pairs among n people was 
n

2 /365. But how close to this expected value can we expect a typical sample to be? We can apply


the Pairwise Independent Sampling Theorem to answer this question. 
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Now having matching birthdays for different pairs of students are not mutually independent 
events. For example, knowing that Alice and Bob have matching birthdays, and also that Ted 
and Alice have matching birthdays obviously implies that Bob and Ted have matching birthdays. 
On the other hand, knowing that Alice and Bob have matching birthdays tells us nothing about 
whether Alice and Carol have matching birthdays, viz., these two events really are independent. 
We already already observed this phenomenon in Notes 11-12, §4.3.1, for the case of matching 
pairs among three coins. So even though the events that a pair of students have matching birth-
days are not mutually independent, indeed not even three-way independent, they are pairwise 
independent. 

This allows us to apply the Sampling Theorem. Let B1, B2, . . . , Bn be the birthdays of the n people, 
let Ei,j be the indicator variable for the event [Bi = Bj ]. For i �= j, the probability that Bi = Bj is 
1/365, so E [Ei,j ] = 1/365. 

Now let Mn be the number of matching pairs, i.e., 

1≤i<j≤n 

Mn ::= Ei,j . (13) 

So by linearity of expectation 

E [Mn] = E 





  = 
1≤i<j≤n 

E [Ei,j ] = 
n 
2 

1

365 

,

1≤i<j≤n 

Ei,j 

as we noted above. Also, by linearity of variance for pairwise independent variables


Var [Mn] = Var 





1≤i<j≤n 

Ei,j 

  = 
1≤i<j≤n 

Var [Ei,j ] = 
n 
2 

1

365


1
1 − 

365 
.


Now for our 6.042 class of 146 students, we have E [M146] = 29 and Var [M146] = 29(1 − 1/365) < 
29. So by Theorem 6.1, 

29
Pr {|M146 − 29| ≥ x} <

x2 . 

Letting x = 8, we conclude that there is a better than 50% chance that in a class of 146 students, 
the number of pairs of students with the same birthday will be between 21 and 37. In our class, 
we actually found that there were 17 matching pairs and 2 triples, for a total of 23 matching pairs. 

6.3 Size of a Poll 

Theorem 6.1 allows us to calculate poll size. How many people should we poll to get a reliable 
estimate of voters’ preference? 

Suppose, in particular, we want to know within tolerance x ::= 0.02 what fraction of the voters 
favor Gore. By choosing n large enough in Theorem 6.1 that we can reduce the probability that 
our estimate is off by more than x to as close to zero as we please. 
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For example, ninety-five per cent “confidence level” is a standard used in many statistical appli­
cations. So let’s suppose we want our estimate of p to be within the tolerance 95% of the time, that 
is, with probability 0.95. Then we choose n so that (1/n)(σ/x)2 ≤ 1 − 0.95. That is, we want 

n ≥

σ2


(0.02)2(1 − 0.95))

= 

p(1 − p) 
= 50, 000p(1 − p).

0.00002 

Solving for the sample size n in terms of the unknown p that we are trying to estimate in the first 
place may not seem to be making progress, but it’s easy to see that the maximum value of p(1 − p) 
in the interval 0 ≤ p ≤ 1 occurs at p = 1/2. So we conclude that if we sample 

n ≥ 50, 000(1 − 1/2)1/2 = 12, 500 

voters, we can say that 95% of the time, our estimate S12,500/12, 500 will be within 0.02 of the 
fraction of voters who favor Gore. 

Note that this bound on poll size holds regardless of how large the total voting population may 
be—whether we are trying to determine the preferences of a few tens of thousands of voters in a 
small city like Cambridge, or of the tens of millions of voters in a large nation like the U.S., the 
same poll size is adequate. 

6.4 Confidence Levels 

Now suppose a pollster dutifully checks with 12,500 randomly chosen voters and finds that 6,300 
prefer Gore. It’s tempting, but sloppy, to say that this means “With probability 0.95, the fraction, 
p, of voters who prefer Gore is 6300/12, 500 = 0.504 ± 0.02.” 

What’s objectionable about this statement is that it talks about the probability of a real world fact, 
namely the actual value of the fraction p. But p is what it is, and it simply makes no sense to talk 
about the probability that it is something else. For example, suppose p is actually 0.53; then it’s 
nonsense to ask about the probability that it is within 0.02 of 0.504—it simply isn’t. 

A more careful summary of what we have accomplished goes this way: we have described a 
probabilistic procedure for estimating the actual value of the fraction p. The probability that our 
estimation procedure will yield a value within 0.02 of p is 0.95. This is a bit of a mouthful, so spe­
cial phrasing closer to the sloppy language is commonly used. The pollster would describe his 
conclusion by saying that “At the 95% confidence level, the fraction of voters who prefer Gore is 
0.504 ± 0.02.” 

Actually, polling 12,500 voters is excessive. We derived this bound on poll size solely by applying 
Chebyshev’s Theorem to the value of the variance of Sn/n. But in fact we know the exact distribu­
tion of Sn, namely, it has a binomial distribution with parameters n, p. In the next section we do a 
more detailed calculation of probabilities of deviation from the mean specifically for the binomial 
distribution; we can show that the poll size need only be about 1/5 of the size derived from the 
Chebyshev bound. 
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6.5 Better Polling 

Let � be the acceptable error tolerance of our poll. In the previous section we chose � = 0.02. We 
can define δ, the probability that our poll is off by more than � as follows: 

Sn 

n 
< p − �
 + Pr 

Sn 

n 
> p + �
δ ::= Pr


too many in sample

say “Bush”


too many in sample

say “Gore”


= Pr {Sn < (p − �)n} + Pr {Sn > (p + �)n} . 

Since Sn has the binomial distribution with parameters n and p, the two terms in the definition of 
δ can be bounded using the bound (14) on Fn,p from Notes 10: 

Lemma. 

1 − α

1 − α/p


fn,p(αn) (14)Fn,p(αn) ≤ 

for α < p.


To ensure that α < p, we observe that


Pr

Sn 

n 
> p + �
 = Pr


n − Sn 

n 
,
< 1 − p − �


where (n − Sn)/n is the fraction of people polled who say that they prefer Bush, and 1 − p is the 
fraction of all Americans who prefer Bush. This gives 

δ ≤ Fn,p((p − �)n) + Fn,1−p((1 − p − �)n). (15) 

As in the previous section, the bound (15) contains p, the fraction of Americans that favor Gore, 
which is the number we are trying to determine by polling. But as before, the worst case for the 
bound is when p = 1/2, though we shall not prove this. So we get 

δ ≤ F n, 1 
2 
((

1 
2 
− �)n) + F n,1− 1 

2 

1
((1 − 

2 
− �)n) = 2F n, ((

1 
2 
− �)n). (16)1 

2 

Now plugging in � = 0.02 into (16) gives: 

1 − α 
δ ≤ 2F (0.48n) ≤ 2 · 

1 − 2α 
fn,1/2(0.48n)1 

2
n, 

2π · 0.48(1 − 0.48)n
≈ 2 · 13 · 2−n(1−H(0.48))/ 

2−0.00115n 

= 26 · 
1.2523

√ 
n 

.




� 

��� �� �� � � 

22 Course Notes 13-14: Deviation from the Mean 

We want to poll enough people so that δ is less than 0.05. The easiest way is to plug in values for 
n, the number of people polled: 

n = people polled 
upper bound on 

probability poll is wrong 
1000 29.4% 
2000 9.3% 
3000 3.4% 
2500 5.6% 
2750 4.4% 
2616 5.004% 
2617 4.999% 

So polling 2617 people is sufficient to determine public opinion to within 2% with confidence 
of 95%. Again, the remarkable point is that the population of the country has no effect on the 
poll size. Whether there are ten thousand people or a billion in a country, polling 2617 people is 
sufficient! 

Here we got a much better estimate of probable deviation from the mean using the fact that the 
samples were independent—and hence that the sampling distribution was binomial—than in the 
previous section using the Pairwise Independent Sampling Theorem 6.1. This should not be sur­
prising, since the Sampling Theorem is based on Chebyshev’s bound, and we’ve already seen that 
the Chebyshev bound can be much weaker than bounds derived using more information about a 
density function than simply its variance. 

However, there are situations—matching birthdays is a good example—where mutual indepen­
dence of the samples doesn’t hold, but pairwise independence does, and that’s where the Pairwise 
Independent Sampling Theorem becomes our main handle on predicting sample deviations. 

7 Proof of the Weak Law 

An equivalent way to state the conclusion of the Weak Law of Large Numbers, Theorem 2.1, is 
that the probability that the average differs from the expectation by more than any given tolerance 
approaches zero. 

Theorem 7.1. [Weak Law of Large Numbers] Let 

Sn ::= 
n 

i=1 

Gi, 

where G1, . . . , Gn, . . . are pairwise independent variables with the same expectation, µ and standard devi­
ation, σ. For any � > 0, 

lim 
n→∞ 

Pr

Sn 

n 
− µ
� ≥ �
 = 0.
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Proof. Choose x in Theorem 6.1 to be �. Then, given any δ > 0, choose n large enough to make 
(σ/x)2/n < δ. By Theorem 6.1, 

Pr ��� Sn − µ�� ≥ � < δ. 
n 

So the limiting probability must equal zero. 

Notice that this version of the Weak Law is slightly different from the version we first stated in 
Theorem 2.1. Theorem 7.1 requires that the Gi’s have finite variance but Theorem 2.1 only requires 
finite expectation. On the other hand, the original version 2.1 requires mutual independence, 
while Theorem 7.1 requires only pairwise independence. The case when the variance may be 
infinite is not important to us, and we will not try to prove it. 

A weakness of both the Weak Law as well as our Pairwise Independence Sampling Theorem 6.1 is 
that neither provides any information about the way the average value of the observations may be 
expected to oscillate in the course of repeated experiments. In later Notes we will briefly consider 
a Strong Law of Large Numbers which deals with the oscillations. Such oscillations may not be 
important in our example of polling about Gore’s popularity or of birthday matches, but they 
are critical in gambling situations, where large oscillations can bankrupt a player, even though the 
player’s average winnings are assured in the long run. As the famous economist Keynes is alleged 
to have remarked, the problem is that “In the long run, we are all dead.” 

8 Random Walks and Gamblers’ Ruin 

Random Walks nicely model many natural phenomena in which a person, or particle, or pro­
cess takes steps in a randomly chosen sequence of directions. For example in Physics, three-
dimensional random walks are used to model Brownian motion and gas diffusion. In Computer 
Science, the Google search engine uses random walks through the graph of world-wide web links 
to determine the relative importance of websites. In Finance Theory, there is continuing debate 
about the degree to which one-dimensional random walks can explain the moment-to-moment 
or day-to-day fluctuations of market prices. In these Notes we consider 1-dimensional random 
walks: walks along a straight line. Our knowledge of expectation and deviation will make 1-
dimensional walks easy to analyze, but even these simple walks exhibit probabilistic behavior 
that can be astonishing. 

In the Mathematical literature, random walks are for some reason traditionally discussed in the 
context of some social vice. A one-dimensional random walk is often described as the path of a 
drunkard who randomly staggers left or right at each step. In the rest of these Notes, we examine 
one-dimensional random walks using the language of gambling. In this case, a position during 
the walk is a gambler’s cash-on-hand or capital, and steps on the walk are bets whose random 
outcomes increase or decrease his capital. We will be interested in two main questions: 

1. What is the probability that the gambler wins? 

2. How long must the gambler expect to wait for the walk to end? 
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capital
gambler’s

n

T = n + m

time

bet outcomes:
WLLWLWWLLL

Figure 2: This is a graph of the gambler’s capital versus time for one possible sequence of bet outcomes. At 
each time step, the graph goes up with probability p and down with probability 1 − p. The gambler continues 
betting until the graph reaches either 0 or T = n + m. 

In particular, we suppose a gambler starts with n dollars. He makes a sequence of $1 bets. If he 
wins an individual bet, he gets his money back plus another $1. If he loses, he loses the $1. In each 
bet, he wins with probability p > 0 and loses with probability q ::= 1 − p > 0. The gambler plays 
until either he is bankrupt or increases his capital to a goal amount of T dollars. If he reaches his 
goal, then he is called an overall winner, and his profit will be m ::= T − n dollars. If his capital 
reaches zero dollars before reaching his gaol, then we say that he is “ruined” or goes broke. 

The gambler’s situation as he proceeds with his $1 bets is illustrated in Figure 2. The random walk 
has boundaries at 0 and T . If the random walk ever reaches either of these boundary values, then 
it terminates. We want to determine the probability, w, that the walk terminates at boundary T , 
namely, the probability that the gambler is a winner. 

In a fair game, p = q = 1/2. The corresponding random walk is called unbiased. The gambler is 
more likely to win if p > 1/2 and less likely to win if p < 1/2; the corresponding random walks 
are called biased. 

Example 8.1. Suppose that the gambler is flipping a coin, winning $1 on Heads and losing $1 on 
Tails. Also, the gambler’s starting capital is n = 500 dollars, and he wants to make m = 100 
dollars. That is, he plays until he goes broke or reaches a goal of T = n + m = $600. What is the 
probability that he is a winner? We will show that in this case the probability w = 5/6. So his 
chances of winning are really very good, namely, 5 chances out of 6. 

Now suppose instead, that the gambler chooses to play roulette in an American casino, always 
betting $1 on red. A roulette wheel has 18 black numbers, 18 red numbers, and 2 green numbers. 
In this game, the probability of winning a single bet is p = 18/38 ≈ 0.47. It’s the two green 
numbers that slightly bias the bets and give the casino an edge. Still, the bets are almost fair, 
and you might expect that the gambler has a reasonable chance of reaching his goal—the 5/6 
probability of winning in the unbiased game surely gets reduced, but perhaps not too drastically. 
Not so! His odds of winning against the “slightly” unfair roulette wheel are less than 1 in 37,000. If 
that seems surprising, listen to this: no matter how much money the gambler has to start, e.g., $5000, 
$50,000, $5 · 1012 , his odds are still less than 1 in 37,000 of winning a mere 100 dollars! 
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Moral: Don’t play! 

The theory of random walks is filled with such fascinating and counter-intuitive conclusions. 

9 The Probability Space 

Each random-walk game corresponds to a path like the one in Figure 2 that starts at the point 
(n, 0). A winning path never touches the x axis and ends when it first touches the line y = T . 
Likewise, a losing path never touches the line y = T and ends when it first touches the x axis. 

Any length k path can be characterized by the history of wins and losses on individual $1 bets, so 
we use a length k string of W ’s and L’s to model a path, and assign probability pr qk−r to a string 
that contains r W ’s. The outcomes in our sample space will be precisely those string corresponding 
to winning or losing walks. 

What about the infinite walks in which the gambler plays forever, neither reaching his goal nor 
going bankrupt? We saw in an in-class problem that the probability of playing forever is zero, so 
we don’t need to include any such outcomes in our sample space. 

As a sanity check on this definition of the probability space, we should verify that the sum of the 
outcome probabilities is one, but we omit this calculation. 

10 The Probability of Winning 

10.1 The Unbiased Game 

Let’s begin by considering the case of a fair coin, that is, p = 1/2, and determine the probability, 
w, that the gambler wins. We can handle this case by considering the expectation of the random 
variable G equal to the gambler’s dollar gain. That is, G = T − n if the gambler wins, and G = −n 
if the gambler loses, so 

E [G] = w(T − n) − (1 − w)n = wT − n. 

Notice that we’re using the fact that the only outcomes are those in which the gambler wins or 
loses—there are no infinite games—so the probability of losing is 1 − w. 

Now let Gi be the amount the gambler gains on the ith flip: Gi = 1 if the gambler wins the flip, 
Gi = −1 if the gambler loses the flip, and Gi = 0 if the game has ended before the ith flip. Since 
the coin is fair, E [Gi] = 0. 
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The random variable G is the sum of all the Gi’s, so by linearity of expectation2 

∞ 

wT − n = E(G) = E(Gi) = 0, 
i=1 

which proves 

Theorem 10.1. In the unbiased Gambler’s Ruin game with probability p = 1/2 of winning each individual 
bet, with initial capital, n, and goal, T , 

n
Pr {the gambler is a winner} = 

T
. (17) 

Example 10.2. Suppose we have $100 and we start flipping a fair coin, betting $1 with the aim of 
winning $100. Then the probability of reaching the $200 goal is 100/200 = 1/2—the same as the 
probability of going bankrupt. In general, if T = 2n, then the probability of doubling your money 
or losing all your money is the same. This is about what we would expect. 

Example 10.3. Suppose we have $500 and we start flipping a fair coin, betting $1 with the aim of 
winning $100. So n = 500, T = 600, and Pr {win} = 500/600 = 5/6, as we claimed at the outset. 

Example 10.4. Suppose Albert starts with $100, and Radhi starts with $10. They flip a fair coin, 
and every time a Head appears, Albert wins $1 from Radhi, and vice versa for Tails. They play 
this game until one person goes bankrupt. What is the probability of Albert winning? 

This problem is identical to the Gambler’s Ruin problem with n = 100 and T = 100+10 = 110. The 
probability of Albert winning is 100/110 = 10/11, namely, the ratio of his wealth to the combined 
wealth. Radhi’s chances of winnning are 1/11. 

Note that although Albert will win most of the time, the game is still fair. When Albert wins, he 
only wins $10; when he loses, he loses big: $100. Albert’s—and Radhi’s—expected win is zero 
dollars. 

Another intuitive idea is confirmed by this analysis: the larger the gambler’s initial stake, the 
larger the probability that he will win a fixed amount. 

Example 10.5. If the gambler started with one million dollars instead of 500, but aimed to win the 
same 100 dollars as in the Example 10.3, the probability of winning would increase to 1M/(1M + 
100) > .9999. 

2We’ve been stung by paradoxes in this kind of situation, so we should be careful to check that the condition for 
infinite linearity of expectation is satisfied. Namely, we have to check that 

�∞ 
i=1 E [|Gi|] converges. 

In this case, |Gi| = 1 iff the walk is of length at least i, and |Gi| = 0 otherwise. So 

E [|Gi|] = Pr {the walk is of length ≥ i} . 

But we show in an in-class problem that there is a constant r < 1 such that 

Pr {the walk is of length ≥ i} ≤ Θ(r i). �∞So the i=1 E [|Gi|] is bounded term-by-term by a convergent geometric series, and therefore it also converges. 
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10.2 A Recurrence for the Probability of Winning 

To handle the case of a biased game we need a more general approach. We consider the probability 
of the gambler winning as a function of his initial capital. That is, let p and T be fixed, and let wn 

be the gambler’s probabiliity of winning when his initial capital is n dollars. For example, w0 is 
the probability that the gambler will win given that he starts off broke; clearly, w0 = 0. Likewise, 
wT = 1. 

Otherwise, the gambler starts with n dollars, where 0 < n < T . Consider the outcome of his first 
bet. The gambler wins the first bet with probability p. In this case, he is left with n + 1 dollars and 
becomes a winner with probability wn+1. On the other hand, he loses the first bet with probability 
1 − p. Now he is left with n − 1 dollars and becomes a winner with probability wn−1. Overall, he 
is a winner with probability wn = pwn+1 + qwn−1. Solving for wn+1 we have 

wn q 
wn+1 = − wn−1 . (18) 

p p 

This kind of inductive definition of a quantity wn+1 in terms of a linear combination of values wk 

for k < n +1 is called a homogeneous linear recurrence. There is a simple general method for solving 
such recurrences which we now illustrate. The method is based on a guess that the form of the 
solution is wn = cn for some c > 0. It’s not obvious why this is a good guess, but we now show 
how to find the constant c and verify the guess. 

Namely, from (18) we have 

wn 
wn+1 − = 0. (19) 

p

+ wn−1 

q 
p 

If our guess is right, then this is equivalent to


cn 
n+1 −c 

p 
+ c n−1 q 

p 
= 0.


Now factoring out cn−1 gives 

c 
c 2 − 

p 
+ 

q 
p 

= 0.


Solving this quadratic equation in c yields two roots, (1 − p)/p and 1. So if we define wn ::= ((1 − 
p)/p)n = (q/p)n , then (19), and hence (18) is satisifed. We can also define wn ::= 1n and satisfy 
(19). Since the lefthand side of (19) is zero using either definition, it follows that any definition of 
the form 

wn ::= A 
q

p


+ B · 1n 

will also satisfy (19). Now our boundary conditions, namely the values of w0 and wT , let us solve 
for A and B: 

0 = w0 = A + B, 

1 = wT = A 
q

p


+ B, 
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so 

1 
A =

(q/p)T − 1 
, B = −A, (20) 

and therefore 

(q/p)n − 1 
wn = 

(q/p)T − 1 
. (21) 

Now we could verify our guess work and prove (21) by a routine induction on n which we omit. 

The solution (21) only applies to biased walks, since we require p �= q so the denominator is not 
zero. That’s ok, since we already worked out that the case when p = q in Theorem 10.1. So we 
have shown: 

Theorem 10.6. In the biased Gambler’s Ruin game with probability, p �= 1/2, of winning each bet, with 
initial capital, n, and goal, T , 

(q/p)n − 1
Pr {the gambler is a winner} =

(q/p)T − 1 
. (22) 

The expression (22) for the probability that the Gambler wins in the biased game is a little hard 
to interpret. There is a simpler upper bound which is nearly tight when the gambler’s starting 
capital is large. 

Suppose that p < 1/2; that is, the game is biased against the gambler. Then both the numerator 
and denominator in the quotient in (22) are positive, and the quotient is less than one. So adding 
1 to both the numerator and denominator increases the quotient3, and the bound (22) simplifies to 
(q/p)n/(q/p)T = (p/q)T−n , which proves 

Corollary 10.7. In the Gambler’s Ruin game biased against the Gambler, that is, with probability p < 1/2 
of winning each bet, with initial capital, n, and goal, T , 

p
Pr {the gambler is a winner} <

q 
, (23) 

where m ::= T − n. 

The amount m = T − n is called the Gambler’s intended profit. So the gambler gains his intended 
profit, m, before going broke with probability at most (p/q)m . Notice that this upper bound does 
not depend on the gambler’s starting capital, but only on his intended profit. The consequences 
of this are amazing: 

3 If 0 < a < b, then 

a a + 1 
< 

b b + 1 
, 

because 

a a(1 + 1/b) a + a/b a + 1 
= = < . 

b b(1 + 1/b) b + 1 b + 1 



� 

� 

� 

Course Notes 13-14: Deviation from the Mean 29 

Example 10.8. Suppose that the gambler starts with $500 aiming to profit $100, this time by making 
$1 bets on red in roulette. By (23), the probability, wn, that he is a winner is less than � 

18/38 
�100 � 

9 
�100 1 

= <
20/38 10 37, 648 

. 

This is a dramatic contrast to the unbiased game, where we saw in Example 10.3 that his proba­
bility of winning was 5/6. 

Example 10.9. We also observed that with $1,000,000 to start in the unbiased game, he was almost 
certain to win $100. But betting against the “slightly” unfair roulette wheel, even starting with 
$1,000,000, his chance of winning $100 remains less than 1 in 37,648! He will almost surely lose all 
his $1,000,000. In fact, because the bound (23) depends only on his intended profit, his chance of 
going up a mere $100 is less than 1 in 37,648 no matter how much money he starts with! 

The bound (23) is exponential in m. So, for example, doubling his intended profit will square his 
probability of winning. 

Example 10.10. The probability that the gambler’s stake goes up 200 dollars before he goes broke 
playing roulette is at most 

(9/10)200 = ((9/10)100)2 = 
1


37, 648


�2 

, 

which is about 1 in 70 billion. 

The odds of winning a little money are not so bad. 

Example 10.11. Applying the exact formula (22), we find that the probability of winning $10 before 
losing $10 is 

20/38 
�10 

− 118/38 
= 0.2585 . . .


20/38 
18/38 

�20 
− 1 

This is somewhat worse than the 1 in 2 chance in the fair game, but not dramatically so. 

Thus, in the fair case, it helps a lot to have a large bankroll, whereas in the unfair case, it doesn’t 
help much. 

10.3 Intuition 

Why is the gambler so unlikely to make money when the game is slightly biased against him? 
Intuitively, there are two forces at work. First, the gambler’s capital has random upward and 
downward swings due to runs of good and bad luck. Second, the gambler’s capital will have 
a steady, downward drift, because he has a small, negative expected return on every bet. The 
situation is shown in Figure 3. 

For example, in roulette the gambler wins a dollar with probability 9/19 and loses a dollar with 
probability 10/19. Therefore, his expected return on each bet is 9/10 − 10/19 = −1/19 ≈ −0.053 
dollars. That is, on each bet his capital is expect to drift downward by a little over 5 cents. 
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T = n + m

time

gambler’s
capital

n

downward
drift

swing
upward

(too late!)

Figure 3: In an unfair game, the gambler’s capital swings randomly up and down, but steadily drifts 
downward. If the gambler does not have a winning swing early on, then his capital drifts downward, and 
later upward swings are insufficient to make him a winner. 

Our intuition is that if the gambler starts with a trillion dollars, then he will play for a very long 
time, so at some point there should be a lucky, upward swing that puts him $100 ahead. The 
problem is that his capital is steadily drifting downward. If the gambler does not have a lucky, 
upward swing early on, then he is doomed. After his capital drifts downward a few hundred 
dollars, he needs a huge upward swing to save himself. And such a huge swing is extremely 
improbable. As a rule of thumb, drift dominates swings in the long term. 

We can quantify these drifts and swings. After k rounds, the number of wins by our player has 
a binomial distribution with parameters p < 1/2 and k. His expected win on any single bet is 
p − q = 2p − 1 dollars, so his expected capital is n − k(1 − 2p). Now to be a winner, his actual 
number of wins must exceed the expected number by m + k(1 − 2p). But we saw before that the 
binomial distribution has a standard deviation of only kp(1 − p). So for the gambler to win, he 
needs his number of wins to deviate by 

m + k(1 − 2p) 
= Θ( 

√ 
k) 

kp(1 − 2p) 

times its standard deviation. In our study of binomial tails we saw that this was extremely un­
likely. 

In a fair game, there is no drift; swings are the only effect. In the absence of downward drift, our 
earlier intuition is correct. If the gambler starts with a trillion dollars then almost certainly there 
will eventually be a lucky swing that puts him $100 ahead. 

If we start with $10 and play to win only $10 more, then the difference between the fair and unfair 
games is relatively small. We saw that the probability of winning is 1/2 versus about 1/4. Since 
swings of $10 are relatively common, the game usually ends before the gambler’s capital can drift 
very far. That is, the game does not last long enough for drift to dominate the swings. 
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11 How Long a Walk? 

Now that we know the probability, wn, that the gambler is a winner in both fair and unfair games, 
we consider how many bets he needs on average to either win or go broke. 

11.1 Duration of an Biased Walk 

Let Q be the number of bets the gambler makes until the game ends. Since the gambler’s expected 
win on any bet is 2p − 1, Wald’s Theorem should tell us that his game winnings, G, will have 
expectation E [Q] (2p − 1). That is, 

E [G] = (2p − 1) E [Q] , (24) 

In an unbiased game (24) is trivially true because both 2p − 1 and the expected overall winnings, 
E [G], are zero. On the other hand, in the unfair case, 2p − 1 �= 0. Also, we know that 

E [G] = wn(T − n) − (1 − wn)n = wnT − n. 

So assuming (24), we conclude 

Theorem 11.1. In the biased Gambler’s Ruin game with initial capital, n, goal, T , and probability, p �= 
1/2, of winning each bet, 

E [number of bets till game ends] = 
Pr {gambler is a winner} T − n

. (25)
2p − 1 

The only problem is that (24) is not a special case of Wald’s Theorem because G = i=1 Gi is not 
a sum of nonnegative variables: when the gambler loses the ith bet, the random variable Gi equals 
−1. However, this is easily dealt with.4 

Example 11.2. If the gambler aims to profit $100 playing roulette with n dollars to start, he can 
expect to make ((n + 100)/37, 648 − n)/(2(18/38) − 1) ≈ 19n bets before the game ends. So he can 
enjoy playing for a good while before almost surely going broke. 

4The random variable Gi +1 is nonnegative, and E [Gi + 1 | Q ≥ i] = E [Gi | Q ≥ i]+1 = 2p, so by Wald’s Theorem 

Q 

E (Gi + 1) = 2p E [Q] . (26) 
i=1 

But 
Q Q Q 

E (Gi + 1) = E Gi + 1 
i=1 i=1 i=1 

Q 

= E ( Gi) + Q 
i=1 

Q 

= E Gi + E [Q] 
i=1 

= E [G] + E [Q] . (27) 

Now combining (26) and (27) confirms the truth of our assumption (24). 
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11.2 Duration of an Unbiased Walk 

This time, we need the more general approach of recurrences to handle the unbiased case. We 
consider the expected number of bets as a function of the gambler’s initial capital. That is, for 
fixed p and T , let en be the expected number of bets until the game ends when the gambler’s 
initial capital is n dollars. Since the game is over in no steps if n = 0 or T , the boundary conditions 
this time are e0 = eT = 0. 

Otherwise, the gambler starts with n dollars, where 0 < n < T . Now by the conditional expec­
tation rule, the expected number of steps can be broken down into the expected number of steps 
given the outcome of the first bet weighted by the probability of that outcome. That is, 

en = p E [Q | gambler wins first bet] + q E [Q | gambler loses first bet] . 

But after the gambler wins the first bet, his capital is n + 1, so he can expect to make another en+1 

bets. That is, 

E [Q | gambler wins first bet] = 1 + en+1, 

and similarly, 

E [Q | gambler loses first bet] = 1 + en−1. 

So we have 

en = p(1 + en+1) + q(1 + en−1) = pen+1 + qen−1 + 1, 

which yields the linear recurrence 

=en+1 
en 

p 
− 

q 
p 
en−1 − 

1 
p 
.


For p = q = 1/2, this equation simplifies to 

en+1 = 2en − en−1 − 2. (28) 

There is a general theory for solving linear recurrences like (28) in which the value at n + 1 is a 
linear combination of values at some arguments k < n + 1 plus another simple term—in this case 
plus the constant −2. This theory implies that 

en = (T − n)n. (29) 

Fortunately, we don’t need the general theory to verify this solution. Equation (29) can be verified 
routinely from the boundary conditions and (28) using strong induction on n. 

So we have shown 

Theorem 11.3. In the unbiased Gambler’s Ruin game with initial capital, n, and goal, T , and probability, 
p = 1/2, of winning each bet, 

E [number of bets till game ends] = n(T − n). (30) 
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Another way to phrase Theorem 11.3 is 

E [number of bets till game ends] = initial capital · intended profit. (31) 

Now for example, we can conclude that if the gambler starts with $10 dollars and plays until he 
is broke or ahead $10, then 10 · 10 = 100 bets are required on average. If he starts with $500 and 
plays until he is broke or ahead $100, then the expected number of bets until the game is over is 
500 × 100 = 50, 000. 

Notice that (31) is a very simple answer that cries out for an intuitive proof, but we have not found 
one. 

12 Quit While You Are Ahead 

Suppose that the gambler never quits while he is ahead. That is, he starts with n > 0 dollars, 
ignores any goal T , but plays until he is flat broke. Then it turns out that if the game is not 
favorable, i.e., p ≤ 1/2, the gambler is sure to go broke. In particular, he is even sure to go broke 
in a “fair” game with p = 1/2. 5 

Lemma 12.1. If the gambler starts with one or more dollars and plays a fair game until he is broke, then he 
will go broke with probability 1. 

Proof. If the gambler has initial capital n and goes broke in a game without reaching a goal T , then 
he would also go broke if he were playing and ignored the goal. So the probability that he will 
lose if he keeps playing without stopping at any goal T must be at least as large as the probability 
that he loses when he has a goal T > n. 

But we know that in a fair game, the probability that he loses is 1 − n/T . This number can be 
made arbitrarily close to 1 by choosing a sufficiently large value of T . Hence, the probability of 
his losing while playing without any goal has a lower bound arbitrarily close to 1, which means it 
must in fact be 1. 

So even if the gambler starts with a million dollars and plays a perfectly fair game, he will even­
tually lose it all with probability 1. In fact, if the game is unfavorable, then Theorem 11.1 and 
Corollary 10.7 imply that his expected time to go broke is essentially proportional to his initial 
capital, i.e., Θ(n). 

But there is good news: if the game is fair, he can “expect” to play for a very long time before 
going broke; in fact, he can expect to play forever! 

Lemma 12.2. If the gambler starts with one or more dollars and plays a fair game until he goes broke, then 
his expected number of plays is infinite. 

Proof. Consider the gambler’s ruin game where the gambler starts with initial capital n, and let 
un be the expected number of bets for the unbounded game to end. Also, choose any T ≥ n, and as 
above, let en be the expected number of bets for the game to end when the gambler’s goal is T . 

5If the game is favorable to the gambler, i.e., p > 1/2, then we could show that there is a positive probability that the 
gambler will play forever, but we won’t examine this case in these Notes. 
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The unbounded game will have a larger expected number of bets compared to the bounded game 
because, in addition to the possibility that the gambler goes broke, in the bounded game there is 
also the possibility that the game will end when the gambler reaches his goal, T . That is, 

un ≥ en. 

So by (29), 

un ≥ n(T − n). 

But n ≥ 1, and T can be any number greater than or equal to n, so this lower bound on un can be 
arbitrarily large. This implies that un must be infinite. 

Now by Lemma 12.1, with probability 1, the unbounded game ends when the gambler goes broke. 
So the expected time for the unbounded game to end is the same as the expected time for the 
gambler to go broke. Therefore, the expected time to go broke is infinite. 

In particular, even if the gambler starts with just one dollar, his expected number of plays before 
going broke is infinite! Of course, this does not mean that it is likely he will play for long. For 
example, there is a 50% chance he will lose the very first bet and go broke right away. 

Lemma 12.2 says that the gambler can “expect” to play forever, while Lemma 12.1 says that with 
probability 1 he will go broke. These Lemmas sound contradictory, but our analysis showed that 
they are not. 

13 Infinite Expectation 

So what are we to make of such a random variable with infinite expectation? For example, suppose 
we repeated the experiment of having the gambler make fair bets with initial stake one dollar until 
he went broke, and we kept a record of the average number of bets per experiment. Our theorems 
about deviation from the mean only apply to random variables with finite expectation, so they 
don’t seem relevant to this situation. But in fact they are. 

For example, let Q be the number of bets required for the gambler to go broke in a fair game 
starting with one dollar. We could use some of our combinatorial techniques to show that 

Pr {Q = m} = Θ(m −3/2). (32) 

This implies that 

E [Q] = Θ

∞ 

m=1 

m · m
−3/2 = Θ

∞ 

m=1 

m
−1/2 .


We know this last series is divergent, so we have another proof that Q has infinite expectation. 

But suppose we let R ::= Q1/5 . Then the estimate (32) also lets us conclude that 

E [R] = Θ

∞ 

m=1 

m
−13/10 
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and 
∞ 

E R2
� 

= Θ m −11/10 . 
m=1 

Since both these series are convergent, we can conclude that Var [R] is finite. Now our theorems 
about deviation can be applied to tell us that the average fifth root of the number of bets to go broke 
is very likely to converge to a finite expected value. 

We won’t go further into the details, but the moral of this discussion is that our results about 
deviation from a finite mean can still be applied to natural models like random walks where 
variables with infinite expectation may play an important role. 

14 The Chernoff Bound 

The Chernoff bound applies to a sum of independent random variables that satisfy conditions that 
lie between the conditions needed for the Pairwise Independent Sampling Theorem of Notes 11-
12 and conditions that imply the sum has a binomial distribution. When it applies, the Chernoff 
bound gives nearly as good a bound as our estimates for the binomial distribution in Notes 11-
12. In particular, the Chernoff bound is exponentially smaller than bound given by the Pairwise 
Independent Sampling Theorem. 

The Chernoff bound plays a larger role in Computer Science than the more traditional Central 
Limit Theorem (which will be briefly considered in later Notes). Both theorems give bounds on 
deviation from the mean, but the Chernoff bound gives better estimates on the probability of 
deviating from the mean by many standard deviations. 

For example, suppose we are designing a system whose components may occasionally fail, but we 
want the system as a whole to be very reliable. The Chernoff bound can provide good estimates 
for the number of failures the system should be designed to survive in order to meet the specified 
high level of reliability. That is, the system will only fail only if a the number of component failures 
exceeds a designated threshold, but the Chernoff bound tells us that this threshold is very unlikely 
to be exceeded. 

Another typical application is in designing probabilistic algorithms. We expect that such algo­
rithms might give a wrong answer, but will do so only if the number of mistaken probabilistic 
“guesses” it makes is much larger than should be expected. The likelihood of this unusually large 
number of mistakes can often be estimated well using the Chernoff bound. 

15 The Probability of at Least One Event 

Let A1, A2, . . . , An be a sequence of events, and let T be the number of these events that occur. 
What is Pr {T ≥ 1}, the probability that at least 1 event occurs? Note that the event [T ≥ 1] is � 
precisely the same as the event Ai. In Notes 10, §5.2, and in Class Problems 10W, Problem 1, we 
verified the general bounds 

n

 � 
max Pr {Ai} ≤ Ai ≤ Pr {Ai} , (33)
1≤i≤n 

i=1 
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and described situations in which each of these bounds were achieved. So in general, we cannot 
improve the bounds given in (33). 

On the other hand, if the events Ai are mutually independent, we can be much more precise about 
the probability that one or more of them occur. In fact, we will show that if we expect several 
events to occur, then almost certainly at least one event will occur. Another way to say this is that 
if we expect more than one event to occur, then the probability that no event occurs is practically 
zero. Specifically, we have: 

Theorem 15.1. Let A1, A2, . . . An be independent events, and let T be the number of these events that 
occur. The probability that none of the events occur is at most e− E[T ] . 

Interestingly, Theorem 15.1 does not depend on n, the number of events. It gives the same bound 
whether there are 100 events each with probability 0.1 or 1000 events each with probability 0.01. 
In both cases, the expected number of events is 10, and so the probability of no event occurring 
is at most e−10 or about 1 in 22,000. Note that the actual probabilities are somewhat different in 
these two cases, indicating that the given bound is not always tight. 

Theorem 15.1 can be interpreted as a sort of “Murphy’s Law”: if we expect some things to go 
wrong, then something probably will. For example, suppose that we are building a micropro­
cessor, and the fabrication process is such that each transistor is faulty mutually independently 
with a probability of one in a million. This sounds good. However, microprocessors now contain 
about ten million transistors, so the expected number of faulty transistors is 10 per chip. Since we 
expect some things to go wrong, something probably will. In fact, Theorem 15.1 implies that the 
probability of a defect-free a chip is less than 1 in 22,000! 

In proving Theorem 15.1, we first note that 

T = T1 + T2 + · · · + Tn, (34) 

where Ti is the indicator variable for the event Ai. We also use the fact that 

1 + x ≤ e x (35) 

for all x, which follows from the Taylor expansion 

x2

x = 1 + x + 

2! 
+


x3 

3! 
+ · · · .e
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Proof. 

Pr {T = 0} = A1 ∪ A2 ∪ · · · ∪ An 

= Pr A1 ∩ A2 ∩ · · · ∩ An 
n 

= Pr Ai 

i=1 
n 

= 1 − Pr {Ai}
i=1 
n 

≤ e − Pr{Ai} 

i=1 
n 

= e − i=1 Pr{Ai} � n 
= e − i=1 E[Ti] 

− E[T ]= e . 

(def. of T ) 

(De Morgan’s law) 

(mutual independence of Ai’s) 

(complement rule) 

(by (35)) 

(exponent algebra)


(expectation of indicator variable)


((34) & linearity of expectation)


Two special cases of Theorem 15.1 are worth singling out because they come up all the time. 

Corollary 15.2. Suppose an event has probability 1/m. Then the probability that the event will occur at 
least once in m independent trials is at least approximately 1 − 1/e ≈ 63%. There is at least 50% chance 
the event will occur in n = m log 2 ≈ 0.69m trials. 

16 Chernoff Bounds 

16.1 Probability of at least k events 

Now we consider the more general question than the probability that one event occurs, namely, 
the probability that k events occur, still assuming mutual independence of the events Ai. In other 
words, what is Pr {T ≥ k}, given that the events Ai are mutually independent? 

For example, suppose we want to know the probability that at least k heads come up in N tosses 
of a coin. Here Ai is the event that the coin is heads on the ith toss, T is the total number of heads, 
and Pr {T ≥ k} is the probability that at least k heads come up. 

As a second example, suppose that we want the probability of a student answering at least k 
questions correctly on an exam with N questions. In this case, Ai is the event that the student 
answers the ith question correctly, T is the total number of questions answered correctly, and 
Pr {T ≥ k} is the probability that the student answers at least k questions correctly. 

There is an important difference between these two examples. In the first example, all events Ai 

have equal probability, i.e., the coin is as likely to come up heads on one flip as on another. So T 
has a binomial distribution whose tail bounds we have already characterized in Notes 11-12. 

In the second example, however, some exam questions might be more difficult than others. If 
Question 1 is easier than Question 2, then the probability of event A1 is greater than the probability 
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of event A2. In this section we develop a method to handle this more general situation in which 
the events Ai may have different probabilities. 

We will prove that the number of events that occur is almost never much greater than the expec­
tation. This result is called the Chernoff Bound. For example, if we toss N coins, the expected 
number of heads is N/2 heads. The Chernoff Bound implies that for sufficiently large N , the 
number of heads is almost always not much greater than N/2. 

A nice feature of the Chernoff Bound is that we do not even need to know the probability of each 
event Ai or even the number of events N ; rather, we need only the expected number of events that 
occur and the fact that the events are mutually independent. 

16.2 Statement of the Bound 

We state Chernoff’s Theorem in terms of Bernoulli variables instead of events. However, we can 
regard Ti as an indicator for the event Ai. 

Theorem 16.1 (Chernoff Bound). Let T1, T2, . . . , Tn be mutually independent Bernoulli variables, and 
let T = T1 + T2 + · · · + Tn. Then for all c ≥ 1, we have 

Pr {T ≥ c E [T ]} ≤ e −(c ln c−c+1) E[T ] . (36) 

The formula for the exponent in the bound is a little awkward. The situation is simpler when 
c = e = 2.718 . . . . In this case, c ln c − c + 1 = e ln e − e + 1 = e · 1 − e + 1 = 1, so we have as an 
immediate corollary of Theorem 16.1: 

Corollary 16.2. Let T1, T2, . . . , Tn be mutually independent Bernoulli variables, and let T = T1 + T2 + 
· · · + Tn. Then 

− E[T ]Pr {T ≥ e E [T ]} ≤ e . 

We will prove the Chernoff Bound shortly. First, let’s see an example of how it is used. 

16.3 Example: Pick 4 

There is a lottery game called Pick 4. In this game, each player picks 4 digits, defining a number in 
the range 0 to 9999. A winning number is drawn each week. The players who picked the winning 
number win some cash. A million people play the lottery, so the expected number of winners each 
week is 

1 
10, 000 

· 1, 000, 000 = 100. 

However, on some lucky day thousands of people might all pick the winning number, costing the 
lottery operators loads of money. How likely is this? 

Assume that all players pick numbers uniformly and mutually independently. Let Ti be an indica­
tor variable for the event that the ith player picks the winning number. Let T = T1 + T2 + · · · + Tn. 
Then T is the total number of players that pick the winning number. As noted above, an average 
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of 100 people win each week, so E [T ] = 100. We can use Corollary 16.2 to bound the probability 
that number of winners is greater than 272 as follows: 

Pr {T ≥ 272} ≤ Pr {T ≥ e E [T ]} ≤ e −Ex(T ) = e −100 . 

The probability of 272 or more people winning is absurdly small! It appears that the lottery oper­
ators should not worry that ten thousand people will pick correctly one day! 

But there is a catch. The assumption that people choose Pick 4 numbers uniformly and mutually 
independently is empirically false; people choose certain “favorite” numbers far more frequently 
than others. 

Chernoff used this fact in devising a scheme to actually make money on the lottery. In this case, 
a fraction of all money taken in by the lottery was divided up equally among the winners. A 
bad strategy would be to pick a popular number. Then, even if you pick the winning number, 
you must share the cash with many other players. A better strategy is to pick a lot of unpopular 
numbers. You are just as likely to win with an unpopular number, but will not have to share with 
anyone. Chernoff found that peoples’ picks were so highly correlated that he could actually turn 
a 7% profit by picking unpopular numbers! 

16.4 The constant in the exponent 

For general c, what can we say about the factor c ln c − c +1 in the exponent? First, note that when 
c = 1, the exponent factor equals 1 · 0 − 1 + 1 = 0. This means that the Chernoff bound cannot 
say anything useful about the probability simply of exceeding the mean. However, the exponent 
factor increases with c for c > 1. This follows because its derivative respect to c is positive: 

d(c ln c − c + 1) 
= ( 

c 
+ ln c) − 1 = ln c > 0 

dc c 
when c > 1. In particular, for any c > 1, the factor (c ln c − c + 1) in the exponent is positive. 

Let’s consider the case of c close to 1, say c = 1 + �. Then a Taylor expansion gives: 

c ln c − c + 1 = (1 + �) ln(1 + �) − (1 + �) + 1 

�2 �3 �4 

= (1 + �)(� − 
2

+
3 
− 

4
+ · · · ) − � 

�2 �3 �4 �3 �4 �5 

= (� − 
2

+
3 
− 

4
+ · · · ) + (�2 − 

2
+

3 
− 

4
+ · · · ) − � 

�2 �3 �4 �5 

=
2 
− 

2 · 3
+

3 · 4 
− 

4 · 5
+ · · · . 

In particular, for very small �, we have c ln c − c + 1 ≈ �2/2. In fact one can prove the following: 

Lemma 16.3. For any 0 < � < 1, Pr {T ≥ (1 + �) E [T ]} < e−�2 E[T ]/3 . 

In other words, the probability of deviation above the mean by a fraction � decays exponentially in 
the expected value, for any � > 0. 

Another useful observation is that the Chernoff bound starts to “kick in” when � ≈ 1/ E [T ]. In 
other words, the typical deviation of our random variable is going to be about the square root 
of its expectation. This is in line with our analysis of binomial random variables: the number of 
heads in n unbiased coin flips has expectation n/2, but has standard deviation 

√ 
n/2, or roughly 

the square root of the expectation. 
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16.5 Proof of the Bound 

The Chernoff Bound uses an ingenious trick along the lines of the way we derived Chebyshev’s 
Bounds: 

T ≥ c c E[T ] ≤

E
 cT 

cc E[T ] 
(37)c
Pr {T ≥ c E [T ]} = Pr


The first step may be a shocker; we exponentiate both sides of the inequality in the probability by 
c. Since the new inequality describes the same event as the old, the probabilities are the same. The 
second step uses Markov’s Theorem. 

Recall that Markov’s Theorem sometimes gives weak bounds and sometimes gives tight bounds. 
The motivation for the first step is to alter the distribution of the random variable T to hit the 
“sweet spot” of Markov’s Theorem. That is, Markov’s Theorem gives a tighter bound on the ran­
dom variable cT than on the original variable T . We used the same trick in Chebyshev’s theorem: 
we looked at the expectation of T 2 instead of that of T , because that gave us more powerful results. 

All that remains is to evaluate E
 cT . To do this we need a Lemma:


Lemma 16.4. If R and S are independent random variables, and f and g are any real-valued functions on 
the reals, then f (R) and g(S) are independent random variables. 

We leave the proof of Lemma 16.4 as a routine exercise. 

We begin by calculating E
 cTi :


c Ti	 ::= c 1 Pr {Ti = 1} + c 0 Pr {Ti = 0} 

= c Pr {Ti = 1} + (1 − Pr {Ti = 1}) (complement rule, since Ti = 0 iff Ti �= 1) 
= 1 + (c − 1) Pr {Ti = 1} 

≤ e (c−1) Pr{Ti=1} (1 + x ≤ e x) 

= e (c−1) E[Ti ] (expectation of indicator variable). (38) 

E


So now we have


E
 c
T � = E T1 +T2+···+Tnc (def of T )


c T1 · c T2 · · · c Tn= E


c T1 · E c T2 · · · E c Tn (independence of Ti’s and Lemma 16.4)= E


≤ e (c−1) E[T1 ] · e (c−1) E[T2 ] · · · e (c−1) E[Tn] (by (38)) 

= e (c−1) E[T1 ]+(c−1) E[T2]+···+(c−1) E[Tn ] 

= e (c−1) E[T1 +···+Tn] (linearity of expectation) 

= e (c−1) E[T ] (def of T ). (39) 

Now we can substitute into the Markov inequality we started with to complete the proof of the
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Chernoff bound (36): 

E cT 

Pr {T ≥ c E [T ]} ≤ 
cc E[T ] 

(by (37)) 

e(c−1) E[T ] 

≤ 
cc E[T ] 

(by (39)) 

e(c−1) E[T ] 

= 
(eln c)c E[T ] 

(c−1) E[T ]−c ln c E[T ]= e 
−(c ln c−c+1) E[T ]= e . 

16.6 Example: A Phone Network Problem 

Suppose that there is a phone network that handles a billion calls a day. Some of these call are 
routed through a certain switch. The exact number of calls passing through this switch is some-
what random and fluctuates over time, but on average the switch handles a million calls a day. 

Our problem is to set the capacity of the switch; that is, we must determine the number of calls 
that a switch is able to handle in a day. If we make the capacity too small, then some phone calls 
will not go through. On the other hand, if we make the capacity too large, then we are wasting 
money. Of course, we cannot rule out a freak situation in which a huge number of calls are all 
coincidentally routed through the same switch, thus overloading it. However, we would like to 
guarantee that a switch is rarely overloaded. 

Assume that each call has some probability of passing through a particular switch. In particular, 
let Ti be an indicator variable for the event that the ith call passes through the switch. That is, 
Ti = 1 if the call is routed through the switch, and Ti = 0 if the call does not pass through the 
switch. Then the total call load on the switch is T = T1 + T2 + · · · + Tn. We do not know the 
exact probability that the switch handles the ith call, but we are given that the switch handles an 
average of a million calls a day; that is, E [T ] = 1, 000, 000. 

We will make the crucial assumption that the random variables Ti are mutually independent; that 
is, calls do or do not pass through the switch mutually independently. 

16.6.1 How to Build One Switch 

We can now compute the probability that the load on a switch fluctuates upwards by 1% due to 
the randomness of calling patterns. Substituting c = 1.01 and E [T ] = 1, 000, 000 into the Chernoff 
Bound gives: 

Pr {particular switch overloaded} = Pr {T ≥ 1.01 · 1, 000, 000} 

≤ e −(1.01 ln 1.01−1.01+1)·1,000,000 

−1.01(0.00004934)·1,000,000< e 

< 2.3 · 10−22 . 

The probability that the load on the switch ever rises by even 1% is unbelievably small! (A June 
blizzard during an earthquake in Cambridge is far more likely.) If we build the switch with capac­
ity only 1% above the average load, then the switch will (almost) never be overloaded. 
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The strength of this result relies on the huge expected number of calls. For example, suppose that 
the average number of calls through the switch were 100 per day instead of 1,000,000. Then every 
million in the above calculation would be replaced by a hundred; no other numbers change. The 
final probability of overloading the switch would then be bounded above not by 2.3 · 10−22 , but 
by 0.995! If the switch handles only 100 calls on an average day, then the call load can very often 
fluctuate upward by 1% to 101 or more. 

16.6.2 How to Build the Network 

We now know that building 1% excess capacity into a switch ensures that it is effectively never 
overloaded. The next problem is to guarantee that no switch in the entire network is overloaded. 
Suppose that are 1000 switches, and every switch handles an average of a million calls a day. 

Previously, we saw that the probability that some event occurs is at most the sum of the event 
probabilities. In particular, the probability that some switch is overloaded is at most the sum of 
the probabilities that each of the 1000 switches is overloaded. Therefore, we have: 

Pr {some switch overloaded} ≤ 1000 · Pr {particular switch overloaded} < 2.3 · 10−19 . 

This means that building 1% excess capacity into every switch is sufficient to ensure that no switch 
is ever overloaded. 

The above results are of limited practical value, because calls typically do not pass through a 
switch mutually independently. For example, after an earthquake on Albany Street, everyone 
would call through the eastern Cambridge switchboard to check on friends and family. Further-
more, there are many more phone calls on certain dates like Mother’s Day. On such occasions, 1% 
excess capacity is insufficient. 

17 A Generalized Chernoff Bound 

Chernoff’s Theorem applies only to sums of Bernoulli (0-1-valued) random variables. It can, how-
ever, be extended to apply to sums of random variables with considerably more arbitrary distri­
butions. We state one such generalization in Theorem 40 below. We omit its proof, noting only 
that the proof is similar to that of the Chernoff bound of Theorem 16.1. The bound of Theorem 40 
is not quite as good as the Chernoff bound, but it is more general in what it covers. 

Theorem 17.1. Let R1, . . . , Rn be independent random variables with 0 ≤ Ri ≤ 1. Let R = 
� n

i=1 Ri. 
Then 

Pr
 R − E [R] ≥ c

√ 

n ≤ e −c2/2 . (40) 

Example 17.2. Load balancing. 

A set of n jobs have to be scheduled on a set of m equally fast processing machines. The length 
(processing time) of the ith job is some number Li in the range [0, 1]. We would like to schedule 
the jobs on the machines so that the loadtime on the machines is reasonably balanced. This means 
we would like the loadtime on every machine to be not much more than the average loadtime 
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L ::= 
� n

i=1 Li/m per machine. Finding an optimally balanced assignment is a notoriously time-
consuming task even when we know all the processing times. But commonly, successive jobs have 
to be assigned to machines without knowing how long the later jobs will take, and in that case it 
is impossible to guarantee a balanced load. 

We will approach this problem of load balancing using the simplest random strategy: we inde­
pendently assign each job to a randomly selected machine, with each machine equally likely to be 
selected. It turns out that for many job scheduling problems, this strategy is almost certain to do 
very well, even though it does not even take into account the number of jobs nor their processing 
times. 

To see why the simple random strategy does well, notice that, since each job has probability 1/m of 
being assigned to any given machine, the expected loadtime on a machine is precisely 1/mth of the 
total time required by the jobs. That is, the expected loadtime per machine is precisely the average 
loadtime, L. Now consider any machine, M , and define Ri to be the time M spends processing 
the ith job. That is, Ri = Li if the ith job gets assigned to machine M , otherwise Ri = 0. So the 
total loadtime on machine M is 

� n
i=1 Ri. From the generalized Chernoff bound (40), we conclude 

(loadtime on machine M ) − L ≥ c
 ≤ e −c2/2 . 
√ 

nPr


Now by Boole’s inequality,


the loadtime on some machine is ≥ L + c

√ 

nPr


k=1 

(loadtime on machine k) ≥ L + c

√ 

nPr
≤


−c2�/2 .≤ me


√ 
2 ln m + 6, say, so that c2/2 ≥ ln m + 18, thenIf we choose c =


(loadtime on each machine) ≤ L + c

√ 

nPr


≥ 1 − me − ln m−18 

= 1 − e ln m − ln m−18 e


= 1 − e −18 = 0.99999998 . . . . 

Hence, we can be 99.999998% sure that every machine will have load at most L +( 
√ 

2 ln m +6)
√ 

n. 
For many values of n and m this is comes very close to balancing the loads on all the machines. 
For example, if m = 10 machines, n = 5000 jobs, and average load length L = 300 per machine, 
the maximum load on any machine will almost surely not exceed 332. (In fact it is likely to be even 
less—we have been fairly crude in our bounds.) 

18 Review of Markov, Chebyshev, Chernoff and Binomial bounds 

Let us review the methods we have for bounding deviation from the mean via the following 
example. Assume that I.Q. is made up of thinkatons; each thinkaton fires independently with a 
10% chance. We have 1000 thinkatons in all, and I.Q. is the number of thinkatons that fire. What 
is the probability of having Marilyn’s IQ of 228? 
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So the I.Q. is a Binomial distribution with n = 1000, p = 0.1. Hence, E [I.Q.] = 100, σI.Q. = √ 
0.09 × 1000 = 9.48. 

An I.Q. of 228 is 128/9.48 > 13.5 standard deviations away. 

Let us compare the methods we have for bounding the probability of this I.Q.. 

1. Markov: 

100
Pr {I.Q. ≥ 228} ≤ 

228 
< 0.44 

2. Chebyshev: 

1 1
Pr {I.Q. − 100 ≥ 128} ≤ 

13.52 + 1 
< 

183 

3.	 Chernoff: 

Pr {I.Q. ≥ 2.28 × 100} ≤ e −(2.28 ln 2.28−2.28+1)100 ≤ e −59.9 

4. Binomial tails: 

Pr {I.Q. ≥ 228} = Pr {1000 − I.Q. ≤ 772} = F0.9,1000(772) ≤ e −72.5 

Here we used the formula for the binomial tail from Notes 11-12 with p = 0.9, n = 1000, α = 
0.772. 

Note that the more we know about the distribution the better are the bounds we can obtain on the 
probability. 
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