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Milestones of Probability Theory 

1 Introduction 

Many probabilistic processes can be understood as limits of processes with binomial densities. 
That is, their densities can be approximated arbitrarily closely by a binomial density fn,p for suit-
able choices of n and p. In these Notes, we consider two important results of this kind. First, we 
consider Poisson processes, which are limits of binomial processes where n →∞ and p → 0 while 
np remains constant. Second, by fixing p and letting n approach infinity, we arrive at a profound 
result of probability theory: the Central Limit Theorem. 

We also consider another fundamental result called the Strong Law of Large Numbers. The Strong 
Law provides important information about how the average of independent trials may vary dur
ing the course of the trials. The Weak Law we considered in Notes 13-14 is implied by the Strong 
Law in most circumstances. The Weak Law is also a simple Corollary of the Central Limit Theo
rem. However, neither the Central Limit Theorem nor the Strong Law imply each other. 

2 The Poisson Approximation 

We’ve worked with the binomial distribution, which measures the probability of k successful out-
comes occur in a sequence of n independent trials. In this section we’ll consider a closely related 
and widely applicable distribution known as the Poisson distribution. The Poisson distribution 
arises when n is much larger than the expected number of successful outcomes. 

2.1 Poisson Random Variables 

Let’s consider a particular example. Suppose that we want to model the arrival of packets at an 
internet router. We know that on average the router handles λ = 107 packets per second. Given 
this expected value, how can we model the actual distribution of packet arrivals in a second? One 
possible model is to break up each second into tiny intervals of size δ > 0 seconds, so there are 
a large number, n = 1/δ, of tiny intervals. Then we declare that in each tiny interval, a packet 
arrives with probability λδ (this gives the right expected number of arrivals). Under this model, 
the number, X , of intervals in which a packet actually arrives has a binomial distribution: �

1/δ
Pr {X = k} = 

k 
(λδ)k (1 − λδ)1/δ−k . (1) 
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Note that this is not quite the same as counting the number of arrivals, since more than one packet 
may arrive in a given interval. But if the interval is tiny, this is so unlikely that we can ignore the 
possiblity. 

Now we let δ become infinitesimally small (while holding k fixed) and make use of three approx
imations: �

1/δ (1/δ)k


≈

k k!


(1 − λδ)1/δ ≈ e −λ 

1 − δk ≈ 1. 

Plugging these approximations into (1) yields �
1/δ

Pr {X = k} = 
k 

(λδ)k (1 − λδ)1/δ−k �
1/δ

= (λδ)k (1 − λδ)(1−δk)/δ 

k


≈ 
(1/δ)k 

(λδ)k (1 − λδ)1/δ 

k! 
λk 

k! 
(1 − λδ)1/δ=


λk 

k! 
e −λ (2)≈


The probability distribution (2) is known as the Poisson distribution. When system events appear 
according to a Poisson density, the system is called a Poisson process. 

Another example where a Poisson distribution fits the facts is in observing the number of mis
prints per page in a book. In a well edited book, there may be an average of one misprint on every 
three pages. That is, there is an average of λ = 1/3 misprints per page. An average page has about 
40 lines of a dozen words, or about n = 480 words. If we suppose that each word has an indepen
dent probability of 1/(3 · 480) of containing an uncorrected misprint, then the density function of 
errors per page would be f480,1/1440, which will be approximated to three decimal places by the 
Poisson density with λ = 1/3. 

Further examples of random variables which generally obey a Poisson distribution include: 

• the number of decaying particles in a radioactive sample in a given time interval, 

• the distribution of the number of failures per day of a system, 

• the number of people in a community who are older than 100 years, 

• the number of vacancies occurring per year on the Supreme Court, 

• the number of wrong telephone numbers dialed in Boston per day. 
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2.2 Properties of the Poisson Distribution 

As a sanity check on our distribution, the probability values (2) had better sum to 1. Using the 
Taylor expansion for eλ , we can verify that they do: 

Pr {X = k} = 
� 

e −λ λ

k 

k 

!
= e −λ 

� λ
k 

k 

!
= e −λ e λ = 1. 

k∈N 

A further sanity check is that the expected number of arrivals in a second is indeed λ, namely, 

E [X] = λ. (3) 

Similarly, the binomial distribution fn,p has variance np(1 − p). Since the Poisson distribution is 
the limit of f1/δ,λδ as δ vanishes, it ought to have variance 

(1/δ)(λδ)(1 − λδ) = λ(1 − λδ) ≈ λ. 

The final approximation holds since 1 − λδ ≈ 1 for vanishing δ. In other words, 

Var [X] = λ. (4) 

Also, suppose we have two independent Poisson processes X1, X2 contributing arrival events 
at the respective rates λ1, λ2. Intuitively, this ought to be the same as having a single process 
producing independent arrivals at the rate λ1 + λ2. This explains another useful property of the 
Poisson distribution: 

Lemma 2.1. If X1 are X2 are Poisson processes, then so is X1 + X2. 

Both equations (3) and (4), and Lemma 2.1, are easy to verify formally from the definition (2) of 
the Poisson distribution and the Taylor series for e. 

[Optional] 

Finally, we can develop a Chernoff style bound for the probability that a Poisson process deviates from its mean. As in 
the proof of the Chernoff bound, we have for any random variable, R ≥ 0, and constants c, t ≥ 0, that 

R ≥ c iff e tR ≥ e tc . 

So by Markov’s inequality 

E e tR 
� 

Pr {R ≥ c} ≤ 
etc 

(5) 

For a Poisson process, X , we have � � � tk −λλk e e
E e tX = 

k! 
k∈N � (λet)k 
−λ = e 

k! 
−λ λet 

= e e 

λ(e t −1)= e . 
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So if X is a Poisson process, 

Pr {X ≥ c} ≤ e λ(e t −1)e −tc = e λ(e t −1)−tc . (6) 

To minimize the exponent, we choose t = ln(c/λ), which will be positive as long as c > λ. Substituting this value for t 
into (6), we conclude 

Pr {X ≥ c} ≤ e c ln(λ/c)+c−λ . (7) 

Now letting, c = c � λ in (7) and using (3) yields 

Pr 
� 
X ≥ c � E [X] 

� 
≤ e c � λ ln(1/c� )+c � λ−λ 

−c � λ ln c � +c � λ−λ = e 

−(c � ln c � −c � +1)λ = e 

−(c � ln c � −c � +1) E[X]= e . 

Notice that this is exactly the same as the Chernoff bound. So we have yet another way in which a Poisson process 
behaves like a sum of independent indicator variables. 

3 The Central Limit Theorem 

nIn the Weak Law of Large Numbers we had Sn ::= i=1 Gi where G1, . . . , Gi, . . . were mutually 
independent variables with same mean, µ, and deviation σ. The Weak Law said that the probabil
ity that Sn/n was outside an interval of fixed size � > 0 around µ approached 0 as n approached 
infinity. 

The Central Limit Theorem describes not just the limiting behavior of deviation from the mean of 
Sn/n, but actually describes a limiting shape of the entire distribution for Sn/n. So this theorem 
substantially refines the Weak Law. 

Definition 3.1. For any random variable R with finite mean, µR, and deviation, σR, let R∗ be the 
random variable 

R ∗ ::= 
R − µR 

. 
σR 

R∗ is called the “normalized” version of R. 

Note that R∗ has mean 0 and deviation 1. In other words, R∗ is just R shifted and scaled so that 
its mean is 0 and its deviation and variance are 1. 

The Central Limit Theorem says that regardless of the underlying distribution of the variables Gi, 
so long as they are independent, the distribution of S∗ 

n converges to the same, normal, distribution. 
It is not surprising that this normal distribution—also known as a Gaussian distribution—plays a 
fundamental role in the study of probability and statistics: as long as you are summing enough 
random variables, you can pretend that the result is Gaussian. 

Definition 3.2. The normal density function is the function 

η(x) = √	
1 

e −x2/2 ,
2π 

and the normal distribution function is its integral � y 

N (y) = 
� y 

η(x)dx = √ 
1 

e −x2/2dx. 
−∞ 2π −∞ 
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The function η(x) defines the standard Bell curve, centered about the origin with height 1/ 2π and 
about two-thirds of its area within unit distance of the origin. The normal distribution function 
N (y) approaches 0 as y → −∞. As y approaches zero from below, N (y) grows rapidly towards 
1/2. Then as y continues to increase beyond zero, N (y) rapidly approaches 1. 

Theorem (Central Limit). Let Sn = 
� n

i=1 Gi where G1, . . . , Gi, . . . are mutually independent variables 
with the same mean, µ, and deviation, σ. Let µn ::= E [Sn] = nµ, and σn ::= σSn = nσ. Now let 
S∗ 

n ::= (Sn − µn)/σn be the normalized version of Sn. Then 

∗lim Pr {Sn ≤ β} = N (β) 
n→∞ 

for any real number β. 

To understand the Central Limit Theorem, it helps to see how it implies the Weak Law of Large 
Numbers. 

√
Note first that µSn = nµ, Var [Sn] = nσ2 , and so σSn = σ n. Now, 

� Sn − µ��� > � iff |Sn − nµ| > n� 
n 

iff ��� Sn − nµ ��� > 
n� 

σSn σSn√ 
n�∗iff |Sn| > . 
σ 

But for any real number β > 0, 
√ 

n� 
> β 

σ 

will hold for all large n. Hence, for any β > 0 and all large n, �� � � � √ � 
∗ ∗Pr 

��� Sn 
n − µ��� > � = Pr |Sn| > 

σ

n� ≤ Pr {|Sn| > β} . (8) 

So 

∗lim Pr 
��� Sn − µ��� > � ≤ lim Pr {|Sn| > β} (by (8)) 

n→∞ n n→∞ 

∗ ∗ = lim Pr {Sn > β} + Pr {Sn < −β}
n→∞ 

= 1 − N (β) + N (−β), (by the Central Limit Thm (3)) 

for all real numbers β > 0. By choosing β large enough, we can ensure that N (β) is arbitrarily 
close to 1 and N (−β) is arbitrarily close to 0, so that final term above is arbitrarily close to 1-1+0 = 
0. Hence, 

lim Pr 
��� Sn − µ��� > � = 0, 

n→∞ n 

which is the Weak Law of Large Numbers. 
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We will not prove the Central Limit Theorem, but will only note that a standard proof rests on 
extending ideas we have already used in �deriving Chernoff bounds, in particular properties of 
E etX . Regarded as a function of t, E etX is called the moment generating function of the random 
variable, X . The Central Limit Theorem can be proved using a more complete development of the 
properties of moment generating functions, more than we have time for in 6.042. 

Like the Weak Law of Large Numbers, the Central Limit Theorem as stated cannot be applied to 
actual problems because the necessary information about the rate of convergence is missing, that 
is, we need to know the accuracy with which the limit N (β) approximates the probability that 
S∗ < β. For variables G1, G2, . . . whose absolute value is bounded by about 5, or are themselvesn 
are normal, a rule of thumb is that (3) holds to one or two decimal places when |β| < 3 and n > 30. 
But in situations such as those we have seen for designing overload tolerance into systems, and 
also for ensuring the quality of the solution to an optimization problem by a probabilistic algo
rithm, we are typically more concerned with events that differ from the mean by many standard 
deviations. For estimating probabilities at such distribution tails, Chernoff bounds are more ac
curate than those based on normal distributions. For this reason, Chernoff bounds play a more 
prominent role in Computer Science than the Central Limit Theorem. 

4 Strong Law of Large Numbers [Optional] 

[Optional] 

We described the Weak Law of Large Numbers in previous notes, begging the question of what strong law of large 
numbers we might prove. Roughly speaking, the strong law says that with probability 1, the bound of the weak law 
will hold for all but a finite number of the Sn simultaneously—there will only be finitely many exceptions to it. 

nTheorem 4.1. [The Strong Law of Large Numbers] 1 Let Sn ::= i=1 Xi where X1 , . . . , Xi, . . . are mutually independent, 
identically distributed random variables with finite expectation, µ. Then 

Pr lim 
Sn 

= µ = 1. 
n→∞ n 

Although Theorem 4.1 can be proven without this assumption, we will assume for simplicity that the random variables 
Xi have a finite fourth moment. That is, we will suppose that 

E Xi 
4 = K < ∞. (9) 

nProof. To begin, assume that µ, the mean of the Xi, is equal to 0. As usual, let Sn ::= i=1 Xi and consider 

E S4 = E [(X1 + · · · + Xn ) × (X1 + · · · + Xn) × (X1 + · · · + Xn) × (X1 + · · · + Xn)] . (10)n 

Expanding the righthand side of (10) results in terms of the forms 

Xi 
4 , Xi 

3Xj , Xi 
2Xj 

2 , Xi 
2Xj Xk , XiXj Xk Xl 

where i, j, k, l are all different. As all the Xi have mean 0, it follows by independence that 

E Xi 
3 Xj = E Xi 

3 E [Xj ] = 0 

E Xi 
2Xj Xk = E Xi 

2 E [Xj ] E [Xk ] = 0 

E [XiXj Xk Xl] = 0. 

1This section taken from Ross, A First Course in Probability Theory. 
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Now, for a given pair i and j there will be 
�
4
� 

= 6 terms in the expansion that will equal Xi 
2Xj 

2 . Hence, after expanding
2 

the righthand side (10), we have 

� � � � n � � 
E S4 = n E Xi 

4 + 6 
2 

E Xi 
2 Xj 

2 (linearity of expectation) (11)n 

= nK + 3n(n − 1) E Xi 
2 E Xj 

2 . (by (9) and independence) (12) 

Now, since � � � � � 
0 ≤ Var Xi 

2 = E Xi 
4 − E2 � Xi 

2 

we see that 

E2 � Xi 
2 ≤ E Xi 

4 = K. 

Therefore, from (12) we have that 

E S4 ≤ nK + 3n(n − 1)Kn 

which implies that 

S4 K 3KnE ≤ + , 
n4 n3 n2 

and so � 
∞ 

� � � 
S4 � ∞� S4 ∞ 

n 
� 1 3nE = E ≤ K + < ∞. 

n4 n4 n3 n2 
i=1 i=1 i=1 

But since the expected value is finite, the probability that 
�∞ 

n/n4 is finite must be one. (If there was a positivei=1 S
4 

probability that the sum is infinite, then its expected value would be infinite.) Now the convergence of a series implies 
n/n4 = 0 with probability 1. But if S4that its nth term goes to 0; so we can conclude that limn→∞ S
4 

n/n4 = (Sn/n)4 goes 
to 0, then so must Sn/n; so we have completed the proof that with probability 1, 

Sn → 0 as n →∞. 
n 

When µ, the mean of the Xi, is not equal to 0, we can apply the preceding argument to the random variables Xi − µ to 
obtain that with probability 1, 

n� Xi − µ
lim = 0 

n→∞ n 
i=1 

or, equivalently, 

n� Xi
lim = µ 

n→∞ n 
i=1 

which proves the result. 

We remark that as in the Weak Law, full mutual independence of {Xi} is not necessary. The proof above only requires 
that {Xi} are 4-way independent. 

4.1 A Failure of the Strong Law 

To clarify the somewhat subtle difference between the Weak and Strong Laws of Large Numbers, we will construct 
an example of a sequence X1, X2, . . . of mutually independent random variables that satisfies the Weak Law of Large 
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Numbers, but not the Strong Law. The distribution of Xi will have to depend on i, because otherwise both laws would 
be satisfied.2 

In particular, let X1, X2 , . . . be the sequence of mutually independent random variables such that X1 = 0, and for each 
integer i > 1, 

1 1 1
Pr {Xi = i} =

2i log i
, Pr {Xi = −i} =

2i log i
, Pr {Xi = 0} = 1 − 

i log i
. 

Note that µ = E [Xi] = 0 for all i. 

Problem. (a) Show that Var [Sn] = Θ(n 2/ log n). Hint: n/ log n > i/ log i for 2 ≤ i ≤ n. 

(b) Show that the sequence X1 , X2, . . . satisfies the Weak Law of Large Numbers, i.e., prove that for any � > 0 

lim Pr ��� Sn ��� ≥ � = 0. 
n→∞ n 

We now show that the sequence X1, X2 , . . . does not satisfy the Strong Law of Large Numbers. 

(c) (The first Borel-Cantelli lemma.) Let A1, A2 , . . . be any infinite sequence of mutually independent events such that 

∞ 

Pr {Ai} = ∞. (13) 
i=1 

Prove that 

Pr {infinitely many Ai occur} = 1. 

Hint: We know that the probability that no Ai with i ≥ r occurs is 

≤ e − E[Tr ] (14) 

where Tr ::= 
�∞ 

i=r IAi is the number of events Ai with i ≥ r that occur. 

(d) Show that 
�∞ 

i=1 Pr {|Xi| ≥ i} diverges. Hint: dx/(xlogx) = log log x. 

(e) Conclude that 

Pr lim 
Sn 

= µ = 0. (15) 
n→∞ n 

and hence that the Strong Law of Large Numbers completely fails for the sequence X1, X2, . . . . 
Hint: 

Xn Sn n − 1 Sn−1 
= − 

n n n n − 1 
, 

so if limn→∞ Sn /n = 0, then also limn→∞ Xn/n = 0. 

2This problem is adapted from Grinstead & Snell, Intro. to Probability, Ch.8, exercise 16, pp314–315, where it is 
credited to David Maslen. 
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