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ABSTRACT

Assessing the causal relationship among multivariate time se-
ries is a crucial problem in many fields. Granger causality has
been widely used to identify the causal interactions between
continuous-valued time series based on multivariate autore-
gressive models in the Gaussian case. In order to extend the
application of the Granger causality concept to non-Gaussian
time series, we propose a general statistical framework for
assessing the causal interactions. In this study, the Granger
causality from a time series x2 to a time series x1 is assessed
based on the relative reduction of the likelihood of x1 by the
exclusion of x2 compared to the likelihood obtained using all
the time series. Simulation results indicated that the proposed
algorithm accurately predicted nature of interactions between
discrete-valued time series as well as between continuous-
valued time series.

Index Terms— Granger causality, generalized linear
model, false discovery rate, neural spike train data

1. INTRODUCTION

Identifying causal interactions between time series is a crucial
problem in many fields such as economics, social science,
and physics. Recently in neuroscience the ability to exploit
causal relationships, as opposed to just correlation, is also be-
coming more important to the understanding of cooperative
nature of neural computation [1], [2]. The basic idea of the
causality between two time series was introduced by Wiener
[3] but was too general to implement practically. Granger for-
malized this idea in order to enable practical implementation
based on the multivariate autoregressive (MVAR) models [4]:
if the variance of the prediction error of a time series x1(t)
is reduced by the inclusion of the past values of a time se-
ries x2(t), then x2 is said to cause x1 in a ‘Granger’ sense.
In the case of more than two time series, causal relationship
between any two of the series may be indirect, i.e., mediated
by another time series, and this issue was addressed by the
technique called conditional Granger causality [5].

This work was supported by NIH Grants DP1-OD003646 and R01-
EB006385.

Linear Granger causality (LGC) based on the MVAR
models, combined with an implicit Gaussianity assumption
on the time series, provides a widely used framework for
testing causality between continuous-valued time series [5],
[6]. However, it is applicable only to Gaussian time series,
but inapplicable to non-Gaussian case such as discrete-valued
time series.

To address this issue, we propose a general statistical
framework for assessing the causal relationships. When the
probability of a time series at the current time is modeled
using the past values of itself and other time series, we assess
the Granger causality based on the likelihood ratio test [6].
That is, we assess the Granger causality from a time series x2

to x1 by calculating the relative reduction of the likelihood
of x1 by the exclusion of x2 compared with the likelihood
obtained using all the time series. If the likelihood ratio is
less than one, there is causal influence from x2 to x1, and if
the ratio is one, there is no causality. The Granger causality
measure based on the likelihood ratio test is exactly reduced
to the LGC measure in the Gaussian case [6]. The likelihood
ratio test statistic also enables us to perform several statistical
significance tests such as the chi-squared test, the Z-test, and
the F-test, which investigate the original causal connectivity
between multiple time series. When assessing the causality
relationships between multiple time series, we use the false
discovery rate (FDR) to correct for multiple hypothesis test-
ing [8]. We also show how the dependence measure between
two time series x1 and x2 can be decomposed based on the
proposed measure.

Simulation results demonstrate that the proposed frame-
work estimated the underlying causal connectivity more ex-
actly rather than the LGC for discrete-valued and mixture
model case.

2. PROBABILISTIC GRANGER CAUSALITY

Consider K multivariate time series {xk(t)}K
k=1

for 0 ≤ t ≤
T . Let us denote the past values of a time series xk(t) at time
t as xk(t) = {xk(s), s < t}, the past values of all time se-
ries at time t as a column vector x(t) = [x

1
(t), ..., xK(t)]T ,

and the past values obtained after excluding xj(t) from x(t)
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as xj(t), respectively. Let us assume that xi is not caused by
xj , i.e., xj has no direct influence on xi or indirect influence
that is mediated by other time series. In this case, xi(t) is
conditionally independent of xj(t) given all the past values
that have direct influences on xi(t) [7]. This can be mathe-
matically represented as

p(xi(t)|x(t)) = p(xi(t)|xj(t)). (1)

When the left-hand side of the equation (1) is greater than the
right-hand side, xj is said to cause xi.

Based on this property, we assess the Granger causality
using the log-likelihood ratio. From (1), the likelihood func-
tion of time series xi is represented as

Li(θi|xi) =

∫ T

0

p(xi(t)|x(t);θi)dt (2)

where the parameter vector θi includes information about the
dependency of xi(t) on x(t). Henceforth, we will denote
Li(θi|xi) as Li(θi) for simplicity. Using the likelihood of
(2), the Granger causality from xj to xi is assessed as

Γij = log
Li(θ

j
i )

Li(θi)
(3)

where the likelihood Li(θ
j
i ) is calculated using xj(t) instead

of x(t) of (2) in order to remove the effect of xj on xi and
the parameter vector θ

j
i for xj(t). If xj causes xi in the

Granger sense, the likelihood Li(θi) is greater than the like-
lihood Li(θ

j
i ), i.e., Γij < 0. In contrast, if xj does not cause

xi, the likelihood ratio of (3) is equal to one, i.e., Γij = 0.

3. SIGNIFICANCE TEST

The Granger causality measure of (3) represents the relative
strength of causal interactions among time series but provides
little insight into the original connectivity among them. To
investigate the original causal connectivity, our study intro-
duces statistical significance test based on the log-likelihood
ratio statistic.

The significance test is based on the goodness-of-fit
(GOF) statistics [9]. Consider the null hypothesis given
as H0 : θ0 = θ

j
i . An alternative hypothesis is given as

H1 : θ1 = θi. These two models are nested since a model for
θ

j
i is a special case of the more general model for θi. We can

test H0 against H1 using the test statistic S, which is given
by −2Γij . If these models describe the data well, then the
test statistic S will be asymptotically chi-squared, which is
described simply as S ∼ χ2

M where the degree of freedom
M is the difference in dimensionality of two models [9].

If the value of the test statistic S is consistent with χ2

M

distribution, H0 is accepted since it is simpler. This result

indicates that xj(t) contains no significant information that
would assist in predicting xi(t). Thus, xj has no causal influ-
ence on xi. On the contrary, if the value of S is in the critical
region, i.e., greater than the upper tail 100 × (1 − α)% of
the distribution, then H0 may be rejected in favor of H1 since
the model of H1 describes the data with significantly more
accuracy. This indicates that xj(t) contains information that
improves the ability to predict xi(t). Thus xj causes xi in the
Granger sense. In this work, α was set to 0.05.

When the generalized linear model (GLM) framework is
used to model the distribution of times series, we can use the
deviance as the GOF statistic [10]. The deviance difference
between two models is given by ΔD = −2Γij , which is
used as the GOF statistic. However, for the Gaussian distribu-
tion the deviance depends on the variance of the distribution,
which is usually unknown in practice. In this case in order to
remove the variance term the ratio S = ΔD/D1 where D1 is
the deviance obtained based on θ1 is used as the test statistic,
which can be now calculated from the data. If H0 is correct,
S follows the central F-distribution, F (M,N − p) where N
is the number of observations and p is the dimensionality of
θ1.

When assessing the causal interactions between multiple
time series, we should consider a family of hypothesis infer-
ences simultaneously; however, multiple hypothesis tests are
more likely to incorrectly reject the null hypothesis [11]. In
our study, we control the expected proportion of incorrectly
rejected null hypotheses (type I errors) by exploiting the FDR
[8].

4. DECOMPOSITION OF DEPENDENCE MEASURE

In our study, we show how the dependence measure between
two time series can be decomposed based on the Granger
causality measure based on the likelihood ratio statistic. Sym-
metrically to (3), the Granger causality measure from xi to xj

is obtained as

Γji = log
Lj(θ

i
j)

Lj(θj)
. (4)

In addition to two unidirectional Granger causality measures,
we can consider another causality measure called instanta-
neous causality, which may be caused by an exogenous com-
mon input or a low temporal resolution of data. The instanta-
neous causality measure between xi and xj is defined as

Γi·j = log
Li(θi)Lj(θj)

Lij(θij)
(5)

where Lij(θij) is the joint likelihood function of xi and xj .
If Γi·j �= 0, then xi and xj instantaneously cause one another.

If xi and xj are independent of one another, the joint den-
sity function can be decomposed into the product of marginal

2223



density functions of xi and xj . So we can define the measure
of dependence between xi and xj as

Γi,j = log
Li(θ

j
i )Lj(θ

i
j)

Lij(θij)
. (6)

Using the definitions cited above, we obtained

Γi,j = Γij + Γji + Γi·j . (7)

Therefore, the total dependence between two time series xi

and xj is decomposed into three measures: two unidirectional
Granger causality measures between xi and xj and one nondi-
rectional instantaneous causality measure between them.

5. SIMULATIONS

In this paper, we used the GLM framework to model the dis-
tribution of time series [10]. In a GLM framework, each time
series is assumed to be generated from a particular distribu-
tion function in the exponential family, which allows us to
model count data by Poisson, binomial, and multinomial dis-
tributions as well as skewed data by Gamma distributions. We
analyzed the Granger causality in the GLM framework based
on an assumption that the mean of each time series depends
on its own history and the past values of concurrent time se-
ries as

E[xi(t)] = μi(t|x(t)) = g−1

i (x(t)T
θi) (8)

where E[xi(t)] is the expected value of xi(t) and gi is the link
function [10].

The proposed framework was compared to the LGC for
the mixture model of continuous- and discrete-valued time
series and for the binary model such as spike train data.

Prior to performing simulations, a model for each time
series was selected. We fitted several models with different
model order to each time series and then identified the best
approximating model from among a set of candidates using
Akaike’s information criterion (AIC) [12].

5.1. Gaussian case

As mentioned previously, when the distribution of time se-
ries is assumed to be Gaussian, the Granger causality measure
based on the likelihood ratio statistic is equivalent to the LGC
[6]; The log-likelihood ratio of (3) is reduced to the difference
of the variances of prediction errors.

5.2. Mixture model

We analyzed the Granger causality for the mixture model of
both continuous- and discrete-valued time series. For anal-
ysis, based on the causality network of Fig. 1 (a) generated

(a) (b) (c)

Fig. 1. (a) Three time series interact one another based on
the shown network. (b) The LGC failed to estimate the orig-
inal network. (c) The connectivity pattern estimated by the
proposed framework exactly matched the original one of (a).

were 15,000 samples of x1 and x3 of Gamma distribution and
x2 of Poisson distribution, whose means depended on the past
values through the link function of each distribution as (8),
which are given by

1/μ1(t|x(t)) = 1 + 0.5x1(t − 1) + x2(t − 1) + 0.5x3(t − 2),

log μ2(t|x(t)) = 1 + x1(t − 2), (9)

1/μ3(t|x(t)) = 2 + 0.5x3(t − 1).

We partitioned the generated data into three complemen-
tary subsets and used the first 5,000 samples for the training
and the remaining 10,000 samples for the testing. The es-
timated causality networks using both algorithms are shown
in Fig. 1 (b) and (c); White circle represents causal relation-
ship from ‘Cause’ to ‘Effect’. As shown in Fig. 1 (b) the
LGC failed to estimate the original causal interactions; how-
ever, the proposed predicted nature of interactions between
data with a high accuracy as shown in Fig. 1 (c).

5.3. Neural spike train data

In this paper, we assessed the Granger causality between syn-
thetically generated spike train data using the proposed frame-
work, combined with a point process statistics. The discrete,
all-or-nothing nature of a sequence of spike train together
with their statistical structures suggests that a neural spike
train data can be regarded as a point process [13]. To model
the effect of its own and other time series past values, the log-
arithm of the conditional intensity function, λ(t|x(t)), which
completely characterizes a point process, is expressed as a lin-
ear combination of the past values. This is similar to a Poisson
case of the GLM. Three spike train data were generated based
on the three-neuron network of Fig. 2 (a). The firing proba-
bility of each neuron is modulated by a self-inhibitory (black)
interactions in addition to the inhibitory (black) and excita-
tory (white) interactions. The parameter vectors for the self-
inhibitory, inhibitory, and excitatory interactions are given by
[-1 -0.5], [-0.5 -1], and [0.5 1], respectively. Each neuron
had a spontaneous firing rate of 15 Hz, and the time resolu-
tion was 1 ms. An absolute refractory period of 1 ms was
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(a) (b) (c)

Fig. 2. (a) Three-neuron network. Each neuron was self-
inhibitory. Neurons interact through inhibitory (black) and
excitatory (white) connections. (b) The LGC failed to iden-
tify the original causal network. (c) The proposed framework
predicted the original network with high accuracy.

enforced to prevent neurons from firing a spike in adjacent
time steps. According to the above settings, 300,000 samples
were generated, and the first 100,000 samples were used for
training and the remaining samples used for testing.

Using the generated spike train data, we inferred the un-
derlying causal interactions. In case of the LGC, lowpass
filtering as a preprocessing step was performed to transform
spike train data into continuous-valued data [2]. The in-
hibitory and the excitatory interactions were distinguished by
the sign of the estimated parameters. The obtained results
are shown in Fig. 2 (b) and (c), respectively. As shown, the
causality pattern estimated by only the proposed framework
exactly matched the original network of Fig. 2 (a).

6. DISCUSSION

Here we propose a probabilistic framework for assessing
Granger causality between time series based on the log-
likelihood ratio statistic. A Granger causality measure is
proposed based on the log-likelihood ratio and a significance
test to identify the original connectivity. The FDR is used to
correct for multiple hypothesis testings. We show that using
the Granger causality measure based on the likelihood ratio
statistic the dependence measure can be decomposed into
three measures. Geweke also showed the decomposition of
the dependence measure in Gaussian case [6], but our study
outlines a more general decomposition of the dependence
measure for any distributions.

In this paper, we use the GLM framework to model time
series, which can model a variety of distributions, and we
show that the the proposed measure is reduced to the LGC in
the Gaussian case. Besides the GLM, we can also use other
distributions to assess the Granger causality between time se-
ries, and the key point is how to model the dependency of
xi(t) on x(t) to fit time series well.

Simulation results showed that the proposed accurately
predicted nature of interactions between discrete-valued time
series as well as between continuous-valued time series. For

real data we usually don’t know the ground truth, thus we
used simulated data to evaluate the performance of the pro-
posed framework in this work. In future investigations, the
proposed framework will be applied to assess the causality
between real data such as recorded neural spike train data.
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