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Interference and tunneling are two signature quantum effects that
are often perceived as the yin and yang of quantum mechanics:
a particle simultaneously propagating along several distinct classi-
cal paths versus a particle penetrating through a classically inacces-
sible region via a single least-action path. Here we demonstrate
that the Dirac quasiparticles in graphene provide a dramatic depar-
ture from this paradigm. We show that Zener tunneling in gapped
bilayer graphene, which governs transport through p-n hetero-
junctions, exhibits common-path interference that takes place
under the tunnel barrier. Due to a symmetry peculiar to the gapped
bilayer graphene bandstructure, interfering tunneling paths form
conjugate pairs, giving rise to high-contrast oscillations in transmis-
sion as a function of the gate-tunable bandgap and other control
parameters of the junction. The common-path interference is solely
due to forward-propagating waves; in contrast to Fabry–Pérot-
type interference in resonant-tunneling structures, it does not rely
on multiple backscattering. The oscillations manifest themselves in
the junction I–V characteristic as N-shaped branches with negative
differential conductivity. The negative dI∕dV , which arises solely
due to under-barrier interference, can enable new high-speed
active-circuit devices with architectures that are not available in
electronic semiconductor devices.

graphene heterojunctions ∣ nanodevices ∣ quantum transport ∣
quartic dispersion ∣ quasiclassical approximation

Quantum tunneling through two or more barriers that are
placed closely together is characterized by transmission that

is sharply peaked about certain energies. Such “resonant-tunnel-
ing” effect arises because particles can reflect between the bar-
riers and resonate at particular energies, allowing enhanced
transmission through the barriers. This resonance phenomenon
is similar to that taking place in optical Fabry–Pérot resonators.
Resonant tunneling is particularly desirable in applications be-
cause it can give rise to negative differential resistance—current
that goes down as voltage goes up—an interesting behavior that
can be harnessed to form new devices (1, 2).

Here we propose an entirely different approach to realize
oscillatory transmission, which involves only forward-propagating
waves and a single barrier, and thus is distinct from the Fabry–
Pérot interference of waves undergoing multiple reflection
between two barriers. This behavior arises in graphene bilayer
(3, 4), a two-dimensional semiconductor material with unique
electronic properties, such as the field effect and the possibility
to open a bandgap by using external gates (5, 6, 7). We demon-
strate that Zener tunneling in a p-n junction in gapped bilayer
graphene (BLG) exhibits common-path interference taking place
under the tunnel barrier, leading to transmission that oscillates
as a function of gate-tunable bandgap. This unique behavior en-
ables device architectures that are not possible in other gapped
materials.

Unlike the conventional tunneling through a potential barrier,
Zener tunneling is governed by an externally applied electric field
(8). Strong enough fields, by mixing states in different bands, can
induce transitions from the valence band of a p-type material to
the conduction band of an n-type material, giving rise to tunnel-
ing currents. In conventional semiconductors, the tunneling rate

is a monotonic function of the applied field F and the bandgap
Eg, given by an exponential expð−πm1∕2E3∕2

g ∕2FℏÞ (here m is an
effective mass) (9, 10). In a sharp departure from this behavior,
we find that transmission through a p-n junction in BLG oscillates
as a function of the bandgap and external field. At normal
incidence, the oscillations have 100% contrast, with transmission
vanishing at particular nodal values of control parameters
(see Fig. 1). The oscillations remain high-contrast after the trans-
mission is averaged over incidence angles. The common-path nat-
ure of the interference renders this phenomenon insensitive to
Aharanov–Bohm type dephasing effects.

Relativistic-like behavior of carriers in graphene leads to many
interesting transport phenomena (11–15). However, the effects
discussed here have not been anticipated. Conventional Zener
tunneling was studied in p-n junctions in semiconducting carbon
nanotubes (16, 17) and single-layer graphene (18). Theory of
these systems (19, 20) yields exponential dependences that match
closely those of refs. 9 and 10. Similar exponential dependence
arises in the theory of p-n junctions in gated gapless graphene
sheets (21), with a momentum component along the p-n interface
playing the role of a bandgap.

The origin of the oscillatory behavior can be elucidated by a
semiclassical analysis of the dynamics in the barrier region. In
contrast to the standard case of tunneling through a one-dimen-
sional barrier, where a unique saddle-point trajectory in a classi-
cally forbidden region is found for each energy, here we obtain
multiple trajectories. Further, the trajectories form pairs with
complex conjugate Wentzel–Kramers–Brillouin (WKB) action
values S and S�. Common-path interference of such pairs gives
rise to an oscillatory transmission

T ¼
���ae−1

ℏS þ a�e−
1
ℏS

�
���2¼ 4jaj2e−2

ℏS
0 cos2

�
S00

ℏ
þ φ

�
; [1]

where S ¼ S0 þ iS00. Both S0 and S00 are monotonic functions of
the bandgap and field strength (see Eq. 4). The oscillations in
transmission will manifest themselves through negative differen-
tial conductivity in the I–V characteristic.

This unique behavior opens a door for designing new device
architectures. Small intrinsic capacitance of planar heterojunc-
tions can enable high-speed devices. Further, the single-particle
effects responsible for the negative dI∕dV are completely insen-
sitive to the behavior in the doped regions, which is a distinct
advantage compared to many resonant-tunneling devices (1)
whose performance is limited by their relatively high capacitance
and by thermal stability of dopants.
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Model: The WKB Analysis
To clarify the origin of Eq. 1, we first consider transmission
using the WKB formalism. Gapped BLG in the presence of a
barrier potential V ðxÞ is described by a 2 × 2 quadratic Dirac
Hamiltonian (4)

H ¼
�

Δ 1
2m ðpx þ ipyÞ2

1
2m ðpx − ipyÞ2 −Δ

�
þ V ðxÞ; Δ ¼ Eg

2
; [2]

where Eg is the bandgap. We seek the wavefunction in the barrier
region in the form

ψðxÞ ∝ e
i
ℏ

R
x

x0
pðx0 Þdx0

χ;

where χ is a two-component spinor. The x dependence of momen-
tum can be found from the energy integral E ¼ �½ðp2∕2mÞ2þ
Δ2�1∕2 þ V ðxÞ. In the barrier region, −Δ < V ðxÞ − E < Δ, this
relation gives four complex roots

pxðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2y � 2mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − ðV ðxÞ − EÞ2

qr
; [3]

where py is a conserved y component of momentum. Two of the
roots (3) have Imp > 0, and the other two have Imp < 0. Positive
(negative) Imp correspond to decaying (growing) exponentials
which describe particle propagation to the right and to the left,
respectively.

Focusing on the uniform-field model V ðxÞ ¼ −Fx (see Fig. 1,
Inset) and for simplicity setting py ¼ 0, we select from (3) the
right-propagating solutions: p�ðxÞ ¼ ði� 1Þm1∕2½Δ2− ðFx−EÞ2�1∕4.
These two solutions give complex conjugate WKB transition
amplitudes e−S∕ℏ, e−S�∕ℏ, where

S; S� ¼ ð1� iÞαm1∕2Δ3∕2∕F [4]

with the prefactor expressed through the Euler beta function,
α ¼ Bð1

2
; 5
4
Þ ≈ 1.75.

The total transmission amplitude in the WKB approximation
is the sum of the transmission amplitudes for the two decaying

exponentials. Combining the contributions of the trajectories
p�ðxÞ, we can write the WKB wavefunction in the barrier region
as a sum

ae
i
ℏ

R
x

x0
pþðx0Þdx0 þ a�e

i
ℏ

R
x

x0
p−ðx0Þdx0 :

Interference between these evanescent solutions produces an
oscillatory transmission amplitude

A ¼ ae−S∕ℏ þ a�e−S�∕ℏ: [5]

Because ReS ¼ ReS� and ImS ¼ −ImS�, the two contributions to
the transmission amplitude are of equal magnitude and differ in
phase by Δθ ¼ 2ð1ℏ ImS − φÞ. Here, φ ¼ argðaÞ is a phase offset
between the two decaying exponentials, which can in principle
be obtained by matching solutions at the classical turning points,
but in practice is more easily obtained through a numerical
procedure, which gives φ ≈ π∕2 (see Fig. 2 and accompanying
discussion).

For certain nodal values of F andΔ, the interference is destruc-
tive and the transmission probability vanishes. Plugging the values
(4) in Eq. 5, we see that the transmission probability T ¼ jAj2
oscillates, going through nodes when αm1∕2Δ3∕2∕Fℏ is an integer
multiple of π. This condition gives the nodal values

Δn ¼ ðπn∕αÞ2∕3ðF2ℏ2∕mÞ1∕3; n ¼ 1;2;3;::: [6]

that match closely the nodes found numerically (Fig. 1). The dip
in transmission at Eg ¼ 0 originates from the chirality-assisted
suppression of tunneling in gapless BLG (see ref. 22).

The oscillations in transmission, being a general feature deriv-
ing from interference, are a robust and generic phenomenon.
In particular, the oscillations do not require a linear potential
in the barrier region, and the WKB analysis may be straightfor-
wardly generalized to an arbitrary potential profile V ðxÞ. Weak
perturbations to the BLG dispersion also can be easily incorpo-
rated in the above analysis and shown not to matter as long as
the perturbation strength is weak compared to the gap Δ. For
example, the trigonal warping interaction can affect the disper-
sion within a few millielectronvolts of the Dirac point (4), thus
its effect will be small in systems with gate-induced gap that can
reach a few hundred millielectronvolts (7).

Fig. 1. Zener tunneling and common-path interference in BLG in the uni-
form-field model. Interference of two least-action tunneling paths results
in oscillations, n ¼ 1;2;:::. Shown is transmission at normal incidence,
py ¼ 0, as a function of bandgap size, in units Δ0 ¼ ½ðFℏÞ2∕2m�1∕3 (semilog
scale). Numerical results (red symbols), obtained by integrating Eq. 8, agree
with the WKB result, Eqs. 1 and 4 (blue curve) in the entire range of Δ, large
and small. Inset shows schematic setup of p-n junction: The bandgap Eg ¼ 2Δ,
the linear barrier potential VðxÞ ¼ −Fx (see Eq. 2), and a pair of interfering
tunneling paths.
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Fig. 2. Evolution of a two-level system slowly driven through an avoided
level crossing, Eq. 8. Nonadiabatic transitions between different levels,
corresponding to Zener tunneling, take place in the Larmor precession region
−pΔ ≲ p≲ pΔ, where pΔ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2mΔ
p

. Shown are adiabatic energy levels of
the Hamiltonian, Eq. 8 (blue line) and schematic partition into regions
of adiabatic evolution and Larmor precession.
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Another requirement on experimental systems in which the
interference phenomena described above can be realized is that
of ballistic transport in the p-n junction region. Recent observa-
tion of Fabry–Pérot (FP) oscillations in graphene p-n-p junctions
(24) provides a clear signature of ballistic transport in this system.
The oscillation could be seen for the p-n interface separation
of up to 60 nm, which sets a lower bound on the mean free path
in the presence of a top gate. For a rough estimate, writing
F ¼ U∕L with U a gate-induced potential difference across a
p-n junction and L the junction width (see Fig. 3, Inset), from
Eq. 6 we predict the number of experimentally accessible nodes

n ≈
α

π

m1∕2Δ3∕2

Fℏ
¼ α

π
ffiffiffi
2

p Δ
eU

L
ℓΔ

; ℓΔ ¼ ℏffiffiffiffiffiffiffiffiffiffi
2mΔ

p : [7]

For Δ ¼ 100 meV, and using the effective mass in BLG
m ¼ 0.033 m0, we estimate the characteristic lengthscale ℓΔ≈
3.18 nm. Taking eU ¼ 4Δ and L ¼ 60 nm, we arrive at n ≈ 4,
which indicates that oscillatory Zener tunneling is well within
reach of current experiments.

Discussion: Zener Tunneling in Momentum Space.
We now explain the origin of the oscillations from a different
perspective, by mapping the transmission across the p-n junction
to evolution of a two-level system which is swept through an
avoided level crossing. This alternative formalism is specialized
for the uniform-field model, and thus is less general than the
WKB method. However, it provides intuition and affords an
independent check on the WKB results by allowing us to numeri-
cally evaluate the transmission probability without any undeter-
mined phase offsets.

The key to this alternative formulation is an observation that,
for the uniform-field model V ðxÞ ¼ −Fx, the problem greatly
simplifies in the momentum representation. Indeed, because
x ¼ iℏ∂px , the Schrodinger equation with the Hamiltonian [2]
turns into a first-order differential equation

iℏF
∂ψ
∂px

¼
�
p2x − p2y
2m

σ1 þ
2pxpy
2m

σ2 þ Δσ3
�
ψ ; [8]

where the σi are the Pauli matrices in sublattice space. This equa-
tion is identical to the time-dependent Schrodinger equation for a
spin-half wavefunction with px playing the role of time.

There is a simple relation between the “time evolution” gov-
erned by Eq. 8 and interband transitions induced by Zener
tunneling (25). Asymptotically, at px → �∞, the eigenstates of
the Hamiltonian are also eigenstates of σ1, having energies
Eσ1¼�1 ¼ ∓p2x∕2m. As we tune px from −∞ to þ∞, the system
is swept through an avoided level crossing, as illustrated in Fig. 2.
Interband transitions are described by the process in which a state
that started off in the σ1 ¼ −1 eigenstate at px ¼ −∞ will evolve
into the σ1 ¼ þ1 eigenstate at px ¼ þ∞. The evolution is near-
adiabatic at small F, with Zener tunneling described as (nonadia-
batic) transitions across the gap.

In this framework, the oscillations in transmission can be
understood in a simple and intuitive way by noting that the
Heisenberg evolution of momentum pxðtÞ corresponds to sweep-
ing through the avoided crossing at a constant speed, dpx∕dt ¼ F.
Comparing different terms in Eq. 8, we conclude that transitions
may only happen in the region −pΔ ≲ px ≲ pΔ, where pΔ ¼ ffiffiffiffiffiffiffiffiffiffi

2mΔ
p

(see Fig. 2), whereas outside this region the evolution is adiabatic
(here we set py ¼ 0 for simplicity). In the transition region, the
dominant term in the Hamiltonian is Δσ3. Spin rotation caused
by this term can be described as Larmor precession about the z
axis by an angle δθ ¼ ðΔ∕ℏFÞpΔ. Periodic modulation of the tran-
sition rate of the form cos δθ, resulting from Larmor precession,
leads to an estimate of the oscillation period that agrees with the
WKB result, Eqs. 1 and 4.

The momentum-sweep analysis also helps to understand the
dramatic difference between transmission in bilayer junctions
and single-layer junctions. The latter problem can be mapped
(26) to a canonical Landau Zener problem of a linear sweep
through an avoided level crossing, for which transmission is a
monotonic function of control parameters exhibiting no oscilla-
tions. This result is in agreement with the theory of p-n junctions
in single-layer graphene (21).

In light of this analogy, it is interesting to compare our Larmor-
type oscillations with the Stückelberg oscillations arising in sys-
tems that are swept multiple times through a level crossing (27).
Because our oscillations occur in a single sweep, they are more
robust to dephasing and decoherence. Whereas Stückelberg os-
cillations occur when the system remains phase coherent between
consecutive sweeps, here only phase coherence over the timescale
of a single sweep is necessary.

Results: The I–V Characteristic.
We now place this discussion on a firm quantitative ground by
calculating the transition probability numerically. We solve the
differential equation, Eq. 8, in a suitably chosen interval pmin <
px < pmax, taking as the initial state at px ¼ pmin the adiabatic
ground state. From the numerical solution, we determine the
probability to evolve into the excited state at px ¼ pmax. The trans-
mission probability, obtained in this manner for py ¼ 0 and
pmaxðminÞ ¼ �22pΔ, is shown in Fig. 1. The results are compared
with the prediction of the WKB approach, Eq. 1, treating the pre-
factor jaj2 and the phase φ as fitting parameters. As illustrated
in Fig. 1, excellent agreement is found for the values φ ¼ 1.6
and jaj2 ¼ 0.78 (which are tantalizingly close to π∕2 and π∕4),
indicating that the WKB analysis provides reliable results.

Integrating Eq. 8 at finite py, we find that the transmission
oscillates and vanishes at nodal values of Δ in pretty much the
same way as for zero py. Comparing to the WKB analysis, which
continues to apply at finite py, we find that the WKB phase offset
φðpyÞ varies only weakly with py. Using this numerical procedure,
we may also straightforwardly take into account trigonal warping.
Apart from a weak washing out of the nodes, we find no signifi-
cant effect on the oscillations of transmission provided the trigo-
nal warping energy scale is less than the gap size.

Next, we proceed to show that the oscillatory tunneling reveals
itself through distinct features in the I–V characteristic. The net
tunneling current can be expressed, according to the Landauer

Fig. 3. The I–V characteristic of a BLG p-n junction combines features of
Esaki diode (N-shaped branches with negative differential conductivity)
and Zener diode (a breakdown-type behavior). Thus a single p-n junction
can serve as an active-circuit element with multiple functionality. Valleys
in the I–V dependence correspond to n ¼ 1 node of the oscillations in trans-
mission in Fig. 1. Shown is the I–V dependence given by Eq. 11 for parameter
values: U∕V0 ¼ 0.1;0.2;0.3 (curves 1, 2, and 3, respectively). Units are
V0 ¼ ΔðL∕ℓΔÞ and I0 ¼ 10−4N e2

h ðW∕2πℓΔÞV0, where W is the lateral width
of the junction and N ¼ 4 is the spin/valley degeneracy in BLG. Inset shows
junction schematic, with U the built-in potential induced by doping or by
gates, and Eg ¼ 2Δ the bandgap.
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formula (14), as a sum of contributions of all conducting channels
multiplied by energy distribution in reservoirs, giving

I ¼ e
h

Z
∞

−∞
dEðnE−1

2
eV sd

− nEþ1
2
eV sd

ÞTðFÞ; [9]

TðFÞ ¼ NW
2πℏ

Z
∞

−∞
dpyTpy;EðFÞ; [10]

where W is the total length of the p-n interface, and the factor
N ¼ 4 is spin/valley degeneracy in BLG. Here, accounting for
the fact that transmission is dominated by small values of py (see
below), we treat the occupation numbers as py independent and
factor out the quantity TðFÞ, the net transmission integrated
over py.

Continuing to work with the uniform-field model, we treat
transmission as energy independent and incorporate the source-
drain voltage in the effective barrier potential via F ¼ F0þ
eV sd∕L (see Fig. 3, Inset). Integrating over energies, we have

I ¼ e2

h
V sdTðF0 þ eV sd∕LÞ; F0 ¼ eU∕L: [11]

The dependence of transmission Tpy on py may be found from
Eq. 1 with SðpyÞ and S�ðpyÞ evaluated using Eq. 3. Because the
transmission is exponentially small in the barrier width, and
the width of the barrier region grows monotonically with p2y ,
the net transmission T is dominated by small values of py. Hence,
we may approximate S and S� as

S;S� ¼ i�1∕2α
ΔpΔ
F

þ i∓1∕2 ~αΔ
2FpΔ

p2y þOðp4y Þ; [12]

where ~α ¼ ffiffiffi
2

p
Bð3

4
; 3
4
Þ ≈ 2.4. Plugging these expressions in Eq. 1

and performing Gaussian integration over py, we find

TðFÞ ¼ NW jaj2F1∕2

ðπ ~αΔℓΔÞ1∕2
e−

2
ℏS

0
�
21∕4 þ cos

�
2

ℏ
S00 þ ~φ

��
; [13]

~φ ¼ 2φ − π
8
, where S0 and S00 are given by Eq. 4. Based on numer-

ical results, we ignored the py dependence of the phase offset φ in
Eq. 1. Interestingly, the resulting I–V curve, Eq. 11, exhibits
negative differential conductivity.

A more accurate result for the net transmission T can be
obtained by numerical integration of the exact WKB transmission
over momenta (SI Appendix). In that, the full dependence of
S and S� on py is retained, and also the contribution of the

classically forbidden regions Δ < jFx − Ej <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðp2y∕2mÞ2

q
is

included, which is of subleading order in p2y .
The resulting I–V dependence is shown in Fig. 3 for several

values of the “built-in” (gate-induced) potential difference across
the p-n junction. Notably, the I–V characteristic combines
features of the Zener diode (sharp rise of current above certain
breakdown voltage) with N-shaped branches on which the differ-
ential conductivity is negative, resembling the resonant-tunneling
(Esaki) I–V characteristic (23). Unlike the Esaki characteristic,
the N-shaped branches occur simultaneously on the forward
and reverse parts of the I–V dependence. The N-shaped features
arise from oscillations in single-particle transmission, a mechan-
ism very different from that leading to negative dI∕dV in the
Esaki diode. The valleys of current in Fig. 3 correspond to nodes
of transmission (n ¼ 1 in Fig. 1).

Conclusions
The p-n junctions of the type considered here can be realized
using a configuration of gates which is already employed in
current experiments (6, 24, 28, 29). A minimal configuration is
a dual-gate geometry with a wide back gate and a narrow top gate,
such as that used in the work on FP oscillations (24). Charging the
two gates with voltages of opposite polarity, a bandgap can be
induced under the top gate and, simultaneously, carrier density
can be adjusted in the outer region. Applying source-drain bias
will produce V sd-dominated lateral electric field across the
gapped region, corresponding to the regime U ≪ V 0 where the
effect of oscillations is most prominent (see Fig. 3). In addition, a
built-in field U can be induced by selective doping or by a
third gate.

In summary, transport in BLG p-n junctions is governed by
common-path interference under the tunnel barrier. Unlike
Fabry–Pérot interference that stems from multiple reflection
between barriers, our interference effect involves only forward-
propagating paths and a single barrier. The interference produces
nodes in transmission as a function of the gate-tunable bandgap
and other control parameters, leading to an I–V characteristic
that features N-shaped branches with negative differential con-
ductivity. Low capacitance of lateral heterojunctions can enable
high-speed operation. The single-particle origin of negative
dI∕dV makes it insensitive to the behavior in the doped regions,
unlike many resonant-tunneling devices where performance is
limited by thermal stability of the dopants (1). We envision that
BLG p-n junctions, owing to their multiple functionality and
design simplicity, will become an integral part of the future
graphene electronics toolkit.
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