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SUBLINEAR TIME ALGORITHMS*

RONITT RUBINFELD!T AND ASAF SHAPIRA?

Abstract. Sublinear time algorithms represent a new paradigm in computing, where an algo-
rithm must give some sort of an answer after inspecting only a very small portion of the input. We
discuss the types of answers that one can hope to achieve in this setting.

Key words. sublinear time algorithms, approximation algorithms, randomized algorithms,
property testing

AMS subject classifications. 68Q15, 68Q25, 68Q87

DOI. 10.1137/100791075

1. Introduction. Traditionally, showing the existence of a linear time algorithm
for a problem was considered to be the gold standard of achievement. Nevertheless,
due to the recent tremendous increase in computational power that is inundating us
with a multitude of data, we are now encountering a paradigm shift from traditional
computational models. The scale of these data sets, coupled with the typical situation
in which there is very little time to perform our computations, raises the issue of
whether there is time to consider more than a minuscule fraction of the data in our
computations. For most natural problems, an algorithm which runs in sublinear
time must necessarily use randomization and must give an answer which is in some
sense imprecise. Nevertheless, there are many situations in which a fast approximate
solution is more useful than a slower exact solution.

A first example of sublinear time computation that comes to mind is the classical
result from the theory of sampling that one can, in time independent of the size of the
data, determine a good estimate of the average value of a list of numbers of bounded
magnitude. But what about more interesting algorithmic questions? For example,
suppose one is given the ability to answer questions of the form “does person A know
person B?” Then consider the graph in which nodes correspond to people and edges
correspond to pairs of people that know each other—can one determine whether this
graph has the “small world property”; i.e., does it have small diameter? It is easy to
determine whether the graph has this property after asking whether person A knows
person B for all possible pairs of people. However, by the time all of these questions
are fully answered the answer might be very different and, moreover, it might be too
late to make use of the information. Fortunately, it might be feasible to construct
algorithms based on random sampling which do not need to ask about all pairs. The
recently emerging theory of sublinear time algorithms addresses questions of precisely
this nature for problems in various domains.
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SUBLINEAR TIME ALGORITHMS 1563

This paper will describe a number of problems that can be solved in sublinear
time, using different types of approximations.

Outline of the paper. We devote section 2 to a simple example of a testing problem
which will motivate the definition used later in the paper. In section 3 we formally
define the key notions that will be used later on in the paper. In section 4 we discuss
property testing algorithms for problems that are algebraic in nature. In section 5, we
discuss property testing algorithms for graphs (sparse and dense), and in section 6 we
give examples of sublinear time approximation algorithms for optimization problems.
Throughout the paper we will try to emphasize both the algorithmic aspects of de-
signing sublinear algorithms and the mathematical/structural aspects of this theory,
which stem from the need to find so-called robust characterizations of different prop-
erties. We wish to stress that there are many beautiful results that we are not able to
mention in this survey. Fortunately, some of these are mentioned in other excellent
surveys (for example, see [50, 59, 107, 108, 116]).

2. A simple example: Monotonicity of a list. Let us begin with a simple
example, which will motivate our subsequent definitions of the types of approximations
that we are interested in achieving. A list of integers & = x1,...,x, is monotone
(increasing) if z; < x; for all 1 < i < j < n. Given input &, the task is to determine
whether or not # is monotone.

It is clear that finding a sublinear time algorithm for the above task is impossible,
since any algorithm that does not look at some x; could be fooled by an input for
which all the x;’s are in monotone order for i # j. Thus, we can hope to solve
only an approximate version of this problem, but what is a meaningful notion of an
approximation?

One natural approximate version is defined as follows: Say that x1,...,z, is
e-close to monotone if by changing at most en of the values of the x;’s one can
transform x4, ..., x, into a monotone list. Then, a property tester for monotonicity is a
randomized algorithm that on input Z, e must output “pass” if x1, ..., x, is monotone,
and “fail” if zq,..., 2, is not e-close to monotone. The algorithm is allowed to err
with probability at most 1/3. However, once an algorithm with error probability at
most 1/3 is achieved, it is easy to see that for any 8 a probability of error of at most
B can be achieved by repeating the algorithm O(log %) times and taking the majority
answer. Note that if z1,...,xz, is, say, €/2-close to monotone, the property testing
algorithm is allowed to output “pass” or “fail.” Indeed, in this case, since the list is
close to monotone, it may not be too harmful to pass it. On the other hand, since it
is not actually monotone, it is also not a big injustice to fail it.

How do we construct a property tester for monotonicity? To design such an
algorithm we need to come up with a robust characterization of monotone lists, where,
informally speaking, a robust characterization of a property is a characterization which
applies both to objects that satisfy and to objects that are close to satisfying the
property. We first try to prove that if a string is e-far from being monotone, then
there must be &(e)n? pairs of indices i < j for which z; > z;, where 6(€) is independent
of n. If true, that would allow us to design a trivial algorithm which simply samples
1/6(€) pairs @ < j and checks whether z; > x;. However, it is easy to construct
examples showing that there are lists that are not even 1/2-close to monotone, yet
only n%/2 of the pairs i < j satisfy #; > z;. This means that at least \/n pairs must
be sampled if one is to find a reason to output “fail.” We will soon see that one can
do significantly better by finding a more “efficient” characterization of monotone lists!
In the following, we describe an O(logn) time algorithm from the work of Ergiin et
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1564 RONITT RUBINFELD AND ASAF SHAPIRA

al. [48] which tests whether & has a long monotone increasing subsequence. Note that
the problem is known to require Q(logn) queries [48, 51].

Let ¢ be a constant that is set appropriately. For simplicity, let us assume that
the elements in & are distinct. The last assumption is without loss of generality, since
one can append the index of an item to the least significant bits of its value in order
to break ties without changing the proximity of the list to monotone.

1. Let £ = ¢/e. Choose indices i1,.. ., i uniformly from [n].

2. For each such chosen index i;, assume that the list is monotone and perform
a binary search in ¥ as if to determine whether the value z;; is present in #
or not.

3. Output “fail” if the binary search fails to find any x;, in location #; or finds a
pair of out-of-order elements along the search path. Output “pass” if all the
¢ binary searches succeed.

The running time of the algorithm is O((1/¢)logn). Moreover, if # is monotone,
then the algorithm will always output “pass,” as each of the binary searches will
succeed. (Since in this case there is no probability of error, we refer to this as a “1-
sided error tester.”) To show that if & is not e-close to monotone, then the algorithm
will output “fail” with probability at least 2/3, we show the contrapositive. Namely,
assume that the input is such that the algorithm outputs “pass” with probability at
least 1/3. To see that that Z has a long increasing subsequence, let G C [n] denote
the set of indices for which the binary search would succeed; i.e., i € G if and only
if x; can be found by a binary search on #. The constant ¢ can be chosen such
that if |G| < (1 — €)n, then the algorithm would pick some i; ¢ G with probability
at least 1/3, causing it to output “fail.” Thus, since the algorithm outputs “pass”
with probability at least 1/3, we know that |G| > (1 — €)n. We now argue that the
restriction of # to the indices in G is an increasing subsequence: Let i,7 € G and
1 < j. Let k be the least common ancestor index where the binary searches for x; and
x; diverge. Then, since i < 7, it must be that the search for z; goes left and the search
for ; goes right, and so x; < 3 < x;. Finally, if & has an increasing subsequence of
size at least (1 — €)n, then it is easy to see that & is e-close to monotone. Thus we
have the following theorem.

THEOREM 1 (see [48]). There is an algorithm that, given a sequence T =
21, Zn and an € > 0, runs in O((1/€)logn) time and outputs (1) “pass” if &
is monotone and (2) “fail” with probability 2/3 if ¥ does not have an increasing sub-
sequence of length at least (1 — €)n (in particular, if T is e-far from monotone).

An equivalent way to view the algorithm presented here is as a way of testing
whether a function mapping from [n] into R is monotone. There has been much
interest in the problem of testing monotonicity of functions over more general domains
and ranges—see [60, 45, 52, 30, 23, 70, 100, 2, 1] for a few examples of further work.
In [52] it is shown that testing the monotonicity of functions over poset domains is
equivalent to several other testing problems. In [30] a very interesting connection is
given between testing the monotonicity of functions and the construction of transitive
closure graph spanners.!

3. What do we mean by an “approximation”? Now that we have devel-
oped some intuition, we present our model and definitions in more detail: We are
interested in computing some function f on input x without reading all of z. This is

LA k-transitive-closure-spanner (k-TC-spanner) of G is a directed graph H = (V, Ey) that has
(1) the same transitive-closure as G and (2) diameter at most k.
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an impossible task in general, since a change to a single bit of x could alter the value of
f. For most nontrivial functions f, if one cannot read all of the input z, then one can
only hope to approximate the value of f on z. Standard notions of multiplicative and
additive approximations exist for functions f which map to such ranges as the real
numbers. In section 6, we mention several sublinear time approximation algorithms
which give such guarantees.

However, what do we mean by an approximation when f is the characteristic
function of a property or a language? In recent years, a notion of approximation
for Boolean functions has emerged, referred to as property testing, which has led to
a wealth of sublinear time algorithms. Given an input, a property tester tries to
distinguish the case where the input has the property from the case where the input
is not even close to having the property.

More specifically, a property P of certain objects is a subset Sp of the universe of
the objects we consider, and an object x is said to satisfy P if it belongs to Sp. For
example, the property of a graph being triangle-free is the family of all triangle-free
graphs. In this case, f(x) = 1 if x has the property, and f(z) = 0 otherwise. We next
formalize one notion of what it means to be close.

DEFINITION 3.1. An input x, represented as a function x : D — R, is e-close to
satisfying property P if there is some y satisfying P such that x andy differ on at most
€|D| places in their representation. Otherwise, x is said to be e-far from satisfying P.

In the monotonicity example of the previous section, D = [n] and z(7) denotes the
1th element of the list. This notion of “close” depends strongly on the representation of
the object being tested. There may be multiple standard ways of representing various
objects; for example, two common representations of graphs are via adjacency lists
and adjacency matrices. The choice of the representation affects the notion of distance
that makes sense for the particular application as well as the complexity of the testing
task.

We now formalize what it means for an algorithm to test a property. As in the
previous section, we assume in our model of computation that algorithms have query
access to the input.

DEFINITION 3.2. Let P be a property. On input x of size n = |D| and €, a
property tester for P must satisfy the following:

o [f = satisfies property P, the tester must output “pass” with probability at
least 2/3.
o If x is e-far from satisfying P, the tester must output “fail” with probability
at least 2/3.
The probability of error may depend only on the coin tosses of the algorithm and
not on any assumptions of the input distribution. The number of queries made by
the property tester ¢ = q(e,n) is referred to as the query complexity of the property
tester. We say that a property tester for P has 1-sided error if it outputs “pass” with
probability 1 when x satisfies P. The property tester for monotonicity given in the
previous section has 1-sided error. If the query complezity is independent of n, then
we say that the property is easily testable.

Note that if = does not satisfy P but z is also not e-far from satisfying P, then
the output of the property tester can be either “pass” or “fail.” We have already seen
that it is this gap which allows property testers to be so efficient.

The probability that the property tester errs is arbitrarily set to 1/3 and may
alternatively be defined to be any constant less than 1/2. As we have seen earlier for
the case of testing monotonicity, it is then easy to see that, for any 3, a probability
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of error of at most 8 can be achieved by repeating the algorithm O(log %) times and
taking the majority answer.

Property testing was defined by Rubinfeld and Sudan [111] in the context of
program testing. Goldreich, Goldwasser, and Ron [61] refined and generalized the
definition, which allowed the application of property testing to graphs and other
combinatorial structures. Various more general definitions are given in several works,
including [48, 64, 98], which mostly differ in terms of the generality of the distance
function and other specifications as to when the tester should accept and reject.

4. Algebraic problems. In this section, we consider property testing algo-
rithms for problems that are algebraic in nature. We begin with the problem of
testing whether a function is a homomorphism. We then show that the ideas used to
construct property testers for homomorphisms extend to other properties with simi-
lar underlying structure. See the survey of [108] for several other recent examples of
algebraic property testers.

4.1. Homomorphism testing. We begin with an example that was originally
motivated by applications in program testing [32] and was later used in the construc-
tion of probabilistically checkable proof systems [17]. For groups D and R, suppose
you are given oracle access to a function f : D — R. That is, you may query the
oracle on any input « € D and it will reply with f(z). Is f a homomorphism?

In order to determine the answer exactly, it is clear that you need to query f on
the entire domain D. However, consider the property testing version of the problem,
for which, on input €, the property tester should output “pass” with probability at
least 2/3 if f is a homomorphism and “fail” with probability at least 2/3 if f is e-
far from a homomorphism (that is, there is no homomorphism g such that f and g
agree on at least (1 — €)|D| inputs). In order to construct such a property tester, a
natural idea would be to test that the function satisfies certain relationships that all
homomorphisms satisfy. We next describe two such relationships and discuss their
usefulness in constructing property testers.

Two characterizations of homomorphisms over Z,. Consider the case when f is
over the domain and range D = R = Z, for large integer g. The set of homomorphisms
over Z, can be characterized as the set of functions which satisty for all z, f(z+1) —
f(x) = f(1). This suggests that a property tester might test that f(z + 1) — f(z) =
f(1) for most x. However, it is easy to see that there are functions f which are very
far from any homomorphism but which would pass such a test with overwhelmingly
high probability. For example, g(x) = 2 mod [,/q] satisfies g(x 4 1) — g(z) = g(1) for
1- iq fraction of the x € Z,, but g(z) is (1 — ﬁ)—far from a homomorphism.

The set of homomorphisms over D can alternatively be characterized as the set
of functions which satisfy for all z,y, f(z)+ f(y) = f(z +y). This suggests that one
might test that f(z) + f(y) = f(x 4+ y) for most x,y. It might be worrisome to note
that when ¢ = 3n, the function h(x) defined by h(z) = 0 if z = Omod 3, h(z) =1
if x = 1mod 3, and h(z) = 3n — 1 if x = —1 mod 3 passes the above test for 7/9
fraction of the choices of pairs z,y € D and that h(x) is 2/3-far from a homomorphism
[39]. However, 7/9 is a type of threshold: One can show that, for any 6 < 2/9, if
flx)+ fly) = f(x+y) for at least 1 —J fraction of the choices of x,y € D, then there
is some homomorphism ¢ such that f(z) = g(x) on at least 1 — §/2 fraction of the
x € D [26].

Once one has established such a theorem, one can construct a property tester
based on this characterization by sampling O(1/¢) pairs z,y and ensuring that each
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pair in the sample satisfies f(z)+ f(y) = f(x+y). This property tester clearly passes
all homomorphisms. On the other hand, if f is e-far from a homomorphism, then the
above statement guarantees that at least 2¢e fraction of the choices of x,y pairs do not
satisfy f(x) + f(y) = f(x + y), and the property tester is likely to fail.

In both cases, homomorphisms are characterized by a collection of local con-
straints, where by local we mean that few function values are related within each
constraint. What is the difference between the first and the second characterization
of a homomorphism that makes the former lead to a bad test and the latter to a much
better test? In [111] (see also [110]), the notion of a robust characterization was intro-
duced to allow one to quantify the usefulness of a characterization in constructing a
property test. Loosely, a robust characterization is one in which the “for all” quanti-
fier can be replaced by a “for most” quantifier while still characterizing essentially the
same functions. That is, for a given €, §, a characterization is (¢, 0)-robust if, for any
function f that satisfies at least 1 — § fraction of the constraints, f must be e-close to
some function g that satisfies all of the constraints and is thus a solution of the “for
all” characterization. As we saw above, once we have an (¢, 0)-robust characterization
for a property, it is a trivial matter to construct a property tester for the property.

Homomorphism testing, a history. Let G, H be two finite groups. For an arbitrary
map f : G — H, define §, the probability of group law failure, by

5:1—55[f(x)+f(y)=f(x+y)]~

Define € to be the distance of f from the set of homomorphisms; i.e., € is the minimum
7 for which f is 7-close to a homomorphism. We will be interested in the relationship
between € and ¢.

Blum, Luby, and Rubinfeld [32] considered this question and showed that over
cyclic groups there is a constant dg such that if & < §g, then one can upper bound ¢ in
terms of a function of ¢ that is independent of |G|. This yields a homomorphism tester
with query complexity that depends (polynomially) on 1/e but is independent of |G|,
and therefore shows that the property of being a homomorphism is easily testable. The
final version of [32] contains an improved argument due to Coppersmith [39], which
applies to all Abelian groups, shows that g < 2/9 suffices, and shows that € is upper
bounded by the smaller root of z(1 — z) = ¢ (yielding a homomorphism tester with
query complexity linear in 1/¢). Furthermore, the bound on dy was shown to be tight
for general groups [39]. In [26] it was shown that, for general (non-Abelian) groups,
for dp < 2/9, then f is e-close to a homomorphism where € = (3—+/9 — 240)/12 < §/2
is the smaller root of 32z — 622 = §. The condition on 6, and the bound on € as a
function of 4, are shown to be tight, and the latter improves that of [32, 39]. Though
do < 2/9 is optimal over general Abelian groups, using Fourier techniques, Bellare
et al. [24] have shown that for groups of the form (22)", dy < 45/128 suffices. (See
also [77] for further results.) Kopparty and Saraf have investigated the more difficult
tolerant testing problem, where one wants to distinguish functions that are close to
homomorphisms from those that are far from homomorphisms in a distribution-free
setting [84].

There has been interest in improving various parameters of homomorphism test-
ing results, due to their use in the construction of probabilistically checkable proof
systems (cf. [17]). In particular, both the constant dy and the number of random
bits required by the homomorphism test affect the efficiency of the proof system and
in turn the hardness of approximation results that one can achieve using the proof
system. Several works have shown methods of reducing the number of random bits
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1568 RONITT RUBINFELD AND ASAF SHAPIRA

required by the homomorphism tests. That is, in the natural implementation of the
homomorphism test, 2log, |G| random bits per trial are used to pick x,y. The results
of [113, 72, 36, 115] have shown that fewer random bits are sufficient for implementing
the homomorphism tests. The recent work of [115] gives a homomorphism test for
general (non-Abelian) groups that uses only (1 + o(1))log, |G| random bits. Given a
Cayley graph that is an expander with normalized second eigenvalue ~y, and for the
analogous definitions of 0, €, they show that for § < (1 — v)/12, € is upper bounded
by 46/(1 — 7).

A proof of a homomorphism test. We describe the following proof, essentially due
to Coppersmith [39] (see also [32]), of the robustness of the homomorphism characteri-
zation over Abelian groups. Though this is not the strongest known result, we include
this proof to give a flavor of the types of arguments used to show the robustness of
algebraic properties.

THEOREM 2. Let G be an Abelian group. Let § be such that

L—6=Prif(a) + f(y) = @+ ).

Then if 6 < 2/9, f is 20-close to a homomorphism.

Proof. Define ¢(z) = maj,cq(f(r +y) — f(y)); that is, let ¢(z) be the value that
occurs with the highest probability when evaluating f(z + y) — f(y) over random y
(breaking ties arbitrarily). O

The theorem follows immediately from the following two claims showing that ¢
is a homomorphism and that f and ¢ are 24-close.

Cramv 4.1. {y[f(y) = o(y)} = (1 - 25)|G].

Proof of Claim 4.1. Let B = {x € G : Pry[f(z) # f(zx +y) — f(y)] > 1/2]}.
If © ¢ B, then ¢(x) = f(x). Thus, it suffices to bound |B|/|G|. If x € B, then
Pr,[f(0) + f(y) # fl@+9)] > 1/2. Thus & = Pro,[f(2) # f(z +y) — fy)] >
|B|/|G| - 1/2 or equivalently |B|/|G| < 2. a

CLAIM 4.2. If § < 2/9, then for all z,z, ¢(z) + ¢(z) = d(x + z).

Proof of Claim 4.2. Fixing x, we first show that most pairs y1,y2 agree to vote
for the same value of ¢(z). Pick random y;,ys € G, and we have

Pry, o [f(x +y1) — f(y1) = f(@ +y2) — f(y2)]
= Pry, o [f(@ + 1) + f(y2) = (& +y2) + F()].
Both = + y1 and y» are uniformly distributed elements of G. Thus, we have
Pry, o [f(x+y1) +f(y2) # f(z+y1+42)] = 6 <2/9. Similarly, we have Pry, , [f(z +

y2) + f(y1) # fx+y1 +y2)] = 6 < 2/9. If neither of the above events happens, then
flx4+vy1) — fyr) = f(x +y2) — f(y2). Via a union bound we have that

Pry, p[f (@ +y1) = f(y1) = f(@+y2) = fy2)] > 1-26 > 5/9.

It is straightforward to show that for any distribution in which the collision probability
is at least 5/9, the maximum probability element must have probability at least 2/3.
Thus,

(4.1) Vo € G, Prig(z) # fla+y) - fy)] <1/3.

To show that, for all =,z € G, ¢(z) + ¢(z) = ¢(x + 2), fix z and z. Then apply (4.1)
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to x,z and = + z to get

(4.2) Pry[o(x) # fle+ (y —x)) = fly —2)] <1/3,
(4.3) Pry[¢(z) # f(z +y) — f(y)] <1/3,
(4.4) Prylp(z +2) # f((z+2) + (y—2) = fly —2)] <1/3.

Thus Pry[é(z) = f(y) — f(y — z) and ¢(2) = f(z+y) — f(y) and ¢(z + 2) = f(z +
y) — f(y — )] > 0, and so there exists a y for which

o) +o(z) = (fly) = fly—2) +(f(z+y) = fv) = flz+y) — fly—2) = p(z + 2).

The above equality holds for every x, z € GG, showing that ¢ is a homomorphism and
completing the proof of Claim 4.2. O

A word about self-correcting. In the proof, we note that ¢ is defined so that it
is the “self-correction” of f. Observe that there is a simple randomized algorithm
that computes ¢(z) given oracle access to f: Pick O(log1l/3) values y, compute
f(@ +y) — f(y), and output the value that you see most often. If f is i-close to a
homomorphism ¢, then since both y and = + y are uniformly distributed, we have
that for at least 3/4 of the choices of y both of the equalities ¢(x +y) = f(x+y) and
¢(y) = f(y) hold. In this latter case, f(x+y) — f(y) = ¢(z). Thus it is easy to show
that if f is %—close to a homomorphism ¢, then the above algorithm will output ¢(x)
with probability at least 1 — 3.

4.2. Other algebraic functions. It is natural to wonder what other classes
of functions have robust characterizations as in the case of homomorphisms. There
are many other classes of functions that are defined via characterizations that are
local. The field of functional equations is concerned with the prototypical problem
of characterizing the set of functions that satisfy a given set of properties (or func-
tional equations). For example, the class of functions of the form f(z) = tan Az are
characterized by the functional equation

f(@)+ f(y)
v, vy, f(x+y)zm'

The above functional equation is referred to as an addition theorem, as it relates the
values of the function on f(z), f(y) and f(x+y). Such addition theorems characterize
trigonometric and hyperbolic functions. D’Alembert’s equation,

Vv, y, flx+y)+ flz—y)=2f(2)f(y),

characterizes the functions 0, cos Ax, cosh Az. Multivariate polynomials of total de-
gree d over Z, for p > md can be characterized by the equation

d+1
Vi,hezy, Y aif(@+ih) =0,
=0

where a; = (—1)""1(“1). All of the above characterizations are known to be (e, )-
robust for € and ¢ independent of the domain size (though for the case of polynomials,
there is a polynomial dependence on the total degree d), thus showing that the cor-
responding properties are easily testable [110, 111]. A long series of works have given
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increasingly robust characterizations of functions that are low total degree polyno-
mials (cf. [17, 101, 18, 104, 8, 78, 74]). In [111, 110], the general question of what
characteristics of functional equations influence their robustness was considered.

We note that all of these results can be extended to apply over domains that
are subsets of infinite cyclic groups. They can further be extended to the case of
computation with finite precision, which requires that one address the stability of
functional equations [49, 81].

Binary operations. The above notions of characterizations of properties of func-
tions can be applied to binary operations as well. Assume you are given an n X n
table T' of a binary operation o on a domain D of size n—that is, T'(a,b) = aob for
all a,b € D. Is o a group operation? In [48] it is shown that O(n®/? polylogn) queries
suffice for the property testing problem. Note that the running time depends on the
domain size, but is sublinear in n?, the size of the table describing o.

The characterization of o that is used for property testing requires the following
of o: (i) o is close to some cancellative associative operation o’ (in a cancellative
operation, each row and column of the table describing the operation is a permutation
of the elements in the domain), (ii) o’ has an identity element, and (iii) each element
in the domain has an inverse under o’. The main challenge is to find a characterization
of associativity that is robust. The result is shown via a probabilistic proof, in a style
similar to the above proof of the homomorphism test. However, it is not clear whether
this result is optimal or even whether any dependence on n is necessary for this task.

PROBLEM 1. Given an n X n table describing a binary operation o over a domain
D, can one distinguish the case when o is a group operation from the case when o is
not e-close to a group operation in time independent of n?

Convolutions of distributions. We now turn to a seemingly unrelated question
about distributions that are close to their self-convolutions: Let A = {ay4|g € G} be a
distribution on group G. The convolution of distributions A, B is

C=AxB, Cp = Z ayb..

Y,2€G; yz=x

Let A’ be the self-convolution of A, Ax A, i.e., a, = Z%zeg;yz:w aya,. It is known
that A = A’ exactly when A is the uniform distribution over a subgroup of G. Suppose
we know that A is close to A’; can we say anything about A in this case? Suppose
dist(A,A") = 33 . las — al| < € for small enough e. Then [26] show that A must
be close to the uniform distribution over a subgroup of G. More precisely, in [26] it is
shown that for a distribution A over a group G, if dist(A, A') = 13 .o las — al| <
€ < 0.0273, then there is a subgroup H of G such that dist(A,Uy) < 5¢, where Uy is
the uniform distribution over H [26]. On the other hand, in [26] there is an example
of a distribution A such that dist(A4, A* A) ~ .1504, but A is not close to uniform on
any subgroup of the domain.

A weaker version of this result was used to prove a preliminary version of the
homomorphism testing result in [32]. To give a hint of why one might consider the
question on convolutions of distributions when investigating homomorphism testing,
consider the distribution Ay achieved by picking = uniformly from G and outputting
f(x). It is easy to see that the error probability ¢ in the homomorphism test is at least
dist(Ay, Af* Ay). The other, more useful, direction is less obvious. In [26] it is shown
that this question on distributions is “equivalent” in difficulty to homomorphism
testing, as given next.

THEOREM 3. Let G, H be finite groups. Assume that there is a parameter 3y and
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function ¢ such that the following holds:

For all distributions A over group G, if dist(Ax A, A) < 8 < By, then

A is ¢(B)-close to uniform over a subgroup of G.
Then, for any f : G — H and 6 < By such that 1 — &6 = Pr[f(z) * f(y) = f(z *xy)]
and ¢(6) < 1/2, we have that f is $(0)-close to a homomorphism.

4.3. Locally testable error-correcting codes. Recently there has been much
activity in the study of locally testable error-correcting codes (LTCs), that is, codes
for which a tester can make a number of queries that is independent of the size of
the codeword (also referred to as “easily testable” in the property testing terminology
that we presented earlier) and determine whether or not an input is close to or far
from a legal codeword. Such codes were first defined in [111], though predecessors
of the definition date back to Babai et al. [20]. Though a detailed description of the
area is beyond the scope of this survey, we briefly mention a few of the recent results
in this exciting direction.

There are two broad directions of research in LTCs. The first direction is the study
of how to design LTCs, with the emphasis on maximizing their rate. That is, if a code
takes k-bit messages and encodes them as n-bit strings, how small can we make n as
a function of k? A systematic investigation of this question was started by Goldreich
and Sudan [66]. The current state-of-the-art constructions, which combine Dinur’s
techniques [44] with those of Ben-Sasson and Sudan [27], achieve n = kpolylogk
(see also the work of Meir [94] for an alternate construction). The following question
remains open.

PROBLEM 2. Are there LTCs with linear rate (i.e., n = O(k))?

The second direction concerns understanding broad reasons for the ability to lo-
cally test codes. That is, what are the properties of codes that imply local testability?
For example, are all linear codes locally testable? Examples of results which show
that linear codes with large distance and few codewords are locally testable are in
[76, 79, 85]. Other broad classes of results show that codes based on low-degree poly-
nomials over finite fields are locally testable [32, 111, 8, 78, 74]. Some attempt to
unify this collection of results using the concept of invariance of the code was made
in [80].

5. Testing combinatorial structures. In this section we discuss testing prop-
erties of combinatorial structures. Though a wide variety of combinatorial structures
have been studied, we will focus our attention on graphs and describe two mod-
els that have received a lot of attention: the case of dense graphs and the case of
bounded-degree graphs. Intermediate models appropriate for testing properties of
general graphs have also been investigated (cf. [9, 86, 25]). Property testers for com-
binatorial properties of matrices, strings, metric spaces, and geometric objects have
been devised.

5.1. Testing dense graphs. As we have previously mentioned, when consid-
ering a testing problem we first need to define how objects are represented and how
the testing algorithm can gain access to this representation, as well as what it means
for an object to be e-far from satisfying a property. For dense graphs, the most com-
mon representation is via an adjacency matriz. That is, for an n vertex graph G, its
adjacency matrix A = A(G) is the n x n matrix whose (4, 7)th entry is 1 if (¢,7) is
an edge of G, and 0 otherwise. In this subsection we consider testing graphs in the
adjacency matriz model, in which a graph G is given as input to the testing algorithm
represented via an adjacency matrix A. The tester can make an edge query—namely,
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to query what is the (7, j)th entry of A or, equivalently, whether ¢ and j have an edge
connecting them in G. We define two graphs G, G’ on n vertices to be e-far from each
other if one has to add/delete at least en? edges in G in order to make it isomorphic
to G'. We say that a graph G is e-far from satisfying a property P if it is e-far from
any graph satisfying . This model of property testing is appropriate for studying
dense graphs since the definition of what it means to be e-far essentially assumes that
the graph has at least en? edges. Note that if the graph has o(n?) edges, then an
algorithm that makes a constant number of edge queries is unlikely to detect any edge.
Let us say that a graph property P is easily testable if for any € > 0 there is a testing
algorithm for P whose number of queries depends only on € and is independent of size
of the input.

The above model of property testing was introduced in 1996 by Goldreich, Gold-
wasser, and Ron [61]. Before discussing the main results of [61], let us start by de-
scribing some implicit results that actually preceded [61], which were not even stated
as algorithms, let alone testing algorithms. Our starting point is a 1973 paper of
Brown, Erd6ds, and Sé6s [35], which considers the following extremal problem: What
is the maximum number of edges that can be present in a 3-uniform hypergraph? on
n vertices if it does not contain 6 vertices spanning 3 edges? Let us denote this quan-
tity by f(n). This question was answered by Ruzsa and Szemerédi [112] who showed
that n27°() < f(n) = o(n?). Both parts of this theorem turned out to be extremely
influential results in extremal combinatorics. The proof of the upper bound relies on
the following result, which has since become known as the triangle removal lemma.

THEOREM 4 (triangle removal lemma [112]). There is a function g : (0,1) — (0,1)
satisfying the following: If G is e-far from being triangle-free, then G contains at least
q(e)n3 triangles.

We claim that the above theorem immediately implies that we can test the prop-
erty of being triangle-free with a constant number of queries. Indeed, given ¢ > 0, we
sample a set S of 9/¢(e) triples of vertices of G, and accept the input if and only if
none of the triples spans a triangle. We clearly accept every triangle-free graph with
probability 1; hence the tester actually has 1-sided error. On the other hand, if G
is e-far from being triangle-free, then Theorem 4 implies that G has at least q(e)n3
triangles, so a randomly chosen set of 9/¢(¢€) triples of vertices will contain a triangle
with probability at least 1/2.

The proof of Theorem 4 is based on a (by now) simple application of the regularity
lemma of Szemerédi [117], a fundamental result in extremal combinatorics. Since the
constants involved in this lemma are huge, the proof of the removal lemma via the
regularity lemma only bounds ¢(e) from above by a tower of exponents of height
polynomial in 1/e. Obtaining a better upper bound on ¢(¢€) is a major open problem
in extremal combinatorics. One of the reasons for this is that, as shown by Ruzsa
and Szemerédi [112], Theorem 4 can be used to give a simple proof of Roth’s theorem
[109], which states that every subset of [n] of size £2(n) contains a 3-term arithmetic
progression. Therefore, improved bounds on ¢(¢) could give improved bounds on
Roth’s theorem.

If a graph G is e-far from being triangle-free, it clearly contains at least one
triangle. Therefore, we know that somewhere in G there is a small “proof” of the
fact that G is not triangle-free (in the form of a triangle). The novelty of Theorem
4 is that it shows that such a proof can be found by sampling a constant number of

2A k-uniform hypergraph H = (V, E) has a set of vertices V and a set of edges E where every
edge e € E has k distinct vertices of V. So a 2-uniform hypergraph is a (simple) graph.
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vertices. Stating this result as a robust characterization (as we have done in previous
sections), we can say that one should remove Q(n?) edges from G in order to make it
triangle-free if and only if G has 2(n?) triangles.

Let us consider now the property of being k-colorable. Since k-colorability cannot
be expressed using a finite number of forbidden subgraphs, it is not clear a priori that if
a graph is e-far from being triangle-free, then it necessarily contains even a single non-
k-colorable subgraph of small size! Another implicit result on testing graph properties
was motivated by a question of Erdés, who conjectured that if a graph G is e-far from
being k-colorable, then it must contain a non-k-colorable subgraph on at most c(e)
vertices. Bollobds et al. [34] confirmed this conjecture in the special case k = 2, and
Ro6dl and Duke [105] resolved the conjecture for arbitrary fixed k. An interesting
aspect of the proof of [105] is that they actually established that if G is e-far from
being k-colorable, then a randomly chosen set of vertices S of size ¢(e) spans a non-
k-colorable graph with high probability. We thus get, using the same argument that
we have used above in the case of testing triangle-freeness, that the result of [105]
implies that k-colorability is testable with a constant number of queries (and 1-sided
error). Like the proof of Theorem 4, the proof in [105] relies on the regularity lemma,
and thus it supplies only a huge upper bound for ¢(¢) given by a tower of exponents
of height polynomial in 1/e.

Let us now (finally) discuss the main result of Goldreich, Goldwasser, and Ron
[61]. A partition problem ® of order ¢ is defined using a sequence of ¢ positive reals
ai,...,aq, satisfying 3, a; = 1, as well as (5) + t nonnegative reals 3; ;. A graph
satisfies @ if one can partition V(G) into ¢ sets Vi,...,V; such that |V;| = a;n and
for every ¢ < j the number of edges connecting the vertices of V; to those of Vj is
ﬁi7jn2. Several basic graph properties can be expressed as partition problems. Some
examples are k-colorability, having a clique of a certain size, having a cut with a
certain number of edges, etc.

THEOREM 5 (see [61]). The property defined by a partition problem of order t is
testable with O(1/€*8) queries.

For the special case of testing k-colorability, the algorithm of [61] works by sam-
pling a set of O(1/¢€?) vertices and checking whether it spans a k-colorable graph. Thus
the result of [61] implies that if G is e-far, then it contains a non-k-colorable subgraph
of size O(1/€3). Recall that we have previously mentioned that both triangle-freeness
and k-colorability were (implicitly) shown to be testable by applications of the regu-
larity lemma [117], but with a huge dependence on e. The result of [61] was thus a
major breakthrough in two respects: first, it supplied a proof for the testability of k-
colorability which avoided the regularity lemma; second, it dramatically reduced the
dependence of the number of queries from a tower of exponents of height polynomial
in 1/e, to a mere (fixed) polynomial in 1/e.

It is natural to ask what is the size of the smallest non-k-colorable subgraph that
must exist in any graph that is e-far from being k-colorable. Komlés [83] has shown
that when k = 2 the answer is ©(y/1/¢). For k > 3, Alon and Krivelevich [10] have
improved the result of [61] by giving an O(1/€?) upper bound and an (1/¢) lower
bound. The following is still open.

PROBLEM 3. What is the query complexity of testing 3-colorability (in dense
graphs)?

Given the surprising “computer science” proof of the testability of k-colorability,
which avoided the regularity lemma, it is natural to ask whether a similar much more
efficient proof can be obtained for the case of testing triangle-freeness. Equivalently,
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we can ask whether one can obtain better bounds for the triangle removal lemma (The-
orem 4). Regretfully, [112] proved a (1/€)*1°81/€) lower bound for ¢(¢) in Theorem 4.
Given the huge gap between the best lower bound, which is just slightly superpoly-
nomial, and the best upper bound, which is a tower of exponents, the following is an
intriguing open problem.

PROBLEM 4. Improve the lower/upper bounds for the triangle removal lemma.

Note that the efficiency of a property tester is not directly related to the com-
plexity of deciding the property exactly: Though k-colorability is easily testable, the
property of k-colorability is N P-complete to determine—meaning that, though we
know how to verify that a certain coloring is a valid k-coloring, we have no idea how
to determine whether a graph has a k-coloring in time polynomial in the size of the
graph.

Though the proof of correctness of the property testers for k-colorability and
triangle-freeness that we have previously mentioned are involved, the algorithms them-
selves are very easy to describe: Pick a constant-sized random sample of the vertices,
query all the edges among this random sample, and then output “pass” or “fail,”
according to whether the graph spanned by the sample satisfies the property. Since
the sample is of constant size, the determination of whether the sample satisfies the
property could be made in constant time. We refer to such algorithms as “natural
algorithms.” In fact, all the constant time testers that were designed in the literature
are essentially natural algorithms. Modulo a technicality about how the final output
decision is made, Goldreich and Trevisan [67] essentially show that, for any graph
property that is easily testable, the natural algorithm gives a property tester. Thus,
all easily testable graph properties provably have easy-to-describe algorithms.

The work of [61] sparked a flurry of results in the dense graph model. As we have
mentioned before, the triangle removal lemma implies that triangle-freeness can be
tested with a constant, yet huge, number of queries. This result was extended in [5],
where it was (implicitly) shown that for any H the property of being H-free is easily
testable, though again the best known upper bounds are huge. Alon [3] showed that
the property of being H-free is easily testable with poly(1/¢) queries and 1-sided error
if and only if H is bipartite. This result was extended in [12] to hold for 2-sided error
testers as well. The triangle removal lemma was extended in [5] to arbitrary fixed
graphs H; that is, their extension states that if G is e-far from being H-free, then G
has f(e)n" copies of H, where h = |V (H)|. As above, this result immediately implies
that for any fixed H the property of being H-free is testable with a constant number
of queries.

A very interesting line of work was initiated in the work of Alon et al. [6], in
which they use a “functional” variant of the Szemerédi regularity lemma to show that
the property of a graph being induced H-free (that is, the graph does not contain
any induced copy of H as a subgraph) is easily testable for any constant-sized graph
H. The property tester given has an outrageous dependence on €. It was later shown
in [14] that testing-induced H-freeness indeed requires a superpolynomial number of
queries for (almost) any H.

Very recently, the above lines of work culminated in a result of Alon and Shapira
[15], which showed that one can completely characterize the class of graph properties
that are easily testable with 1-sided error in the dense graph model using a “natural
algorithm” as defined above.? Before describing their result, we make two definitions.
A graph property P is hereditary if it is closed under the removal of vertices (but

3See the discussion in [15] as to why it is natural to consider “natural algorithms” in this context.
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not necessarily under the removal of edges). A graph property P is semihereditary
if there is a hereditary graph property H such that (1) any graph satisfying P also
satisfies H and (2) for any € > 0 there is an M (e) such that any graph G of size at
least M (e) which is e-far from satisfying P does not satisfy H. The result of [15] is
then the following.

THEOREM 6 (see [15]). A graph property P is easily testable with 1-sided error
using a “natural algorithm” if and only if P is semihereditary.

Hereditary graph properties include all monotone graph properties (including
k-colorability and H-freeness), as well as other interesting nonmonotone graph prop-
erties such as being a perfect, chordal, or interval graph. The techniques used in
[15] are somewhat involved, and were based on the new functional variant of the Sze-
merédi regularity lemma that was developed in [6]. Previously in the literature, the
“regularity lemma” type of arguments were used to develop testers for graph prop-
erties that were characterized by a finite set of forbidden subgraphs. Here the set of
forbidden subgraphs may be infinite, and they are forbidden as induced subgraphs.
Theorem 6 was later reproved by Lovasz and Szegedy [91] using the machinery of
graph limits. It was also extended to hereditary properties of the hypergraph by Rodl
and Schacht [106] and by Austin and Tao [19]. We note that the above discussion
was about 1-sided error testers. When it comes to 2-sided error testers, [7] obtains a
characterization of the graph properties that are testable with 2-sided error.

The bounds supplied by Theorem 6 are huge. It is thus natural to ask whether
better bounds could be obtained for specific hereditary graph properties. We remind
the reader that the result of [14] supplies a (nearly complete) characterization of the
hereditary graph properties expressible by single forbidden induced subgraphs, and
can be tested using poly(1/€) queries. But for many hereditary graph properties that
cannot be so expressed, the question of whether they can be tested with poly(1/€)
queries is still open. For example, this question is open for graph properties that
include being perfect, chordal, or interval. More ambitiously, one could try and resolve
the following problem.

PROBLEM 5. Characterize the hereditary graph properties that are testable with
poly(1/e€) queries.

The hierarchy theorem in computation complexity is a basic result that says
that there are problems that can be solved within certain time/space constrains but
cannot be solved with significantly less time/space. It is natural to ask whether a
similar phenomenon holds in testing graphs (or other structures). Goldreich et al.
[62] have recently shown that for any function g(n) there is a graph property that can
be tested with ¢(n) queries but cannot be tested with o(g(n)) queries. Since essentially
any graph property can actually be tested with a constant number of queries which
is independent of n, it is natural to ask whether for any function ¢(e¢) there is a
graph property that can be tested with g(€) queries but cannot be tested with o(g(e)).
Somewhat surprisingly even the following problem is open.

PROBLEM 6. Is there an easily testable graph property, whose query complezity
is 2901/€) 2

The fact that this problem is open is quite remarkable, given the fact that the
only known upper bounds for testing many easily testable properties are those given
by the general result in Theorem 6, which are given by towers of exponents of height
polynomial in 1/e. The best lower bounds for testing an easily testable graph property
were given in [12], where it is shown that for every nonbipartite H the property of
being H-free has query complexity (1/¢)?(os1/),
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The only result similar in spirit to Problem 6 appears in [13], where it is shown
that for every function ¢(e) there is an easily testable graph property P, that cannot
be tested with 1-sided error with less than ¢(e) queries. We note that for every ¢ the
upper bound for testing P, is much (much) larger than ¢(e); therefore this theorem
does not give a (tight) hierarchy theorem for 1-sided error testers. Perhaps proving
such a hierarchy theorem could be a step towards resolving Problem 6.

There are many interesting properties that are not easily testable but do have
sublinear time property testers. For example, the graph isomorphism problem asks
whether two graphs are identical under relabeling of the nodes. In [55], it is shown
that the property testing problem requires 2(n) queries and that there is a property
tester for this problem which uses O(n®/4 polylogn) queries, which is sublinear in the
input size n2.

5.2. Testing bounded-degree graphs. We now turn our focus to the problem
of testing properties in bounded-degree graphs. We will see that the testability of a
problem is very sensitive to the model in which it is being tested. In this model we
fix an integer d which is an upper bound on the degrees of vertices in GG. Graphs
are represented using adjacency lists; that is, each vertex has a list containing its
neighbors in G (in an arbitrary order). The tester can access the representation of G
by asking what the ith neighbor of a vertex v is. We say that an n vertex graph G of
bounded degree d is e-far from another such graph if one needs to add/delete at least
edn edges in order to make G isomorphic to G'. We say that G is e-far from satisfying
a property P if G is e-far from any graph of bounded degree d that satisfies P.

The model of testing graphs of bounded degree was defined and first studied
by Goldreich and Ron [64]. As in the case of testing dense graphs, implicit results
related to testing bounded-degree graphs actually appeared before the model was
explicitly defined. Recall the result of R6dl and Duke [105], which we have previously
mentioned, that states that if a dense graph is e-far from being triangle-free, then it
contains a non-k-colorable subgraph on c(e) vertices. It is natural to ask if the same
is true in bounded-degree graphs. It is easy to see that the answer is negative. Even
when k = 2 a d-regular expander of logarithmic girth is far from being bipartite,
since in any bipartition the larger of the two sets contains a linear number of edges,
while any set of O(logn) vertices has no cycles and is in particular bipartite. This
implies that we cannot hope to test 2-colorability in bounded-degree graphs simply
by “looking” for a small non-2-colorable subgraph. In particular this means that we
cannot test 2-colorability using o(logn) queries and 1-sided error. As it turns out, if
G is far from being bipartite, then it must contain an odd cycle of length O(logn).

It is natural to ask how the answer to the above question changes for £ > 2.
Somewhat surprisingly it turns out that there are graphs that are far from being 3-
colorable, yet all sets of vertices of size ((n) span a 3-colorable graph. Actually, for
any k > 3 there are graphs that are far from being k-colorable, yet all sets of vertices
of size (n) span a 3-colorable graph. This result was proved in 1962 by Erdés [47],
and it implies that when considering bounded-degree graphs there is a much weaker
relation between the local and the global properties of a graph. In particular, it means
that any 1-sided error tester for 3-colorability has query complexity Q(n).

Getting back to [64], the main result of Goldreich and Ron was that any testing
algorithm for 2-colorability (even one with 2-sided error) must have query complexity
Q(y/n). This is a significant improvement over the 2(logn) bound we have mentioned
before which holds only for 1-sided error testers. Goldreich and Ron [65] later proved
that this Q(y/n) lower bound is essentially tight by giving a testing algorithm with

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



SUBLINEAR TIME ALGORITHMS 1577
query complexity O(y/n), which finds (with high probability) an odd cycle in any
graph that is far from being bipartite. An intriguing aspect of the result of [65] was
that as opposed to testing dense graphs, in which the algorithm itself is simple, the
bipartiteness testing algorithm of [65] is nontrivial. Similar ideas were later used in
testing other properties of bounded-degree graphs [41, 75, 63, 96].

Let us mention that Bogdanov, Obata and Trevisan [33] have shown that the Q(n)
lower bound for testing 3-colorability with 1-sided error, which we have mentioned
above, holds also for 2-sided error testers. Therefore, the trivial algorithm which
simply asks about all edges of G is essentially the most efficient one.

The fact that even 2-colorability cannot be tested with a constant number of
queries in bounded-degree graphs means that we cannot hope to obtain efficient testing
algorithms for arbitrary hereditary properties as in the case of dense graphs. For a
long time there was no general result on testing properties of sparse graphs similar in
nature to Theorem 6. In addition to the above-mentioned results on k-colorability, the
only other results on testing bounded-degree graphs appear in [64], where it is shown
that k-connectivity (for any fixed k), being Eulerian and being cycle-free, is testable in
bounded-degree graphs with a constant number of queries. A question that is raised in
[64] is whether planarity is testable in a bounded-degree graph with a constant number
of queries. In addition to being one of the most well studied graph properties, this
problem was interesting for two other reasons. First, planarity is “trivially” testable
in dense graphs since it is well known that a graph with more than 3n — 6 edges is
not planar. Therefore, it is natural to study the testability in the more appropriate
model of bounded-degree graphs. Second, as in the case of 2-colorability, it is easy
to see that planarity cannot be tested in bounded-degree graphs with 1-sided error
and o(logn) queries. This observation follows from considering high girth expanders.
These graph are far from being planar since they are far from having small separators,
and planar graphs have small separators by the result of Lipton and Tarjan [90]. On
the other hand, these graphs do not contain small nonplanar graphs since they have
large girth. It was thus natural to ask whether planarity can be tested with 2-sided
error and with a constant number of queries, since previously there was no hereditary
property that could be tested with 2-sided error (much) more efficiently than it could
be tested with 1-sided error. In a recent paper, Benjamini, Schramm, and Shapira [28]
resolved the above open problem by showing that planarity is testable with a constant
number of queries. More generally, the main result of [28] is that any minor-closed?
property is testable in bounded-degree graphs. The query complexity of the algorithm

poly(1/¢)
presented in [28] for testing planarity was 92" . This was recently improved in

[71] to 2P°W(1/€) The following problem, however, is still open.

PROBLEM 7. Can planarity be tested with poly(1/e€) queries?

Recall that we have argued above that planarity cannot be tested with o(logn)
queries and with 1-sided error. Moreover, it can be shown that planarity cannot be
tested with 1-sided error and o(y/n) queries. This suggests the following problem.

PROBLEM 8. Can planarity be tested with O(\/ﬁ) queries and 1-sided error?

A number of interesting recent results have given specialized property testing
algorithms which are significantly more efficient for any class of graphs with a fixed
excluded minor [43, 28, 46].

4A graph property is minor-closed if it is closed under the removal of edges and vertices as well
as under the contraction of edges.
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5.3. Combinatorial approach to testing Boolean functions. As we have
discussed in section 4, many properties of Boolean functions have been shown to be
testable. The techniques involved in almost all these results are algebraic in nature,
applying methods ranging from Fourier analysis to algebraic properties of error cor-
recting codes. Recently, methods that were “classically” applied to test properties of
graphs were applied to testing properties of Boolean functions. Let us give a brief
account of these developments.

As opposed to graphs, where we have a reasonably good understanding of the
properties that can be tested with a constant number of queries, our understanding
of the properties of Boolean functions that can be so tested is much more limited.
Following a work of Kaufman and Sudan [80], Bhattacharyya et al. [29] conjectured
that a certain family of properties of Boolean functions can be efficiently tested. The
original formulation of their conjecture is somewhat involved, but as observed in [114],
the conjecture of [29] is a special case of a problem slightly easier to formulate. Fix
a set of ¢ linear equations in k unknowns Mz = b over a finite field F (suppose
rank(M) = £). We say that a subset S C F is (M, b)-free if S’ contains no solution to
Mz = b. In other words, there is no vector v € S* satisfying Mv = b. We also say
that S is e-far from being (M, b)-free if one must remove at least ¢|F| elements from
S in order to get a set which is (M, b)-free. Finally, we say that a set of equations
Mz = b is nice if the following holds: if a subset S C F is e-far from being (M, b)-free,
then S contains at least 6(e)n*~* solutions to Mx = b, where 6(e) > 0 for every € > 0
and depends only on e.

Observe that if Ma = b is nice, then one can quickly test whether S is (M, b)-
free. Indeed, given S, we uniformly and independently sample 8/6(€) vectors satisfying
Mz = b and reject if and only if one of the vectors belongs to S*. If S is (M, b)-free,
then we clearly accept with probability 1. On the other hand, if S is e-far from being
(M, b)-free, then at least §(e)n*~¢ of the n*~¢ vectors satisfying Mz = b belong to
S%. Therefore, sampling 8/6(¢) of these vectors guarantees that we find such a vector
with probability at least 3/4.

The main result of [114] was that any set of linear equations is nice. This result
implies that the properties of Boolean functions studied in [29] are indeed testable,
thus confirming the conjecture there. The main tool used in [114] in order to prove this
result is the so-called hypergraph removal lemma. This result is the (far-reaching)
hypergraph variant of the triangle removal lemma, which we stated in Theorem 4.
This result was obtained recently by Gowers [68], Kohayakawa et al. [82], and Tao
[118]. As we have discussed in the previous subsections, these types of results were
very useful for showing the testability of graph properties, but as it turns out, they
seem to be useful also for studying properties of Boolean functions. Green [69] has
shown that if Mz = b consists of a single equation, then it is nice. He also conjectured
that every set of linear equations Max = b is nice. Green’s results on the niceness of
single equations were later reproved by Kral’, Serra, and Vena [88] using a very short,
elegant application of the graph removal lemma. Kral’, Serra, and Vena [89] later
extended their result from [88] and independently obtained a result equivalent to the
one in [114].

Many open problems related to this new approach are mentioned in [114]. Since
the statement of some of them requires some preparation, we refrain from quoting
them here and refer the interested reader to [114].

We conclude with one open problem which is similar in some aspects to the
investigation of the triangle removal lemma mentioned earlier. Suppose we consider
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the case when the field we work over is Fy, and we consider a single linear equation
x+y = z. Then the above result of Green [69] (as well as the later proofs) imply that
if S C F7 is such that one should remove at least €2™ of the elements of S in order to
make S free of solutions to x +y = 2, then S contains at least 6(¢)22" such solutions.
However, as in the case of the triangle removal lemma, the bound that one obtains
for §(e) is a function which approaches 0 extremely fast. This motivated Green [69]
to raise the following natural problem as to the possibility of obtaining polynomial
bounds.

PROBLEM 9. Suppose that one has to remove at least €2™ of the elements of subset
S CFY in order to destroy all solutions to x +y = z, with x,y,z € S. Is it true that
S contains at least €©22" such solutions, where C is an absolute constant?

This problem has been investigated recently by Bhattacharyya and Xie [31], who
obtained some lower bounds for C'. The problem, however, remains open.

6. Sublinear time approximation algorithms. Alongside the property test-
ing results, many sublinear time approximation schemes have been developed for
classical optimization problems. Some examples of such optimization problems in-
clude problems on graphs, metric spaces [73, 37], clustering [95], bin packing [21], and
weak approximations for string compressibility [102, 103] and edit distance [22]. In
the following, we will give a few intriguing examples of sublinear algorithms which
approximate the solutions to graph problems.

6.1. Cut and partition problems on dense graphs. Recall that testing
algorithms try to distinguish between objects satisfying a property and those that are
far from satisfying it. It is natural to ask whether the ideas used in the design/analysis
of testing algorithms can then be used in order to design algorithms that approximate
the distance of an object from one that satisfies the property or approximate any other
related quantity. The first example of a result of this nature already appeared in [61],
where it was shown that one can approximate the size of the largest cut in a dense
graph up to an error en? in time O(logt%). A similar result was also obtained by
Frieze and Kannan [54]. Tt was also shown in [61] that in time 2P°W(/€) 4-n - poly(1/€)
one can actually find a partition of an input graph which approximates the maximum
cut up to an error en?. Note that this running time is sublinear in the size of the graph,
which is O(n?). Actually, such an algorithm can be designed for all of the partition
problems discussed before the statement of Theorem 5. We note that the main idea
behind these approximation algorithms is to use the analysis of the respective property
testing algorithm. Perhaps the most general (and surprising) result of this type was
obtained by Fischer and Newman [57], who have shown that, in dense graphs, if a
graph property is easily testable, then one can also estimate how far (in terms of the
number of edge modifications required) an input graph is from satisfying the property,
up to an additive error of 6n?, in time that depends only on 4.

Recently the algorithm of [61] for approximating the graph partition problem was
extended by Fischer, Matsliah, and Shapira [56] to the setting of k-uniform hyper-
graphs. Besides being a natural generalization of the result of [61], the hypergraph
partition algorithm can be used in order to construct a regular partition of an input
graph (in the sense of Szemerédi’s regularity lemma). This algorithm improved over
several previous algorithms both in terms of the running time and in terms of the
“quality” of the partition it returns.

6.2. Connectivity and minimum spanning tree on sparse graphs. A sec-
ond set of examples of problems that have been conducive to sublinear time algorithms
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are the problems of estimating the number of connected components and the min-
imum spanning tree (MST) weight of a graph. Here we assume that the graph is
sparse and hence is represented in the adjacency list format. As we will see, the
problems of estimating the number of connected components and of estimating the
MST weight are related since one may use algorithms for estimating the number of
connected components in order to estimate the MST weight.

Estimating the number of connected components. Building on an idea of Goldre-
ich and Ron [64] in their tester for graph connectivity property, Chazelle, Rubinfeld,
and Trevisan [38] show that it is possible to additively estimate the number of con-
nected components in a bounded-degree graph to within en in time independent of
the number of nodes, as follows.

THEOREM 7 (see [38]). Let ¢ be the number of components in a graph with
n vertices and maximum degree d. Then there is an algorithm which runs in time
O(de=?log ¢) and with probability at least 3/4 outputs ¢ such that |c — ¢| < en.

(Note that similar results which depend on the average degree rather than the
maximum degree have been shown in [38] as well.) The main idea in estimating
the sizes of the components is as follows: For vertex u, let d, denote its degree
and m,, denote the number of edges in its component. Let ¢ denote the number of
connected components in graph G with vertex set V. Then, observe that for every
set of vertices I C V that forms a connected component, we have Zue I an—“u =1 and

Y uev 2?;; = ¢.> The value of ¢ can then be quickly approximated via this sum by
performing two types of approximations: The first is that instead of computing the

sum over all u of 2‘:; , we need compute only the average value of a sample of random

vertices u of an—“u, and this can be used to give a good approximation of the original
sum using standard sampling arguments. The second is that, for specific values of
u, we can estimate 2?;; rather than compute it exactly. Here we use the fact that
since we are aiming for an additive approximation, one does not need to do a good
job on estimating m,, for large components, say of size larger than d/e2, and in such
a case, even 0 gives a good approximation to d,/2m,. Furthermore, for all smaller
components, one can exactly compute m,, very quickly in O(d/e?) time.

Employing other tricks to reduce the running time, a nearly optimal algorithm
is given for achieving an additive estimate to within en of the number of connected
components of a graph. In [38], it is shown that Q(de~2) edge lookups are required,
assuming C/+/n < € < 1/2, for some large enough constant C. Though nearly tight,
the following question is open.

PROBLEM 10. Is it possible to additively estimate the number of connected com-
ponents to within € in time O(de™?)?

Estimating the weight of the MST. The above estimation of the number of con-
nected components in a graph is useful for the problem of estimating the weight of
an MST. Assume that we are given a graph G graph with n vertices and maximum
degree d, and that each edge is assigned an integral weight in the range [1, ..., w] (the
assumption that weights are integral can be removed with a slight loss in efficiency
of the algorithm). Chazelle, Rubinfeld, and Trevisan [38] show that the weight of the
MST can be estimated to within en additive error in time independent of n, depending
only on d, w, and e.

The idea of the algorithm is to show a relationship between the MST of a graph
G and the number of connected components of various subgraphs of G: For each

5For isolated vertices, we use the convention that dy/m. = 2.
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0 < ¢ < w, let G® denote the subgraph of G consisting of all the edges of weight
at most £. Define c¢) to be the number of connected components in G (with ¢(*)
defined to be n). By our assumption on the weights, c(*) = 1. Let M(G) be the
weight of the MST of G. Then the following claim relates the weight of the MST to
the number of connected components in the subgraphs G(©).

CLAIM 6.1 (see [38]). For integer w > 2,

w—1
MG =n—w+ Zc(i).
i=1

. Thus, to estimate the weight of the MST of G, it suffices to estimate the values
c\Y.

THEOREM 8 (see [38]). Let w/n < 1/2. Let v be the weight of the MST of G.
There is an algorithm that runs in time O(dwe =2 log dTw) and outputs a value ¥ that,
with probability at least 3/4, differs from v by at most ev.

In [38], a lower bound of Q(dwe=?) is shown (assuming that w > 1 and C'y/w/n <
€ < 1/2). Although this is nearly tight, it leaves us with the following question.

PROBLEM 11. Is it possible to approzimate the MST of a graph in time O(dwe?2)?

Czumaj et al. [40] have shown that, when supported with access to the input
via certain geometric data structures such as orthogonal range queries and cone ap-
proximate nearest neighbor queries, the MST for points in bounded-dimensional Eu-
clidean space can be estimated in time O(y/npoly(1/€))). For points on arbitrary
metric spaces, Czumaj and Sohler [42] have shown that one can compute a (1 + €)-
approximation in O(npoly(1/€)) time. More recently, some of these ideas have been
used to develop streaming algorithms for estimating the weight of the MST in [53].

6.3. Local distributed algorithms versus sublinear time algorithms for
sparse problems. Very recently, much progress has been made in finding sublinear
time approximation algorithms for a number of combinatorial optimization problems
that can be phrased as packing or covering problems with sparsity conditions. Such
problems include vertex cover, dominating set, and maximum matching on sparse
graphs, and set cover of sets with certain sparsity conditions. One key insight that led
to this flurry of results was given by Parnas and Ron [99], who observed a relationship
between local distributed algorithms and sublinear time algorithms. This relationship
allows one to take existing very efficient distributed algorithms for degree-bounded
distributed networks and to use them to construct sublinear time approximation al-
gorithms.

As an example, consider the vertex cover problem on graphs of degree at most
d, where d is a constant. Suppose one has an oracle that for any vertex v, tells the
vertex cover approximation algorithm whether or not v is in the vertex cover. Then,
using standard sampling arguments, one can show that a vertex cover approximation
algorithm which samples O(1/€?) vertices can get an en additive approximation to the
size of the vertex cover. But how does one get access to such an oracle? Parnas and
Ron note that if there is a local distributed algorithm, that is, a distributed algorithm
for vertex cover that runs in a number of rounds which is independent of the number of
vertices, then one can use it to construct such an oracle. (Note that in the distributed
algorithm it is assumed that the vertex cover is being computed on the interconnection
graph of the underlying distributed network of processors.) The reason for this is that
for constant k the k-neighborhood of any given vertex v, consisting of those vertices
within constant distance k of v, can be of only constant size. Thus, one can simulate
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the runs of any processor that is near enough to the processor assigned to vertex v so
that it might actually affect the computation of v’s processor within the time bound.
Parnas and Ron achieve an algorithm for approximating vertex cover using the local
distributed c-approximation algorithm of Kuhn, Moscibroda, and Wattenhoffer [87].
The approximation algorithms achieved in this way are not fully multiplicative nor
fully additive approximations; rather, they achieve an approximation factor with the
following behavior.

DEFINITION 6.1. We say that § is an («,B)-approximation to y if y < g <
a-y+p5.

Parnas and Ron get a (c, € - n)-approximation algorithm with query complexity
independent of n, namely, d°1°8(4/€) where d is a bound on the degree of the graph.
By devising an elegant new local distributed algorithm, which in turn uses ideas from
Luby’s parallel algorithm for the independent set problem [92], Marko and Ron [93]
later improved the upper bound to d°(°8(4/€)) where d is a bound on the degree of
the graph, giving a (2, € - n)-approximation algorithm for vertex cover.

Since Kuhn, Moscibroda, and Wattenhoffer [87] give a local distributed algorithm
for any packing or covering problem with certain sparsity requirements, the algorith-
mic paradigm of Parnas and Ron can be used for a large class of problems.

It is natural to wonder what is the best approximation guarantee o that an («, en)-
approximation algorithm can achieve in time that is a function only of the maximum
degree d and e. Trevisan complements the (2, €-n)-approximation algorithm for vertex
cover by showing that there is no such algorithm if « is a constant less than 2 [99].
Alon shows that o = Q(log d) for the minimum dominating set, and a = Q(d/logd)
for the maximum independent set [4]. Alon also gives an (O(dloglogd/logd), € - n)-
approximation algorithm for the maximum independent set.

Very recent work, using the same framework but constructing a new class of local
distributed algorithms for use in approximating these problems, has greatly improved
the dependence of the running time on d and € so that it is polynomial. Nguyen and
Onak [97] construct an algorithmic technique which simulates the standard sequential
greedy algorithm in a distributed and local way. Recall the greedy algorithm for vertex
cover which first selects an arbitrary maximal matching and then returns the set of
matched vertices as the vertex cover [58]. The maximal matching is in turn selected
by considering the edges in an arbitrary order and adding edges that are not adjacent
to edges already in the matching. A naive distributed implementation of this greedy
algorithm would be as follows:

1. Randomly assign a distinct rank r(u,v) to each edge (u,v), corresponding to
its rank in the arbitrary order used by the sequential algorithm.

2. Assign a processor to each edge (u,v) of the graph.

3. Each processor for (u,v) considers all edges adjacent to u and v and recur-
sively determines whether any of these edges that have lower rank than r(u, v)
have been placed in the matching.

4. If at least one of the adjacent edges is in the matching, then (u,v) is not in
the matching; otherwise, (u,v) is placed in the matching.

The correctness of the algorithm follows immediately from the correctness of the se-
quential greedy algorithm. While termination follows from the fact that the recursion
is always on lower ranked edges, showing query complexity bounds which are inde-
pendent of the number of nodes in the graph is more difficult. In fact, if » were to
be chosen adversarially rather than randomly, the query complexity of the algorithm
could be very bad. The difficulty in turning greedy algorithms into local or sublinear
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time sampling algorithms is in that the dependency chains of the recursion can be
of linear length. Nguyen and Onak show that if one randomly chooses the ranking
function 7, the dependency chains of each call are likely to be short. One can bound
the expected query complexity of a single oracle call by noting that the probability
that any recursion path of length k is explored is bounded by the probability that
the ranks of the edges are decreasing along the path, which is at most 1/(k + 1)!.
The number of neighbors at distance k is at most d*, and thus the expected number
of explored vertices is at most Y o, d*/(k + 1)! < e?/d, so that the expected query
complexity is at most O(e?). Formalizing an argument of this sort over several ora-
cle calls is nontrivial because of dependencies between the queries of the algorithm;
however, [97] is able to give such a formalization.

Building on this paradigm, Nguyen and Onak [97] showed that several classical
greedy algorithms can be transformed into constant-time approximation algorithms.
They give a (1, ¢ - n)-approximation algorithm for maximal matching with running
time that depends only on d and €, by locally constructing a sequence of improved
matchings. Other examples of problems their techniques apply to are vertex cover,
set cover, dominating set, and maximum weight matching.

Though the above algorithms are independent of n, as we saw above, the depen-
dence of [99, 93, 97] on other parameters such as d, € is less attractive and in many
cases superpolynomial. However, Yoshida, Yamamoto, and Ito [119] showed that a
specific implementation of the method of Nguyen and Onak yields dramatically bet-
ter dependence of the running times in terms of d and e. In the algorithm for the
vertex cover problem, whenever one considers adjacent edges ¢’ with r(e’) < r(e) for
a given edge e, it suffices to consider them in ascending number of their r(e’) and to
stop making recursive calls when a neighbor is found to be in the maximal matching
being constructed. The running time of the (2, en)-approximation algorithm for ver-
tex cover can then be bounded by O(d*/€?). For maximum matchings, the running
time of the (1, en)-approximation algorithm becomes do(/€) The following question
remains open.

PROBLEM 12. Is there a (1, en)-approzimation algorithm for mazimum matching
with query complexity poly(d/e)?

For certain classes of graphs, one can sometimes get even better results in terms of
both the approximation factors and the running time. As we have mentioned earlier,
recent results have given better algorithms, as well as better property testers, for
any class of graphs with a fixed excluded minor [43, 28, 46]. Though such graphs
may have arbitrary maximum degree, their average degree is bounded by a constant.
Very recently, Hassidim et al. [71] showed that for any class of graphs with a fixed
excluded minor there is a (1, en)-approximation algorithm for vertex cover, dominating
set, and maximum independent set, which runs in 2P°%W(1/€) time. Their algorithm
locally computes a partition of the graph into constant-size connected components
by removing a small number of edges. It is known, by the graph separator theorem
[90, 11], that such a partition exists after one removes any high-degree nodes (of which
there are few in a graph with an excluded minor). The removed edges can be covered
with a small number of vertices and thus do not alter the solution size significantly.
For the partitioned graph, an optimal solution can be found by computing an optimal
solution for each (constant size) connected component independently. The solution
size in the modified graph can then be approximated by sampling. It would be
interesting to solve the following problem.
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PROBLEM 13. Given an input graph from a family of graphs with an excluded mi-
nor, is there a (1, en)-approzimation algorithm for vertex cover with query complexity

poly(1/e)?

7. Some final comments. We have seen several contexts in which one can
test properties in sublinear time. We emphasize that we have touched on only a few
topics of interest within sublinear time algorithms. There are many recent results
giving sublinear time algorithms and property testers for a wide variety of problems.

The study of sublinear time algorithms has led to a new understanding of many
problems that had already been well studied. For example, some of these algorithms
have even resulted in better linear time approximation algorithms than what was
previously known, such as for the problem of max cut [61] and very recently for the
problem of estimating the edit distance [16]. A second example is the use of homomor-
phism testers as an ingredient in the construction of probabilistically checkable proof
systems, which provide a way to write down a proof so that another person can verify
it by viewing only a constant number of locations (cf. [17]). A third example is the
impact of sublinear time algorithms on the development of algorithms for streaming
data (cf. [53]). Much still remains to be understood about the scope of sublinear time
algorithms, and we expect that this understanding will lead to further insights.
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