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Abstract

Multiscale agent-based modeling (MABM) has been widely used to simulate
Glioblastoma Multiforme (GBM) and its progression. At the intracellular level, the
MABM approach employs a system of ordinary differential equations to describe
quantitatively specific intracellular molecular pathways that determine phenotypic
switches among cells (e.g. from migration to proliferation and vice versa). At the
intercellular level, MABM describes cell-cell interactions by a discrete module. At the
tissue level, partial differential equations are employed to model the diffusion of
chemoattractants, which are the input factors of the intracellular molecular pathway.
Moreover, multiscale analysis makes it possible to explore the molecules that play
important roles in determining the cellular phenotypic switches that in turn drive the
whole GBM expansion. However, owing to limited computational resources, MABM is
currently a theoretical biological model that uses relatively coarse grids to simulate a
few cancer cells in a small slice of brain cancer tissue. In order to improve this
theoretical model to simulate and predict actual GBM cancer progression in real
time, a graphics processing unit (GPU)-based parallel computing algorithm was
developed and combined with the multi-resolution design to speed up the MABM.
The simulated results demonstrated that the GPU-based, multi-resolution and
multiscale approach can accelerate the previous MABM around 30-fold with relatively
fine grids in a large extracellular matrix. Therefore, the new model has great potential
for simulating and predicting real-time GBM progression, if real experimental data are
incorporated.

Background
Glioblastoma multiforme (GBM) is the most common and aggressive brain cancer

[1,2]. Statistics show that it has the worst prognosis of all central nervous system

malignancies [3,4]. However, with the resolution of functional magnetic resonance ima-

ging (fMRI) [5,6], currently limited to around 2-3 mm, even the most experienced clin-

ical personnel cannot accurately forecast GBM progression. The difficulties of making

such forecasts motivated computational biologists to develop multiscale mathematical

models to explore the expansion and invasion of GBM [7-9].

Cancer behaves as a complex, dynamic, adaptive and self-organizing system [10], and

agent-based models (ABM) are capable of describing such a system as a collection of

autonomous and decision-making agents, which represent the cells. Therefore, compu-

tational biologists hope that with the ABM approach they can surpass the current
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limitations of imaging technology and predict tumor progression [11-16]. Our previous

studies [15,16] developed various multiscale ABMs to simulate GBM progression. In

these models, a cell’s intracellular epidermal growth factor receptor (EGFR) signaling

pathway is stimulated by a chemoattractant (such as transforming growth factor a
(TGFa)), which diffuses at the tissue level. We also assumed that the transient rate of

change of phospholipase Cg (PLCg ), an important molecule in the EGFR pathway, will

result in cancer cell migration, whereas a smooth rate of change of PLCg will result in

cancer cell proliferation [11,12,15,16]. At the intercellular scale, the behaviors of cells

(such as the autocrine or paracrine secretion of chemoattractants and migration or

proliferation phenotypes) remodel the tumor microenvironment and affect the overall

tumor dynamics at the tissue level.

An important advantage of multiscale agent-based modeling (MABM) [15,16] is that

we can employ multiscale analysis to investigate the incoherent connections among

various scales. For example, we can depict the intracellular (molecular) profiles that

lead to phenotypic switches at any cell’s dynamic cross points (migration cell number

crosses with proliferation cell number) [15] or in the interesting tumor regions [16].

Thus, MABM models [15-17] can be used as tools for generating experimentally testa-

ble hypotheses. The consequent validation experiments may reveal potential therapeu-

tic targets.

Though MABM approaches have a great potential for investigating GBM progres-

sion, their complexity necessitates immense computational resources [15,17], which

becomes forbidding for real-time simulations of spatio-temporal GBM progression. In

fact, two problems prevent MABM doing real-time simulation. The first is that the

computation time required for intracellular pathway computing for cancer cells will

become huge, since a real cancer system may consist of millions of cells. The second is

that it is impossible to employ a conventional sequential numerical solver to model the

real-time diffusion of chemoattractants in a large extracellular matrix (ECM) with rela-

tively fine grids.

To overcome the computation time problems, this study incorporates a graphics pro-

cessing unit (GPU)-based parallel computing algorithm [18] into a multi-resolution

design [16] to speed up the previous MABM [15,17]. The multi-resolution design [16]

classified the cancer cells into heterogeneous and homogeneous clusters. The heteroge-

neous clusters consisted of migrating and proliferating cancer cells in the region of

interest, whereas the homogeneous clusters comprised dead or quiescent cells. The

limited computational resource was concentrated on the heterogeneous clusters to

investigate the molecular profiles of migrating and proliferating cancer cells, while the

quiescent and dead cells in the homogeneous clusters were treated with less of the

resource. The GPU-based parallel computing algorithm can not only model the diffu-

sion of chemoattractants in a large ECM with relatively fine grids in real time, but also

process computing queries concerning the intracellular signaling pathways of millions

of cancer cells in a real cancer progression system.

The results presented in this paper demonstrate that the GPU-based multi-resolution

MABM has certain novel features that can help cancer scientists to explore the

mechanism of GBM cancer progression. First, it is able to simulate real-time cancer

progression in a large ECM with relatively fine grids. Second, since multiscale analysis

[15,17] can reveal the correlations between GBM tumor progression and molecular
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concentration changes, we can tell which molecular species are the important biomar-

kers that impact tumor progression. Third, a multi-resolution design [16] not only

allows us to visualize cancer progression by displaying all the cancer cell clusters in

the tissue, but also enables us to track each cancer cell’s trajectory.

In the following sections, we will introduce the previously-developed multiscale and

multi-resolution ABM, describe how to use GPU to accelerate the simulation of the

model, and finally illustrate the advantages of the model that can be used to analyze

important biomarkers to inhibit GBM expansion and predict GBM progression.

Mathematical model
Multiscale perspective

The multiscale approach was incorporated into ABMs to simulate GBM progression by

incorporating into the model the interactions between different scales - the intracellu-

lar (gene-protein interaction) and the cellular (including cell-cell interactions and phe-

notypic switches e.g. from migration to proliferation and vice versa) - which in turn

affect the spatio-temporal evolution of GBM (tissue scale). The relationships among

the intracellular, cellular and tissue scales were conceptually defined as “interfaces”. As

indicated in Figure 1: (a) A cell’s phenotype is defined as an interface between the

intracellular and intercellular levels. The signaling pathway at intracellular level deter-

mines the cell’s phenotype, which regulates intercellular behaviors. (b) We denote the

diffusion of chemoattractants as an interface between the intercellular and tissue levels.

At the tissue level, cells secrete chemoattractants that diffuse according to their con-

centration gradients and remodel the microenvironment of the tumor. (c) A cell’s

pathway receptors are defined as an interface between tissue and intracellular level.

The paracrine or autocrine effects of chemoattractants on the tissue level are sensed

by cellular receptors and trigger intracellular signaling pathways to determine a cell’s

phenotype.

Intracellular scale

At the intracellular scale, the model employs a system of ordinary differential equations

(ODEs) to describe the intracellular EGFR molecular pathway (Figure 2) shown in

equation 1.

Figure 1 Multiscale model of GBM growth.
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dXi

dt
= αi · Xi − βj · Xj (1)

where Xi is the mass of ith molecule of the implemented EGFR signaling network,

and ai and bi are respectively the rates of synthesis and degradation of that molecule.

The details of equation 1 are listed in Table 1 [16].

Giese et al. [19] indicated that a GBM cell will not migrate and proliferate at the

same time (known as the proliferation-migration dichotomy). In addition, Dittmar et

al. [20] reported that a transient increase in phospholipase Cg (PLCg) results in (breast)

cancer cell migration. Therefore, we assumed [11,12,15] that once the rate of change of

a GBM cell’s phosphorylated PLCg exceeds the average rate of change of phosphory-

lated PLCg in cells switching phenotype, the cell becomes migratory; otherwise, it

adopts the proliferative phenotype. These conditions for a phenotypic switch are repre-

sented by equation 2.
⎧⎪⎨
⎪⎩

migration, if
d (PLCγ )

dt
> Avg

proliferation, if
d (PLCγ )

dt
≤ Avg

(2)

where
d (PLCγ )

dt
denotes the rate of change of phosphorylated PLCg concentration,

and Avg describes the average rate of change of phosphorylated PLCg of cells switching
phenotype at the time step.

Intercellular scale

A discrete module is employed to simulate a cell’s intercellular behaviors. At each time

step, a cell will choose the location with highest attraction value to migrate or spawn

its off-spring. This process is represented by equation 3 [9,15,17,21].

Tij = ψ · Eij + (1 − ψ) · εij, (3)

where Tij denotes the attractiveness of location (i,j), Eij is the concentration of TGFa
at location (i,j), and εij ~N[μ,s2] is an error term that is normally distributed with

mean μ and variance s2. The parameter Ψ takes on a positive value between zero and

Figure 2 Intracellular EGFR molecular pathway.
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one and represents the precision of search. Here we choose Ψ = 0.7 on the basis of

previous works [9,13,15,17].

Tissue scale

The chemoattractant diffusion in the tissue is modeled by the diffusion equation 4.

∂Y
∂t

= D · ∇2Y − U + S, (4)

where Y is the concentration of chemoattractant, D is the diffusivity of chemoattrac-

tant, t is the time step, and U and S are respectively the cell’s chemoattractant uptake

and secretion rates.

Table 1 [16] - (1) Components of the EGFR gene-protein interaction network, (2) Kinetic
equations employed to describe the reactions between the EGFR species, (3) Coefficients
of the EGFR gene-protein interaction network taken from the literature

(1)

Symbol Molecular variables Initial Condition

X0 Glucose 25mM

X1 TGFa 9010.55nM

X2 EGFR 100nM

X3 TGFa -EGFR 0nM

X4 (TGFa -EGFR)2 0nM

X5 TGFa -EGFR-P 0nM

X6 PLCg 10nM

X7 TGFa-EGFR-PLCg 0nM

X8 TGFa-EGFR-PLCg-P 0nM

X9 PLCg-P 0nM

X10 PLCg-P-I 0nM

(2)

dX1/dt=-v1 (1) v1 = k1X1X2-k-1X3 (11)

dX2/dt=-v1 (2) v2 = k2X3X3-k-2X4 (12)

dX3/dt = v1-2v2 (3) v3 = k3X4-k-3X5 (13)

dX4/dt = v2+v4-v3 (4) v4 = V4X5/(K4+X5) (14)

dX5/dt = v3+v7-v4-v5 (5) v5 = k5X5X6-k-5X7 (15)

dX6/dt = v8-v5 (6) v6 = k6X7-k-6X8 (16)

dX7/dt = v5-v6 (7) v7 = k7X8-k-7X5X9 (17)

dX8/dt = v6-v7 (8) v8 = V8X9(K8+X9) (18)

dX9/dt = v7-v8-v9 (9) v9 = k9X9-k-9X10 (19)

dX10/dt = v9 (10)

(3)

Forward rate (s-1) Reverse rate (s-1) Michaelis constants (nM) Maximal enzyme rates (nM s-1)

k1 = 0.003 k-1 = 0.06 K4 = 50 V4 = 450

k2 = 0.01 k-2 = 0.1 K8 = 100 V8 = 1

k3 = 1 k-3 = 0.01

K5 = 0.06 k-5 = 0.2

K6 = 1 k-6 = 0.05

K7 = 0.3 k-7 = 0.006

k9 = 1 k-9 = 0.03
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In general, the multiscale approach incorporates three different scales: intracellular,

intercellular and tissue. The intracellular gene-protein interaction pathway affects the

intercellular scale by determining a cell’s phenotype. In turn, the chemoattractants dif-

fusing at the tissue level affect both the intracellular and tissue scales by stimulating a

cell’s molecular pathway and remodeling the tumor cells’ microenvironment. An

important advantage of the multiscale ABM approach is that it can be used to analyze

and expose the incoherent relations among the different scales. Such analysis may

result in experimentally testable hypotheses. However, owing to the complexity of

these types of models, real-time simulations of systems with realistic sizes are extre-

mely difficult because forbiddingly huge computation is required. For example, it took

approximately seven computing hours on a high performance CPU (IBM Bladecenter

machine, dual-processor, 32-bit Xeons ranging from 2.8-3.2 GHz, 2.5 GB RAM, and

Gigabit Ethernet) to simulate approximately twenty thousand cells (final state) in a

100*100*100 extracellular matrix with relatively coarse grids (around 20 μm) for 20

days [15,17]. Therefore, a realistic in vitro tumor simulation with millions of cells on

relatively fine grids would require an immense simulation time. To minimize the simu-

lation time and simulate real-time cancer progression, a multi-resolution design [21]

was incorporated into the multiscale ABM.

Multi-resolution perspective

A multi-resolution design is used to relieve the huge computational resource demand

of MABM and visualize tumor progression at various resolutions. In this approach,

more computational resource is allocated to heterogeneous regions of the cancer and

less to homogeneous regions. In summary, the aim of the multi-resolution approach is

to reduce the simulation computing time by sacrificing the accuracy of the simulated

results compared with the original MABM.

To implement the multi-resolution design, a double resolution lattice is developed

[16] as in Figure 3. The low resolution lattice size spacing is set to 62.5 μm, which is

equal to the smallest unit of the hemocytometer [22] used in experiments. A high-

resolution grid with a lattice spacing of 10 μm (approximately equal to a GBM cell dia-

meter) is superimposed on the low resolution grid. Here, we define a cell cluster as a

group of cells located at a grid point of the low resolution lattice. If cells occupy all

the locations of the high resolution lattice affiliated with the grid point of the low reso-

lution lattice, this cell cluster is denoted as a dense cluster.

Each cancer cell is classified as belong to either a heterogeneous or a homogeneous

cluster. Described by Figure 4, only the profile of a cell belonging to a heterogeneous

cluster is computed to determine its phenotype switch [16]. Cancer cells in the homo-

geneous clusters are treated as a single big ‘cell’. The classification method is as fol-

lows: if all the topographic neighborhoods of a dense cluster are themselves dense,

then this cluster is deemed homogeneous; otherwise, it is heterogeneous. Since in the

multi-resolution approach the intracellular molecular pathway is computed only for

cells belonging to heterogeneous clusters to determine phenotypic switches, the overall

computation time required for the simulation is significantly less than in the MABM.

However, in a realistic cancer progression system, even the heterogeneous clusters of

the multi-resolution approach will consist of millions of cells, implying that an enor-

mous computational resource is required to process the cells’ intracellular molecular

Zhang et al. Theoretical Biology and Medical Modelling 2011, 8:46
http://www.tbiomed.com/content/8/1/46

Page 6 of 17



Figure 4 Multiscale and multi-resolution model.

Figure 3 Configuration of coupled high-resolution and low-resolution lattices.
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pathways in real time. Furthermore, in order to simulate a realistic cancer progression

system, we must employ relatively fine grids to model the tumor’s microenvironment.

This makes it hard to use current sequential PDE solvers to simulate the diffusion of

chemoattractants. For these reasons, this study incorporated a GPU-based parallel

computing algorithm into the multi-resolution MABM to accelerate both the ODE and

PDE numerical solvers.

GPU-based parallel computing algorithm

A modern GPU is essentially a massively-parallel, explicitly programmable co-proces-

sor consisting of hundreds of programmable processors with a natural programming

hierarchy [23]. This hierarchy can mimic the bottom-up organization of ABM models

by setting the intracellular and intercellular scale computations at the bottom (com-

municating locally via the fast shared memory of the GPU) of the hierarchy on the

GPU while coordinating the logic control module of the model on the CPU. Modern

GPU programming is sufficiently flexible to take advantage of the multi-resolution

design by dynamically focusing GPU computing resources on the currently heteroge-

neous regions of the cancer. Fermi GPUs (GTX 480) have up to 480 processors,

which can be bundled together to provide thousands of individual GPU processors.

This system can provide significant benefits towards scaling feasible MABM model

computations, which help us to approach the target of simulating realistic tumor

growth problems [23]. To speed up the current multi-resolution MABM, we paralle-

lized both the chemoattractant diffusion module and the intracellular EGFR pathway

module.

Speeding up the computation of the intracellular EGFR molecular pathway module

A GPU-based parallel ODE solver (Figure 5) was developed to process intensive com-

puting queries from tens of thousands of GBM cells during simulations of tumor

expansion. For cancer cells in the aforementioned heterogeneous clusters, equation 1

is used to determine a phenotypic switch. If we still use a sequential ODE solver to

process the computation cell by cell in the heterogeneous clusters, it would be impos-

sible to obtain the results in a reasonable time range. For example, it took around 25

seconds to run one step of ODE processing for 260 thousand cells with the sequential

Figure 5 Parallel ODE Solver.
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solver. The GPU-based ODE parallel computing algorithm can simultaneously process

the computing queries for the cells in the heterogeneous clusters by assigning each cell

a thread as shown in Figure 5, which results in a significant increase in the model’s

performance up to 5.2-fold. In this case, only global memory is employed to accelerate

the computation.

Speeding up the diffusion module

Previous research [18] has already developed three GPU-based parallel algorithms to

accelerate the numerical solution of the reaction-diffusion PDE equation (equation 4)

by integrating an alternating direction scheme (ADI) [24], Thomas algorithm [24,25]

and domain decomposition strategy [26,27], which were incorporated into the new fea-

tures of GPU technology. The first approach is a parallel computing algorithm with

global memory (PGM). The second is a parallel computing algorithm with shared

memory, global memory and CPU synchronization [18,28-30] (PSGMC). The third is a

parallel computing algorithm using shared memory, global memory and GPU synchro-

nization [18,29,31] (PSGMG). PSGMC and PSGMG use a “tiles” strategy to decompose

the data and utilize both global memory and shared memory with the classical alter-

nating Schwarz domain-decomposition method [24,26,27,32,33]. Our recent publication

[18] demonstrated that PSGMG (Figure 6 [18]) is the fastest parallel algorithm for

speeding up the numerical solver of the diffusion equation. Thus, this research

employed PSGMG to accelerate the diffusion solver of MABM.

Results
Our code was written in Microsoft Visual Studio C++ [34,35] and NVCC [36] pro-

gramming languages, We ran the simulation 10 times with different random number

seeds (1-100 time steps, one time step being equivalent to one hour) on a Dell work-

station with Fermi GeForce GTX 480 [37-39] and obtained the average result. The

initial condition is described in Table 1.

Figure 6 The flowchart of PSGMG.
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Multiscale analysis

Relationship between the tumor cell population and switching molecular profile

Figure 7 describes the population of tumor cells as a function of time, where red, blue

and black represent migratory cells, proliferative cells and all the tumor cells, respec-

tively. Since the cell cycle requires several time steps to switch a cell’s phenotype, a

marked change appears at around t = 25 . From Figure 7, we observed that the prolif-

eration curve (blue) crossed the migration curve (red) at t = 27 and 36; moreover, both

curves became flatter when approaching t = 100. As mentioned earlier [15,17], a multi-

scale analysis can be used to investigate the incoherent relationships between the cells’

behaviors (phenotypic switches) and their intracellular molecular profiles. Such an

investigation is presented in Figure 8, where we depict the concentrations of different

molecules in the EGFR network at the three time points mentioned above when phe-

notypic switches from proliferation to migration or from migration to proliferation

occur. In particular, Figure 8(a), (b) and 8(c) show the molecular profiles of cells that

switch their phenotypes from proliferation to migration at time points 27, 36 and 100,

respectively; Figure 8(d), (e) and 8(f) show the molecular profiles of cells that switch

their phenotypes from migration to proliferation at time points 27, 36 and 100, respec-

tively. We infer that the average percentage rates of change of X8 (TGFa-EGFR-PLCg-
P), X9 (PLCg-P) and X10 (PLCg-P-I) are larger than the average percentage rates of

change of X1, X2, X3 and X6 (TGFa, EGFR, TGFa -EGFR and PLCg). In the early time

stages (time steps 27 and 36), the average percentage rates of change of the molecular

species of cells switching their phenotype from proliferation to migration (Figure 8(a)

and 8(b)) are significantly greater than the average percentage rates of change of the

Figure 7 Population of tumor cells. The red color represents migratory cells, the blue represents
proliferating cells and the black represents all the tumor cells. The x axis represents the time step and the
y axis represents the total number of tumor cells.
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molecular species of cells switching their phenotype from migration to proliferation

(Figure 8(d) and 8(e)). Also, a significant percentage rate of change of X9 (PLCg-P)
resulted in the phenotypic switch. However, the difference between these two molecu-

lar profiles (Figure 8(c) and 8(f)) is not as obvious at the final stage (t = 100) as in the

early stages. In addition, a very trivial percentage rate of change of X9 (PLCg-P) caused
a phenotypic switch.

Advantages of the multi-resolution approach

Visualization of cancer progression at various resolutions

The multi-resolution MABM is capable of describing tumor progression at various resolu-

tions. Figure 9 shows tumor progression in the low resolution lattice at time points 1, 27,

36 and 100. The black represents heterogeneous cell clusters and the green represents

homogeneous cell clusters. We can already see from Figure 9 that the tumor has a core of

homogeneous clusters and a rim of heterogeneous clusters. We can visualize the GBM

cancer cells’ behaviors in the high-resolution lattice at the same time steps. For example,

we can choose any cluster and show each cell’s phenotype and position in the cluster as

shown in Figure 10. Here, red represents migratory cells, blue represents proliferating cells

and green represents quiescent cells. Finally, we can track each cell’s trajectory as shown

in Figure 11, where we show the position of a single cell from time steps 1 to 100.

Speed-up of the multiscale and multi-resolution ABM by GPU

GPU-based MABM versus sequential MABM

Figure 12(a) shows that the GPU-based MABM is much faster than the sequential

MABM model. It is clear from this figure that the parallelized code runs at least an

order of magnitude faster than the sequential algorithm. In particular, the speedup is

markedly increased with respect to the finer grids.

GPU-based multi-resolution MABM versus GPU-based MABM

The GPU-based MABM is accelerated further when the multi-resolution design is

incorporated into it. Figure 12(b) shows that the GPU-based multi-resolution MABM

has a better performance than the GPU-based MABM.

Figure 8 Molecular profile of GBM cells that switch their phenotypes from proliferation to
migration at time step t = 27 (a), t = 36 (b) and t = 100 (c). Molecular profile of GBM cells that
switch their phenotypes from migration to proliferation at time step t = 27 (d), t = 36 (e), and t =
100 (f). The x axis represents the components of the EGFR gene-protein interaction network and the
average percentage rate of change of each component is represented by heatmaps. (Note: PM =
phenotypic switch from proliferation to migration; MP = phenotypic switch from migration to proliferation).
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Speeding up the multi-resolution MABM model with a large cell population

As indicated in Figure 12(b), the GPU-based parallelized ODE solver cannot exhibit its

advantage in significantly increasing the performance of the code when the cell popula-

tion is small, because the diffusion module consumes most of the computational

resource. However, Figure 12(c) demonstrates that as the tumor cell number increases

on a 514 by 514 high-resolution lattice, the GPU-based parallelized ODE can signifi-

cantly increase the performance of the model.

Discussion and Conclusions
Recently, a variety of cancer research reports have indicated that the EGFR pathway

plays an important role in the directional motility [40-42], mitogenic signaling [43,44]

and phenotypic switching of cancer cells [20,45]. In particular, Dittmar et al. [20]

demonstrated that PLCg , a molecular species in the EGFR downstream pathway

[46,47], is transiently activated in breast cancer cells to a greater extent during migra-

tion. In addition, experimental observations of GBM suggested that at the same time

interval, migrating tumor cells seldom proliferate and proliferating cells seldom migrate

[19]. On the basis of these experimental results, Athale et al. [11] assumed that if the

percentage rate of change of the phosphorylated PLCg concentration exceeds a pre-

specified threshold, GBM cells will migrate; otherwise, they will proliferate. Using this

assumption, Athale et al. [11,12] and Zhang et al. [15] developed several in silico 2D

and 3D MABMs to investigate how perturbations in the intracellular EGFR gene-pro-

tein network affect the progression of the entire tumor at the intercellular and tissue

scales.

Figure 9 Tumor progression in the low resolution lattice at time steps t=1 (a), t=27 (b), t=36 (c)
and t=100 (d). The black color represents heterogeneous cell clusters and the green color represents
homogeneous cell clusters.
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Figure 10 Cells’ behavior on the high-resolution lattice at time steps t=1 (a), t=27 (b), t=36 (c) and
t=100 (d). The red color represents migratory cells, the blue color represents proliferating cells, and green
represents quiescent cells. The x and y axes represent the x- and y-coordinates of the grid points on the
high-resolution lattice, respectively.

Figure 11 Trajectory of a single cell. The x axis represents the time step. The y and z axes represent the
x- and y-coordinates of the grid points on the high-resolution lattice, respectively.
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However, the above works [11,12,15] were limited by the available computational

resources. As indicated by previous research [16], simulating 3D cell growth with an

ABM model is very time consuming. Scale-up analysis showed that one such simula-

tion would take about 40 days with an IBM Bladecenter machine (dual-processor, 32-

bit Xeons ranging from 2.8-3.2 GHz, 2.5 GB RAM, and Gigabit Ethernet), which is

practically impossible. This limitation prevents simulation using MABMs from model-

ing more realistic large cancer systems. Therefore, the present research incorporated

GPU-based parallel computing algorithms combined with a multi-resolution design

into a multiscale ABM to simulate real-time actual GBM cancer progression. The in

silico results demonstrated that our GPU-based multi-resolution MABM can be used

not only to investigate the incoherent relationships among various scales during cancer

progression and visualize tumor progression at different resolutions, but also to over-

come the computational resource shortage problem and simulate actual cancer pro-

gression in real time.

As is well known, computer simulations of complex agent-based systems result in

various emergent behaviors due to non-linear interactions among the agents, which in

Figure 12 (a) Computation time of GPU-based multiscale model and sequential multiscale model.
The x-axis represents the high-resolution lattice size and the y-axis represents the computation time
(logarithmic scale with base 10) in milliseconds. The blue bar represents the computation time of the
sequential multiscale model and the red bar represents the computation time of GPU-based multiscale
model. The number on each red bar indicates the speed of the parallelized algorithm divided by the
speed of the sequential algorithm. (b) Computation time of GPU-based multi-resolution and
multiscale model and GPU-based multiscale model. The x axis represents the high-resolution lattice size
and y axis represents the computation time (logarithmic scale with base 10) in milliseconds. The blue bar
represents the computation time of GPU-based multiscale model and the red bar represents the
computation time of the GPU-based multiscale and multi-resolution model. The number on the red bar
indicates the speed-up of the GPU-based multiscale model. (c) Computation time of GPU-based multi-
resolution and multiscale model with parallel ODE and PDE modules and with only parallel PDE
module. The x axis represents the total cell number and the y axis represents the computation time in
milliseconds. The blue bar represents the computation time of the GPU-based multi-resolution and multi-
scale model with only the PDE solver parallelized. The red bar represents the computation time of the
GPU-based multi-resolution and multiscale model with both the ODE and PDE modules parallelized. The
number on the red bar indicates the speed-up of the GPU-based multiscale and multi-resolution model
with only the PDE module parallelized.
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our case are the cancer cells. Similarly, the multiscale analysis of our simulation results

revealed various emergent findings. First, the molecular profiles of cells switching phe-

notypes from proliferation to migration (PM) and from migration to proliferation (MP)

have very similar patterns (Figure 8). Second, we found that X8 (TGFa-EGFR-PLCg-P)
and X10 (PLCg-P-I) correlated strongly with the rate of change of X9 (PLCg-P), which
determined the cell’s phenotypic switch (Equation 2), whereas X1 (TGFa), X2 (EGFR),
X3 (TGFa -EGFR) and X6 (PLCg) were independent of the rate of change of X9 (PLCg-
P). Third, at early time stages, a high percentage rate of change of PLCg caused the

cell’s phenotype to switch from proliferation to migration and a comparatively low per-

centage rate of change in PLCg caused a switch from migration to proliferation; but

the difference in PLCg between these two molecular profiles (MP and PM) was very

small in the final simulation stage. It is noted that the simulation data are from a four

day experiment, so we set the simulation duration at 100 hours. These findings imply

that the external input (TGFa), the major stimulator of the EGFR pathway, cannot

change the concentration of PLCg substantially at the end stage of simulation.

The multi-resolution design allowed us to visualize the tumor progression at various

resolutions. Our simulated results revealed that the heterogeneous clusters consisting

of cells with various phenotypes were always on the outer regions of the tumor. In

addition, we were able to explore the cells’ behavior in the heterogeneous clusters.

Using a high resolution lattice we investigated the cells’ positions and phenotypes at

different time steps. Moreover, the multi-resolution design enabled us to track a cell’s

trajectory.

We also showed that the performance of the model was significantly improved by

employing GPU-based parallel computing algorithms. We showed that the parallelized

algorithm (PSGMG) is much better than the sequential algorithm on large lattices or

when the cell population is large.

In summary, the simulation results demonstrated that the GPU-based multi-resolu-

tion MABM has great potential for simulating actual GBM tumor progression in real

time. In the near future, we plan to incorporate more parameters from experiments

into the model, which will enable us to simulate GBM progression patterns at various

resolutions in a more realistic way. Such simulations will enable us to investigate mole-

cular biomarkers that play an important role in inhibiting cancer expansion and pre-

dict real GBM progression. Subsequently, we plan to work with experimentalists to use

actual data to validate the effectiveness of the model.
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