Reply to Elmatad: Supercooled viscous liquids display a fragile-to-strong dynamic crossover

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published: http://dx.doi.org/10.1073/pnas.1106373108

Publisher: National Academy of Sciences (U.S.)

Persistent URL: http://hdl.handle.net/1721.1/70541

Version: Final published version: final published article, as it appeared in a journal, conference proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Reply to Elmatad: Supercooled viscous liquids display a fragile-to-strong dynamic crossover

Theory predicts a fragile-to-strong (FS) dynamic crossover temperature T_c in supercooled liquids but, contrary to what is reported in ref. 1, T_c must be greater than T_g (2), where T_g is the glass transition temperature. Ref. 4 of ref. 1 hypothesizes that a parabolic form is valid in a range $T_o > T > T_g$, where T_o is defined as an onset temperature that marks the crossover from normal liquid behavior to supercooled liquid behavior. A second paper by the same authors (ref. 5 of ref. 1) proposes the range of the hypothesized parabolic behavior can be extended to cover $T < T_o$. Further, both refs. 4 and 5 of ref. 1 state that above T_o, the temperature dependence of transport coefficients is nearly temperature independent. This statement contradicts the experimental data—indeed, visual inspection of the figures in refs. 4 and 5 of ref. 1 indicates that, in very limited temperature intervals of $T > T_o$, changes of three to four orders of magnitude take place in transport parameter values. Moreover, glass transition theories such as mode coupling theory (2) consider these data to be extremely relevant.

Many experimental data are not consistent with the hypothesized parabolic fit. A particularly striking example is the failure to fit the extensive viscosity data on salol that exist from several independent laboratories (see ref. 4 and references therein). To complement the analysis of 84 different liquids reported in ref. 3 and to explicitly compare the parabolic hypothesis and our FS dynamic crossover hypothesis, Fig. 1 plots all available salol data for both relaxation time and viscosity. One sees that the parabolic fit is significantly less satisfactory than our fit to a FS dynamic crossover between non-Arrhenius behavior at high temperature and Arrhenius at low. In particular, we note our fit of Fig. 1 to all of the salol data below T_g uses two parameters, not three as claimed in ref. 1.

In summary, our result that is perhaps most relevant to the claims of ref. 1 is presented graphically in figure 3 of ref. 3: a log-log plot of the self-diffusion constant as a function of $T – T_g$ demonstrates that the universality of the FS dynamic crossover emerges directly from the experimental data independent of any model or hypothesis. Rather than a comment on our work, ref. 1 appears to be more focused on defending the “parabolic form hypothesis,” which recent literature (see, e.g., ref. 5 and literature cited therein) has demonstrated to be of limited validity compared with the equation we use to describe the non-Arrhenius dynamics of supercooled liquids.

Francesco Mallamace, Carmelo Corsaro, Sow-Hsin Chen, and H. Eugene Stanley

*Department of Physics, Boston University, Boston, MA 02215

Istituto di Ricovero e Cura a Carattere Scientifico Neuromed “Bonino-Pulejo,” I-89106 Messina, Italy; Center of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215