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Chapter 1

Introduction

Over the last decade more and more interest has been taken in using Computational
Fluid Dynamics (CFD) as a design and research tool. A productive tool must be
affordable as well as accurate. Since CFD methods have become an important tool in
aerodynamic design, it is important that we understand the numerical methods being
used by knowing their strong points and limitations. The goal of this work i8 to compare
the use of finite volume methods which solve the Euler equations on quadrilateral and

triangular meshes to better understand them.

1.1 Background

The use of numerical solution procedures with quadrilateral meshes has been ex-
tensively studied as well as procedures such as multi-grid and spatial adaptation which
reduce the computer time required to compute a solution. Multi-grid is a techaique
which is limited to steady state calculations in which iterations in the solution pro-
cedure are successively computed on several meshes of different node densities, and
flow changes are interpolated from coarser meshes to finer meshes. ln this manner
flow changes are greatly accelerated and so the computational time required is on the
same order as for the coarsest mesh and the accuracy is that of the finest mesh. For
quadrilaterals, the finer meshes are typically found by dividing a coarse cell into four
finer cells. The first multi-grid method for the Euler equations on a quadrilateral mesh
was developed by Ni [15] in 1981. In 1983 another method was developed by Jameson
[9]. Methods which spatially adapt automatically during the solution procedure have
also been developed. These methods place small cells where the physical characteristic

length is small, such as in shocks, and large cells where the physical characteristic length
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is large. Dannenhoffer and Baron (2] discuss the details by which a cell can be chosen for
adaptation. By using adaptation, the computational time is reduced, since to achieve
a desired refinement in one portion of a mesh, a globally refined tnesh is not required.
The method of Dannenhoffer and Baron combines both multi-grid and adaptation to

obtain the benefits of both methoda.

To use CFD methods to compute the flow around complex geometries, several meth-
ods have been tried. The difficult task is placing a mesh around the geometry. One
approach is to divide the flow field into several coarse blocks and a finer mesh is created
in each block. This method requires a large amount of interaction between the user and
the mesh generation program, but is widely used today. Another approach uses meshes
which surround different parts of a geometry and overlap to form a completely meshed
region. The complexiuy of this approach is in the need to interpolate between each mesh.
A third approach involves using unstructured triangles to completely mesh the region.
One particular method to create chis mesh is based on Delauray [4} triangulation which
allows the mesh generation process to be automatic. Baker [1] describes the generation

of a tetrahedral mesh about an entire aircraft using this method.

Interest in the third kind of mesh has prompted research in the use of triangu-
lar meshes to solve the Euler and Navier-Stokes equations. In 1985 Lohner, Morgan,
Peraire and Zienkiewicz [12] presented a finite element procedure for solving the Navier-
Stokes equations on a triangular mesh. A flow solver was developed by Jameson and
Mavriplis [14] which solves the Euler equations for a mesh composed of triangles and
a similar method was developed by Jameson, Baker and Weatherill [10] for use with
tetrahedra. As vith quadrilateral meshes, multi-grid and spatial adaptation methods
have been developed for use with triangular meshes. A triangular multi-grid method
was developed by Mavriplis and Jameson [14] which uses completely unrelated grids at
each level ana interpolates the solution for transfer from one mesh to another. Several
spatial adaptation procedures have been developed to refine the mesh where the physical
characteristic length is small. Unstructured triangular meshes may be refined without
creating interfaces between regions or coarse and fine cells. Substantial work has been

done by Holmes, Lamson and Connell (8] using the Delaunay triangulation method to
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add new points. Another method cf adaptation has been developed by Peraire, Vahdeti,
Morgan and Zienkiewicz [16] which completely remeshes the region putting finer cells

where the physical characteristic length is small.

Controversy exists in the CFD community as to the relative benefits of quadrilateral
and triangular meshes. In particular a recent paper by Ree [19] proved that the local
truncation error is only first order and he conjectured that this implies that the solution
is only first order accurate. This contrasts with the demonstrated second order accuracy
of finite volume quadrilateral schemes. Another paper by Giles [5| argues that on the
contrary these triangular schemes can be globally second order accurate. By being more
widely used for a longer period of time, quadrilateral schemes are better understood
and accepted, therefore the important part of the controversy is focused on how good

triangular schemes are.

The goal of this study is to address this question of how well a given computational
method can perform on a triangular mesh as compared to the more commonly used
quadrilateral meshes. In particular, two schemes will be examined: the node-based
quadrilateral cell Jameson scheme which has been modified for triangular meshes by
Mavriplis and Jameson [14], and the quadrilateral cell Ni scheme [15] which has been
modified here for use on triangular meshes. Care has been taken to keep the triangular

and quadrilateral versions of a scheme similar to provide a fair basis for comparison.

1.2 Overview

First a description of the numerical schemes which solve the Euler equations ex-
amined is given in Chapter 2. Next the numerical smoothing required to make these
schemes stable and suppress unwanted spurious modes as well as capture shocks is de-
scribed in Chapter 3. Chapter 4 presents the meshes and the pointer system which is
used to describe them. These chapters complete the description of the theory required
to write a computer program to implement the schemes described in Chapter 2. Flows

computed with these schemes are described in Chapter 5. In Chapter 6 mathematical

16



and numerical methods of determining the accuracy of these schemes are described and
numerical results are given. Finally a short discussion on spatial adaptation is given in

Chapter 7 and some conclusions of this study are given in Chapter 8.

17



Chapter 2

Numerical Schemes

In this chapter the governing equations for an inviscid gas, known as the Euler
equations, are presented along with two methods for numerically solving these equations.
Both methods are node based, finite volume numerical schemes. The first method is a
Lax-Wendroff scheme which was originally developed for quadrilateral cell meshes by
Ni [15] and further expanded upon by Giles [7]. This scheme will be referred to as a
“Nj Scheme” in the future. A triangular cell mesh extension of the Ni scheme which
was developed by the author will also be discussed. The second method is a four step
scheme which was developed by Jameson [11] for quadrilateral cell meshes and extended
for triangular cell meshes by Mavriplis and Jameson [14]. This scheme will be referred

to as a “Jameson Scheme”.

2.1 Governing Equations

The Aows examined here are steady. To reach a steady state, unsteady equations
will be integrated in time from some initial condition until there is no change in the

state of the fiow field.

For flows with sufficiently large Reynolds numbers the effect of viscosity is confined
to a thin region near solid walle where a boundary layer exists. The governing equations
used in this study neglect the viscous terms and the heat transfer terms from the full
Navier-Stokes equations and are referred to as the Euler equations. These equations are

first-order hyperbolic partial differential equations which can be written as
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8U__(3F+BG) (2.1)

3t \oz  ay

where U is a state vector of dependent variables and F and G are flux vectors in the z

and y directions respectively. F and G are functions of the state vector U.

[ P pu pv
u u?4 uy
v=|"1, r=|"™""|, a=|"* (2.2)
pv puy pvi+p
| PE | | puH | | poH |

The pressure p and enthalpy H can be written in terms of elements of the state

vector U and the specific heat ratio «, which is assumed to be constant.
1,2, 2
p=(r-1p|E - ;(u*+v%) (2.3)

H=E+*= (24)

The differential Equation (2.1) is written in conservation law form since the coeffi-
cients of the derivative terms are constant. Equations which can be written in conserva-
tion law form are well suited for finite volume numerical metkods. The conirol volume

used for these methods can be composed of quadrilaterals or triangles.

The flow variables are non-dimensionalized using the upstream stagnation density
and stagnation speed of sound. This non-dimensionalization does not change the gov-

erning equations and gives the following stagnation quantities.

1
H=— pozl, Po =

ol (25)

1
2
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2.2 Quadrilateral Ni Scheme

Given values for the state vector U at time t for all nodes in the domain, it is
desired to know what the state vector will be at time t + At. A second order Taylor
series expansion for Up,.a; at a node is taken about the solution at time ¢t where the

subscripts represent the time where the function is evaluated.

2
Usat = U + At(a—U) + %Atz(-a-ﬁ)
[ [}

at at?
oF 4G 1 a ad
= U — At(%‘i‘a)‘ - EAC(EAF'*'E;AG)f
At 1
= U — -X(f(de—Gdz) + Ef(Ade—AGdz)) (2.6)
¢
where
oF
AF = At(ﬁ)
t
oG
AG = At(ﬁ)‘ (2.7)

Equation (2.6) is developed by substituting in the differential equation form of the
governing Equation (2.1) and using Green’s Theorem. The integral in Equation (2.6)
is taken about a control volume around the node. This control volume is formed by
connecting the centroids of the four cells surrounding the node to the midpoints of
their shared faces. The control volume about node 1 is denoted by the dashed lines in

Figure 2.1.
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Figure 2.1: Quadrilateral cells surrounding node 1 with control volume for the Ni scheme

Equation (2.6) can be rearranged to define & change in the state vector U in time

At.

U = Uipae~U:

% ( f (Fdy-Gdz) + ; f (AFdy — AGdz))‘ (2.8)

The first term in Equation (2.8) is the flux through the control volume and will be
found by calculating the flux into each cell and distributing one quarter of this flux
to each node which belonga to the cell. AF and AG will also be calculated for each
cell. The second term in Equation (2.8) will be found by integrating around the control

volume using the values of AF and AG for the cell which the boundary of the control

volume passes through.

The change in the state vector at node 1 includes contributions from cells A, B, C

and D given by
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6Uy = 8Uyp + 8Uyp + 86U + 86U p (2.9)

All four contributions are calculated in a similar manner.

6U14, the contribution of cell A to node 1, as shown in Figure 2.1 is given by

6Uia = (Uiyae—Uia

At [ 1 1

at) 1 Fdy - Gdz) — -/ AFdy — AGd
(A)l_ 4£¢1M( v “) 2 056( Y z)]t

(%t)l f% (%)AAUA - i(AF(su—yz)— AG(:u—::z))]‘ (2.10)

where AU, is found by simple trapezoidal integration around cell A.

At

AU, =—(A

)A[ ~(Frt Fi)(sa=1) + (624 G)(za )
~(Fs+ B)(3312) + (G +Gi) s 22
—(Fy+ Fs)(ya—ys) + (Ga+Gs)(z4—z3)
~(Fi+ F)(n=90) + (G1+G)(z -0

= %(%‘-)A[ (Fs—F1)(y2—y4) — (Gs—G1)(z2—z4)

+H(Fa—F2)(ys- 1) — (Ga—Ga) (23— 1) ] (2.11)

The terms (4f) 4 and (4¢); are the timestep divided by the area for cell A and node

1 respectively. The calculation of these terms will be described in Section 2.8.

Using the chain rule AF and AG evaluated at time t in Equation (2.7) can be

rewritien as
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so = af %) - (E) AU (2.12)
¢ t

\ 3t

where AU was defined in Equation (2.11). (§fr) and (3§): are Jacobians of the flux
vectors F and G evaluated at time t. For the Euler equations U, F and G are given in

Equation (2.2), and for these state and flux vectors AF and AG are

(Apu)
AF, = u(Apu) + u(pAu) + (Ap) (2.13)
v(Apu) + u{pAv)

u((a0B)+ (ap) + H(pAw)

(Apv)
AG A= u(Apv) + v(pAu) (2.14)
v(Apu) + v{pAv) + (Ap)

L v((ApE) + (Ap)) + H(pAv)

where

[ 5 | [ (ap) |
A

va=| |, av,=|@ (2.15)

pv (Apv)

| PE | | (ApE) |

A
(rAu) = (Aou) - u(Ap)
(pAv) = (Apv) - v(Ap)
(8r) = (1-1)((80E) - w(dpu) - o(8p) + 3 +)(Ap)) (210

U is the value of the state vector at the cell which is the average of the state vector

at the four nodes which belong the the cell. AU, is found from Equation (2.11).
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2.3 Triangular Ni Scheme

The triangular Ni scheme was developed here as another triangular scheme which can
be used for comparison. The main difference between the quadrilateral and triangular
Ni echemes is that now the control volume is formed by conrecting the centroids of the
triangular cells which surround the node to the midpoints of their shared faces. For
discussion, let n be the number of cells surrounding a node. The control volume about

node 1 where n = 6 is denoted by the dashed lines in Figure 2.2.

Figure 2.2: Triangular cells surrounding node 1 with control volume for the Ni scheme

The change in the state vector at node 1 includes contributions from alil n cells

surrounding node 1 and is given by

8U, =8Uy4 + 68U + 6Uyc + --- all ncells (2.17)

All n contributions are calculated in a similar manner.

24



Equation (2.10) extended for the triangular scheme now becomes

§Uya = (Uirat—Utha

at\ [ 1 1 ]
at) |1 Fdy - Gd --/ AFdy — AGd
( A )1 | 3 f;du( y ) 2 abc( y )

(%) %(-:—t) AU, - E(AF(ys—yz) — AG(zs-1z2)) (2.18)
1 A -

where AU, is again found by simple trapezoidal integration around cell A.

AU,4 =%(%) [‘(F2+F1)(!Iz—y1)+(Gz+Gl)(zz—21)
A
—(Fs+ F2)(ys—y2) + (Gs+G3)(zs—z2)
~(Ft F) (31 =v8) + (Gr+Go)(ms2s)
= %(%{)4[ —Fi(y2—-ys) + Gi(z2—7s)
—-Fy(ys—y1) + Ga(zs—z1)

—Fs(y1—y2) + Gs(z1-22) (2.19)

The terms (4%) 4 and (4¢), are once again the timestep divided by the area for cell A

and node 1 respectively. The calculation of these terms will be described in Section 2.8.

For the Euler equations AF and AG are found in the same manner as for the
quadrilaterals from Equation (2.16), except U 4 is the average of the state vector at the
three nodes which belong the the cell and AU is found from Equation (2.19).

2.4 Quadrilateral Jameson Scheme

Like the Ni scheme, the value of the state vector, U, is known at time t for all nodes

in the domain, and it is desired to know the value of this state vector at time ¢t + At.
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A multi-stage time stepping method is used for the Jameson scheme where a first order
approximation is used at each step. In particular a four stage time stepping method is

used in this thesis.

S
I

Uy

U, = Uo+alAt(a,—U)
at 0

= Uo—alAt a—F+a—G
dz = dy 0

A
= U - alf f (Fdy - Gdz)o
At
= Uo - alx(ﬂux)o
Uz = Uo - ag%(ﬂux)l

U3 = Uo b as%(ﬂux)g

At
UH.Ag = Uo - 047(ﬁux)3 (2.20)
1 1 1
a) = Z’ az = 5, Qg = E, Q4 = 1 (221)

where subscripts indicate which state vector is used to calculate the flux. The term
(4) is the timestep divided by the area evaluated at the node to keep the scheme

conservative. The calculation of this term will be described in Section 2.8.

Equation (2.20) is developed in a similar fashion as Equation (2.7) by substituting
in the differential form of the governing Equation (2.1) and using Green’s theorem. The
first order terms in the Jameson scheme are the same as the first order terms in the
Ni scheme, but are described differently by considering a different control volume. In
fact, in the limit of small timestep the Ni scheme reduces to the Jameson scheme. The
integral in Equation (2.20) is taken about 2 control volume around the node which is

formed by all of the four cells around the node, therefore the control volumes in the
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Jameson scheme are overlapping. This control volume is shown about node 1 by the

dashed lines in Figure 2.3.

5 a
' |
. |
B A
' [
' [

6} 1 Z
' |
] C D §
' l
i |
R -

7 8 9

Figure 2.3: Quadrilateral cells surrounding node 1 with control volume for the Jameson

scheme

The integral in Equation (2.20) is calculated by finding the contribution of each cell
to the flux into the control volume for each node. The contribution from cell A to the

flux at nodes 1, 2, 3 and 4 is the same.

fluxy4 = fluxsq = fluxg4 = fluxyy = fluxy (2.22)

where

flux 4 =% —(F2+ F1)(y2—-91) + (G2 +G1)(z2— 1)
—(Fs+F2)(y3—y2) + (Gs+G3)(z3—z2)
—(Fa+ Fs)(y4a—ys) + (G4+Gs)(z4—z3)

—(F1+ Fi)(y1—y4) + (G1+G4)(z1—24)
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[ (Fs— F1)(v2-94) — (Gs—G1)(z2—24)

B |

+(Fa—F3)(ys—y1) - (G4—Gz)(£3—zl) ] (2.23)

The flux at node 1 is then the sum of the contributions from the four surrounding

cells.

flux; = fluxy4 + fluxy;p + flux;c + flux;p (2.24)

where flux; g, flux;c and flux;p are calculated in a similar fashion as flux; 4.

2.5 Triangular Jameson Scheme

The triangular Jameson scheme is similar to the quadrilateral Jameson scheme ex-
cept now the cells which surround a node are triangular. For discussion let n be the
number of cells surrounding a node. The control volume about node 1 where n = 6 is

denoted by the dashed lines in Figure 2.4.

The integral in Equation (2.20) is once again calculated by finding the contribution
of each cell to the flux into the control volume for each node. The contribution from

cell A to the flux at nodes 1, 2 and 3 is the same.

ﬂuxm = ﬁuxu = ﬂuxu = ﬁlle (2.25)

where

flux, = %[ ~(F2+ F1)(y2-91) + (G2+G1)(z2—21)
—(Fs+ F2)(ys—y2) + (Gs+G2)(zs—z2)

—(Fit Fs)(41-9s) + (G14+Gs)(z1—23) ]
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Figure 2.4: Triangular cells surrounding node 1 with control volume for the Jameson

scheme

= %[ —Fy(y2—ys) + Gi(z2—zs)
—-Fi{ys—w1) + Ga(zs—11)

—Fs(y1-y2) + Gs(z1—12) (2.26)
The flux at node 1 is then the sum of the contributions from the n surrounding cells.

flux; = flux;4 + flux;p + :-- all n cells (2.27)

where flux, g, flux;c, ... are calculated in a similar fashion as flux; 4.

2.6 Farfield Boundary Conditions

The farfield boundary conditions are applied at the inlet and outlet boundary nodes,
and are used for both the Ni and Jameson schemes. The boundary conditions on

hyperbolic equations must correctly close the system of equations. Linear characteriatic
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theory determines the direction of wave motion in and out of the domain, and thus
where boundary conditions must be imposed. The following analysis is described by
Giles in [7] and & general formulation is presented by Dannenhoffer in [3]. To simplify

the process, primitive state vector variables U, are used where

U, = (2.28)

| P |

The first step in the process is to linearize the governing equations where the spatial

directions z and y are along the grid lines.

au, aU, U, _
7t T A 2z T BW =0 (2.29)

A and B are constant matrices evaluated at some reference state. The wave prop-
agation normal to the boundary (in the z direction) is dominant, therefore variations

parallel to the boundary (in the y direction) will be neglected. Equation (2.29) becomes

0y | 43U _

o 5 =0 (2.30)

The reference state for evaluation of the matrix A will be the flow on the boundary
at the old timestep. To reduce computational effort, the average value of the state
vector on the boundary will be used to evaluate A. This state will be denoted by the

subscript ( )cid—ave- The constant matrix A is then

c O
o

(2.31)

o &£
[~
O o

o O o
©
S ]
[
o
[

< old—ave

The matrix A can be diagonalized by a similarity transformation,
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u O 0 0
-1 0 u O 0
T AT = =A (2.32)
0 0 u+a 0
0 0 0 u-—a
< old—ave

where the matrix T is the matrix of right eigenvectors of A and che matrix T~! is the
matrix of left eigenvectors of A. Matrix A is a diagonal matrix whose elements are the

eigenvalues of matrix A.

3 0 3 3 -a? 0 0 1
1 -1
r=|° ? %3 % . | 0O 0 k0 (2.33)
0 s 0 0 0 pa 0 1
1 1 -
L 0 0 2 2 Jold-ave - 0 pa 0 l-old—aue
Multiplication of Equation (2.30) by T~! produces the equation
a¢ a¢
— — = 2.34
ot + oz 0 (2:34)

where ¢ = T~1U,. Variation from the values at the old timestep will be considered,
therefore §¢ = T~16U,. The four equations in the system of equations (2.34) are now
independent. The elements of ¢ are the linearized characteristic variables and the cor-
responding elements of A indicate the direction of the flow of information. For subsonic
flow where 0 < u < a the first three characteristics give waves propagating downstream
since the corresponding elements of A are positive and the fourth propagating upstream
since the fourth element of A is negative. For supersonic flow where u > a all waves

propagate downstream since all elements of A are positive.

2.6.1 Subsonic Inlet Boundary

For subsonic flow three pieces of information must be specified at the inlet boundary;

here they will be the total enthalpy, H, the entropy, s, and the flow angle, a.

31



tana

v \p 1
(;_—l) ; + E(uz + v’) (235)
log(vp) — 7log(p) (2.36)
L (2.37)

A fourth piece of information comes from the interior of the flow field and will be

taken from the values the numerical solver predicts, therefore denoted by the subscript

( )prea- Let the subscript ( ),pec stand for the value which is specified by the inlet flow

conditions. The subscripts ( )oig and ( )new Will stand for the values at the old and

new time steps. The amount needed to bring the old values of H, s and tana on the

boundary to the specified values can be written in terms of a first order Taylor series

in ¢. The constant coefficient of the series can be changed by using the chain rule to

contain elements of Up.

(H)apee = (H)MI)
oH
= (H)a + (_) 6¢
” a¢ old-ave
oH
= (H)gq + (37,) T 6o
old—ave
1 v a+u a—u
- (H)OM T ('7—1)P P_a 2pa 2pa ]old—au¢5¢ (2.38)
(8)spec = (8)ata + [% p O olom_ms.ﬁ (2.39)
t = (t o L v Vv ] 56  (2.40)
(wacdpe = (tnalus + [0 - oo To] .

The change in the fourth characteristic §(¢4) is equal to the change that the flow

field predicts, &(¢4)pred- Since §¢ = T~16U,, the predicted change in the characteristic

variable §(d4)pred i8 found to be
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6(D4)prea = (—P0)otd OUprea + EPpred (2.41)

There are now four equations for the change in the characteristic variable ¢ which

can be written in matrix form.

Hopee - Daa | [ 5 82 %] [ 5(41) ]
84pec — Sold - % s 0 0 5(¢2) (2.42)
(tan a),pec — (tan a)og 0 Gl oISk oim 6(¢s)
6(64) pred o o o 1 | |64

Using the relation §U, = T'é¢, §¢ in Equation (2.42) can now be changed back into

primitive state vector values Up.

6(r)
§(u
o, = | °@ |
6(v)
| 6(0) |,
r _ 3,,2.  _ 2,,2 1 i 1
¢ DL e G (H)apec = (H)otg
-y -_—
| =13 v Sepec T Sold 112 43)
ua+uto| 1‘_"“ a+u ‘T" tan a,p.. — tan aq
| pau 2 —pav u’+v’Jold_“‘_ 5Pupred

To transform the change in the primitive state vector variables §U, back into the

change in the state vector §U the following transformation is performed

(s ] [ 1 o 0 o] [60]
6(pv) v p 0 O 6(v)
L S(pE) 4 new L %(“2+vz) pu  pv '7+1. Jold - 5(p) < new
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So finally the new value of the state vector at the inlet nodes is

2.6.2 Subsonic Outlet Boundary

For subsonic flow the outlet boundary is similar to the inlet boundary except now
only one piece of information must be specified; here static pressure p w:ll be used.
Once again the amount needed to bring the old value of p to the specified value on the

boundary can be written in terms of a first order Taylor series in ¢.

Pspsc = Pnew

Q.)lQ:
"

= Ppoa + ( ) 6¢
old—ave

aU,,) 5
=2 $
P) old—ave ( 3¢ old—ave

1 1
= Pod t [0 0 - —]
° 2 2 old—ave

Q
S

= Pold + (

D
-

5¢ (2.46)

The change in the first, second and third characteristics is equal to the change the
flow field predicts. Again, since §¢ = T 16U, the predicted change in the characteristic
variables 6(@1)pred, 5(¢2)prea 8nd 8(h3)prea are found to be

5(¢l)pnd = ('_az)old 6ppr¢d + 5Pprad (2.47)
6(¢2)p"ed = (pa)oa §vpred (2.48)
5(¢3)pr¢d = (pa)old Supud + 6Ppud (2.49)

As in the subsonic inlet condition, there are now four equations for the change in

the characteristic variable ¢.
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- 5(¢1)pnd
s(h)pnd
6(¢3)pnd

| Papsc — Pold |

o O O =

O O = ©
we = O O

1 560 ]
6(¢1)
6(¢s)
| 6(¢4) |

we. O O O

(2.50)

Using the relation §U, = T§¢, §¢ in Equation (2.50) can now be changed back into

primitive state vector values U,.

6(p)
5
5U, = (u)

5(v)
'6(P)-mw
BN

_|° 0%

0o L o

0 0 0

4 old—-ave

6d1pred
5¢2 pred
6¢3 pred

| Pspec — Pold |

(2.51)

The primitive state vector variables, §U),, are transformed to the state vector, §U,

by Equation (2.44) and the update is performed as in Equation (2.45).

2.6.3 Supersonic Inlet Boundary

Since for supersonic flow all waves flow downstream, to implement the inlet boundary

conditior it is simply necessary to prescribe the flow conditions. The inlet Mach number

M, pe: 18 specified as well as the flow angle a,p,., and the flow conditions are found from

these variables.

(1

1-1
+

(1+

2

2
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— P
P “
The state vector is fixed at
P
wcos a
g | Pt (2.52)
PW SiN Qgpec
| 7B+ 3wie |

2.6.4 Supersonic Outlet Boundary

For the supersonic outlet all waves flow out of the boundary, so the change in the

state vector predicted by the scheme is used here.

5Unew = Upred (2.53)

2.7 Wall Boundary

Two conditions are applied at the solid wall boundaries; first that there is no flux
through the wall faces and second that the flow is tangent to the wall at the wall nodes.
It would seem that the first condition would be sufficient to satisfy the second condition
without explicitly enforcing tangency, but this is not the case since the scheme is node
based. The flux on the face is computed by averaging the flux at the nodes, therefore it
is possible to have no flux through the walls while the nodal flux oscillates about zero at

the wall nodes. By imposing tangency at the nodes, this oscillatory state cannot occur.
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2.7.1 Ni Scheme

Since for the Ni scheme oniy half as many cells surround a boundary node as an
interior node, the control volume is half the size of the control volumes in the interior
of the flow field. Boundary cells are shown in Figure 2.5 with the boundaries of the
control volume denoted by dashed lines. When computing AU for the wall boundary
cells from Equation (2.11) for quadrilateral cells or Equation (2.19) for triangular cells,
the flux through the wall face consists only of the pressure term. The contribution to
AU from cells A, B (and C in the triangular case) to ncde 1 in Figure 2.5 is then found
in the same manner as for the interior nodes. The second order contribution to node
1 is also the same as for the interior nodes, except that now the integral must also be
taken along the wall boundary where AF and AG consist only of the pressure term.
For cell A the second order contribution from AF and AG along the boundary become

r—=—r—=—12
| |

| U . |
///t3///7////////////////////z /7

0 0
A 0
afra=| PP | ag,-= (2.54)
0 (Ap)
0 0
JA A

w'here as before

(89) = (1-1)((8pE) - u(Bpu) - o(Am) + 3P+ H)(BR)  (255)
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2.7.2 Jameson Scheme

The control volume for the Jameson scheme boundary nodes is also half the size of
the control volumes in the interior of the flow field. The boundary control volume is
shown in Figure 2.6. The no flux condition is easier to implement for the Jameson scheme
since there are only first order terms. When computing (flux) for the wall boundary
cells from Equation (2.23) for quadrilateral cells or Equation (2.26) for triangular celis

the flux through the wall face consists only of the pressure terms.

)
)
] B A
]

(-] N, R
L117177777777777777 777777777777
Figure 2.6: Boundary cells for Jameson scheme with control volume

2.7.3 Tangency Condition

The change in the state vector for both schemes is such that the new state vector will

satisfy flow tangency on the boundary. At each wall node a flow angle, a, is prescribed.

For both schemes the second and third components of the state vector are changed
from the value predicted by the solver, denoted by the subscript ( )sefore, S0 the new
values become

(Pu)new = (Pu)aqm + (pw)nsina

(P”)m = (P”)be[ou - (Pw)nccma (2.56)
where
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(pw)n = —(PU)seforesina + (PY)besorecoB (2.57)

and for the Ni scheme,

(PU)sesore = (pt)ota + 8(pu)ura (2.58)

(PV)besore = (Pv)otd+5(PV)ou (2.59)

2.8 Timestep

In the description of the basic schemes the timestep divided by the area, (%) , Was
referred to for a cell or a node. The term (4{) is computed on a cell basis and the value
at the node is found by summing (4¢) for the cells surrounding the node. A factor of :
is multiplied by the nodal (%) for the quadrilateral Ni scheme and 3 for the triangular
Ni scheme since the control volume at a node only includes this fraction of the cells

surrounding that node.

For the quadrilateral schemes the maximum stable (%5) on acell A is defined by Usab

in |22] from a Von Neumann stability analysis for the linearized 2-D Euler equations.

A 1 1
a) = $mi 2.60
( A )mz CFL m'n{luAy‘ - vAZ!| + aAl’ |uAym — vAz™| + aAm} (2.60)

The flow variables u, v and a are the average of the nodal values for the cell. For

cell A with nodes 1, 2, 3 and 4 running counterclockwige around the cell as shown in

Figure 2.1,
t 1 m_ 1
Az = E(zz +z3 -z - 34): Az™ = E(zl t22 - z4 - xs)
! 1: m 1
Ay = f\yz +ys—y; — y4), Ay™ = §(y1 ty2 —ys - ys) (2-61)
Al = \/(Ax:)z + (Ayl)z , Am = \/(Azm)ﬁ + (Aym)z
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For the triangular schemes the (4t) is found by Giles in [6] from energy methods.

At CFL-2 (2.62)
A m: luAzl—vAY| + [uAz™ - vAY™| + |[uAzZ"~vAY"| + a(Al+Am+An) T

The flow variables 4, v and a are again the average of the nodal values for the cell.
For cell A with nodes 1, 2 and 3 running counterclockwise around the cell as shown in
Figure 2.3

1 1
Az = (zz-m), Ay = (e - )
A" = G(es-m), A = ()

1 1
Az" = 5(21 - z3), Ay" = E(‘” —ys)

Al V(az)? 4 (Ag)?

Am = \/(Az"‘)2 + (Ay™)?

An = \[(Azr)? + (Ayn)? (2.63)

CFL stands for the Courant, Friedrichs, and Lewy number which gives the timestep
limit for stability. In [22] Usab presents a Von Neumann stability analysis for the
linearized 2-D Euler equations on the quadrilateral Ni scheme. The stability restriction
from this analysis is CFL < 7‘; Usab then says that this restriction is too strict and
that in practice CFL < 1 is used. This observation was confirmed in this work for
both the quadrilateral and triangular Ni schemes. It is possible that the non-linearity
in the Euler equations or numerical smoothing cause the increase in CFL limit. Using
energy methods, Giles shows in [6] that for the four step method used here for the
triangular Jameson scheme the stability limit gives CFL < 2v/2. The method finds the
CFL limit for which the energy associated with a solution is non-increasing. It has been
skown that for the four step quadrilateral Jameson scheme the stability limit also gives
CFL < 2y/2. In practice it was found that this limit is not strict enough and CFL < 2
was used.
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Chapter 3

Numerical Smoothing

Numerical smoothing is a dissipative operator which is added to numerical schemes
to damp out oscillations in the solution and provide stability. The Jameson schemes
do not have a dissipative term and are unstable without the addition of a dissipative
smoothing operator. Numerical smoothirg is also required for the Jameson schemes
to eliminate steady state, spatially-oacillatory modes which are allowed by the scheme.
Three 1nodes are allowed for the quadrilateral Jameson scheme and are shown as modes
a, b aad c in Figure 3.1. Three modes are also allowed for the triangular Jameson
scheme.. One is shown in Figure 3.2 and the other two are similar modes shifted by
one node. For the Ni schemes there is a dissipative term in the numerical operator
and the scheme is stable for a smooth flow field. For the quadrilateral Ni scheme
only one oscillatory mode is allowed which is shown a# mode a in Figure 3.1. The
triangular Ni scheme does not allow any of the oscillatory modes, but in the limit of
very smail timestep the Ni scheme reduces to the Jameson scheme which, as mentioned,
allows three modes. To provide stability and to eliminate osciilatory modes a fourth
difference freestreamsmoothing operator is used. For both schemes numerical smoothing
is required to capture discontinuities such as shocks. The smoothing required to capture

shocks will be referred to as shock smoothing.

First, the different second difference cperators used here will be described. These
operators are used to formulate the smoothing operators. Next the different methods

of freestreain and shock smnothing will be described.
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Figure 3.1: Possible modes for quadrilateral cells

o/ o/N 1/\ 0/\

Figure 3.2: Possible mode for triangular cells
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3.1 Second Difference Operators

To compute the fourth difference smoothing operator for freestream smoothing, a
second difference of a second difference is is computed. For both quadrilaterals and
triangles two second difference operators are examined. The first is a relatively fast
operator which gives a non-zero second difference for a linear function on a non-uniform
grid. The second operator is slower but results in a zero second difference for a linear
function. By examining the effect of the second difference operator on a linear function
the accuracy of the operator is tested, since for second order or higher accuracy the

contribution must be zero.

Typical triangular aud quadrilateral cells are shown in Figure 3.3 with the corre-

sponding nodes.

cell A
cell A

Figure 3.3: Typical triangular and quadrilateral cells

3.1.1 Low-Accuracy Second Difference

This operator is not dependent on the location of the nodes surrounding the node
for which the second difference is computed, but merely on the function values at these
nodes. For a triangular mesh the contribution from cell A to the second difference at

node 1 is
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(D?S)14 = (S3 + S2 — 251) (3.1)

where S is the variable for which the second difference is computed. For a quadrilateral

mesh the contribution from cell A to the second difference at node 1 is

(D?S)14 = (S4 + Ss + Sz — 351) (3.2)

This second difference is conservative for both triangular and quadrilateral meshes

since the total contribution of each cell is zero.

3.1.2 High-Accuracy Second Difference

This operator consists of finding the first derivative for each cell and then combining
the derivatives on the cells surrounding a node to form a second difference. Unlike
the low-accuracy second difference operator, this operator is dependent on the grid
geometry. The operator for a triangular cell mesh will be examined first since the

operator for a quadrilateral cell mesh is essentially a triangular operator.

Referring to Figure 2.3 the first derivative is found with respect to z and y for cell

A.

(S2)a = Ay / f cellA E-Edz dy

- AA-/I..—Z—Sde
= I";(%(Sﬁsl)(vz—w) + %(Sa+Sz)(ys-yz) + %(s,+s,)(yl-y3))
- 2:4 (Sl(”’ —ws) + Sa(vs - !ll)+Ss(su—yz)) (3.3)

S)s = // 95 1z d
(S54)a ApJ Jeeta Oy i

= / Sdz
Ap J1-2-3
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= ;_1(%(32'*'51)(32_21) + %(SS'*‘S])(I;—zz) + %(Sl_*_ss)(xl_xs))

= 2Al (Sl(zg—zs) + Sa(zs—z1) + 53(21—32)) (3.4)

A similar process is performed to create a second difference. The integration is
taken around all the triangles which surround the node for which the second difference
is computed, using the derivative values calculated at the cells. To get a second difference
instead of a second derivative, there is no division by the area of the integrated region.

The contribution to the second difference &t node 1 from cell A is

(D*S)ia = /2 ($)ady— (S,)ads

= % [(Sz)A(!'s - y2) — (Sy) a(zs — 23) (35)

This second difference operator takes about twice as long to compute as the low-
accuracy second difference operator. It is also conservative since again the total contri-

bution of each cell is zero.

To formulate a second difference operator for a quadrilateral mesh a simi'ar process
is employed. It turns out that if the first derivative is found by integrating around
the complete quadrilateral, the oscillatory modes are not damped out, and the primary
purpose of the operator is not fulfilled. To prevent this problem, the quadrilateral is
broken into triangles and the triangular operator is applied. The division of cell A is
shown in Figure 3.4. For cell A the first derivatives for the triangle corresponding to

node 1 is

(Sz)a = An /-/dlA Edzdy

= Sd
A /;—2—4 4

= ALM(%(SH&)(m-m) + %(S4+Sz)(w—yz) + %(51+S4)(y1—y4))
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Figure 3.4: Division of quadrilateral cell for non-conservative, high-accuracy second

difference

(Sy)as

where A4 refers to the area of the triangle corresponding to node 1 for cell A.

2‘: (Sl(m —v4) + S2(va—w1) + 54(y1—y2))

AAI

—dzd
-[/ccuA ay zay

Sdz
1-2-4

(3.6)

A—_All(%(sﬁ-sl)(n—xl) + %(S4+Sz)(34-zz) + %(31+S4)(=:1—z4))

2A1 (51(2:3 —z4) + Sa(za— =1)+s4(,1_:,))
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Next the integral is taken around the outside edge of the triangle to give the contri-

bution of cell Al to the second difference at node 1.

(D*S)a = /;_‘(Sz)Aldy - (Sy) ardz
= %[(sz).u(m — y2) — (Sy)ar(zs — -"z)] (3.8)

Similar contributions to corresponding nodes are found for the other three triangles
into which celi A is divided. As with the triangular version of this operator it takes
about twice as long to compute this operator as the low-accuracy second difference
operator. For the quadrilateral mesh this second difference is not conservative since the
total contribution from each cell is not zero since the first derivative contribution is not

constant in the cell.

3.2 Freestreamn Smoothing

To damp out oscillations and provide stability a fourth difference operator is added
throughout the flow field. It is desirable to have a conservative operator so all terms

in the flow field cancel and therefore no mass, momentum or energy production occurs

due to the smoothing.

The first method of creating a fourth difference is to use the low-accuracy second
difference twice by operating first on the state vector and then operating on this second
difference. This fourth difference is conservative since the contribution of each cell to
the numerical smoothing is zero, but is only second order accurate on a uniform mesh
since the second difference operator used is only second order accurate on a uniform
mesh. The second method is to compute a second difference of the state vector using
the high-accuracy method and operate on this second difference with the low-accuracy
second difference. This operator is second order accurate since the first operator is
second order accurate and conservative since the second operator is conservative and

again the contribution of each cell to the numerical smoothing is zero. The second
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method is more expensive than the first, but the effect per iteration is an increase of

only 5-10% which is a small increase for the gain in accuracy.

The fourth difference is computed as a contribution from each cell to the nodes
which make up that cell. The freestream smoothing is multiplied by a coefficient ),
between 0.0 and 0.05, to conirol the amount of smoothing added to the scheme. To
make the numerical smoothing term consistent with the numerical scheme, the fourth
difference added to the change in the state vector at each node must be multiplied
by the ratio of (4¢) for the node to (4¢) for the cell as described by Roberts in [18].
For the quadrilateral Ni scheme in Equation (2.9) and for the triangular Ni scheme in
Equation (2.17) the change to the state vector due to cell A at node 1 becomes

SUia = 6Ua + V) (%) (%) (Dz(D2U))lA (3.9)
1 A

The value of the flux contribution for the quadrilateral Jameson scheme in Equa-
tion (2.24) and the triangular Jameson scheme in Equation (2.27) is changed such that

the contribution from cell A to node 1 becomes

ﬂuxm = ﬂuxlA + 6(1) (i) (Dz(DzU))lA (3.10)
at),
The flux terms are multiplied by (%!) for each node when the change in the state vector
is computed in Equation (2.20), so the smoothing term is consistent with the numerical
scheme. The numerical smoothing term for the Jameson scheme is only computed after

the first two of the four steps.

3.3 Shock Smoothing

In regions with strong discontinuities the fourth difference smoothing is not enough
to cause any of the schemes mentioned here to be stable. When strong discontinuities
are detected the freestream smoothing is turned off since it is destabilizing, and shock

smoothing is turned on. For the Jameson schemes the shock smoothing consists of a
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low-accuracy second difference which is turned on in regions of high pressure gradient.
Another method is used for th: Ni schemes which adds a bulk viscosity term in regions
of high velocity flux.

3.3.1 Second Difference Smoothing

To determine when to turn on the second difference smoothing a pressure switch is
used. This switch is found for each node and consists of the second difference of pressure
computed using the low-accuracy operator as shown in Equation (3.1) for triangular
meshes and Equation (3.2) for quadrilateral meshes and divided by the pressure at the
node. Near shocks this switch will be of order 1 but in the freestream it will be of order
Az?. For node 1 this switch is

()1 = 22 (3.11)
p1

Once the switch is found it is used when finding the second difference of the state
vector at the nodes which is computed using an operator similar to the low-accuracy

operator and multiplied by a coefficient, (2}, between 0.0 and 0.1.

For the triangular scheme the value of the flux contribution in Equation (2.27) is

changed such that the contribution from cell A to node i becomes
1
fluxia = fluxgy + €2 3 [ ((%)1 + (3p)z)(U2 - Uy)

+ ((sp)l + (’p)S) (Us - Uh) ] (3.12)

Similarly for the quadrilateral scheme the flux contribution in Equation (2.24) is changed

such the contribution from cell A to node 1 becomes
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flux;q4 = fluxjq + €@ 21'—,[ ((sp)1+(s,,.)z)(Uz -U)
+ ((ophs + (o) ) (03 - 02)

(AR BT
3.3.2 Bulk Viscosity Smoothing

To capture shocks, viscosity is added near shocks since viscosity would capture a
shock if it were accounted for in the governing equations. This method is similar to the
method described by Richtmyer and Morton in [17]. To ensure that the shock width
remains nearly the same, regardless of shock strength, terms quadratic in tke strain
rate are added to the differential equation. The volumetric dilatation, or the velocity
divergence, is a measure of the strain rate. In shocks the volumetric dilatation is highly
negative since shocks represent regions of extreme compression. The shock smoothing is
turned on when the volumetric dilatation is negative and is limited such that it is never
less than -0.1. The viscosity term which is added to the flux vectors is proportional
to the volumetric dilatation squared and, to prevent excessive smoothing at stagnation
points, the velocity squared. The change in the flux vectors, AF and AG now have the

viscosity term added to their second and third elements respectively.

(AF)a = (AF)a + }maz(-0.1, min(0., diviia)) divva(u? +v?)
(AG3)a = (AGs3)a + imaz(-0.1, min(0., divis)) divig(u®+v?)

(3.14)

For triangles the volumetric dilatation for cell A can be found by

divitg = scaled volumetric dilatation of triangular cell A

2 du Jv
Vil (a ¥ @) dedy
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@f;_z_s(udy — vdz)

= ﬁ(tﬂ(!ﬂ_!ﬂ) + uz(ys—y1) + u2(y1—2)

—(vi(z2—z3) — v2(23—121) — V271 —:1:2)) (3.15)
and similarly for quadrilaterals

divitq4 = scaled volumetric dilatation of quadrilateral cell A

- \/_//uuA(au av)dzdy
\/_f; . (udy — vdz)

= 7 ((u1—u3)(yz—y4) + (u2—us)(y3—w1)

— (v1—v8) (23— 24) + (02 —04)(2:3—::1)> (3.16)
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Chapter 4

Mesh Generation and Pointer System

In this chapter the mesh generation and the system for storing the information in
the mesh are described. An elliptic mesh generator was used to generate a quadrilateral
mesh and, since the development of a triangular mesh generator was not a major focus
of this work, the quadrilaterals in this mesh were divided into triangles to generate a

triangular mesh.

For meshes consisting of a regular arrangement of quadrilateral cells, the the nodes
of the mesh have traditionally been described in two dimensions by an (s, ;) indexing.
An alternative to this method of describing a mesh is to assign each ncde a number
and describe the connection between the nodes by one dimension of an array of mesh
elements. These elements can consist of cells, faces, edges or any other element which is
important in the numerical scheme. This system of describing a mesh will be referred
to as a pointer system. When a pointer system is used the flow solver is separated from
the mesh generator. Due to the inherent irregularity of most triangular meshes, it is
usually not possible tc use the first method of describing a mesh and a pointer system

must be used. All the meshes used for this study are described using a pointer system.

4.1 Elliptic Mesh Generator

Elliptic partial differential equations are used to generate a smooth mesh. The
equations are defined in a computational plane with coordinates £ and n whosc nodes

have a one to one mapping to the physical plane. The equations used are

Ezz + fw = P(E"’) . (4'1)

52



Nz + My = Q(&,n) (4.2)

where P and Q are forcing terms defined by Steger and Sorenson [21]. By switching the

independent and dependent variables these equations become

azee = 20Zen +1Z0n = —J*(Pz¢ + Qzn) (4.3)
ayee — 20¥¢n + Yy = —J*(Pye + Qun) (4.4)
where
J = z¢yg — Toye
— 2 2
@ = Zp,ty,
B = z¢zq+t ynye
7 = i+

An H-mesh in a duct or blade cascade is created where the line £ = 0 corresponds
to the inlet boundary and the line £ = 1 corresponds to the outlet boundary. The lines

n =0 and n = 1 correspond to the upper and lower surface of the domain.

4.2 Complete Pointer System

To assure that the constraints of the pointer system would not restrict the code
developmert process, a very complete pointer system was put together. This system
stores three to four times as ruch information as is required to program the numerical
schemes described here. The minimum requirements are described in the following

section.

The pointer system used here consists of arrays of nodes, cells, faces, edge faces and

edge nodes. These arrays are interconnected in that elements in one array will point
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to elements in another array. Nodes are the only elements which do not point to cther
elements. The interconnection of the arrays is shown in Figure 4.1 where the arrows
indicate pointing from one array to another. In essence the complete pointer system
overdefines the connection between the arrays, but this allowed more freedom in the

code development process.

face edge face

edge node node cell

Figure 4.1: Interconnection of pointer arrays

4.2.1 Node Arrays

Each node is assigned a number. Arrays containing all the nodes hold information
about the z and y coordinate as well as the four elements of the state vector U for each

node. These variables were stored in

z(N) N =1,Nmaz

y(N) N =1,Nmas

U(s,N) N =1,Nmaz
1=1,4

Other information is temporarily stored at each node, such as the flux vectors F

and G and the change in the state vector §U.

54



4.2.2 Cell Arrays

The cell is the basic computational unit for all the schemes described here. The
value of a flux, for example, is calculated for the cell and distributed to the nodes which
make up the cell. To completely describe the cell and its surrounding elements, each

cell points to the nodes and faces which make up the cell. The cell array for cell CC

consists of
N F4 3 celi(1,CC) = F1
cell(2,CC) = F2
cell(3,CC) = F3
F1 cc IF3 cell(4,CC) = F4
cell(5,CC) = N1
cell(6,CC) = N2
. - , cell(7,CC) = N3
cell(8,CC) = N4
cell(1,CC) = F1
cell(2,CC) = F2
cell(3,CC) = F3
cell(4,CC) = N1
cell(5,CC) = N2

cell(6,CC) = N3

As with the nodal arrays, other informaticn is temporarily stored at each cell, such
as the area divided by the timestep (ﬂ) and the change in the state vector at the cell

AU. This information can be accessed by merely knowing the cell number.
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4.2.3 Face Arrays

At one time, using the face as the basic computational element was considered.
This method is effective for the Jameson schemes mentioned here, but for consistency
between the Ni and Jameson schemes was replaced by the cell based method. Currently
the face elements are used to indirectly describe edge faces and plot the computational
mesh. Each face points to the cells on either side of it and the nodes which belong to
these cells. When a node or face lies outside the computational domain its value is set

to zero. The face array for face FF consists of

N 2 5 face(1,FF) = C1
face(2,FF) = C2
face(3,FF) = NI

C1 FF C2 face(4,FF) = N2
face(5,FF) = N3
face(6,FF) = N4

N3 0 6 face(7,FF) = N5

| face(8,FF) = N6

2
face(1,FF) = C1
face(2,FF) = C2
N3 ¢t FH  ©2 N4 face(3,FF) = N1
face(4,FF) = N2
face(5,FF) = N3
N face(6,FF) = N4

4.2.4 Edge Face Arrays

To implement the boundary conditions it is necessery to know which faces or cells

lie on the boundary and their orientation with respect to the boundary. The elementa
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of the edge face array point to the elements of the face array. Each face which is on the
boundary is oriented such that C1 and N3 (and N4 for the quadrilaterals) lie inside the

domain.

edge(EF) = FF

4.2.5 Edge Node Arrays

For convenience an array of edee nodes was also created. These nodes correspond
to the sciid wall boundary nodes. Information such as the flow angle o at a boundary

node was stored in an array indexed by the edge nodes.

4.3 Required Pointer System

The pointer system described in the previous section contains more information than
i8 required to implement the numerical schemes described here. The nodal arrays are
the independent variables of the system and should remain as they were described. The
rest of the pointer system can be replaced by a single array of cells. To specify which
cells lie on the boundaries the edge cells can be placed at the beginning of the array
with the first two nodes of these cells lying on the boundary. The cell array should be

arranged such that the entry for cell CC would consist of

N 3
cell(1,CC) = N1
cell(2,CC) = N2
ce cell(3,CC) = N3
cell(4,CC) = N4

N1 12
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cell(1,CC) N1
cell(2,CC) = N2
cell(3,CC) = N3

CC

N1 - N2

4.4 Vectorization

To eliminate data dependencies which restrict vectorization and to create long vector
lengths, a coloring system is used. This system assigns a color to each element in the
array such that all elements of the same color do not contain data dependencies. The
arrays are then sorted such that all elements of the same color occupy consecutive
locations in the array. For example, data dependencies may occur in an operation on
an array of cells when two different cells contain a node in common. For quadrilateral
cells it is possible for simple cases to color the cell array with four colors such that the

cells of one color do not have common nodes.

All arrays in the pointer system used here were colored so the code would run on

an Alliant FX/3 computer which veed vector/concurrent arithmetic.
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Chapter 5
Computational Examples



than the high-accuracy smoothing. Essentially twice as many iterations were required
for the Ni schemes than the Jameson schemes since the CFL number for the Ni schemes

is half as large as for the Jameson schemes.

Several Mach number contours with increment 0.05 are shown in Figures 5.1 to 5.7
for different numerical schemes and numerical smoothing techniques. For the most part

the solutions lock the same.

In Figure 5.1 the effect of the low-accuracy smoothing on an irregular mesh can be
seen. Comparing the solution in Figure 5.1 to the solutions in Figure 5.2 with the low-
accuracy smoothing on a regular mesh and Figure 5.3 with the high-accuracy smoothing
on an irregular mesh, the contours are not as smooth. This effect exists because the
low-accuracy smoothing includes no information about the location of the neighboring
mesh points. For an irregular mesh this becomes important. In Figure 5.1 another
effect of the low-accuracy smoothing can be seen. The contours on the lower surface do
not intersect the solid wall smoothly. A slight turning of the contour lines can be seen.
This effect exists because the inviscid solution has g% # 0 on curved walls, whereas the

low-accuracy smcothing has a one-sided bias which implicitly assumes that gﬁ =0.

All the solutions pick up the normal shock cn the upper surface of the duct in the
reflection from the leading edge shock. This reflection interacts with the trailing edge
shock behind the bump, and reflects of the lower surface of the duct to combine with the
trailing edge shock. In general the quadrilateral schemes pick up this interaction between
tbe shocks better than the triangular schemes. This is partly due to the resolution since
as the mesh is refined, the shock is picked up by the triangular schemes as well as the
quadrilateral schemes. The triangular schemes have a harder time keeping the leading
edge shock and its first reflection straight. More work must be done with the shock

capturing smoothing to correct this.
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Figure 5.1: Supersonic case: quadrilateral Jameson scheme with low-accuracy smooth-

ing on an irregular mesh
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Figure 5.2: Supersonic cage: quadrilateral Jameson scheme with low-accuracy smooth-

ing on a regular mesh
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Figure 5.3: Supersonic case: quadrilateral Jameson scheme with high-accuracy smooth-

ing on an irregular mesh
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Figure 5.4: Supersonic case: quadrilateral Ni scheme with high-accuracy smoothing on

a regular mesh
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Figure 5.5: Supersonic case: triangular Jameson scheme with high-accuracy smoothing

on an irregular mesh
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Figure 5.6: Supersonic case: triangular Jameson scheme with low-accuracy smoothing

on an irregular mesh
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Figure 5.7: Supersonic case: triangular Ni scheme with high-accuracy smoothing on an

irregular mesh
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5.2 Transonic Circular Arc Bump

The second problem is transonic flow in a channel with a 10% circular arc bump
on the lower surface. The inlet Mach number is 0.675. A 64 x 18 cell mesh is used.
‘The inlet is subsonic, but the fiow is accelerated over the top of the bump and a shock
forms. This problem again illustrates the shock capturing methods as well as subsonic

interactions with solid wall boundaries.

Several Mach number contours with increment 0.1 are shown in Figures 5.8 to 5.15
for different numerical schemes and numerical smoothing techniques. Again, for the
most part the solutions look the same. Some plots show tighter shocks, but this is due

to different shock capturing methods more than the numerical schemes themselves.

As with the supersonic test case, the solution found using the quadrilateral Jameson
scheme with low-accuracy smoothing on an irregular mesh, as shown in Figure 5.8, is
significantly less smooth than the same case on a regular mesh, as shown in Figure 5.9.
The high-accuracy smoothing used with the quadrilateral Jameson scheme produces
much smoother results with both regular and irregular meshes as shown in Figures 5.11
and 5.10. In fact the irregular mesh has a very smooth solution with the high-accuracy

smoothing.

In Figure 5.13 an effect of the low-accuracy smoothing on the interaction with solid
wall boundaries can be seen. The smoothing tends to keep the Mach contours from
intersecting the solid wall smoothly. This can be seen by a turning of the contour lines
uear the wall. This effect can also be seen in for the supersonic case in Figure 5.1. Once
again the lack of information about the location of the mesh points in the low-accuracy
smoothing and the imposition of an unnatural boundary condition for the numerical

smoothing causes a problem.
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Figure 5.8: Transonic case: quadrilateral Jameson scheme with low-accuracy smoothing

on an irreguiar mesh
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\ Figure 5.9: Transoaic case: quadrilateral Jameson scheme with low-accuracy smoothing

on a regular mesh
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Figure 5.10: Transonic case: quadrilateral Jameson scheme with high-accuracy smooth-

ing on an irregular mesh
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Figure 5.11: Transonic case: quadrilateral Jameson scheme with high-accuracy smooth-

ing on a regular mesh
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Figure 5.12: Transonic case: quadrilateral Ni scheme with high-accuracy smoothing on

a regular mesh
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Figure 5.13: Transonic case: triangular Jameson scheme with low-accuracy smoothing

on an irregular mesh
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Figure 5.14: Transonic case: triangular Jameson scheme with high-accuracy smoothing

on an irregular mesh
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Figure 5.15: Transonic case: triangular Ni scheme with high-accuracy smoothing on an

irregular mesh
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Chapter 6

Accuracy Study

It is shown mathematically by Giles [5] that both the Ni scheme and the Jameson
scheme are second order accurate for either quadrilateral or triangular meshes. The
nature of the mathematical proof as well as a numerical accuracy study which confirms

this result are examined in this chapter.

6.1 Mathematical Study

Giles shows in [5] that the global solution error is second order for steady state node
based finite volume schemes on irregular meshes. The analysis states that the local
truncation error is first order, but that this does not imply that the global error is also
first order. It is assumed that the numerical finite volume scheme is conservative and h
is some typical cell length. With this in mind, it is shown that the iruncation error has
a spectral content which can be split into two parts, a low-frequency component with
an amplitude which is O(h?) and a high-frequency compcnent with an amplitude which
is O(h). It is then shown that the hyperbolic differential operator

_OF(U) , 3G{U)

LU ="25 ” (6.1)

has a transfer function which is O(1) at low frequencies and O(1/h) at high frequencies.
From this it can be concluded that the global error is O(h?) for both low and high
frequencies, therefore the schemes are second order accurate. An important assumption
in the analysis is that the numerical smoothing does not produce a truncation error

which is worse than first order on irregular meshes.
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6.2 Numerical Study

A numerical study was performed to determine the accuracy of the schemes described
in Chapter 2. The purpose of this study was to confirm that these schemes are second

order accurate.

For inviscid flow, there should be no total pressure loss for smooth, subsonic flow.
Thus, for such flows any total pressure loss is purely numerical in nature. With this in
mind, the total pressure loss is used to define the error in subsonic flow through a duct
with a sin? z bump on the lower surface and a 0.50 inlet Mach number. The height of

the lower surface is given by

y = 0.10sin’(xz) 0<z<1 (6.2)

To describe the rumerical error on a mesh a global error is defined as the Li-norm of

this local error.

_ (Po)upl!raam - (Po)local
= (po)upatrcam (6‘3)
_ 2y
error = Tl (6.4)

For meshes composed of quadrilateral cells it is easy to define an appropriate mesh
for an accuracy study. To create a regular quadrilateral mesh a mesh is laid out in a
rectangular duct with a sin? z bump on the lower surface which is 3 units long and 1
unit high where cells away from the bump are square. A, a typical cell length, is defined
as the length of the cell faces. Four different meshes are used for the study with 8, 16,
32 and 64 faces per unit length. The second mesh in this series is shown in Figure 6.1.
To create an irregular quadrilateral mesh the nodes of these meshes are perturbed by an
amount determined by a sine function whose period has no relationship to the mesh.
Four different meshes are again used for the study with 8, 16, 32 and 64 faces per unit

length. The second mesh is shown in Figure 6.2.
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Two different mesh types are used for triangular cells. The first type is an irregular
triangular mesh and is identical to the meshes described for the quadrilateral cells where
the cells are split along the shorter diagonal to create triangles. h is defined in the same
manner as for the quadrilaterals since this defines a reference length for the cells. Again
four different meshes are used with 8, 16, 32 and 64 faces per unit length. An example
of the second mesh is shown in Figure 6.3. A second type of mesh was created which
contains only triangles which are very nearly equilateral. This type of mesh is what
could be referred to as a regular triangular mesh.. The duct for this mesh is slightly
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