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Dynamical trajectories on the boundary in state space between laminar and turbulent plane channel

flow—edge states—are computed for Newtonian and viscoelastic fluids. Viscoelasticity has a negligible

effect on the properties of these solutions, and, at least at a low Reynolds number, their mean velocity

profiles correspond closely to experimental observations for polymer solutions in the maximum drag

reduction regime. These results confirm the existence of weak turbulence states that cannot be suppressed

by polymer additives, explaining the fact that there is an upper limit for polymer-induced drag reduction.
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When flow in a pipe or channel turns turbulent, its fric-
tional resistance increases abruptly. Introducing long-chain
polymer additives can significantly reduce this resistance
[1–3]. This polymer drag reduction (DR) effect saturates at
high levels of viscoelasticity: an asymptotic upper limit is
reached that is insensitive to polymer concentration, mo-
lecular weight or chemical structure. In this limit, mean
velocity profiles UmðyÞ under different conditions collapse
onto the log-law relationship reported by Virk: Uþ

m ¼
11:7 lnyþ � 17:0 [1]. (The superscript ‘‘þ’’ denotes quan-
tities nondimensionalized in inner velocity and length

scales
ffiffiffiffiffiffiffiffiffiffiffiffi
�w=�

p
and �=

ffiffiffiffiffiffiffiffiffi
��w

p
: �w is the time- and area-

averaged wall shear stress, � and � are the fluid viscosity
and density, and y is the distance from the wall.) This so-
called maximum drag reduction (MDR) phenomenon re-
mains the most important unsolved problem in viscoelastic
turbulence. Additionally, it has long been hoped that under-
standing drag reduction in polymer solutions might lead to
new insights into how to reduce energy consumption in
Newtonian fluids as well.

Recent studies [4,5] revealed that in both Newtonian and
viscoelastic flows, the turbulent self-sustaining process
exhibits distinct phases in its dynamics. In the Newtonian
limit, so-called active turbulence dominates, where the
flow structures show strong vortices and wavy streaks.
On rare occasions, intervals with weak turbulence activity
show up: flow structures during these hibernating turbu-
lence intervals resemble MDR turbulence, showing fea-
tures [6–8] such as weak streamwise vortices, almost
streamwise-invariant streaks and an instantaneous mean
velocity profile that approaches the Virk log-law profile.
With increasing viscoelasticity, active intervals are short-
ened while hibernating intervals are virtually unaffected.
Accordingly, hibernation occurs more frequently, leading
to flows increasingly similar to MDR. Related results have
recently been found in boundary layer flow [9]. These
results indicate that MDR might be associated with a
type of weak turbulence already existing in Newtonian

flow that only becomes unmasked at a high level of visco-
elasticity as suggested by [2]. Furthermore, the dynamics
of hibernating turbulence are consistent with suggestions
that turbulence in the MDR regime is somehow ‘‘transi-
tional’’ [3,9,10] or ‘‘marginal’’ [11].
In a well-defined sense, the weakest, most marginal form

of self-sustaining turbulence is a flow that asymptotically
in time approaches neither the turbulent state nor the
laminar state—an edge state [12–14]. An edge state lies
on an invariant surface in state space that is a general-
ization of a basin boundary between two attractors to the
situation where one attractor might be replaced by a very
long-lived transient; there is evidence that this is the
situation with turbulence in some cases [15]. Lebovitz
[14] calls such a surface a ‘‘weak’’ basin boundary.
Initial conditions starting on one side of the edge surface
develop into turbulence, those on the other side directly
decay to laminar flow, and initial conditions on the surface
itself remain on the surface, asymptotically approaching an
edge state. As such, edge states are saddle structures in
state space. These states have attracted much recent atten-
tion [12,16–18]. Past studies have focused on laminar-
turbulent transition in Newtonian flows. In the present
study, we focus on the connection between the edge and
drag reduction by polymers. In particular, we address two
key questions: (1) How does viscoelasticity affect the
edge? (2) Is there any similarity between the edge and
MDR?
We study plane Poiseuille flow at fixed pressure drop.

The x, y, and z coordinates are aligned with the stream-
wise, wall-normal and spanwise directions, respectively.
No-slip boundary conditions apply at the walls and peri-
odic boundary conditions apply in x and z; the periods in
these directions are denoted Lx and Lz. The governing
equations are

Dv

Dt
¼ �rpþ �

Re
r2vþ 2ð1� �Þ

ReWi

bþ 5

b
ðr � �pÞ; (1)
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r � v ¼ 0; (2)

Wi

2

�
D�

Dt
�� � rv� ð� � rvÞT

�
¼ ��p; (3)

� p ¼
�

�

1� tr ð�Þ
b

� b

bþ 2
�

�
: (4)

Here (1) and (2) are conservation of momentum and mass.
The polymer contribution is captured by the FENE-P con-
stitutive equation [(3) and (4)] [19]: �p is the polymer stress

and � is the polymer conformation tensor. Velocities and
lengths are scaled with Newtonian laminar centerline ve-
locityU and half-channel height l. Time t is scaledwith l=U
and pressure p with �U2. Reynolds number Re � �Ul=�
(where � is the total zero-shear viscosity), Weissenberg
number Wi � 2�U=l (� is the polymer relaxation time),
viscosity ratio � � �s=� (�s is the solvent viscosity), and
b is the polymer extensibility: maxðtrð�ÞÞ< b. Stress is
scaled with the shear modulus in the limit b ! 1. All
results are obtained with box size ðLþ

x ; L
þ
z Þ ¼ ð720; 140Þ;

time steps are �t ¼ 0:02 for Re ¼ 3600 (friction Reynolds

number Re� ¼
ffiffiffiffiffiffiffiffiffiffi
2Re

p ¼ 84:85) and �t ¼ 0:01 for Re ¼
14 400; for viscoelastic runs � ¼ 0:97 and b ¼ 5000.
Additional details are reported elsewhere [20].

To compute edge states, we follow the same method as
previous studies [12,18]. Using any point in the state space
as the initial condition, a short direct numerical simulation
(DNS) will tell which side of the edge surface it belongs to:
if a strong turbulent burst is found the point is on the
turbulent side; if the solution decays directly to the laminar
state it is on the laminar side. Given two points on opposite
sides of the edge surface, denoted vT0 and vL0, a line
connecting them in the state space vð�Þ ¼ �vT0 þ ð1�
�ÞvL0 must intersect the edge at least once. Therefore
through repeated bisection, one can always find a pair of
points vð�TÞ and vð�LÞ that are arbitrarily close to each
other, yet located on opposite sides of the edge. In this case
both points are sufficiently close to the edge that dynamical
trajectories starting from them will stay close to the edge
for a long time before diverging from one another. A next
round of bisections is then started using a new pair vT0
and vL0 taken from trajectories of the previous round.
This process is repeated and the solutions from each itera-
tion are concatenated to form an approximation to a tra-
jectory on the edge. In this study each round of bisection is
stopped when �T � �L � 10�8; a new round is started
when the bulk-average turbulent kinetic energy differs by
a magnitude of 10�6–10�5 between the trajectories.
Computations are continued until the results are statisti-
cally stationary.

A time series of area-averaged wall shear rate
h@vx=@yiw for a viscoelastic edge state at Re ¼ 3600,
Wi ¼ 28 is shown in Fig. 1. Strong asymmetry across
the channel center is observed in all our solutions; we

have plotted the wall shear rate at the side with stronger
velocity fluctuations. Trajectories on the edge are much
less chaotic than regular turbulence (cf. [4,5,20]). Intervals
with high h@vx=@yiw and large temporal variation alternate
with those with low h@vx=@yiw and almost nonexistent
variation. The Newtonian case is very similar, although
the average interval between successive peaks is shorter.
Variations in the bulk (volume-averaged) trð�Þ are also
shown in Fig. 1; they are in phase with those of h@vx=@yiw.
Asymmetry of flow structures is clearly reflected in the

Reynolds shear stress profiles [Fig. 2(a)]. Therefore, in
presenting results, we will define the y axis so that the
wall nearest the more substantial dynamics is at yþ ¼ 0.
These profiles are all significantly lower in magnitude than
regular turbulence, which has a maximum of� 0:6 [5,20].
The Newtonian Re ¼ 3600 profile is even smaller com-
pared with magnitudes within hibernating turbulence. Note
that the smallness of Reynolds shear stress is among the
major observations during MDR [8,21–23]. An edge solu-
tion for Re ¼ 14 400 has also been computed, and strong
asymmetry is also observed. In addition to the primary
peak found at yþ � 35, where the Re ¼ 3600 profile

FIG. 1 (color online). Time series of an edge trajectory at
Re ¼ 3600, Wi ¼ 28. Thick lines: area-averaged wall shear
rate; thin lines: bulk-average trð�Þ.

FIG. 2 (color online). (a) Reynolds shear stress profiles. Lines
with markers þ and � are instantaneous profiles for instants (I)
and (II) in Fig. 1(b), scaled in � units; others are time averages,
scaled in þ units. Arrows mark the positions of the channel
centers for the Newtonian time-average profiles. (b) Polymer
conformation profiles(Re ¼ 3600). Solid lines and left ordinate:
mean (area- and time-averaged) profiles of trð�Þ; dashed lines
and right ordinate: mean �yy þ �zz.
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reaches a maximum, a secondary peak is found at yþ � 75,
indicating nontrivial structure further from the wall than in
the Re ¼ 3600 case. The viscoelastic result at Re ¼ 3600
and Wi ¼ 28 is also plotted; it almost collapses onto the
corresponding Newtonian profile. Note that for the same
Re, � and b, the onset Wi for DR found in an earlier study
(focusing on dynamics in the turbulence basin) is� 10 [5];
at Wi ¼ 28, viscoelasticity is strong enough to cause not
only substantial DR, but also qualitative changes in flow
statistics and structures [5,20]. It is striking that the same
level of viscoelasticity does not affect the results on the
edge.

Instantaneous profiles of Reynolds shear stress are also
shown in Fig. 2(a), for two instants selected from the edge
solution at Wi ¼ 28, as marked in Fig. 1. These are non-
dimensionalized in inner scales based on instantaneouswall
shear stress ��w (instead of its time average �w); correspond-
ingly, superscript � is used instead ofþ. Instant (I) is taken
near a peak of h@vx=@yiw; here we also observe a much
higher �hv0þ

x v0þ
y i magnitude than instant (II), which is

taken in the phase with lower h@vx=@yiw.
Flow fields for these instants are shown in Fig. 3. Instant

(I), which has stronger turbulent activity, shows a shorter
characteristic wavelength in the z direction than instant
(II). Low- and high-speed streaks have weak dependence in
the x direction in both instants [Figs. 3(a) and 3(b)]. At (I)
some variation is still observed, which however occurs
over a much longer wavelength than in active turbulence
(typically� 300 [4,5,20]); at (II) variation along the x axis
is barely noticeable. The presence of streamwise vortices is
apparent from the structure of the streamwise velocity
components. At instant (I) these vortices have similar
strength as those in hibernating turbulence, which are a
few times weaker than in active turbulence; at instant (II),
their strength is an order of magnitude weaker than at (I).
Extremely weak vortices and nearly streamwise-invariant
streaks are observed in both MDR [6–8] and hibernating
turbulence [4,5].

Mean velocity profiles for these two instants as well as
time-averaged profiles are plotted in Fig. 4. The profile of
instant (II) is slightly above the Virk MDR asymptote, also

shown on the plot, while that of (I) is well below; con-
sequently the time-average profile for Re ¼ 3600 and
Wi ¼ 28 is remarkably close to it. Comparing time-
average profiles for all Re ¼ 3600 cases, we see that
viscoelasticity has virtually no effect on the mean velocity:
Newtonian and viscoelastic profiles from different Wi
overlap one another very closely and are thus difficult to
distinguish on the plot. Recall from Fig. 2(a) that insensi-
tivity to viscoelasticity is also found in Reynolds shear
stress.
The origin of the insensitivity of edge solution to visco-

elasticity is seen upon examination of the polymer con-
formation profiles, Fig. 2(b). Although trð�Þ increases with
Wi, this increase is almost completely driven by the mean
shear. Indeed, for simple shear at the Wi values indicated
(16, 20, and 28), the values of trð�Þ are 398, 560, and 877,
respectively. The values at the wall for the edge states are
only slightly larger than these. Furthermore, noting that the
equilibrium magnitude of �yy þ �zz is 2b=ðbþ 5Þ � 2,

we see that the polymer is essentially undeformed in y
and z. Polymer stretching in these directions is the main
cause of vortex suppression and DR in near-wall turbu-
lence [24–26], and the lack thereof in the edge solution
indicates why the edge structures are so weakly affected by
viscoelasticity. The edge states are only barely three-
dimensional and are thus almost completely unable to
generate the exponential stretching of fluid elements re-
quired to strongly deform polymer chains. This very weak
three-dimensionality is also seen in the lower-branch exact
coherent states found by Wang et al. [27], which almost
certainly also live on or near the laminar-turbulent bound-
ary. Furthermore, these traveling waves have vanishing
Reynolds shear stress in the limit of high Reynolds num-
ber—small Reynolds shear stress is a key feature of drag
reduction and plays an important role in phenomenological
models of it [11]. Based on the Wang et al. results and
those here, it may be that the Reynolds shear stress van-
ishes at MDR as Re ! 1.

FIG. 3 (color online). Streamwise velocity [range 0.2 (blue)-
0.7 (red)] on the xz plane at yþ ¼ 25 for (a) instant (I) and
(b) instant (II) of Fig. 1.

FIG. 4 (color online). Mean velocity profiles (half-channel).
Lines with multiple markers are instantaneous profiles (for
instants (I) and (II) on Fig. 1), in � units; lines with single
markers are time-average profiles, in þ units.
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Discussion so far has focused on Re ¼ 3600, where the
turbulent flow structures are relatively simple. Figures 2(a)
and 4 show results for a Newtonian edge state at Re ¼
14 400. Specifically, consider the mean velocity profile
shown in Fig. 4. In contrast to the Re ¼ 3600 result, the
profile at Re ¼ 14 400 remains close to the Virk asymptote
up to yþ � 30, but exceeds it at larger distances. This
result indicates that at this Reynolds number the edge
dynamics are even more weakly turbulent than the Virk
MDR dynamics. This result is consistent with the bifurca-
tion analysis study of Pringle et al. [28], which shows that
as Re increases, a multitude of new traveling wave solu-
tions come into existence. As new solutions arise, the
position of the edge in state space can change discontinu-
ously, so an invariant set that lies on the edge at a low
Reynolds number may no longer be on the edge at higher
Reynolds number. Much further work remains before the
Reynolds number dependence of the laminar-turbulent
boundary is understood.

The key qualitative conclusion from this study is that
asymptotic trajectories on the laminar-turbulent boundary
at low Reynolds number are insensitive to viscoelasticity—
they are only weakly three-dimensional and are thus in-
effective at stretching polymers. Furthermore, the mean
velocity profile for the Newtonian edge state quantitatively
agrees with the experimentally observed profile for poly-
mer solutions at the maximum drag reduction asymptote.
These conclusions present a solution to the long-standing
question of why there is an upper limit for DR and why it is
universal with respect to polymer properties. Conventional
‘‘active’’ turbulence generates substantial polymer stretch-
ing, which in turn acts to weaken the turbulence, driving
the dynamics toward the laminar-turbulent boundary—hi-
bernation intervals are excursions toward the edge (neces-
sarily transient as edge states are saddles in state space), as
evidenced by the strong similarity in flow structure be-
tween the two phenomena. From the present work we now
see that the weakest form of self-sustaining turbulence, the
edge state, is not affected by polymer, so we can also
conclude that there is a region in the state space close to
the laminar-turbulent boundary where turbulent motion is
too weak to sufficiently stretch polymers and is thus in-
sensitive to them. This region forms a band in the state
space that is invariant to viscoelasticity, determining the
upper limit of polymer-induced DR.

From a broader perspective, this work bridges two im-
portant areas, laminar-turbulent transition and drag reduc-
tion by polymers, which have generally been viewed as
separate. In addition, if MDR is indeed closely connected
to Newtonian flow states, as strongly indicated in this study
and previous ones [4,5,9], achieving high levels of DR with
flow control instead of polymer additives might be a real-
istic goal.
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