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Motivated by recent experiments on material Ba3NiSb2O9, we propose two novel spin liquid phases

(A and B) for spin-1 systems on a triangular lattice. At the mean field level, both spin liquid phases have

gapless fermionic spinon excitations with quadratic band touching; thus, in both phases the spin

susceptibility and � ¼ Cv=T saturate to a constant at zero temperature, which are consistent with the

experimental results on Ba3NiSb2O9. On the lattice scale, these spin liquid phases have Spð4Þ � SOð5Þ
gauge fluctuation, while in the long wavelength limit this Sp(4) gauge symmetry is broken down to

Uð1Þ � Z2 in the type A spin liquid phase, and broken down to Z4 in the type B phase. We also

demonstrate that the A phase is the parent state of the ferroquadrupole state, nematic state, and the

noncollinear spin density wave state.

DOI: 10.1103/PhysRevLett.108.087204 PACS numbers: 75.10.Kt, 71.27.+a, 75.10.Jm

A quantum spin liquid (QSL) is a ground state of an
insulating magnet with vanishing static local moments and
exotic emergent excitations [1]. Within spin wave theory
for the simplest Heisenberg Hamiltonians, quantum fluc-
tuations rapidly decrease with increasing spin quantum
number S, so it is often believed that QSLs may occur
only in the extreme case of S ¼ 1=2 spins. Indeed, the
most promising empirical QSL materials are comprised of
spin-1=2 moments [2–7]. However, when the Hamiltonian
deviates from the Heisenberg form, quantum effects can
be enhanced also for higher spin, leading to ground states
beyond the usual magnetically ordered ones. Theoretically,
biquadratic and other higher order exchange terms have
been argued to favor multipolar ordered and QSL states, in
particular, materials, such as the triangular lattice spin-1
magnet NiGa2S4 [8–12] and certain ordered double per-
ovskites [13]. Quite unexpectedly, recent experiments
have evidenced QSL behavior in the spin-1 magnet
Ba3NiSb2O9, with spins residing on triangular lattices
with AB stacking [14]. Although the Curie-Weiss (CW)
temperature of this material is �CW ��75 K, no magnetic
ordering or phase transition was observed down to a tem-
perature of 0.35 K, approximately 200 times lower than
j�CWj. The low temperature thermodynamics of this mate-
rial is strikingly similar to that of the geometrically similar
spin-1=2 organic triangular lattice QSLs [5,15–17]. In
particular, the spin susceptibility � and linear coefficient
of specific heat � ¼ cv=T in Ba3NiSb2O9 both saturate to
constants at low temperature [14].

Most theoretical approaches to QSLs rely on slave par-
ticle methods, and/or wave functions which correspond to
slave particles. While these approaches have been exten-
sively developed for S ¼ 1=2 systems, there has been little
theoretical work on them for the S ¼ 1 case. We consider

this here. To sharpen the discussion, we assume the pres-
ence of SU(2) spin symmetry, and seek QSL states in this
framework which match the basic phenomenology so far
observed in the low temperature thermodynamics.
One way of studying spin-1 system is by introducing

three flavors of fermionic spinon f� (� ¼ 1� 3) as follows

[18,19]: Ŝa ¼ fy�Sa��f�, andS
a are three spin-1matrices. In

order to guarantee the equivalence of the spin Hilbert space
and the spinon Hilbert space, one must impose the gauge

constraint
P

�f
y
i;�fi;� ¼ 1, fixing the spinon density locally

to a 1=3 filling. At the mean field level, the spinon f� forms
a Fermi surface whose area is 1=3 of the Brillouin zone. A
spinon Fermi surface seems to be consistent with constant�
and � observed experimentally. However, beyond the mean
field theory, due to the single occupancy constraint, the
spinon fermi surface is coupled to a dynamical U(1) gauge
field. This U(1) gauge field has a ‘‘dressed’’ over-damped
z ¼ 3 dynamics due to its coupling to the Fermi surface,

which leads to a � ¼ Cv=T � T�1=3 at low temperature
[20,21], which is inconsistent with experiment. One solu-
tion of this problem is to introduce pairing of the spinons in
the mean field state. This has its own difficulties: either a
gap is induced and impurities must be invoked to restore the
proper thermodynamics [22], or spin-rotational symmetry
must be strongly broken [19].
General formalism.—We start instead by representing

the spin-1 operators in the following way:

Ŝ
�
i ¼ 1

2

X
�;�¼";#

X
a¼1;2

fy�;a;i�
�
��f�;a;i: (1)

Here �� are three spin-1=2 Pauli matrices. Each spinon
f�;a has two indices: � ¼"; # , denotes spin and a ¼ 1; 2 is

an ‘‘orbital’’ quantum number. Thus, we can consider not
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only the usual spin-SU(2) rotations in the �-� space, but
also orbital SU(2) transformations in the a-b space.
Matching with the spin Hilbert space requires not only
constraining the total fermion number to half-filling (two
fermions per site), but also requiring each site to be an
orbital SU(2) singlet, which guarantees that the spin space
is a symmetric spin-1 representation:

n̂i ¼
X

a¼1;2

X
�¼";#

fy�;a;if�;a;i ¼ 2;

�̂� ¼ X
�;a;b

fy�;a;i�
�
abf�;b;i ¼ 0:

(2)

Here �
�
ab are three Pauli matrices that operate on the orbital

indices. A similar slave fermion formalism with orbital
indices was introduced in Ref. [23], and it was applied to
two-orbital SUðNÞmagnets that can be realized in Alkaline
earth cold atoms [24–26].

Because of these two independent constraints in
Eq. (2), the spinon f�;a appears to have the following

Uð1Þ � SUð2Þ gauge symmetries:

Uð1Þc: f�;a;i ! ei�if�;a;i;

SUð2Þo: f�;a;i ! ½ei ~�i� ~�=2�abf�;b;i:
(3)

By rewriting f�;a;i in terms of Majorana fermions 	 as

follows, however, a larger gauge symmetry is exposed:

f�;a;i ¼ 1
2ð	�;a;1;i þ i	�;a;2;iÞ: (4)

On every site, 	i has in total three two-component spaces,
making the maximal possible transformation on 	i SO(8).
Within this SO(8), the spin-SU(2) transformations are
generated by the three operators (�x
y, �y, �z
y), where
the Pauli matrices 
a operate on the two-component space
(Re½f�, Im½f�). The total gauge symmetry on 	 is the
maximal subgroup of SO(8) that commutes with the
spin-SU(2) operators. This is Spð4Þ � SOð5Þ generated by
the ten matrices �ab ¼ 1

2i ½�a;�b�, where

�1 ¼ �y�y
z; �2 ¼ �y�y
x; �3 ¼ �y
y;

�4 ¼ �z; �5 ¼ �x: (5)

These �a with a ¼ 1; . . . ; 5 define five gamma matrices
that satisfy the Clifford algebra f�a;�bg ¼ 2�ab. �ab and
�a are all 8� 8 Hermitian matrices. �ab are all antisym-
metric and imaginary, while �a are symmetric.

We consider a spin-1 Heisenberg model on the triangular
lattice with both nearest-neighbor and 2nd neighbor anti-
ferromagnetic couplings. Based on the above spinon rep-
resentation of spin-1 operators, the Heisenberg model can
be rewritten as follows:

X
i;j;�

JijŜ
�
i Ŝ

�
j � X

i;j;�

Jijf
y
�;a;i�

�
��f�;a;if

y
�;b;j�

�
��f�;b;j

��2Jij�̂
�
ab;ji�̂ba;ji þ const;

�̂ab;ji ¼ "��f�;a;jf�;b;i:

(6)

Decoupling through a hopping term is also possible, but we
do not pursue this here. To analyze Eq. (6), we adopt a

mean field ansatz with nonzero pairing h�̂ab;jii, so that the

spinon f�;a fills a mean field band structure. To improve

beyond the mean field, a variational spin wave function
may be obtained by projecting the mean field ground state
to satisfy Eq. (2):

jGspini ¼
Y
i

Pðn̂i ¼ 2Þ � Pð�̂�i ¼ 0Þjf�;ai: (7)

The general formalism discussed above can describe many
novel spin liquid states, with various different gauge fluc-
tuations that are subgroups of Sp(4). Here we focus on
simple states which satisfy the phenomenology of
Ba3NiSb2O9 [14] and, in particular, demand linear specific
heat and constant susceptibility. We consider the following
ansatz, which is a dþ id pairing state of spinons:

h�̂ab;ði;iþêÞi ¼ ð�ab�
ðmÞ
1 þ �zab�

ðmÞ
2 Þðex þ ieyÞ2; (8)

where ê is any of the nearest-neighbor or 2nd neighbor unit

vectors, and �ðmÞ with m ¼ 1; 2 denotes the pairing ampli-
tude on the nearest and 2nd neighbor links, respectively.
This is a spin singlet but orbital triplet. Because the pair
wave function vanishes when two spinons are on the same
site, such states may be particularly insensitive to the
projection in Eq. (7).
Continuum theory.—In the majority of the Letter, we

consider the case with �ðmÞ
2 ¼ 0. Then, expanded at ~k ¼ 0,

the low energy mean field Hamiltonian reads

H� 	tfð@2x � @2yÞ�13 þ 2@x@y�23g	;
�13 ¼ ��y
x; �23 ¼ �y
z:

(9)

This mean field Hamiltonian has quadratic band touching

at ~k ¼ 0. Using the same method as introduced in
Ref. [27], one can verify that this mean field Hamiltonian
breaks the Sp(4) gauge symmetry down to a Uð1Þ � Z2

gauge symmetry:

	i ! ei�i�45	i; 	i ! Qi	i; Qi 2 f1;�4g: (10)

Notice that the U(1) and Z2 gauge transformations do not
commute with each other.

In addition to the quadratic band touching at ~k ¼ 0,

depending on �ðmÞ, there are multiple Dirac points in the

Brillouin zone. For instance, when �ð2Þ < �ð1Þ, there are

Dirac points at the Brillouin zone corners ~Q ¼
�ð4=3; 0Þ. A complex Dirac fermion field c at momen-

tum ~Q ¼ ð4=3; 0Þ can be defined as
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	~r ¼ c ~re
i ~Q� ~r þ c y

~r e
�i ~Q� ~r: (11)

The low energy Hamiltonian for c reads Hc �
c yði�13@x � i�23@yÞc . However, the Dirac fermion has

a vanishing density of states at zero energy, and thus
contributes subdominantly to the 	 spinon in many physi-
cal properties.

The spinon carries a projective representation of physi-
cal symmetry. Under discrete symmetry transformations,
the low energy spinon fields 	 and c transform as

Tx: x ! xþ 1; 	 ! 	; c ! ei4=3c ;

T: t ! �t; 	 ! i�12	; c ! i�12c
y;

I : ~r ! �~r; 	 ! 	; c ! c y;

Py: x ! �x; 	 ! i�13	; c ! i�13c
y;

R=3: ðxþ iyÞ ! ei=3ðxþ iyÞ;
	 ! eið=3Þ�12	; c ! eið=3Þ�12c y:

(12)

These transformations guarantee that there is no relevant
fermion bilinear perturbation that does not break physical

symmetry. For instance, the fermion bilinear fyi fi �
	t�12	 breaks the time-reversal symmetry; thus, it is
forbidden in the Hamiltonian. In Ref. [28], a stable qua-
dratic band touching model was discussed, and it was
generally argued that the Z4 symmetry and Z6 symmetry
of the lattice is crucial to the stability of the quadratic band
touching.

Effect of gauge fluctuations.—The spinons are coupled
to a U(1) gauge field a��45. The gauge field Lagrangian is

renormalized by the fermion loop, which generates a mass
gap for a0; thus, a0 can be ignored hereafter. The same
fermion loop will also renormalize the dynamics of the
transverse component of gauge field aT to be

L1 ¼
X
!; ~q

�
cj!j þ q2

e2!; ~q

þ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ v2q2

q �
jaT!; ~qj2;

e2!; ~q �
e2

1þ c2e
2 logð �2

4!2þq4
Þ : (13)

In the Lagrangian L1, the first two terms come from the
screening of spinons at the quadratic band touching, while
the third term comes from the Dirac points. At low energy,
the gauge field therefore obeys z ¼ 1 scaling with !� q,
so that the q2=e2 term is negligible in Eq. (13). For this
reason, the gauge field decouples from 	 (which has z ¼ 2
scaling) at low energy, but remains strongly coupled to the
z ¼ 1 Dirac fermion c .

Thermodynamic and transport properties.—The finite
density of states of the 	 spinon leads to a constant � ¼
Cv=T at zero temperature. In terms of 	, the spin density
Sz is represented as

X
i

Szi ¼
X
�;a;i

	y
i �

z
y	i: (14)

Since the spin density commutes with the mean field
Hamiltonian equation (9), turning on an external magnetic
field creates a Fermi surface of 	 and c , and since the
density of states is finite at the quadratic band touching, the
spin susceptibility saturates to a constant at zero tempera-
ture. Thus, this spin liquid phase is consistent with the
scaling of specific heat and spin susceptibility observed
experimentally.
Fluctuating orders.—The gauge invariant fermion bi-

linear operators can be viewed as physical order parame-
ters with power-law correlations. They can be classified
according to their transformations under symmetry and
gauge symmetry. Some of the fermion bilinears are sum-
marized as follows:

(1) Spin density wave:

~S ~r ¼ cosð ~Q � ~rÞ ~n1 þ sinð ~Q � ~rÞ ~n2;
~n1 þ i ~n2 � a1c

y ~Sc � þ b1	
t ~Sc ;

(2) Spin nematic:

~d� a2	
t ~S�3	þ b2c

y ~S�3c ;

(3) Nematic:

N ¼ X
ê

~Si � ~Siþêðex þ ieyÞ2;

N ¼ N1 þ iN2 � a3ð	t�13	þ i	t�23	Þ
þ b3ðc y�13c þ ic y�23c Þ;

(4) Spin chirality:

C ¼ X
ijk2�

~Si � ð ~Sj � ~SkÞ þ � � � ;

C� a4	
t�12	þ b4c

y�12c ;

(15)

where ~S ¼ ð�x
y; �y; �z
yÞ are the spin matrices.
Several of these orders are germane to spin-one triangu-

lar antiferromagnets. The spin density wave order parame-
ter is precisely that which describes the classical

120	 planar spin state, with ~Q ¼ ð4=3; 0Þ coinciding
with the Brillouin zone corner. As a consequence the
spin structure factor of this state is singular at this momen-
tum. Spin nematic order occurs naturally when biquadratic
interactions are present in spin-one systems [11]. In fact,
~d changes sign under the Z2 gauge transformation
	 ! �4	, so it is a headless nematic director. The physical

order parameter is actually a bilinear of ~d, which corre-
sponds to the ferroquadrupole tensor,

Q�� ¼ 1

2
hŜ�i Ŝ�i þ Ŝ�i Ŝ

�
i i �

2

3
��� ¼ d�d� � j ~dj2

3
���:

(16)
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Spatial nematic order, in which lattice rotation symmetry is
broken but time reversal and spin symmetry are preserved,
is described byN1 andN2. Order of this type was suggested
for S ¼ 1 triangular antiferromagnets in Ref. [9], but also
can be realized by the spontaneous formation of Haldane
chains. The spin-chirality order parameterC is less obvious
from a microscopic perspective, but is a fluctuating order
for this QSL state.

At the mean field level, the equal time correlation of
spin-chirality, nematic, and spin density wave order pa-
rameters all fall off as 1=r4; the correlation of the spin
quadrupole order parameter falls off as 1=r8. The U(1)
gauge fluctuation will modify the scaling dimension of
the order parameters, and its correction can be calculated
systematically using a 1=N expansion. We will leave this
calculation to future studies.

Potential instabilities.—One potential instability of this
spin liquid state is instanton proliferation of the compact
U(1) gauge field [29]. However, due to screening by the
gapless fermions, the instantons are greatly suppressed. By
analogy with the theory of the algebraic spin liquid [30] (in
which the z ¼ 1 gauge field is similarly strongly coupled to
Dirac fermions), we expect the spin liquid phase here to be
similarly stable in principle.

Furthermore, the mean field Hamiltonian equation (9) is
subject to perturbations such as four-fermion interactions,
which are marginal perturbations at the quadratic band
touching. These four-fermion interactions can modify the
correlation functions of the order parameters discussed
above. The renormalization group may lead to weak run-
away flow of these four-fermion interactions, which even-
tually can break the symmetry of the system, and develop
one of the orders in Eq. (15).

If one of these orders develops, it can completely or
partially gap the fermions and introduce interesting effects.

Nonzero spin nematic order, ~d � 0, gaps out the quadratic
band touching and Dirac fermion c . Depending on the sign

of a2 and b2, a nonzero ~d drives the mean field band
structure of spinon into either a quantum spin Hall-type
of topological insulator or a topologically trivial insulator.
If the system is in a quantum spin Hall topological insula-

tor, assuming ~d is ordered along ẑ direction, the quantized
flux of U(1) gauge field a��45 would carry spin Sz, which

is a conserved quantity. Usually the instanton of a ð2þ 1ÞD
compact U(1) gauge field will gap out the photon excita-
tion [29]. However, in this case since the quantized gauge
flux carries conserved spin, it will suppress the instanton of
the compact U(1) gauge field a�; thus, a� is in its photon

phase (a similar physics was discussed in Ref. [31]). Since
the ð2þ 1ÞD photon phase of the U(1) gauge field is the
condensate of the gauge flux, the U(1) spin rotation around
the ẑ axis is spontaneously broken in the photon phase;
thus, eventually the spin SU(2) symmetry is broken down
to a discrete subgroup; i.e., there are in total three
Goldstone modes instead of two. If the spinon band

insulator has trivial topology, then the system is in an
ordinary ferroquadrupolar phase as discussed in
Refs. [9,10].
Weak spatial nematic order does not open a gap but only

splits the quadratic band touching into Dirac fermions at
two different momenta (Fig. 1); the original Dirac fermions
c also shift. When the nematic order magnitude is very
strong, above some critical value, all the Dirac fermions
meet and annihilate in pairs, and the spinons become fully
gapped.
Spin-chirality order, which breaks time reversal and

reflection symmetries, gaps out both the quadratic band
touching and the Dirac points. Depending on the sign of a4
and b4, a nonzero spin-chirality order can drive the spinons
into a topological Chern insulator, or a topologically trivial
band insulator with the same symmetry. In the former case,
one obtains a chiral spin liquid, in which the U(1) gauge
field a��45 acquires a Chern-Simons term after integrating

out the fermions. In the topologically trivial band insulator,
the U(1) gauge field will become confined by instanton
proliferation.
Other phases.—For S ¼ 1 spins, we may also consider

another state with �ðmÞ
1 and �ðmÞ

2 both nonzero, and

j�ðmÞ
1 j � j�ðmÞ

2 j. In this case, the spinons have two different
bands both with quadratic band touching at ~k ¼ 0, but they
have different band curvature:

H�	tfð@2x�@2yÞðA�13þB�25Þþ2@x@yðA�23�B�15Þg	:
(17)

A and B are two linear combinations of pairing amplitudes
on nearest and 2nd neighbor links. In this state, the gauge
symmetry is broken down to Z4:

	i ! Qi	i; Qi 2 f�1;��4g: (18)

The Z4 gauge field has a deconfined phase in 2þ 1 dimen-
sions, and this state is thus clearly locally stable. It also
exhibits nonzero finite spin susceptibility and � ¼ Cv=T at
zero temperature.

(a) (b)

FIG. 1 (color online). (a) The spin liquid we are considering

contains a quadratic band touching at ~k ¼ 0 (hexagon), and
Dirac points (squares) at the corners of the Brillouin zone.
(b) With a nonzero and small nematic order N1 > 0, the qua-
dratic band touching is split into two Dirac points, and the
locations of the other Dirac points are shifted.
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It was shown in material Ba3NiSb2O9 that under the
magnetic field � is still a constant at low temperature [14].
An external magnetic field will induce a small Fermi
surface for both the Uð1Þ � Z2 state and the Z4 state.
With a Fermi surface, the U(1) gauge field will acquire a
standard j!j=q term in its action, which leads to a z ¼ 3
gapless dispersion, while the Z4 gauge field is still gapped.
Thus, the current experimental observations are more con-
sistent with the Z4 state.

A similar dþ id state with quadratic band touching can
also be considered for spin-1=2 systems on the triangular
lattice. The same mean field Hamiltonian as Eq. (9) still
applies, but without an orbital index. This state remains
time-reversal and reflection invariant, and has Z2 gauge
structure. One might consider this as a candidate state
for the spin liquids observed in the compounds ��
ðETÞ2Cu2ðCNÞ3, EtMe3Sb½PdðdmitÞ2�2, and Ba3CuSb2O9

[2–6,32].
Summary and future work.—In this work we developed

a new theory of spin liquid for the spin-1 quantum magnet;
using this theory we proposed two candidate states for the
recently discovered materialBa3NiSb2O9. In Refs. [22,33],
a variational Monte Carlo computation based on the
Gutzwiller projected wave function for S ¼ 1=2 was
used to compare the energy of various mean field spin
liquid states. An extension of this method to our general-
ized S ¼ 1 projected wave function, Eq. (7), is a nontrivial
and interesting problem for the future.
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