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Variational Bayesian Inference for Point Process Generalized Linear Models in
Neural Spike Trains Analysis

Zhe Chen, Fabian Kloosterman, Matthew A. Wilson, and Emery N. Brown

Abstract— Point process generalized linear models (GLMs) have been
widely used for neural spike trains analysis. Statistical inference for
GLMs include maximum likelihood and Bayesian estimation. Varia-
tional Bayesian (VB) methods provide a computationally appealing
means to infer the posterior density of unknown parameters, in
which conjugate priors are designed for the regression coefficients in
logistic and Poisson regression. In this paper, we develop and apply
VB inference for point process GLMs in neural spike train analysis.
The hierarchical Bayesian framework allows us to tackle the variable
selection problem. We assess and validate our methods with ensemble
neuronal recordings from rat’s hippocampal place cells and entorhinal
cortical cells during foraging in an open field environment.

Index Terms— point process, generalized linear model, conjugate
prior, logistic regression, Poisson regression, variational Bayes.

I. INTRODUCTION

Point process generalized linear models (GLMs) have recently

been widely used for neural spike train analysis [21], [13], [14].

Statistical inference procedures, either maximum likelihood or

Bayesian approaches, have been developed for neural encoding and

inferring functional connectivity [1], [13], [16], [19], [5]. In maxi-

mum likelihood estimation, parameters are treated as deterministic

variables, and only point estimates are produced, with uncertainties

represented by standard error or bootstrapped variance. Whereas in

Bayesian estimation, parameters are viewed as random variables,

which are associated with their posterior probability densities. The

advantages of the Bayesian estimate over the maximum likelihood

estimate (m.l.e.) are its ease of incorporating priors and its full char-

acterization of the posterior [7], [9]. A hierarchical Bayesian model

also enables us to model the uncertainty of the hyperparameters,

such that the final performance is robust to the priors. In addition,

maximum likelihood estimate has the tendency of overfitting the

data using a large set of parameters (since the likelihood function

is not bounded), and the model selection is typically achieved by

Akaike’s information criterion (AIC) or tedious cross-validation.

Penalized maximum likelihood estimation attempts to improve this

issue [5], but it still does not admit automatic variable selection.

Three schools of Bayesian inference algorithms are popular in

the statistics/machine learning fields: i) Laplace approximation;

ii) Monte Carlo Markov chain (MCMC); iii) variational Bayes

(VB). The VB inference is particularly appealing because of its

improved performance over the Laplace approximation and its

smaller computational burden than the MCMC methods [2]. We

extend the variational logistic regression model [10], [2] with

hierarchical Bayesian modeling and develop a new VB Poisson

regression model using a generalized conjugate prior. We use

two VB-inference algorithms for point process GLM in neural

spike train analysis for neural encoding and functional connectivity
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TABLE I

EXAMPLES OF EXPONENTIAL FAMILY IN A CANONICAL FORM.

prob. dist. link func. θ b(θ) ḃ(θ) b̈(θ)

Bernoulli(1, π) logit log π
1−π

log(1 + eθ) π 1− π

Poisson(λ) log log λ exp(θ) λ λ

analysis. We demonstrate the effectiveness of our method with

ensemble neuronal recordings from a foraging rat within a two-

dimensonal open circular environment.

II. EXPONENTIAL FAMILY AND GENERALIZED LINEAR

MODELS

In the framework of generalized linear model (GLM) [11], we

assume that the observations {y1:T } follow an exponential family

distribution with the form:

p(yt|θt) = exp(ytθt − b(θt) + c(yt)), (1)

where θ denotes the canonical parameter, and c(yt) is a normalizing

constant. Suppose θt = g(ηt) = g(βxt) (β ∈ R
d), where g is

called the link function. Assume b(θt) is twice differentiable, then

Ey|θ[yt] = ḃ(θt) = ∂b(θt)
∂θt

, Var[yt] = b̈(θt) = ∂2b(θt)
∂θt∂θ′

t
(where ′

denotes the transpose). Using a canonical link function, the natural

parameter relates to the linear predictor by θt = ηt = βxt. Table

I lists two probability distributions of exponential family (in a

canonical form) for modeling discrete data.

Two popular GLMs used in modeling discrete data for neural

spike trains are logistic regression and Poisson regression. In

logistic regression, spike train observations 0 and 1 are treated as

independent Bernoulli random variables, whereas in Poisson regres-

sion, spike counts follows an inhomogeneous Poisson distribution.

The Poisson distribution is an approximation of the Binomial(n, π)
distribution if π is sufficiently small, and nπ remains roughly

a constant when n → ∞. When the discretization bin Δ is

sufficiently small, we can approximate π = λΔ.

A point process is a stochastic process with 0 and 1 observations.

Let xt denote the input covariate at time t, yt denote the observed

response variable, which equals to 1 if there is an event (spike)

at time t and 0 otherwise. Denote X = [x1, . . . , xT ] and y =
[y1, . . . , yT ]. Within the point process GLM framework, we can

write down the log-likelihood function for logistic (Bernoulli) and

Poisson regression, respectively, as follows [21]:

LBe =
TX

t=1

h
yt log πt(β) + (1− yt) log(1− πt(β))

i
(2)

LPo =
TX

t=1

h
yt log(λt(β))− λt(β)

i
(3)

where πt(β) = σ(βxt) (σ(·) is a logistic sigmoid function) and

λt(β) = exp(βxt). Maximizing (2) and (3) with respect to β
yields the m.l.e. Statistical inference algorithms for m.l.e. include
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the expectation-maximization, iteratively reweighted least squares,

and conjugate gradient algorithms.

III. BAYESIAN INFERENCE AND VARIATIONAL BAYES METHOD

The goal of Bayesian inference is to estimate the parameter

posterior p(β|y) given a specific parameter prior p(β). Normally,

because the posterior is analytically non-trackable, we will need to

resort to strategies for approximation. These methods include the

Laplace approximation for log-posterior [3], [9], [2], expectation

propagation (EP) for moment matching [17], and MCMC sampling

[16], [9]. However, the Laplace and EP approximations are less

accurate (esp. when the posterior has multiple modes or the mode is

not near the majority of the probability mass); the MCMC methods

are more general but require a high demand of computing power

and experience difficulties of assessing the convergence of Markov

chains. As an alternative Bayesian inference procedure, VB methods

attempt to maximize the lower bound of the marginal likelihood

(a.k.a. evidence) or the marginal log-likelihood [2] :

log p(y|x) = log

Z Z
p(y|x, β)p(β|α)p(α)dβdα

≥
Z Z

q(β, α) log
p(y|x, β)p(β|α)p(α)

q(β, α)
dβdα (4)

where p(β|α) denotes the prior distribution of β, specified by the

hyperparameter α. The variational distribution q(β, α) = q(β)q(α)
has a factorial form, which attempts to approximate the posterior

p(β, α|y). This approximation leads to an analytical posterior form

if the distributions are conjugate-exponential.

An VB inference algorithm for logistic regression has been

developed in the field of machine learning [10], [2]. The basic

idea is to derive a variational lower bound (using a data-dependent

variational parameter ξ = {ξt}) for the marginal log-likelihood

function (2). However, the hyperparameters therein are fixed a

priori, so their model is empirical Bayesian. Here, we extend

the model with hierarchical Bayesian modeling using automatic
relevance determination (ARD) [12] for the purpose of variable

selection. Such a fully Bayesian inference allows us to design

a separate prior for each element βi in vector β and to set a

conjugate prior p(α) for the hyperparameters using a common

gamma hyperprior. Our prior distributions are set up as follows:

p(β|α) ∼ N (β|μ0, A
−1) ∝ exp

“
− 1

2
(β − μ0)

′A(β − μ0)
”
,

p(α) =

dY
i=1

Gamma(αi|a0, b0)

where A = diag{α} ≡ diag{α1, . . . , αd} (a non-ARD formulation

is equivalent to setting A = αI as a special case). Here, we assume

that the mean hyperparameter is fixed (e.g., μ0 = 0 or μ0 = βm.l.e.).

Applying the VB inference yields the variational posteriors

q(β|y) = p̃(β, ξ)Eq(α)[p(β|α)] = N (β|μT ,ΣT ) (5)

q(α|y) = Eq(β)[p(β|α)]p(α) =
dY

i=1

Gamma(αi|aT , bi,T ) (6)

where p̃(β, ξ) denotes the variational likelihood bound for logis-

tic regression, Σ−1
T = Eq(α)[A] + 2

PT
t=1 φ(ξt)xtx

′
t, μT =

ΣT

`
Eq(α)[A]μ0 +

PT
t=1(yt − 0.5)xt

´
, φ(ξ) = tanh(ξ/2)/(4ξ),

ξ2
t = x′t(ΣT + μT μ′T )xt, Eq(α)[A] = diag{aT /bi,T }, aT =

a0 + 0.5, bi,T = b0 + 0.5[(μT )2i + (ΣT )ii]. Finally, we can derive

the variational lower bound of marginal LBe:

L̃Be =
1

2

n
μ′T Σ−1

T μT + log |ΣT |+
TX

t=1

“
2 log σ(ξt)− ξt

+2φ(ξt)ξ
2
t

”o
+

dX
i=1

n
− log Γ(a0) + a0 log b0

−b0
aT

bi,T
− aT log bi,T + log Γ(aT ) + aT

o
(7)

The VB inference alternatingly updates (5) and (6) to monotonically

increase L̃Be. The criterion of algorithmic convergence is set until

the consecutive change of (7) is sufficiently small.

In Poisson regression, a Laplace approximation of (3) would

yields a Gaussian likelihood with both mean and variance equal to

λt = βxt [9], [11], but this approximation is poor for small values

of λt (which is typically the case for neuronal data). Note that

unlike logistic regression, it is difficult to derive a tight variational

lower bound of marginal LPo (because of its likelihood form). Here

we adapt a generalized conjugate prior as formulated in [4], [8]

p(β|α0, y0) = h(α0, y0) exp{α0[y
′
0θ − 1′b(θ)]}

∝ exp{α0[y
′
0θ(η)− 1′b(θ(η))]}

≡ exp{α0[y
′
0θ(Xβ)− 1′b(θ(Xβ))]} (8)

where 1 is an all-ones vector, α0 > 0 is a scalar prior param-

eter, y0 = (y0,1, . . . , y0,T ) is a vector of prior parameters as

pseudo-observations, and h(α0, y0) is a normalizing term such thatR
p(β|α0, y0)dβ = 1. In the case of Poisson GLM with a canonical

log link function, θ(Xβ) = Xβ, b(θ(Xβ)) = exp(Xβ) =
[λ1, . . . , λT ]. The role of a0 is to control the heaviness of the prior

distribution: when α0 = 0, (8) reduces a uniform improper prior

for β; when a0 gets large, (8) becomes more informative; when

α0 → ∞, the prior reduces to a point mass at its mode. The

role of y0 is to represent a prior prediction for the marginal mean

E[y] = Ep(β)[ḃ(θ)]. The parameter α0 can be viewed as a precision
parameter that quantifies the strength of belief in y0. We denote

the generalized conjugate prior in (8) by {β|α0, y0} ∼ D(α0, y0).

As shown in [4], as the number of samples T →∞, (8) approaches

to a Normal distribution, where the mode coincides with the m.l.e.

from p(y0|β). The elicitation of y0 and α0 is discussed in [4].

Combining the likelihood (1) and the generalized conjugate prior

(8), we obtain the posterior of β in a similar form of prior [4]:

{β|α0, y0, y} ∼ D

„
α0 + 1,

α0y0 + y

α0 + 1

«
. (9)

To conduct hierarchical Bayesian inference, we also set a gamma

hyperprior for α0: p(α0) = Gamma(α0|a0, b0), where (a0, b0)
are the pre-specified hyperprior parameters. Then the joint prior

probability distribution is written as [4]:

p(β, α0|y0) = p(β|α0, y0)p(α0) (10)

∝ exp{α0[y0θ − 1′b(θ)}αa0−1
0 exp(−b0α0)

Note that α0 = 0 would yield a posterior of β close to the m.l.e.

To perform exact Bayesian inference, we need to integrate over α0

to obtain the posterior of β:

p(β|y0, y) =

Z
p(β|α0, y0, y)p(α0)dα0

∼
Z

D

„
α0 + 1,

α0y0 + y

α0 + 1

«
Gamma(α0|a0, b0)dα0 (11)

Since the integration in (11) has no an analytical form, we can use

either VB approach or Gaussian approximation. Below we briefly

describe these two solutions.
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Using the variational approximation q(β, α0) = q(β)q(α0) (note

that the data likelihood (1) is independent of α0), we can derive

the variational log-posteriors for both β and α0:

log q(β|y) = log p(y|β) + Eq(α0)[log p(β|α0)] + const.

= log D

„
Eq(α0)[α0] + 1,

Eq(α0)[α0]y0 + y

Eq(α0)[α0] + 1

«
(12)

log q(α0|y) = Eq(β)[log p(β|α0)] + log p(α0) + const.

= log Gamma(α0|aT , bT ) (13)

where Eq(α0)[α0] = aT /bT , aT = a0 + d/2, bT = y′0X
˙
β

¸ −
1′

˙
exp(Xβ)

¸ − b0 (the expectation
˙ · ¸

is taken w.r.t. q(β|y)).

Note that the two variational log-posteriors in (12) and (13) are cou-

pled and the algorithm requires iterative updates until convergence.

Finally, we can derive the variational lower bound of marginal LPo:

L̃Po = Eq(β)[log p(y|β)] + Eq(β,α0)[log p(β|α0)]

+Eq(α0)[log p(α0)]− Eq(β)[log q(β)]− Eq(α0)[log q(α0)]. (14)

The VB approach requires numerical approximation (e.g., by impor-

tance sampling) while evaluating (12) and (13) and its convergence

might be slow. For this reason we resort to another approach for

approximating (11), which will yield an analytic solution.

In light of the Theorem 2.3 in [4], when the sample size T is

large, we approximate the posterior with a Normal distribution:

D

„
α0 + 1,

α0y0 + y

α0 + 1

«
T→∞−→ N (β̂,Σ) (15)

where α0 denotes the mean of gamma distribution, β̂ is the m.l.e.

of p(α0y0+y

α0+1
|β), Σ−1 = (α0+1)X ′diag{λ̂}X (λ̂ = exp(Xβ̂)).

Let Σ0 = (X ′diag{λ̂}X)−1, and substituting (15) into (11) yields

a multivariate Student distribution for the posterior of β:

p(β|y) ≈ b
aT
T Γ(aT + d/2)

(π)d/2|Σ0|1/2Γ(aT )

h
bT +

1

2
(β− β̂)′Σ−1

0 (β− β̂)
i−(aT + d

2 )

which has a heavy-tail shape that favors the sparsity of solution.

For point process observations, when α0 = 0 or y0 = y, the mean

β̂ will coincide with the m.l.e. of p(y|β). When α0 increases, the

role of prior gradually dominates the data likelihood.

IV. EXPERIMENTAL DATA AND RESULTS

The experimental data studied here are multiple neural spike

trains simultaneously recorded from an awake rat hippocampus

(HPC) and entorhinal cortex (EC), during a freely foraging task

in an two-dimensional open circular environment. A total of 17

neurons were used in the present study. Among these 17 cells,

8 of them (#1-8) were recorded from EC (including putative

interneurons, head-directional cells, and grid cells), and 9 of them

were recorded from the HPC-CA1 area. We binned the total 44-min

spike train recordings with 2-ms temporal resolution.

First, we study the neural encoding problem by fitting the

two-dimensional receptive fields of place cells and grid cell. Let

(cx, cy) denote the Cartesian coordinates in the two-dimensional

environment. Similar to [1], we assume that the covariates x consist

of the a set of orthogonal two-dimensional Zernike polynomials:

βxt =
LX

�=0

�X
m=−�

β�,mZm
� (ρ(t), ψ(t)) (16)

where Zm
� denotes the mth component of the th-order Zernike

polynomial, β�,m denotes the associated coefficients, ρ(t) =
r−1

p
(cx(t)− c1)2 + (cy(t)− c2(t))2 denotes the normalized ra-

dial distance, ψ(t) = tan−1[(cy(t)− c2)/(cx(t)− c1)] denotes the

phase (in rad), r and (c1, c2) denotes the radius and the center of the

circular environment, respectively. Here, we have r = 85 cm, c1 =
125 cm, c2 = 105 cm. In order to fit non-regular receptive fields of

place cells and grid cells, we chose L = 6, which produced d = 28
nonzero Zernike polynomials. Now the task of Bayesian inference

is to infer the posterior of vector β = {β�,m}, and to select the

most relevant bases (i.e., variable selection) for neural encoding of

individual cells. We used three cells to illustrate our result: two HPC

place cells (#9 and 11) and one EC grid cell (#3). Both VB logistic

and Poisson regression were examined. In VB-logistic regression,

we fixed the hyperprior parameters as a0 = b0 = 0.0001 such

that it is close to the non-informative Jeffrey’s prior. In Poisson

case, we set y0 = 1 (such that the prior mode of β is 0), and

varied the hyperparameter values for a0 and b0.The fitting results

are illustrated in Fig. 1. As a comparison, the m.l.e. solutions are

also presented (only results from logistic regression, the Poisson

regression results are similar). Compared to the m.l.e. solution,

In VB-logistic regression, the ARD switches off the redundant

parameters and implicitly performs a variable selection. In other

words, we might use a relatively compact model to achieve a

comparable goodness-of-fit (in terms of receptive field fitting and

the Kolmogorov-Smirnov (KS) test statistic [1]). In the approximate

VB-Poisson regression, the sparsity of the solution highly depends

on the α0. In general, the VB approach produces a sparser solution

than the m.l.e. Variable selection can be done by discarding the

{βi} whose value is close to 0, without compromising the quality

of data fitting. In all but one fitting cases, the m.l.e. achieves the

lowest KS statistic, which is not surprising since it attempts to fit all

given variables (the exception is in the grid cell’s fitting, the lowest

KS statistic was achieved by VB-logistic regression). Whereas in

VB methods, we can adapt the priors to adjust the sparsity of the

solution to avoid overfitting (when a uniform improper prior is used,

the Bayesian solution reduces to the m.l.e.).
Next, we study the functional connectivity among all 17 cells

using a network likelihood model presented earlier [13], [5],

where the covariates x consist of 28 Zernike polynomials plus the

spike counts from all ensemble cells within a number of previous

temporal windows. Here, we have limited the firing history up

to past 100 ms in our analysis, with a constant history window

length of 5 ms. In this case, the size of the parameter space

is large: d=28+(20×17)=368. Variable selection is important in

this case. To demonstrate this, we use VB-logistic regression and

set the hyperprior parameters as a0 = b0 = 0.01. To identify

the significant nonzero connection weights between neurons, the

criterion was set in a way that the mean±SD of {βi} is not over-

lapping with zero (if the weight is positive/negative, the contribution

from one trigger cell to the target cell is excitatory/inhibitory).

As an example, we use one HPC cell (#11) as the target cell,

and model the other 16 neurons as trigger cells. The results on

inferred spiking dependence coefficients are illustrated in Fig. 2.

In this case, the pairwise functional connectivity is not significant,

except the self-excitatory effect. Overall, the mean estimates of {βi}
are very sparse (close to 0) and their SDs are much smaller than

those obtained from m.l.e. In Fig. 3, we show one snapshot of

inferred “sparse” functional connectivity among the 17 neurons,

and we also show the averaged normalized connectivity strength

(absolute value). As seen, self-excitation is dominant among the

cells. Notably, our initial investigations of synthetic spike train data

have confirmed that compared to m.l.e., the VB-approach has a

greater chance to discover the ‘true’ connectivity coefficients in

that it will be less likely to misidentify non-significant connections

(results not shown due to space limit).
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Fig. 1. (a) Spike maps from two place cells (#9, 11) and one grid cell (#3).
The red dots indicate the spikes and blue curves indicate the rat’s moving
trajectory (unit: cm). (b) Fitted receptive fields with VB-logistic regression
(the fitting result with m.l.e. is similar). (c) Fitting receptive fields with VB-
Poisson regression (α0 = 0.01, 0.1, 0.05 for the three cells, respectively).
(d) Comparison of sparseness of 28 coefficient estimates of {βi} between
the m.l.e. and VB-posterior mean. Error bars show SE or SD.
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Fig. 2. The inferred coefficients of functional connectivity to a target cell
#11 from m.l.e. (left) and VB-logistic regression (right). In the VB approach,
a self-exciatory 40 Hz-rhythm is recovered, which is not clear from m.l.e.

V. DISCUSSION

In this paper, we propose variational Bayesian inference methods

for two point process GLMs in modeling neural spike trains. Unlike

other Bayesian methods for GLM [7], Bayesian model averaging

is conducted in a hierarchical modeling context (by adopting hy-

perpriors), and variable selection can be performed using either the

ARD principle (in VB-logistic regression) or pseudo-observations

(in VB-Poisson regression). Compared to the m.l.e., the Bayesian

solution yields a full parameter posterior and it avoids overfitting via

model averaging. In order to allow tractable hierarchical Bayesian

inference, our methods use variational approximation to infer varia-

tional posteriors of parameters and hyperparameters. Our Bayesian

inference procedures depend on the conjugate priors selected for

the point process GLM. Hierarchical Bayesian modeling reduces

the sensitivity of prior assumptions by adopting non-informative

hyperpriors. In contrast to the non-hierarchical empirical Bayesian

solutions, which impose global priors directly on the canonical or

nuisance parameters [6], the priors of our VB solutions impose on

a hierarchical structure on the regression parameters β.

In the future work, we plan to investigate the priors’ sensitivity

to the fitting performance using independent validation data sets. In

addition, the point process GLMs can be generalized with inclusion
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square: EC cells
circle: HPC cells

7

1

10

11

9

8

6

17

2

16

15

14
1312

3
45

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Cell ID

C
el

l I
D

Fig. 3. Left: one snapshot of inferred functional interactions with VB-
logistic regression (numbers indicate cell ID; arrows indicate the directional
dependence; solid/dashed lines: excitatory/inhibitory connections). Right:
averaged connectivity strength (the value is proportional to the circle area).

of latent state variables [18]. In that case, the inference of variational

posteriors of state and parameters can be tackled by the VB-EM

algorithm or its recent extensions [15], [20].
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