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ABSTRACT

A computational procedure using a multiple-grid method
with embedded mesh regions is developed for solving the two
dimensional Euler equations. A pointer system 1is wused to
define the general multiple grid structure, which may include
one or more, single or multiple embedded mesh regions of the
same grid topology as the global mesh. The solution
algorithm, based on the Ni multiple-grid method, has been
extended to embedded mesh structures with the formulation of
proper global/embedded interface conditions. The present
approach combines the fast convergence to steady-state of
multiple-grid methods with the flexibility and efficiency of
an embedded mesh structure in resolving important flow
features. Results are presented for several two dimensional
subsonic and transonic airfoils using embedded meshes to
resolve flow details in the leading edge, trailing edge, and
shock regions. The present method is shown to retain the
global coarse mesh convergence rates while gaining the flow
resolution in embedded regions of a correspondingly globally
refined mesh. Through the use of embedded meshes the total
storage and computational work is significantly reduced over
that of a equivalent global refinement.

In addition to the development of a embedded mesh
approach the basic multiple-grid algorithm has been studied
and improved on the areas of boundary conditions and residual
transfers. All boundary conditions have been implemented in
characteristic form. For lifting airfoils a vortex far field
boundary condition has been developed which models the far
field flow as the superposition of a uniform freestream and a
compressible point vortex whose strength is determined by the
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calculated 1ift on the airfoil. With this far field
formulation the far field boundary may be placed much closer
to the airfoil than for solutions in which the traditional
uniform free stream boundary condition is used. Several
different residual transfer operator formulations have been
studied. Proper formulation of the residual transfer operator
has been shown to be very important for computations on highly
stretched nmeshes. A transfer operator based on the
distribution formula of the base solver is shown to give the
best performance for highly stretched meshes.

Thesis Supervisor: Earll M. Murman
Title: Professor of Aeronautics and Astronautics
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CHAPTER 1
INTRODUCTION

The field of computational fluid dynamics has evolved
over the 1last two decades from the first attempts at solving
model fluid flows to the stage where computational methods are
playing an important role in aerodynamic design. The latest
generation of aircraft are the first to have a significant
amount of design done with computational methods [1-41. This
rapid evolution of computational methods has been driven by
the need for faster more accurate design tools and the
increasing cost of experimental design. In addition to cost,
experimental testing is time consuming, and is limited in the
flight regimes which can be tested and quantities which can be
measured. Computational design tools on the other hand are
becoming faster, less expensive, and more accurate due to the
rapid development of numerical methods and increasing
performance of computers. These tools have allowed the study
of a much wider range of designs. They can predict
information in regions which often can’t physically be
measured and without the interference of walls, probes, and

other apparatus.
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INTRODUCTION

The ultimate goal of computational fluid dynamics for
transonic flows is the calculation of a complete aircraft
configuration including wings, body, engine nacelles, and any
external stores. Such a flow involves both complexity in
respect to the range of fluid mechanic features of the flow
and the geometric complexity of the problem. The flow
includes subsonic regions, supersonic regions, shocks, regions
where the flow 1is essentially inviscid; and others where
viscous effects dominate. While all these aspects of the flow
are described by the full Navier-Stokes equations, a solution
of these equations for a complete aircraft configuration is
impossible at the present fime and will most likely remain so
in the near future. This conclusion is based on the
performance of present Navier-Stokes solvers and a simple
estimate of the computer resources required, which vastly

exceed any available today.

Rather than solve the full Navier-Stokes egquations the
approach taken has been to consider a series of simplifying
approximations resulting in a model equation set which is much
simpler to solve. Based on the observations first made by
Prandtl that for high Reynolds number flows the effects of
viscosity are confined to thin layers near the surface of the
body, a majority of the flow may be considered essentially
inviscid. While the thin viscous shear layers in the flow are
important in vdetermining ‘the 1location of separation and
vorticity generated in the flow, the assumption of inviscid

flow described by the Euler Equations is a good approximation
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INTRODUCTION

for a majority of the flow. Although this step simplifies the
governing equations substantially, the Euler equations are
still difficult to solve. Observing that for external flows,
in addition to being inviscid, much of the flow 1is also
irrotational then leads to the next lower approximation to the
flow described by the full potential equation. Note, like the
first approximation, important information about the flow is
lost but the resulting model equation is much easier to solve.
In particular since the flow is irrotational there is no way
to generate entropy through shocks. This 1limits the flow
range for which the model equation may be considered a good
approximation. An even lower approximation is to assume the
body is thin and to limit the flow rénge even further to a
region near Mach 1. Under these conditions the small
disturbance approximation can be made resulting in the small

disturbance form of the potential equation.

Table 1-1 summarizes the levels of approximation and
resulting model equations for transonic flows. The level of
difficulty in solving these equations increases from bottom to
top in the table. Therefore it comes as no surprise that the
level of development of algorithms for solving these flows is
most advanced at the bottom and also decreases as one moves up
the table. The development process for any new algorithm can
be viewed 1in terms of three stages. 1In the first stage the
concentration is on formulation of the algorithm with the
algorithm being tested for simple model problems. The second

stage is the validation of the code for two dimensiomal flows
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INTRODUCTION

(such as airfoils, ducts, etc.) and development of the three
dimensional extension. Finally, if the algorithm is
successful, it is incorporated into the design process and an
ongoing process of extending the solver to increasingly
complex geometries begins. It is clear then that the level of
development of a solver then determines the level of
complexity of the flow geometries which can be solved.
Therefore the level of geometric complexity of the problems
which can be solved decreases with the level of approximation

of the model equation.

Table 1-1: Summary of Current Transonic Solver Development

MODEL APPROXIMATION LEVEL OF COMPLEXITY
EQUATION MADE DEVELOPMENT OF SOLUTIONS
Navier-Stokes Low Simple 2-D flows
Equations |

Euler Inviscid | 2-D and Simple 3-D
Full Inviscid ] 2-D and 3-D flows
Potential Irrotational |

Small Above Plus High Complex 3-D flows
Disturbance M near 1

Eguation Thin bodies

At this point consider the current level of development
of algorithms for solving the model equations of table 1-1.
The first sucessful transonic calculations were made with the
solution of the transonic small disturbance equation for flow
about two dimensional airfoils by Murman and Cole [51. Their
algorithm has served as the foundation for the many 2-D,
axisymmetric, and 3-D small disturbance potential solvers in
use today. 0f particular importance was the combination of

- 17 -



INTRODUCTION

multi-grid methods by South and Brandt [63 and approximate
factorization methods by Ballhaus, Jameson and Albert [7] with
a small disturbance solver to obtain accelerated convergence
for 2-D airfoil calculations. The extension of this algorithm
to complicated 3-D aircraft configurations (including body,
wings, and nacelle) has been made by Boppe [8,9]1. Boppe’'s
work represents a landmark in the calculation of complicated
geometries. At the present time methods for solving the small
disturbance equation are highly developed and well integrated

into the design process.

With the progress and experience gained from development
of small disturbance potential solvers the concentration
shifted to soclution of the full potential equations. Fast and
efficient finite volume methods such as those of Jameson [1031]
and Caspar, Hobbs and Davis [1ll1 have been developed and
applied to a wide range of 2-D flow problems. These methods,
which give good results for a much wider range of flows and
geometries, have replaced many of the small disturbance
solvers as design tools. In addition these methods have been
extended to 3-D flows with a great deal of success. The
solution of simple aircraft configurations ( wing/body and
wing/body/tail geometries) have been demonstrated by Jameson
and Caughy [lZJ. The 1limiting factor in extending these
methods to more complicated and realistic configurations
appears to be the difficulty in generating global body-fitted
grid systems required by bcurrent solvers. Atta and Vadyak

£133 have taken a new and promising approach to this problem
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INTRODUCTION

with wing/body/nacelle configurations by patching a
cylindrical mesh which fits the nacelle into a global

wing/body mesh.

The Euler equations are a much more difficult class of
equations to solve numerically than either of the two previous
classes. While both implicit and explicit algorithms for
solving these equations have existed for some time, the amount
of computional work required due to the poor convergence of
these methods has made them unacceptable for design
applications. Only very recently have new efficient
algorithms been developed which show a great deai of promise.
0f these, Ni’s method [14] using a conservative Lax-Wendroff
scheme combined with a multiple-grid scheme has shown greatly
accelerated convergence rates. A second scheme using a
conservative finite volume algorithm coupled with an explicit
Runge-Kutta time stepping scheme has been presented by
Jameson, Schmidt and Turkel [151]. This method has been
applied to flow past lifting airfoils and extended to 3-D wing
calculations by Jameson, Schmidt and Whitfield [161. Rizzi
L1713 has also used this scheme for wing and wing/body
configurations. Even more recently Jameson [18] formulated a
multiple-grid acceleration technique to further accelerate
convergence, demonstrating this scheme for 2-D airfoil
solutions. With the development of these new algorithms it is
now possible to obtain Euler solutions to flow problems with
the same order of computational work as required by potential

solvers. Currently these new solvers are being integrated
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INTRODUCTION
into the design process.

To summarize, the level of development of algorithms for
solving the model equatibns of table 1-1 decreases as one
moves to better approximations to the flow. The geometric
complexity of the flow which can be solved also decreases as
the level of approximation increases. The major stumbling
block with each of these methods, as one proceeds to
increasingly complex geometries, has not been with the solvers
but the problem of generating properly distributed mesh
systems. Most of these methods require a continuous
body-fitted mesh which covers the entire flow domain. A
coordinate transformation is then used to map this domain into
a single rectangular box. This approach works quite well for
simple geometries such as 2-D problemg with singly connected
domains (airfoils, cylinders, ducts) or individual 3-D
aircraft components (such as the body, wing, nacelle). Even
though wing/body meshes have been generated by Eriksson [191]
and wing/body/tail meshes by Jameson and Baker [201, the
extension of this approach to complete aircraft configurations
would be extremely difficult, if at all possible. In addition
these mesh generation schemes often introduce singularities in
the grid which must be handled by the solver. These grid
structures often result in poor grid resolution in critical
areas and large numbers of unnecessary mesh points in others.
One obvious cause for these problems is the requirement of
body-fitted meshes. An alternative adopted by Boppe [8,9]1 and

others to simplify the grid generation problem is to use
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INTRODUCTION

nonbody-fitted grids, but this results in extremely

complicated boundary condition formulations.

The problem of grid generation is only amplified as one
moves from the small disturbance equations to higher model
equations. With the higher approximations, more and more flow
detail can accurately be modeled but to take advantage of this
requires better grid resolution in these feature areas. To
gain this resolution requires better grid control. In
addition, to compensate for the higher resolution in critical
areas, it is important to minimize the numbef of unnecessary
points in the grid structure if the overall computation times

are to remain realistic.

Even if the present problems associated with global grid
generation for complex geometries can be overcome, one must
question whether this approach is leading to more universal
and easily adaptable codes. At the present time this approach
is creating increasingly complex and specialized codes. Each
new geometry or higher approximation in the governing
equétions results in a new and more difficult grid generation
problem. Once the grid generation problem is overcome the

code must be rewritten to operate on this grid.

An alternate approach to problems of increasing
geometric complexity is to view the solution domain as the sum
of simple subdomains rather than one continuous globél domain.
In this view each subdomain is defined by some characteristic

geometric feature. For example a complete aircraft
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INTRODUCTION

configuration might be viewed in terms of a body region, wing
region, nacelle region and so on. The global solution is then
obtained by wusing a global solution scheme which couples and
provides interaction between individual solutions of each
subdomain. Such a component structure is more easily
adaptable to different geometries with increasing complexity.
Currently these approaches have taken one of the following two

forms; patching methods and multi-grid methods.

Patching methods involve dividing the domain into any
number of subdomains where the subdomains either butt against
each other or overlap each other such that the sum covers the
global solution domain. A simple Dbody conforming or body
resolving refined mesh is then defined for each subdomain.
The global solution is found by cycling the solver between
these subdomains with proper boundary conditions defined on
subdomain boundaries. A landmark in the calculation of
complicated geometries has been set by Boppe [8,91 in solving
the small disturbance potential equation for full aircraft
configurations. Boppe’'s approach was the use a coarse global
Cartesian grid overlapping 1locally refined Cartesian grid
subdomains for each of the aircraft components ( body, wing,
nacelle). He incorporated Dirichlet type boundary conditions
on the overlapping boundaries. The solution is then obtained
by iterating between solving for the solution on the coarse.
global grid and each of the subdomains with boundary
conditions being interpolated from adjoining subdomains. This

‘work stands as proof that solutions to full aircraft
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INTRODUCTION

configurations are attainable with the computational resources
available today. The actual method however 1is 1limited in
value since these are small kdisturbance solutions, a poor
approximation for realistic aircraft, and also since good
results appear to be strongly user dependent. A similar
approach for solving the full potential equation in
overlapping mesh structures has been studied by Atta and
Vadyak [13,211. Atta began by considering solutions for
transonic airfolil where a coarse global Cartesian mesh is
overlapped with a local body-fitted O-type mesh. Dirichlet
type boundary conditions were used on the outer boundary of
the O-type mesh, while a Neumann type condition was used on
the inner boundary of the global Cartesian mesh. With this
model formulation he then studied the effect of variations in
the two grid domains, overlap size, and cycling process on the
accuracy and convergence of the solution as compared with the
standard global calculation. He found that equivalent
accuracies are possible with a savings in computation time
with a proper grid sizing. Atta and Vadyak [13] then applied
this approach to the calculation of a wing/body/nacelle
aircraft configuration wusing a body-fitted cylindrical mesh
around the nacelle which overlapped with a global wing/body
mesh. One of the critical problems encountered in this
extension was the complexity of three dimensional
interpolations between the two mesh systems. While very
preliminary in nature the results suggest that this is a
promising approach to complex configurations. Finally,
Forester [22] empioyed an overlapping grid system for

- 23 -



INTRODUCTION

calculation of subsonic potential flow in a lobed mixer nozzle

of a jet engine.

A second form of coupling of subdomains is through the
use of multi-grid methods. Multi-grid methods were originally
developed by Brandt [23,241 as a very fast and efficient way
of solving elliptic type equations. The basic concept of
multi-grid is to discretize the governing equations on a
series of increasingly coarser meshes and then to
systematically cycle through these meshes using a relaxation
scheme to simultaneously liquidate errors of all wavelengths
contained in the solution. In addition to the acceleration of
convergence, Brandt suggests that the multi-grid structure
provides the- perfect framework for embedding areas of 1local
mesh refinement. In this manner it is then possible to create
any number of local subdomains of the same grid topology as
the global grids with the multi-grid algorithm providing the
coupling between the subdomains and the global mesh. This
approach has the advantage of actually coupling the the entire
solutions rather than relying solely on boundary conditions to
couple the solution, as 1is done with patching methods.
Unfortunately there has been no published demonstration of
this approach by Brandt. The method has been implemented by
Brown [251 for the solution of the transonic potential
equation. Brown used a local embedded mesh refinement in the
leading edge region of a isolated nacelle to resolve the 1local
flow detail. With this approach he showed that there was a

great savings in computational work over the equivalent global
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mesh refinement.

From the preceeding review it 1is clear that the
development of transonic flow solvers may be characterized as
a step by step progression of higher approximations to the
actual flow. Beginning with the solution of simplified model
equations for simple geometries the development has steadily
moved toward better approximations of both the governing
equations and more realistic geometries. The point has now
been reached where current algorithms are capable of solving
complicated realistic aircraft configurations. Unfortunately
the complexity of the solvers, and in particular the mesh
generators, have grown in proportion to the problem
complexity. Currently, small changes in geometry require a
tremendous amount of code development. Rather than continue
the development of solvers on this case by case basis what is
needed is a more general approach to solving flow problems
which 1is easily adaptable to changing geometries and flow
features. Another perspective in analyzing complex flows 1is
to view the flow as composed of a number of regions or
subdomains distinguished by fluid dynamic or geometric
features. To accurately solve for a fluid dynamic feature
(such as inviscid regions, viscous shear layers, shocks, etc.)
requires modeling the dominant fluid process with the correct
governing equations in that region. In addition, associated
with both fluid dynamic features and geometric features is a
characteristic structure and 1length scale which must be

resolved through proper definition of the grid structure in
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the subdomain. Recognizing that a general flow may be
decomposed into components 1leads to the idea of a general
modular approach to solving flow problems. With a general
modular approach then the global domain is broken into any
number of suitable subdomains. A simple grid structure is
defined for each subdomain based on the features and
associated scales to be resolved. A general solver 1is then
used to simultaneously solve for the flow in each subdomain
while coupling the subdomain solutions and allowing proper
interaction. The patching and multi—grid formulations
previously mentioned represent an initial step in this
direction by wusing subdomains to handle complex geometries,
but the present modular concept is intended to lead to a much

broader and more systematic approach.

A general multiple-grid mesh structure provides an ideal
framework for a modular approach to solving flow problems by
providing a systematic way of assembling and coupling the
subdomains together. The multiple-grid structure consists of
a relatively crude global grid covering the entire solution
domain, and any number of embedded 1local grids providing
adequate resolution of local flow features. In this mesh
structure the local subdomains are defined through creation of
the embedded mesh regions where the resolution determined by
the number of embedded levels. The solution of the discrete
egquations on the coarse global levels provide a very efficient
way of coupling the embedded region solutions together since

the coupling takes place over the entire domain rather than a
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simple patching technigue. This modular approach using a
multiple-grid structure follows the general approach suggested
by Brandt ©[23,243 for embedded solutions of elliptic type
equations. In principle this approach can be carried much
further by including a change of grid topology within the
embedded mesh region. By changing the grid structure much
better resolution of both fluid dynamic and geometric features
within the subdomain would be possible. A second extension
would be to allow a change in the level of approximation of
the governing equations within a subdomain. This change in
equation approximation would be Dbeneficial since the finer
mesh scale within the embedded region would be capable of
resolving the feature scales associated with the higher
approximation. Conceptually the multiple-grid structure
provides a flexible framework for the development of a general

modular approach to solving flow problems.

The objective of the present thesis 1is to Dbegin the
formulation of a general modular approach to solving complex
flow problems. The first step in such a formulation is the
development of a method for solving a single governing
equation set on a general multiple-grid structure with one or
more embedded mesh regions. To this point no mention has been
made of the solver which will be used. It is clear that this
choice will depend at least to some extent on the governing
equation set to be solved. The Euler equations have been
chosen as the appropriate governing equation set for the

following reasons. First and foremost, the Euler equations

- 27 -



INTRODUCTION

apply to a broad range of transonic flows, modeling inviscid
flow features to a higher approximation than either the small
disturbance or full potential equations. The higher
approximation of flow features in turn makes the high
resolution of an embedded mesh approach worth while. In
addition, Euler solvers do not have the nonuniqueness problems
associated with potential solvers [26,27]. Considering the
current state of algorithm development for the various model
equations of table 1-1, the computational efficiency of the
recently developed Euier solvers are 1in the same range as
small disturbance and potential solvers. These new Euler
solvers will be replacing the current potential solvers as
future design tools. Therefore an embedded multiple-grid
approach for solving the Euler equations is in keeping with
the current state of the art for flow solvers. A final
consideration 1is the close relation Dbetween the Euler
equations and the full Navier-Stokes equations. The Euler
equations are a natural subset of the Navier-stokes equation
in the 1limit of =zero viscosity. With the proper solver
formulation the viscous terms could be added' in embedded
regions where these terms are important, thus adding equation

embedding to the general modular approach.

0f the new Euler solvers which have been recently
presented, Ni’s multiple-grid algorithm [14] was chosen for
the present formulation. While this solver 1is not a true
multi-grid method in the sense of Brandt’s work, Ni‘s method

is formulated around a global mnmultiple-grid structure where
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modified discrete equations are solved on the coarser mesh
levels to accelerate solution convergence. This method will
be extended to general embedded mesh structures which contain
one or more embedded mesh regions. With this extension the
solver now plays dual roles of accelerating the convergence of
the solution and also providing the coupling mechanism between
embedded and the global mesh solutions. The storage with this
algorithm is kept to a minimum since the regquired solution
information 1is only stored once for each mesh point on the

finest level in each region.

In order to extend this scheme to completely general
grid structures the solution algorithm must be separated from
the grid structure. That is, the organization of the
computational data base, comprised of the variables at node
points, must not be determined by the solution algorithm.
This has been accomplished through the development of a
pointer system which defines the grid structure. The wusual
subscripted index notation (i,j) of finite difference
procedures is replaced by a single numerical subscript to
identify mesh points. The pointer system is very similar to
the connectivity array which is used to define general finite
element systems. Boundary conditions and their location,
which also vary from problem to problem, must likewise bDe
defined in th;s pointer system. With the grid-structure
defined through a pointer system, a general solver may now be
written in terms of these pointers. This separation of grid

structure from the solver is the key to creation of a general
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modular approach to problems.

While a majority of the present work is concerned with
the solution of the Euler equations, Johnson and Chima [28,291]
and Davis [303 have demonstrated that Ni‘s multiple-grid
accelerator 1is easily extendible to the Reynolds averaged
Navier-Stokes equation. The present author, in an unpublished
pilot study, also drew the same conclusion. It is felt that
the multiple-grid structure method given herein should prove
to be an attractive algorithm for extension to embedded

viscous regions where the Navier-Stokes would be solved.

The modular approach which has been developed has been
applied to the solution transonic flow about 2-D airfoils.
While these transonic flows are not geometrically complex they
do contain important flow features such as shocks, stagnation
points, leading edge detail and trailing edge detail which
must be correctly resolved for an accurate solution. With
conventional global solvers these features are solved through
the use of grid packing. Unfortunately, when grid packing is
used with a global mesh to resolve these features, packing
also occurs in the far field regions resulting in a large
number of unnecessary mesh points. The present modular
approach with embedded mesh regions can be used to resolve the
flow features while minimizing the total number of mesh points
and thérefore the computational work required. A second
reason for choosing 2-D transonic airfoil flows to demonstrate
the current method 1is that analytical solutions for some
configurations are known. Using these cases, the accuracy of
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both the global solver and the embedded mesh solver can be
evaluated. Finally since the code development and testing was
performed wusing a VAX 750 mini-computer it was necessary to
choose a problem for which the solution computation times were

reasonable.

In the chapters which follow, the governing equations
will be defined followed by review of the basic Ni scheme.
The conditions used at farfield and solid wall boundaries are
described together with the Kutta condition. The extension to
embedded mesh regions is then made through formulation of
proper cell integrations at embedded mesh boundaries.
Finally, with the general solver formulated, the pointer

system which directs the solver is presented. -
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CHAPTER 2

GOVERNING EQUATIONS

2.1 NAVIER-STOKES EQUATIONS

The compressible form of the Navier-Stokes eqﬁations
express the laws of conservation of masé, momentum and energy
for viscous flows. When combined with an equation of state,
such as the perfect gas 1law, the constant Prandtl number
assumption and an expression relating viscosity to temperature
there then results a complete set of equations for laminar
flows at standard pressures and temperatures. The
two-dimensional Navier-Stokes equations for unsteady
compressible flow may be expressed in conservation form for a

cartesian coordinate system as

U + F +G + R +85 =0 (2.1a)
t b 4 y X y
where
I | pu | | pVv |
U= 1] pu| F =] puu+ p | G = | puv | (2.1b)
| pv | | puv | | pvv + p |
e | | puH I | pvH I
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| O I
I I
. & < I
R = (1/Re )| 7 |
0] “xy |
| T u+T v-(K/(r-1)Pr) T |
I XX  yX x |
| O |
I T |
I yx |
S = (1/Re )| |
0] yy , |
| T v+ 7T u-(u/(Y-1)Pr) T |
I yy xy y |
and where
T = -4LC (4/3)u - (2/3)v 3
XX b4 y
T = -4HLC (4/3)v - (2/3)u 1 (2.1c)
Yy y X
r =T =-xLu +v 1
Xy yx y b4

in terms of density ‘f, cartesian (x,y) velocity components
(u,v), temperature T, total internal energy per unit volume e,
viscosity coefficient 4, and Prandtl number Pr. The pressure

p and total enthalpy H are then defined for a perfect gas as

p=(Y-1Le - 0.5P( uu+vv)l (2.2)

H

(e +p )/f
where ¥ 1is the ratio of specific heats.

To complete the set of governing‘equations for laminar
flows an expression relating the viscosity to temperature is
required. Sutherlands law, an empirical relation describing

the viscosity 4« as a function of temperature T is given as
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1.5
M= T (1 +K) T+ K) (2.3)
(s -
(110 K)/T
o

=
l

where T is the reference temperature.

The above equations have been non-dimensionalized with
respect tov stagnation reference conditions £, a,r T,, and
reference length 1,, vresulting in the appearance of the
reference Reynolds number, Reo, in the above egquations. A
detailed description of this non;dimensionalization is
presented on appendix A. Historically, the governing
equations have been non-dimensionalized to didentify the
relevant non-dimensional parameters (such as Mach number,
Reynolds number, Prandtl number, etc.) and to determine the
relative order of magnitude of different terms in the
equations. For numerical calculations, scaling of the
equations performs two important functions. First, a proper
choice of reference conditions scales all computational
variables to similar order which reduces computational
truncation errors. Secondly, it eliminates concern over
carrying a consistent set of dimensions throughout the code
and reduces errors in definition of input by the user. The
present scaling based on stagnation reference conditions is
well suited for transonic flows where a majority of the flow
is near M = 1. It is also interesting to note that with this
scaling the Euler equation form is the same as the unscaled

equations.
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The governing equations (2.1) are presented in strong
conservation law form (SCLF) in terms of conservation
variables U, as opposed to the non-conservation form (NCF)
which would be expressed in terms of primitive variables ( @,
u, v, and p). As shown by Hindman [313, the choice of which
form to use requires consideration of the types of flows to be
solved and also has an impact on the way the equations should
be discretized. In particular the SCLF form of the egquations
properly captures the weak shock solution with the correct
shock jump conditions while the NCF does not. Since the
present work is concerned with transonic flows with shocks,
where these shocks are resolved through shock capturing rather
than shock fitting, the SCLF is important. While the
governing equations of (2.1) are written for a Cartesian
coordinate system this SCLF can be preserved upon
transformation to a general nonorthogonal coordinate system as
shown by Viviand [32] and Warsi [33]1. Consider the following
transformation from cartesian system (x,y) to nonorthogonal
system (3,%) defined as

3= S(x,y) T =nx,y). (2.3)

The SCLF form can be maintained as
(U/J)t + C de - qu Js
+ L th - XQS Js

where the transformation Jacobian J is

+ L xG - F ]
§ ys n

+CLxS-yR3I =0 2.4
v Y7 (2.4)

(1/3) = x -x - (2.5)
3y{ 1y§
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While this represents the SCLF for the differential
equation of a general coordinate system, Hindman [31] and
Thompkins, et al L[341 point out that great care must be taken

in discretizing this system for a given algorithm if the final

scheme i1is to remain conservative. In particular, the
transformation matrices ( XS' YS’ Xll yl) must be defined

properly if the desired result is a conservative finite volume
method. It is often helpful in constructing finite volume
methods if, in addition to equation (2.4), the corresponding
integral equation is considered. Integrating and applying the
divergence theorem, the governing equations may be cast in

integral form as

=2 [y aa = (F,G).n dS + (R,S).n ds (2.6)
ot
v oV 3V

Approximation of this equation then leads to a finite volume

method in conservation form.

For a majority of the viscous flows of interest the flow
is not 1laminar but turbulent. The laminar Navier-Stokes
equations can be extended to turbulent flows by modeling the
Reynolds stress terms of the Reynolds averaged Navier-Stokes
equations with an eddy viscosity model (such as Cebeci and
Smith [35] or Baldwin and Lomax [36]1). These terms are then
included by replacing the laminar viscosity M with a total
effective viscosity /ur, defined as the sum of the laminar
viscosity and turbulent eddy viscosity %;. In addition the
thermal conductivity 4«/Pr in the energy equation is replaced
with a total effective conductivity, the sum of laminar and
turbulent parts as /4/Pr+6m/Pr_'_.
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2.2 EULER EQUATIONS

For high Reynolds number flows commonly encountered in

aircraft designs the viscous effects are often limited to very
thin shear layers near the body. Under these conditions the
assumption of inviscid flow is often a very good approximation
to the flow. Eliminating the viscous terms in the governing
equations (2.1) reduces them to the standard two dimensional
Euler equations. Setting R=5=0 results in the follow equation
for a cartesian system,

U +F +G =0 (2.8)

t X y

and for the general nonorthogonal system in (SCLF) form

(U/3) +LCLyF-xG131 +CxG-yF1 =0 (2.9)
t 1 1 3 3 3 7

Following egn 2.6, the corresponding integral equation is

2 U dA (F,G).n ds (2.10)
_ = ,G).n .
o¢ jr jg

v v

which is useful in constructing a finite volume method in

conservation form.

2.3 PHYSICAL BOUNDARY CONDITIONS

With the governing differential equations defined, it is
now appropriate to define the physical boundary conditions
which are required for solution of transonic airfoil problems.
The term physical boundary condition is used here té describe
the known flow conditions along the boundary of the domain to
be solved. These boundary conditions should not be confused
with the implementation of the boundary conditions in solving
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the discrete equations which include not only the physical
conditions but may also include numerical conditions required
to close the system of discrete equations. The actual
implementation of these conditions will be discussed later in
chapter 3. Consider a typical airfoil in a transonic
freestream as shown in figure 2-1. There are basically two
types of boundaries for this problem, a solid wall boundary at
the airfoil surface and the farfield boundary at infinity.
For the solid wall boundary with viscous flow the physical
boundary condition 1is zero velocity and either specified

surface temperature or heat flux. Therefore,
LT=T o T =(T ) 3 (2.11)

The corresponding boundary condition for inviscid flow 1is no
flux through the surface,

(u,v).n = 0 (2.12)

The physical boundary conditions for the farfield
boundary of figure 2-1 are uniform freestream flow at
infinity,

u = (u) v = (V) p = (p) f£= () (2.13)
FS FS FS Fs
This farfield boundary condition applies to both inviscid and
viscous flows every where with exception of the wake region.
In this region the pressure must be constant. Therefore,
p = (p) (2.14)
FS
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across the wake on the downstream boundary. Unfortunately for
numerical calculations the farfield boundary is not placed at
infinity but at some large finite distance R from the airfoil
as shown by the dashed boundary in the figure. While the free
stream conditions presented above are very commonly used for
lifting airfoil problems, for accurate results the boundary
must be placed a large distance from the airfoil. In
practice, it is not uncommon to see a far field radius on the
order of 100 chords [L37]1. This results form the fact that,
while there is a net circulation.around lifting airfoils, the
farfield condition assumes zero circulation. If the flow is
irrotational ( Dboth inviscid and shock free) with a subsonic
freestream, a much better approximation is possible by viewing
the farfield flow as the superposition of uniform flow and a
compressible point vortex centered at the airfoil. With this
formulation the outer boundary can be placed much closer to

the airfoil.

The compressible potential for this flow has been
derived by Ludford L[L38] as

-1
$ = qRcos(@-x) - (TM/27M)tan [@tan(® -<)]  (2.15a)
o0 )

/ 2
B=f1-M (2.15Db)

The circulation [' is based on the 1lift 'coefficient found

where

from a surface integration of the pressure around the airfoil

[T =0.5qccC (2.16)
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Using the freestream conditions of (2.13) combined with the
compressible Bernoulli equation and the above potential, the
farfield flow conditions (denoted with subscript v) are-

obtained as
u = u
v FS
2 2 2
+sin(@)g ¢ C (3/{4’7fREcos (e—oc)+p sin (& -)13 (2.17)
° L

v = v
v FS
2 2 2
-cos(®)q ¢ C (9/£417'R[cos (e-oc)-!-p sin (©® -9o¢)13}
©o L
= 2 2 2 PR

P ={p +(Y>1)f> CLg ~-u -v I/(2p ) 3

v FS Fs *=° FS FS FS

{

f =% (p /p 7T

v FsS v FS

It is clear that an assumption of uniform flow at the far
field Dboundary is simply a lower order approximation of the

above expressions.

The vortex far field boundary condition presented above
was developed under the assumption of irrotational and
therefore, shock free flow. This assumption allows one to
equate the circulation around the airfoil surface directly to
the circulation around the far field boundary. For transonic
flows with shocks the net circulation around the far field
boundary is not equal to the bound airfoil circulation due to
the additional vorticity within the rotational wake region
generated by the shock. Proper calculation of the far field

circulation would require both a surface integration for the
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bound circulation and a field integration of the wake

vorticity.

A simplified model is developed here. The important
assumption is that the flow is inviscid and at some distance
behind the airfoil the pressure and the velocity direction
return to freestream values. Consider the three contours
shown in figure 2-2 (1 the airfoil surface contour,' 2 an
intermediate radius contour and 3 the finite far field radius
contour). The following observations can be made. First, a
momentum integration for the 1lift on the airfoil using each of
the three contours results in the following result:

L =L =1L (2.18)

Second, with the presence of the shock, the circulation
corresponding to contour 1 can not be related to the lift on
the airfoil using equation 2.16, since this expression assumes
the flow is irrotational. In addition, with vorticity in the
wake region, the circulation for each of the three contours

can be different.

c A4 (2.19)
1 2 3

If, however, contour 2 is chosen to be a sufficient distance
from the airfoil to satisfy the stated assumptions, then the
circulation for contour 2 will be the same as contour 3. This
can be shown by performing an integration of the vorticity
over the area between contours 2 and 3. Noting that the flow

is dirrotational everywhere outside the wake region then this
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integral reduces to the integration over the portion of the
wake between 2 and 3. After changing to a contour integration
then

m -5 = SBq.ds (2.20)

4

where contour 4 is defined as a path around the portion of the
wake, as shown in figure 2-2. Evaluating this integral in
segments, it is clear that since the flow conditions above and
below the wake are at the same freestream flow conditions, the
upper segment will cancel the 1lower. Since the flow 1is
unidirectional, the contributions from the sides also cancel,

and equation 2.20 reduces to the following,

mr=r (2.21)

2 3

What this says is that although the wake is rotational, there

is no net vorticity.

Now by viewing the flow field from a far field
perspective the flow at (or outside) contour 2 may once again
be represented as that of a compréssible point vortex centered
at the airfoil with circulation of sufficient strength to
generate the lift determined by momentum integration wusing
contour 2. Since the 1lift is independent of the contour

chosen, the correct circulation is

= f":L/fq=L/q=0.5ch (2.22)

Note that this is exactly the same expression for the vortex

strength as that wused for irrotmtional (shock free) flows.
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Therefore, equation 2.17 is also a good approximation for the

far field flow of transonic airfoils with shocks.

For inviscid flows the definition of the far field flow
and body geometry alone are not sufficient to determine a
unique solution for 1lifting airfoils. To make the flow
solution unique requires also specifying the circulation about
the body. The lift is then determined by this circulation.
For lifting airfoils with sharp trailing edges the circulation
is fixed by the Kutta condition. The Kutta condition states
that a body with a sharp trailing edge in motion through a
fluid creates about itself a circulation of sufficient
strength to hold the rear stagnation point at the trailing
edge. The Kutta condition may be interpreted as the
requirement that the flows over the upper and lower surfaces

merge smoothly at a sharp trailing edge for lifting airfoils.
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BASIC MULTIPLE-GRID METHOD

3.1 INTRODUCTION

The foundation on which the present solver for a generél
multiple-grid structure is based is the Ni multiple-grid
algorithm for the solution of the Euler Equations [141]. This
algorithm is composed of two parts, a "base solver" and a
"coarse mesh accelerator". To illustrate the basic Ni
algorithm, the solution mesh is considered to be comprised of
a single global grid called the level h mesh. The first part,
the base solver, is a single step explicit Lax-Wendroff type
time marching method used on this solution mesh. The second
part 1is a coarse mesh accelerator which operates on residuals
transferred from the solution mesh to one or more
progressively coarser grids. The key to both parts of Ni’s
multiple-grid scheme is the formulation of the discrete
equations in terms of a control volume integration of the
governing equations over each grid cell. The sum of this
control volume integration, which may be called the cell
residual or change, is then transferred to the surrounding
grid points by way of a "distribution" formula. The resulting
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formulae for the corrections to grid point wvariables is
equivalent to a standard Lax-Wendroff time step at each grid
point. One of the advantages of the Ni multiple-grid method
is that Dboth the base solver and the coarse mesh accelerator
operate on the solution U and the change in solution dU
(dU = Un‘LU") which need be only stored for the solution
mesh. This vrepresents a savings 1in storage over the

traditional multi-grid algorithm which stores the solution on

each level.

While the present scheme uses a Lax-Wendroff type time
marching scheme as the base solver, the method is not
restricted to only this base solver. Johnson [39]1 has shown
the coarse mesh accelerator to work equally well when combined
with other base solvers such as those of MacCormack, Lapidus,
and Burstein. Therefore, a great deal of flexibility is
possible in the choice of the base solver. The advantages of
using one particular base solver over another are in the
reduction in computational work required for each relaxation
sweep, ease of application of Dboundary conditions, and
possible improvements in acceleration to convergence. For the
present work the prime concern has been to demonstrate the
extension of the multiple-grid method to general embedded mesh
structures. In this light we have remained with the original
Lax-Wendroff base solver, it being a well established starting
point, while trying not to restrict the work to this solﬁer.
For the inviscid transonic flow problems which have been
considered during the code development this base solver has
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proven to be very robust, providing solutions even with poor
boundary condition formulations and minor errors during
development. This point was particularly helpful during the

development of the embedded mesh formulations.

It is not the intent here to rederive the Ni formulation
presented in [141. Rather, for completeness, the final
formulation of the multiple-grid method will be presented for
a general nonorthogonal grid system. Where possible,
observations from the current work with the method have been
included to help clarify areas that are unclear in the
original paper. These areas include the implementation of
boundary conditions and parts of the coarse mesh accelerator
which were not described in the original paper and therefore
are probably different from the implementation used by Ni. 1In
the present formulation, both the base solver and the coarse
mesh accelerator will be expressed in a cell reference frame
using numerical values for grid points, cell centers, etc..
This choice of reference frame has been made in preparation

for the pointer system to be presented in chapter 4.

3.2 BASE SOLVER

The base solver performs a Lax-Wendroff step in time for
each point on the finest mesh, referred to here as the h mesh.
This process is implemented in three paéses over the mesh.
First, the mesh is swept node by node initializing all grid

1
point corrections (dU = Un‘—Un ) to zero. Next the h mesh is
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swept cell by cell calculating the new grid point corrections.
This is the solver sweep where a control volume flux balance
and distribution are performed for each cell. Finally, the
boundary conditions are applied and the mesh 1is swept once
again by nodes updating the solution. To help clarify the
general flow of the base solver during the discussion which
follows figure 3-1 presents a flow chart which summarizes this

process.

After the initializétion sweep the solution sweep 1is
made, cell by cell, performing a flux balance and distribution
for each cell. For the typical cell shown in figure 3-2 this

involves the following 3 steps.

STEP 1: Finite volume approximation

DU = Cell Residual

c
= (Dt/DV){ LO.5(F +F )(y -y )-0.5(G +G )(x -x )1 (3.1la)
1 2 2 1 1 2 2 1
-LO.5(F +F )(y -y )-0.5(G +G )(x -x )]
3 4 3 4 3 4 3 4
+L0.5(G +G ) (x -x )-0.5(F +F )(y -y )1
1 4 4 1 1 4 4 1
-L£0.5(G +G )(x -x )-0.5(F +F )(y -y )13
2 3 3 2 2 3 3 2
where
DV = -0.5C (x -x ) (y -y ) - (x -x )(y -y ) ] (3.1b)
3 1 4 2 4 2 3 1

This step 1is a discrete approximation to the governing
integral equation (2.10) on a cell volume whose shape is
invariant with time.
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STEP 2: Distribution formulae

dU = 4daU + 0.25C DU - Df - Dg 1 (3.2a)
1 1 c c c
duU = d4U + 0.25C DU - Df + Dg 1
2 2 c c c
dU = daU + 0.25C DU + Df + Dg 1
3 3 c c c
dU = dU + 0.25C DU + Df - Dg 1
4 4 c c c
where
1 1
Df = ( Dt/ DV )L DF Dy - DG Dx 13 (3.2b)
c c c
m m
Dg = ( Dt/ DV )L DG Dx - DF Dy 1
c c c
and
DF = (9F/2U ) DU DG = (8G/oU ) DU (3.2c)
c : c cC c c c
1 1
Dx =0.5(x+x-x-%x ) Dy =0.5(y+y -y -5 )
2 3 1l 4 2 3 1 4
m m _
Dx =0.5(x+x-x-x ) Dy =0.5(y+y-y-y )

3 4 1 2 3 4 1 2
U =0.25(0+U+U+U )
c 1 2 3 4
This step "distributes" the cell residual of step 1
proportionally to the solution grid points resulting in a
Lax-Wendroff type formulation of the grid point correction
equations. Expressed in this form, the numerical signal
propagation phenomena appears similar in nature to
characteristics propagation £1l413. In this distribution
formula, (2 F/2U )c and (9 G/aU )c are the Jacobian matrices
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evaluated at the cell center in terms of Qb. As Ni points
out, a significant number of operations can be saved if Dﬁzand
DG, are directly formulated in terms of Uc and DUc before

coding.
STEP 3: Smoothing formulation

While Lax-Wendroff type algorithms are known to have a
significant amount of implicit artificial smoothing, for
transonic and supersonic flows with shocks additional explicit
artificial smoothing 1is required to stabilize the solution.
From the author’s experience, when the multiple-grid
accelerator 1is wused this smoothing greatly improves the
convergence rate, and, in many cases, is required for
convergence. The present smoothing formulation, expressed

here in a distribution format, would in practice be included

in step 2.

daU = dU + 0.25«CL U -U 1 (3.3)
1 1 c 1

dU = a4aU + 0.25C U -U 1
2 2 c 2

duU = 44U + 0.25CL U -U 1]
3 3 c 3

dU = dU + 0.25,LC U -U 13
4 4 c 4

A =0 Dt LDl + Dm 1/ DV

1 2 1 2 m 2 m 2
Dl = /(Dx ) + (Dy ) Dm = /( Dx ) + ( Dy )
While the distribution format presented above might

suggest a smoothing applied over the cell, this is really a

- 49 -



BASIC MULTIPLE-GRID METHOD

smoothing operator applied directly to the nodal solution.
The net contributions from the four surrounding cells results
in the' standard nine point Laplacian smoothing operator
applied on the computational mesh. For a cartesian coordinate
system, with Dx = Dy, this smoothing is equivalent to adding a
term of order Dx to the original governing equations of the
following form,

o—Dx { U + U 3 (3.4)
XX yy

Iﬁ practice, the type and amount of smoothing 1is often
determined through a trial and error process without any
rigorous mathematical study. The addition of any type of
artificial smoothing will add an error to the solution. It is
hoped that this error will be very localized, stabilizing the
solution near singularities in the flow while minimizing the
overall global effect. One common way of reducing the
detrimental effects of smoothing is to choose a form which
adds one or more terms of higher order to the original
governing equations. The present smoothing is particularly
disturbing in this respect since a first order term is added
to a second order accurate scheme, making the scheme spatially
only first order accurate. Quantitatively, as will be shown
in the results section, the present smoothing has a
surprisingly small effect on global parameters of interest,
such as thé force coefficients, Dbut does create errors in
regions of rapid expansion or isentropic compressions. In
addition, it does enhance convergence of multiple-grid
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solutions and allows the calculation of transonic flows with
shocks. Since smoothing is required by the present algorithm,
much further work should be done in this area to formulate a
smoothing which reduces these errors, preferably a smoothing

operator which is of higher order than the present.

Once the solution sweep has been performed over each
cell on the fine mesh, the required boundary conditions are
applied to the boundary nodes. These will be discussed in
more detail later. Finally, the third sweep over the h mesh
is made, node by node, to update the dependent variables.

n+1l n
U =U + dU (3.5)
i i i
The newly calculated value of U; is equivalent to a second

order accurate (in time) Lax-Wendroff method.

This completes the formulation of the basic solver on
the solution mesh with the exception of the definition of the
time step restriction. This time step restriction is
determined by the stability limit of the Ni scheme applied to
the governing equations (2.9). Unfortunately since the
governing equations are nonlinear a stability analysis can not
be done directly for this system. A good indication of the
stability 1limit can be gained through analysis of a similar
linear model equation, in this case the 2-D scalar wave
equation. A Von Neuman analysis'of the current scheme applied
to the 2-D wave equation is presented in appendix B. The
result of this analysis for a Cartesian system with Dx = Dy is
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the stability restriction of CFL<1//2. Note for the
corresponding 1-D equation the restriction is CFL(1. On this
basis one should expect the stability limit for the general
Euler system to also be CFL(1/y2, where the CFL number is

appropriately defined for the new system.

The definition of the CFL number for the Euler equations
is defined in terms of the maximum eigenvalues of the Jacobian
matrices (3F/3U and 92G/2U) of the gquasilinear form of the
Euler equations for a general nonorthogonal coordinate system
(egqn 2.9) and the cell dimensions. For a general two
dimensional grid system we must satisfy a stability condition
in both coordinate directions. For the present system these
are,

1 1 m m
CFL§ = DtLj{uDy -vDx |+aD1l3] CFL,l = DtLluDy -vDx |+aDml (3.6)
Dv

Dv

where a 1is the speed of sound. A derivation of these

expressions is presented on appendix C.

In practice both Ni and the present author have found
that the stability 1limit CFLSl//E. is in fact much more
restrictive than necessary. The limit has been found to De
CFL(1, giving the following time step restriction,

DV ’ DV

I |
Dt <= MIN | 1 1 m m | (3.7)
| |uDy -vDx |+aDl juDy -vDx |+aDm |

The reasons for the less restrictive limit remains unanswered
but the following observations can be made. First, it is
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important to note that the true governing equation system is
non-linear unlike the present analysis. It is possible that
the non-linearity stabilizes the solutions scheme, but this
seems unlikely since other numerical schemes, such as
MacCormack’s method, applied to the Euler Equations have
stability limits that agree quite well with the results of 2-D
wave equation analysis. Secondly, the addition of artificial
viscosity to the model system as implemented here reduces the
stability limit, eliminating it as a cause. Finally it is
interesting to note that the observed stability 1limit
corresponds to the 1-D limit. Since in practice the grid
tends to be aligned with the flow in those regions where there
are rapid changes on the flow, these regions could be viewed
as 1-D along the coordinate direction. The stability limit
might then in effect be the one dimensional limit. This same
relaxation of the stability 1limit has been confirmed by
Dannenhoffer [401, for 2-D solutions of the wave equation when
the flow is aligned with the mesh while the expected limit of
CFL(1/J2 is required if it is not.

If the basic solver is used without the coarse grid
accelerator, marching with a global time step based on the
above relation, yields second order time accurate solutions.
However, if only steady state solutions are of interest, much
faster convergence is possible if each cell is advanced at the
local rather than global time step condition. Of course, if
the multiple-grid accelerator is used then the solutions are
no longer time accurate and local time stepping is also used.
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3.3 COARSE MESH ACCELERATOR

One of the largest problems with algorithms which have
been developed in the past for solving the Euler equations has
been their slow convergence to the steady state solutions. To
be accepted as a design tool for repetitive calculations the
method must provide steady state solutions as fast as or
faster than current potential flow solvers. As might be
expected, since the base solver is a single step Lax-Wendroff
time marching scheme, the base solver used alone converges
very slowly to the steady state solution. The poor
convergence rate 1is due to the severe time step restriction,
common with all explicit methods, for solutions on meshes with
good flow resolution. To accelerate the convergence rate Ni
developed the present multiple grid method which, while
sacrificing time accuracy, accelerates convergence rates to

the same order as current potential solvers.

The multiple grid method is formulated by considering a
series of increasingly coarser meshes, defined as the 2h, 4h,
8h, etc. 1levels, which overlay the fine h mesh. If the
governing equations were discretized on each of these levels
it is then clear that the time step restriction would grow
with the mesh scale as one moves to increasingly coarser
meshes. Equivalently, the distance of propagation of
disturbances during each time step will be on the order of the
mesh scale. Therefore, disturbances propagate much faster

with each step on coarser levels. Unfortunately, there is
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also a corresponding loss of resolution and accuracy on the
coarser levels. What is desired then, is a way of coupling
the solutions of each level in such a way that disturbances
which can be resolved on coarser levels are propagated on
those levels while preserving the accuracy of the fine mesh

solution.

One of the first attempts at this type of coupling was
in solving for a solution in terms of a series of repeated
mesh refinements. First the problem is solved for a very
coarse mesh, where a very fast solution is possible due to the
small number of mesh points and large time step péssible.
This solution is then interpolated to a finer mesh and used as
the iniiial condition for the next solution. The process 1is
then repeated for finer and finer meshes until the desired
mesh is reached. The net work required using this method of
mesh refinement 1is 1less that solving the fine mesh problem
directly, but it still remains unacceptable for solution of

Euler flow problems.

The Multi-grid methods developed by Brandt [23,24,41]
take full advantage of the coupling of discrete equations on a
system of mesh 1levels to provide very fast solutions to
elliptic or near elliptic type equations. In multi-grid
methods the discrete equations of each level are expressed in
terms of the discrete governing equations of the given level
plus a correction term relating the solution to the next finer

level. The solution is then solved for simultaneously on all
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levels by cycling through the levels, using a relaxation
method on each level. One of the keys to the rapid
convergence of the solution is the choice of a relaxation
scheme which rapidly smooths the solution errors of the
frequency of the mesh scale, often in just as few relaxation
sweeps. By cycling through all levels of the mesh structure
the complete spectrum of error frequencies are rapidly
reduced. In addition, since a majority of the relaxation
sweeps take place on coarser mesh levels where the work per
sweep is small, the total cqmputational work is reduced to the
order of 6-9 work units. A work unit is defined here as the
work for one relaxation sweep on the fine mesh.
Unfortunately, such multi-grid methods are not directly
applicable to solution of the Euler eéquations since the

governing equation system is not elliptic.

Ni‘’s multiple-grid method for solving the Euler
equations represents a very different approach from the true
multi-grid methods but the wunder 1lying concept of taking
advantage of the propagation (or smoothing as Brandt calls it)
of disturbances on coarser mesh levels remains the same. To
help eliminate confusion of the present algorithm with true
multi-grid methods the present algorithm will be <called the
coarse mesh accelerator. Ni begins by viewing the base solver
in terms of a flux balance followed by a distribution. The
flux balance defines the cell centered residual or solution
change for the center of the cell. The distribution step then
moves this residual to the surrounding nodes defining the
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cell. It is the distribution step then which defines how
disturbances propagate numerically throughout the domain.
Now, due to the stability limit for the Lax—Wendroff schene,
the distance of propagation is limited to no more than one
cell per time step. If the same distribution formula is
considered for a coarser mesh level the maximum distance of
propagation is still one cell, but now it is a coarse mesh
cell which is a multiple of fine mesh cells. To retain the
fine mesh accuracy Ni proposed defining the coarse mesh flux
balance in terms of some weighted average of the fine mesh
node residuals given by the base solver. ‘Defined in this way
a coarse mesh solution sweep filters out the lower frequency
components of the fine mesh residual and propagates them as
they would be by using the base solver on the coarse mesh.
Therefore much faster convergence is possible for these 1low
frequency errors than on the fine mesh. The accuracy of the
fine mesh is preserved since the residuals are defined by the
fine mesh and although redistributed, the net change at any
point after the coarse mesh sweep will be of the same order as
the finé mesh residuals to begin with. In other words, since
the coarse mesh sweep operates on the residuals of the fine

mesh discrete equation and not the solution, accuracy is

preserved.

In practice the solution process begins with application
of the base solver on the h mesh. The coarse mesh accelefator
is then applied on the 2h mesh defined by eliminating every
other mesh 1line in both directions. The 2h mesh solution
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changes are then interpolated back to the fine mesh and added
to the solution. The coarse mesh accelerator is then repeated
on the 4h mesh, the Bh mesh, and so on. This defines one
complete multiple-grid cycle. The mesh cycle is then repeated
until convergence is reached. As will be shown later, use of
the coarse mesh accelerator typically reduces the number of
iterations or cycles to reach convergence by a factor three or

better over the base solver alone.

Comparing the coarse mesh accelerator to the multi-grid
methods of Brandt the following should be noted. The coarse
mesh accelerator differs from true multi-grid, since only the
distribution step on each level is the same as the base solver
rather than the entire discrete equations. The coarse mesh
accelerator simply accelerates the propagation of the fine
mesh residuals. This could also be viewed as a smoothing of
the fine mesh residuals on the coarser mesh levels. The
similarity between the two is that the coarser levels are used
to efficiently propagate or smooth solution errors of the
fréquency of the coarse grid scale. Finally while the
multi-grid method are 1limited to elliptic type problems the
present coarse mesh accelerator works well for convective type

problems.

The actual coarse mesh accelerator consists of
application of the following procedure on one Or more
progressively coarser meshes. Figure 3-3 presents a simple

flow chart of this process. The process begins by elimination
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of every other grid 1line 1in both coordinate directions
resulting in what will be called the 2h mesh. A typical
coarse grid cell is shown in figure 3-4. Note we now have
access to the next 1level finer grid points, which we will
refer to as secondary nodes, shown as points 5-9 in the
figure. First dU at all 2h grid points is initialized to
zero. Then, following the basic solver, the 2h mesh is swept

cell by cell performing the following steps:
STEP 1: Residual Transfer

To retain the accuracy of the level h mesh solution the
change, or cell residual, for the center of the 2h cell is
determined from a weighted average of the 1level h mesh
corrections. Ni denotes this symbollically by defining a

2h
transfer operator T“as,
2h 2h h
DU = T dU (3.8)
c h
The simplest form is straight injection of the fine grid
corrections as |
2h h
DU = dU (3.9)
c 5
Injection of the cell centered residual physically represents
a good approximation to the flux balance over the coarse mesh
cell. This can be shown bj writing out the complete

h
expression for dUg which is the sum of distributed changes

from the four surrounding fine mesh cell. This sum 1is
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equivalent to an application of the integral equation using
all the h mesh points plus an extra second order time term as
shown below,

h h h h h 2

DU = 0.25(DU +DU +DU +DU ) + Dt ( other terms ) (3.10)

5 A B C D
where subscripts A, B, C, and D correspond to the four
surrounding fine mesh cells as shown in figure 3-5. Note that
a flux balance defined in this manner is a lagged flux balance
based on conditions of the flow before application of the base

solver.

For moderately stretched meshes simple injection works
quite well. However, as the mesh becomes highly stretched in
either or both co&rdinate directions the overall performance
of the coarse mesh accelerator has been found to decrease,
eventually failing completely. This breakdown has been found
to be related to the type of transfer operator used. To
correct this breakdown a series of different operators have
been studied. In comparing the relative performance of the

following operators it is convenient to wuse the simple

injection formulation as a base line.

The first type of transfer operators considered were
different algebraic weightings of the residuals of the nine
nodes defining the cell. Straight injection of the cell
center vresidual is the simplest of this class of operators.

Of this class the following seemed promising,
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2h h h h h h
DU =0LC 4dU + 2( dU + dU + 44U + AU )
5 6 7 8 9
h h h h
+( dU + dU + dU + dU ) 1/16 (3.11)
1 2 3 4
This represents an averaging of the residuals for each of the
four h cells, which are then averaged for the 2h cell center
value. This is consistent with the base solver flux balance
since is assumes a linear distribution for residual along each
face of the h cells. Unfortunately the above weighting, as
well as all other purely algebraic averaging formulas
considered were found to give the same performance as simple
injection. Since each requires many more computational

operations over simple injection there is a net 1loss in the

efficiency by using these transfer formulations.

Judging by the performance of algebraic type weightings
and noting that the decrease in performance occurs with high
mesh stretchings, the resulting breakdown might be attributed
to the variation of cell volumes between the four h mesh
cells. The algebraic weightings do not take this cell volume
variation into account. On this basis the following cell
volume weighting was proposed,

2h h h h h
DU = L DV dU +DV dU +DV dU +DbV dU 31/DV (3.12a)
C A A B B c C D D T
where
DV =DV + DV + DV + DV
T A B c D

and
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h h h h h h h h h h
dU = [ dU +dU +dU +dU 1/4 dU = L[ d4U +dU +dU +dU 1/4
A 1 ) 5 9 C 5 7 3 8
(3.12b)
h h h h h h h h h h
dU = [ 4dU +dU +dU +dU 3/4 d4U = [ 4U +dU +dU +dU 1/4
B 6 2 7 5 D 9 5 8 4

This volume weighting also gave the same performance as simple
injection with no improvement in performance. While it was
felt that the volume weighting should play a role in the
transfer operation it was clear that a key element was still

missing from the formulation.

The missing element in the transfer operator for highly
stretched meshes has been found to be the incorporation of the
signal propagation characteristics of the equation - into the
transfer process. Assuming a definition of the residual 4U at
the center of each of the four h mesh cells ( A,B,C,D of
figure 3-5), the signal propagation must be considered in
combining these residuals for the 2h cell centered residual
dU . The signal propagation is determined by the distribution

step (recall egn. 3.2). Using this as a guide then,

2h h * * h * *
DU =L dU + Df + Dg 1DV /DV + L 4U + Df - Dg 1DV /DV
C A A A A T B B B B T
' (3.13)
h * * h * *
+ L AU - Df - Dg 1DV /DV + L 4U - Df + Dg 1DV /DV
C C C Cc T D D D D T

where volumes are defined by equation (3.1b) and for example
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* * 1 * 1 -
Df = ( Dt/ DV )L DF Dy - DG Dx 1 (3.13b)
A A A A
* * m * m
Dg = ( Dt/ DV )L DG Dx - DF Dy 1
A A A
* h * h
DF = (@F/2U ) d4U DG = (2G/ 2U ) 4U
A A A A A

There now remains the question of how to define dUA, dUB'

and dUo‘ The proper definition of these h mesh cell residuals

au_,
c

. was determined by testing wvarious averages. Three of the
possible formulations tried are described below. The first is
simply the cell center average defined above in equation
(3.12b). Using this definition with the distribution defined
above results in a transfer operator which is  stable for
highly stretched meshes but with an acceleration of

convergence which is still less than satisfactory.

A second definition which improves the convergence rate

is

h h h h h h

duU = [ 4dU +dU 1/2 du = L[ 4dU +4dU 1/2
A 1 5 C 2 5

(3.14)

h h h h h h

duU = [ 4U +dU 1/2 du = [ d4U +dU 1/2
B 3 5 D 4 5

At this point a trend can be seen. This definition provides a
stronger weighting and influence of the residuals at the 2h
cell corner nodes (points 3,5,7,9 of fig 3-5). Taking this

one step farther results in the following weighting.
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h h h h
du = 4dU dU = dU
A 1 C 3
(3.15)
h h h h
du = 4duU dv = du
B 2 D 4

This final form provides the best convergence for highly
stretched meshes. In hind sight there are several reasons to
expect this result. First, of all weightings considered, the
last takes the fullest advantage of the propagation of
information in a manner consistent with the numerical
propagation of information by the discrete equations.
Defining the transfer operator in this way is equivalent to a
time step on the 2h mesh. Second, equation (3.15) operates
only on the residual of the 2h mesh at the 2h mesh points,
thus filtering the residuals in the same manner as the
discrete equations applied on a 2h mesh would filter the
solution. This means the frequency of the errors resolved are
the same that would Dbe normally resolved Dby the discrete
equations. The improvement 1in convergence by using a

transport operator has been confirmed by Ni [421.

Table 3-1 summarizes gquantitatively the relative
performance of the different transpoft operators in terms of
the multiple grid cycles for a converged solution. Two cases
are shown on the table. Both are for a subsonic flow about a
NACA0012 airfoil using a 65%17 O-type mesh with 3 mesh 1levels
(65417 fine mesh plus two coarser level). In the first case a
moderately stretched mesh wés used, placing the farfield
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boundary at 5 chords from the airfoil. The second is for a
highly stretched mesh placing the farfield radius at 20 chords
from the airfoil. As the table shows all the operators
perform about the same for the moderately stretched mesh with
a slight improvement using the distribution formulations. For
the more severe case however, all but the distribution based
transfer operators fail. Of the distribution formulations it
is clear the final formulation provides the best overall

performance.

Table 3-1: Comparison of Transfer Operator Performance

TRANSFER CASE 1: MODERATE CASE 2: HIGH

OPERATOR STRETCHING, R = 5 STRETCHING, R = 20

SIMPLE INJECTION 616 Failed to Converge
(Egn. 3.9)

ALGEBRAIC WEIGHTING 690 Failed to Converge
(Egn. 3.11)

VOLUME WEIGHTING 588 Failed to converge
(Egn. 3.11)

DISTRIBUTION 572 850

TYPE 1: (Egn. 3.12b)

DISTRIBUTION 573 _ 854
TYPE 2: (Egn. 3.14)

DISTRIBUTION 578 619
TYPE 3: (Egn. 3.15)

STEP 2: Distribution formulae

Following the .distribution step of the base solver

equation (3.2) the 2h mesh distribution is defined as
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du = 4U + 0.25c DU - Df - Dg 1] (3.16a)
1 1 c c c

duU = 4U + 0.25C DU - Df + Dg 1
2 2 c c c

dU = dU + 0.25C DU + Df + Dg 1
3 3 c c c

dU = 4aU + 0.25C DU + Df - Dg 1
4 4 c c c

where
1 1

Df = (Dts DV )L DF Dy - DG Dx 1 (3.16Db)

c c c
m m

Dg = ( Dt/ DV )L DG Dx - DF Dy 1

c c c
and
DF = ( @F/ 8U ) DU DG = (2G/2U ) DU (3.16c)
c c c c c c
1 1l
Dx =0.5( x +x-x-x ) Dy =0.5(y+y-y-5y5 )
2 3 1 4 2 3 1 4
m m
Dx =0.5(x+x-x-%x ) Dy =0.5(y+y-y-y )

3 4 1 2 3 4 1 2
Since the solution is now known at the cell center (i.e. node

5), this is used for calculation of ( @F/aU %: and ( 9G/2U % .

Once the above steps have been performed at all 2h
cells, the boundary conditions are applied at all 2h boundary
points. Note that no smoothing is done for the coarse mesh
sweeps as is done in step 3 of the basic solver. Then the

corrections are interpolated back to the fine mesh using

bilinear interpolation.
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h 2h 2h h Z2h 2h
4 = 0.5C dU + dU ] 4au = 0.5C aU + 40 ]
6 1 2 7 2 3
h 2h 2h h 2h 2h
dau = 0.5C dU + 4U ] du = 0.5C dU + dU 1
8 3 4 9 1 4
h h h
du = 0.5C 40U + 4U 3 (3.17)
5 6 8

It should be noted that the above interpolation is a Dbilinear
interpolation in computational space. It has been found that
while it might seem to be better to perform a bilinear
interpolation in physical space the above form actually gives
better convergence rates. In addition the above formulation
requires far less operations than the corresponding
formulation in physical space, providing a significant savingé

in computational work.

Finally the boundary conditions are applied once again
on the fine mesh and the solution is updated using equation
(3.5). The above coarse mesh accelerator is then repeated for
progressively coarser meshes (i.e. 4h,8h,....). A complete
multiple-grid cycle consists of one sweep through the level h
solution mesh followed by a coarse 2h mesh sweep, followed by

a 4h sweep, and so on to the coarsest mesh.

3.4 BOUNDARY CONDITIONS

Each of the boundary conditions used has been

implemented in a predictor/corrector form. The
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predictor/corrector form follows from the fact that second
order numerical integration schemes for internal points
incorporate a mathematical signal propagation phenomena
analogous to the theory of characteristics. For example,
Abbett [£43] and others have viewed MacCormack’s scheme as
computing the solution of two simple waves, the solutions of
which are summed to yield a complete solution. In the same
sense Ni suggests that the “"distribution” formula represent
similar simple wave solutions. On boundaries the predictor
step consists of summing contributions from cells interior to
the boundary. The corrector step consists of ~enforcement of
the appropriate boundary conditions (i.e. inflow, outflow,

-solid wall, or Kutta) using a simple wave type of treatment.

In this section, subscript "p" defines predicted values
obtained by distributions from the two boundary cells
belonging to point i. Subscript "c" refers to the corrected
values after application of the boundary conditions. Once

found the corrected change at boundary poihts_is then

dau =U-1U (3.18)

The corrector step for the farfield and solid wall
boundaries 1is based on a characteristic analysis of the
linearized Euler equations in a coordinate system tangential
and normal to the boundary at point 1, as shown in figure 3-6.
A general and easy to follow development of this

characteristic analysis is presented by McCartin L[441].
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Rewriting the original governing equation (2.8) into this
local cartesian reference frame with normal and tangential
coordinates (n,s) gives -
U +F +G =0 (3.19)
t n s
Assuming locally that the tangential variation is much smaller
than the normal variation of U, this equation reduces to

U +F =0 (3.20a)
t n

which may be rewritten as
U +FU =0 (3.20b)
t Un
Now performing a local linearization by freezing the values of
F\‘ this equation can then be transformed into a system of
uncoupled scalar equations, the cﬁaracteristic equations
W + AW =0 (3.21)
t n
If 9, and 9g are defined as the normal and tangent velocity
components, and a is the speed of sound, then the eigenvalues

A and corresponding characteristic variables W of this

equation in the reference frame normal to the boundary are

! : I 2 |
la | | p- p/(3) l
| n | I |
A =14 ! W= | q | (3.22)
| n | | |
| q +a | | cq +p/(fa)3/f—
| n | |
| q -a | acq +p/(J>a)J//_]
| n | | I

Barred quantities are linearized state conditions which are
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taken as the predictor state (p).

3.4.1 Far Field Boundary

The number of boundary conditions which may be specified
at the boundary is equal to the number of positive
eigenvalues. For the far field the specification of the
boundary conditions depends upon whether the normal velocity
is positive (inflow) or negative (outflow) and supersonic or
subsonic. For subsonic inflow (O(qn<a) the three positive
eigenvalues require three boundary conditions be applied while
W4 must come from the flow interior to the boundary. The
interior flow is represented by the predicted values. The
boundary conditions are set by defining Wl, W2, and W3 in
terms of the finite radius far field vortex conditions, ( )v‘
These correspond to a farfield flow projected normal and

tangential to the boundary. We thus have the following system

of eguations defining the corrected state, ( )c'

2 : 2 ‘
£ -P /@&)=p -p /(a ) (3.23)
c Cc v v
q =g
S S
c v
g +p /(fa) = g +p /(fa)
n c n v
o v

-q +p /(pa) =-q +p /(pa)
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After recombination we have,

a = q (3.24)
S s
C v
P =0.5Lp +p +paltg =-4g )3I
[ v P n n
v P
_2
P =p +(p -p )la)
[ v (o4 v
q =q +(p -p ) (pa)
n n v c
(o v

For supersonic inflow (qn>a) all eigenvalues are
positive and four boundary conditions are required. In this
case the inflow boundary 1is frozen at the freestream

conditions.

For subsonic outflow (—a(qn<0) there 1is only one
positive eigenvalue and therefore one required boundary
condition. On the outflow boundary the upstream traveling
characteristic W3 is set at the freestream value. W1, W2, and
W4 are determined from the predicted flow conditions. After

rearranging we have the following relations,

P =0.5Lp +p +pat g -qg ]I (3.25)

c v P n n

v P

a =9

S S

c P
2

F =p +(p -p )/(a)

c P v P
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g =g +(p -p )/Epa
n n v p

For supersonic outflow (q'1<—c) all information comes

from the predicted state p.

3.4.2 Solid Wall Boundary

Finite volume methods with the state vectors defined at
cell centers (e.g. [15,171) only require the pressure on the
solid wall. Incorporation of the solid wall condition for
Ni’'s scheme requires all flow guantities be known or
determined at the solid surface. For this reason, a
characteristic analysis 1is also used at the solid walls.
Referring back to the boundary cells shown in figure 3-6 and
with qn=0 in egqn. 3.22, there is one positive eigenvalue
requiring one boundary condition be set. The condition used
is 9 =0. Wl, W2, and W3 are then determined based on the
predicted state (p) where

n
(U ) =U + 2(40 ) (3.26)
l p 1 1 p
The factor of two in the above expression 1is wused to
accelerate convergence. This might be thought of as either a
crude application of the reflection principle at the solid
wall or merely a over relaxation of the predicted change.
After substitution and recombination, the corrected conditions

are found to be
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g =0 (3.27)
n
c
a =g
S S
c P
P =p +49pa
c P n
P
P = p + g .F/E
c P n
P

It is interesting to note that this so0lid wall boundary
condition 1s a linearized version of the common simple wave
boundary condition, where the corrected state is based on the
generation of an isentropic expansion or compression wave
normal to the boundary which is of sufficient strength to

cancel a, -

3.4.3 Kutta Condition

All airfoil solutions to be presented have been obtained
on either O-type or C-type meshes. This places a mesh point
at the trailing edge of the airfoil which is a singular point
in the flow field. At this point the procedure used to
enforce the body boundary condition should be modified to
enforce a Kutta condition. As stated in chapter 2 the Kutta
condition required that the flow on the upper and lower
surfaces of a sharp trailing edge must merge smoothly. In
real flows it is the viscosity, no matter how small, which

guarantees that the Kutta condition will be satisfied. While
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theoretically an inviscid solution requires a Kutta condition,
for numerical calculations the artificial smoothing, both that
implicit in the algorithm and that added explicitly for
stability, have been found to impose this condition
automatically. The artificial smoothing performs the same
function as the viscous terms in a true viscous flow.
Therefore for the present calculations the Kutta condition is
met without any special boundary condition. This approach

agrees with other published Euler calculations [15,173.

One question now remains in the treatment of the
trailing edge point. Since it is also a singular point in the
flow field, what boundary conditions should be imposed at this
point? The best results have been found to depend on the type
of mesh used. For an O-type mesh the trailing edge point is
consider to be single valued. The most reliable procedure is
to not apply any condition and simply use the predicted
changes at this point. For C-type meshes the best procedure
is to consider the trailing edge point a double valued point
and applying the standard solid wall boundary condition using
the 1local tangent for the upper and 1lower surface at
respective wupper and lower points. While these treatments of
the trailing edge points may seem rather arbitrary, they were
choosen after studying many possible formulations ingluding
enforcing a stagnation point and various flow angle
conditions. It was found that while the local flow detail at
the trailing edge varied with Variousv conditions imposed,
there was vary 1little variation in the global properties of
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the solution. This conclusion is consistent with results of

other calculations [451.

3.4.4 Boundary Smoothing Formulation

In addition to the implementation of the physical
boundary conditions a special formulation of the smoothing is
required along the boundaries of the computational domain. As
noted in the smoothing discussion (Step 3 of the base solver),
the smoothing currently used for the internal solution points
is a nine point Laplacian type smoothing operator. Without
specifying information outside the computational domain, this
operator cannot be constructed along the domain boundary. The
approach currently wused is to drop thé smoothing along
computational 1lines running into the domain, thereby reducing
the smoothing operator to a one dimensional operator tangent
to the Dboundary. Considering the boundary cell shown in
figure 3-7, where points 1 and 4 lie along the boundary, the
corresponding one-dimensional smoothing operator is

au = dU + 0.25xC U -U 1 (3.28)
1 1 4 1

dau

dU + 0.25«C U -U 1

4 4 1 4
To insure the smoothing is continuous from points internal to
the boundary to the boundary the viscosity 4 is defined as
the viscosity of the boundary cell and calculated using

equation (3.3).
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For O-type mesh calculations wiggles in the solution
were found in some cases in the trailing edge region along the
surface. The odd/even decoupling in this region is caused Dby
the poor grid structure in this region (highly
non-orthogonal). To eliminate this decoupling the surface
smoothing was symmetrically increased about the trailing edge
by linearly increasing the artificial viscosity from its
normal value several points from the trailing edge to a
maximum at the trailing edge. This amounts to nothing more
than a cosmetic correction producing a smooth solution in this
region but without affecting the global parameters of

interest.

3.5 GLOBAL MULTIPLE-GRID SOLVER SOLUTIONS.

The Dbasic multiple-grid Euler solver and boundary
conditions have been verified for several different flow
problems and a range of flow conditions. The objective of the
present section is twofold; first, to validate the present
formulation by comparing with known theoretical results, and
second, to illustrate the sensitivity of these results to
boundary conditions, grid resolution, smoothing and other
important parameters. The first problem considered was the
calculation of flows in a channel with a circular arc Dbump
presented by Ni [14]1. While of value, in the sense that the
present formulation could be directly compared with that of
Ni, the channel problem is not a good case for truly testing
the performance of the solver. Since the present solver
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reproduced those results of Ni, they will not be repeated
here. The test cases which will be presented consist of
several two-dimensional airfoil designs. These airfoils were
chosen as good test casesreither since an analytical solution
is known or because they are commonly accepted test cases for
code comparison. Two types of grids have been used for these
solutions. The O-type meshes have been generated using a 2-D
version of the transfinite interpolation routine described by
Eriksson in [191 and supplied by the author. The C-type
meshes were generated using a 2-D parabolic mapping routine

written by Loyd L[46].

The first test case to be considered is a NACA0012
airfoil with a uniform freestream Mach number of 0.63 and 2.0
degrees angle of attack. Under these conditions the flow is
completely subsonic. A numerical solution of the
streamfunction equation for this case is provided in [471,
predicting a lift coefficient of 0.335. Figure 3-8 shows the
near field of a 65%17 O-type mesh with a farfield radius of 5
chords. As a base line for comparision, figure 3-9 presents
the surface pressure coefficient, surface total pressure loss,
the near field Mach number contours, and the near field total
pressure contours for a solution using the base solver alone.
The streamfunction solution of £[473 has been included in
figure 3-9a to demonstrate that the correct pressure
distribution along the airfoil surface has been found. In
addition, the calculated 1lift coefficient of 0.324 agrees
quite well with the streamfunction solution value of 0.335.
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The total pressure loss, which should be zero for this case,
has been presented since it has been found to be a very
sensitive indicator of errors in the solver formulation and of
poor grid resolution. Considering the grid resolution with
only 65 points on the airfoil the total pressure 1loss is
acceptable. Note that the total pressure loss is generated by
the rapid expansion around the leading edge. This total
pressure 1loss is due to the artificial smoothing of the
solution. More will be said about the total pressure 1loss
later. Figure 3-10 presents a multiple-grid solution on the
same mesh with the same flow conditions where now in addition
to the base solver applied on the h mesh the coarse mesh
accelerator has been used on the 2h and 4h meshes. Comparing
the solution of figure 3-10 with that of 3-9 it is clear that
the multiple-grid solver gives almost identical solutions.

Note that the 1lift and drag coefficients also agree as

expected.

The convergence histories for these two cases are
presented in figure 3-1la. Included in the figure is the
convergence history for the intermediate case with only one
coarser level. The residual presented here is the average
change of d(gU)/Dt after the base solver sweep as a function
of the multiple grid cycle. Solution convergence for each
case has been defined as the point at which this residual
falls below 1E-5. This residual 1level is well beyond the
point at which the force coefficients have reached their
steady state wvalues. To illustrate this, the lift and drag
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coefficients for the solution of figure 3-10 are presented as
a function of multiple-grid cycle in figure 3-11b. Each of
the other solutions exhibited a similar behavior. As shown in
figure 3-1lla, the base solver alone required 1562 iterations
to converge while the solution with three levels only required
570 cycles to converge resulting in a factor of 3 reduction in
the total cycles by using the coarse mesh accelerator. It is
also interesting to note that the relative reduction between
1, 2, and 3 levels decreases as the number of mesh levels is
increased. This has also been noted by Johnson [391. The
reason for this trend becomes clear if one recalls that the
actual finite volume approximation is only performed on the h
mesh. All coarser levels are based on a weighted average of
the fine mesh residual which is a lagged or old approximation
to the flux balances on the fine mesh. In contrast true
multi-grid methods always operate on the current solution and

therefore do not show this trend.

Now consider a global refinement of the above mesh
resulting in the 129*33 mesh with a farfield radius of 5
chords shown in figure 3-12. The previous 65%17 mesh (figure
3-8) was actually created by elimination of every other grid
line in the 129%33 mesh. Figure 3-13 presents the solution
for the same flow conditions as the previous result using the
multiple grid solver with 4 global mesh levels. The only
detectable changes from the 65%17 mesh solution are in the
reduction in the total pressure loss and the slightly better
1lift and »drag coefficients of .328 and ;0009, respectively.

- 79 -



BASIC MULTIPLE-GRID METHOD

These changes are the direct result of the Dbetter mesh
resolution. In particular, since the smoothing term scales as
Dx, the factor of two reduction in total pressure loss  is as
expected. Figure 3-14 compares the convergence histories of
the 129433 solution and the 65%17 mesh solution with 3 mesh
levels. If in addition to the difference in solution cycles
one considers the better than factor of 4 increase in the work
per cycle for the 129433 mesh, the importance of minimizing

the total number of grid points is clear.

At this time consider the origin and detail in the total
pressure loss of figure 3-9. As previously mentioned, the
origin of this loss is the artificial viscosity term which has
been added to the governing equations to stabilize the solver.
Careful study of the region near the stagnation point at the
leading edge shows that in this region there is actually a
negative total pressure error. This overshoot in the
stagnation total pressure 1is caused by the smoothing of the
rapid compression in this region. The total pressure error
generated at the leading edge is also the result of smoothing,
in this case the smoothing of the rapid expansion around the
leading edge. After the leading edge region, the total
pressure error remains almost constant until the trailing
edge, which suggests that the formulation of the solid wall
boundary condition is correct. Figures 3-15 and 3-16 show the
surface pressure coefficient and total pressure errors,
respectively, for a range of smoothing coefficients between 0
and 0.08. Note that as the smoothing coefficient decreases to
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zero the total pressure loss almost disappears. Unfortunately
for the case of =zero smoothing (fig 3-15e and 3-16e) the
solution failed to converge. It is clear that this breakdown
is the result of an odd/even decoupling of the solution,
particularly near the trailing edge. As will Dbe shown
shortly, this breakdown is due to the skewness of the mesh in
the trailing edge region and the implementation of the
boundary conditions at the trailing edge. Comparing the lift
and drag coefficients as a function of the smoothing it 1s
important to note that the absolute change 1in Dboth
coefficients is about the same. However, on a percentage
basis, the drag coefficient, which should be zero for inviscid
calculations, is very sensitive to the 1level of smoothing.
For reasonable 1levels of smoothing ( 0-.05) it remains quite
small. The 1lift coefficient, on the other hand, is
insensitive to the amount of smoothing. As stated in the
development of the smoothing, the amount of smoothing has a
great effect on the convergence rate of the multiple-grid
solutions. Figure 3-17 compares the convergence histories for
the solutions of figures 3—15 and 3-16. It is clear that
reasonable levels of smoothing greatly accelerate the rate of
convergence, but beyond a threshold value, the convergence
rate is insensitive to the level of smoothing. In conclusion,
since the artificial viscosity is necessary, further work

should be done to formulate a better smoothing operator.
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One particular detail which remains to be explained is
the total pressure spike at the trailing edge. This spike at
the trailing edge is a localized effect due to skewness of the
O-type mesh in this region. Figure 3-18 shows a blowup of the
mesh in this region. This poor mesh structure is one of the
problems with using an O-type mesh. The skewness in the mesh
causes the breakdown of the solution noted earlier. In
addition to the odd/even decoupling, the maximum solution
residuals for the converged O-mesh solution always occur in
the trailing edge region, giving a second indication of a
breakdown in the formulation. This error can be reduced, if
the mesh in this region is made more orthogonal to the
surface, as shown in figure 3-19 for a 65%17 mesh.
Unfortunately, by improving the orthogonality of the mesh in
this region, the resolution downstream of the trailing edge is

sacrificed.

Another alternative is to switch to a C-type mesh as
shown in figure 3-20. This mesh is a 97*17 C-type mesh with
65 mesh points'along the airfoil (note the grid distribution
along the airfoil surface 1s not exactly the same as the
O-type mesh). The corresponding solution is shown in figure
3-21. By switching to a C-type mesh the spike in total
pressure has been removed. In addition, the odd/even
.decoupling of the solution, common with O-type meshes, no
longer occurs. The maximum residual for the converged C-mesh
solution no longer occurs in the trailing edge region. This
indicates that the formulation is much more stable in this
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region with an orthogonal mesh. Figures 3-22 and 3-23 present
the surface pressure coefficient and total pressure 1loss for
the same vrange of smoothing coefficients as used for the
O-type mesh solutions of figures 3-15 and 3-16. Note that
both the spike in the total pressure and the odd/even
decoupling are not found for the C-type mesh solutions. Even
with no smoothing the solution converged as shown in figures
3-22e and 3-23e. Also note, with zero smoothing both force
coefficients show excellent agreement with the streamfunction
solution values. Figure 3-24 shows the convergence histories
as a function of the level of smoothing for these cases. The
convergence rate 1is once again greatly improved with
smoothing. In addition, comparing C-mesh convergence rates of
figure 3-24 with those for the O-mesh of figure 3-17, shows
that elimination of the odd/even decoupling greatly improves
the rates of convergence. The maximum residual for these
converged C-mesh solutions now occur in the stagnation point
region of the leading edge. This agrees with the observation
of other authors [48]1 who have found that the Lax-Wendroff
scheme is only marginally stable in stagnation regions. There
is one important drawback in switching to C-type meshes.
While these meshes gain in resolution at the trailing edge,
they also require many more points for equivalent resolution
of the airfoil surface since packing along the surface 1leads
to a band of unnecessary points stretching out to the farfield

boundary.
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Each of the above calculations were performed using the
vortex far field characteristic boundary condition. Table 3-2
presents the 1ift and drag coefficients for solutions on a
65%17 O-type mesh with a far field radius ranging from 5 to 50
chords, with and without the far field vortex correction. If
each is compared with the streamfunction solution 1lift
coefficient value of 0.335 it is clear that, while the error
in both cases drop off with increasing radius, by using the
vortex correction the far field boundary may be Dbrought much
closer to the airfoil. This in turn reduces the storage and
work by reducing the number of mesh points required for

equivalent mesh resolution.

Table 4-3: Variation of Force Coefficients with

Location and Type of Far Field Boundary Condition
(Actual values C = 0.335 and C = 0.000) '

| UNIFORM FREESTREAM
| BOUNDARY CONDITION

VORTEX FREESTREAM |
BOUNDARY CONDITION |

I

|

+
RADIUS | c ! c | c ] of |
(CHORDS) | L | D | L | D |
| ————————- Fmmmmmm - fmmm—m - e fommm |
| | l | | |
| 5 | 0.2873 | 0.0030 | 0.3238 | 0.0019 |
| | | | | !
| 10 | 0.3059 | 0.0022 | 0.3266 | 0.0016 |
| | ! | | I
| 20 | 0.3170 | 0.0016 | 0.3276 | 0.0013 |
! | | | [ |
| 30 ] 0.3211 | 0.0013 | 0.3284 | 0.0011 |
I l I | l |
] 50 | 0.3245 | 0.0010 | 0.3289 | 0.0009 |
I ! I I I l
- +
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Returning to the solid wall boundary condition, recall
that the predicted changes were multiplied by a factor of two
(egquation 3.26) with only a vague physical interpretation.
The following example demonstrates the importance of this
operation. Figure 3-25 presents the solution on the 65%17
O-type mesh of figure 3-8 without this operation. Comparing
this solution with that of figure 3-9, it is clear that this
operation has no significant effect on the final solution. It
does, however, greatly improve the rate of convergence of the

solution, as shown in figure 3-26.

The present globai multiple-grid solver has been tested
for several other transonic airfoil flow problems. The global
solutions will be briefly described here and then used later
for comparison to the embedded mesh results of chapter 5. The
second case considered is a NACA0012 airfoil at flow
conditions of M = 0.85 and % =1.0 degree. This is a lifting
case with strong shocks at 85% chord on the upper surface and
70% chord on the lower surface. This case is often chosen as
a test case because the lift is strongly dependent on the
shock location (see for example the GAMM workshop [491). A
good solution then requires a high resolution of the shocks.
Figure 3-27 presents a multiple-grid solution using 3 levels
for the 65%17 mesh of figure 3-28. While both shocks are
apparent, neither shock is very well defined due to the poor
mesh resolution in the shock regions. A global mesh
refinement was then made, resulting in the 129%33 mesh of
figure 3-29. This mesh gives much better mesh resolution in
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the shock regions as shown by the corresponding multiple-grid
solution using 4 levels in figure 3-30. The total pressure
losses across both shock is clearly resolved for the 129%33
global solution. The Mach number, pressure and total pressure
jumps across these shocks are within 0.5 percent of those
predicted by the normal shock relations based on the Mach
number just ahead of the shock. The convergence histories for

the 65*17 and 129%33 solutions are presented in figure 3-31.

A second common test case for code comparisons is the
RAE2822 supercritical airfoil at M = 0.75 and <= 3.0 degrees
C491. The important features for this case are the very rapid
expansion around the leading edge and a strong shock which
occurs at 80% chord on the upper surface. Lerat and Sides
L5001 have published solutions of the Euler equation for this
case using a explicit second order accurate finite-volume
method. Their calculations predict 1ift and drag coefficients
of 1.108 and 0.0424, respectively. A 65%17 mesh for this
airfoil dis shown in figure 3-32 with the corresponding
multiple-grid solution shown in figure 3-33. Performing a
global h/2 mesh refinement results in the 129433 mesh shown in
figure 3-34. A multiple-grid solution with 4 1levels 1is
presented in figure 3-35. Once again the Dbetter grid
resolution of the 129433 mesh results in a much sharper shock.
In addition, as expected the total pressure 1loss in the
leading edge region with the rapid expansion is reduced by a
factor of two with the finer mesh. The surface pressure
coefficient calculated by Lerat and Sides using a 188%24
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C-type mesh with 129 points alone the airfoil has been
included in figures 3-33a and 3-35a. The present calculation
on the 129%33 fine mésh (figure 3-35a) agrees quite well with
their solution. Considering the level of difficultly of this
case, the present fine mesh lift and drag coefficient values
of 1.088 and 0.0431 are also in very good agreement with the
values of 1.108 and 0.0424 calculated by Lerat and Sides
(within 2 percent). The convergence histories for these two

cases are shown in figure 3-36.

The last case té be presented is the Garabedian and Korn
supercritical airfoil [51] with design conditions of M = 0.75
and %= 0.12 degree. Since this airfoil was designed using an
inverse hodograph method the theoretical flow solution at the
design condition is known. The theoretical 1ift coefficient
for this design condition is 0.63. At these conditions the
supersonic region extends over about 60% of the upper surface.
In practice, the shock-free solution for this configuration
has been found to be very sensitive to the 1location of the
sonic 1line and the resolution of the flow in the supersonic
region. Full potential equation solutions by Jameson [523 and
others have shown that a poor resolution of the sonic line
will results in the supersonic region being terminated by a
shock and not the proper shock-free solution. The location
and strength of this shock is directly related to the mesh
resolution used. Jamesoh £521 found that as the mesh was
refined the strength the the shock decreased and that with the
proper grid resolution (in this case a 256%65 O-type mesh) the
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shock could be almost completely eliminated. Figures 3-37 and
3-38 present a 65417 mesh and the corresponding solution using
the present formulation. Comparing the theoretical pressure
distribution with calculated solution in figure 3-38a shows
that the flow is not being properly predicted over a portion
of the supersonic region. This results in a 1lift coefficient
which is 5.8% below the theoretical value of 0.63. The drag
coefficient, which should be zero, is also much higher than
what might be viewed as acceptable for this grid resolution.
One possible explanation for the high drag coefficient is that
a very weak shock is terminating the supersonic region. While
the existence of such a shock can not be verified by the
pressure distribution, due to the poor mesh resolution and
possibly high smearing of such a shock, the rise in the total
pressure loss (figure 3-38b) in this region would agree with
this explanation. A 129%33 global mesh is shown in figure
3-39 with the corresponding multiple-grid solution presented
in figure 3-40. Figure 3-40a shows that the calculated
pressure coefficient is in slightly better agreement with the
theoretical pressure distribution in the supersonic region.
The higher mesh resoclution has reduced the error in the 1lift
coefficient to 3.4% below the correct value. The error in the
drag coefficient has also been reduced by almost a factor of
2. Close inspection of the pressure distribution where the
supersonic region terminates shows what could be the formation
of a weak shock. Based on the improvement in the solution

with this higher mesh resolution, it is resonable to expect
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that an additional mesh refinement would result in a solution
very close to the correct shock-free solution. With such a

refinement the resulting mesh would be of the same resolution

as regquired be Jameson in [521].
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CHAPTER 4
POINTER SYSTEM

The transition from global mesh structures to general
embedded mesh structures introduces a bookkeeping nightmare to
what would appear to be a logical teéhnical extension. The
conventional approach in writing a global mesh solver begins
with the assumption that the solution mesh will have a certain
fixed structure. The solver is then constructed based on this
structure making it an integral part of the code. A typical
example 1is to assume the mesh consists of a rectangular array
of nodes, for which an (i,j) 1labeling of the nodes is
possible. Then by writing the solver in terms of indices i
and j the mesh structure becomes inseparable from the code.
With such an approach, the addition of an embedded mesh to the
grid structure in essence means a new mesh structure has been
defined. This in turn requires development of a new solver.
Obviously this approach cannot be extended to handle general
embedded mesh structures. The key to solving this dilemma is
to separate the definition of the mﬁltiple-grid structure from

the solver.
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A very similar problem is commonly encountered in
general finite element solvers where more than one type of
element, each having a special shape (bar, triangle,
rectangle) and composed of a varying combination of nodes
(3,4,6,8,etc.), are assembled into a global finite element
system to define a given structure. The key, once again, is
to separate the structural definition from the solution
algorithm. For finite element calculations this separation is
done by assigning each node of the structure a node number (i)
and then defining a connectivity array which describes the
elements of the structure. The connectivity array often used
is a sequential 1list of the elements, defining for each
element the element type, nodes belonging to it, and any other
attributes desired. This connectivity array is then used by a
general solver as a guide for the systematic construction of
the system of equations describing the structure. After
solving, the array is then used as a guide for visual display

of the structure and solution.

In many respects the separation of the general embedded
mesh structure from the Euler solver 1is similar to the
separation required in finite element problems. The embedded
mesh structure envisioned would be composed of a combination
of several global coarse mesh levels followed by one or more
embedded regions containing several increasingly finer levels.
The solver must know the location and domain ( or domains,
since there may be several) of each level. in addition the
location and type of physical boundary conditions must be
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defined. The solution is to define a pointer system which
describes the mesh structure in the same way a connectivity
array defines a finite element system. The pointer system
then plays the role of a kind of road map for the solver.
Separation of this structure definition from the Euler
equation algorithm leaves a very general and easy to follow
program. Changes in the grid structure then require a new

pointer system but the solver remains unchanged.

Adopting a pointer system to describe the grid structure
opens the door for many other benefits. Foremost is the
flexibility possible in defining the structure. For
applications implemented on virtual or array processing
machines this flexibiiity means the pointer structure can be
organized to optimize access time, page faulting and
computational speeds. In addition, since the code is not
modified with changes in the grid, adaptive mesh techniques
can be implemented with the addition of new routines which

manipulate the pointer system.

There exists many possible choices for definition of
this pointer system, each with its own advantages and draw
backs. Even the conventional (i,j) indexing for global
calculations can be viewed as a very simple pointer system.
In the discussion which follows, three possible pointer
structures are presented and compared, the last of which was
actually chosen. Before these pointer systems are discussed

it 1is important to consider what information is required by
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the solver.

With the present Ni formulation the solution U and

change dU must be stored once and only oﬁce for each grid
point on the finest mesh in each region of the total domain.
For the full two dimensional Euler equations at least the
following 10 gquantities must be stored for each node:
coordinates x and y, conservation variables g, pU, PV, and
e,and the change in the conservation variables d(g¢), d(pu),
d(gv), and d(e). They are stored in a 10 by N solution matrix

Q defined as,

Q=LCL0Q ] (4.1a)
mn '
where
m = Variable Type (1¢=m<=10) (4.1b)
n = Node Number (1<{=n<=N)

Additional quantities such as cell volumes, projected areas,
temporary variables, etc. could also be stored to reduce
repetitive calculations. At a minimum this implies a Dbase
line storage requirement of 10 real variables per node of the
structure, independent of whether a pointer system is used or

not.

4.1 POSSIBLE POINTER SYSTEMS

A cell pointer matrix must now be defined which points
to the nodes in Q needed for the base solver and coarse mesh

accelerator formulae on each level of the multiple-grid
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structure. From the formulation of the base solver and coarse
mesh accelerator it is clear that the smallest element which
contains all required information for the solvers is the four
node cell for the base solver and modified nine node cell for
the coarse mesh accelerator. The nine node cell is then the
most basic element common to both solvers. In view of the
cell being the most basic element of the grid structure it
follows that the structural definition of the pointer system
should be composed around the cell or some higher structural
grouping of cells. Figure 4-1 shows three possible base
structures from which a global mesh structure could be
composed. In order of decreasing structure or increasing
flexibility they are: a rectangular block of cells, a line of
cells, or simply an individual cell. Assuming the vector
string of node information described above, a pointer system
can be constructed for each base structure pointing to the
nodes in this vector. It now becomes a trade off between the
amount of storage and the degree of flexibility in the type of
structure which can be defined. In the paragraphs which
follow a pointer system using each of the base structures will
be outlined. This 1is followed by a discussion of the
advantages and disadvantages. For comparison, the storége of
each system will be considered in terms of the storage

required per cell of the grid structure.

The first base structure to be considered is the
rectangular block structure. In this case we will consider
each region (embedded or global) of each level as composed of
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one oOr more rectangular blocks of cells. Considering a
typical (N4M) block of cells shown in figure 4-2 with primary
nodes (nodes used by both solvers) shown as so0lid dots and the
additional secondary nodes of the next finer level ( used by
the coarse mesh accelerator) shown as open dots, a two
dimensional integer pointer or an equivalent integer vector
must be created to point to the proper location in Q for each
node of the block. This process is then repeated for each
block of cells wused to define the total multiple-grid
structure. The result is a three dimensional pointer array P,

defined as followed,

P=LCLP ] (4.2a)
~ inm
where
i = Block Number (1<=1<¢=1) (4.2b)
n = Column Number of Block (1<{=1i¢(=2N+1)
m = Row Number of the Block (1<{(=j<{(=2M+1)

HWhere Pinn’(n=odd and m=odd) correspond to the primary nodes
and all others are secondary nodes. In addition a directory
consisting of the starting block number and ending block
number of each lével would also be required. Of course, in
practice to save on storage this pointer array would be cast
in a standard integer vector format, using a directory to list
the starting and ending locations of each block in the vector
along with the block dimension (N*M) and level. The storage
required on a per cell basis, neglecting directory storage,
can be estimated as follows,

Storage/Cell (Integers Pointers per Block)/(Cell per Block)

C(2N+1)(2M+1)1/NM
4 Integers/cell

.
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The second possible base structure is a line of cells as
shown in figure 4-3. 1In this case the multiple-grid structure
would be decomposed into a set of lines of cells. The primary
and secondary nodes are shown as before. Each line can be
defined by a 3*%M\ integer pointer array. Then combining all

lines in a single 3-D array P we have,

P=LP J (4.3a)
inm
where
i = Line Number (1<{=i¢=1) (4.3b)
n = Column Number of Line (1<{(=i(=3)
m = Row Number of the Line (1<{=j(=2M+1)

This pointer can also be converted into an integer vector with
a corresponding directory. The storage required for this
pointer structure is given by,

Storage/Cell Integers Pointers per Line)/(Cells per Line)

(
C3(2M+1)3/M
6 Integers/cell

The last base structure to consider and the most basic
is the cell itself. A typical cell is shown in figure 4-4,
with primary and secondary nodes marked. Here a pointer
veétor P is constructed which contains 9 integer pointers per
cell for every cell on every 1level of the multiple-grid
structure. The cells are grouped by level, in any order on a
given level, with a directory used to define the start and end
of each level in the vector P. A detailed description of the
pointer system will be presented later. It is clear that in
this case the storage is simply
Storage/Cell = Integers Pointers per Cell
=9 Integers/cell
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The approximate storage requirements per cell are
summarized in table 4-1. It is clear that, assuming a given
multiple-grid mesh structure, the rectangular block structure

is the most efficient in terms of storage.

Table 4-1: Comparison of Pointer Systems

BASE STORAGE/CELL STRUCTURAL

STRUCTURE FLEXIBLITY

Block 4 integers Highly Restrictive
Line 6 integers Moderately Restrictive
Cell 9 integers Least restrictive

While storage is an important factor there are many others
which are equally if not more important depending on the
application. Flexibility in +terms of ﬁhe ease 1in which
multiple-grid structures, which include embedded regions, can
be defined is very important. Using this criterion a pointer
system based on the cell structure is the most flexible. Any
number of embedded regions of any shape can easily be defined.
Cells can be stored on any given level in any desired order
allowing optimization of not only the accessing of the
solution vector but also the pointer system. On the other
hand the line and block formats are increasingly less flexible
in this respect. For example, the definition of non-uniform
embedded regions with the block format requires either the
definition of many small blocks or the addition of unnecessary
points to create larger blocks out of the irregular shapes.
This flexibility is also important if the present scheme is to
be extended in the future to adaptive mesh calculations. The
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routines added for adaptive mesh calculation would be
concerned with the addition and removal of cells from the
pointer system to gain the resolution required. The more
flexible the system the simpler the adaptive routines are,
once again favoring the cell format. Two other factors, which
may be important in choosing a pointer system are the amount
of duplication of repetitive calculations and the ability to
vectorize the system. Duplicate calculations, such as
repeated calculations of cell dimensions could be reduced
through the greater structure offered by the block structure,
since it would be possible to construct the solver which
operates on the complete block and not just cell by cell. For
applications where vectorization is important either the line
or block format may allow more vectorization of calculations
than the cell format. This last point, if important, should

be considered in more detail.

In light of the advantages and disadvantages presented,
the cell format was chosen for having the maximum flexibility
in the definition of the multiple-grid structure. The domain
of a given 1level does not need to be simply connected,
topologically restricted, or even defined in any order. It
was also chosen in preparation of future possible adaptive
mesh calculations, an area of growing importance. It must be
kept in mind that this is not necessarily the best solution
for every application, but the concept of a pointer system is
very general and need not be limited to one particular solverv
or application.
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Finally, while the present pointer system has been used
simply as a means of overcoming the complexity of a
multiple-grid structure with embedded mesh regions, it is
possible to extend the pointer system to include any other
information. In terms of a general modular approach not only
mesh embedding but equation embedding may be required. Then
the pointer system should not only define the cell structure
but also the equations to be solved within the cell. In this
manner the pointer system can change with the evolution of a

general modular approach.

4.2 THE 2-D CELL POINTER SYSTEM

The current implementation of the cell pointer uses the
foilowing pointer definition. Nine pointers are required to
define the nine nodes of each cell of every level of the grid
structure (figure 4-4). They are stored in an integer matrix

P defined as

P=LP ] (4.4a)
ij
where
i = Cell Node Number (1<(=i¢(=9) (4.4Db)
j = Cell Number (1<=3¢<=T) A

Note that for the fine mesh cells the injection and
interpolation points (5¢(=i{=9) are set to zero since those
nodes don‘t exist. The value of point 5 is then the “"switch
indicator” as to whether the fine solver or the coarse mesh

accelerator should be applied.
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For embedded mesh calculations nodes must be smoothed on
different 1levels. This can be very efficiently handled by
setting the éign of the corner pointers (1<(=i<=4). If the
node 1is to be smoothed by the cell it is positive, otherwise

it is negative.

Finally there must be some way of knowing which level
the cells belong to. By storing cells of the same level
together (in any order), then only a pointer for the first and
last cell of each level is required. The cell pointer matrix
P combined With a level directory containing these level

pointers completely defines the multiple-grid structure.

In addition to the basic grid structure, the 1location
and type of Dboundary conditions must be defined for the
solver. Boundary conditions are really exceptions to the
general solver and can be problem dependent. Boundary
conditions also tend to require different amounts of
information and quite often access to domains larger than one
cell. For these reasons, they are not included in the cell
pointer matrix since, once defined, we would like this matrix

definition to remain fixed.

At the present time there are two types of Dboundary
pointers. As the need arises new forms can be added. Type 1
is used for solid wall, farfield boundaries, and any other
boundary conditién where pairs of cells are required. For
each boundary node on the finest 1local mesh 1level the
following information is stored in a 3 by K matrix called Bl
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Bl = [ Bl J (4.5a)
ik

where

1 Cell Number of Cell 1 (4.5b)
2 Cell Number of Cell 2
3 Cell Orientation

.
]

N
n

Boundary Point Number

The four possible cell orientations are shown in figure 4-5.
For more than one boundary condition defined by this pointer
all points of the same type are stored together alone with a

starting and ending pointer for each boundary condition.

The second boundary pointer, type 2, is for boundary
conditions that need only a cell side or string of 3 nodes as
shown in fig 4-6. The embedded interface formulation is the
only condition that uses this at this time. The definition of

this pointer matrix B2 follows,

B2 = [ B2 ] (4.6a)
ij
where
i = 1 For Node Number of Point 1 (4.6Db)
2 For Node Number of Point 2
3 For Node Number of Point 3
j = Number of Interface Interpolation Point

This pointer is used to define the solution interpolation for
point 2 along the embedded mesh interface before the embedded
sweep and to zero the interface corrections at points 1,2, and
3 after the sweep. In B2 all sides on a given level are
stored together from which a starting and ending pointer for
each level is defined.
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Clearly the pointer scheme described above provides a
very flexible approach for dealing with complex grid
structures. With an optimal grid structure the solution
storage and computer time can be minimized. The price which
must be paid for this flexibility appears in the total storage
required and organization of the data base for vector computer
architectures. While the solution storage is significantly
reduced, the pointer system must also be stored. To
illustrate the storage requirements let’s compare the
following two dimensional cases. In the first case we have a
N*N global mesh with an embedded mesh (h/2) over one quarter
of the domain as shown in figure 4-7a. For the second case we
will consider a standard non-embedded mesh calculafion where a
global h/2 mesh refinement has been used to gain the same
resolution as the first case, figure 4-7b. Storage of the
- solution in both cases requires storage of 10 real variables
for each node of the finest mesh in each region (10 words(32
bit)/point); (10)(1.75)*N*N words for the first case and
(10)(4)*N#N in the second. Neglecting the boundary pointers,
the pointer system requires 9 integer variables for each cell
of each level (9 half-words/cell or 4.5 words(32 bit)/cell),
assuming two grid 1levels, the total pointer storage for the
embedded case is (4.5)(2)(N-1)(N-1) words. A summary of the
storage requirements for the two cases is presented in table
4-2. Comparing the total storage there is a reduction by
using the pointer system but this reduction is less than might

be expected if the pointers were not required. However, if
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less than one quarter of the region is covered by an embedded
mesh or if two embedded meshes are used, or more than 10
variables are stored at each node point the ratios will change

in favor of the present approach.

Table 4-2: Storage Requirements for 2-D Example

GLOBAL EMBEDDED
H/2 MESH H/2 MESH
2 2
NO. MESH POINTS 4N 1.75N
2 2
SOLUTION STORAGE 40N Words 17.5N Words
2
POINTER STORAGE 0 Words 9(N-1) Words
2 2
TOTAL STORAGE 40N Words 26.5N -18N+1 Words

4.3 EXTENSION TO 3-D

All the problems of mésh resolution , storage, and
computation times confronted in 2-D calculations tend to be
amplified in the extension to three dimensions. Presently the
limiting problems are large storage, long computing times and
the ability to treat complex geometries. Foftunately, even
though the problems are more severe, the payoff in adopting an
embedded multiple-grid structure also increases dramatically.
To illustrate the projected benefits of adopting a 3-D
extension of the current cell based pointer system consider
the corresponding base and coarse mesh accelerator cells

(figure 4-8) for a three-dimensional version of Ni’s scheme.
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As shown in figure 4-8b the number of integer pointers
required per cell is three times that of the 2-D model. Both
solvers use the 8 primary nodes (shown as solid dots), while
the coarse mesh accelerator also requires the 19 secondary
nodes (open nodes 9-27). Following the 2-D pointer system, we

now define the cell pointer P as

P=LP ] (4.7a)
ij
where .
i = Cell Node Number (1<=i(=27) (4.7b)
j = Cell Number (1¢(=j<¢=d)

The cells are grouped in P by level in any order within the
level and a 1level directory is created. 1In addition the
corresponding boundary condition pointers can be constructed

as required.

Now consider the storage requirements for two example
cases. Beginning with a NAN*N global h mesh, consider a
global h/2 mesh refinement using the standard global solver
and, secondly, a embedded h/2 mesh refinement placed over 1/8
of the cube volume. The two mesh structures are illustrated
in figure 4-9 with the corresponding storage requirements
summarized in table 4-3 (columns 2 and 3). In both cases it
has been assumed that there are two mesh levels used and the
storage associated with the boundary condition pointers have
been neglected. Note that the for 3-D solutions the baseline
requirement for storage of the solution quantities at each
node increases from 10 for the 2-D case to 13 due to the
addition 6f the third coordinate z, cohservation variable pw,
and it’'s change dgfw). It is clear that for properly defined
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embedded mesh regions there is a great potential for saving on
storage by wusing the pointer system, even with the larger
amount of pointer storage required. One reason for the large
difference over the 2-D example 1is that in 3-D a global
halving of the mesh results in a factor of 8 increase in the
number of total nodes. It is important to note when trying to
extrapolate this savings that the pointer storage is based on
the assumption of half-word storage for integers. This places
an upper limit on the total number of nodes at 32,768, the
largest integer described by a half-word. Physically this
corresponds to the number of nodes in a cube of mesh .of
dimensions 32%32%32. For 1larger systems of nodes full-word
integers must be used which would double the amount of storage
required for the pointer system. The fourth column in table

4-3 shows the storage for full-word integers.

Table 4-3: Storage Requirements for 3-D Example

GLOBAL EMBEDDED FULL-WORD
H/2 MESH H/2 MESH INTEGERS
3 3 3
NO. MESH POINTS 8N 1.875N 1.875N
3 3 3
SOLUTION STORAGE 104N 24.375N 24.375N
(words)
- 3 3
POINTER STORAGE 0 27(N-1) 54 (N-1)
(words)
3 3 2 3 2
TOTAL STORAGE 104N 51.375N-81N 78.375N-162N
(words)
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CHAPTER 5

GENERAL EMBEDDED MESH FORMULATION

The ultimate objective of this research is the
development of a general modular approach for solving complex
flow problems. The proposed method of implementing such a
modular approach is to cast the problem in terms of a general
multiple grid structure, where local flow features are
resolved through embedded mesh regions and embedded equation
regions with higher approximation of the governing equations.
Beginning with Ni‘s multiple-grid method for solution of the
Euler equations as described in chapter 3, this solver will
now be extended to general embedded mesh structures. The mesh
structure considered is constructed through the combination of
a coarse global mesh system, of one or more levels, and one or
more local embedded mesh systems. The embedded mesh
structures are really a continuation of the global mesh
structure in local subdomains. FEach additional level in the
subdomain will be of the same grid topology as the coarse
mesh, but of arbitrary shape and size as required to resolve
the features of interest. The resulping solver for such

general mesh structures represents the first step toward a
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general modular approach.

The easiest way to illustrate the extension of. the
solver to general mesh structures is to follow the solver
through a multiple-grid cycle for a simple model embedded grid
structure. By following this process it will become clear
what special problems must be considered for a proper
formulation. Consider the addition of a local embedded mesh
of half the mesh spacing h/2 into the global mesh as shown in
figure 5-1. After renumbering the mesh levels, h/2 being
level 1, h being level 2, and so on, it is noted that levél 2
is now a coarse mesh within the embedded region and a fine
mesh outside this region. It is desired to perform a control
volume flux balance for all cells on the finest mesh in each
region of the total domain in order that the fine mesh
accuracy be obtained. However, it is also desired to couple
the solution of the discrete equations throughout the total
domain in order to achieve rapid convergence. The solution
begins with a base solver sweep on level 1, which consists of
only the embedded mesh region. Steps 1 to 3 of the basic
solver are done for all cells in level 1. At this point the
solution changes at all 1level 1 points internal to the
embedded/global interface boundary are consistent with the
changes for a standard Lax-Wendroff time step with the fine
mesh accuracy. However, the changes for those points along
the interface are incomplete since they lack the distributionb
of information from outside the interface. It is clear that a
special treatment of the interface boundary points will be
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required for a proper formulation of the solver. Noting this
as a problem which will be addressed later, the base solver
sweep is finished by updating the solution at all 1level 1
points. Proceeding to level 2, for those cells outside the
embedded mesh region the base solver is used. For those cells
within the embedded region the coarse mesh accelerator is
used. Once again the treatment of the embedded/global
interface points comes into question. In summary, on level 2
the solver must perform two functions, within the embedded
mesh region it accelerates the convergence of the solution
while outside this region it performs the standard base solver
operations. For 1levels greater than level 2 it follows that
the coarse mesh accelerator would be used everywhere. Beyond
the basic framework just described, two special problems must
be considered. One is the treatment of the boundary points
already mentioned. In addition to the multiple-grid
algorithm, the formulation of the solver at these points
provides coupling of the embedded and global mesh solutions.
The second‘question which arises is how the solver can be
constructed to be independent of changes in the location,
size, and shape of the embedded region. Key to this problem
is how to determine whether the base solver, coarse mesh
accelerator, and special interface formulation is required and
what points are involved. With the solution of these two
problems, the extension of the present approach to more than
one embedded region or a progression of embedded meshes in a

region is straight forward.

L]
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Points at the boundary must be carefully treated in
order to maintain global conservation and computational
stability. Consider the embedded mesh/globél mesh interface
shown in figure 5-2. A choice must be made as to whether
points 1,6,2 are to be considered as members of the global
grid or the embedded grid. That is, it must be decided as to
whether the solution of the equations at these points is to be
obtained to global or embedded grid accuracy. For the current
work, the approach has been adopted that the boundary points
are members of the global grid. The solution for points 1 and
2 is obtained on the level 2 sweep described above. Values at
point 6, which are needed to compute the level 1 sweep, are
obtained by linear interpolation from points 1 and 2. Linear
interpolation is consistent with the trapezoidal integration

used for the flux balances.

Treatment of the boundary cells proceeds as follows.
Prior to the solution sweep on level 1, points such as 6 are
initialized by linear interpolation from points 1 and 2.
Steps 1 through 3 of the base solver are performed for all
cells on level 1 including those bounded by points 1,6,2.
Prior to the update sweep, all values of d4U at boundary points
between the embedded and global mesh are reset to zero (points
1,6,2). At this point the first step in the interface
formulation is performed. For each of the level 2 cells along
the embedded interface (such as the right hand part of figure
5-2) an order h/2 accurate flux balance is computed usihd all
nine points 'of figure 5-2. This flux balance is defined as
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follows,
2h h
(DU ) = (5.1a)
5
.5(Dt/DV) { C(F+F) (y-y)-(G+G) (x-x)I+L(F+F) (y-y) -(G+G) (x-x) ]
16 61 16 61 6 2 26 6 2 26
-L(F+F) (y-y) - (G+G) (x-x)I-L(F+F) (y-y) - (G+G) (x-x) ]
38 38 38 38 84 8 4 84 8 4
+L(G+G) (x-x)-(F+F) (y-y) I4+L(G+G) (x-x) - (F+F) (y-y) 1
19 91 19 91 94 49 94 49
-L(G+G) (x-X) - (F+F) (y-y)1-L(G+G) (x-x) - (F+F) (y-y) 13}
27 7 2 27 7 2 73 37 73 37
where
DV = -0.5C (x -x )(y -y ) - (x -x )y -y ) 1 (5.1b)
5 1 9 6 9 6 5 1

-0.5C (x -x )(y -y ) (x -x )y -y ) 3
7 6 5 2 5 2 7 6

-0.5C (x -x )iy -y ) (x -x My -y ) 1
3 5 8 7 8 7 3 5

-0.5C (x -x )(y -y ) (x -x )(y -y ) 3
8 9 4 5 4 5 8 9

This flux balance is then distributed to the level 2 interface
points (such as points 1 and 2) using the distribution formula
of equation 3.16. After the flux balance and distribution has
been performed for all such cells the changes dU at these
points ( points 1 and 2 ) is saved in temporary storage for
use in the 1level 2 sweep. Since the solution changes at
points 1 and 2 are no longer zero, they are reset to zero
completing the first step of the interface formulation. The
level 1 sweep is then completed with the wupdating of the
solution. As a result, no change of U has taken place at the

boundary points.
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After deletion of every other point on the embedded
mesh, the 1level 2 solution outlined earlier proceeds except
for boundary cells as shown in figure 5-2. The injected value
from the fine mesh is wused for coarse mesh accelerator
updating of interior points such as 3 and 4. However the
contribution to interface points 1 and 2 is determined by step
2 of the interface formulation rather than a coarse mesh
distribution of the transferred change. Step 2 of the
interface formulation is simply to recall the special changes
saved in step 1 during the level 1 sweep. These distributed
changes are added to the change at interface points 1 and 2.
The net result of the two steps of the interface formulation
is that an order h/2 flux balance has been performed for the
level 2 cell using the solution at all nine points at the same
time level. In fact, if the coarse mesh accelerator is
switched off this formulation is essentially a patching method
for coupling the embedded and global solutions. For all cells
of level 2 outside the embedded region the standard base
solver is used. This includes distribution to the 1level 2
interface points from outside the embedded mesh region. With
completion of the level 2 sweep the change dU is interpolated
back to the fine mesh and the solution is updated. For the
present model problem of figure 5-1 all coarser levels use

standard coarse mesh accelerator.

There remain two areas of the present formulation which
must be clarified, the smoothing formulation and the transfer
operator formulation near the interface. First recall that
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the smoothing operator is only applied once for each point on
the fine mesh for a global multiple-grid solver. Then since
the present embedded mesh approach assumes that the interface
points belong to the global mesh it is clear that the
interface points should be smoothed on the global solver
sweep. Therefore for the level 2 sweep smoothing is added
into the distribution formula for points 1,2. This is also
the only way the interface points can be smoothed normal to
the boundary since on level 1 no information is known outside
the embedded region. All other points are smoothed' only on

the finest level in each region.

The formulation of the transfer operator along the
boundary presents a slightly different problem. If éimple
injection (eqn 3.9) is used no special operation 1is required
for transfer of the change in cells along the boundary.
However if a distribution type transfer operator (eqn. 3.13
plus 3.15) is used the solution changes at points 1 and 2 are
required. Unfortunately since these points are updated on the
level 2 sweep, they are not known at the time of transfer.
The present approach has been to simply use the changes at
point 5 (the cell center) in place of the unknown values at
points 1 and 2 in the transfer operations. Essentially this
approach results in a transfer operator which is somewhere
between simple injection and a distribution type transfer
operator but which is no worse than simple injection. Since
this change is only used by the coarse mesh accelerator it has
no effect on the 1level of approximation of the scheme,
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although it may effect the rate of convergence.

The extension of the above procedure to multiple

embedded domains and embedded regions with more than one level
follows directly. The solution cycle always begins on the
finest mesh. Under the above described formulation, the
boundary of a h/4 mesh embedded in a h/2 mesh should be at
least a distance h from the boundary of the h and h/2 mesh.
Some changes in the formulation could remove this restriction.
However, this is not an important restriction since the
trunéation error near an interface will be of the coarser h

level order anyway.

Finally in order to implement the present embedded mesh
formulation for general embedded mesh structures the solver
was written in terms of the pointer system described in the
previous chapter. HWritten in terms of this pointer system the
definition of the grid structure 1is completely independent
from the solver. The pointers for each cell completely define
the operations which should be performed (i.e. base solver,
coarse mesh accelerator, which nodes to smooth, etc.). The
interface boundary pointer, also described in chapter 4,
defines the location and orientation of internal mesh

boundaries where the interface formulation must be applied.

5.1 SOLUTIONS WITH THE EMBEDDED MESH FORMULATION

The embedded mesh extension to Ni‘s multiple-grid method
as presented in the preceding section provides a very flexible
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structure in which resolution of local flow detail is possible
while minimizing the storage and work required. In general
the addition of a local embedded h/2 level mesh region results
in wvery 1little change in the numbeerf multiple-grid cycles
over the solution on the h global mesh alone. The price for
this higher resolution then only appears in the additional
work performed within the embedded mesh. The following 2-D
airfoil solutions demonstrate the performance and flexibility
of the present formulation. Each of these cases has special
flow details which must be resolved for a proper solution.
They are often chosen for code comparisons ( for example the
first two were part of the GAMM workshop [49]). In each of
the following solutions the far field vortex correction has
been used with a mesh far field radius of 5 chords. Each of
the following embedded mesh structures were created by first
generating a global mesh and then removing the fine mesh cells
in the global region. This mesh generation approach was used
for the following two reasons. First, it provides the
corresponding global fine mesh which can be run with basic
multiple grid solver for accuracy comparisons. Secondly this
approach required the least amount of mesh generator
development. For production codes for wuse in design
applications a much better approach to generation of such
general mesh structure would be the formulation an interactive
mesh generation routine. As envisioned the wuser would
generate a coarse global mesh-and then interactively define

regions of desired mesh refinement.
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To demonstrate the above embedded mesh formulation
consider the NACA0012 test case of figures 3-13. Beginning
with the global 65417 mesh of figure 3-8, we now include
embedded h/2 meshes around the leading and trailing edges of
equal density to a 129433 mesh as shown in figure 5-3. Note
that since the embedded mesh was generated from the 129433
mesh of figure 3-12 the grid resolution and node locations in
the embedded region are the same. Using the embedded mesh
formulation presented above with a total of 4 multiple-grid
levels produced the solution shown in figure 5-4. Comparing
this solution with the 129433 and 65%17 global solutions
(figures 3-10 and 3-13) shows that the embedded leading and
trailing edge regions have resolved the séme flow detail as
the global 129433 mesh (fig. 3-12). Total pressure loss for
this case is generated by the smoothing of the rapid expansion
around the leading edge and in the trailing edge region by the
skewness of the mesh as discussed in chapter 3. Comparing the
total pressure loss for the 129433 mesh (fig. 3-13b) and the
embedded mesh (fig. 5-4b) shows that the embedded mesh
regions provide the same accuracy as the global mesh solution.
The total pressure contour plots presented in figures 3-13d
and 5-4d show that this is also true over the general region
around the airfoil. It is important to note that there is no
generation of total pressure 1losses at the embedded/global
mesh interface boundaries as shown by figure 5-4d. Since the
total pressure loss is very sensitive to errors in the solver

formulation, this is a good indication that the interface

- 115 -



GENERAL EMBEDDED MESH FORMULATION

formulation is correct. A calculated 1lift coefficient for the
embedded mesh solution of 0.331 is almost exactly the same as

the global 129*%33 mesh result.

The residuals presented for embedded mesh solutions are
the average of the absolute value of d(fu)/Dt for all points
in the domain after the global level sweep. The global level
was chosen for evaluation of the residual because this level
includes all points in the domain. The spectral radius for
all other levels have been found to be the same. Figure 5-5
presents the residual as defined above after each of the of
the four 1levels of the embedded mesh solution. It is clear
from this figure that while the absolute levels vary somewhat,
the rates of convergence are the same. Figure 5-6 compares
the embedded mesh residual for the global 1level with the
convergence histories of global 129433 solution and the global
65%17 solution. Note that the convergence rate is almost the
same as the 65%x17 global solution and twice as fast as the
global 129433 solution. Thus, we have gained the 129433 mesh
resolution with a convergence rate oh the order of the 65%17
global solution. Since the total number of mesh points is
much 1less than the number of global 129433 mesh points, the

work per cycle is also significantly reduced.

To illustrate the benefit of continued mesh refinement
consider the NACA0012 embedded mesh structure of figure 5-3
but now include a second embedded h/4 mesh in the leading edge

region as shown in figure 5-7. The solution for this double
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embedded region is shown in figure 5-8. Table 5-1 compares
the force coefficients for the 33%17 global mesh, 129%*33
global mesh, single embedded mesh, and doubled embedded mesh
solutions. As expected the higher resolution further reduced
the total pressure loss and shows an improvement in the force
coefficients. The convergence history on the global h mesh is
similar to the previous embedded mesh case, with no 1loss in
the rate of convergence with the addition of the new region
embedded region as shown in figure 5-9.
Table 5-1: Comparison of Force Coefficients for

NACA0012 Airfoil Using Different Mesh Structures
(M = 0.63 and angle of attack of 2.0 degrees)

MESH _ Cc C
STRUCTURE L D
Global Coarse (33%17) 0.326 0.0019
(figure 3-10)

Embedded 0.331 0.0011
(figure 5-4)

Global Fine (129%33) 0.328 0.0009
(figure 3-13)

Double Embedded 0.334 0.0008
(figure 5-7)

The second case considered is a NACA0012 airfoil at flow
conditions of M = 0.85 and %= 1.0 deg.. This is a lifting
case with strong shocks at 85% chord on the upper surface and
70% chord on ‘the lower surface. The lift in this case is a
strong function of the shock 1location making good shock
resolution very important. The 65%17 global mesh and

corresponding solution are shown in figures 3-27 and 3-30.
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While both shocks are apparent in fig. 3-27 neither shock is
very well defined due to the poor mesh resolution in the shock
regions. Figure 5-10 shows the corresponding embedded mesh
used for this case where four embedded regions have been added
to resolve the leading and trailing edges and the two shock
regions. Comparing the embedded mesh solution with 4 mesh
levels as shown in figure 5-11 with the 65%17 global solution
shows much better resolution of the two shocks and a reduction
in the surface total pressure 1losses which occur in the
expansion region around the leading edge. The embedded mesh
solution also agrees very well with the 129433 global solution
of figure 3-30. Note in this example that the upper surface
shock wave crosses the boundary of the embedded mesh region.
Other than local loss of resolution (fig 5-11lc and d) no
difficulties are encountered. The convergence histories in
terms of multiple-grid cycles for these three cases are
compared 1in figure 5-12. Once again the embedded mesh
solution provides the fine mesh resolution with a 65%17 global

mesh convergence rate.

The next test case to Dbe shown is the RAE2822
supercritical airfoil [493 at M = 0.75 and == 3.0 deg.. At
these conditions there is a very rapid\ expansion around the
leading edge and also a strong shock at 80% chord on the upper
surface. The embedded mesh used is presented in fig. 5-13
using embedded regions around the leading and trailing edges
and in the shock region. The corresponding embedded mesh
solution is shown in fig. 5-14. Comparing this solution with
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the 129433 global mesh of figure 3-35 shown good resolution of
both the 1leading edge and shock regions. The convergence

rates for a global 65%17 mesh, global 129433 mesh and the

embedded mesh calculations are shown in fig. 5-15.

The final case to be presented is the Garabedian and
Korn supercritical airfoil £[513 with a design condition of
M =0.75 and ¢=0.12 deg. and a theoretical 1ift coefficient
of 0.63. At design conditions the supersonic region extends
over about 60% of the upper surface. The solution in this
case is very sensitive to the location of the sonic line in
the flow. The embedded mesh used for this case 1is shown in
fig. 5-16. The corresponding embedded mesh solution is shown
in fig. 5-17 with a lift coefficient of 0.607. Comparing the
embedded mesh solution of figure 5-17 with the global 129433
mesh solution of figure 3-40 clearly shows that the embedded
meshes have resolved the flow features in the leading and
trailing edge regions. This is also confirmed by the 1lift
coefficient agreement between the two cases. Note however,
that the drag coefficient for the embedded mesh solution
(0.0033) is not the same as the 129433 global mesh solution
but falls midway between the valués of the 65*%17 mesh (0.0042)
and the 129%33 mesh (0.0022) solutions. This poo? agreement
with the globally refined mesh is due to the fact that a
majority of the supersonic region is being resolved with the
global 65417 mesh resolution, giving a much poorer resolution
of the sonic 1line. The rise in total pressure error at the
end of supersonic region (figure 5-17), which is similar to
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that of the 65%17 mesh solution (figure 3-38b), is also due to
the poor resolution of the sonic line. This total pressure
error rise tendé to suggest the formation of a very weak
shock. The convergence histories the convergence histories
for a global 65%17, global 129%33, and embedded mesh solutions

are presented in figure 5-18.
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CHAPTER 6
CONCLUSIONS

This work represents the first step in the development
of a general modular approach to solving complex flow
problems. In the current approach, the flow problem has been
viewed in terms of a general multiple-grid structure
consisting of a global mesh combined with one or more embedded
mesh regions which provide local mesh refinement to resolve
important flow features. Ni’s method [1431, a Lax-Wendroff
type time marching scheme for multiple-grid solutions of the
Euler Equations, has been extended to the solution of flows
with general embedded mesh structures. While the present
formulation uses a Lax-Wendroff type time marching scheme, the
multiple-grid structure 1is a much more fundamental concept
which need not be 1limited to this scheme. Adopting a
multiple-grid formulation for embedded mesh calculations
yields several important advantages over a simple patching
approach. First, the coupling of the global and embedded mesh
solutions takes place over the entire embedded mesh domain,
rather than simply at the embedded mesh boundaries, resulting

in accelerated convergence to steady state. Second, the
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multiple grid structure provides a systematic way of

describing general eﬁbedded mesh structures.

The main contributions of the present thesis are the
following:

* Introduction of a pointer system for description of
general embedded mesh structures.

* Formulation of a consistent treatment for embedded
mesh regions in a multiple-grid formulation.

* Demonstration of the improved performance of the
embedded mesh formulation.

* Improvements to the basic Ni scheme in the following
areas:

- Implementation of boundary conditions in
characteristic form.

- Development of a vortex far field boundary
formulation for lifting airfoils.

- Development of an improved transfer operator for
the coarse mesh accelerator.

These will be summarized in the following paragraphs together

with recommendations for future research.

One of the major problems in the formulation of a solver
for general embedded mesh structures is the organization of
the computational data base, comprised of the 1location and
flow solution at node points. For conventional global solvers
this data base organization is an integral part of the solver
formulation, with the solver being wgitten for a particular
grid structure. While in principle this approach could be
extended to embedded mesh calculations, this would result in a
solver which must be rewritten for each new embedded mesh
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structure. This thesis presenls a much simpler and more
flexible approach to this problem by constructing a pointer
system which defines the organization of the computational
data base for general embedded mesh structures. A general
solver is then written in terms of this pointer system, making
the solver independent from the organization of the grid

structure.

Several different pointer system formulations have been
considered, each constructed using a different base element
(block of cells, line of cells, or single cell). Each pointer
system has Dboth advantages and drawbacks in terms of the
storage required, flexibility in definition of grid structures
and flexibility in the solver formulation. The pointer system
chosen here uses the cell as the base element. Since the cell
is the most fundamental element of general grid structures
this pointer system provides the greatest flexibility in the
type of grid structures which can be defined, allowing
irregular embedded mesh regions, any number of embedded
regions and multiple embedded regions. It is quiﬁe possible
that for certain applications, such as vectorized algorithms,
another pointer formulation might be more desirable. The
addition of a pointer system does add to the total storage
required per grid point of the system but for a proper
distribution of mesh points, made possible by the general
multiple-grid structure, the total number of grid points can
now be minimized. This can then result 1in a significant
reduction in storage over that réquired for an equivalent
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global grid.

After adopting the pointer system, the extension of the
global Ni scheme to embedded mesh structures is very straight
forward. Embedded regions are viewed simply as a continuation
of the global mesh in local regions. Of particular importance
in this extension is the proper formulation of the algorithm
at embedded/global interface boundaries. The formulation must
both satisfy the conservation laws across these boundaries as
well as resulting in a stable formulation. In the present
formulation, points along these boundaries are viewed as part
of the global mesh and therefore updated on the global mesh
sweep. Conservation is satisfied across these boundaries by
assuming a linear variation of the conservation variables
along the global cell faces. This 1is consistent with the
discrete finite volume approximation of the governing

equations for any cell.

This embedded multiple-grid formulation has been
demonstrated with the solution of the two-dimensional Euler
equation for transonic flow over airfoils. In the cases
presented, embedded mesh regions were used to resolve the flow
features in the region of shocks, the leading edge stagnation
point, and the trailing edge. Each of these cases used more
than one embedded mesh region, with the 1location, size and
shape of these regions being chosen to resolve the features of
importance (see figures 5-3, 5-10, 5-13, and 5-16). The

embedded regions need not be rectangular (in computational
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space) as shown by figures 5-10 and 5-13. Multiple-embedded
mesh regions are no more difficult to solve than a single
embedded region, as demonstrated by the double embedded mesh
used in the 1leading edge region of figure 5-7. These cases
clearly demonstrate the great flexibility possible 1in the
definition of general embedded mesh grid structures. For each
case, the embedded mesh solution has been compared with the
solutions for a global coarse mesh (the coarse global mesh
without any embedded regions) and a global mesh refinement
(the embedded mesh resolution over the complete domain). The
algorithm formulation at embedded mesh boundaries does not
generate errors in the flow (see figures 5-4 and 5-14).
‘Comparing the embedded mesh solutions with the corresponding
global refined mesh solutions demonstrates that the important
flow features within the embedded mesh regions are accurately
resolved (figures 3-13 and 5-4). This is also confirmed by
the good force coefficient agreement between embedded and
globally refined solutions. Even when a shock penetrates the
embedded mesh boundary the only noticeable effect 1is the
larger smearing of the shock outside the embedded mesh due to
the lower mesh resolution (see figure 5-14). Comparing the
convergence rates for global coarse, embedded, and global fine
solutions, the embedded mesh solutions have been found to
achieve the same convergence rates as the global coarse mesh
solutions, which are much better than the global fine mesh
solutions (see figures 5-6 and 5-15). 1In addition, since the

computational work per multiple-grid cycle is proportional to
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the number of mesh points used, the embedded mesh solutions
require far less work per cycle than the equivalent fine mesh
solution. Combining both the reduction in cycles required to
converge with the lower computational work per cycle and a
great reduction in computational work is possible by using
embedded mesh structures. For the cases presented, the
embedded mesh solutions have generally been 3-4 times faster

than the equivalent global fine mesh solutions.

In summary the following conclusions may be made about

the present embedded mesh formulation:

* Embedded mesh solutions always achieved the
convergence rate of the coarse global grid, resulting
in a significant reduction in work (a factor of 3-4
over the equivalent global fine mesh solution).

4 The embedded mesh formulation in combination with the
pointer system allows great flexibility in the
definition of embedded mesh structures, including the
capability of:

- Any number of embedded regions.
- Embedded regions of arbitrary shape and size.
- Multiple embedded regions.

* Always achieved the virtually same accuracy as the
globally refined mesh.

In addition to the formulation of a general embedded
mesh approach to solving flow problems, the basic Ni’s scheme
for global multiple-grid solutions of the Euler equation has
been studied and improved in the areas of boundary conditions
and residual transfers. 0f particular dimportance in the
formulation of this scheme is the implementation of boundary

- 126 -



CONCLUSIONS

conditions. Unlike cell centered finite volume methods, the
present scheme requires the calculation of the density and
velocities in addition to the pressure along solid wall
boundaries. A characteristic boundary condition formulation
for solid wall boundaries has been employed to provide the
additional information. As shown by the cases studied, this
boundary formulation has been found to be quite accurate. The
farfield boundary conditions are also implemented through a
characteristic boundary condition formulation. By modeling
the farfield flow in terms of the superposition of uniform
flow with a compressible point vortex, whose strength is
determined by the 1ift on the airfoil, the location of the
farfield boundary can be placed much closer to the airfoil
than that permitted by commonly used uniform flow boundary
conditions (see table 4-3). This represents a large savings
in the number of mesh points required for equivalent

resclution of the flow about lifting airfoils.

Proper formulation of the residual transfer operator for
multiple-grid solutions has been shown to be very important
for highly stretched meshes. For moderately stretched grids
simple injection works quite well but as the stretching
increases the convergence rate for the solver deteriorates and
finally fails altogether. Algebraic and area weighting
transfer operators have beén found to also fail for highly
stretched meshes. A transfer operator which is based on the
distribution formula of the base solver has been presented
which corrects this problem. This distribution type transfer
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operator has been found to work where all other formulations

have failed (see table 3-1).

The effects of artificial smoothing on the soclution of
two-dimensional airfoils has also been studied. While the
addition of smoothing causes the generation of total pressure
errors in high gradient regions of the flow, as well as errors
in the drag coefficient, it has 1little effect on the
calculated 1lift coefficient (figures 3-15 and 3-22). For
reasonable levels of smoothing these errors can be kept to an
acceptable level. While required for transonic flows,
smoothing has also been shown to greatly improve the
convergence rate of the multiple-grid solver for all types of
flows. For subsonic flows on O-type meshes smoothing is
always required due to the mesh singularity at the trailing

edge.

Based on the present results it is clear that there are
many areas where future work is possible. In terms of the
basic multiple-érid solver these areas are the following.
First, the present smoothing formulation is only spatially
first order accurate. Since smoothing is required and the
algorithm itself is second order, a second order smoothing
should be formulated which is consistent with the accuracy of
the Ni algorithm. A switch to a first order smoothing (such
as the present) could then be made in the region of shocks
where the higher smoothing is required for stability. Such a

duel smoothing formulation would make the algorithm second
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order over a majority of the flow and therefore reduce the
total pressure errors generated by the smoothing. Second,
while some progress has Dbeen made in understanding how the
coarse mesh accelerator works, there remains a great deal to
learn. An in-depth study of the coarse mesh acceleration
process would be helpful in formulation of special boundary
conditions for the coarser levels as well as improvements in
the basic accelerator formulation. A third area where some
work has already been done is in the choice of the base solver
used. Johnson L[39] has demonstrated that the coarse mesh
accelerator may be used with other base solvers. An in-depth
study of these and other possible solvers should be made at
this point to determine which are best for different
applications. In particular while the present embedded mesh
formulation is considered to be relatively independent of the
base solver formulation, the choice of base solver may require
different interface formulations from those given here. It is
therefore important at this point to decide which solvers are
the most promising Dbefore this approach progresses much

farther.

The embedded mesh formulation in combination with the
pointer system presented here opens the door to a whole range
of future developments. These 1include the addition of
embedded viscous regions as formulated in Appendix D, leading
to an embedded equation approach as well as a embedded mesh
approach. Viewing the multiple-grid structure in terms of the
pointer system léads directly to adaptive solution problems
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where routines are developed to manipulate the pointer
structure during the solution process to add and remove
embedded mesh regions as required. Since the mesh structure
is completely defined by the pointer system, the solver
algorithm would remain unchanged with changes in the grid.
This adaptive mesh approach is currently being developed by
Dannenhoffer and Baron [53]1. The next step toward a general
modular approach to sclving complex flow problems will require
the extension of the present embedded mesh approach to include
embedded mesh regions where the embedded mesh is of different
topology from the global mesh. This would allow the
generation of simple, 1locally body fitted meshes around
complex Dbodies. One possibility for such an approach is to
consider patching meshes of-different topologies together on
the global 1level resulting in a single global mesh. The
present embedded mesh procedure could then be used to resolve
important flow features on such a mesh. Norton, Thompkins and
Haimes [54] have demonstrated such a technique for turbine

cascade calculations without embedded meshes.
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APPENDIX A

NON-DIMENSIONALIZATION OF THE GOVERNING EQUATIONS

The two-dimensional Navier-Stokes equations for unsteady
compressible laminar flow may be expressed in conservation

form for a cartesian coordinate system as

U + F +G +R +8 =0 (A.la)
t X y X y
where
[ | pu | | PV |
U= 1] pu | F =1 puu + p | G = | puv | (A.1Db)

| £v | | puv | | pvv + p |

| e | | puH | | pVvH |
| O |
|z I
| XX |

R=1| =< |
| Xy I
| T utT v-(&/(Y-1)Pr) T |
| b® 4 ¥x x |
| O |
e |
| yx |
S =1 T |

| yy |
| T v+ T u-/(Y-1)Pr) T |
| Yy Xy y |
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and where

- = -uC (4/3)u - (2/3)v 3
XX x y

~r = -4LC (4/3)v - (2/3)u 1 (A.1lc)
yYy y X

v =T =-muLu +v 1
Xy yx y X

in terms of density §£, cartesian (x,y) velocity components
(u,v), temperature T, total internal energy per unit volume e,
viscosity coefficient M, and Prandtl number Pr. The pressure

p and total enthalpy H are then defined for a perfect gas as

P (Y- 1L e - 0.5pP(C uu + vv )] (A.2)

H (e +p )4(

where <y~ is the ratio of specific heats.

In addition, the viscosity 4 is defined by Sutherlands
law, an emperical relation describing the viscosity M as a
function of temperature T is given as
1.5 ° o
M =l/x (T/T ) ( T+ 110K )/( T + 100 K ) (A.3)
(o] o (o}
where «, 6 1s a reference viscosity and T_ is the reference
(-]

temperature.

The following reference quantities have been chosen to

non-dimensionalize the governing equation:

1 the reference length
o

_f_ the reference density
(e}

Ta the reference temperature

- 137 -



NON-DIMENSIONALIZATION OF THE GOVERNING EQUATIONS

a the reference speed of sound

A the reference viscosity
o
Note that by choosing a,as the vreference speed of sound,
rather than simply a reference speed, the following relation

between a _ and T, results.

a =/’)’R T | (A.4)

(@) o

The above reference quantities are then used to define a set
of non-dimensional variables, which will be denoted here as

primed variables.

x’ = x/1 y' = y/1 u’ = u/a v’ = v/a (A.5)
o o o o
P 2
= f/ T’ = T/T o= AL p’ = p/(ea)
£ fo o # o} j; o
2 2
H’ = H/a e’ = e/&f a )
o] oo

Substituting these non-dimensional variables into equations
(A.1-A.3) and dropping the prime notation results in the
_equations presented in chapter 2 (egqn. 2.1-2.3). Note that
with this particular scaling the non-dimensional expressions
for U, F, and G are identical to the original dimensional
expressions. Therefore, with this scaling the non-dimensional
Euler equations are the same as the dimensional Euler
equations. For the full Navier-Stokes equations the only

difference between dimensional and non-dimensional forms is
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the appearance of the reference Reynolds number Re,in R and S.
This reference Reynolds number is defined as follows,

Re f;aolocﬂb : (A.6)

(s}

This non-dimensionalization also yields the following

useful relations:

p’ = 9 T'/v ( equation of state)
= [ (A.7)
M = MI = ul/a/

Throughout the present work the freestream stagnation
conditions have been used to determine the reference
quantities of equation A.4. The advantage of using stagnation
conditions over the many other possible réference conditions
is that the non-dimensional stagnation quantities reduce to

p’ = l/v ,f' =1 T =1 (A.8)
T T T

and therefore, are independent of the actual flow conditions.
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APPENDIX B

STABILITY ANALYSIS OF THE 2-D WAVE EQUATION

An important step in both the development of new
algorithms and the application of existing algorithms is
performing a stability analysis of the chosen scheme. Such an
analysis determines the stability limit for the scheme, from
which the time step restriction for a stable solution is
defined. Even for well established schemes a stability
analysis can provide important insight into how and why an

algorithm performs as it does.

To gain such an understanding of the Ni scheme a Von
Neuman stability analysis has been performéd for the 2-D
scalar wave equation. The wave equation was chosen over the
Euler equations for this analysis for the following reasons.
The wave equation is of the same form as the Euler equations
but since it 1is a scalar equation, rather than a system of
equations, the analysis 1is much easier to performn. In
addition since the Euler equations are nonlinear they must be
linearized for such an analysis to be possible. This adds a
further 1level of complexity without any additional insight
into the algorithm. Finally, as will be shown in appendix C,

- 140 -



STABILITY ANALYSIS OF THE 2-D WAVE EQUATION

the stability limit for the linearized Euler equations can be

inferred directly from the results of the present analysis.

The 2-D scalar wave equation may be expressed for a

Cartesian system as

U + aU + bU
t X b

0 (B.1)

where a and b are constants. Now consider a discrete
approximation of equation B.l on a uniform mesh of constant
mesh spacing Dx and Dy, as shown in figure B-1, using the base
solver discribed in chapter 3. Note for the present analysis
the conventional (i,j) node indexing has been used.
Performing the flux balance (egn. 3.1) and distribution (egn.
3.2) steps results in the following expression for the total

change at point (i,j) at time step n

n+l n
du = U - U (B.2)
i,] i,J i,]
n n n n n n
= C LU +2U +U -U , -2U -U 31/8
x 1i-1,j-1 i-1,j i-1,j+1 i+1,3j+1 i+l,37 i+1,3j-1
. n n n n n n
+C [U +2U +U -U -2U -U 1/8

y i+1,j-1 i,j-1 1i-1,j-1 i+1,3j+1 i,j+1 1i-1,3j+1
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2 n n n n n n
+C [U +2U0 +U +U +2U +U
x i-1,3j-1 i-1,j i-1,3j+1 i+1,j-1 i+l,3 i+1,j+1
n n n .
-2(0 +2U +U Y1/8
i,j-1 i,j 1i,j+1
n n n n
+C C LU +U -U -U 1/4
xy i+l,j+1 1i-1,3j-1 1i+1,j-1 1i-1,3j+1
2 n n n n n n
+C LU +2U +U +U +2U +U
y 1i-1,j-1 i,j-1 di+1,3j-1 4i-1,j+1 i,j+1 i+1,j+1
n n n
-2(U +2U +U y1/8

i-1.,3 i,j 1i+1.,]

where the CFL numbers in the two coordinate directions are
defined as
C = aDt/Dx C = bDt/Dy (B.3)
X y
If the solution U at point (i,j) and time level n is now
assumed to be of the form

n n
U = v exp{Ilfk iDx + k jDy3l1} (B.4)
i,J X y

then the amplification factor G is defined as
G =r / r (B.5)
Substituting Equation B.4 into the discrete scalar wave

equation of B.2 and rearranging gives the following expression

for the amplification factor G.
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G =1 -0.51ICC sin°<(1+cos/5 y+C sin‘,d(1+cosac.)3

X y
2
+0.5C (cosac—l)(cos/s +1) -C C sin« sin
x ‘ Xy
2
+0.5C (cos,@—l)(cosoc+1) (B.6)
y
where
o = ik Dx (3 = jk Dy

X y
For stability the magnitude of G must be less than or equal to

one for all values of o and/.g . That is
2
IGI £ 1 for 0 (o 27T (B.7)
0 gp_(_ 27

This inequality determines the relation and range of Cx and C
for which the solution scheme is stable. To this point in
time the author has been unable to find a closed form solution

for C and C which satisfies this inequality. 1In view of

> 9
this two alternative approached have been taken. First is to
constrain Cx and C‘a to certain values which simplify the
inequality to the point where it can be solved. While this
approach gives some indication of the stabilities boundaries
is does not give a full picture. The second approach which
has been taken 1is to numerically map out the stability

boundary by evaluating the inequality over a large range of

values of C_xand C_

”0
In the first approach there are three special cases for
which an analytic solution is possible. The first two are the

trivial 1-D 1limits corresponding to the two Cartesian
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coordinates x and y.

If C

0O then C (1 (B.8)
Y X

If C =0 then C (1
x y

The third special was found with the help of Abarbanel [55].

Assuming C C =C equation B.6 may be rewritten as

= 1-2C ES/ +7[5 3 -120cC3)1 +7/ A f 7 (B.9)

where 3= sin( «/2) and 1= s:.n(‘e /2)

then for stability the following inequality must be satisfied.

12 IG| =14c t3fq+7f_§ 1 +4C |:§A +7f

+4C Es/ ’( 7 -3 J (1- 5)(1 l) (B.10)

If 1:3/1-'1 +7/1—5 3 /0 (e.3f0, 74 0)

then after simplification

2 22 2
(1-2C )3 ? - (1-C )(3 +'l ) € -2C 3[1- 1- ? (B.11)

For C{ 1 the most restrictive case is when 37) 0. Finally,
squaring both sides

2 4 4 2 22 2 2 2 4 2 2
0 (1-4C )% 1 -(2-6C ) % 1 (3'+Z ) + (2-4C -2C )3 1

2 4 4 4
+ (1-2C + C ) (§ +z ) (B.12)

The above inequality is satisfied for all values of I

and Q.if the follow stability criterion for C is met

C < 1//2— | (B.13)

To prove this requires the following two steps. First direct
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substitution of C=1/¢§.shows that the inequatity is satisfied.
Second, by demonstrating that if C>1//2 this inequality is
violated for some combination of ¥ and T » then the above
limit is proven. By substitution of 3==7=O the second point
is show. In summary, the most restrictive condition shown
analytically 1is that of egn B.13. Based on this, the

following stability criterion results,
c =c €1//2 (B.14)

X y

While special analytical solutions with. constrained
values of C,g and C,6 give some indication of the stability
limit for the Ni scheme, this approach does not define the
stability boundary completely. An alternate method, -which is
often used in cases such as this, is to solve the inequality
of B.6 numerically. This involves testing the inequality,
with fixed values of Cy and Ca, for all o¢ and s - By
repeating this process for a large number of combinations of
(Cx,C%) values the complete stability boundary can be mapped
out. The disadvantage of this approach is that it doesn’t
result in a closed form solution defining the boundary as a
function of C, and CQ' In addition such calculations involve

a large amount of computing time to be done accurately.

A numerical analysis has Dbeen performed for the
inequality of equation B.6. The results are presented
graphically in figure B-2. The line in the figure 1is the
locus of points (Cx,Cﬂ) for which |G|=1. The inequality is
- satisfied and therefore, the scheme is stable for all points
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inside this line. As expected the three analytical solutions
agree with the numerical solution. While it can’t be shown
énalytically, Figure B-2 leads one to believe that the
stability boundary for the 2-D wave equation is a circle in
the (C’!CG) plane. This results in the following general
stability criterion for the Ni scheme,

2 2
(C +C ) <1 (B.15)

X y
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CFL NUMBERS FOR THE EULER EQUATIONS

The Von Neuman stability analysis of the Ni scheme for
the 2-D scalar wave equatioh presented in Appendix B leads to
a time step restriction expressed in terms of the CFL numbers
in the two Cartesian coordinate directions. Unfortunately it
is not possible to perform the same analysis for the 2-D Euler
equations (egns. 2.9) since they are a nonlinear system of
equations. To gain some insight into the stability of the
present Euler solver, the Euler equations must first be
linearized. Once linearized the preceding Von Neuman analysis
can again be performed. Since the linearized form of the
Euler equations is the same as the scalar 2-D wave equation
(the only difference being a system of equations rather than a
single equation), it is much easier to simply relate the wave
equation results directly to the present system of equations.
The key to extending the wave equation analysis to the present
system of equations is the proper definition of the CFL
numbers coresponding to the two computational coordinéte
directions. The derivation which follows will determine these

numbers.
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The non-orthogonal form of the 2-D Euler equations (eqn
2.9) may be expressed on quasilinear form through the chain
rule as

(U/J) + A (U/J)_+ B (U/J). = 0 (C.1a)
t 3 (4

where the Jacobian matrix A is defined as

A= L yq.F -x_,G 1

T wwmn
= L U131 Cy F-x_ G211
(w/a N T vu
= JLCLy F-x_GIJ]
1 1T vu
= J F -Jx_G (C.1b)
v Y
and similarly,
B =-Jy F +Jx_6G (C.1lc)
3 U S v

(3F/2U) and (9G/3U) are the Jacobian matrices of the
quasilinear form of the Euler equations expressed in Cartesian
coordinates. While the form of equation C.l resembles that of
the scalar wave equation, this system of equations is still

nonlinear since both A and B are functions of U.

Equation C.1 is linearized by freezing the values of
matrices A and B. Once frozen, the equations reduce to a set
of four constant coefficient linear equations of the same form
as the scalar wave equation. Recall that for the scalar wave
equation, the CFL numbers. corresponding to Cartesian

coordinate directions x and y are
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CFL

Dtla|/Dx (C.2)

CFL
y

Dt|b| /Dy

where a and b are constants which determine the characteristic
propagation speeds in respective coordinate directions as

Dt/Dx = 1l/a Dt/Dy = 1/b (C.3)

The corresponding characteristic propagation speeds for a
linear system of equations, such as equation C.1, are
determined by the eigenvalues of the coefficient matrices, A
and B. For the present system then
Dt/D% = 1/ X Dt/Dt(= 1/ (C.4)
A B
where AAand lB are the eigenvalues of A and B, respectively.
Note that since A and B are 4*4 matrices, there are 4
eigenvalues for each matrix and therefore, 4 propagation
speeds for each. The CFL number corresponding to each
coordinate direction is determined by the maximum propagation

speed or eigenvalue of the respective Jacobian matrix.

CFL_ =Dt |( A ) |/D§ (C.5)
3 A max
CFL =Dt |( a2 ) I/D'l
B max

To complete the above expressions the actual eigenvalues
of A and B must be determined. Noting that both A and B are

of the form
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P=k F +%k G (C.6)

where k' and kzlare constants, then if the eigenvalues of
matrix P are determined once in terms of these constants, the
eigenvalues of both A and B can be found through substitution.
While the derivation of these eigenvalues is not difficult, it
is extremely long and tedious, and therefore will not be
presented here. Rather, the reader is referred to a very
clear derivation of the eigenvalues of P presented by McCartin

C111. The eigenvalues of matrix P are

A = 2 = k u+k v (C.7)
1 2 1 2
2 2 0.5
A= k u+k v+c(k +k )
3 l 2 1l 2
2 2 0.5
A = k u+k v-c(k +k )
4 1l 2 1 2

where u and v are Cartesian velocity components and ¢ is the
speed of sound. Substituting the correct values of k! and kz'
for Jacobian matrices A énd B into equation C.7 gives the

following maximum eigenvalues,

2 2 0.5
¢ A ) | =JLC}y, u-x Vv |+c(x +% ) i
A max 1 ! (! 1
(C.8)
2 2 0.5
fCA ) | =J L]y u-x_v|+c(x +y ) ]
B max 3 3 3 3

With substitution of these expressions into C.5 the CFL

numbers are
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2 2 0.5
CFL =JdDtl |y u-x vi]+c{(x +y ) l/D§g
4 1
(C.9)
2 2 0.5
CFL =JdJDtLl |y u-x v )] +c(x +y ) 1/ D
i s 77y 1
Finally, the metrics ( xs,xs,x(,y1 ) and Jacobian J must

be evaluated for a typical cell, such as shown in figure 3-2.

Using second order accurate, cell centered differences then

1 1
x =Dx /D =Dy / D
n n Y? y Q
m m
XS = Dx / Dg y3 = Dy / DS (C.10)

J = DYDY/ DV

where‘Dx‘, Byt

’ Dx"n Dy”i and DV are defined by equations 3.2.
This choice of differencing is consistent with the
differencing used for the higher order time terms of the

presented Ni scheme. It also follows through eguations 3.3

and C.10 that

2 2 0.5
({x +y_ ) =Dl /D (C.11)
(L 1
2 2 0.5
( X + ) =Dm / D
st %5 5
Substituting the metric definitions into C.9 then gives
1 1 m m
CFL _ = DtLluDy -vDx |+aDl13 CFL = DtCL|uDy -vDx |+aDm]
3 DV 1 DV

(C.12)
The above expressions define the CFL numbers corresponding to
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non-orthogonal directions 3 and 2 for a typical cell of

figure 3-2.
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APPENDIX D

EXTENSION TO THE NAVIER-STOKES EQUATIONS

For high Reynold’s number flows viscosity plays an
important role only in thin layers near the body and small
wake regions. A majority of the flow is inviscid. Viewing
the Navier-Stokes equations as a combination of convective
terms which propagate information and viscous terms which
smooth information, it is clear that a majority of the flow is

dominated by the convective terms.

An extension of the Ni multiple-grid method seems well
suited as a solver for these flows since it takes advantage of
the convective nature of the equations to accelerate the
solution convergence to steady state. With the Ni scheme the
two parts of the solver, base solver and coarse mesh
accelerator, perform two different roles. The base solver
satisfies the physics of the problem by solving the governing
equations. The coarse mesh accelerator then models the
convective terms to rapidly propagate errors in the solution
out of the flow field for fast convergence. In addition, as
discussed in the conclusions, one of the next steps in the
direction of a general modular approach to solving transonic
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flow problems is the addition of embedded viscous regions into
the embedded multiple-grid approach. With the formulation of
a viscous version of Ni‘s Multiple-grid method such embedded

equation solutions would be possible.

In this appendix a formulation of the Ni multiple-grid
method is presented for solution of the 2-D Navier-Stokes
equations. In this formulation a global mesh has been
assumed, removing the need for a special embedded mesh
boundary formulation. This should not be viewed as a
limitation, rather the embedded mesh formulation has been left
for future research. The approach which has been taken is to
include the viscous terms into the base solver. With this
modification the base' solver correctly models the physics for
viscous flows. The 'inviscid coarse mesh accelerator; as
presented in section 3.3, is then used to propagate the fine
mesh residuals accelerating the convergence tc steady state.
Since the convective terms dominate over a majority of the
flow field, a coarse mesh accelerator based only on the
convective terms captures the principle physics of the flow

and will efficiently propagate the solution errors.

The present formulation was initially tested with the
calculation of 2-D laminar flow in a duct with a circular arc
bump on one wall. While these calculations were made on a
very coarse mesh, resulting in wunrealistic cell Reynolds
numbers, and for a flow field which can not be considered very

severe, the approach showed a great deal of promise as a
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method for accelerated solutions of the Navier-Stokes
equations. Chima and Johnson L[29] independently adopted a
similar approach, using a fine mesh solver based on
MacCormack’s method combined with the Ni coarse mesh
accelerator, and also demonstrated accelerated convergence
rates for duct type flows. Based on the success with duct
type flows, preliminary calculations with the present
formulation were made for laminar flow over 2-D airfoils.
Unfortunately, these calculations proved to be much more
difficult that initially expected. As formulated, the present
approach failed to yield the expected acceleration of solution
convergence. Repeated attempts to correct the present
formulation failed to improve the rate of convergence. At
this point due to time limitations, the current research had
to be brought to a close, 1leaving the extension of Ni’'s
multiple-grid method to viscous flows as an area of future
research. In the author’s opinion, this breakdown in the
formulation can be corrected and therefore, the current
approach will be presented as originally formulated. In the
paragraphs which follow'the base solver presented in section
3.2 will be extended to the solution of the 2-D Navier-Stokes

equations.

The two dimensional Navier-Stokes equations were
presented in strong conservation form (equation 2.1) as

U + F +G +R +858 =20 (D.1)
t X y X y
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The time differencing proposed for solution of this
equation is a combination of a Lax-Wendroff differencing of
the inviscid terms (terms containing F and G) and a forward
time-center space (FTCS) differencing of the dissipative terms
(those containing R and S).

n n
au = —-(Dt/DV)(F +G ) (D.2)

i,] x y 1i,]

2 n
+0.5(Dt /DWM{LF (F +G )1 + LG (F +G )1 3}

-(Dt/DV)(R 45 )

X Y 1.,]
While the differencing of the inviscid terms is second order
accurate in time, this semi-discrete equation is only first
order accurate in time due to the FTCS differencing of the
dissipative terms. Since only the steady state solution is of
interest this lower accuracy is of 1little importance. The
discrete spatial approximation used for the first two terms on
the right hand side of equation D.2 is the same as that
presented in equaﬁions 3.1 and 3.2, the flux balance and
distribution steps for the Euler equations. The correct
discrete approximation of the 1last term is found through a
finite volume integration over the cell shown with a dashed

line in figure D-1.

_ 1 1 m m
—(Dt/DVi/:R +S )dv =.5(Dt/DV){ Dy R -Dx S 1J+[Dx S -Dy R 1 1}
X ¥

A A A A A A A A
v
1 1 m m
+51Dt/DV){ [Dy R -Dx S 1-L[Dx 5 -Dy R J 3
* BB BB B B B B
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(D.3)
1 1 m m
+,5(Dt/DV){-[Dy R -Dx S J-CDx S -Dy R 1 3
cCcC cCcC cCcC cCcC

1 1 m m
+3(Dt/DV){-[Dy R -Dx S 1+[Dx S -Dy R 1 3
DD DD DD DD
where R and S are defined at cell centers A,B,C and D as will
be explained later. Cell centered values of Dx, Dy and DV are
defined by equations 3.1 and 3.2. The particular form in

which the above dissipative terms have been presented makes it

easy to include into the distribution step of the solver.

To conmplete the discrete approximation of the
dissipation terms the cell-centered values of R and S must be
found. For convenience R and S will be defined using the base
solver cell notation shown in figure 3-2. Recalling the
definition of R and S from equation 2.1 as

0

| !
I |

| XX |

R =(1/Re ) | =T |
C o | Xy |
' | T out+ T v-(e/(¥Y-1)Pr) T |

| XX yx x |

0
-2

I |
| |
| yx |
S = (1l/Re ) | <« ]
c o | vy I
| T v+Z u-(x/(v-1)Pr) T |
! Yy Xy y |
it should be noted that both involve first derivatives of u
and v with respect to Cartesian coordinates x and y. 1In order
to approximate these derivatives with cell-centered
differencing of nodes 1-4, for a general nonorthogonal cell,
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these Cartesian derivatives must be transformed to derivatives
with respect to computational coordinates 3 and 7 . This
transformation is performed as follows

() =JdCLy_ (), -y_C)H 1 (D.5)
x n 3 T3 1

JL oy, ()

y v T

—_
~—
"

( ) 1
3

In addition to a change of coordinates a large number of
computational operations can be saved by rewriting derivatives
of primitive variables u and v in terms of derivatives of

conservation variables U. For example,

u3=E (fU)S -ufs J/f (D.6)

u =L (pu), - u 3/
n T T
Performing the above transformations results in the following

expressions for the shear stresses

T = -(pJI/p ){(4/3)[y’((ru)s Yy (fu),{

XX

u(ylfg -ysf1 )|

_(2/3)[x3(fv)1 —x,t(rv); - V(Xsf? —-X’[YS )33

“r = -(4JdJ/e){(4/3)Lx (pV) ( - )3
- M/ P x3 rv v xif'[ x,\rs

..(2/3)[:371(1'111)-§ —ys(ru),l - u(y‘l f3 —ysr'l )33

‘ny= ~(AT/P T xs(fu),( ‘xr((f“’s +y,t(rv)3 ’YS(fV)'(

n -x,L(fv)-§

+(ux‘( -vy -(ux —vyS )f 3 (D.7)

1 s s

In addition,
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T

JLy T -y_T 1

X 178 377
T =JLCx_,T, -x, Te (D.8)
v 371 13
At this point the cell-centered discrete approximation
for the first derivatives is defined using information at cell
corner points 1-4. For example,

0.5( U +U-U-1U) (D.9)
T 2 3 1 4

a
]

&
It

c
]
g
a
n

0.5( U+U-U-1U)
3 3 4 1 2

where D § and Dll are assumed to be equal to 1. This
differencing and notation is consistent with the cell-centered

metrics definitions of equation 3.2c.

Discretizing equation D.7, the final cell-centered form
of R and S may be summarized for a typical cell C as

0
T

XX

T

Xy

x u+tT v-(M/(¥-1)Pr) T
XX  yX X

R = (1/Re )
C o

— — — — — —— —

0

| |
| |
| yx |
S =(1/Re ) | T |
| Yy |

| ¥ v+7T u-/(¥Y-1)Pr) T |
| I

Yy Xy y
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where
1 m 1 m 1l m 1 m
T = (M /;’DV){(4/3)CDy D(pu) -Dy D(fu) -u (Dy Df' -Dy Df )]
XX c
m 1 1 m 1 m m 1
-(2/3)CDx Evad -Dx D(fv) -v (Dx Df -Dx Df )
c
m 1 1 m m 1 1 m
T = A /pDV)£(4/3)EDx D(pv) -Dx D(pv) -v (Dx Df -Dx Df )3
Yy c
1 m m 1 1 m m 1
-(2/3)CDy D(pu) -Dy D(fu) -u (Dy Df -Dy Df )33
c
- m 1 1 m 1 m m 1
= -(4/DV){ Dx D(Pu) -Dx D(pu) +Dy D(@v) -Dy Dev)
¢ f p f ¢
1 1 m m m 1
+(u Dx -v Dy )Dr' -(u Dx -v Dy )Qr_} (D.10a)
c c c c
In addition,
1 m m 1
T = L[ Dy DT - Dy DT 1/DV
x
nm 1 1 m
T = [LDx DI -Dx DT 13/DV (D.10b)
y
and
1
D() =0.5C () + ()Y =)y - )Y 3
2 3 1 4
m
D() =0.5C () + ) -¢)y - (¢) 1 (D.10c)
3 4 1 2
This completes the formulation of the dissipation terms
for the Navier-Stokes equations. These terms will now be

included into the base solver presented in chapter 3 resulting
in a formulation of Ni’s multiple-grid method for solution of
the Navier-Stokes equations.
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EXTENSION TO THE NAVIER-STOKES EQUATIONS

Following the inviscid formulation of the base solver,
the viscous base solver is performed with three sweeps over
the fine mesh. » First, the mesh is swept node by node,
initializing the node point corrections dU to zero. After
initialization, the second sweep 1is made, cell by cell,
performing a inviscid flux balance, a calculation of R and 5,
and a modified distribution for each cell. For the typical

cell shown in figure 3-2 this involves the following 3 steps.

STEP 1: Inviscid Finite Volume Approximation

This step involves calculation of DU as defined by
equation 3.1. Note that this 1is no 1longer the discrete
approximation to the governing integral equation since it does

not include the dissipative components.

STEP 2: Calculation of R and S

R and S are calculated at the cell center using

equations D.10.

STEP 3: Modified Distribution

dU = dU + 0.25C DU

Df -Dg -Dr -Ds 1 (D.lla)

1l 1l c c c c c
dU =dU + 0.25C DU - Df +Dg - Dr + Ds 1
2 2 _ c c c c c
dU =dU + 0.25L DU +Df +Dg + Dr + Ds 1
3 3 c c c c c
dU =dU + 0.25CL DU +Df -Dg + Dr - Ds 1

4 4 c c c c c
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EXTENSION TO THE NAVIER-STOKES EQUATIONS

where
1 1
Df = ( Dts DV )L DF Dy - DG Dx 1 (D.11b)
c c c
m m
Dg = ( Dt/ DV )L DG Dx - DF Dy 1
c c c
1 1
Dr = (2Dt/ DV )L DR Dy - DS Dx 1
c c c
m m
Ds = (2Dht/ DV )L DS Dx - DR Dy 1
c c c
and
DF = (9 F/2oU ) DU DG = (&G/2U ) DU (D.11lc)
c c c c c c
1 1
Dx =0.5(x+x-x-X ) Dy =0.5(y+y-y-Yy )
2 3 1 4 2 3 1 4
m m
Dx =0.5(x+xXx -xXx-x ) Dy =0.5( y+y-y-y )
3 4 1 2 3 4 1 2

U =0.25( U+ U0U+U+0U )
c 1 2 3 4

Note that the control volume integration for the dissipative

terms is actually being performed in the distribution step.

Once the solution sweep has been performed over each
cell on the fine mesh, the required boundary conditions are
applied to the boundary nodes. It is important to note that
with this formulation the changes predicted at all boundaries
are incorrect due to the way the dissipation terms are
approximated. For the dissipation térms to be correct,
changes must be distributed from all four surrounding cells,
only then is the finite volume integration of the dashed cell
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EXTENSION TO THE NAVIER-STOKES EQUATIONS

in figure D-1 complete. This point is not important for solid
wall boundary points, since the boundary condition is imposed
by extrapolating the pressure from the flow and setting the
velocity to zero and temperature to the wall temperature.
However, the far field boundary conditions require these
predicted Dboundary changes. This problem is corrected by
dropping the dissipative part of the distribution fdrmula for
distributions to the far field boundaries. This is equivalent
to a inviscid flow assumption at the far field boundary, an
appropriate approximation in this region. With this
correction the inviscid far field boundary conditions

presented in equations 3.24 and 3.25 may be used.

After application of the boundary conditions the

solution is updated as

n+1l n
U =U + 4dU (D.12)
i i i

This completes the formulation of the viscous base
solver. After a pass over the fine mesh the inviscid coarse
mesh accelerator described in section 3.3 is applied on the 2h
mesh, the 4h mesh, and so on. The coarse mesh accelerator,
which is now operating on residuals of the Navier-Stokes
equations, rapidly propagates errors in the solution by

modeling only the dominate convective terms.
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Figure 2-1. Typical two dimensional transonic airfoil flow.

Figure 2-2. Three contours for far field Dboundary condition
discussion.
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Figure 3-1. Flow chart for base solver.
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Figure 3-2. Base solver cell notation.
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Coarse mesh accelerator flow chart.
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Figure 3-4. Coarse mesh accelerator cell notation.

Figure 3-5. Cell notation for transfer operator discussion.
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Figure 3-6. Boundary cell notation.

Figure 3-7. Boundary <cell notation for boundary cell
smoothing discussion.
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Figure 3-9b. Surface total pressure loss.
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Figure 3-9. NACA0012 airfoil for M = 0.63 and angle of attack

of 2.0 degrees. Base solver solution on 65417 O-type mesh.
“"Lrun 1791
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Figure 3-10. NACA0012 airfoil for M = 0.63 and 2.0 degree
angle of attack. Multiple-grid solution on 65*17 O-type mesh
with 3 global levels. C[run 1821
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0.63 and 2.0 degrees angle of attack with 3 global mesh
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Figure 3-18. Blowup of mesh in the trailing edge region for
NACA0012 for 65%17 O-type mesh. [run 182]
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Figure 3-21c. Mach number contours.
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Figure 3-21. NACA0012 airfoil for M = 0.63 and 2.0 degree
angle of attack. Multiple-grid solution on 97*17 C-type mesh
with 3 global levels. L[run 189]
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Figure 3-25. NACA0012 airfoil for M = 0.63 and 2.0 degrees
angle of attack. Multiple-grid solution on 65%17 O-type mesh
with 3 global levels. No doubling of predicted wall changes.
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Figure 3-27. NACA0012 airfoil for M = 0.85 and 1.0 degree
angle of attack. Multiple-grid solution on 65%17 O-type mesh

with 3 global levels. L[Run 214]
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Figure 3-30. NACA0012 airfoil for M = 0.85 and 1.0 degree
angle of attack. Multiple-grid solution on 129433 O-type mesh
with 4 global levels. [Run 2161
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Figure 3-33. RAE2822 airfoil for M = 0.75 and 3.0 degrees
angle of attack. Multiple-grid solution on 65%17 O-type mesh
with 3 global levels. L[Run 2111
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Figure 3-35d. Total pressure loss contours.

Figure 3-35. RAE28B22 airfoil for M = 0.75 and 3.0 degrees
angle of attack. Multiple-grid solution on 129%33 O-type mesh
with 4 global levels. [Run 2131
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Figure 3-37. Near field of KORN airfoil for 65%17 global
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Figure 3-38. KORN airfoil for M = 0.75 and 0.12 degrees angle
of attack. Multiple-grid solution on 65%17 O-type mesh with 3
global levels. [Run 208]
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Figure 3-40c. Mach number contours.
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Figure 3-40. KORN airfoil for M = 0.75 and 0.12 degrees angle
of attack. Multiple-grid solution on 129%33 O-type mesh with
4 global levels. [Run 2101
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Figure 4-8a. Figure 4-8b.

Figure 4-8. 3-D cell structure for the base and coarse mesh
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Figure 5-5. Comparison of residuals on each of the four
multiple-grid levels for solution of figure 5-4. Lrun 1971
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Figure 5-8. NACA0012 airfoil for M = 0.63 and angle of attack
of 2.0 degrees. Double embedded mesh solution on O-type mesh.
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Figure 5-14. RAE2822 airfoil for M = 0.75 and angle of attack
of 3.0 degrees. Embedded mesh solution on O-type mesh. C[Run
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Figure 5-16. Near field of KORN airfoil for embedded O-type
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Figure 5-17c. Mach number contours.

TGTAL PRES3URE LOSS

- \,\
/'/ T~
//"". e,
l/}‘ \‘\\
’f'l \\

gJ’ J/ /\“-\. \"‘\

|f s S . \..-—-—'—"'_—'"

{ = X

i T—————— ‘———______{
\ / —
\ — 0. 020

\$‘\ ',/
' /" . - -
\" - g - L' . '» ]. .y
\'\ y e
’\. ’/"
™~ 7 — 0.010
\ -
— 0,000
Figure 5-17d. Total pressure loss contours. .

Figure 5-17. "KORN airfoil for M 0.75 and angle of attack of
0.12 degrees. Embedded mesh solution on O-type mesh. [Run

2093
- 237 -



0.00

=

3

-

!

ol
wo gy
>
[ ) =y
f—, : H \\\
— “\ 3
2o “5 d \
-3 ra PRV
E)’i‘_ ‘;‘(\‘ p
=3 IR Embedded
= K \

Global 65%17

‘g’ a0 30,00 EU.GO 30. 200 120.00 150.30
MULTIGRID CYCLES =10

Figure 5-18. Comparison of convergence histories for embedded
solution, 65%17 global solution, and 129433 global solution
(figures 5-17,3-38,3-40). C[Runs 208, 209, 2101
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APPENDIX E

2-D AIRFOIL EULER CODE FOR O-TYPE MESHES

This appendix contains 1listings of the two - computer
codes used to generate the 2-D transonic airfoil solutions on
O0-type meshes presented in this thesis. The first program
called GEOCREAT reads in a global O-type mesh as input and
then interactively generates a file which contains the pointer
system and mesh coordinates for the complete embedded mesh
structure. The second program, EULERCELL, 1is the embedded
multiple-grid Euler solver. EULERCELL requires two files as
input, the pointer file defining the embedded mesh structure
and a second file containing the flow conditions and control
parameters (a sample of this file is given at the end of this

appendix).
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1234567890123456789012345678901234567890123456789012345678901234%
c c :

ChrhkhAARARARRRARAARAXARRRRKRRAAKAKAAKKARARKAAKAAKARAKARKAKAKAK KX
C.._

PROGRAM: GEOCREAT

THIS PROGRAM GENERATES THE GRID STRUCTURE AND POINTERS
FOR A 0-MESH GRID TOPOLOGY.

OO0 n

CALL GEOIN3

(e}

CALL GEOPONT4
CALL GEOOUI3

STOP
END

INCLUDE FILE: GEOCOM.COM

[p N o I o]

COMMON/GEOCOM/ IE, JE, IEM1, JEM1, LMAX, ISURD,
DELTA,AK,Y0, IC1,IC2,JC2, IF2, JF2,
X(257,65),Y(257,65),X5(49,9),Y5(49,9),
IPC(257,65), IPS(49,9), IGMAX,0(2,8424) ,
ILEVP(2,5),LEVP(2,5),IP(9,10816),
IPBIMX(2,5), IPRUMX, IPRDMX , IPBTHX , IPREMX,
IPRI(3,257), IPRU(3,257), IPBD(3,9),
IPRT(3,33), IPBR(3,257),
LEVSET(257,65), IPSET(257,65),
ICONST(S0) ,RCONST(50),LU1,LU2,LU3,LUS,LUG
COMMON/GEOLAB/GLAREL1,GLABEL2,RLABEL1,RLAREL2,
1 IN_NAME,OUT_NAME .
CHARACTER GLAREL1%30,GLAREL24100,RLABEL1410,RLABEL24100,
1 IN_NAMEA15,0UT_NAMEALS

DO NG U W -

SUBROUTINE: GEORCEL

Lyw I o I op ]

SUBROUTINE GEORCEL(I1,I2,I3,ICEL1,ICEL2)

THIS SURROUTINE FINDS THE BOUNDARY CELLS
CORRESPONDING TO THE GIVEN BOUNDARY NODES

[er 3 o 2 o I w0

INCLUDE ‘GEOCOM.COM’

ICEL1
ICEL2
ICON3
I=20

0
0
0
10 I = I+l

ICON1 = 0
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ICON2 = 0
J1 = ABS(IP(1,I))
J2 = ABS(IP(2,1))
J3 = ABS(IF(3,I))
J4 = ABS(IP(4,1))
c
IF(I1.EQ.J1) THEN
ICON1 = ICON1+1
ELSE IF(I1.EQ.J2) THEN
ICON1 = ICON1+1
ELSE IF(I1.EQ.J3) THEN
ICON1 = ICON1+1
ELSE IF(Il1.EQ.J4) THEN
ICON1 = ICON1+1
END IF
C
IF(I2.EQ.J1) THEN
ICON1 = ICON1+1
ICON2 = ICON2+1 :
ELSE IF(I2.ER.J2) THEN
ICON1 = ICON1+1
ICON2 = ICON2+1
ELSE IF(I2.ER.J3) THEN
ICON1 = ICON1+1
ICONZ = ICONZ2+1
ELSE IF(I2.EQ.J4) THEN
ICON1 = ICON1+1
ICON2 = ICON2+1
END IF
c
IE(I3.EQ.J1) THEN
ICON2 = ICON2+1
ELSE IF(I3.EQ.J2) THEN
ICON2 = ICON2+1
ELSE IF(I3.EQ.J3) THEN
ICON2 = ICON2+1
ELSE IF(I3.ER.J4) THEN
ICONZ = ICONZ2+1
END IF
C
IF(ICON1.EQ.2) THEN
ICELLI = 1
ICON3 = ICON3+1
ENDIF
C
IF(ICON2.EQ.2) THEN
ICEL2 = 1
ICON3 = ICON3+1
END IF
C

IF(ICON3.ER.2) THEN
RETURN

ELSE IF(ICON3.ER.1) THEN
IF(I1.EQ.0) RETURN



2-0 AIREOIL EULER CODE EOR O-TYPE MESHES

OO0

[or M o N o B wp]

o B o B o B o I o B o B e B o Y o B

[ M op]

IE(I3.EQ.0) RETURN
END IF

'IE(I.LT.ILEUP(B,LMAX)) G0 I0 10

RETURN
END

SURROUTINE: GEQIN3

1000

1001

10

SUBROUT INE GEOIN3

THIS SUBROUTINE READS REQUIRED INPUT
PARAMETERS EROM THE TERMINAL

INCLUDE ‘GEOCOM.COM’

LOGICAL UNIT ASSIGNMENIS FOR INPUT AND OUTPUT
INPUT:

LUl

LUS
OUTPUT:

Lu2

Lu3

Lué

GLORAL O-MESH GRID FILE
INTERACTIVE INPUT

POINTER SYSTEM FILE
POINTER SYSTEM SUMMARY
INTERACTIVE PROMPTS

LUl
Lu2
Lu3
LUS
LU6

oo ouun
G lW

WRITE(LUG,%)’ ENTER AIRFOIL SECTION NAME (GLAREL1<30 CHARACTERS’
READ(LUS, 1000)GLAREL1 '
FORMAT (A)

WRITE(LUG,%)‘ ENTER GRID COMMENTS (GLAREL2<10QCHARACTERS)‘
READ(LUS,1001)GLABEL2

FORMAT(A)

WRITE(LUG,4)’ ENTER NUMBER OF GLORAL GRID TO RE READ IN:’
READ(LUS, %) IGRID

WRITE(LUG,%)’ ENTER TOTAL NUMBER OF GRID LEVELS’

WRITE(LUG,A)’ FOR POINTER SYSTEM:

READ(LUS, x) LMAX

READ GRID
OPEN(UNIT=LU1,READONLY,
1 TYPE=/0LD’ ,FORM='UNEORMATTED’)
0 10 N=1,IGRID
READ(LU1) IE,JE
WRITE(LUG,%)’ IE,JE= ,IE,JE
READ(LULICL, ((X(1,D),Y(I,1),I=1,IE),J=1,JE)
CONT INUE

IEM1 = IE-1
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JEM1 = JE-1

C SET UP GRID STRUCTURE
WRITE(LUG,4)‘ ENTER GLOEAL GRID LEVEL EOR POINTER SYSTEM:’
READ(LUS, x)LGLOR
Do 15 I=1,IE
Do 15 I=1,JE
15 LEVSET(I,J) = LGLOB

18 WRITE(LUG,*)’ DO YOU WISH A SUBDOMAIN? 1=YES 0=NO’
READ{(LUS,*) ISUR
IF(ISUB.ER.0) RETURN
WRITE(LUG,A)’ ENTER IC1,IC2,JC1,JC2 BASED ON THE GLOFAL LEVEL’
READ(LUS,*) IC1,IC2,JC1,JC2
WRITE(LUG,4)‘ ENTER LEVEL FOR THIS SUEGRID, LSUR’
READ(LUS,#) LSUE
LGLOBS = 2Ax(LGLOB-1)
D0 20 I=LGLORSk(IC1-1)+1,LGLOBSA(IC2-1)+1
D0 20 J=LGLORSA(JIC1-1)+1,LGLOBSA(JC2-1)+1

20 LEVSET(I,]) = LSUB

GO TO 18

END

SUBROUTINE: GEOOUT3

[9e 2N 30 B8 g¢ ]

SUBROUT INE GEOOUTI3

THIS SUBROUTINE CREATES THE OUTPUT FILE
AND' POINTER SYSTEM SUMMARY

[or o I or B o

INCLUDE ‘GEOCOM.COM’

WRITE(LUG,4)’ DO YOU WANT THE CELL POINTERS °
WRITE(LUG,A)’ AND' (X,Y) WRITTEN?’
WRITE(LUG, %) * ENTER 1 = YES AND 0 = NO’
READLUS, %) IPRINT1

C
WRITE(LU3,1027) GLABEL1,GLABEL2

1027 FORMAT(5X,A30,/,5X,A100,/,5X,A10,/,5X,A100)
WRITE(LU3,1028) IN_NAME,OUT_NAME
1028 FORMAT(//,5X,’ INPUT GRID FILE NAME:  ’,Al5,/,
1 5X,’OUTPUT POINTER EILE NAME:’,Al5,//)
WRITE(LU3,%) * LEVSET(I,J)=’
D0 100 I=1,IE
WRITE(LU3,1003) (LEVSET(I,J), I=1,JE)
100 CONTINUE
WRITE(LU3,4) * IPSET(I,I)=’
00 101 I=1,IE
WRITE(LU3,1000) (IPSET(I,J), J=1,JE)
101 CONTINUE
C
c SET CONSTANTS EOR OUTPUT
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c

1000
1001
1003

10
1002

ICONST(1) = IE
ICONST(2) = JE
ICONST(3) = IC1
ICONST(4) = IC2
ICONST(3) = JCl
ICONST(6) = JC2
ICONST(7) = IFl
ICONST(8) = IE2
ICONST(9) = JF1
ICONST(10) = JE2
NICONST = 50
RCONST(16) = DELIA
RCONST(17) = AK
RCONST(18) = Y0
NRCONST = 50

WRITE(LU2) GLABEL1,GLABEL2,RLABEL1,RLAREL2
WRITE(LU2) NICONST,NRCONST

WRITE(LU2) (ICONST(N), N=1,NICONST)

WRITE(LU2) (ICONST(N), N=1,NRCONST)

WRITE(LU2) LMAX, IGMAX, IPRUMX, IPRDMX, IPRTMX , IPREMX
WRITE(LU2) ((IPBRIMX(M,N), M=1,2), N=1,LMAX)
WRITE(LU3,%) ’ IE,JE,LMAX,IC1,IC2,IC2,IF2,JE2”
WRITE(LU3,4) * IQMAX,IPBUMX, IPBDMX, IPRTMX, IPREMX’
WRITE(LU3,4) ‘ DELTA,AK,Y0

WRITE(LU3,1000) IE,JE,LMAX,IC1,IC2,JC2,IF2,JE2
WRITE(LU3,1000) IGMAX,IPRUMX, IPEDMX, IPETMX, IPREMX
WRITE(LU3,1001) DELTA,AK,YO

WRITE(LU3,4) ’ IPRIMX(2,LEV)=’

WRITE(LU3,1000) ((IPRIMX(M,N), M=1,2), N=1,LMAX)
EORMAT(1X,2015)

FORMAT(1X,10E13.4)

FORMAT(1X,3313)

WRITE OUT GRID POINTERS

WRITE(LU2) ((ILEVP(M,N), M=1,2), N=1,LMAX)
WRITE(LU3,4) * ILEVP(2,LEV)=

WRITE(LU3,1000) ((ILEVP(M,N), M=1,2), N=1,LMAX)

WRITE(LU3,4) * IP(M,N)=’

DO 10 LEV = 1,LMAX

IF(IPRINT1.EQ.1) WRITE(LU3,%) ’ LEV =,LEV

WRITE(LU2) ((IP(M,N), M=1,9), N=ILEVP(1,LEV),ILEVP(2,LEV))
IF(IPRINT1.EQ.1)
1 WRITE(LU3,1002) ({IP(M,N), M=1,9), N=ILEVP(1,LEV),ILEVF(2,LEV))
CONT INUE

FORMAT (1X,1815)

WRITE(LU3,%) * IPRI(Z,N)=’

DO 15 LEV=1,LMAX

WRITE(LU3,%) ’ LEV=’,LEV

IF(IPRIMX(2,LEV).NE.Q)
1 WRITE(LU2) ((IPRI(M,N), M=1,3), N=IPRIMX(1,LEV),IPRIMX(2,LEV))
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IF(IPRIMX(2,LEV).NE.O)
1 WRITE(LU3,1002) ((IPRI(M,N), M=1,3),

2 N=IPRIMX(1,LEV), IPRINX(2,LEV))
15 CONTINUE
c o
WRITE(LU2) ((IPBU(M,N), M=1,3), N=1,IPBUMX)
WRITE(LU2) ((IPBD(M,N), H=1,3), N=1,IPRDNX)
WRITE(LU2) ((IPBT(M,N), M=1,3), N=1,IFBTMX)
WRITE(LU2) ((IPBR(M,N), M=1,3), N=1,IPBBMX)
WRITE(LU3,x) ’ IPBU(M,N)=’
WRITE(LU3,1002) ((IPBU(M,N), M=1,3), N=1, IPRUMX)
WRITE(LU3,A) * IPBD(M,N)=’
WRITE(LU3,1002) ((IPRD(M,N), M=1,3), N=1,IPBRDMX)
WRITE(LU3,%) * IPRT(3,N)=’
WRITE(LU3,1002) ((IPRT(M,N), M=1,3), N=1,IPRTMX)
WRITE(LU3,%) ‘ IPRE(3,N)=’
WRITE(LU3,1002) ((IPBR(M,N), M=1,3), N=1, IPREMX)
WRITE(LU2) (Q¢1,I), I=1,IGMAX)
 WRITE(LU2) (&(2,D), I=1,I0MAX)
TZERO = 0.0
DO 8 KT =3,6
8 WRITE(LU2) (TZERO, I=1,IOMAX)
C
IFCIPRINT1.ER.1) WRITE(LU3,A%) ‘ Q(K,I)=’
IECIPRINT1.EQ.1) WRITE(LU3,%) / I=1’
IF(IPRINT1.EQ.1) WRITE(LU3,1005) (Q(1,D), I=1,IGMAX)
IF(IPRINT1.EQ.1) WRITE(LU3,%) ¢ I=2¢
IF(IPRINT1.EQ.1) WRITE(LU3,1005) (@(2,D), I=1,I0MAX)
1005 EORMAT(2X,(10E12.5))
c
RETURN
END
C- -
c SUBROUTINE: GEOPONT4
C
SUEROUT INE GEOPONT4
C
C THIS SUBROUTINE GENERATES THE POINTERS
c FOR THE GIVEN GRID AND ROUNDARY CONDITIONS.
c
INCLUDE ‘GEOCOM.COM’
c
c SETUP AND EILLING OF Q-VECTOR

IND = 0

DO 10 L=1,LMAX

LSKIF = 2kA(L-1)

DO 10 I=1,IEM1,LSKIF

DO 10 J=1,JE,LSKIP

IF(LEVSET(I,1).EQ.L) THEN
IND = IND+1
QC1,IND) = X(I,D)
Q€2, IND) = Y(I,D
IPSET(I,3) = IND

END IF
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10" CONTINUE
C
ng 12 J=1,JE
12 IPSET(IE,J) = IPSEI(1,D)
c
IGMAX = IND.
WRITE(LUG,A) * IOMAX=‘ , IQGHAX
c
c GENERATE POINTERS
IND = 0
C

DO 30 LEV=1,LMAX
ILEVP(1,LEV) = IND+1
LSKIP = 244(LEV-1)
LSKIP2 = LSKIP/2

Do 25 I=1,IEM1,LSKIP
Dpa 23 J=1,JEM1,LSKIP

ICOUNT = 0
- IF(LEVSET(I,J).LE.LEW) ICOUNT = ICOUNTI+1

IF(LEVSET(I,J+LSKIP).LE.LEV) ICOUNT = ICOUNT+]
IF(LEVSET(I+LSKIP,J+LSKIP).LE.LEV) ICOUNT = ICOUNT+1
IF(LEVSET(I+LSKIP,J).LE.LEV) ICOUNT = ICOUNT+1
IF(ICOUNT.ER.4) THEN

IND = IND+1

IP¢(1,IND) = -IPSEI(I,D)

IP(2,IND) = -IPSET(I,J+LSKIP)

IP(3,IND) = ~-IPSET(I+LSKIP,J+LSKIP)

IP(4, IND) = ~IPSET(I+LSKIF,J)

IF(LEV.EQ.1) THEN
IF(J.GT.1) THEN
IF(I.GT.1) THEN
IF(LEVSET(I-1,1).EQ.1.AND.LEVSET(I,J~1).EQ.1)

1 IP(1,IND) = -IP(1,IND)
ELSE
IE(LEVSET(IEM1,I) .EQ.1.AND.LEVSET(I,1-1).EG.1)
1 IP(1,IND) = -IP(1, INID
END IE

IF(I.LT.IEM1) THEN
IF(LEVSET(I+2,1).E@.1.AND.LEVSET(I+1,J-1).EQ.1)

1 IP(4, IND) = -IP(4,INID
ELSE
IF(LEVSET(2,J).EQ.1.ANDLLEVSET(I+1,J-1).EQ.1)
1 IP(4,IND) = -IP(4, INID
END IF
END IF

IF(J.LT.JEM1) THEN
IF(I.GT.1) THEN
IF(LEVSET(I-1,J+1).EG.1.AND.LEVSET(I,J+2).EQ.1)

1 IP(2, IND) = -IP(2,INID
ELSE
IF(LEVSET(IEM1,J+1).EQ.1.AND.LEVSET(I,J+2).EQ.1)
1 IP(2, IND) = -IP(2, INID
END IF

IF(I.LT.IEM1) THEN
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IF(LEVSET(I+2,J+1).EQ.1.AND.LEVSET(I+1,J+2).EQ.1)

1 IP(3,IND) = -IP(3,IND)
ELSE
IE(LEVSET(2,J+1).EQ.1.AND.LEVSET( I+1,J+2).EQ.1)
1 IP(3,IND) = -IF(3,IND)
END IF
END IF
D0 17 K=5,9
17 IPCK,IND) = 0
ELSE

IF(LEVSET(I+LSKIP2,J+LSKIP2).EQ.LEV) THEN
IF(J.GT.1) THEN
IF(I.GT.1) THEN
IF(LEVSET(I-LSKIP,J).LE.LEV

1 .AND.LEVSET(I,J-LSKIP).LE.LEV)
1 IP(1,IND) = -IP(1,INI)
ELSE
IE(LEVSET( IE-LSKIP,J) .LE.LEV
1 .AND.LEVSET(I,J-LSKIP).LE.LEV)
1 IP(1,IND) = -IP(1,IND)
END IF

IE(I.LT.IE-LSKIP) THEN
IF(LEVSET(I+2ALSKIP,J) .LE.LEV

1 .AND.LEVSET( I+LSKIP,J-LSKIP) .LE.LEV)
1 IP(4,IND) = -IP(4,IND)

ELSE

IE(LEVSET(LSKIP,J).LE.LEV

1 .AND.LEVSET(I+LSKIP,J-LSKIP) .LE.LEV)
1 IP(4,IND) = -IP(4,IND)

END IE

END IF

IF(J.LT.JE-LSKIP) THEN
IF(I.GT.1) THEN
IF(LEVSET(I-LSKIP,J+LSKIP).LE.LEV

1 .AND.LEVSET(I,J+24LSKIP) .LE.LEV)
1 IP(2, IND) = -IP(2,INI)
ELSE
IE(LEVSET(IE-LSKIP,J+LSKIP) .LE.LEV
1 .AND.LEVSET(I,J+24LSKIP) .LE.LEY)
1 IP(2,IND) = -IP(2, IND)
END IF

IF(I.LT.IE-LSKIP) THEN
IF(LEVSET(I+2ALSKIP,J+LSKIF).LE.LEV

1 .AND.LEVSET( I+LSKIP,J+2ALSKIP) .LE.LEW)
1 IP(3, IND) = -IP(3,INI)

ELSE

IF(LEVSET(LSKIP,J+LSKIP).LE.LEV

1 .AND.LEVSET( I+LSKIP,J+24LSKIP).LE.LEV)
1 IP(3, IND) = -IP(3,IND)

END IE

END IF

ELSE IF(LEVSET(I+LSKIP2,J+LSKIP2).EQ.LEV-1) THEN
IF(J.GT.1) THEN
IF(I.GT.1) THEN
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IF(LEVSET(I-LSKIF,J).EQ.LEV

1 .OR.LEVSET(I,J-LSKIP).EQ.LEV)
1 IP(1, IND) = -IP(1,INID
ELSE
IF(LEVSET(IE-LSKIF,J).EQ.LEV
1 .OR.LEVSET(I,J-LSKIP).EQ.LEV)
1 IP(1,IND) = -IP(1,INI)
END IF

IF(I.LT.IE-LSKIP) THEN
IF(LEVSET(I+2ALSKIP,J).EQ.LEV

1 «OR.LEVSET(I+LSKIF,J-LSKIF).EQ.LEWV)
1 IP(4,IND) = -IP(4,INID

ELSE

IF(LEVSET(LSKIP,J).EQ.LEV

1 «OR.LEVSET(I+LSKIP,J-LSKIP).ER.LEW)
1 IP(4, IND) = -IP(4, INDD

END IF

END IF

IF(J.LT.JE-LSKIP) THEN
IF(I.GT.1) THEN
IE(LEVSET(I-LSKIP,J+LSKIP).EQ.LEV

1 .OR.LEVSET (I, J+24LSKIP).EQ.LEV)
1 IP(2, IND) = -IP(2, INI)
ELSE
IF(LEVSET( IE-LSKIP,J+LSKIP) .EQ.LEV
1 .OR.LEVSET(1,J+2ALSKIP).EQ.LEV)
1 IP(2, IND) = -IP(2, INI)
END IF

IF(I.LT.IE-LSKIP) THEN
IF(LEVSET(I+2ALSKIP,J+LSKIP).EQ.LEV

1 .OR.LEVSET( I+LSKIP,J+24LSKIP).EQ.LEV)
1 IP(3,IND) = -IP(3, IND)
ELSE
IE(LEVYSET(LSKIF,J+LSKIP) .EQ.LEV
1 .OR.LEVSET( I+LSKIP,J+2ALSKIP).EQ.LEV)
1 IP(3,INDD = -IP(3,IND)
END IE
END IF
END IF
IF(LEVSET( I+LSKIP2, J+LSKIP2) .LT.LEV)
1 IP(5,IND) = IPSET(I+LSKIP2,I+LSKIP2)
IF(LEVSET(I,J+LSKIP2) .LT.LEV)
1 IP(6,IND) = IPSET(I,J+LSKIP2)
IE(LEVSET( I+LSKIP2,J+LSKIP) .LT.LEW)
1 IP(7,IND) = IPSET(I+LSKIP2,I+LSKIP)
IF(LEVSET( I+LSKIP,J+LSKIP2) .LT.LEV)
1 IP(8, IND) = IPSET(I+LSKIP,J+LSKIP2)
IE(LEVSET( I+LSKIP2,1) .LT.LEV)
1 IP(9,IND) = IPSET(I+LSKIP2,I)
END IF
END IF

23 CONTINUE
ILEVP(2,LEV) = IND
WRITE(LUG,%)* ILEVP(2,LEV)=‘,ILEVP(2,LEV)

- 249 -
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30 CONTINUE

C
C INTERPOLATION EC POINTER
IND = 0
D0 47 LEV = 2,LMAX
LEVM1 = LEV-1
LSKIP = 24k(LEV-1)

LSKIP2 = LSKIP/2

IPRIMX(1,LEV-1) = IND+1

D0 45 I=1,IEM1,LSKIP

DO 45 J=1,JEM1,LSKIP

IF(LEVSET( I+LSKIP2,J+LSKIP2) .EQ.LEY) THEN
IF(LEVSET(I,J+LSKIP2) .EQ.LEV-1) THEN

IND = IND+1

IPBI(1,IND) = IPSET(I,J+LSKIP)
IPBI(2,IND) = IPSET(I,J+LSKIP2)
IPRI(3,IND) = IPSET(I,I)

END IF

IF(LEVSET( I+LSKIP2,J+LSKIP) .EQ.LEVM1) THEN
IND = IND+1
IPBI(1,IND) = IPSET(I+LSKIP,I+LSKIP)
IPBI(2,IND) = IPSET(I+LSKIP2,J+LSKIP)
IPEI(3,IND) = IPSET(I,J+LSKIP)

END IF

IF(LEVSET( I+LSKIP,J+LSKIP2) .EQ.LEVM1) THEN
IND = IND+1
IPRI(1,IND) = IPSET(I+LSKIP,I)
IPRI(2,IND) = IPSET(I+LSKIP,J+LSKIP2)
IPRI(3,IND) = IPSET(I+LSKIP,J+LSKIP)

END IF

IE(LEVSET( I+LSKIP2,1) .EQ.LEVM1) THEN
IND = IND+1
IPRI(1,IND) = IPSET(I,I)
IPRI(2,IND) = IPSET(I+LSKIP2,I)
IPRI(3,IND) = IPSET(I+LSKIP,I)

END IE

END IF

45 CONTINUE
IE(IPBIMX(1,LEV-1).GT.INI) THEN
IPRIMX(1,LEV-1) = 0 :
IPRIMX(2,LEV-1) = 0
ELSE
IPRIMX(2,LEV-1) = IND
END IF
47 CONTINUE

[oe B o

FARFIELD & SOLID WALL EC POINTERS
IND = 0
I1=0
30 I = I+l
IF(IPSET(I,JE).GT.0) THEN
IND = IND+1
IPRU(2, IND) = IPSET(I,JE)
IECIND.GT.1) THEN



2-0 AIRFOIL EULEK CODE FOR 0-TYPE MESHES

5l

33

IPRU(3, IND-1) = IPBU(Z,IND)
IPRU(CL, IND) = IPBU(2,IND-D)
END IF -
END IE

IF(I.LT.IE) GO TO S50

IPRU(1,1) = IPRU(1,INID
IPBUMX = IND-1

ND

= I+l

F(IPSET(I,1).GT.0) THEN
IND = IND+1
IPRR(2, IND) = IPSET(I,1)
IF(IND.GT.1) THEN

I
I
I
I

IPRR(3, IND-1) = IPBE(Z, IND)
IPBR(1,IND) = IPER(2Z,IND-1)
END IF
ENDY IF

IF(I.LT.IE) GO IO 51

IPRB(1,1) = IPBR(1,INI
IPBBMX = IND-1

D0 52 IND=1, IPBUMX

I1 = IPBUCI,IND)
12 = IPBU(2, IND)
I3 = IPBU(3,IND)

CALL GEOBCEL(I1,I2,13,ICEL1,ICEL2)
IPRU(1, IND) = ICELI

IPRU(2, IND) = ICEL2

IPRU(3, IND) = 2

CONT INUE

00 53 IND=1, IPREMX
I1 = IPER(1,IND)
12 = IPBB(2,IND)
I3 = IPRE(3,IND)
CALL GEOBCEL(I1,I2,I3,ICEL1,ICEL2)
IPRR(1, INI) = ICELl
IPRR(2, IND) = ICEL2
IECIND.GT.1) THEN
IPER(3, INI) = 4
ELSE
IPER(3,IND) = 5
END IF
CONT INUE

OTHER POINTERS
IFRDMX = 0
IFBRTMX = 0

RETURN
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END

LINK COMMAND EILE: GEOLINK.COM

[yr B B oy |

$LINK GEOCREAT,GEOBCEL,GEQIN3,GEOFONT4,GEOOUT3

(3}

ChrARAXRARARAKRAKARKRAKRAXAKKARARAKAKKARKAKAKAKAKARKAAAKAKAKKAKAKKX
C
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12345678901234567890123456789012345678901234567890123456789012343
C
ChhhkkkkrkkhhhkhkhkrrkrkhhhkhhrAkkAkhkkkkhkikkhkhkhkkkhhkhrhkkrkk

c
C
c ,
c PROGRAM:0-MESH EULERCELL
C
C PROGRAM EULERCELL SOLVES THE 2-D EULER EGN‘S
c USING A CELL POINTER BASED VERSION OF
c NI‘S METHOD. IT INCLUDES THE CAPABILITY
c OF ANY NUMBER OF SUBDOMAINS.
c
c
c READ INPUT PROPERTIES
CALL INPUT2
c
c CALCULATE CONSTANTS CONTAINING GAMMA
CALL GAMMAS
C
c INITIALIZE FLOW EIELD TO UNIFORM ELOW
CALL INITIA
c
c SOLVE EULER EGN‘S USING NI‘S METHOD
CALL NI
c
c QUTPUT EFINAL SOLUTION
CALL OUTPUT3
C
STOP
END
c
C INCLUDE FILE: GAM.INC
c
COMMON/GAN/ GAMMA,HTOT,
1 GM1,GM1D2,GM10G,GM1D2G,
2 GP1DG,GP1D2G,GH3
c
c INCLUDE EILE: INPT.INC
c

COMMON/ INPT/ AMES,CEL,AVISCE,EXITF,ITIN,
ISTART,NSTART, NMAX, LMAX,
LSTOP,DELSTP, IPRNT1, IPRNT2,
WCES(4) ,DELTA,AK, YO,

IE,JE, IC1,IC2,IC2, IE2, JE2,
ALPHA, ROES, APES, UES, VES,
NEINSH, DELMAX1(5),
ICONST(50),RCONST(50),
INSSWT,REO,PR,CSTAR, TREF
COMMON/ INPTLAB/GLAREL1 , GLAREL2, RLABEL1, RLABEL2
CHARACTER GLAREL1%30,GLAREL2%100,RLABEL1%10,RLAREL2A100

WU Wk

INCLUDE FILE: LUNITS.INC

(e M ov I wp
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COMMON/LUNITS/LUL,LUZ,LU3,LU4,LUS,LUG,LU7

c INCLUDE FILE: MAIN.INC

COMMON/MAIN/T,DT,DTE(82) , DELMAX(5) , IMAX,
10MAX,LEVP(2,5) , IPRINX(2,5) , IPRUMX, IPEDMX,
IPBTNX, IPBRMX,((10,8424) ,IP(9,10816), IPEI(3,257),
IPRU(3,257), IPR(3,9), IPBT(3,33), IFBR(3,257),
QIB(4,257),EDT(8424)

> Wby

INCLUDE FILE: MET.INC

o0

COMMON/MET/ DV,DL,DM,DXDXI,DYDXI,DXDET,DYDET,
1 DX IDX,DXIDY,DETDX,DETDY,AJAC
COMMON/MET2/ IWP1(258),TX(258),TY(258),

1 RC(258),TSCL(258) ,S5CL(258)

C INCLUDE FILE: POINT.INC

COMMON/POINT/ 11,12,13,I4,INC,IN1,IN2,IN3, IN4,
1 y151,VIS2,vIS3,VIs4, IVIS

c INCLUDE FILE: SOLV.INC

COMMON/SOLY/ E(4,4),G(4,4),DELU(4) ,DELE(4) ,DELG(4)

SUBROUTINE: BRDSMIH

L3z I o N p]

SUBROUT INE RI'SMTH(LEV)

This subroutine smooths the far field and solid
wall boundary points. Points are always smoothed
on the lowest level in which the two adjoining cell
to the boundary exist. This is consistent with the
internal point smoothing.

For the far field boundary the smoothing used is
the corresponding one model applied along the boundary.
For the solid wall boundary two formulations are

possible:

Type 1: The same as the farfield boundary with a
ramp increase in smoothing around the t.e.

Type 2: A standard internal smoothing using extrapolated
information to define an imaginary line of points
inside the wsll. In this case the smoothing is not
increased in the t.e. region.

OoOOOo0OOO000O0O0000000n00

INCLUDE “MAIN.INC’
INCLUDE 'POINT.INC’
INCLUDE “MET.INC’
INCLUDE “INPT.INC’
INCLUDE ‘GAM.INC’

DIMENSION GN1(4),QN2(4),Q0AVE2(4)

- 254 -
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[or M o]

[ B v

OOO0O0O000n0n

6

Far Field boundary point smoothing using 3 1-I' smoothing
tangent to the boundary
D0 10 I=1, IPRUMX

Is point to be smoothed on this level?
ICONT1 = 0
IF(IPBU(1,I).GE.LEVP(1,LEV).AND.IPRU(1,I).LE.LEVP(2,LEV))THEN
IF(IPRU(2,I).LE.LEVP(2,LEV)) ICONT1 =1
ELSE IF(IPRU(2,I).GE.LEVP(1,LEV).AND.IPRU(2,I).LE.LEVP(2,LEV))
1 THEN
IF(IPRU(1,I).LE.LEVP(2,LEV)) ICONT1 =1
END IF

If it is then calculate and a3dd contributions
for each cell surrounding the point.
IF(ICONT1.EQ.1) THEN

First cell:
CALL CELPOINT(IPRU{1,1))
CALL MEIRC4
CALL CTIME
AVIS = AVISCEADTA(DL+DM)/DV

DO 4 K=1,4
KP2 = K+2
KPG6 = K+6

Q(KP6, I3) = Q(KPG,I3)+0,1254AVISA(Q(KF2, I2)-Q(KP2, I3))
Second Cell: )
CALL CELPOINT(IPRU(2,I))

CALL METRC4

CALL CTINME

AVIS = AVISCEADTA(DL+DM)/DV

00 6 K=1,4
KP2 = K+2
KPG = K+6

Q(KPG,I2) = Q(KPG, I2)+0.125AAVISA(Q(KP2, I3)-Q(KP2,I2))
END IF

10 CONTINUE

Solid Wall Boundary point Smoothing
Possible forms:
IBCOND = 1 1-D tangent smoothing model
with ramp increase at t.e.
= 2 For reflected points and standard
internal point smoothing model.

Constants
IRCONDN = 1
JTESHTH = §

TECOEF = 4.0
IF(IRCOND.ER.2) GO TO 40
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C Type 1: 1D smoothing formulstion
DO 30 I=1,IPBREMX

cec IF(IPRR(3,I).NE.4) GO IO 30

c

c Is point to be smoothed on this level?
ICONT1 = 0

IF(IPBB(1, 1) .GE.LEVP(1,LEV) .AND. IPBB(1, 1) .LE.LEVP(2,LEV) ) THEN
IE(IPEB(2,1).LE.LEVP(2,LEV)) ICONTI = 1
ELSE IE(IPRR(2,I).GE.LEVP(1,LEV).AND.IPER(2,1).LE.LEVP(2,LEV))
1 THEN
IE(IPBR(1,1).LE,LEVP(2,LEV)) ICONTI = 1
END IF

If yes, calculate and add contributions form
both cells surrounding the cell
IFC(ICONT1.ER.1) THEN

[y Nl

C First cell:
CALL CELPOINT(IPBRR(1,I))
CALL METRC4
CALL CTIME
AVIS = AVISCEANTA(DL+DNM)/DIV

c Ramp smoothing near t.e.
IF(I.LE.JTESMTH+1) THEN
AVIS = (1.0+TECOEFAFLOAT(JTESMTH-1I+1)/FLOAT(JTESMTH))AAVIS
ELSE IF(I.GE.IPBBMX-JTESMTH+1) THEN
AVIS = (1.0+IECOEFAFLOAT(I+JTESMIH-IPERMX-1)
1 /ELOAT(JTESHTH) ) AAVIS
ENDN IF

D0 24 K=1,4
KP2 = K+2
KPG = K+6 :
R(KP6,14) = Q(KP6,I4)+0.254xAVISA(Q(KP2, I1)-G(KP2, I4))
24 CONTINUE

[y B op]

Second cell:
CALL CELPOINT(IPEB(2,I))
CALL METRC4
CALL CTIME
AVIS = AVISCEADTA(OL+DM)/IV

C Ramp soothing near t.e.
IF(I.LE.JTESMTH+1) THEN
AVIS = (1.0+TECOEFAFLOAT(JTESMTH-I+1)/FLOAT(JTESMIH))XAVIS
ELSE IF(I.GE.IPBBMX-JTESMTH+1) THEN
AVIS = (1.0+TECOEFAFLOAT(I+JTESMTH-IPREMX-1)
1 /FLOAT (JTESMTH) ) AAVIS
END IF

D0 26 K=1,4
KP2 = K+2
KP6 = K+6
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[ap B o]

[0 I w]

[or BN o}

a0

Q(KP6,I1) = Q(KP6,I1)+0.25kAVISA(Q(KP2,I4)-Q(KF2,11))
26  CONTINUE

END IF

30 CONTINUE

RETURN

Type 2: Reflection wall smoothing
40 CONTINUE
D0 70 I=1, IPREMX
IF(IPBB(3,1).NE.4) GO IO 70

Is
ICONTI]

this point to be smoothed on this level?
=0

IF(IPBB(1,I).GE.LEVP(1,LEV) .AND.IPBR(1,I).LE.LEVP(2,LEV))THEN
IE(IPBB(2,I).LE.LEVP(2,LEV)) ICONT1 =1
ELSE IF(IPBR(2,I).GE.LEVP(1,LEV).AND.IPBR(2,I).LE.LEVF(2,LEV))

1

THEN

IE(IPBB(1,I).LE.LEVP(2,LEV)) ICONTl = 1

END IF

If

Yes, calculate and add contributions form both cells

IF(ICONT1.EG.1) THEN

J1
J2

J3

TMP1
IMP2

DSl =

IMP1
TMP2

ps2 =

IMP1
TMP2
INP3
IMP4

pxXns

CALL
CALL
CALL
AVIS

Calculate surface tangent vector (dx,dy)

ARS(IP(1,IPER(1,1)))
ARS(IP(4,IPRB(1,1)))
ABS(IP(4,IPRR(2,1)))

@(1,J2)-6¢1,J1)
((2,J2)-0¢2,J1)

SQRT(TMP1ATHP1+TMP2ATMP2)
@(1,J3)-6(1,12)
0(2,33)-0(2,12)

SART(TMP1ATMP1+TMP2ATHP2)

DS1+0S2
DS2/(DS1ATMPL)
(DS2-DS1)/(DS1ADS2)
DS1/(IS2ATHPL)

W u uwn

=Q(1,J1)ATMP2+Q(1,J2)ATMP3+R(1,J3)ATMP4
-Q(2,J1)ATMP2+Q(2,J2)ATMP3+Q(2,J3) ATMP4
SQRT(DXDSADXDS+DYDSADYDS)

DXDS/TMP1
DYDS/THMP1

First cell:

CELPOINT(IPER(1,1))
METRC4

CTIME

= AVISCEADTA(DL+DIM) /DY
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c Extrapolate r,p,h0 and reflect u,v

P4 = GM1A(Q(6,I4)-0.34(Q(4,I4)A0(4, I4)+Q(5,I4)40(5,14))/0(3,14))
P3 = GMl14(Q(6,13)-0.54(Q(4,I3)4Q(4,I3)+8(5, I3)x0(5,13))/0(3,13))
PI4 = P3-2.4(P3-P4)

H4 = (Q(6,I4)+P4)/Q(3,14)
H3 = (Q(6,I3)+P3)/Q(3,13)
HI4 = H3

VELI3 = (Q(4, I3)ADX+Q(S, I3)A0Y)/Q(3,I3)
VELN3 = (-Q(4, I3)ADY+Q(S, I3)ADX)/Q(3,13)

UI4 = VELT3ADX+VELN3ADY

YI4 = VELT3ADY-VELN3ADX

RI4 = PI4/(GM1DGA(HI4-0.54(UT4AUT4+VI4AVI4)))

EI4 = RI4XHI4-PI4

P1 = GM1x(Q(6,11)-0.54(0(4,I11)%Q(4, 11)+Q(5, I1)A8(5,11))/0(3,11))

‘P2 = GH1A(Q(6,12)-0.54(Q(4, I2)%Q(4, I2)+(5, I2)xQ(5, I2))/B(3, I2))
PI1 = P2-2.A(P2-P1)

H1 = (@(6,I1)+F1)/0(3,11)

H2 = (R(6,I2)+P2)/0(3,12)
HI1 = H2

(
(
VELT
VELN
uIl
VIl

RI1
Ell

(Q(4, I2)ADX+R(5, I2)ADY)/0(3, I2)
(-Q(4, I2)ADY+R(S, I2)ADX) /Q(3, I2)
VELT2ADX+VELN2ADY

VELT2xDY-VELN2ADX
PI1/(GM1DGA(HI1-0.5ACUI1AUT1+VI1AVI1)))
RILAHI1-PI1

o u uearan

c Find reflected cell center values
QAVE2(1) = 0.254(Q(3,11)+@(3,I4)+RI1+RI14)
QAVE2(2) = 0.254(Q(4,I1)+Q(4,I4)+RI1AUI1+RI4AUI4)
QAVE2(3) = 0.254(0(5,I1)+Q(5,I4)+RI1AVI1+RI4AVI4)
QAVE2(4) = 0.25%(0(6,I11)+0(6,I4)+EI1+EI4)

C Add contribution
10 64 K=1,4
KP2 = K+2
KP6 = K+6
QAVEL = 0.23A(Q(KP2,I1)+Q(KP2, I2)+Q(KP2, I3)+Q(KP2,14))

Q(KP6,14) = Q(KP6,14)+0.25kAVISA(QAVEL+RAVE2(K)-2.4Q(KP2, I4))
64 CONTINUE

C
C Second Cell:
CALL CELPOINT(IPER(2,1))
CALL METRC4
CALL CTIME
AVIS = AVISCEADTA(DL+DIM)/DV
c
C Extrapolate r,p,h0 and reflect u,v

P4 = GM1A(Q(6,I4)-0.54(Q(4, I4)4Q(4,14)+Q(5, I4)%Q(5,14))/0(3,14))
P3 GM1A(Q(6,13)-0.54(Q(4, I3 4Q(4, I3)+Q(5, I3)AQ(5,13))/0(3,I3))
PI4 = P3-2,x(P3-P4)

H4 = (Q(6,I4)+P4)/Q(3,I4)
H3 = (Q(6,I3)+F3)/0¢3,13)
HI4 = H3
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o0

(3]

66

70

VELTI3 = (Q(4,I3)ADX+Q(5, I3)ADY)/Q(3,1I3)

VELN3 = (-Q(4, I3)ADY+Q(5, I3)ADX)/Q(3,1I3)

UI4 = VELT3ADX+VELN3ADY

VI4 = VELT3ADY-VELN3ADX

RI4 = PI4/(GMIDGA(HI4-0.5A(UT4AUT4+VI4AVI4)))

EI4 = RI4AHI4-PI4 —

Pl = GMlA(Q(6,I1)-0.54(Q(4,I1)4Q(¢4,I1)+Q(5,I1)40(5,11))/0(3,1I1))

P2 = GM1A(Q(6,I2)-0.54(Q(4, I2)AQ(4, I2)+Q(5, I2)4Q(5, 12))/Q(3,12))
PI1 = P2-2.4(P2-Pl)

H1 = (Q<6,I1)+P1)/Q(3,I1)
H2 = (8(6,I2)+P2)/Q(3,I2)
HI1 = H2

VELI2 = (Q(4, I2)ADX+Q(3, I2)A0Y)/Q(3,12)
VELN2 = (-Q(4, I2)ADY+Q(S, I2)ADX) /Q(3, I2)

UIl = VELT2ADX+VELNZADY

VIl = VELT24DY-VELN2ADX

RI1 = PI1/(GM1DGA(HI1-0.3A(UIlAUI1+VI1AVI1)))
EIl1 = RIIAHI1-PIl

[ | B T I 1]

Find reflected cell center values
QAVE2(1) = 0.23k(Q(3,I1)+Q(3,I4)+RI1+KI14)
QAVEZ2(2) = 0.25k(Q(4,11)+Q(4,I4)+RI1AUI1+RI4AUI4)
QAVEZ2(3) 254€Q(5, I1)+0Q(3, I4)+RI1AVI1+RI4AVI4)
QAVE2(4) = 0.254(Q(6,I1)+Q(6,I4)+EI1+EI4)

" uu u

Add contribution
00 66 K=1,4
KP2 = K+2
KP6 = K+6
QAVEl = 0.25A(Q(KP2,I1)+Q(KP2,I2)+Q(KP2, I +Q(KP2,I4))

Q(KP6,I1) = Q(KPG,I1)+0.25KAVISA(QAVEI+QAVE2(K)-2.4Q(KF2,1I1))
CONTINUE

END IF

CONT INUE

RETURN
END

OO0 [ap I

[ep i o}

SUBROUTINE: CELPOINT

SUBROUTINE CELPOINTI(I)

Subroutine CELPOINT sets up local cell pointer names
for the current cell I from the cell pointer system.
In addition to the definition of the cell smoothing

switches are set for the 4 corner nodes.

INCLUDE ‘“MAIN.INC’
INCLUDE ‘POINT.INC’

Define correr nodes
ABRS(IP(1,1I))
ABS(IP(2,1I))

11

Ia
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I3
I4

ABS(IP(3,1))
ARS(IF(4,1))

C lefine interpolation pointers
INC = IP(5,D)
IN1 = IP(6,D)
IN2 = IP(7,D)
IN3 = IP(8,D)
INd = IP(9,D)

Set smoothing switches based on the sign
of the corner pointers
IF(IP(1,I).GE.0) THEN
VISl = 1.0
ELSE
VISl
END IF .
IF(IP(2,1).GE.O) THEN
vis2 = 1.0
ELSE
Vis2 = 0.0
END IF
IF(IP(3,1).GE.0) THEN
VIS3 = 1.0
ELSE
VIS3 = 0.0
END IF
IF(IP(4,1).GE.0) THEN
VIS4 = 1.0
ELSE
ViS4 = 0.0
END IF
IVIS = VISI+VIS2+VIS3+VIS4

coon

0.0

RETURN
END

c SUBROUTINE: CTIME

SUEROUTINE CTIME

Subroutine CTIME calculates the maximum stable time step
for the current cell based on the following equation:

(o7 = CELAMINL DV/(TUAY -VAX [+AADL), DV/CIUAY -ViX  1+AXDIM) ¥
MAX ET ET X1 XI

INCLUDE “MAIN.INC’
INCLUDE ‘GAM.INC’
INCLUDE “MET.INC’
INCLUDE “ INPT.INC’
INCLUDE ‘POINT.INC’
INCLUDE ‘LUNITS.INC’
DIMENSION GAVE(4)

- 260 -
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ao

lop M o B oy}

[ar B o] (oI er B or B o |

[or M uw |

[ 8]

1

FIND MIN OF DX/(|U|+A) AND DY/(|V|+A)
00 2 K=1,4
KP2 = K+2
IE(INC.EG.0) THEN

ELSE
QAVE(K) = Q(KP2,INC)

END IF

CONTINUE

UTEMP

VIENF

A2

RAVE(2)/QAVE(]1)
BAVE(3)/QAVE(D)
GAMMAAGM1A(QAVE(4) /QAVE(1)

=0.54(UTEMPAUTEMP+VTEMPAVTIENP) )

IF (A2.LT.0.0) THEN
WRITE(LULl,4) ‘k% ERROR IN CTIME A2<0, I=’
STOP

END IF
A = SQRI(A2)
DTA = DV/(ABS(UTEMPADYDET-VTEMPAIXDET) +AADL)

DIB = DV/(ARS(UTEMPADYDXI-VTEMPADXDXI)+AADN)
DT = CELAMIN(DTA,DTE)

RETURN
END

SUBROUTINE: DELTEG

SUBROUTINE DELTEG

THIS SUBROUTINE CALCULATES DELF AND DELG
USING THE VERY EFFICIENT DELTA FORM

INCLUDE ‘MAIN.INC’

INCLUDE ‘MET.INC’

INCLUDE ‘SOLV.INC’

INCLUDE ‘GAM.INC’

INCLUDE ‘POINT.INC’
DIMENSION QAVE(4),DE(4),DG(4)

CALCULATE THE CELL AVERAGE U
o1 K=1,4
KP2 = K+2
IE(INC.ER.0) THEN

QAVE(K) = 0.234(Q(KP2, I1)+Q(KP2, I2)+Q(KP2, I3)+R(KP2,14))

ELSE

QAVE(K) = Q(KP2,INC)
END IF
CONTINUE

FIND DF AND' DG
Wl = QAVE(2)/GAVE(1)

H
28]
)

QAVE(K) = 0.254(Q(KP2, I1)+Q(KPZ, I2)+Q(KP2, I3)+Q(KP2, I4))
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QRAVE(3)/GAVE(1)
GAMMAAQAVE(4) /QAVE(1) -GMID2A (W1AW1+W2AW2)
DELU(2)-WI1ADELU(1)

DELU(3)-W2ADELU(1)

W1A(OELU(2)+W4)

W7 = W2k(DELU(3)+W3)

W8 = GMlA(DELU(4)-0.54(W6+W7))

W9 = DELU(4)+UB-W3ADELU(1)

DTV = DI/DV

wa
W3
Wa
WS
Wwe

LI L N TR I TR 1 I 1}

DE(L)
DE(2)
DE(3)
DE(4)

DELU(2)

We+W8

W2ADELU(2) +W1XkWS
W3ADELU(2) +W1AW9

DG(1)
DG(2)
0G6(3)
[G(4)

DELU(3)

DE(3)

W7+W8

W3ADELU(3) +W2AW9

wu nn

CALCULATE DELE AND DELG
D0 4 K=1,4
DELE(K)
DELG(K)
CONT INUE

(DYDETADE (K)-DXDETADG(K) ) ADTDV
(DXDXIADRG(K) -DYDXIADE (K) )ADTDV

RETURN
END

SUBROUTINE: DELIRS

SUBROUTINE DELTES
This subroutine calculates the Navier-Stokes
viscous terms in 3 manor similar to the artifical
viscousity and adds them to the DU’s.

INCLUDE “MAIN.INC’ :

INCLUDE “MET.INC’

INCLUDE ‘GAM.INC’

INCLUDE ‘POINT.INC’

INCLUDE “INPT.INC’

DIMENSION QAVE(4),DR(4),05(4),DQD0XI(4),0QDET(4),

1 DELR(4),DELS{(4)
Calculate average properties for cell center
00 5 K=1,4
KP2 = K+2
S QAVE(K) = 0.254(Q(KP2, I1)+Q(KP2, I2)+Q(KP2, I3)+Q(KF2, I4))
RAVE = BAVE(1)
UAVE = QAVE(2)/GAVE(1)
VAVE = QAVE(3)/QAVE(1)
TAVE = GAMMAAGM14(QAVE(4)

1 -0.34x(QAVE(2) AQAVE(2) +QAVE (3) AQAVE(3) ) /QAVE(1)) /QAVE(1)
AMUE = (TAVEAX(3./2.))A(1.+CSTAR)/{TAVE+CSTAR)
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[3e I o]

Calculate cell center gradients in coordinate directions
Do 10 K=1,3
KP2 = K+2
DADXI(K)
10 DQRDET(K)

0.5k (Q(KP2, 13)+Q(KP2, 14)-Q(KF2, I1)-Q(KP2, I2))
0.54(R(KP2, 12)+Q(KP2, I3)-Q(KP2, I1)-G(KP2, 14))

W

TI1 = GAMMAAGM1A(Q(6,I1)

1 -0.5k%(Q(4, I1)4Q0(4, I1)+Q(5,I1)4Q¢3,11))/Q(3,11))/R(3,1I1)
TI2 = GAMMAAGM1A(Q(6,I13)

1 -0.5%(Q(4,I12)40(4, I12)+Q(5, I2)X0(5, 12))/0(3,12))/8(3,12)
TI3 = GAMMAAGM1A(Q(6,I3)

1 -0.5%(Q(4, I3 A0(4, I3)+Q(3, I3)AQ(5,I3))/Q(3,13))/Q(3,13)
TI4 = GAMMAAGM1A(Q(6,I4)

1 -0.54(Q(4, 14)4Q(4, I4) +Q(5, I4)4G(5, I4))/Q(3,14) ) /R(3,I4)
DTDXI = 0.5A(TI3+TI4-TI1-TI2)

DTDET = 0.SA(TI2+TI3-TI1-TI4)

c define constants
Cl = 4./3.
€2 = 2./73.
C3 = -AMUE/(RAVEADVAREQ)
C4 = -AMUE/(GM1APRADIVAREQ)

[}

c Calculate stress components
DUDX = DYDETADQDXI(2)-DYDXIADQDET(Z)
1 -UAVEA(DYDETADQDXI(1)-DYDXIADQDEI(1))
DY =-DXDETADQDXI(3)+DXDXIADQDET(3)
1 -VAVEA(-DXDETADADXI(1)+DXDXIADQDET(1))

IXX = C3A(C1ADUDX-C2ADVDY)

TYY = C3x(ClADVIDY-C2ADUDX)

IXY = C3x(-DXDETADQDXI(2)+DXDXIXDQDETI(2)
+DYDETADQDX I(3)-0YDXIADQDET (3)
+(UAVEADXBET-VAVEADYDET ) ADRDXI(1)
-{UAVEADXDX I-VAVEADYDX I) ADQDET(1))

L I e

e ]

c Calculate DR(k) and DS(K)
DR¢2) IXX
OR(3) = TIXY
DR(4) = UAVEATXX+VAVEATXY
1 +CA4k (DYDETADTDXI-DYDXIADTDET)
DS(2) = IXY
Ds(3) = IYY
DS(4) = VAVEATYY+UAVEATIXY
1 +C4&(-DXDETADIOXI+DXDXIADTOET)

W Hn

(v R o}

Calculate DELR(k) and DELS(k)
DT20V = 2.04DT/IV
D0 15 K=2,4
DELR(K) = (DYDETADR(K)-DXDETADS{K))ADTI2DV
DELS(K) = (DXDXIADS(K)-DYDXIADR(K))ALTIDV
15 CONTINUE

[oe B ap ]

Distribute to cell corner nodes
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[ B w I o]

(oo M o} (ow B or B or B uw B oo Y o

o0

[or BN or Bl uw }

ng 2
KP6
Q(KP
Q(KP
Q(KP
Q(KP
CONT

RETU
END

0 K=2,4
= K+6
6,11)
6,12
6,13)
6,14)
INUE

Q(KPG,I1)+0.254(-DELR(K)-DELS(K))
Q(KPG, I2)+0.25k(-DELR(K)+DELS(K))
G(KP6,I3)+0.254(DELR(K)+DELS(K))
Q(KPG, I4)+0.254(DELR(K)-DELS(K))

RN

SUBROUTINE: DELTU

10

o W I

SUER

INCL
INCL
INCL
INCL

IE(I

XA
XR
Xc
XD
YA
YR
YC
YD
DT

Ca
CA
CA
CA

no
DE

co

QUTINE DELTU

Subroutine DELTU performs a flux balance over the current
cell. 1If this is a fine mesh cell then the flux balance
is actually ecalculated, otherwise for coarser mesh cells
simple injection is used.

UDE ’"MAIN.INC’
UDE ’SOLV.INC’
UDE ‘MET.INC’

UDE ‘POINT.INC’

If this is a fine mesh cell the following flux balance
is performed
NC.EQ.0) THEN

Calculate cell side lengths
a(1,I12)-Q(1,1I1)
Q(1,I13)-Q(1,1I2)
ac1,I13)-0(1,14)
Q(1,I14)-Q¢1,11)

(2, I12)-Q(2,1I1)
a(2,I13)-Q(2,12)

(2, I13)-0(2,14)

a2, 14)-0(2,11)

V2 = 0.94DT/IV

Find F and G at the cell corner nodes
LL FINDFG(I1,1)
LL FINDEG(I2,2)
LL FINDFG(I3,3d)
LL FINDFG(I4,4)

Perform flux balance using simple

averaqing alone cell sides

8 K=1,4

LUCK)=DTDV2AC ((ECK, 1) +E(K,2) ) AYA-(G(K, 1) +G{K,2) Y AXA)
-{{F(K,3)+F(K,4) AYC-(G{K,3)+G(K,4) ) AXC)
+((G(K,1)+G(K,4) YAXD-(F(K, 1) +F(K,4))AYI)
-((G{K,2)+G(K,3) )AXRB-(F(K,2)+F(K,3) ) AYR))

NT INUE
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(e e M aw ]

[sp B9 IR wp ]

[ap o BN o I aw B o |

OO0

aom

[ I o]

If this is 3 coarse cell use simple injection
of fine gqrid DU’s for value of flux balance.
ELSE
00 20 K=1,4
DELU(K) = Q(K+6,INC)
END IF

RETURN
END

SUBRROUTINE: EULERWAL

10

SUEROUT INE EULERWAL(LEV)

This subroutine preforms a stream line intergration
of the euler eqn. in natural coordinates to inforce
the solid wall no normal flow boundary condition.

INCLUDE ‘MAIN. INC’
INCLUDE ‘GAM.INC’
INCLUDE ‘INPT.INC’
INCLUDE ‘POINT.INC’
INCLUDE “MET.INC’

DIMENSION PIF1(257),PEX(237),HOEX(257),TIX(257),TY(257),
1 UT(257),DUT(257),0AVE(4)
DIMENSION GN1(4),0N2(4),Q0AVE2(4),Q85AV(6,257)

Calculate pressures at ring of points just inside the
flow ajoining the boundary
[0 10 I=1, IPEEMX

J1 = ARS(IP(3,IPRE(1,I)))

PIPI(I) = GM1k(Q(6,J1)-0.3x(Q(4,J1)4k2+Q(5,J1)xx2)/0(3,J1))
CONTINUE

Calculate extrapolated values at surface
1 .

3
&

II
IIP1

D0 20 I=1,IPREMX+l
IF(I.LE.IPREMX) THEN
JPM1 = ABRS(IP(1,IPER(1,1)))
JP ARS(IP(4, IFRR(1,1)))
JPP1 = ABS(IP(4,IPEE(2,1)))
ELSE
JPM1
JP
JPP1
END IF

ARS(IP(1, IPRR(1,1)))
ARS(IP(4, IPRE(1,1)))
ARS(IP(4, IPRE(2,1)))

nun

calculate normal vector
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o

11

TMP1 = Q(1,JP)-Q(1,JFM1)

TMF2 = Q¢(2,JP)-Q(2,JIPH1)

D81 = SQRT(TMPIATMPI+TMPIATMP2)
IX1 = THP1/DS1

IYl = TMP2/DS1

IMP1 = Q(1,JPP1)-Q(1,JF)

IMP2 = Q(2,JFPP1)-Q(2,JF)

nonn

082 = SERT(THP1ATMP1+IMP2ATMPZ)

IX2 = THP1/DS2

TY2 = TMP2/DS2

IMP1 = DIS1+0S2

IMP2 = DG2/(IIS1AIMPL)

IMP3 = (DS2-DS1)/(DIIS1ANG2)

IMP4 = DS1/(DS2ATMPL)

RC = 0.3ATMP1/SART ((TX2-TX1)AA2+(TY2-TY1)AA2)

DXDS = -Q(1,JPM1)ATMP2+R(1,JP)ATMP3+Q(1,JPP1)ATHF4
nyYns = -Q(2,JPM1)ATMP2+Q(2,JP)ATMP3+Q(2,IJPP1)ATHP4
TMP1 = SGRT(DXDSADXDS+DYDSADYDS)

oX = DX[S/TMFP]
oY = DYDS/THP1
IF(I.EQ.1) THEN
DXTHP = DX
DYTMP = DY
X = TX2
ny = TY2
RC = 1.E+20
ELSE IF(I.EQ.IPBEMX+1) THEN
X = IX1
ny = 1Yl
RC = 1.E+20
END IF

ONX
ONY

=IrY
X

Search for intersection of normal line and ring

APl
AP2
BP1
RP2

8(1,Jp)
DINX
Q(2,Jp)
IINY

CONTINUE
JIN ABS(IP(3, IPRR(1,II)))
JNP1 = AES(IF(3,IPRB(1,IIF1)))

Al
A2
Rl
B2

RC1,IN)
R¢1,INP1)-Al
R(2,IN)
@(2,INP1)-E1
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DEL = AP2AR2-BPZAAZ
T = (AP24{RF1-B1)-EP2k(AF1-Al))/DEL
ITMP = 0
IF(T.LT.0.0) THEN
ITMP = 1
IIPl = II
IF(II.GT.1) THEN
II = II-1
ELSE
II = IPRBMX
END IF
ELSE IF(T.GT.1.0) THEN
ITHF = 1
IT = IIFl
IF(IIP1.LT.IPEREMX) THEN
IIP1 = IIPl1+l
ELSE
IIP1 = 1
END IF
END IF
IF(ITHP.ER.1) GO IO 11

8 = (A24(RP1-Bl)-B2A(AP1-A1))/DEL
PINT = PIPI(ID)+TA(PIP1(IIF1)-PIP1(ID))
TMP1 = (Q(6,IN)+PIP1(ID))/Q(3,IN)

TMP2 = (Q(6,INP1)+PIP1(IIF1))/Q(3,INF])
HOINT = THP1+TA(IMF2-THP1)

nouon

0o 12 K=1,6
QSAV(K, I) = Q{K,IN)+TA(Q(K, INF1)-Q(K,IN))
12 CONTINUE

Extrapolate to surface using normal momentum eqn
for pressure and zeroth order extrapolation for
total enthalpy
PEX({I) = PINT
HOEX({I) = HOINT
IF(I.GT.1) THEN
IX(I) = IX
TY(I) = DY
ELSE
X(1)
TY(1)
END IF
UT(I) = (DXAQ(4,JP)+DYAGQ(S5,JF))/Q(3,IF)
PEX(I) = PINT-G(3,JP)AUT(I)AUT(I)AS/RC
20 CONTINUE

g NN wel

DIXTHP
DYTMP

C Correct t/e pressure to average of upper and lower

N points just upstream of t/e ahd set tangent to bisector
PEX(IPREMX+1) = 0.SA(PEX(1)+PEX(IPBEMX+1))
HOEX( IPRRMX+1) = 0.SA(HOEX(1)+HOEX(IPERMX+1))
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Low I ae B e By

Ler]

o

ccc

30

40

TX( IPBEMX+1) = -TY(1)

TY(IPERMX+1) = IX(D)

IP = ARS(IP(4,IPER(1,1)))

UTCIPREMX+1) = (TX(IFREMX+1)4@(4,JF)

1 +TY(IFRERMX+1)AQ(5,TP))/0(3,TF)
PEX(1) = PEX(IPERMX+l1)
HOEX(1) = HOEX({IPREMX+l)
IX(1) = -TX(IPEBMX+l)
TY(1) = -TY(IFBEMX+1)
UT(1) = -UT(IPEEMX+1)

Solve streamline euler eqn.

Zero wall D’s
DO 30 I=1,IPEBMX+1
OUT(I) = 0.0
CONT INUE

SWEEP CELL RY CELL AND' CALCULATE DU’S
o0 40 I=1,IPREMX
IFP1 = I+l
J1 = ARS(IP(1,IPRR(Z,I}))
J2 = ARS(IP(4,IFBE(2,I)))
08 = SERT((Q(1,J2)-0(1,J1))kk2+(Q(2,J2)-0(2,T1))4k%2)

[0 32 K=
KP2 = K+
RAVE(K)

'4

[ N ]
e

0.3k (R(KP2,J1)+R(KP2,32))

2 CONTINUE

UTEMP = RAVE(2)/QAVE(1)

VIEMP = GAVE(3)/BAVE(1)

A2 GAMMAAGM1A(RAVE(4)/0QAVE(1)
1 -0.5x (UTEMPAUTEMP+VTEMPAVIENP))

A SGRT(A2)

DT = CELADS/(SGRT(UTEMPAAZ+VIEMPAXZ) +A)

CHNU = 0.5A((UT(I)&A2-UT(IF1)x%2)
1 +(1./8(3,11)+1./8¢3,J2) )X (PEX(I)-PEX(IP1)))ADI/DS
CHNE = 0.5ACUT(I)+UT(IP1) )ACHNUADT/DS

DUT(I) = DUT(I) +0.5A(CHNU-CHNE)
DUT(IF1) = DUT(IP1)+0.5k(CHNU+CHNE)
CONTINUE

DUT(1) = DUT(1)-DIUT{IPEBMX+1)

Calculate new conditions and correct IB’s
0o 50 I=1, IPRBMX

IF(IPBE(3,1).NE.4) GOTO S0
JP = ARS(IP(4,IFBE(1,I)))
UT(I) = UT(D+DUT(I)
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RNEUW

= PEX(I)/(GM1DGA(HOEX(I)-0.5AUT(I)AUT(I)))

UNEW = TX(DAUT(D)

UNEW = TY(D)AUT(ID)

ENEW = RNEWAHOEX(I)-PEX(I)

C

Q(7,JF) = RNEW -Q(3,JP)

Q(8,JF) = RNEWAUNEW -Q(4,JF)

Q(9,JF) = RNEWAUNEW -Q(5,JF)

Q(10,JP) = ENEW -Q{6,JF)

50 CONTINUE

This section smooths the solid wall boundary points.
Points are always smoothed on the lowest level in
which the two adjoining cell to the boundary exist.
This is consistent with the internal point smoothing.

For the solid wall boundary two formulations are
possible:

IRCOND

0 no smoothing applied, just return

= 1 1-Il tangent smoothing model
‘ The same as the farfield boundary with a
ramp increase in smoothing around the t.e.

= 2 SGtandard internal smoothing model using
reflected points.
A standard internal smoothing using extrapolated
information to define an imaginary line of points
inside the wall. 1In this case the smoothing is not
increased in the t.e. region.

COOOOO0OOO00OOOOOO0OO000O00n0n

Constants
IBCOND = 0
JIESMIH = S
TECOEF = 4.0
IF(IBRCOND.EQ.Q) RETURN
IF(IRCONDLEQR.2) GO TO 140

c
c Type 1: 1D smoothing formulation
0 130 I=1, IPREMX
ccc IF(IPRB(3,1).NE.4) GO TO 130
C
c Is point to be smoothed on this level?
ICONT1 = 0
IF(IPRR(1,1).GE.LEVP(1,LEV).AND.IPEBR(1,I).LE.LEVF(2,LEV))THEN
IF(IPBR(2, I).LE.LEVF(2,LEV)) ICONT1 =1
ELSE IF(IPRR(2,I).GE.LEVP(1,LEV).ANLD.IPRR(2,I).LE.LEVP(2,LEV))
1 THEN
IF(IPRR(1,I).LE.LEVP(2,LEV)) ICONT1 = 1
END IF
C .
C If yes, calculate and add contributions form
c both cells surrounding the cell

IF(ICONT1.EQ.1) THEN
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[ep}

[}

3]

o0

124

126

130

140

First cell:
CALL CELPOINT(IPERE(1,I))
CALL METRC4
CALL CTIME
AVIS = AVISCEADTA(DL+DM)/IV

Ramp smoothing near t.e.
IF(I.LE.JTESHTH+1) THEN

AVIS = (1.0+TECOEEAELOAT(JTESMTH-I+1)/FLOAT(JITESMTH))XAVIS

ELSE IF(I.GE.IPBRMX-JTESMIH+1) THEN
AVIS = (1.0+TECOEFAFLOAT( I+JTESMTH-IFEEMX-1)
/ELOAT{JTESMTH) ) XAVIS
END IF

[0 124 K=1,4
KP2 = K+2
KP6 = K+6
Q(KP6,I14) = Q(KP6,I14)+0.25AAVISA(Q(KP2,I1)-Q(KP2,I4))
CONTINUE

Second cell:
CALL CELPOINT(IPER(2,I))
CALL METRC4
CALL CTIME
AVIS = AVISCEADTA(DL+IM)/IV

Kamp soothing near t.e.
IF(I.LE.JTESMTH+1) THEN

AVIS = (1.0+TECOEFAFLOAT(JTESMTIH-I+1)/FLOAT(JTESMTH))AAVIS

ELSE IF(I.GE.IPEBMX-JTESMTH+1) THEN
AVIS = (1.0+TECOEFAFLOAT(I+JTESMTH-IFEEMX-1)
/FLOAT(JTESHTH) ) AAVIS
END IF

00 126 K=1,4
KP2 = K+2
KP6 = K+b
QIKP6,I1) = Q(KP6,I1)+0.25KAVISA(Q(KP2, 14)-A(KP2,11))
CONT INUE
END IF
CONT INUE

RETURN

Type 2: Reflection wall smoothing
CONTINUE
00 170 I=1, IPRBEMX
IF1 = I+l
IMl = 1I-1
IF(IFBE(3,I).NE.4) GO I0 170

Is this point to be smoothed on this level?
ICONT1 = 0
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IF(IPER(1,1).GE.LEVP(1,LEV).AND. IPBR(]1, I) .LE.LEVP(Z,LEV))THEN
IF(IPRR(2,1).LE.LEVP(2,LEV)) ICONT1 =1
ELSE IF(IPRR(2,I).GE.LEVP(1,LEV).AND.IPER(2,I).LE.LEVF(Z,LEV))
1 THEN
IF(IPER(1, I).LE.LEVP(2,LEV)) ICONTl = 1
ENDII IF

[op B w |

If Yes, calculate and 3dd contributions form both cells
IF(ICONT1.EQ.1) THEN

oo

Calculate surface tamgent vector (dx,dy)
ARS(IF(1,IPEE(1,I)))
ARS(IF(4,IPRE(1,1I)))

ARS(IP(4, IPRE(Z,1)))

Il
J2
J3

o on

TMP1 = Q(1,J2)-8(1,J1)
THP2 = 8(2,12)-8(2,J1)
ISl = SART(TMP1ATMP1+THP2ATHP2)
THP1 = @(1,J3)-@(1,J2)
THP2 = R(2,13)-8(2,J2)
IIS2 = SGRT(TMP1ATMP1+IMP2ATMP2)

IHF1
THF2
TMP3
THP4

D81+062

62/ (DS1ATMP1)
(I82-DS1)/(NS1ALS2)
181/ (S2%TMP1)

DXRS = -Q(1,J1)ATNP2+Q(1,J2)ATMP3+Q(1,J3)ATMP4
-Q(2,J1)ATMP2+Q(2,J2)ATHP3+Q(2,J3) ATNP4

SQART(OXDSAIXDOS+OYDSADYDS)

=]

—

=]

w
nnu

= IXIS/TINP1
oY = DYDS/TMPL

C First cell:
CALL CELPOINT(IPBE(1,I))

OXDXI
0YDXI
DXDET
DYDET
w
L
M

0.54(QSAV(1, )+A(1,I4)-QSAV(]1, IN1)-Q(1,I1))
0.5x{RSAV(2, 1) +R(2, I4)-ASAV(2, IM1)-Q(2,1I1))
0.54(QBAV(1, IN1) +Q5AV(1, I)-G(1,I1)-Q(1,I4))
0.34(@SAV(2, IM1) +@5AV(2, 1) -G(2,I1)-Q(2, 14))
IXDX IADYDET-DXDETADYDX I
SART(DXDETADXDET+DYDETADYDET)

SQRT(DXOXTADXDX I+DYDXIADYDXI)

[y B wp ]

EIND KIN OF DX/([U|+A) AND DY/(|V]+A)
I0 150 K=1,4
KP2 = K+2
RAVE(K) = 0.25A(Q(KP2,11)+QSAV(KP2, IN1)
1 +QSAV(KP2, ) +Q(KP2, I4))
150  CONTINUE
UTEMP
VTEMP

A2

QRAVE(2)/BAVE(])
QAVE(3)/QAVE(]1)
GAMMAAGM1A(RAVE(4) /GAVE(1)
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1 -0.5A(UTEMPAUTEMP+VTEMPAVTENF))
A = SQRI{AZ)

DTA = DV/(ARS(UTEMPADYDET-VTEMPADXDET) +AKDL)
DTE = DV/(ARS(UTEMPADYDXI-VTEMPADXIXI) +AXDM)
DT = CFLAMIN(DTA,LTR)

AVIS = AVISCEADTAC(DL+DM)/IV

[op B an ]

Extrapolate r,p,h0 and reflect u,v
P4 = GMlx(Q(6,I4)-0.54(R(4,I14)AR(4,14)+R(5,14)4Q(5,14))/0(3,14))
P2 = GMl1A{QSAV(6, I)-0.3A{RSAV(4, D AA2+RSAV(S, 1D AX2) /Q5AV(3, I
FI4 = P3-2.%x(P3-P4)
H4 = (Q(6,I4)+P4)/R(3,14)
H3 = (R5AV(6, 1)+F3)/G5AV(3, D)
HI4 = H3
VELT3 = (QSAV(4, I)ADX+QSAV(S, I)ADY) /QSAV(3, D
VELN3 = (-GSAV(4, DADNY+QRSAV(S, I)ADX) /QSAV(3, 1)
UI4 = VELT3ADX+VELN3ADY
VI4 = VELT3ADY-VELN3ADX
RI4 = PI4/(GMIDGA(HI4-0.0A(UI4AUI4+VIAAVI4)))
EI4 = RI4AHI4-PI4
P1 = GM1x(Q(6,I11)-0.54(Q(4,I1)AG(4,I1)+G(3,I1)AQ(S,I1))/Q(3,1I1))
P2 = GM1A(QRSAV(G, IM1)-0.0A(RSAV(4, IM1)AA2
1 +Q5AV(S, IM1)AX2) /RSAV(3, IM1))
PI1 = P2-2.4(P2-P1)
H1 = (Q(6,I1)+F1)/Q(3,I1)
H2 = (Q5AV(6, IM1)+P2)/QSAV(3, IM1)
HI1 = H2
VELT2 = (QSAV(4, IM1)ADX+QSAV(S, IM1)ADY)/R5AV(3, IM1)
VELNZ = (-Q8AV(4, IM1)ADY+Q5AV(ST, IM1)ADX) /Q5AV(3, IM1)
VELT2ADIX+VELNZADY
VELT2ADY-VELN2ADX
PI1/{GMIDIGA(HI1-0.5ACUTIAUTII+VI1AVIL)))
RI1AXHI1-PI1

won

"o

<<

[ an)

-
noinonon

o

c Find reflected cell center values
QAVEZ(1) = 0.254(Q(3,11)+R(3,I4)+KI1+RI4)
BAVE2(2) = 0.204(Q(4,11)+Q(4, I4)+RI1AUI1+RI4AUI4)
BAVE2(3) L35K(Q(5, I11)+0(5, I4) +RI1AVI1+RI4AVI4)
RAVE2(4) = 0.25A(Q(6,I11)+Q(6,I4)+EI1+EI4)

[ep]

c Add contribution
D0 164 K=1,4
KF2 = K+2
KP6 = K+6
QAVEL = 0.25k(G(KF2, I1)+QSAV(KP2, IM1)+QSAV(KP2, I)+Q(KP2,14))

, Q(KP&, I4) = R(KP6,I4)+0.254AVISk(QAVEI+QAVEZ(K)-2.AQ(KP2,14))
164 - CONTINUE

Lar]

c Second Cell:
CALL CELPOINTIC(IPER(2,1))
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OXDXI = 0.3%x{(QSAV(1,IF1)+R(1,I4)-Q5AV(1,)-Q(1,I1)
DYDXI = Q.54 (RSAV(2, IP1)+Q(2, 14)-G5AV(2,D-G(2,I1))
DXDET = 0.54(QSAV(1, I)+QSAV(]1, IP1)-R(1,I1)-Q(1,I4))
DYDET = Q.5k(Q5AV(2, I)+QSAV(Z, IP1)-0(2,I1)-0(2,14))
DV = DXDXIADYDET-DXDETADYDXI

DL = SQRT(DXDETADXDET+DYDETADYDET)

OM = SERT{DXDXIADXDXI+DYDXIADYDXI)

[op M o}

EIND MIN OF DX/CJUJ+R) ANDN DY/ (|V]+A)
0 165 K=1,4
KP2 = K+2
RAVE(K) = 0.25A(Q(KP2,I1)+QSAV(KP2, I)+QSAV(KFZ, IP1)+Q(KFP2, 14))
165  CONTINUE

UTEMP = QAVE(2)/QAVE(1)
VIEMP = QAVE(3)/GAVE(1)
A2 = GAMMAAGM1A(RAVE(4)/QAVE(1)
1 -0.5A(UTEMPAUTEMP+VTEMPAVTEMP) )
A = SQART(A2)
C
DTA = DV/(ABS(UTEMPADYDET-VTEMPADXDET ) +AALL)
TR = DV/(ARS(UTEMPADYIXI-VTEMPADXDXI)+AXDM)
IT = CELAMIN(DTA,DTIR)
C
AVIS = AVISCEADTA(DL+IM)/DV
c
C Extrapolate r,p,h0 and reflect u,v
P4 = GM1A(G(6,I4)-0.54(Q<4,14)AQ(4,I4)+Q(5, I4)AR(5, I14))/Q(3,14))
P3 = GM1x(QSAV(6, IP1)-0.54(QSAV(4, IP1)AA2
1 +RSAV(S, IP1) AA2) /QSAV(3, IP1))
PI4 = P3-2.4(P3-P4)
H4 = (Q(6,14)+F4)/R(3,14)
H3 = (QSAV(6,IF1)+P3)/Q5AV(3, IF]1)
HI4 = H3
VELI2 = (QSAV(4, IP1)ADX+QSAV(S, IP1)ADY)/QSAV(3,IP1)
VELN3 = (-QSAV{4, IP1)ADY+QSAV(T, IP1)ADX) /QSAV(3, IP1)
UI4 = VELT3ADX+VELN3ALY
VI4 = VELT3ADNY-VELN3ADX
RI4 = PI4/(GM1DGAC(HI4-0.5k(UTAAUT4A+VI4AVI4)))
EI4 = RI44HI4-PI4
Pl = GM1A(Q(6,I1)-0.54(Q(4,I1)4Q(4,I1)+8(3, I1AR(S,I1))/G(3,11))
P2 = GM1A(QSAV(6, I)-0.5ACQ5AV(4, 1) xA2+Q5AV(S, 1D XA2) /Q5AV(3, 1))
PI1 = P2-2.4(P2-F1)
H1 = (Q(6,I1)+F1)/Q(3,I1)
2 = (QSAV(6, ID+P2)/RSAV(3, D)
HI1 = H2
VELT2 = (RSAV(4, I)ADX+QSAV(S, DADY)/Q5AV(3,I)
VELN2 = (-QSAV(4, DADY+QRSAV(S, DADX)/G5AV(3, 1)
UIl1 = VELT2ADX+VELN2ADY
VI1 = VELTI2ADY-VELN2ADX
RI1 = PI1/(GMIDGACHI1-0.5ACUILAUII+VI1AVIL)))
EI1 = RI1AHI1-PI1
C
C Find reflected cell center values

RAVE2(1) = 0.254(0(3,I1)+0(3,I14)+RI1+RI4)
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166

170

RAVE2(2)
RAVE2(I)
RAVEZ(4)

«25k(R(4,I1)+Q(4, I4)+RILAUII+RI44AUI4)
0.254(Q(3, I +Q(5, I4)+RI1AVII +RI4AVI4)
0.25%(R(6,I1)+Q(6,I4)+EI1+ET4)

Add contribution
0 166 K=1,4
KF2 = K+2
KP6 = K+b
(AVELl = 0.25A(Q(KF2, I1)+QSAV(KP2, I)+Q5AV(KF2, IF1)+Q(KP2,14))

Q(KP6,1I1) = @(KP6,I1)+0.234AVISA{QAVEI+RAVE2(K)-2.4Q(KP2,I1))
CONTINUE

END IF

CONTINUE

RETURN
END

SUBROUTINE: EULERWALZ2

10

SUBROUTINE EULERWALZ(LEV)

This subroutine preforms 2 stream line intergration
of the euler egqn. in natural coordinates to inforce
the solid wall no normal flow boundary condition.

INCLUDE ‘MAIN.INC’
INCLUDE ‘GAM. INC’
INCLUDE ‘INPT.INC’
INCLUDE ‘POINT.INC’
INCLUDE ‘MET.INC’
INCLUDE ‘LUNITS.INC’

DIMENSION FIP1(257),PEX(257),HOEX(257),
1 UT(257),DUT(257),QAVE(4)
DIMENSION GN1(4),0N2(4),RAVE2(4),R5AV(6,257)

Caleuiate pressures at ring of points just inside the
flow ajoining the boundary
00 10 I=1,IPEBBMX

J1 = ARS(IP(3,IPRE(1,I)))

PIPIC(I) = GM1A(R(6,J1)-0.54(Q(4,J1)Ak2+Q(5,J1)4A2)/Q(3,J1))
CONTINUE

Calculate extrapolated values at surface
II =1
IIF1 = 2

DO 20 I=1,IPBEMX+1
IF(I.LE.IPEEMX) THEN

JP = ABRS(IP(4,IPRE(1,I)))
ELSE
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1

JP = ABRS{IP(4,IPEE(1,1)))

END IF
II = IWPI(D)
IF(II.LT.IPEBMX) THEN
ITIP1 = II+l
ELSE
IIFl =1
END' IF

JN = ARS(IP(3,IFEE(1,ID)))

JNP1 = ABRS(IP(3,IPER(1,IIF1)))

PINT = PIPI(ID+ISCL(DA(PIPI(IIP1)-PIFP1(II))
TMP1 = (Q(6,IN)+PIF1(ID))/Q(3,IN)

TMP2 = (Q{6,INP1)+PIPI(IIF1))/Q(3,INPL)

HOINT = TMP1+TSCL(I)A(TMP2-THF1)

oo 12 K=1,6
RSAV(K, 1) = Q(K,IN)+TSCL(I)A(Q(K,INF1)-Q(K,IN))
CONT INUE

Extrapolate to surface using normal momentum eqn
for pressure and zeroth order extrapolation for
total enthalpy
PEX(I) = PINT
HOEX(I) = HOINT
IF(I.EQ.1.0KR.I.EQ.IPBREMX+1) THEN
OX = TX{(1)-TX(IPBBMX+1)
0Y = TY(1)-TY(IPRBMX+1)
THP = SQART(DXADX+DYXDY)

DX = DX/TMP

Y = DY/THP
ELSE

DX = IX(I)

oy = IY(D
END IF

UT(I) = (DX4Q(4,JP)+IYAQ(S,JP))/Q(3,JF)
PEX(I) = PINT-Q(3,JP)AUT(I)AUT(I)ASSCL(I}/RC(I)
CONTINUE

Correct t/e pressure to average of upper and lower
points just upstream of t/e and set tangent to bisector

PEX({IPERMX+1) = 0.5&(PEX(1)+PEX(IPEEMX+1))

HOEX( IPEEMX+1) = 0.5k(HOEX(1)+HOEX(IFBEMX+1))

X = TX(1)-TX{IPERMX+1)

oY = TY(1)-TY{(IPBEMX+1)

TMP = SORT(IXADX+DYADY)

0X = DX/TMP

oY = DY/TMP

JP = ABRS(IP(4,IPRE(1,1)))

UT(IPBREMX+1) = (-DXxQ(4,JF)
-DYAQ(S,IP))/Q(3,TF)

PEX{ IPEEMX+1)

HOEX( IPREMX+1)

i n

PEX(1)
HOEX(1)
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30

40

UT(1) = -UT(IPEBMX+1)
Solve streamline euler eqn.

Zero wall IU’'s
0 30 I=1,IPBEMX+1
OUTI(I) = 0.0
CONTINUE

SWEEP CELL BY CELL AND CALCULATE DU‘S
0 40 I=1,IPEBRMX
IFl = I+l

J1 = ABS(IP(1,IPRR(2,1I}))
J2 = ARS(IP(4,IPRR(2,1I}))
IS = SQRT((AC1,J2)-0(1,J1))kk2+(0¢2,J2)-Q(2,T1))442)

00 32 K=1,4
KP2 = K+2
RAVE(K) = 0.SA(Q(KP2,J1)+G(KP2,12))

2 CONTINUE
UTEMP = QAVE(2)/QAVE(1l)
VIEMP = GAVE(3)/BAVE(1)
A2 = GAMMAAGM1A(QAVE(4)/RAVE(1)
1 =0 .5k (UTEMPAUTEMP+VTEMPAVTENP) )
A = SORI(AZ)

DT = CELAD'S/(SQRT(UTEMPAA2+VUTEMPAX2)+A)

CHNU = 0.5A((UT(I)AA2-UT(IF1)%42)
1 +(1./70(3,31)41./Q(3,J2) YA (PEX(I)-PEX(IF1)))ADI/IIS
CHNE = 0.3A(UT(I)+UT(IF1))ACHNUADT/DS

DUT(I) = DUT(I) +0.5%(CHNU-CHNE)
DUTC(IP1) = DUT(IP1)+0.54(CHNU+CHNE)
CONTINUE '

IUT(1) = DUT(1)-DUT( IPEBMX+1)

Calculate new conditions and correct DIG’‘s
00 50 I=1, IFBEMX

IF(IPRE(3,1).NE.4) GOTOD S50
JP = ARS(IP(4,IPEE(1,D1)))
UT(I) = UT(D+IUT(D

IF(I.EQ.1) THEN
OX = IX(1)-TX(IPERMX+1)

Y = TY(1)-TY(IPRBRMX+1)
THP = SQRT(DXADX+DYADY)
bX = DX/THP
Y = DY/TMP

ELSE
X = IX(D
oYy = ITY(D)
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END IE
RNEW = PEX(I)/(GMI1DGA(HOEX(I)-0.54UT(IYARUT(I)))
UNEW = DXAUT(I)
UNEW = DIYAUT(I)
X ENEW = RNEWAHOEX(I)-PEX(I)

C
Q(7,JP) = RNEW -Q(3,JF)
Q(8,JP) = RNEWAUNEW -Q(4,JP)
Q¢9,1P) = RNEWAVNEW -G(3,JF)
Q(10,JP) = ENEW -Q{6,JF)

S50 CONTINUE

This section smooths the solid wall boundary points.
Points are always smoothed on the lowest level in
which the two adjoining cell to the boundary exist.
This is consistent with the internal point smoothing.

For the solid wall boundary two formulations are
possible:

IRCOND

0 no smoothing applied, just return

=1 1-D tangent smoothing model
The same as the farfield boundary with a
ramp increase in smocthing around the t.e.

= 2 Standard internal smoothing model using
reflected points.
A standard internal smoothing using extrapolated
information to define an imaginary line of points
inside the wall. In this case the smoothing is not
increased in the t.e. region.

OO OO0O0O0O0O00N0O000000D00O000n

Constants
IRCONL' = 0
JTESMIH = §
TECOEF = 4.0
IF(IRCOND.ER.O) RETURN
IE(IBCOND.ER.2) GO TO 140

C
C Type 1: 1I' smoothing formulation
D0 130 I=1, IPREMX
Ccc IF(IPRE(3, 1) .NE.4) GO TO 130
c
c Is point to be smoothed on this level?
ICONTI = 0
IE(IPRR(1,I).GE.LEVP(1,LEV).AND.IPER(1,I).LE.LEVF(2,LEV))THEN
IE(IPBR(2,I).LE.LEVP(2,LEV)) ICONT1 =1
ELSE IF(IPBR(2,I).GE.LEVP(1,LEV).AND.IPRR(2,1).LE.LEVF(2,LEV))
1 THEN
IF(IPBE(1,I).LE.LEVP(2,LEV)) ICONT1 =1
END IF
C .
c If yes, calculate and add contributions form
C both cells surrounding the cell
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IF(ICONT1.EQ.1) THEN

First cell:
CALL CELPOINT(IPEE(1,I))
CALL METRCA4 ’
CALL CTIME
AVIS = AVISCEADTA(DL+DM)/DV

kamp smoothing near t.e.
IF{I.LE.JTESMTH+1) THEN
AVIS = (1.0+TECOEFAFLOAT(JTESMTH-I+1)/FLOAT(JTESHIH))XAVIS
ELSE IF(I.GE.IPBRMX-JTESMTH+1) THEN
AVIS = (1.0+IECOEFAFLOAT(I+JTESHTH-IPBEMX-1)
/ELDAT(JTESMTH) ) AAVIS
END' IF

D0 124 K=1,4
KP2 = K+2
KP6 = K+6

R(KEG,I4) = RIKP6,14)+0.25%AVISA(Q(KP2, I1)-Q(KP2, 14))
CONT INUE

Second cell:
CALL CELFOINT(IPBE(2,D))
CALL METRC4
CALL CTIME
AVIS = AVISCEADTA(DL+DM)/DV

Ramp soothing near t.e.
IF(I.LE.JTESMTH+1) THEN
AVIS = (1.0+TECOEFAFLOAT(JTESMTIH-I+1)/FLOAT(JTESMTH))XAVIS
ELSE IF(I.GE.IFBRMX-JTESMTH+1) THEN
AVIS = (1.0+TECOEFAFLOAT(I+JTESMTH-IPBRMX~1)
/ELOAT(JTESHTH) YXAVIS
END' IF

00 126 K=1,4
KP2 = K+2
KP6 = K+b
Q(KPG, I1) = Q(KPG6,I1)+0.254xAVISA(Q(KP2,I4)-Q(KPF2,I1))
CONTINUE

END IF
130 CONTINUE

RETURN

Iype 2: Reflection wall smoothing

140 CONTINUE
0 170 I=1, IPRRMX
IFl = I+l
M1 = I-1
IE(IPBR(3,I).NE.4) GO TO 170

Is this point to be smoothed on this level?
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ICONTI = ¢
IF(IPEE(1,I).GE.LEVF(1,LEV).ANDI. IFBE(1,I).LE.LEVP(2,LEV)}THEN
IF(IPRR(2,I).LE.LEVP(Z,LEV)) ICONTI =1
ELSE IF(IPRR(2,I).GE.LEVP(1,LEV).ANL.IPER(2,I).LE.LEVP(2,LEV))
1 THEN
IF(IPRR(1,I).LE.LEVP(Z,LEV)) ICONT1 =1
END IF

c If Yes, calculate and 3dd comtributions form hoth cells
IF(ICONT1.EQ.1) THEN

c Calculate surface tangent vector (dx,dy)
J1 = ARS(IP(1,IPER(1,1)))
J2 = ARS(IP(4,IPRB(1,1)))
J3 = ABRS(IF(4, IFRR(2,1)))

TMP1 = 8(1,J2)-@(1,J1)
THP2 = 0(2,12)-0(2,J1)
IS1 = SQRT(TMP1ATMP1+IMP2ATMP2)
TMP1 = 0(1,13)-8(1,J2)
TMP2 = Q(2,13)-0(2,12)
IS2 = SQRT(THEIATMP1+TMP2ATMP2)

IMF1
™P2
IMP3
THP4

nS§1+082
0S2/(DS1ATMPL)
(IS2-DS1)/(DIIS1k0S62)
DS1/(DS2XTHPL)

nXps
YRS
IMPL

=~Q(1,J1)ATMP2+Q(1,J2)ATHP3+Q(1,I3)ATMP4
-0(2,J1)ATHP2+Q(2, J2)ATHPI+R(2,I3) ATMP4
SERT (DXDSADXDS+IYIISADYDS)

X
oy

IXDS/IMP1
DYDS/TIMP1

ao

First cell:
CALL CELPOINT(IPERE(1,I))

DXBXI
DYDXI
DXDET
DYDET
w
DL
DM

0.5 (QSAV(1, I)+Q(1,I4)-QSAV(1, IN1)-Q(1,I1))
0.3k (QBAV(2, 1) +Q(2, I4)-A5AV(2, IM1)-Q(2,I1))
0.55(QGAV(1, IM1 ) +QSAV(1, I)-0(1,I1)-0(1,14))
0.5%(RSAV(2, IN1)+Q5AV(2, I)-0(2, I1)-Q(2, I4))
DXIXIADYDET-DXDETADYDXI
SQRT(DXDETADXDET+DYDETADYDET)

SQORT (DXDX IADXDXI+OYDXIADYDXI)

nouwonon

"o n

am

FIND MIN OF DX/CJUJ+A) AND DY/C(]V]+A)
0 150 K=1,4
KP2 = K+2 : o
RAVE(K) = 0.25A(Q(KP2,I1)+Q5SAV(KP2, IM1)
1 +QSAV{KP2, I)+Q(KPZ, 14))
130  CONTINUE
UTEMFP
VTEMF

QAVE(2)/QAVE(])
QRAVE(3)/GAVE(])
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A2 GAMMAAGM1A (BAVE (4) /QAVE(]L)

1 -0. 35 (UTEMPAUTEMP+VTEMFAVTEME))
A = SQRT(AZ)
C
DTA = IV/(ARS(UTEMPADYDLET-VIEMPADIXDET ) +AxDL)
DTE = DV/{ABS(UTEMPADYIXI-UTEMPADXDX I) +AXDM)
DT = CELAMINC(DOTA,DTR)
C
AVIS = AVISCFALDTA(DL+IM)/IV
C
C Extrapolate r,p,h0 3and reflect u,v
P4 = GM1A(Q(6,I4)-0.54(Q(4,I4)A0¢4, I4)+Q(5, I4)AR(5, 14))/Q(3,14))
P3 = GMI1A(QSAV(G,I)-0.54(QSAV{4, 1) AA2+QSAV(S, 1D AA2) /Q5AV(3, 1))
PI4 = P3-2.4(P3~P4)
H4 = (Q{(6,I4)+P4)/0(3,14)
H3 = (QSAV(6,1)+F3)/Q6AV(3,1)
HI4 = H3
VELI3 = (QSAV(4, I)ADX+QSAV(S, DALY ) /G5AV(3, I)
VELN3 = (-Q5AV(4, I)ADY+QRSAV(S, I)ADX) /Q5AV(3, DD
UI4 = VELT3ADIX+VELN3ARY
V14 = VELT3ADY-VELN3XDX
RI4 = PI4/(GHIDGA(HI4~0.9A(UI4AUTA+VI4AVI4) ))
EI4 = RI4xHI4-FI4
Pl = GM1A(QR(H,I1)-0.54(Q(4,I1)A0(4,I1)+Q(5, I1)ARQ(S, I1))/Q(3,11))
P2 = GM1A(QSAV(6, IN1)-0.34(Q5AV(4, IM1)AX2
1 +QSAV(S, IM1)A42) /Q8AV(3, IN1))
PI1 = P2-2.4(F2-F1)
H1 = (Q(6,I1)+F1)/R(3,I1)
H2 = (Q5AV(6, IM1)+P2)/QSAV(3, IM1)
HI1 = H2
VELT2 = (QSAV(4, IM1)ADX+QSAV(S, IM1)ADY)/G5AV(3, IN1)
VELN2 = (-Q8AV(4, IM1)ADY+QSAV(S, IM1)ADX) /QSAV(3, IM1)
UIl = VELT2ADX+VELN2ADY
VIl = VELT2ADY-VELN2ADX
RIl = PI1/(GMIDGA(HII-0,3ACUI1AUII+VI1AVI1)))
EI1 = RI1kHI1-PIl
C
C Find reflected cell center values
RAVE2(1) = 0.254(Q(3,I1)+Q0(3,I4)+RI1+K14)
QAVE2(2) = 0.254(Q(4,I1)+G(4,I4)+RI1AUI1+RI4%UI4)
RAVEZ2(3) = 0.25A(R(5,I1)+Q(5, I4)+RI1AVI1+RI4AVI4)
RAVE2(4) = 0.254(0(6,I1)+Q¢6,I4)+EI1+EI4)
C
C Add contribution
0 164 K=1,4
KP2 = K+2
KP6 = K+6
QAVEL = 0,254(Q(KP2, I1)+RSAV(KPZ, IN1 ) +QSAV(KF2, 1) +Q(KP2, I14))
C .

Q(KP&,I4) = Q{KP6,14)+0.254AVISA(RAVEI+QAVE2(K)-2.AQ(KF2, 14))
164 CONTINUE
C ’
c Second Cell:
CALL CELPOINT(IPRE(2,D))
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N
DXOXI = 0.54(QRSAV(1,IP1)+Q(1,I4)-G5AV(1,I)-R¢1,I1))
OYDXI = 0.5%(QSAV(2, IP1)+Q(2,I4)-Q5AV(2, D-Q(2,I1))
DXDET = 0.54%(RSAV(1, I)+QSAV(1,IP1)-Q(1,I1)-Q(1,I4))
DYDET = 0.54(QRSAV(2, I)+QRBAV(Z, IF1)-G(2,I1)-Q(2,I4))
DV = IXDXIADYDET-DXDETADYDXI
DL = SORT(DXDETADXDET+DYDETADYDET)
M = SQRT{(DXDXIADXDXI+DYDXIADYDXI)
C
c FIND MIN OF DX/(|U}J+A) AND DY/ (}jV]+A)
00 169 K=1,4
KP2 = K+2
RAVE(K) = 0.35A(Q(KP2,I1)+RSAV(KPI, I)+QSAV(KP2, IP1)+R(KF2Z,I14))
165  CONTINUE
UTEMP = QAVE(2)/BAVE(])
VIEMP = QAVE(3)/0AVE(l)
A2 = GAMMAAGM1A(QAVE(4)/BAVE(1)
1 ~0.54A{UTEMPAUTEMF+VTEMPAVIENF))
A = SOART(AD)
C
DTIA = DV/(ARS(UTEMPADYDET-VIEMPADXDET ) +AADL)
DTR = DV/(ABS{UTEMPADYDXI-VTEMPADXDXI) +AADM)
DT = CFLAMIN(DIA,DTR)
c
AVIS = AVISCEADTA(DL+DM)/INV
C
C Extrapolate r,p,h0 and reflect u,v
P4 = GM1k(Q(6,14)-0.54(Q(4,I4)4Q(4,I14)+R(5,I4)A0(5,I4))/Q(3,14))
F3 = GM1A(QSAV(G,IP1)-0.54(QSAV(4, IP1) A2
1 +QSAV(S, IP1)KA2) /QSAV(3, IP1))
PI4 = P3-2.4(P3-P4)
H4 = (Q(6,14)+P4)/Q(3,14)
H3 = (Q5AV(6, IF1)+F3)/Q5AV(3, IF1)
HI4 = H3
VELT3 = (QRSAV(4, IP1)ADX+Q5AV(S, IP1)ADY)/QSAV(3, IP1)
VELN3 = (-QSAV(4, IP1)ADY+Q5AV(S, IP1)ADX) /R5AV(3, IP1)
UI4 = VELT3ADX+VELN3ADRY
UI4 = VELT3ADY-VELN3ADX
RI4 = PI4/(GMIDGA(HI4-0.3A(UI4AUI4+VI4AVIL)))
EI4 = RI4xHI4-PI4
Pl = GM1A(Q(E,I1)-0.5k(Q(4, I1)A0(4, I1)+Q(5,I1)A0(53,I1))/0(3,I1))
F2 = GM1A(QSAV(6, 1)-0.5k(Q5AV(4, I)AA2+QBAV(G, 1) AX2) /QSAVI(3, D))
PI1 = P2-2.4(P2-P1)
H1l = (Q(6,I1)+P1)/G(3,11)
H2 = (RSAV(6,1)+F2)/QSAV(3, )
HI1 = H2
VELT2 = (QSAV(4, D)AIX+QSAV(S, I)ADY)/QSAV(3,I)
VELN2 = (-QSAV(4, DADY+QSAV(T, 1)ADX) /R5AV(3, )
UI1l = VELT2ADX+VELNZADY
VIl = VELT2ADY-VELN2ADX
RI1 = PI1/{GMIDGACHI1-0.3A(UIlAUII+VI1AVI1)))
EI1 = RI1xHI1-PI1
c
C Find reflected cell center values
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[42]

QAVE2(1) = 0.254(Q(3,I1)+Q(3,I4)+RI1+kI4)
QAVE2(2) = 0.25x(Q(4,I1)+Q(4,I4)+RI1AUI1+RI4AUI4)
RAVE2(3) = 0.254(Q(5,I1)+0(5, I4)+RI1AVII+RI4kVI4)
QRAVEZ(4) = 0.25k(R(6,I1)+Q(6,I4)+EI1+EI4)
€
c fdd contribution
[0 166 K=1,4
KF2 = K+2
KP6 = K+6
RAVE]l = 0.254(Q(KF2, I1)+QSAV(KPZ, I)+QRSAV(KF2, IF1)+G(KP2,14))
C

R(KPE,I1) = B(KPE,I1)+0.254AVISA(RAVEI+RAVE2(K)-2.AQ(KP2,1I1))
166  CONTINUE

END IF
170 CONTINUE
C
RETURN
END
C___ o~ - -
C SUBROUTINE: EAREDBCZ
C.._.. — [ [—

SUBROUTINE FAKFDRC2(CL,CI)

This subroutine calculates the far field boundary
conditions using a local characteristic analysis
tangent and normal to the boundary. Eoth uniform
freestream or far field vortex boundary conditions
are possible. The selection is made by setting the
following switch:
IFDTYPE = 0 for uniform freestreem conditions
1 for vortex farfield conditions with
the strength of the point vortex based
orn an integration of surface pressure
to set the lift.

Note: for supersonic flows the uniform freestream
flow condition is automatically set since this
boundary condition is only correct for subsonic
flows.

Note: RAD for vortex farfield hkoundary assumes the vortex
is located at the quarter chord of the airfoil.

OO0 OO0O00000000 00

INCLUDE "MAIN.INC’
INCLUDE ‘GAM.INC’
INCLUDE ‘INPT.INC’
INCLUDE “LUNITS.INC’
DIMENSION URAR(4)

C
C Constants
IEDTIYPE = 1 _
PHI = 3.141592654
c
c Calculate Lift Force Coefficients through an
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c integration of the surface pressures of airfoil.
IF(IFDTYPE.EQ.1) THEN

CHORD = 0.0
CEN
CET

0.0
0.0
no

J1
J2

I=1, IFREMX
ARS(IP(1,IPEE(2,1)))
ARS(IP(4,IPRE(2,1)))

in e

IF(I.EQ.1) THEN
TX1 = @(1,11)
TY1 = 0(2,J1)
END IF
TCHORD = (TX1-0(1,12))Ax2+(TY1-R(2,J2))%A2
IF(TCHORD.GI.CHORD) CHORD = TCHORL

a(1,32)-8¢1,I1)
0¢2,12)-0¢2,11)
SORT(IXALX+DYADY)

X
Iy
ns

Pl = GM1A(Q(6,J1)

1 -0,5k(G(4,J1)4R¢4,J1)+Q(5,J1)XQ(3,J1))/0(3,J1))
P2 = GM1k(Q(6,J2) .

1 -0.9k(0(4,J2)40¢(4,32)+0(5,J2)A0(5,12))/Q(3,J3))
IMP = P1+F2
CEN = CEN+TMFPADX
CET = CET+IMPADY
CONTINUE

wn

CHORD' = SQRT(CHORIN

QFS = KOESk(UFSAUES+VESAVES)ACHORD
CEN = -CEN/QES

CFT = CFI/QES

ALPHAR = 3.141394ALFHA/180.0
CL = CENACOS(ALPHAR)-CETASIN(ALFPHAR)
Ch = CENASIN(ALPHAR)+CFTACOS(ALFHAR)

won

o0

SET AIRFOIL CENTER AT 1/4 CHORD
XQC = TX1-0.75ACHORD
YGC = IYl
ELSE
CL = 0.0
END IF

Sweep around farfield boundary and correct IU‘s
using Characteristic analysis tangent and normal
to the boundary.

(a0 B B on B o0 I au]

00 10 I=1,IPBUMX
IF(IPRU(3,1).ER.2) THEN
IECIPRUC1, I).NE.O) THEN
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lep I o [ BN o B o B 99

[3p I o BN v ]

[ e [ B an ]

OO0

J1 = ARS(IP(3,IPRU(1,I)))
J2 = ARS(IP(4, IPRU(1,I)))
ELSE
J1 = ARS(IP(2, IPRU(2,I)))
J2 = ARS(IP(1,IPRU(Z,I)))
END IF
ELSE

WRITE(LUl,%)* ERROR IN UDBC2C IPEU(3,I) NOT 1’

END

IF

Calculste boundary normal vector
Note: Present analysis assumes eta lines run
Normal to the far field boundary.
TMP1 = Q(1,J2)-0(1,J1)
THP2 = Q(2,J2)-Q(2,J1)
IMP3 = SQRT(TMPLATMP1+TMP2ATMP2)
X = THP1/IMP3
Y = TMP2/TMF3
Calculate local radius and direction
IMP1 = XQC-G(1,J1)
TMF2 = YQC-Q(2,J1)
RAD = SORT(TMPlAA2+IMP2AA2)
ORX = TMP1/RADI
DRY = TMP2/RAD

REX
UEX
VEX
EEX
QSQE
PEX
IE(P
AEX

QNEX
RIEX

KEAR
ABAR

ONES
QTES
QES

Calculate extrapolated quantities from
the predicted values of & 3t the boundary.
Q(3,J1)+0¢(7,J1)
(Q(4,J1)+0¢(8,J1))/REX
(Q(3,J1)+R(9,J1))/REX
Q(6,J1)+Q(10,J1)
X =UEX4UEX+VEXAVEX
=GM14(EEX-0.3AREXAQSQEX)
EX.LE.0.0) WRITE(LUL,%) k% PEX<L0 AT UP I=',1I
=5QRT{GAMMAAPEX/REX)

wononon

UEXADIX+VEXADY
~UEXAINY +VEXADX

Set barred or frosen quantities of linearization
based on the extrapolated conditions.

= REX

= AEX

Calculate the free stream conditions without
the vortex. ’

= UFSADX+VESADY

-UESADY+VESADX

SORT(ONFSAA2+QTESAX2)

Set far field conditions to either free stream
or calculate and set to vortex farfield conditions
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C
C Set vortex farfield condition
IF¢IFDTYPE.EQ.1.AND.AMFS.LE.1) THEN
COSFDI = (UFSADRX+VESADIRY)/QES
SINFDI = (-UFSADRY+VFSADRX)/QES
RETA = SORI(1.0-AMFSXAMES)
TMP1 = 1.0/(COSFIkk2+BETAARETAAS INFIAS INFIH)
[QVORT = QFSACHORDACLABRETAATMFP1/(4.0kPHIARAL)
QNFIT = ONFS+DRVORTA(-DRYADX+DRXALDY)
QTIFD = QTFS+DOVORTA(DRYADY+DORXALDX)
QFD = SORT(ONFDOAAZ+QTEDAAZ)
PFI = {APESAAGM1DG+GMID2GAROESA(QRESAAZ-QFIAAZ)
1 / (APFSAX(1.0/GAMMA) ) ) Ak (GAMMA/GHL)
ROFDIT = ROFSA((PFLI/APES)A%(1.0/GAMMA)) '
C
C Otherwise set farfield conditions to freestream
ELSE
GNEDl = QGNES
QTFDN = QTES
FEII = AFFS
KOEDIN = ROFS
ENDY IF
C
C Calculate corrected farfield flow conditions
C tased on whether it is supersonic or subsonic
C and inflow or outflow
C
C Subsonic inflow
IF(ONEX.GE.0.0.AND.GNEX.LE.ARAR) THEN
PNEUW = 0.54(PFD+PEX+RBARXARARA (QNFLII-GNEX))
QATNEW = QIFD
GNNEW = ONFD+(PFD-PNEW)/(RBARXARAR)
RNEW = ROFD+(PNEW-PEL)/(ABARAABAR)
c .
c Subsonic outflow
C note: sets the downsiream characteristic
ELSE IF(GNEX.GE.-AEAR.AND.QNEX.LT.0.0) THEN
FNEW = 0.5k(PFI+PEX+RBARAABARA (ONEL-GNEX))
QINEW = QTIEX
GNNEW = GNEX+{PNEW-PEX)/(RBARAARAR)
RNEW = REX+{PNEW-PEX)/(ABARAARAR)
£
c Supersonic inflow
ELSE IF(QGNEX.GT.ARAR) THEN
FNEW = FFD
GINEW = QTED
QGNNEW = GNED
RNEW = KOFLD
C
c Supersonic outflow
ELSE IF(QNEX.LT.-ABAR) THEN
FNEW = PEX
QINEW = QTEX
(ONNEW = QNEX



[yp M oo B wp ]

[an B a0 I oo oo

[op B op/

OO0 0

KNEW
END IF

ENEW = PNEW/GM1+0.5ARNEWA (QNNEWAGNNEW+QTNEWAQINEW)

= REX

Calculate corrected [IR’s

87,1
a8, J1
Q(9,J1

)
)
)

R¢10,J1)

10 CONTINUE

RETURN
END

RNEW-G(3,11)
RNEWA (QNNEWADX-QINEWADY)-G(4,11)
RNEWA (GNNEWALY +QINEWADX) -Q(5,J1)
ENEW-G(6,J1)

"o n

SUBROUTINE: FINDEG

SURROUTINE FINDEG(I,M)

SUEROUTINE FINDFG CALCULATES F AND G AT POINT 1
FROM U AND LEAVES THEM IN LOCATION M OF F AND G

INCLUDE "MAIN.INC’
INCLUDE ‘SOLV.INC’
INCLUDE ‘GAM.INC’

Wl = Q(4,DA0(4,1)/0(3, D
W2 = Q(5,D4R(5, 1)/R(3, 1)

PTHMP
HTMP

E(1,M)
F(2,H)
E(3,M)
E(4,M)

G(1,M)
6(2,M)
6(3,M)
G(4,H)

RETURN
ENID

W uon

GMIACQ(6, I)-0.5A(W1+W2))
(Q€6, I)+PIMP)/0(3, 1)

a4, 1)

W1+PTHP

R(4, DXB(5,1)/0¢(3,1)
@(4, 1) AHTHP

R(5,I) -
E(3,M)
W2+PTHP
(5, ) XHIHP

SUBROUTINE: GAMMAS

SUBROUTINE GAMMAS

This subroutine calculates constants containing gamma
for later use in other routines.

INCLUDE ‘GAM.INC’

- 286 -



-0 AIREGIL EULER CODE EOR O-TYPE MESHES

GAMMA = 1.4

GMl1 = GAMMA-1.0

GM3 = GAMMA-3.0

GM1D2 = GM1/2.0

GM1DG = GM1/GAMMA

GM1I26= GM1D2/GAMMA

GF1DG = (GAMMA+1.)/GAMHA

GP1D26= GP1DG/2.0

HIOT = 1.0/GM1
C

RETURN

END!
C_ - e s e e e s e - -
C SUBKOUTINE: GEOWAL
[mmmmmm————mmm e ——

SUBRDUT INE GEOWAL

C

£ This subroutine calculates the surface tangent, radius of

c curvature, and scaling distances for calcuating extrapolated
c flow values form the line of nodes next to the wall.

€ Note: this routine as written only applies to airfoils

c with solid wall pointers generated by geocreat

c

INCLUDE ‘MAIN.INC’
INCLUDE ’GAM.INC’
INCLUDE ‘INPT.INC’
INCLUDE ‘POINT.INC’
INCLUDE ‘MET.INC’
INCLUDE ‘LUNITS.INC’

C
c Calculate extrapolated values at surface
I1 =1
IIP1 = 2
C
0 20 I=1,IPRBMX+1
IF(I.LE.IPBEMX) THEN
JPM1 = ABRS(IP(1,IPEE(1,I)))
JPF = ABRS(IP(4,IPER(1,I)))
JPP1 = ARS(IP(4,IFER(2,1)))
ELSE
JPM1 = ABS(IP(1,IPRE(1,1)))
Jr = ABS(IP(4,IPER(1,1)))
JPF1 = ARS(IP(4,IPRE(2,1)))
END' IF
C
€ calculate normal vector

TMP1 = @(1,JP)-G(1,JFMD)

THP2 = Q(2,JF)-0(2,IPN1)

DS1 = SQRT{THP1ATHP1+IMP2ATMP2)
TX1 = TMP1/IS1

TY1 = TMP2/DS]

TMPY = Q(1,JFP1)-Q(1,JF)

TMP2 = 0(2,JFF1)-(2,IP)

152 = SQRT(THP1ATNP1+TMP2ATHER)
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X2
Y2

IMP1/0G2
IMP2/162

IMP1
IMF2
IMF3
TMF4

IS1+083

D82/ (NSIATMFL)
{182-0151) 7 (IS1ADS2)
DS1/(DS2ATMFL)

RC(I) = 0.9ATMPL/SQRT((TX2-TX1)AA2+(TY2-TY1)AkA2)

oxns
nyns
IMP1

-Q(1,JPM1)YATMP2+Q(1, JP)ATMP3+Q(1,JPF1)ATHF4
-R(2, IPM1)YATHP2+G(2, JPIATHP3+R(2, JPP1)ATHP4
SERT (DXDSADXIS+IYOSADYIG)

Wwonn

IX(I) = DXDS/TMPL
TY(I) = DYDS/THF1
IF(I.ER.1) THEN
IX(I) = IX2
(I = IY2
RC(I) = 1.E+20
ELSE IF(I.EQ.IPERMX+1) THEN
IX(I) = IX1
IY(I) = TY1
RC(I) = 1.E+d0
END IF

H H W= 0 nn

ONX
DNY

-TY(D)
IX(D

[ W]

Search for intersection of normal line and ring
Q(1,IF)

IINX

Q(2,JP)

INY

APl
AP2
RFl
EP2

11 CONTINUE
IN = ABS(IP(3,IPEE(1,II)))
JNP1 = ABS(IF(3,IFEE(1,IIF1)))

Al
A2
El
B2

R(1,IN)
@(1,INP1)-A1
@(2,IN)
@(2,INP1)-El

DEL = AP2AB2-BP2iA2
T = (AP2A(BP1-E1)-BP2k(AF1-Al))/DEL

ITMP = 0
IF(T.LT.0.0) THEN
ITHP =1
IIPl = 11
IF(II.GT.1) THEN
II = II-1
ELSE
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II = IPEBMX
END IF
ELSE IF(T.GT.1.0) THEN
ITHE = 1
IT = IIFl
IF(IIF1.LT.IPEBMX) THEN
IIF1 = IIF1+1

ELSE
IIP1 = 1
END IF
END IF
IFC(ITMP.EG.1) GO IO 11
C
IWPICI) = II
ISCL(I) = T
SSCL(I) = (A2A(BF1-B1)-B2%(AP1-A1))/DEL
C
20 CONTINUE
c
RETURN
END
C_ - - - - ——
c SUBROUTINE: GTIME
C..-._ e et i e o -
SUBROUTINE GTIME(LEV)
C
c This subroutine calculates the maximum stable global
c time step over the current level. This is done by
€ calling CTIME for each cell ( which determines the
€ cell time step based on local flow properties and
c the CFL No.) and saves the minimum value.
C
INCLUDE ‘MAIN.INC’
INCLUDE ‘POINT.INC’
INCLUDE ‘GAM.INC’
INCLUDE “MET.INC/
INCLUDE /INPT.INC’
D' IMENSION QAVE(4)
C
€ Find MIN of DX/(|U|+A) and DIY/(|V}+A) for each cell
0 1 I = LEVP(1,LEV),LEVP(2,LEV)
C
c Set local cell pointers
I1 = ARS(IP(1,I))
12 = ARS(IP(2,1I))
I3 = ARS(IP(3,I))
14 = ABS(IP(4,1I))
INC = IP(5,DD
c
C Find cell time step
CALL METRC4
CALL CTIME
c
c Compare with current minimum
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IF{I.NE.LEVP(1,LEV)) THEN
DTMIN = MINCDIMIN,DT)
ELSE
OTHIN = IT
END' IF
1 CONTINUE

[ep]

C Set final value of time step
T = [THIN

RETURN
END

SURROUTINE: INEC4

Lop I o 38 wp

SUERKROUTINE INEBC4(LEV)

THIS SUEROUTINE CALCULATES THE SURDOMAIN-GLOERAL
INTERFACE BOUNDARY CONLITIONS FROM THE GLOBAL
LEVEL SOLUTION.

Lap I an B e B o B

INCLUDE "MAIN.INC’

o

INTERFOLATE INTEREACE BOUNDARY POINTS
IF(IPRIMX(1,LEV).EQ.0) RETURN
I0 5 I=IPRIMX(1,LEV),IPEIMX(2,LEV)
.11 = IPRI(1,D)
]2 = IPRI(2,D)
13 = IPEI(3,D)
I0 5 K=3,6
5 O(K,J2) = 0.5k(R(K,J1)+(K,I3))

on

RETURN
ENII

SUEROUTINE: INFACEC

[ap]

SURROUTINE INFACEC(LEV)

THIE SUBROUTINE CORRECTS THE INTERFACE
BOUNDARY DU’S.

(e Mo IR Bl oo ]

INCLUDE ‘MAIN.INC’
INCLUDE ‘MET.INC’
INCLUDE ‘SOLV.INC’
INCLUDE ‘GAM.INC’
INCLUDE ‘POINT.INC’
DIMENSION DELUSAV(4)

IF(IPRIMX(1,LEV-1).EQ.0) RETIURN

(e B aw

NEW CORECTION SWEEF
00 55 ICEL=LEVP(1,LEV),LEVP(2,LEV)
IF(IP(S,ICEL).ER.0) GOIO 355
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ITYPEL
ITYPE2
ITYPER
ITYPE4
NOCELL

onononon
OO O OO

o)

C FIND' TO CELLS
D0 1§ I = IPRIMX(1,LEV-1),IPBIMX(2,LEV-1)
J2 = IPRI(Z,D)
IF(J2.EQ.IP(6,ICEL)) THEN
ITYPEl = 1
NOCELL =1
ELSE IF{J2.EQ.IP(7,ICEL)) THEN
ITYPE2 = 1
NOCELL =1
LSE IF(J2.EQ.IP(8,ICEL)) THEN
ITYPE3 = 1
NOCELL = 1
ELSE IF(J2.EQ.IF(9,ICEL)) THEN
ITYPE4 = 1
NOCELL = 1
END IF
15 CONTINUE
IF(NOCELL.EQ.0) GOIO 35

(e I ap}

CALCULATE IV ANDI' DT FOR TOTAL CELL
CALL CELPOINT(ICEL)
CALL METRC4
CALL CTIME
CALL DELTU

[0 17 K=1,4
17 DELUSAV(K) = -DELUCK)

[ Mo}

FLUX BALANCE ON SUECELL 1
AES(IF(1,ICEL))
IF(6,ICEL)

13 = IP(5,ICEL)

14 = IP(9,ICEL)

INC = 0

CALL DELTU

11

I2

non o

00 18 K=1,4
18 LELUSAV(K) = LELUSAV(K)+DELU(K)

[ep I o]

FLUX BALANCE IN SUBSCELL 2
IF(6, ICEL)
AES(IP(2,ICEL))

I3 = IF(7,ICEL)

14 = IP(S,ICEL)

INC = 0

CALL DELTU

Il

I3

I0 19 K=1,4
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19 DELUSAV(K) = DELUSAV(K)+LELU(K)

Lep B8 o]

FLUX BALANCE IN SURSCELL 3
IF(5, ICEL)
IF(7,ICEL)

I3 = AES(IP(3,ICEL))

14 = IP(8,ICEL)
INC =0
CALL DELTU

Il

I2

n uwnu

0 20 K=1,4
20 DELUSAV(K) = DELUSAV(K)+IELU(K)

[o0 B o]

FLUX BALANCE IN SUERSCELL 4
IP(9, ICEL)
IP(5, ICEL)

13 = IP(8,ICEL)

14 = ABS(IFP(4,ICEL))

INC = 0

CALL DELTU

11

12

o nn

00 21 K=1,4
21 DELUCK) = DELUSAV(K)+DELU(K)

[0 Bl ]

CALCULATE DELE AND DELG
CALL CELPOINT(ICEL)
CALL METRC4
INC =0
CALL DELIEG

[or I 2]

DISTRIRUTE DELTA’S

00 50 K=1,4

KP6 = K+6

IF(ITYPE4.EQ.1.0K.ITYPEL.EQ.1)
1 Q(KP&,I1) = Q{KP6,I1)+(DELU(K)-DELE(K)-DELG(K))/4.0
IF(ITYPEL.EG.1.0K.ITYFEZ.ER.1)
1 Q(KP6,I2) = Q(KP6,I2)+(DELUCK)-DELE(K)+DELG(K))/4.0
IF(ITYPEZ.EQ.1.0R.ITYPE3.EQ.1)
1 Q(KP6,I13) = Q{KP6,I3)+(DELU{K)+DELE(K)+DELG(K))/4.0
IF{ITYPE3.EQG.1.0R.ITYPE4.EQ.1)
1 Q(KP6,I4) = R(KPG,I4)+(DELU(K)+DELE(K)~-DELG(K))/4.0

50 CONTINUE

o5 CONTINUE

RETURN
END

C -

C SUBROUTINE: INFACEC2

C...._.._ —_— -

SUBROUT INE INEACRC2(LEV)
C
C THIS SURROUTINE CALCULATES THE COARSE GRID DU’S
N FOR THE FINE MESH INTERFACE AND CORRECTS THE INTEREACE
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lep M o]

wn
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ROUNDARY DU‘S ON THE COARSE MESH.

INCLUDE ‘MAIN.INC’

INCLUDE ‘MET.INC’

INCLUDE ‘S0LV.INC’

INCLUDE 'GAM.INC’

INCLUDE ‘POINT.INC’

LIMENSION DELUSAV(4),R1(4,2,257)

IE(IPRIMX(1,LEV).ER.0) GOTO 100

ERO INTERFACE DU‘S
I=IPRINX(1,LEV), IPEINX(2,LEV)
IPRI(1,1)

IPEI(2,1)

33 = IPFEI(3,D)

00 5 K=7,10

B(K,I1)

R(K,J2)

RCK,J3)

CONT INUE

(% ]

o
J1
J2

[4)}
W uwH
DO
L
S OO

NEW CORECTION SWEEF
ng 55 ICEL=LEVP(1,LEV+1),LEVP(2,LEV+])
IF(IP(S, ICELY.ER.0) GOTO 55

ITYPEL = ¢
ITYPE2 = 0
ITYPE3 = 0
ITYPE4 = 0
NOCELL = ¢

FIND TO CELLS
B0 15 I = IPRIMX(1,LEV),IPRIMX(2,LEV)
J2 = IPRI(2,D)
IF(J2.ER.IP(6,ICEL)) THEN
ITYPELl = 1
NOCELL
ELSE IFW]
ITYPE2
NOCELL

1
.EQ.IF(7,ICEL)) THEN
1
1
ELSE IF(J2.EQ.IP(8,ICEL)) THEN
1
1
.E
1
1

[ I I % B | B

3

ITYPE3 =
NOCELL
ELSE IF(J
ITYPE4
NOCELL

END IF
CONTINUE
IE(NOCELL.ER.0) GOTO 55

Q.IP(9,ICEL)) THEN

noueLI N

CALCULATE IV AND DT FOR TOTAL CELL
CALL CELFOINT(ICEL)
CALL METRC4
CALL CTIME
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o

o

e}

[ I o]

18

19

FLUX BALANCE ON SUECELL 1

Il = AES(IF(1,ICEL))
12 = IF(6,ICEL)

13 = IF(S,ICEL)

14 = IF(9,ICEL)

INC = 0

CALL DELTU

00 18 K=1,4

DELUSAV(K) = DELU(K)
FLUX BALANCE IN SUESCELL 2
11 = IP(6,ICEL)
12 = ARS(IP(2,ICEL))
13 = IP(7,ICEL)
14 = IP(S,ICEL)
INC = 0
CALL DELTU

00 19 K=1,4

DELUSAV(K) = DELUSAV(K)+IOELU(K)
FLUX BALANCE IN SURSCELL 3

I1 = IP(S,ICEL)

I2 = IP(7,ICEL)

I3 = ABS(IP(3,ICEL))

I4 = IP(8,ICEL)

INC =0

CALL DELTU

I0 20 K=1,4
DELUSAV(K) = DELUSAV(K)+DELU(K)

FLUX BALANCE IN SURSCELL 4

I1 = IP(9,ICEL)

12 = IP(5,ICEL)

13 = IF(8,ICEL)

14 = ARS(IP(4,ICEL))
INC = 0

CALL DELTU

00 21 K=

1,4
DELU(K) = DELUSAV(K)+DELU(K)

CALCULATE DELEF AND LELG
CALL CELPOINT(ICEL)
CALL METRC4
INC =0
CALL DELIEG

DISTRIBUTE DELTA’S
0 50 K=1,4
KPd = K+6



[ap)

[ IR o]

Lo B v ]

IF{ITYPE4.ER.1.0R.ITYPEL.ER.1)

1 Q(KPG,I1) = Q(KPG,I1)+(DELUCK)-DELF(K)~DELG(K))/4.0
IF(ITYPEL.ER.1.0R.ITYPEZ.EQ.1)

1 Q(KPG,I2) = R(KPG,I2)Y+{DELUCK)-DELE(K)+DELG(K))/4.0
IF(ITYPE2.EQR.1.0R.ITYFE3.EQ.1)

1 Q{KP&,I3) = Q{KFG,I3)+{DELU(K)+DELF (K)+DELG(K))/4.0
IF{ITYPE3.EQ.1.0R.ITYPE4.ERG.1)

1 Q(KP6,I4) = R{KP&,I4)+(DELUCK)+RELE(K)-DELG(K))/4.0

0 CONTINUE

55 CONTINUE

STORE NEW DU‘S IN QI AND ZERO DU‘S
U0 60 I=IPRIMX(1,LEV), IFRIMX(2,LEV)
J1 = IPBI(1,I)
J2 = IPEI(3,D)

I0 60 K=1,4

KP6 = K+6

RI(K,1,I) = Q(KPG,J1)
RICK,2,I) = Q(KPG,J2)
R(KP6,J1) = 0.0
RIKFG,I2) = 0.0

60 CONTINUE

CORRECTION OF COURSE GRID DU‘S
100 IF(LEV.EQ.1) RETURN
IE(IPRIMX(1,LEV-1).EQ.0) RETURN

NEW CORECTION SWEEF
00 135 ICEL=LEVP(1,LEV),LEVP(2,LEV)
IFCIP(S, ICEL) .EQ.0) GOTO 155

ITYPELl = 0
ITYPE2Z = 0
ITYPE3 = 0
ITYPE4 = 0
NOCELL = 0O

FINDI' TO CELLS
D0 115 I = IPRIMX(1,LEV-1),IPBIMX(2,LEV-1)
J2 = IPRI(2,D)
IF(J2.EQ.IP(6,ICEL)) THEN

ITYPEL = 1
NOCELL = 1

ELSE IF(J2.EQ.IP(7,ICEL)) THEN
ITYPEZ =1
NOCELL =1

ELSE IF(J2.EQ.IP(8,ICEL)) THEN
ITYPE3 =1
NOCELL =1

ELSE IF(J2.ER.IP(9,ICEL)) THEN
ITYPE4 =1
NOCELL = 1

END IF

115 CONTINUE



IE(NOCELL.EQ.0) GOTO 155

C

[ CALCULATE IV AND I'T FOk TOTAL CELL
CALL CELPOINT(ICEL)
CALL METRC4
CALL CTIME
CALL DELTIU

C
RO 117 K=1,4

117 DELU(K) = -DELU(K)

C
CALL DELTEG

C

C DISTRIRUTE DELTIA’S

[0 150 K=1,4
KP6 = K+6
IE(ITYPE4.EQ.1.0R. ITYFE1.EQ.1)
1 Q(KP&,I1) = Q(KPG,I1)+(DELUCK)-DELE(K)-DELG(K))/4.0
IF(ITYPE1.EQ.1.0R. ITYPE2.ER.1)
1 Q(KP6,I2) = G(KPG,I2)+(DELUCK)-DELE(K)+DELG(K))/4.0
IF(ITYPE2.EQ.1.0R. ITYPE3.ER.1) :
1 Q(KP6,I3) = B(KPG,I3)+(DELU(K)+DELE(K)+DELG(K))/4.0
IF(ITYPE3.ER.1.0R. ITYPE4.EQ.1)
1 Q(KP6,I4) = G(KPG,I4)+(DELUCK)+DELE(K)-DELG(K))/4.0
150 CONTINUE
c
155 CONTINUE

C .
00 160 I=IPRIMX(1,LEV-1),IPBRIMX(2,LEV-1)
J1 = IPRI(1,D)
J2 = IFRI(3,D)
0o 160 K=1,4
KP6 = K+6
R(KPG,J1) = Q(KP6,J1)+RI(K,1,D)
R{KPG,J2) = Q(KP6,I2)+QI(K,2, D)
QI(K,1,I) = 0.0
RI(K,2,I) = 0.0
160 CONTINUE
c
RETURN
ENIDI
C - o
c SUBROUTINE: INITIA
C
SURROUTINE INITIA
C
C This subroutine calculates the freestream quantities
C and if ISTART=1 initializes the flow field to uniform
c flow based on ALPHA and AMES using isentropic relations.
C If uniform flow is set the solid wall points are corrected
c for a zero flux through the boundary by holding the pressure
c and energy constant and rotating the velocity vector to
C the local wall tangent. Note if ISTART=0 the flow is
C left as read in the INPUT subroutine.
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IF ISTART = 0 THEN UNIFORM EFLOW
1  THEN RESTART

[on I ww I oo B uu

INCLUDE “MAIN.INC’
INCLUDE ‘GAM.INC’
INCLUDE ‘INPT.INC’
INCLUDE ‘LUNITS.INC’
D'IMENSION ESU(4)

ep]

Calculate surface tangent, radius of curvature and
extrapolation scalings
CALL GEOWAL

[ Mow ]

C CALCULATE FREE STKEAM VECTOR U
ALPHAR = ALPHA%3.14159/180.0
THP 1.0+GM1D2AAMESAAMES
ROES = TMPAk(-1./GM1)
APFS = (TMPAX(-1./GM1DG))/GAMMA
UES AMESACOS (ALFPHAR) /SQRT (TMP)
VES AMFSASIN(ALPHAR) /SGRT (IMP)
AFS 1.0/SGRT(TMF)

{12 | I | B 1]

ESU(1)
ESU(2)
ESU(3)
FSU(4)

ROES

ROESAUES

ROESAVES
APFS/GM1+ROESA(UFSAUES+VESAVES) /2.0

ownn

C RETURN IF RESTARI
IF(ISTART.EQ.1) RETURN

[or B aw

INITIALIZE FLOW FIELD TO FREE STREAM
00 1 I =1,IQMAX
01 K=1,4
1 Q(K+2,1) = FSUK)

[ ]

c ~ CORRECT WALL PROPERTIES
10 2 I=1,IFBBMX

C SET POINTERS & CALCULATE WALL TANGENT
IF(IPRE(3,1I).EQ.4) THEN
J1 = ABRS(IP(1,IPBR(1,D)))
J2 = ABS(IP(4,IPER(1,DD))
J3 = ARS(IF(4,IPRE(2,1)))

TMP1 = G(1,J2)-8(1,J1)
THP2 = Q(2,J2)-0(2,11)
DS1 = SART(TMP1ATHP1+TMP2ATHP2)
TMP1 = R(1,J3)-0(1,J2)
THP2 = R(2,J3)-0(2,12)
IS2 = SART(TMP1ATMP1+IMP2ATHP2)

IHF1
THP2

NS1+083
082/ (DS1ATMPL)
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IHP3
IMP4

(I52-DS1)/ (DS1ADRSZ)
051/ (DS2XIMF1)

OXDS
LDYDS
THF1

-Q(1,J1)ATMP2+Q(1,J2)ATHP3+R(1,I3)ATHMP4
-Q(2,J1)ATHP2+R(2,J2)ATHP3+Q(2, J3) ATHP4
SART (DXDSADXDIS+DYDSADYRS)

H "

X = DXDS/INFL
Y = OYDS/TMPL

ELSE IF(IPEE(3,I).EQ.3) THEN
J1 = ABS(IP(1,IPBE(]1,I}))
J2 = ARS(IP(4,IPER(1,I)))
J3 = ARS(IF(4,IPER(2,1)))

THETAl
THETAZ
THETA

ATAN2((R(2,12)-R(2,J1)), (A(1,J2)-0(1,I1)))
ATAN2((Q(2,12)-8(2,J3)), (R(1,J2)-0(1,13)))
0.5%(THETAL1+THETA2)

1

oy
ELSE

WRITE(LUl,x)‘ ERROK INITIA IPER(3,I) NOT 4~
END IF

COS(THETA)
SIN(THETA)

QRFS = SQRT(UFSAUFS+VESAVESD)

SIGN = (UESADX+VESALY)

SIGN = SIGN/ARS(SIGN)

TU = SIGNARESADX

TV = SIGNARESADY

TR = APFS/(GM1DGA(HTOT-0.SA(TUATU+IVAIV)))
TE = TRAHIOTI-APFS

n o nn

[aw B8 v

IF EULER CALCULATION (INSSWT=0) MAKE ELOW TANGENT
IFCINSSWT.EQ.0) THEN

cC @(3,12) = Tk

cC @(4,12) = TRATU

cC @(5,12) = TRATV

cc a(6,32) = IE

C IF NAVIER-STOKES CALCULATION (INSSWI=1) SET ZERO FLOW
ELSE IF(INSSWT.EQ.1) THEN
R(3,12) = GAMMAXAFES/(AESkAZ)
R(4,32) = 0.0
R(5,32) = 0.0
R(6,J2) = 0(3,I2)AHTOT-APES
END IF
CONT INUE

&3

L]

c OUTPUT OF INITIAL FLOW
WRITE(LUIL,1000)
WRITE(1,1004) ROES,UFS,VES,APES
IF (IFRNT2.EQ.0) RETURN
WRITE(LUL,#) * INITIAL @ VALUES’
0 50 K=1,6
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rry

{F £-TYPE MESHES

B

50 WRITE(LU1,1001) (Q(K,D), I=1,IQMAX)
C
1000 FORMAT(///,10X,” INITIAL FLOW FIELL U1/U2/U3/U4’,/)
1001 FORMAT(1X,(10E12.4))
1004 FORMAT(1X,‘ROFS,UES,VES,APES=",4E12.4,/

C
RETURN
ENI
C _____________________ -
C SUEROUTINE: INJECT
C- —_— ——— - o e o e e e e S e e e e e e -
SUBROUTINE INJECT(LEV, INITYFE)
c
c THIS SURROUTINE INJECTS FINE MESH DU‘S INTO
C THE COARSE GRID USING A WEIGHTEDN DISTRIEUTION
C
INCLUDE ‘MAIN. INC’
INCLUDE ‘FOINT.INC’
INCLUDE  INPT. INC’
INCLUDE ‘MET. INC
C
IE(INJTYPE.EQ.0) RETURN
C
C FORM TYPE 1: SIMPLE ALGEERAIC WEIGHTING
c 12 1j
C 1/16%]2 4 2|
C 1 2 1]
IF(INJTYPE.NE.1) GO T0 100
TMP = 1./16.
10 50 I=LEVF(1,LEV),LEVF(2,LEV)
c
C CHECK EOR FINER GKRID
IF(IF(5,1).ER.0) GO TO 50
c
CALL CELPOINT(I)
C A
10 40 K=7,10
R(K, INC) = THPA(2.%(2.%R(K, INC)
1 +QCK, IND+Q (K, IN2)+R(K, IN3)+Q (K, IN4))
2 HAUK, T+RK, I2)+Q(K, I3) +R(K, 14))
40 CONTINUE
C
50 CONTINUE
RETURN
C
C FORM TYPE 2: VOLUME WEIGHTING
100 IFCINJTYPE.NE.2) RETURN
D0 150 I=LEVP(1,LEV),LEVF(2,LEV)
c
C CHECK EOR FINER GRID
IF(IP(5,1).EQ.0) GO TO 150
C

CALL CELFOINT(I)
c .
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2%
|
L
>
4
el
(3]
[
]

C CALCULATE VOLUMES
VA = -0.5x((Q{1,INC)-Q(1, I1))A(R(2, INAY-Q(2,IN1))
1 -(Q(1, IN4)-G(1, IN1)IA(R(2,INC)-Q(2,11)))
VB = -0.5A{{B(1, IN2)-Q(1, IN1 ) )A(Q(Z, INC)-Q(2,I2))
1 =(Q(1, INC)-Q(1,I2))X(B(2, IN2)-Q(2,IN1)))
V€ = -0.34{0{1,I3)-0(1, INC)IX(R{2, IN3)-Q(2, IN2))
1 -(B(1,IN3)-Q(1, IN2)A(Q(2,I3)-Q(2, INC)))
VR = -0.9k((R(1, IN3)-Q(1,IN4))A(Q(2,I4)-Q(2,INC))
1 -(Q(1,I4)-QC1, INC)IX(Q(2, IN3)-Q(Z,IN4YI))
VT = (VA+VER+VUC+VL)

C

IO 140 K=7,10
®(K,INC) = 0.254(Q(K,INC)
+{ UK, TLYAVA+B(K, I2) AVE+Q(K, I3) AVC+R(K, T4) AV
+R(K, INL) A (VA+VE) +Q(K, IN2) % (VE+VUC)
+RCK, IND A(VCHVI) +QCK, INAY ACVIHVA) ) /VT)

LR % I

140 CONTINUE
C
150 CONTINUE

RETURN
END

SUBRKOUTINE: INJECTS

00(‘"}

SUEROUTINE INJECTS(LEV, INJTYPE)

THIS SUEROUTINE INJECTS FINE MESH DU’S INTO
THE COARSE GRID' USING A WEIGHTED DISTRIEUTION

Lop I ow I e

INCLULIE ‘MAIN.INC’
INCLUDE ‘POINT.INC’
INCLUDE 7 INPT.INC’
INCLUDE “MET.INC’
INCLUDE ‘SOLV.INC’

IIMENSION QSAVE(4)
DIMENSION RAVE(4),DE(4),DG(4)

IFC(INJTYPE.EQ.O0) RETURN

FORM TYPE 1: SIMPLE ALGEERAIC WEIGHTING
12 1j
1/16%|2 4 2|
12 1j
IECINJTYPE.NE.1) GO TO0 100
TMF = 1./16.
0 S50 I=LEVP(1,LEV),LEVP(2,LEV)

{on I or I op I p I a0

oM

CHECK EOR FINER GRID
IF(IP(5,1).EQ.0) GO TI0 S0

CALL CELPOINTI(I)



e
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C
I0 40 K=7,10
REK, INC) = THPA(2.A(2.40(K, INC)
1 +Q(K, INLY+Q (K, IN2) +Q (K, IN3) +Q (K, IN4))
2 +RCHK, TD+R(K, I2)+0(K, I3)+Q(K, 14))
40 CONTINUE
c
50 CONTINUE
RETURN
C
c FORM TYPE 2: VOLUME WEIGHT ING

100 IF(INJTYPE.NE.2) GO TO 200
0 150 I=LEVP(1,LEV),LEVF(2,LEV)

C

C CHECK FOR EINER GRID
IF(IP(5,1).ER.0) GO TO 150

C
CALL CELPOINT(I)

c

c CALCULATE VOLUMES
VA = -0.5k((Q(1,INC)-B(1,I1))ACR(2, IN4)-R(2, IN1))
1 ~(B(1, ING)-Q(1, IN1))A(R(2, INC)-R(2,I1)))
VR = -0.5x((Q(1,IN2)-Q(1, IN1))A(R(2, INC)-0(2,I2))
1 -(@(1, INC)-B(1, I2) ) A(R(2, IN2)-0(2, IN1)))
UC = -0.5A((Q(1,I3)-0¢1,INC)IA(R(2, IN3)-R(2, IN2))
1 -(0(1, IN3)-Q(L, IN2))A(Q(2,I3)-0(2, INC)))
YD = -0.5x((0(1, IN3)-G(1, IN4))A(R(2,14)-A(2, INC))
1 ~(Q(1, 14)-0(1, INC) ) A(R(2, IN3)-Q(2, IN4)))
VT = (VA+VEUC+V)

c

[0 140 K=7,10

Q(K, INC) = 0.20k(Q(K,INC)

+( QUK, I1YAVA+Q(K, I2)AVE+Q (K, I3)AVC+Q(K, I4)AVD
+Q(K, INL)A(VA+VR) +Q (K, IN2) A (VR+V(C)
+Q (K, INDYA(VCHVIN+Q (K, INA) A (VI+VA) ) /VT)

(2% I N R o

140 CONTINUE

150 CONTINUE

RETURN

[0 B8 o]

FOKM TYPE 3: DIONE AT THIS TIME
200 60 TO 300

TYPE 4: DISTRIRUTION OF DU’S

SET TYPE OF CELL AVERAGING BEFORE DISTRIRUTION

EASED ON THE FOLLOWING SWITCH,

IT4SWT = 1 AVERAGE OF NODES 1-4
2 AVERAGE OF NODES 1+3
3 AVERAGE OF NODES 2+4
4 AVERAGE OF NODES 2+3+4
300 IF(INJTYPE.NE.4) GO TOD 400
IT4SWT = 2

OO0 0D 0On
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DO 330 I = LEVP(1,LEV),LEVF(2,LEV)
CALL CELPOINT(D)

CALCULATE VOLUMES
VA = -0.54((Q(1, INC)-R(1, I1))A(R(2, IN4)-Q(2, IN1 )

1 —(Q(1, INGY-Q(1, INI))ACR(2, INC)-0(2,I1)))
UB = -0.5x((B{1,IN2)-B(1,IN1))A(Q(2, INC)-R(2,12))
1 —(Q(1, INC)-0(1, I2))A(R(2, IND)-R(2, IN1)))
UG = -0.54((R(1,I3)-Q(1, INC)IA(R(2, IN3)-Q(2, IN2))
1 -(0¢1, IN3)-Q(1, IN2) Y A(Q(2,I3)-R(2, INC)))
YD = -0.5%({0(1,IN3)-R(1,IN4))A({R(2,14)-Q(2,INC))
1 ~(Q(1,14)-0(1, INC)YA(Q(2, IN3)-Q(2, IN4)))

UT = (VA+VE+VC+VD)

[an N

lor Bl ]

CELL 1
ARS(IF(1,1))
IF(6,1)

13 = IP(5,D)

14 = IF(9,D)

ING = 0

I1

12

(e

CALL METERC4
CALL CTIME

[0 305 K=1,4
KP6 = K+6
IF({IT4SWT.EQ.1) THEN
DELUCK) = 0.25A(G(KP6,I1)+Q(KPG6, I2)+R(KFG, I3)+R(KFG, 14))
ELSE IF(IT4SWI.EQ.2) THEN
DELU(K) = 0.5k(Q(KP6,I1)+Q(KP6,I3))
ELSE IF(IT4SWT.EQ.3) THEN
DELU(K) = 0.5k(Q(KP6,I2)+Q(KPG,I4))
ELSE IF(IT4SWT.EQR.4) THEN
DELUCK) = (Q(KP6,I1)+Q(KP6,I2)+R(KP6,I4))/3.
ENDIN IF
305 CONTINUE

CALL DELTEG

[0 307 K=1,4
= (

307 QSAVE(K) DELUCK)Y+DELE(K)+DELG(K) YAIN/VT

[ap]

C CELL 2
1= 12
14 = I3
12 = ABS(IP(2,1))
13 = IP(7,1)
INC = 0

CALL METRC4
CALL CTIME

[0 310 K=1,4

!
(2]
=
ta

i
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LA

KP6 = K+6
IF(IT4SWI.ER.1) THEN
DELU(K) = 0.25k{@(KPG, I1)+R(KPE, I2)+R(KP6, I3)+Q(KF6, 14))
ELSE IF(IT4SWT.ER.2) THEN
DELUCK) = 0.53k(Q(KFG, I2)+Q(KPG,I4))
ELSE IF{IT4SWI.ER.3) THEN
DELUCK) = 0.5k{Q(KP6,I1)+Q(KP6,I3))
ELSE IF(IT4SWI.ER.4) THEN
DELU(K) = (Q(KP&, I1)+R(KPG6, I2)+Q(KF6,13))/3.

ENDI' IF
310 CONTINUE
C
CALL DELTEG
c

00 312 K=1,4
312 @SAVE(K) = GSAVE(K)+(DELU(K)+DELE (K)-DELG(K))ADV/VT

30

CELL 3
14
I3

11
12
I3 = AES(IP(3,1))
14 = IP(8,I)

INC = 0

CALL METRC4
CALL CTIME

o 315 K=1,4
KP6 = K+6
IF(IT4SWT.EG.1) THEN
DELU(K) = 0.25x(B(KP6, I1)+Q(KP6, I2)+Q(KF6, I3)+Q(KFG, 14))
ELSE IF(IT4SWI.EQ.2) THEN
DELUCK) = 0.3k (R(KP6,I1)+Q(KPG,I3))
ELSE IF(IT4SWI.ER.3) THEN
DELUCK) = 0.5k(Q(KP6,I2)+Q{KPG,I4))
ELSE IF(IT4SWI.ER.4) THEN
DELUCK) = (B(KPG6, I2)+G{KPG, I3)+Q(KFG,I14))/3.
END IF
315 CONTINUE

CALL DELTEG

0 317 K=1

4
¥
317 RSAVE(K) = QSAVE(K)+(DELU(K)-DELE(K)-DELG(K))ADV/VT

C CELL 4
12 =11
I3 = 14
Il = IF(9,D)
I4 = AES(IP(4,1))
INC = 0

o nn

CALL METRC4

1
[ox]
[
[ %]

i
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L]

[or B wp]

(e I un

CALL CTIME

no

KF

322

330

400

IF

EL

EL

320 K=1,4

6 = HK+b

(IT4SWT.EQ.1) THEN

DELUCK) = 0.25A(Q(KPG, I1)+Q(KP6, I2)+Q(KF6, I3) +Q(KF6, I14))
SE IF(ITASWI.ER.2) THEN

DELUCK) = 0.3k {R(KP6,I2)+0G(KP6,14))

SE IF(IT4SWI.EQ.3) THEN

[NELUCK) = Q.54 (R(KPB,I1)+Q(KFP6,I3))

ELSE IF(ITASWI.ER.4) THEN
DELUCK) = (R(KPG,I1)+R(KP6, I3)+R(KP6,14))/3.
END IF
CONT INUE
CALL DELTEG
I0 322 K=1,4
KEB = K+6
R(KP6,I2) = RSAVE(K)+(IELU(K)-DELE (K)+LELG(K) )AIV/VT
CONT INUE
RETURN
TYPE 5: NOTHING HERE
G0 TO 500
TYPE 6: NI DISTRIBUTION OF CORNER [U‘S FROM SMALL CELL CENTEK
IFCINJTYPE.NE.6) RETURN
D0 530 I = LEVP(1,LEV),LEVF(2,LEV)
IF(IP(5,1).EQ.0) GO TO 530
CALL CELPOINT(D)
CALCULATE VOLUMES
VA = -0.54((0(1,INC)-0(1,I1))A(R(2, INAI-Q(2, IN1))
1 —(Q(1, INA)-0(1, IN1)DACR(2, INC)-Q(2, I1)))
VR = -0.54({Q(1,IN2)~-R(1,INI))A(0(2, INC)-R(2,I2))
1 —(Q¢1,INC)-G(1, I2))A(R(2, IN2)-0(2, IN1)))
UC = -0.54((Q(1,I3)-0(1, INC)IAC(R(2, IN3)-Q(2, IN2))
1 —(Q(1, IND)-Q(1, IN2))A(R(2, I3)-R(2, INC)))
VD = -0.54((0(1,IN3)-R(1,IN4) ) X(B(2,14)-G(2,INC))
1 -(@(1,14)-0(1, INC) ) A(B(2, IN3)-R(2, IN4)))
VT = (VA+VR+VC+VIN)
CELL 1
I1 = ARS(IP(1,1))
12 = IF(6,1)
I3 = IF(5,D)
14 = IP(9,D)
INC = 0
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e]

[}

507

CALL METRC4
CALL CTIME

PCHECK = Q(7,I1)+Q(8,I1)+0(9,I1)+R(10,I1)

I0 505 K=1,4
(PG = K+6
IE(PCHECK.NE.0.0) THEN
DELUCK) = R(KPG,ID)
ELSE
DELUCK) = Q(KPG,I3)
END IE
CONT INUE

CALL DELTEG

I0 507 K=1,4

QRSAVE(K) = (DELU(K)+DELE(K)+DELG(K))ADU/VT

CELL 2
Il = I2
14 = I3
12 = ABS(IF(2,1))
13 = IP(7,1)
INC = 0

CALL METKCA4
CALL CTIME

PCHECK = R{7,I2)+Q(8,I2)+Q(9,I2)+Q(10,I2)

00 S10 K=1,4
KP6 = K+6
IE(PCHECK.NE.0.0) THEN
DELUK) = Q(KPG,I2)
ELSE
DELUCK) = Q(KPG,I4)
END IF
CONT INUE

CALL DELTEG

I0 512 K=1,

2 RSAVE(K)
CELL 3
I1 =14
12 = I3
I3 = ARS(IF(3,1))
14 = IP(8,I)
INC = 0

CALL METRC4
CALL CTIME

y

FE H

4
QSAVE(K)+(DELU(K) +DELE (K)-DHELG(K) YAIV/VT
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PCHECK = 0(7,I3)+0(8,I3)+Q{9,I3)+R(10,I3)

U0 515 K=1,4
KPE = K+6
IE(PCHECK.NE.0.0) THEN
DELUCK) = Q(KPG,I3)
ELSE
DELUCK) = Q(KFG,I1)
END IF
CONT INUE

CALL DELTEG

Do 517 K=1,4
QSAVE(K) = QRSAVE(K)+(IELU(K)-IELE(K)-DELG(K))ADV/VI

CELL 4

12 =11

13 = I4

11 = IF(9, 1)

14 = ARS(IF(4,1))
INC = ©

CALL METRC4
CALL CTIME

PCHECK = 0(7,14)+0(8,I4)+0(9,I14)+Q(10,14)

I0 520 K=1,4
KPG = K+6
IF (PCHECK.NE.0.0) THEN
DELUCK) = Q(KPG,I4)
ELSE
DELUCK) = G(KPG,I2)
END IF

' CONTINUE

CALL DELTEG

I0 522 K=1,4

KP6 = K+6

Q(KP6,I2) = GSAVE(K)+(IELU(K)-DELE(K)+DELG(K))AIV/VT
CONTINUE

RETURN
END

SUBROUTINE: INPUT2

SUBROUTINE INPUTZ
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C THIS SUBROUTINE READS REQUIREDn INPUT PARAMETERS FROM THE TERMINAL
C
INCLUDE ‘MAIN.INC’
INCLUDE ‘INPT.INC’
INCLUDE ‘MET.INC’
INCLUDE ‘LUNITS.INC’
C
CHARACTER TLABEL1X10,TLAREL2XA100, IN_NAMEASO
C
C SET UP LOGICAL UNIT NUMBERS
C INPUT:
C LU3 = FOINTER SYSTEM ANDIY FLOW START FILE
c LUS = INTERACTIVE INFUT
C LU7 = STOP COMAND EILE
c DUTPUT:
c LUl = SOLUTION SUMMARY
c LU2 = RESIDUAL FILE
C LU4 = POINTER AND SOLUTION FILE
C LU6 = INTERACTIVE PROMPIS
c
LUl = 1
L2 = 2
LUz = 3
LU4 = 4
LUS = §
LU = 6
Ly7z = 7
C
c READ' RUN CONDITIONS

WRITE({LUG,A)‘ ENTER RUN NAME (RLAREL1<10)’
READ{LUS,1020)RLARELL
WRITE(LUG,%)‘ ENTER RUN COMMENIS (RLABRELZ2<100)7
READ(LUS, 1020)RLARELZ

1020 FORMAI(A)
WRITE(LU6,%)‘ ENTER FREE STKEAM MACH NO., AMFS’

READLUS , ) AMES

WRITE(LUG,A)’ ENTER ANGLE OF ATTACK ALPHA’
READI(LUS, %) ALPHA

WRITE(LUG,*)‘ ENTER CEL NO.’

READN(LUS , %) CEL

WRITE(LUG, %)’ ENTER TYPE OF TIME STEP
WRITE(LU6,%)¢ © = SINGLE TIME STEP FOK SWEEF’
WRITE(LU6,#)¢ 2 = TIME STEP FOR EACH CELL’
REALI(LUS, ) ITIM

WRITE(LUG,A)’ ENTER ARTIFICIAL VISCOSITY COEE. 0.<AVISCE<0.1/
READ(LUS, %) AVISCE

WRITE(LUG6,%)‘ ENTER NUMBER OF ITERATIONS: NSTART,NMAX’
READI(LUS, %) NSTART,NMAX

WRITE(LUG6,%x)’ ENTER CONVERGENCE CUT OFF DELSTP’
REALI(LUS,A)IELSTP

WRITE(LUG,4)‘ ENTER LEVEL TO CHECK CONVERGENCE ON, LSTOP’
READN(LUS, #)LSTOP

WRITE(LUG,x)’ DO YOU WANT THE INITIAL FLOW PRINTEL??/
WKITE(LUG,%)’ 0=NO 1=YES’
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READ(LUS, ) IPKNT2

WRITE(LUG,4) * ENTEK TYPE OF INITIAL SOLUTION’

WRITE(LUG,#) * 0O = UNIFORM FLOW’

WRITE(LUG,#) * 1 = RESTART’

READ(LUS,%) ISTART

WRITE(LUG,%)‘ ENTER NAVIER-STOKES SWITCH INSSWT= 1:YES, 0:NO’

READI(LUS, ) INSSWT

IF(INSSWT.EQ.1) THEN
WRITE(LUG,4)’ ENTER REQ, PK, TREF FOR NAVIER-STOKES SURDOMAIN’
READ(LUS , %)REQ, PR, TREF
CSTAR = 110.0/TREE

ELSE
REO = 1
PR = 1
TREE = 1
CSTAK = 1

END IF

(8 INPUT OF GRID AND POINTER SYSTEM
OPEN(UNIT=LU3,TYPE='0OLD',FORM="UNFORMATIEL",
1 READONLY)

READLU3) GLAREL1,GLABEL2,TLABEL1,TLAREL2
READ(LU3) NICONST,NRCONST

READ(LU3) (ICONST(K), K=1,NICONST)

READ(LU3) (RCONST(K), K=1,NRCONST)

READ(LU3) LMAX, IGMAX, IPRUMX, IFRIMX, IPETHX , IPREMX
REAR(LU3) ((IPRIMX(M,N), M=1,2), N=1,LMAX)
READ(LU3) ((LEVP(M,N), H=1,2), N=1,LMAX)

0 10 LEV = 1,LMAX
READIMLU3) ((IP(M,N), M=1,9), N=LEVP(1,LEV),LEVF(Z,LEV))
10 CONTINUE

0 15 LEV=1,LMAX
IF(IPEIMX(2,LEV) .NE.0)
1 READ(LU3) ((IPEI(M,N), M=1,3),
2 N=IPRIMX(1,LEV), IPEIMX(2,LEV))
15 CONTINUE

READ(LU3) ((IPEU{M,N), M=1,3), N=1, IPEUMX)
READLU3) ((IPEL(M,N), ¥=1,3), N=1,IPBDMX)
REALLU3) ((IFET(M,N), M=1,3), N=1,IPETMX)
READNLU3) ((IPRE(M,N), M=1,3), N=1,IPEEMX)

D0 20 K=1,6
20 READ(LU3) (Q(K,I), I=1,IQMAX)

CLOSE(UNIT=LU3)
C SET GKRID' CONSTANIS

IE ICONST(1)
JE ICONST(2)

oo
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c QUTPUT OF INPUT DATA
WRITE(LU1,1000) RLAKEL1,GLABEL1,KLAREL2,GLAREL2
WRITE(LU1,1001)
WRITE(LU1,1004) AMES,ALPHA,CFL,AVISCE,ITIM
WRITE(LU1,1005) NSTART,NMAX,LSTOF,LELSTE, ISWT
WRITE(LU1,1008) ISTAKT,IFRNT1,IFRNT2,KEQ,TREF
WRITE(LU1,1007)
WRITE(LU1,1008) LMAX,IONAX, IPEUMX, IPREMX, IPRIMX
WRITE(LU1,1009) IPRTMX,IE,JE,IC1,IC2
WRITE(LU1,1010) IF1,IFZ2,JC2,DELTA,AK
c
1000 EORMAT(//,5X,A10,2X,A30,/,5X,A100,/,5X,A100)
1001 EORMAT(//,5X, INPUT PARAMETERS’,/)

1004 FORMAT(SX,’AMES =’,E11.4,5X, ‘ALPHA =‘,Ell1.4,
1 X, 'CEL =,E11.4,5X,’AVISCF  =',Ell.4,
2 5X,’ ITIN =,13)
1005 FORMAT(SX,’/NSTART  =',16,3X,3X, NMAX =/, 16,5X,
1 =x,’LST0P  =',16,5X,5X, DELSTF  =’,Ell.4,
2 X, ISWT =/,I3)
1006 EDPMAT(JX,’ISIARI =/,14,7X,5X, ' IPRNI1  =*,14,7X,
1 SX, IPRNI2 =’,14,7X,5X,'RE0 =’,Ell.4,
2 SX, 'TREE =/,E11.4)"
1007 FORHAI(//,JX,’GRID PARAMETERS ')
1008 FORMAT(SX, ‘LMAX =/,14,7X,5X,’ IGMAX =’,16,3X,
1 SX, * IPEUMX =’,IB,5X,5X,'IPBBMX =1, 16,5X,
2 5X,’ IPRIMX  =/,16)
1009 FORMAT(SX,’IPETMX =‘,16,5X,5X,’IE =/, 14,7%,
1 5X, *IE =,14,7X,5X, ' IC1 =, 14,7X,
2 5X,/ IC2 =/, 14,7X)
1010 EORMAT(SX,’ IF1 =/ 14,7X,5X,’ IF2 =/, 14,7X,
1 5%, JE2 =,14,7X,5X,'0ELTA  =/,E1l.4,
2 93X, AK =’/,El1.4)
C
RETURN
END
c -—— - o e o e m a - ————
c SURROUTINE: INTERFT
C_ g 0 -
SUBRROUTINE INTERPI(LEV,IFORM)
C
C THIS SUEROUTINE INTERPOLATES THE COARSE GRID
C SOLUTION TO THE LOCALLY FINEST GRIL.
C
INCLUDE ‘MAIN.INC’
INCLUDE ‘POINT.INC’
INCLUDE /INPI.INC’
INCLUDE “MET.INC’
INCLUDE 'LUNITS INC”
C
C FORM TYPE 1: CENTERED' INTERPOLATION
C
IF(IFORM.NE.1) GO TO 100
C

C INTERPOLATION TO FINE GRID DU N
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99

40

S0

00 S0 LL=1,LEV-1
L=LEV-LL+1

UPDATE ROUNDARIES
IF(INSSWT.EQ.0) THEN
CALL SIWALBC
CALL EULERWAL2(L)
ELSE IF(INSSWI.EQ.1) THEN
CALL NSSLWAL
ENDN IF
CALL FARFDRC2(CLN,CIN)

0 S0 I=LEVP(1,L),LEVF(Z,L)

CHECK FOR FINER GRID
IF(IP(5,1).ER.0) GO TO 45

INTERPOLATE CELL
CALL CELFOINI(D)

EDT{INC) = EIT(IL)
EDT(IN1) = ELT(I1)
EDT(INZ) = EDT(IL)
EDT(IN3) = EDT(ID)
EDT(IN4) = EDT(ID)
00 40 K=7,10
R{K, IN1) = Q(K,I1)+0.54(Q(K,I2)-Q(K,ID))
Q(K, IN2) = Q(K,I2)+0.34(Q(K, I3)-Q(K,I2))
R(K,IN3) = Q(K,I4)+0.5k(Q(K,I3)-Q(K,I4))
Q(K, IN4) = Q(K,I1)+0.54(Q(K,I4)-Q(K,I1))
R(K,INC) = Q(K,INI)+0.5x(Q(K, IN3)-Q(K,IN1))
CONTINUE
CONTINUE
CONTINUE
RETURN

FORM TYPE 2: WEIGHTED INTERPOLATION

IF(IFORM.NE.2) GO TO 200

INTERPOLATION TO FINE GRID DU
DO 150 LL=1,LEV-1
L=LEV-LL+1

UPDATE BROUNDARIES
IF(INSSWTI.EQ.0) THEN
CALL SDWALEC
ELSE IF(INSSWI.ER.1) THEN
CALL NSSDUWAL
END IF
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CALL FARFIDEC2

oo 150 I=LEVP(1,L),LEVF(Z,L)

[er B on

CHECK FOR FINER GRII
IF(IF{5,1).ER.0) GO TIC 145

Lan]

C INTERPOLATE CELL
CALL CELPOINI(I)

[an B an Bl ap

CALCULATE SCALINGS FOR NONUNIECORM GRIDS
SART((Q(1, IND)-G{1, I1))AA2+(Q(2, INL)-Q(2, I1) )42}
SART((R(1,I2)-R(1, INL) ) AA2+(Q(2, I2)-Q(2, IN1) ) A42)
SART( (1, IN2)-Q(1,I2))AA2+(Q(2, IN2)-Q(2, I2) 1 A%2)
SARTI((Q(1, IN-Q(1, IN2)YAA2+(0(2, I3)-Q(2, IN2) ) AX2)
SRRT((R(1, IN)-Q(1, I3 A42+(Q(2, IN3)-Q(2,I3) Y AX2)
SART((Q(1,I4)-0(1, IN3) ) Ax2+(R(2, I4)-Q(2, IN3) Y AA2)
SART((Q(1, INA)-R(1,I4))4k2+(R(2, IN4)-Q(2, I4) ) kk2)
SERT((Q(1,I1)-Q(1, IN4) ) XA2+(Q(2, I1)-0Q(2, IN4) Y kA2)
IMP1/(TMP1+IMP2)

TIP3/ (TMP3+INP4)

IHPG/ (THPS+INPG)

TMP8/ (TMP7+TIHPB)

0.5k (SCAL2+SCAL4)

IMP1
IMF2
THP3
TMP4
THPS
IMPO
IHF7
IHPB
SCALl
SCAL2
SCAL3
SCAL4
SCALS

EDT{ING)
EDT(IND)
EDT(INZ)
EDT(IN3)
EDT(IN4)

EDI(I1)
EDT(I1)
EDT(ID)
EDT(I1)
EDT(I1)

00 140 K=7,10

Q(K,IN1) = QC(K,I1)+SCAL1A(Q(K,I2)-Q(K,I1))

R{K,IN2) = Q(K, I2)+SCAL2A(Q(K, I3)-Q(K,I2))

Q(K, IN3) = Q{K,I4)+SCAL3A(Q(K,I3)-Q(K,14))

[(K, IN4) = Q(K,I1)+SCAL4*(Q(K,I4)-Q(K,I1))

Q(K,INC) = Q(K,IN1)+SCALIA(R(K, IN3)-Q(K,INI))
140 CONTINUE

145 CONTINUE

150 CONTINUE

RETURN

ERKOR IN FORM TYFE CHOOSEN

200 WRITE(LU1,%)’ WRONG FORM IN INTERPT IFORM=‘,IFORM
STOF
END

SUBROUTINE: METRC4

Lop B o B ap ]
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o

SURROUT INE METRC4

THIS SURKROUTINE CALCULATES THE METRICS FOR THE
CENTER OF CELL (I) USING BILINEAE INTERFOLATION

[ B B av 2R o]

INCLUDE ‘MET.INC’
INCLUDE ‘MAIN.INC’
INCLUDE ‘POINT.INC’

OXIX1
OYDXI
DOXIET
DYDET

0.54%(R{1,I3)+Q(1, 14)-0(1,I2)-6(1,I1))
0.54(R(2, I)+Q(2, 14)-Q(2, I2)-Q(2, I1))
0.5%x(Q{1, I2)+R(1, I3)-0(1, I1}-0(1, 14}
0.34(0(2, I2)+6(2, I3 -0(2, I1)-Q(2, I4))

Lap SR ae]

CALCULATE JACORIAN
IXOXITADYDET-DXDETARYDXI
SGRT(UXDETADXDET+DYDETADYDET)
SART(IXDX IADXDXI+DYDXIADYIXI)

v
bL
Ly

nonu

RETURN
ENI!

C-—- - -

C SURROUTINE: METRCS

c- —— - -_— -

SUEROUTINE METRCS(DXX1,DYX1,DXE2,DYEZ,
1 IXX3,D0YX3,DXE4,DYE4,VD)

THIS SUBROUTINE CALCULATES THE METRICS FOK THE
CENTER OF CELL (I) USING RILINEAR INTEKPOLATION

(o B o I a0 B oy

INCLUDE ‘MET.INC’
INCLUDE "MAIN.INC’
INCLUDE ‘POINT.INC’

LDIMENSION VT(3000)

IF(INC.ER.0) THEN

DXDXI = 0.54(Q(1,I3)+0(1,I4)-Q(1,I2)-Q(1,I1))
DYDXI = 0.5A(R(2,I3)+0(2,14)-0(2,I2)-Q(2,I1))
DXDET = 0.5x(Q(1,I2)+0(1,I3)-0(1,I1)-Q(1,I4))
DYDET = 0.5A(Q(2,I2)+0(2,I3-0(2,I1)-Q(2,14))

LU L T I [}

IV = DXDXIADYDET-DXDETADYDXI
ELSE
IXX1
nYx1
IIXE2
OYEZ
0Xx3
nYx3
DXE4
IYE4
OXDXI
0YDXI

(1, INC)-G(1,IN1)
(2, INC)-0(2, IN1)
@(1,IN2)-8¢1, INC)
(2, IN2)-8(2, INC)
A1, IN3)-A(1, INC)
(2, IN3)-R(2, INC)
R(1,INC)-B(1, IN4)
(2, INC)-B(2, IN4)
IXX1+DXX3
IYX1+DYX3

(L T T A | A [ B T |
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IXDET = DXE2+DXE4
IYDET = DYE2+DYE4
IV = YTCING)
END IF
C .
DL = SQRT(DXDETADXDET+NYDETAIYDET)
I = SQRT(DXDXIADXDX I+DYDX IADYDXI)
C
RETURN
END
C ___________________ e o —— S o i S S oo o e S P S S S S S
C SUBROUTINE: NI
C - - - ——— - e
SUBROUTINE NI
c
c SUERROUTINE NI DEFINES THE GKID CYCLING
C FOR THE GENERAL CELL ORIENTED NI SOLVER
C *NISTEP* WHICH SOLVES THE GOVERNING EGN‘S
C ON EACH LEVEL. THIS SURROUTINE THEN CHECKS
C FOR CONVERGENCE ON THE DEFINED LEVEL.
c
INCLUDE ‘MAIN.INC
INCLUDE ‘ INPT.INC’
INCLUDE ‘LUNITS.INC’
c
WRITE(LU1,1001)
c
N = NSTART-1
ISTOP = 0
1N = N+l
C
C RELAXATION SWEEF ON EACH GRID LEVEL FINE TO COARSE
I0 5 LEV = 1,LMAX
C
C SOLVE EQN’S
CALL NISTEPS(N,LEV)
IF(N.EQ.NSTART.ANILLEV.ER.1) THEN
WRITE(LU1,1000)N, IMAX, IELMAX
00 2 K=1,5
2 DELMAX1(K) = DELMAX(K)
END IF
cce
cee WRITE TEMP RESTART FILE
cce TMPREST = ELOAT(N)/100.-ELOAT(N/100)
cce IF(LEV.EQ.LSTOP.AND. TMPREST.EQ.0) CALL OUTRESTT
C
c CHECK FOR CONVERGENCE
IE(ISTOP.EQ.1.ANILLEV.EQ.1) GOTO 10
IF(LEV.EQ.LSTOP.AND.DELMAX(5) .LE.IELSTF) ISTOP = 1
5 CONTINUE
C

IF(N.GE.NMAX-1) ISTOP =1
OPEN(UNIT=LU7,REALONLY,TYPE="0LD")
READ(LU7, %) JSTOF
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IF(JSTOP.ER.1) ISTOF = 1
CLOSE(UNIT=LU7)
GOTG 1

10 WKITE(LU1,1000)N, IMAX,ELMAX
NEINSH = N
C

1000 FORMAT(2(2X,I5),6E12.5)

1001 FORMAT(///,’CONVERGENCE HISTORY’,/,4X,'N’,3X,  IMAX',
1 2X, ‘DELMAX(U1)’,2X, ‘DELMAX(U2) *, 2X, ' DELMAX(U3) *,
2 2X, ‘DELMAX{U4) 7, 2X, "IKU2/TTHAV’)
RETURN
END

SUBROUT INE NISTEFS(N,LEV}

[9e B or B ap |
w
|
o
=
o=
[ mes
(=]
-
=
tm
an
2
-
w
(-
tr1
o
n

This subroutine solves the Euler egns.

using 3 cell oreinted version of Ni‘s Method

over gqrid level LEV. This subroutine as written
performs either 3 fine mesh cell distribution or

3 coarse mesh cell acceleration distribution depending
of the type of each cell.

In addition this particular version saves 3
representative dt for each node in EDT(i) for use
in the error norm calculation. This same time step
then acts as 3 indicator as to wether the node is to
be updated (i.e. if EDT(i)=0.0 then the node has not
been distributed to or interpolated to and therefore
should not be updated).

This subroutine contains a switch which will include
the Navier-Stokes terms on level 1 based on the following
switch:

INSSWT = 0 For Euler solver.
1 For Navier-Stokes terms on level 1.
Note: In this case no smoothing is applied
on level 1.

OOOOMNMOOOOOoDoOOO0O0oODo o000

INCLUDE ‘MAIN.INC’
INCLUDE ’SOLV.INC’
INCLUDE /INPI.INC’
INCLURE ‘MET.INC’
INCLUDE ‘POINT.INC’
INCLUDE ‘LUNITS.INC’

Inject changes from the next finer level based on
one of the following weighting formulae:
IFORM = 0 FOR SIMPLE INJECTION OF VALUE AT INC
ALGERRAIC WEIGHTING
AREA WEIGHTING
NOTHING DIONE AT THIS TIME
SPECIAL DISTRIBUTION INJECTION
NOTHING DONE AT THIS TIME

[op N or T or B o B o B o 0 ow B v R 90

A L 2D
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6 Ni‘s Distribution (modified form 4)
IF(LEV.GT.1) CALL INJECTIS{LEV,G)

Initialize I and EIT hefore sweep
If LEV = 1 then 311 ‘s and EDOT’s =zeroed,
IF{LEV.EG.1) THEN
g 3 I=1, IGMAX
EBT(I} = 0.0
[0 5 K=7,10
I QK,I) = 0.0

Otherwize zero I and EDIT only 3t cell nodes.
ELSE
Q0 7 I=LEVP(1,LEV),LEVF(Z,LEV)
o 7 J=1,4
JP = ABS(IP(J,I))
EDT(JIP) = 0.0
g 7 K=7,10
7 BQ(K,JP) = 0.0

In addition zero boundary du’s so application
of boundary conditions on coarser levels will
only make changes at coarse nodes.
00 8 I=1, IPEBRMX
JP = ABS(IP(1, IPRR(2,1)))
o 8 K=7,10
8 Q(K,JP) = 0.0

00 9 I=1, IPRUMX
IP = ARS(IP(2,IPER(2,1)))
10 9 K=7,10

9 R(K,IP) = 0.0

END IF

Initialize embedded mesh interface nodes from
coarser mesh. This subroutine may zalso be used
to initalisze interface [U’s with embedded mesh
interface corrections.

CALL INRC4(LEV)

If global time step is used calculate DT here
based on minimum [T for current level.
IF({ITIM.EQ.0) CALL GTIME(LEW)

Initialize error norms to zero.
0o 10 K=1,35
10 DELHAX(K) = 0.0
DELUMAX = 0.0

Start of relaxation sweep for IU
over current level.
00 30 I = LEVP(1,LEV),LEVP(2,LEV)
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c Setup node pointers for cell.
CALL CELPOINI(I)

[ B aw |

Calculate cell metrics, volume, and other distances
CALL HMETRC4

Calculate time step for local CFL calculations
based on current cell.
IF(ITIM.EQ.2) CALL CTIME

[ I e M e

Store cell DT in EDT(i) for residual calculations
Note: set im this way the final value of EDT is
the value of the last cell to be calculated
which contains this node. It is note an
average.

bt

IT

T

T

[op I v B o B 90 Bl B 0

EOT(I1)
EDT(IZ)
ERT(I3)
EDT(I4)

non un

Ferform flux balance on cell for DELU(K)
then calculate distribution weightings
DELE and DELG for cell center.
Note: If INC = 0 this is a coarse cell
and injection is used.
CALL DELTU
CaLL DELTEG

(e I o B ue B o B e 8 o

[ap]

€ If level 1 is Navier-Stokes region calculate terms
IF(INSSWT.EQ.1.AND.LEV.EQ.1) CALL DELIRS

oo

Calculate artifical viscosity coefficient
€ if any of the cell nodes is to be smoothed.
IF(IVIS.GT.0) THEN

AVIS = AVISCEADTA(DL+IM)/INV

END' IF
C |
C Distribtute cell changes to nodes and if
c the node is to be smoothed then add smoothing.
00 20 K=1,4
KP6 = K+b
C
c Iistribution step
Q{KPB,I1) = G(KP6,I1)+(DELU(K)-DELE(K)-DELG{(K))/4.0
R(KPG,I2) = Q(KPG,I2)+(HELU(K)-DELF(K)+DELG(K))/4.0
Q(KP6, I3) = R(KP6, I3)+(DELU(K)+DELE(K)+DELG(K))/4.0
Q{KPG, I4) = Q(KPG,I4)+(DELU(K)+DELF(K)-DELG(K))/4.0
C
C Smoothing step
IF(INSSWT.ER.1.ANDLLEV.ER.1) GO TIC 20
IF(IVIS.EQ.0) GO ID 20
KP2 = K+2 :
c

QEAR = 0.29A(Q(KP2, I1)+Q(KP2Z, I2)+Q(KP2, I3)+R(KP2,14))
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G(KPGE,I1) = Q(KP6,I1)+0.254AVISA(QBAR-Q(KPZ, I1))AVIS]
Q(KPG, I2) = Q(KPG, I2)+0.25xAVISA(QBAR-Q(KF2, I2))AVIS2
Q(KP6,I3) = Q(KP6,I3)+0.254AVISK{QRAR-Q(KF2, I3))AVIE3
Q(KFG,I4) = Q(KPG,I4)+0.25%AVISA(QRAR-Q(KFZ,14))4AVIS4
CONTINUE

Calculate Maximum cell EU residusl
and its cell location.
IF(DELUMAX.LT.OELU(2)/0T) THEN
DELUMAX = DELU{(2)/0T
JMAX = 1
ENL IF

CONTINUE

Zero embedded mesh interface points and
calculate interface corrections to be sdd
to interface points on the next coarser
level.

CALL INFACRCZ(LEV)

[iouble solid wall boundary DU‘s.
CALL WALLDEL

Correct smoothing at 311 boundary points
(i.e. solid wall and farfield points at
this time.).

CALL BIOSMTH(LEV)

Interpolate DIU‘s from current level to
the finest level in each mesh region.
IFORM = 1 For centered interpolation {(i.e. slgebraic)
2 For interpolation based on physical lengths
IF(LEV.NE.1) CALL INTERPT(LEV,1)

Apply boundary conditions to a1l
boundary points.
IF(INSSWI.ER.0) THEN
CALL SIWALEC
CALL EULERWAL(LEV)
ELSE IF(INSSWI.EG.1) THEN
CALL NSSDHAL
ENDI IF
CALL FARFDRC2(CLN,CDN)

Update solution for 31l points
that have been changed and calculate
node error norms.

NUMPIS = ¢

00 60 I = 1,I0MAX

IF(EDTI(I).EQ.0.0) GO IO 60

NUMPTIS = NUMFIS+1

Do 55 K =1,4
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KFG = K+6
KP2 = K+2
IF (DELMAX(K).LT.ARS{Q(KPG6,I)/EIT{(I})) THEN
DELMAX(K) = ABS(R{(KPH,I)/ELNT(I))
IF (K.ER.2) THEN
IMAX = 1
ENDI IF
ENE IF
5% Q(KP2Z,I) = Q(KP2,I)+G(KF6,I)
DELMAX(S) = DELMAX(S)+ABS(Q(8,I)/EDNT(I))
60 CONTINUE

DELMAX(S) = DELMAX(3)/ELOAT (NUMFIS)

Write out error norms to plot file if
LEV is less than or equal to LSTOP.
IF{LEV.LE.LSTOF) WRITE(LU2,1000) N, IMAX,DELMAX,JMAX,DELUMAX,
1 CLN,CIN
1000 FORMAT(2¢2X,I%),S5E12.5,2X,I5,E12.5,2X,E12.5,2X,E12.9)

RETURN
END

—— o e 2 o e o s 2o o T - -

SUBROUTINE: NSSDWAL

SUEROUTINE NSSDWAL

THIS SURROUTINE CALCULATES IU FOR WALL

ROUNDIARY FOINTS FOR THE NAVIER-STOKES EGN.

USING NORMAL EXTRAPOLATION OF PRESSURE ANDIN TEMFERATURE
I.E. ADIABATIC WALL CONDITION.

INCLUDE ‘MAIN.INC’
INCLUDE ‘GAM.INC’
INCLUDE ‘INPT.INC’
INCLUDE ‘LUNITIS.INC’

BOTTOM WALL
00 10 I=1,IPEEMX

SET POINTERS & CALCULATE WALL TANGENT
IF(IPRR(3,I).EQR.4) THEN

J1 = ARS(IP(1,IPER(1,DD))
J2 = ABS(IP(4,IPER(1,DD))
J3 = AES(IP(4,IPER(Z2,1)))
J4 = ARS({IP(3,IPEBE(1,I)))

TMP1 = 0(1,32)-0(1,J1)
TMP2 = 0(2,J2)-0(2,J1)
51 = SORT(TMP1ATMP1+TMP2ATHF2)
TMP1 = Q(1,33)-8(1,J2)
THP2 = 0(2,J3)-8(2,I12)
0S2 = SORT(TMP1ATHP1+THP2ATHP2)

i
[N}
—
[ n]

|



Z-10 AIRFOIL EULEEK CODE EGR O-TYPE MESHES

THMFP1
P2
TMP3
THP4

[S1+0862
ns2/(nS14TMRL)
(082-DS1)/(DS1ANS2)
DS1/{DS2ATHPL)

nouw un

oxns
oYns
IHP1

-0(1,J1)ATMP2+Q(1, J2) ATHP3+Q(1,J3) ATHP4
-Q(2,J1)ATHP2+Q(2, J2) ATHP3+R(2, J3) ATHP4
SART (DXDSALXDS+OYIISADYIG)

oxX = IXDS/TMPL

oY = DYDS/TMPL

IRCOND = 1

ELSE IF(IPBR(3,I).ER.5) THEN

J1 = ARS(IP{1,IPER(1,I)))
J2 = ABS(IP(4,IPEBR(1,1)))
J3 = ABS{IF(4,IPRR(2,1)))
J4 = ARS(IP(3,IPRE(1,D1)))

ATAN2{(Q(2,12)-0(2,J1)),(Q(1,J2)-Q(1,J1)))
THETA2 = ATAN2((Q(2,J2)-R(2,J3)),(0(1,J2)-Q(1,J3) )
THETA 0.5k (THETA1+THETAZ2)

cc THETA = THETAl

THETAL

X = COS(THETA)

'Y = SIN(THEIA)

IRCOND = 1
ELSE

WRITE(LUl,%)* ERROR WALEC9C NOT VALID WALL TYFE I=',I
END IF
IF({IRCONDL.ER.O) GOIO 10

c CALCULATION OF IWT,IWN,AD

RIMF1 = 0(3,J4)

UTHP1 = G(4,J4)/RTNF1

VIMP1 = 8(5,J4)/RTNF1

ETHF1 = 0(6,J4)

PTMP1 = GMIA(ETMP1-0.SARTHP1A(UTHF1AUTHP1+VTNP1AVIMEL))

TIMP1 = GAMMAAFTMP1/KTHP1

IE(PTMP1.LT.0.0) THEN
WRITE(LUL,A) ‘44 PTHP1<0.0 IN SDWALEC AT EOTIOM I=',1I
STOF

END IF

C CALCULATION OF CORRECTED DELTA‘S
R(7,J2) = GAMMAKPTMP1/TTHP1-B(3,J2)
R(8,J2) = 0.0-0(4,J2)

Q(9,I2) = 0.0-0(5,12)
@(10,32) = PTHF1/GM1-8(6,J2)

10 CONTINUE

RETURN
END
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SURROUTINE: OUTPUT3

[on I |

SUBROUT INE OUTPUT3

THIS SUEROUTINE CKREATES THE OUTFUT EILE
CALL REST.DAT WHICH IS READ' BY EULER

[on I ou B B8 o ]

INCLUDE ‘MAIN.INC’
INCLUDE ‘POINT.INC/
INCLUDE /INPI.INC’
INCLUDE ‘GAM.INC’
INCLUDE ‘LUNITS.INC’

3

CALCULATION OF LIFT FORCE COEEFICIENTIS
0.0

0.0
0.0

Lo

CORD
CEN
CET

no
J1
I2

I=1, IPERMX
ARS(IF(1,IPEE(2,1)))
ABS(IP(4,IPEE(2,1)))

" ou o

IF(I.EQ.1) THEN
IX1 = Q1,11
Yl = 0(2,J1)
ENDII IF
TCORD = (TX1-0(1,J2))4A2+(TY1-Q(2,J2) %42
IF(TCORD.GI.CORD) CORD = TCORD

)9
oy
IS

a(1,12)-6¢1,I1)
@(2,32)-8¢2,31)
SART(IXADX+DYADY)

Pl = GM1A(Q(6,J1)

1 -0.5k(Q(4,J1)40(4,J1)+0(3,J1)40(3,J1))/Q(3,J1))
P2 = GM1ACG(6,J2)

1 -0.5%({Q(4,J2)40(4,J2)+Q(¢5,J2)40(5,J2))/Q(3,J2))
IMP = P1+4P2

CEN = CEN+IMPADX

CFT = CET+THPADY

CONTINUE

H o n

w

CORD = SQRT(CORID

QES = ROFSA(UESAUES+VESAVES)ACORD
CEN = -CEN/QES

CET = CFI/UFS

ALPHAR = 3.14139%ALFHA/180.0
CL = CENACOS(ALPHAR)-CETASIN(ALFHAR)
CIt = CENASIN(ALPHAR)+CFTACOS(ALFHAR)

(e

c CALCULATE SPECTRIAL RADIUS
SRAD = (DELMAX(S)/DELMAX1(5))kk(1./(NFINSH-NSTART))
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OPEN(UNIT=LU4,TYPE="NEW’,FORM="UNEORMATTEL)

SET CONSTANIS
ICONST(11) = NSTART
ICONST(12) = NFINSH
ICONST(13) = ITIM
ICONST(14) = ISTART
ICONST(13) = LSIOF
NICONST = 50
RCONST(1) = AMES
RCONST(2) = ALFHA
RCONST(3) = CFL
RCONST(4) = AVISCE
RCONSTI(S) = ROES
RCONST(6) = UES
RCONST(7) = VES
RCONST(B) = APFS
RCONST(9) = CORD
RCONST(10) = CEN
RCONST(11) = CET
RCONST(12) = CL
RCONST(13) = CII
RCONST(14) = CHM
RCONST(13) = DELMAX1(1)
RCONST(16) = DELMAX1(2)
RCONST(16) = DELMAX1(3)
RCONST(18) = DELMAX1(4)
RCONST(19) = DELMAX1(3)
RCONST{(20) = DELMAX(1)
RCONST(21) = DELMAX(Z)
RCONST(22) = DELMAX(3)
RCONST(23) = DELMAX(4)
RCONST(24) = DELMAX(3)
RCONST(23) = SRAD
NRCONST = 50
WRITE(LU1,1004)

WRITE(LU1,1005)K0OES,UFS,VES,CORD
WRITE(LU1,1006)CEN,CFT,CL,CD
1004 FORMAT{//,5X,’SECTION LIFT PROPERTIES’,/)

1005 FORMAT(SX, ‘ROES =,F10.7,5X, ‘ UES =,F10.7,

1 5X, VES =*,F10.7,5X,/CHORl  =,F10.7)

1006 FORMAT(SX, /CEN =/ ,F10.7,5X, ‘CET =/,F10.7,

1 5X,’CL =/,F10.7,5X, ‘CO =/,F10.7)
WKITE OUT GRID POINTERS

WRITE(LU4) GLAREL1,GLABEL2,RLAREL1,KLAREL2
WRITE(LU4) NICONST,NRCONST

WRITE(LU4) (ICONST(K), K=1,NICONST)

WRITE(LU4) (RCONST(K), K=1,NRCONST)

WRITE(LU4) LMAX,IGMAX,IPEUMX, IPRDMX, IPRTMX, IPERMX
WRITE(LU4) ((IPBIMX(M,N), M=1,2), N=1,LMAX}

[N]
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WRITE(LU4) ((LEVP(M,N), H=1,2), N=1,LMAX)

Do 10 LEV = 1,LMAX
WRITE(LU4) ((IF(M,N), M=1,9), N=LEVP(1,LEV),LEVF(Z,LEV))
10 CONTINUE

0 15 LEV=1,LMAX
IF{IPEIMX(2,LEV).NE.O)
1 WRITE(LU4) ((IPRI(M,N), M=1,2), N=IPRIMX(1,LEV),IPRIMX{(2,LEW))
S CONTINUE

WRITE(LU4) ((IPRU(M,N), M=1,3), N=1, IFEUMX)
WRITE(LU4) ((IPED(H,N), M=1,3), N=1, IPEIMX)
WRITE(LU4) ((IPET(M,N), M=1,3), N=1,IPETHX)
WRITE(LU4) ((IPRR(M,N), M=1,3), N=1,IPEEMX)

0 8 K =1,6
8 WRITE(LU4) (Q(K,I), I=1,IGMAX)

RETURN

ENII

C_.._ o o e e e o e e e et e S o S o
SURROUT INE:OUTRESTT

SUEROUTINE OUTRESTT

THIS SUEROUTINE CREATES A TEMPORARY OUTFPUT FILE
CALL TREST.DAT WHICH IS READ RY EULEK

INCLUDE ‘MAIN.INC’
INCLUDE ‘POINT.INC’
INCLUDE ‘INPT.INC’
INCLUDE ‘GAM.INC’

CALCULATION OF LIFT FORCE COEFEFICIENIS
CORD = 0.0
CEN = 0.0
CET = 0.0

o0 5 I=1,IPREMX
J1 = ARS(IP(1,IPRE(Z,I)))
J2 = ARS(IP(4,IPEE(Z,I)))

IF(I.EQ.1) THEN

X1 = (1,1
Yl = (2,J1)
ENDI IF

TCORD = (TX1-Q(1,J2))kA2+(TY1-Q(2,J2))AX2
IF{TCORD.GT.CORI) CORD = TCORD

DX = Q(1,J2)-8(1,J1)
IY = 0(2,32)-8(2,I1
IS = SGRT(IXADX+DYADY)
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P1 = GMI1x(Q(6,J1)
-0.5%k{R{4,J1)AG(4,J12+G(5,J1)40(5,T1))/0(3,J1))

P2 = GM14(Q(6,J2)
-0.54({Q(4,J2)A0Q(4,J2)+0(3,I2)4R(5,J2))/R(3,32))

IMP = P1+F2

CEN = CEN+TMFPADX
CET = CET+TIMPADY
CONTINUE

CORD = SQRT(CORID

(IFS = ROFSA{UFSAUES+VESAVES)ACORD
CEN = -CEN/GES
CET = CFI/QES

ALPHAR = 3.14159%ALPHA/180.0
CL = CENACOS(ALPHAR)-CETASIN(ALPHAR)
Coi = CENASIN{ALPHAR)+CETACDS (ALFHAK)

"won

CALCULATE SPECTRIAL RADIUS
SRAD = (DELMAX(S)/DELMAX1(3))&k(1./(NEINSH-NSTAKI))

DPEN{UNIT=8,NAME=‘TREST.DAT,TYPE='0LD’,FORM="UNEORMATTED")

SET CONSTANIS

ICONST(11) = NSTAKI
ICONST(12) = NEINSH
ICONST(13) = ITIM
ICONST(14) = ISTART
ICONST(15) = LSTOF
NICONST = 50

RCONST(1) = AMES
RCONST(2) = ALFHA
RCONST(3) = CEL
RCONST(4) = AVISCE
RCONST(S) = ROES
KCONST(6) = UFS
RCONST(7) = VES
RCONST(8) = APES
RCONST(9) = CORD
RCONST(10) = CEN
RCONST(11) = CFT
RCONST(12) = CL
RCONST(13) = CI
RCONST(14) = CH
RCONST(13) = DELMAX1(I)
RCONST(16) = DELMAX1(2)
RCONST(16) = DELMAX1(3)
RCONST(18) = DELMAX1(4)
RCONST(19) = DELMAX1(3)
RCONST(20) = DELMAX(1)
RCONST(21) = DELMAX(2)
RCONST(22) = DELMAX(3)
RCONST(23) = DELHMAX(4)
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RCONST (24)
RCONST(25)
NRCONST = 30

DELMAX(3)
SRAL

C
1004 EORMAT(//,5X, SECTION LIFT FROPERTIES,/)
1005 FORMAT(5X,’ROES =’,F10.7,5X, ‘UES =7,EF10.7,
1 SX, ‘VES =/,F10.7,5X, ‘CHORl  =*,F10.7)
1006 FORMAT(SX,’CEN =/,F10.7,5X, ‘CET = ,F10.7,
1 5X, ‘CL =’,F10.7,5X, ‘CD =*,F10.7)

WRITE OUT GRID' POINIERS

[0 B an B o}

WRITE(8) GLAREL1,GLAREL2,RLAKEL1,RLAREL2
WRITE(8) NICONST,NRCONST

WRITE(8) (ICONST(K), K=1,NICONST)

WRITE(8) (RCONST(K), K=1,NKCONST)

WRITE(B) LMAX, IQMAX, IPRUMX, IPRDMX, IPETMX, IPEEMX
WRITE(®) ((IPRIMX(M,N), M=1,2), N=1,LMAX)
WRITE(8) ((LEVP(M,N), M=1,2), N=1,LMAX)

00 10 LEV = 1,LMAX ,
WRITE(R) ({IP(M,N), M=1,9), N=LEVF(1,LEV),LEVF(2,LEV))
10 CONTINUE

O 15 LEV=1,LMAX
IFCIPRIMX(2,LEV).NE.O) i
1 WKITE(B) ((IPRI(M,N), M=1,3), N=IPRIMX(1,LEV),IPEIMX(2,LEV))
15 CONTINUE

WRITE(8) ((IPBU(M,N), M=1,3), N=1,IPEUMX)
WRITE(8) ((IPED(M,N), M=1,3), N=1,IPEIMX)
WRITE(8) ((IPET(M,N), M=1,3), N=1,IFETHX)
WRITE(8) ((IPRE(M,N), ¥=1,3), N=1,IPRENX)

00 8 K =1,6
8 WRITE(8) (R(K,I), I=1,IAMAX)

CLOSE(UNIT=8)

RETURN
ENID

SUBROUTINE: SIWALEC

Lop R e BN o ]

SUBRKROUT INE SDWALEC

THIS SUBROUTINE CALCULATES DU FOR WALL
ROUNDARY POINIS USING A SIMFLE WAVE
EC FOR THE 4 EGN EULER PROBLEM.

[ I uw B o B o Y e

INCLUDE “MAIN.INC’
INCLUDE ‘GAM.INC’
INCLUDE ’INPT.INC’
INCLUDE ‘LUNITS.INC’
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BOTTOM WALL
D0 10 I=1,IPEBMX

SET POINTERS & CALCULATE WALL TANGENT
IF(IPEE(3,1).EQ.4) THEN

J1 = ABSCIP(1,IFEE(1,D1)))

12 = ARS(IP(4,IPEE(1,1)))

13 = ABS(IP(4,IPEE(2,D)))

TMP1 = Q(1,12)-@¢1,J1)
THE2 = G(2,J2)-6(2,J1)
DS1 = SGRT(TMP1ATMP1+TMP2ATME2)
TMP1 = Q(1,J3)-B(1,J2)
THP2 = 0(2,33)-8(2,I2)
52 = SQRT(TMP1ATHP1+IMF2ATHP2)

IHP1
IMP2
IMF3
TMP4

[S1+062

D52/ (NS1ATHEL)
(082-0151)/ (DS14DS2)
[81/(DS2ATHPL)

nonoun

nxps
YRS
NP1

-Q(1,J1)ATMP2+Q¢1,J2) ATMP3+G(1, J3)ATMF4
~-Q(2,J1)ATHP2+R(2,I2) ATHP3I+Q (2, I3)ATNHP4
SART (DXDSARXDS+IYISADYIS)

IX = DXDS/TMP1
IY = DYDS/TMPI
IECOND = 1

ELSE IF(IPEE(3,1).ER.5) THEN
J1 = ARS(IP(1,IPEE(1,1)))
12 = ABS(IP(4,IPEE(1,1)))
13 = AES(IP(4,IPEE(2,1)))

[{ ]

THETALl = ATANZ((Q(2,J2)-R(2,J1)),(Q(1,J2)-R(1,J1))
THETAZ = ATAN2((Q(2,J2)-0(2,33)),(Q(1,J2)-Q(1,J3)))
THETIA 0.5%(THETA1+THETAZ)

THETA = THETAl

OX = COS(THEIA)

IY = SIN(THETA)

IRCOND = O
ELSE

WRITE(LU1,%)’ ERROK WALBCOC NOT VALIDI WALL TYFE I=’,I
ENDII IF
IF(IRCONLLEQ.O) GOTC 10

CALCULATION OF DWT,DWN,AO

RTMP1 = G(3,J2)+Q(7,J2)

UTHMP1 = (Q(4,J2)+Q(8,32))/RTHF]

VINF1 = (Q(5,]2)+Q(9,J2))/RTNF]

ETHP1 = Q(6,J2)+Q(10,J2)

PIMP1 = GMI1A(EIMP1-0.5ARTMP1A(UTMP1AUTHP1+VINP1AVTINF1))

IF(PTIMP1.LT.0.0) THEN
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WRITE(LUL,X) “&k PTMP1<0.0 IN SIWALEC AT BROTIOM I=7,1I
SIOF

ENL IF
IF(IBCOND.ER.1) THEN

A0l = SRRT(GAMMAXPTMP1/KRIMPI)

UWT1 = DXAUTHPI+DYAVINP]
DWN1 =-DYAUTHP1+DXAVINFL
UNEW = UWTIADX
UNEW = UWTIADY

TME = 1.0-0.5AGM1ATWNL/AOL

IE(IMP.LT.0.0) THEN
WRITE(LUL,%)* *ATMP<0.0 IN SDWALEC AT ROTIOM I=",1
STOF

END IF

RNEW = ETMPIA((TMP)AX(2.0/GM1))

FNEW = PIMP1A((IMP)XA(2.0/GMIDG))

ELSE IF(IRCOND.ER.Z2) THEN

UNEW = 0.0

UNEW = 0.0

PNEW = (PTMPl1AAGMIDNG+GMID2GARINP1A(UTMPIAAZ+VTHFIXAZ)
/(PTNMP1Ak(1./GAMMA) ) ) KA (1.0/GM1DG)

RNEW = RTHP1&((PNEW/FIMP1)&k(1./GAMMA))

ELSE IF(IRCOND.ER.3) THEN

UNEW = 0.0

UNEW = 0.0

PIMPA = GMI1A(R{6,J1)-0.5k(0(4,J1)AKR2+Q(53,J1)4A2)/Q(3,I1))

PIMPR = GM1A{Q(6,J3)-0.54(Q(4,I3)Ax2+Q(5,J3)442)/0(3,13))

PNEWA = (FPTMPAXAGMIDG+GMID2GA(Q(4,J1)k423+G(5,J1)AA2)/Q(3,11)
/(PTMPAXA(L./GAMMA) ) Y AA(1.0/GMIDG)

PNEWR = (PTMPEAAGNM1DG+GM1D26A(R(4,J3)xA240(5,13)442)/0(3,13)
/{PTHPRAK(1./GAMMAY) JAK(1.0/GMIDG)

PNEW = 0.5A(FNEWA+FNEUWR)

RNEW = RTHP1A((PNEW/PTMPA)AA(1./GAMNMA))

ELSE IF(IBRCOND.ER.4) THEN

GNEW = SQERI(UTHP1AAZ2+VIMP1A%2)
UNEW = QNEWADX
UNEW = ONEWALY
PNEW = PINMP1
RNEW = RIMP1
END IF

CALCULATION OF CORRECTED DELTA’S

G(7,J2) = RNEW-R(3,12)

Q(8,J2) = RNEWAUNEW-G(4,J2)
Q(9,J2) = RNEWAVUNEW-Q(5,J2)
Q(10,J2) = PNEW/GM1+0.5ARNEWA (UNEWAUNEW+VUNEWAVNEW)

-0(6,J2)

10 CONTINUE

RETURN -
ENII
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SUBROUT INE WALLDEL

THIS SUEROUTINE DOUELES THE SOLID WALL
LU‘S BEFORE INTERPOLATION AND AFPLICATION
OF BROUNDIARY CONDITIONS.

INCLUDE ‘MAIN.INC’
INCLUDE ‘LUNITS.INC’

EOTTON WALL POINTS
00 5 I=1,IPREMX
IF{IPBE(3,1).EQ.4) THEN
IF(IFRE(1,1).NE.0) THEN
12 = ABS(IP(4,IPEE(1,1)))
ELSE
J2 = ARS(IP(1,IFEE(2,1)))
END IF
LSE IF(IPEE(3,1).EG.5) THEN
IF(IPBR(1,I).NE.0) THEN
12 = ARS(IP(4,IFEE(1,D)))
ELSE
12 = ARS(IP(1,IPEE(Z,1)))
END IF
ELSE
WRITE(LU1,A)‘ ERROR WALLDEL IPER(3,I) NOT 4 OR 5
END IE
o0 5 K=7,10
R(K,J2) = 2.0AR(K,J2)

RETURN
ENIl

C _______ ————

o0

(4]

SUEROUTINE ZERO4(LEV)

THIE SUBRDUTINE SETS SURDOMAIN-GLOFAL
ROUNDARY DU‘S TO ZERO.

INCLUDE ‘MAIN.INC’
IF(IPRIMX(1,LEV).EG.0) RETURN

00 5 I=IPRIMX(1,LEV),IPEIMX(2,LEV)
o0 5 I=1,3

JPOINT = IPRI(I,D)

00 5 K=7,10

Q(K,JFOINT) = 0.0

RETURN
END

i
[R]
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c LINK COMMAND FILE: AELLINK.COHM

SET1 := RDSMTH,CELPOINT,CTIME,DELTFG,DELTU,METRCS,-
INFACEC2, INTERPT,NISTEPS, INJECTS, EULERWALZ,
:= FINDEG,GAMMAS,GEDWAL,GT IME, INBC4, INITIA, INFACEC,
SET3 := INPUT2,METRC4,NI,
:= OUTPUI3,FARFDRCZ,SIWALBC,WALLDEL,-
ZERD4,DELTRS,NSSIWAL, OUTRESTT
LINK EULERCELL,’SET1‘ ‘SET2’ 'SET3’ ‘SEI4’

C___.. i o " A o . i i D S W i S0 S S S B P S S e
C DATA FILE: AIRFOIL.IMF

C ___________________________ [ - -
RUN 216:

EULER, NI INJECTION{(&), CHAK S/W, VORTEX DS THAR. QUARTER CHOKI
.85 ENTER FREE STREAM MACH NO., AMES

1.0 ENTER ANGLE OF ATTACK

.95 ENTER CEL NO.

2 ENTER TYPE OF TIME STEP 0 = SINGLE TIME 2 = EACH CELL
.08 ENTEK ARTIFICIAL VISCOSITY COEF. 0.<AVISCF<0.1

1 2000 1500 ENTERK NUMBER OF ITERATIONS: NSTART,NMAX

1E-3 ENTER CONVERGENCE CUT OFF DELSTF

1 ENTER LEVEL TO CHECK CONVERGENCE ON, LSTOP

0 D0 YOU WANT THE INITIAL FLOW PRINTEDT? 0=NO  1=YES

0 ENTER TYPE OF INITIAL SOLUTION 0 = UNIEORM FLOW 1 = RESTART
[CFI.USAR.EULERCELL.GRIDFOILINACAO012.015

0 ENTER NAVIER-STOKES SWITCH INSSWI= 1:YES, Q:INO

2.342E6 .72 288.0 ENTER REO,PR,TREF FOR NAVIER-STOKES SUEDOMAIN

ChikhkAkkhAAKAAAAKAKARARKAAKKKARAKAKARAKKAARAKRRRAKKAARKAKAKRKAKK
C - -




APPENDIX F

2-D AIRFOIL EULER CODE FOR C-TYPE MESHES

This appendix contains 1listings of the two computer
codes wused to generate the 2-D transonic airfoil solutions on
C-type meshes presented in this thesis. The first program
called GEOCREATC reads in a global C-type mesh as input and
then interactively generates a file which contains the pointer
system and mesh coordinates for the complete mesh structure.
The second program, EULERCELL, 1is the multiple-grid Euler
solver. EULERCELL requires two files as input, the pointer
file defining the embedded mesh structure and a second file
containing the flow conditions and control parameters (a
sample of this file is given at the end of this appendix).
Since most of the subroutines used by GEOCREATC and EULERCELL
are the same as those used by the corresponding O-mesh codes,
only those subroutines which are different are presented here.

All others may be taken directly from the O-mesh codes.
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PROGRAM: GEOCREATC

THIS PROGRAM GENERATES THE GRIDN AND' POINTERS
FOR A AIRFODIL WITH A CGRIL.

CALL GEOIN3
CALL GEOFONIC
CALL GEOOUT3

STOF
ENI

C... R ——— - -

C INCLUDE EILE: GEOCOM.COM

C... ______ -———

COMMON/GEQCOM/ IE, JE, IEN1 , JEM1, LMAX, ISURL,
DELTA,AK,Y0,IC1,IC2,JC2, IF2, JF2,
X(257,65),Y(257,65),X5(49,9),Y5(49,9),
IPC(257,65), IFS(49,9), IANAX,B(2,8424),
ILEVP(2,5) ,LEVP(2,5),1F(9,10816),
IPEIMX(2,5) , IPRUMX, IPRIMX , IPETHX , IPREMX,
IPRI(3,257), IPRU(3,257), IPEN(3,9),
IPRT(3,33), IPEE(3,257),
LEVSET(257,65), IPSET(257,65),
ICONST(50) ,RCONST(50),LU1,LU2,LU3,LUS,LUG

COMMON/GEOLAR/GLAREL1,GLAKELZ2, KLAREL1,KLAREL2,

1 IN_NAME,OUT_NAME

CHARACTER GLAREL1430,GLABEL2%100,KLAREL1%10,RLAREL2A100,

1 IN_NAMEA15,0UT_NAMEALS

COMMON/GAM/ GAMMA,HTOT,

1 GM1,GM102,GM1DG, GM102G,

2 GP1DG,GP102G,GM3

O 00N G UL W)

c SUBRROUTINE EILE: GEOPONIC
C _____ —_ -
SUBRROUTINE GEOPONIC

€

c THIS SURROUTINE GENERATES THE POINTERS

c FOR THE GIVEN GRID AND' BOUNDARY CONDITIONS.
c THIS IS A EXTENDED VERSION OF GEOPONT3.

c

INCLUD'E ‘GEOCOM.COM’
FIND' T/E LOCATION
0

I
IT 0

o



ccc

cce
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10

I=1I+1
IF{Y(I,1).EQ.Y(IE-I+1,1)} THEN
ITE = 1
G0 IC &
ENDI IF
WRITE(LUG,4)’ DOUELE I/E SETUF’

ITE =ITE-1
WRITE(LUG,4)’ ITE =',IIE

SETUP AND FILLING OF Q-VECTOK
IND = 0
00 10 L=1,LMAX
LSKIP = 2kA(L-1)
o0 10 I=1,IE,LSKIF
10 10 J=1,JE,LSKIF
IF(LEVSET(I,J).EQ.L) THEN
IF{J.GT.1.0R.I.LE.IE-ITE) THEN
IND = IND+1
G(1,INID = X(I,D
Q(2, IND = Y(I,D)
IPSET(I,]) = IND
ELSE
IPSET(1,1) = IPSET(IE-I+1,D)
END' IF
END IF
CONTINUE

IGMAX = IND
WRITE(LUG,A) * IQMAX=’' , IOMAX

GENERATE POINTERS
INF =0

10 30 LEV=1,LMAX

ILEVF(1,LEV) = IND+1

LSKIF = 2kk(LEV-1)

LSKIF2 = LSKIF/2

D0 25 I=1,IEM1,LSKIF

I0 25 J=1,JEM1,LSKIF

ICOUNT = 0

IF(LEVSET(I,J).LE.LEW) ICOUNT
IE(LEVSET(I,J+LSKIP).LE.LEV) ICGUNT
IF(LEVSET( I+LSKIP,J+LSKIF) .LE.LEV) ICOUNT

IF(LEVSET( I+LSKIP,J) .LE.LEV) ICOUNT
IF{ ICOUNT.ER.4) THEN
IND = IND+1
IP(1,INI) = -IPSET(I,I)
IP(2,INI) = -IPSET(I,J+LSKIP)
IP(3, IND) = -IPSET(I+LSKIF,J+LSKIP)
IP(4,INI) = -IPSET(I+LSKIF,I)

IF(LEV.ER.1) THEN
IF(J.GT.1) THEN

ICOUNT+1
ICOUNT+1
ICOUNT+1

ICOUNT+1
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iF(I.GT.1) THEN

IF(LEVSET(I-1,J).EQ.1.ANIIL.LEVSET(I,J-1).ER.1}

1 IP(1, INID = -IF(1,INID

END IF
IF(I.LT.IEM1) THEN

IF{LEVSET(I+2,J).ER.1.AND.LEVSET(I+1,J-1).EQ.1)

1 IP(4,IND) = -IP(4,INID

17

END' IF
ELSE
IF{I.LE.ITE.OR.I.GE.IE-ITE+1) THEN
IF(I.NE.1) IP(1,ININ = -IP(1,INID
ENDI IF
IF(I.LT.ITE.OR.I.GE.IE-ITE) THEN
IF(I.NE.IEM1) IP(4,INI} = -IF(4,INID
END IF
END IF
IF(J.LT.JEM1) THEN
IF(I.GT.1) THEN

IE(LEUSET(I—1,3+1).EQ.I.AND.LBUSET(I,J+2).EG.l)
1 IP(2, IND) = -IP(2, INID

END IF
IF(I.LT.IEM1) THEN

IF(LEVSET(I+2,J+1).EQG.1.AND.LEVSET(I+1,J+2).EG.1)

1 IP(3,IND) = -IF(3,INI)
" ENR IF
END IF
I0 17 K=5,9
IP(K, INDD = 0
ELSE
IE(LEVSET( I+LSKIP2, J+LSKIP2) .ER.LEV) THEN
IF(J.GT.1) THEN
IF(I.GT.1) THEN
IF(LEVSET(I-LSKIF,J).LE.LEV
1 .AND.LEVSET(I,J-LSKIP).LE.LEV)
1 IP(1, IND) = -IF(1,INDD
END IF
IF¢I.LT.IE-LSKIP} THEN
IF(LEVSET( I+2ALSKIF, 1) .LE.LEV
1 .AND,LEVSET( I+LSKIF,J-LSKIP) .LE.LEW)
1 IP(4,INI) = -IP(4,IND)
END IF
ELSE

kkk% ADD EMBEDDEDL MESH SYMMETRY CONDITIONS

WRITE(LUG,k)‘ xkk ERROR SYMMETRY CONDITION MISSING’

END' IF
IF{(J.LT.JE-LSKIP) THEN
IF(I.GT.1) THEN
IF(LEVSET(I-LSKIP,J+LSKIP).LE.LEV

1 +ANDLLEVSET(I,J+2ALSKIF).LE.LEV)
1 IP(2,IND) = -IP(2,INID
END IF

IF(I.LT.IE-LSKIP) THEN
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IF{LEVSET( I+2ALSKIF,J+LSKIF).LE.LEV

1 .AND.LEVSET(I+LSKIP,J+24LSKIP).LE.LEV}
1 IF(3, ININ = -IF(3, INID
END' IF
ENDIN IF

ELSE IF(LEVSET(I+LSKIF2,J+LSKIF2).EQ.LEV-1) THEN
IF(J.GT.1) THEN
IF(I.GT.1) THEN
IF(LEVSET(I-LSKIFP,J).EQ.LEV

1 .0R.LEVSET(I,J-LSKIF).EG.LEV)
1 IP(1,INID = -IP(1,INID
ENL IF

IF(I.LT.IE-LSKIP) THEN
IF{LEVSET({I+2ALSKIF,J).EQ.LEV

1 .OR.LEVSET(I+LSKIP,J-LSKIF).ER.LEV)
1 IP(4, INI) = -IP(4,INID)
END IF
ELSE

kkxkkk% ALl EMBEDDED MESH SYMMETRY CONDITIONS

WRITE(LUG,%)’ xx% ERROR SYMMETRY CONDITION MISSING’
END IF
IF(J.LT.JE-LSKIF) THEN
IF(I.GT.1) THEN
IF(LEVSET(I-LSKIF,J+LSKIF).EQ.LEV

1 .OR.LEVSET(I,J+2ALSKIP).EQ.LEV)
1 IP(2, INID = -IP(2, IND)
END IF

IF(I.LT.IE-LSKIP) THEN
IF{LEVSET( I+2&ALSKIF,J+LSKIP).EQ.LEV

1 .OR.LEVSET (I+LSKIF, J+2ALSKIF) .EQ.LEV)
1 IP(3,INI) = -IF(3,INI)
END IF
END IF
ENR IF |
IF(LEVSET ( I+LSKIP2,J4LSKIP2).LT.LEV)
1 IP(5,INI) = IPSET(I+LSKIP2,J+LSKIP2)
IF(LEVSET(I,J+LSKIF2).LT.LEV)
1 IP(6,IND) = IPSET(I,J+LSKIP2)
IF(LEVSET( I+LSKIP2,J+LSKIP) .LT.LEV)
1 IF(7,INI) = IFSET(I+LSKIP2,J+LSKIF)
IF(LEVSET( I+LSKIP, J+LSKIP2).LT.LEV)
1 IP(8, INI) = IPSET(I+LSKIP,J+LSKIP2)
IF(LEVSET ( I+LSKIF2,1).LT.LEV)
1 IP(9,INI) = IPSET(I+LSKIP2,I)
END IF
END IF

25 CONTINUE

ILEVR(2,LEV) = IND

WRITE(LUG,x)‘ ILEVP(2,LEV)=’,ILEVP(2,LEV)
30 CONTINUE

INTERPOLATION RC POINTIER

1
)
(48]
2
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WRITE(LUG,*)’ kk% NOTE: NO SYMMETRY COND'ITIONS HERE’

IND = 0

00 47 LEV = 2,LMAX

LEVM1 = LEV-1

LSKIP = 2kA(LEV-1)

LSKIF2 = LSKIF/2

IPEIMX(1,LEV-1) = IND+1

I0 45 I=1,IEM1,LSKIF

10 45 J=1,JEN1,LSKIF

IF(LEVSET( I+LSKIP2,+LSKIP2) .ER.LEV) THEN
IF(LEVSET(I,J+LSKIF2) .EQ.LEV-1) THEN

IND = IND+]
IPRI(1,IND) = IPSET(I,J+LSKIF)
IPEI(2,INN) = IPSET(I,J+LSKIP)
IFRI{3,IND) = IPSET(I,I)

ENDN IE

IF{LEVSET( I+LSKIF2, J+LSKIP).EQ.LEVM1) THEN
IND = IND+1
IPRI(1,INI = IPSET(I+LSKIP,J+LBKIF)
IPRI(2,IND) = IPSET(I+LSKIP2,J+LSKIP)
IPRI(3,INI) = IPSET(I,J+LSKIP)

END' IF

IF(LEVSET( I+LSKIF,J+LSKIF2).ER.LEVM1) THEN
IND = INDM+1
IPRI(1,IND) = IPSET(I+LSKIP,J)
IPBRI(2,IND) = IPSET(I+LSKIP,J+LSKIFZ)
IPRI(3,INIt) = IPSET(I+LSKIF,J+LSKIF)

ENDI IF

IF(LEVSET(I+LSKIP2,J).EQ.LEVH1) THEN
IND = IND+]
IPRI(1,INI) = IPSET(I,J)
IPRI(2, IND) = IPSET(I+LSKIF2,1)
IPRI{3,INI) = IPSET{I+LSKIP,I)

ENIN IF ‘

ENLI IF

45 CONTINUE |
IF( IPEINX(1,LEV-1).GT.INI) THEN
IPRIMX(1,LEV-1) = 0
IFRIMX(2,LEV-1) = 0
ELSE
IFRIMX(2,LEV-1)
END IF
47 CONTINUE

IND

FARFIELD & SOLID WALL RC PDINTERS

DEFINE FARFIELD POINIS
IND =0
=290
49 J = J+1
IF(IPSET(1,J).GT.0) THEN
IND' = IND+1
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IPRU(Z, IND) = IPSEI(1,D)
IF(J.GT.1) THEN
IPRUC(3, IND-1)
IPRUCL, INDD
END' IE
END' IF
IF{J.LT.JE) GO IO 49

IPRUCZ, IND)
IPRU(Z, IND-1)

=1
= I+1
F(IPSET(I,JE).BT.0) THEN
IND = INIM1
IPRU(2,INI) = IPSET(I,JE)
IF(1.6T.2) THEN
IPRU(3, INI-1)
IPEU(1, INID
ELSE
IPEU(1, INDD
END IF
END IF
IF(I.LT.IE-1) GO TO 50

g b e

IPEU(2, ININ
IPRU(2, IND-1)

" on

IPRU(2, IND-1)

1= JE+1
=31
IF(IPSET(1,1).GT.0) THEN
IND = IND+1
IPRUC2, INID = IPSET(IE,I)
IE(J.LT.JE) THEN
IPEU(3, IND-1)
IPEU(L, IND)
ELSE
IPEU(3, INI-1)
END IF
END IF
IF(J.6T.1) GO TO 51

IPBU(2, INI)
IFRU(2, IND-1)

IPBU(2, INID

IPRU{1,1) = IFRU(1,INID
IPRUMX = IND-1 '

DEFINE SOLID WALL POINTS
INDK = 0
I=1IE
I=1I+1
IF(IPSET(I,1).6T.0) THEN
IND = IND+1
IPERR(2, IND = IPSET(I,1)
IF(INDL.GT.1) THEN

IPRE(3, IND-1) = IPEE(2,INID
IPEE(1,INI) = IPER(Z,IND-1)
ELSE
IPER(1,INI) = IPSET(ITE,1)
END IF
END' IF

IF(I.LT.IE-ITE+l) GO I0 &2



IPEBRMX = IND-1

ng
1

3 IND=1, IPRUMX
IPEU(1, INID
12 = IPEU(2, INID
13 = IPEU(3, INID
CALL GEOECEL(I1,I2,I3,ICEL1,ICEL2)
IFRUC1, INID = ICELL
IPRU(2, IND) = ICELZ
IF(ICEL1.NE.0.AND. ICEL2.NE.O) THEN
IE(ABS(IP(2, ICEL1)).EG.ARS(IF(1,ICEL2))) THEN
IFRU(3, INI) = 1
ELSE IF(ARS(IP(3,ICEL1)}.ER.ARS(IF(2,ICEL2))) THEN
IPBU(3, INID = 2
ELSE IF(ARS(IP(4,ICEL1)).ER.ARS{IF(3,ICEL2))) THEN
IPRUC3, IND) = 3
ELSE IF(ABS(IP(1,ICEL1)).E@.AES(IF(4,ICEL2))) THEN
IPRUC3, INID = 4
ELSE
WRITE(LUG,#)’ %% ERROR IN DEFINING IPBU TYPE 1’
END' IF
ELSE IF(I3.EG.0) THEN
IPRU(3, INID = 6
ELSE IF(I1.ER.0) THEN
IPRU(3, INI) = 7
ELSE
WRITE(LUG,A)’ &k ERROR IN DEFINING IPRU TYFE 2’
END IF
IF(IND.EQ.1) IPBU(3,IND) = 5
53 CONT INUE

wonounen

b0 54 IND=1, IPRBMX

I1 = IPBE(1,INID

I2 = IPER(Z,INID

I3 = IPRE(3, INID

CALL GEOBCEL(I,I2,I3,ICEL1,ICEL2)
IPER(1,ININ = ICELl

IPRR(2, ININ = ICEL2

IPRE(3, INID = 4

54 CONTINUE

[ [ 1]

C OTHER POINTERS
IPEDMX = 0
IPRTMX = 0

RETURN

END
C P —— - -—
ChARARAAKARAKAKARAKKKAKAKAXKARAAKRAARAKKRAKKKRAKKRRAKKAAARKAKAKAK
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C ________ L S ——
C
C ________ J— o o S i e S o e i g i S i S S Y WD W D D i S S G S S S -
c PROGRAM: C-MESH EULERCEL
C ____________ - — — A w— — 7 S A = S s - e S e A S M S G S S0 S S S P S o e e e
C PROGRAM EULERCELL SOLVES THE 2-D EULER EGN‘S
c USING A CELL POINTER BASED VERSION OF
c NI’S METHOD. IT INCLUDES THE CAPARILITY
C OF ANY NUMEER OF SUBLIOMAINS.
c
C
C READ INPUT PROPERTIES
CALL INPUT2
C
c CALCULATE CONSTANTS CONTAINING GAMMA
CALL GAMMAS
C
C INITIALIZE ELOW FIELD TO UNIFORM ELOW
CALL INITIA
C
C SOLVE EULER EGN‘S USING NI‘S METHOD
CALL NI
C
c OUTPUT FINAL SOLUTION
CALL OUTPUT3
C
SIOP
END
C _____
c INCLUDE EILE: GAM.INC
C _____ e o s st P o e . . e -
COMMON/GAN/ GANMA,HTOT,
1 GM1,GM1D2,6H1D6, GH1D2G,
2 GP1DG,GP1D26,GM3
C _____ [p— -
c INCLUDE FILE: INPT.INC
C...-..._
COMMON/ INFI/ AMES,CEL,AVISCE,EXITF,ITIN,
1 ISTART,NSTART, NMAX, LMAX,
2 LSTOP,DELSTP, IPRNT1, IPRNT2,
3 WCES(4),LELTA, AK, YO,
4 IE,JE,IC1,IC2,IC2, IF2, JE2,
5 ALPHA, ROFS, APES, UES, VES,
6 NE INSH, IELMAX1(5),
7 ICONST(50),RCONST(50),
8 INSSWT,REO, PR,CSTAR, TREE
COMMON/ INPTLAE/GLAREL1 ,GLAREL2, RLAKEL1 , RLAREL2
CHARACTER GLABEL1%30,GLABEL2A100,KLAREL1410,RLAREL24100
C_.
C INCLUDE EILE: LUNITS.INC
C —_— - —-————
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1

COMMON/LUNITS/LUL,LUZ,LU3,LU4,LUS,LUG,LU7

c
C INCLUDE EILE: MAIN.INC
O S — - ——
COMMON/MAIN/T, DT, DTE(82) , BELMAX (5) , IMAX,
1 10MAX,LEVP(2,5), IPRINX(2,5), IPRUMX, IPEDIMX,
2 IPRINX, IPRRMX,Q(10,8424), IF(9,10816), IFEI(3,257),
3 IPRU(3,257), IPELN3,9), IFRT(3,33) , IFER(3,257),
4 QIE(4,257) ,EDNT(8424)

e ——————————— - -
L

C ______________________________ - - -— —_—
COMMDON/MET/ DV, DL, DN, DXDXI,IYDXI,DXDET,DIYDET,
1 DXIDX,DXIDY,DETDX,DETDY,AJAC
COMMON/MET2/ IWP1(238),IX(258),IY(258),
1 RC(258),TSCL(258),88CL(258)

C_... ———— o e o o e e e et e s e e e S S e e S - - o

C INCLUDE FILE: POINT.INC

1 VIS1,vIs2,VIs3,VIss, VIS

C INCLUDE FILE: SOLV.INC

Crmmmmm e e e —_— -

COMMON/SOLV/ F(4,4),G6(4,4),0ELU(4),DELF(4),[ELG(4)

SURROUTINE FILE: BD'SMIH

SURROUT INE BISMTH(LEV)

kkkk SPECIAL C-MESH FORMULATION Ak
kkkx SHOULD WORK WITH O-MESH  AXxA%

This subroutine smooths the far field and solid
wall boundary points. Points are always smoothed
on the lowest level in which the two adjoining cell
to the boundary exist. This is consistent with the
internal point smoothing.

For the far field boundary the smoothing used is
the corresponding orne model applied along the boundary.
For the solid wall boundary two formulations are

possible:

Type 1: The same as the farfield boundary with a
ramp increase in smoothing around the t.e.

Type 2: A standard internal smoothing using extrapolated
information to define an imaginary line of points
inside the wall. 1In this case the smoothing is not
increased in the t.e. region.

COOOOOOOOOOOOoOO0000O00O0O0n

INCLUDE ‘MAIN.INC’
INCLUDE ‘POINT.INC’
INCLUDE ‘MET.INC’
INCLUDE “INPT.INC”
INCLUDE ‘GAM.INC’
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1

DIMENSION GN1(4),GN2(4),QAVE2(4)

Far Field boundary point smoothing using 3 1-D smoothing
tangent to the boundary
0 10 I=1,IPBUMX

Is point to be smoothed on this level?
ICONTLI = 0
IF{IFRU(1,1).GE.LEVF(1,LEV) . AND.IPBU(1, ) .LE.LEVF(2,LEV) ) THEN
IF(IPRU(2, I).LE.LEVF(2,LEV)) ICONI1 =1
ELSE IF(IPRU{(2,I).GE.LEVF(1,LEV).ANL.IPRU(Z,I).LE.LEVP(Z,LEV))
THEN
IF{IPRUC1,I).LE.LEVF(Z,LEV)) ICONI1 = 1
END IF

If it is then calculate and add contributions
for each cell surrounding the point.
IF(ICONT1.EQ.1) THEN

IE(IPRU(3,1).EQR.1) THEN

J1 = ABS(IP(1,IPEU(1,I)))
J2 = ABS(IP(2,IPRUL{1,I)))
J3 = ARS(IP(Z,IPRU(Z,I)))

ELSE IF(IPBU(3,I).ER.2) THEN

J1 = ABS(IF(2,IPEU(1,1)))
.12 = ARS(IP(3,IFPRU(1,1)))
13 = ARS(IP(3,IPEU(Z,IN))

ELSE IF(IPBU(3,I).EQ.3) THEN
J1 = ABS(IP(3,IPEU(1,I)))
12 = ABS(IP(4,IPEU(1,1)))
13 = AES(IP(4,IPRU(Z,1)))

ELSE IF(IPBU(3,1).EQ.4) THEN
J1 = ABS(IP(4,IPRU(1,I)))
12 = ARS(IP(1,IPEU(1,1)))
13 = ARS(IP(1,IPEU(Z,1)))

ELSE IF(IPRU(3,I).ER.5) THEN
J1 = ABRS(IP(3,IPEU(1,D)))
J2 = ABS(IP(4,IPRUC1, D))
J3 = ARS(IP(2,IPRBU(Z,1)))

ELSE IF(IPRU{(3,I).GT.3) THEN
50 I0 10

END IF

First cell:
CALL CELPOINT(IPEU(1,I))
CALL MEIRC4
CALL CTIME
AVIS = AVISCEADTA(DL+IM)/DV

0 4 K=1,4
KP2 = K+2
KP6 = K+6

Q(KP6,J2) = Q(KFG,J2)+0.120XAVISA(Q(KFZ,J1)-Q(KF2,J2))
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Second Cell:
CALL CELPOINT(IPBU(Z,I))
CALL MEIRCA4
CALL CTIME
AVIS = AVISCEANTA(DL+DIM)/INV

00 6 K=1,4
KP2 = K+2
KFG = K+b
&  Q(KP6,J2) = Q(KPG,J2)+0.125xAVISA(R(KP2,I3)-Q(KF2,12))
END IF
10 CONTINUE

Solid Wali Boundary point Smoothing
Possible forms:
IRCOND = 1 1-I' tangent smoothing model
with ramp increase at t.e.
= 2 For reflected points and standard
internal point smoothing model.

Constants
IRCOND = 1
JTIESHMTIH = S
TECOEF = 4.0
IF(IRCONL.ER.2) GO TO 40

Type 1: 1D smoothing formulation
0 30 I=1,IPBBMX
IF(IPEE(3,I).NE.4) GO T0 30

Is point to be smoothed on this level?
ICONTL = 0
IF(IPRE(1,I).GE.LEVP(1,LEV).AND. IPER(1,1).LE.LEVF(2,LEV))THEN
IF(IPRR(2,I).LE.LEVF(2,LEV)) ICONT]l =1
ELSE IF(IPER{(2,I).GE.LEVP(1,LEV).ANL.IPBR(2,I).LE.LEVP{(2,LEV))
1 THEN
IF(IPRE(1,I).LE.LEVF(2,LEV)) ICONTI =1
END IF

If yes, calculate and add contributions form
both cells surrounding the cell
IF(ICONT1.EQ.1) THEN

First cell:
CALL CELPOINT(IPEE(1,I))
CALL MEIRC4
CALL CTIME :
AVIS = AVISCEANTA(DL+IM)/DV

kamp smoothing near t.e.
IF(I.LE.JTESMTH+1) THEN
AVIS = (1.0+TECOEFAFLOAT(JTESMTH-I+1)/FLOAT(JTESMTIH))AAVIS
ELSE IF(I.GE.IPERMX-JTESMTH+1) THEN
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cce AVIS = (1.0+TECOEFAFLOAT(I+JTESMTH-IFREMX-1)
CEc 1 SELOAT(JTESHTH) ) 4AVIS
ccC END IF
Cce
C
o0 24 K=1,4
KFZ = K+2
KPG = K+b
cc IF(IPEB(3,I).ER.4) THEN
c Q(KPG, I4) = Q(KP6,I4)+0.1254AVISA{Q(KPZ,I1)-Q(KFZ,I14))
Q{KFG,I4) = QR(KPG,I4)+0.25AAVISX{Q(KPZ, I1)-Q(KFZ,I4))
cc ELSE IF{IPRR(3,I).ER.5) THEN
cc QR(KP6,I4) = Q(KPGE,I4)+0.0625kAVISA(R(KFZ,I1)-0(KP2,14))
cc 1 +0 . 0620AAVISA(R{KP2, I2)-Q(KFZ, 14))
cc END' IF
24  CONTINUE
C
C Second cell:
CALL CELPOINT(IPRE(2,1))
CALL METRC4
CALL CTIME
AVIS = AVISCEADTA(DL+IM)/IV
C
C RKamp soothing near t.e.
ccc IF(I.LE.JTESHTH+1) THEN
cce AVIS = (1,0+TECOEFAFLOAT(JTESHTH-1I+1)/FLOAT(JTESMIH))AAVIS
cce LSE IF(1.GE.IPEEMX-JTESMIH+1) THEN
cce AVIS = (1.0+TECOEFAFLOAT(I+JTESHIH-IPEEMX-1)
cce 1 /ELOAT(JTESHMTH) )AAVIS
ccc END IF
C
g 26 K=1,4
KP2 = K+2
KP6 = K+6
cc IF(IPRR(3,I).EQ.4) THEN
€ Q{KPG, I1) = Q(KPG6,I1)+0.1254AVISA(Q(KF2,I4)-Q(KP2,I1))
QR(KPE, I1) = Q(KPG,I1)+0.254AVISK(Q(KF2, I4)-Q(KF2,I1)
cC ELSE IF(IPBE(3,I).EQR.3) THEN
cc Q{KPG,I1) = Q(KPB, I1)+0.0625XAVISA(Q(KP2, I4)-Q(KP2,I1))
cc 1 +0.0623AAVISA(Q(KF2, I2)-Q(KP2,1I1))
cc END' IF
26 CONTINUE
END' IF
30 CONTINUE
C
RETURN
C
c Type 2: Reflection wall smoothing
40 CONTINUE o
00 70 I=1,IPREMX
IF(IPBE(3,I).NE.4) GO TO 70
C
C Is this point to be smoothed on this level?

ICONT1 = 0
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IF(IPBE(1,I).GE.LEVP(I,LEV) .ANDL. IFRE(1, I) .LE.LEVP(Z,LEV) ) THEN
IF(IPER(2, ). LE.LEVP(2,LEV)) ICONT! = 1
ELSE IF{IPBR{(Z,I).GE.LEVP(1,LEV).AND.IPBR(Z,I).LE.LEVF(2,LEV)}]

1 THEN

IF(IPRE(1,I).LE.LEVP(2,LEW)) ICONTL =1
ENL IF

If Yes, calculate and add contributions form both cells
IF(ICONT1.ER.1) THEN

Calculate surface tamgent vector {(dx,dy)
ARS(IF(1, IPERR(1,I)))

ARS(IP(4, IPER(1,1)))

ARS(IF(4, IPER(Z,1)))

J1
Ja

J3

TMP1 = Q(1,J2)-Q(1,ID)
THMF2 = Q(2,12)-Q(2,3D)
IS1 = SGRI(THMPIATMPI+TMP2ATMFZ)

THF1 = Q(1,33)-Q¢(1,32)
TMF2 = Q(2,33)-R(2,J2)
S22 = SQART(TMP1ATMP1+TMP2ATMF2)
TMF1 = [IS1+D82
TMP2 = [S2/(IS1ATMFL)
THMPR = (DS2-DS1)/(DIS1ALS2)
TMP4 = DS1/(DS2ATMFPL)
OXDS = -Q(1,J1)ATMP2+Q(1,J2)ATHP3+Q(1,J3)ATMF4
DYDS = -Q(2,J1)ATMP2+R(2,J2)ATMP3+Q(2,J3)xTHP4
TMP1 = SERI(DXOSADXDS+OYDSADYIS)
DX = OXOS/TMPI
oY = DYDS/IMPL
First cell:

CALL CELPOINT(IPER(1,I))
CALL METRC4

CALL CTIME

AVIS = AVISCEADTA(DL+DM)/DV

Find surface tangent

DX = G(1,I4)-G(1,I1)
IY = 6(2,14)-6¢(2,ID
IS = SQRT(DXADX+DYALY)
IX = DX/DIS

IY = LY/DS

Extrapolate r,p,h0 and reflect u,v
P4 = GM1A(R(H,I4)-0.54(0(4, I4)AQ(4, I4)+R(3,14)A0(5,14))/0(3,14))
F3 = GM1A(R(6,I3)-0.54(Q(4,I3)AQ(4,I3)+R(3,I3)X0(5,I13))/0(3,1I3))
FI4 = P3-2.4(P3-F4)
H4 = (Q(6,14)+P4)/G(3,14)
H3 = (G(6,I3)+P3)/0(3,I3)

HI4 = H3-2.A(H3-H4)
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HI4
VELT
VELN
UI4
Vi4
gec K
ccc E

H3

= (R4, IDADX+R(S, I ANY) /R(3,I3)

= (-G(4, I3ADY+R(S, I3)ADX) /R(3, I3)

VELT3ADX+VELN3ADY
YELT3ADY -VELN3ADX

4 = Q(3,I3)-2.4(0(3,I3)-0(3,14))

4 = PI4/GM1+0.5ARI4A (UTAKUT4+VI4AVI4)
P14/ (GH1IGA(HI4-0.54(UT4AUI4+VI4AVI4)))
RI4%HI4-PI4

F1 = GMIACQ(E,I1)-0.54(R(4, I1)AR(4, I1)+8(5, I1)AR(S, 11))/R(3,11))
P2 = GMLA(Q(E,I2)-0.54(Q(4, I2)AR(4, 12)+Q(5, I2)4R(5,12))/Q(3,12))
PIl = P2-2.A(F2-F1)

= (@(6,I1)+F1)/8(3,11)

= (@(6,I2)+F2)/Q(3,1)

cce HIL = H2-2.A(H2-H1)

HI1 = H2

VELTZ = (Q(4,I2)ADIX+R(5,I2)x0Y)/Q(3,12)

VELN2 = (-0(4,I2)&0Y+0(5,I2)ADX)/Q(3,12)
VELT2ADX+VELNZAD'Y
VELT2ADY-VELNZADX

1= 003,12)-2.4(0(3,12)-0(2,11))

1 = PI1/GMI+0.SARI1IACUIIAUII+VILAVIL)
FI1/(GM1DGACHI1-0.5A(UTIAUII+VIIAVII)))
RILAHI1-FI1

Ri4
El4

[T IS I TR | B VI €5 I 1]

ton

cec R
cce E

aom

Find reflected cell center values
RAVE2(1) = 0.25k(Q(3,I11)+G(3,I4)+RI1+RI4)
QAVE2(2) = 0.254(Q(4,I11)+Q(4,I4)+RI1AUI1+RI4AUI4)
QAVE2(3) = 0.25A(0(5,I1)+0(3, I4)+RI1AVII+RI4AVI4)
QAVE2(4) = 0.254(B(6,I11)+Q(6,I4)+EI1+EI4)

add contribution
D0 64 K=1,4
KF2 = K42
KPG = K+b
QAVEL = 0.25k(Q(KP2,I1)+Q(KF2,I2)+Q(KP2,I3)+R(KF2,14))

(o]

fan]

Q{KP6,I14) = Q(KPG,14)+O.BS*AUISk(GAUE1+GAUE2(K)-Z.kQ(KPZ,145)
64  CONTINUE

c
c Second Cell:
CALL CELPOINT(IPBE(Z2,I))
CALL METRC4
CALL CTIME
AVIS = AVISCEALTA(DL+DM)/IV
ccc
£ce Find surface tangent
cc X = @41, I4)-Q(1,ID
cc Yy = Q(2,I14)-0(2,I1
cc 08 = SQRT(DXADX+DYALDY)
Ccc X = IX/O8
cC oYy = /IS
c

c Extrapolate r,p,h0 and reflect u,v

2

A
= 3482 -
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Ccc

Cce
ccc

ccc

ccc
cce

(o0 M}

(e

66

P4 = GMIACR(E,14)-0.54(G(4,I4)A0(4, T4)+0(5, T4)43(5,14))/0(3,14))
P3 = GMIX(Q(G,I3)-0.54(Q(4, I2)AR(4,I3)+0(S5, IDAR(S, I3))/0(3,I3))
FI4 = P3-Z.A(F3-F4)
H4 = (R(6,I4)+P4)/Q(3,14)
H3 = (Q(6,I3)+F3)/0(3,13)
HI4 = H3-2.A(H3-H4)
HI4 = H3
(Q(4, I ADX+R(S, I3V ALY) /G(3, I3)
(-Q(4, IBADY+R(S, I3)ADX) /Q(3, 1)
UI4 = VELT3ADX+VELN3ADY
VI4 = VELT3AIY-VELN3ALX
K14 = Q(3,I3)-2.4(Q(3,13)-0(3,14))
EI4 = PI4/GM1+0.5ARI4A(UT4AUT4+VI4AVI4)
RI4 = PI4/(GMIDGA(HI4-0.5k(UT4AUT4+VI4AVI4)))
EI4 = RI4AHI4-FI4
Pl GM1A(R(6,11)-0.5K(R(4, I1YARC4, I1)+R(S, I AR(5,11))/Q(3,11))
GM1X(Q(6, 12)-0.54(0(4, I2)AR(4, I2)+Q(5, I2)4B(5,12))/R(3,12))
PIl - P2-2.A(P2-F1)
Hl = (G(6,I1)+F1)/Q(3,ID)
H2 = (R(6,I2)+P2)/0(3,12)
HI1 = H2-2.A(H2-HD)
HI1 = H2
VELT2 = (Q(4,I2)AIX+Q(5,I2)A0Y)/0(3,12)
VELNZ = (-Q(4, 12) ADY+R(S, I2)ADX) /R(3, 12)
UI1 = VELT2ADX+VELN2ADY
VIl = VELT2ADY-VELN2ADX
RI1 = Q(3,I2)-2.4(R(3, I2)-0(3,1I1))
EIl = PI1/GM1+0.SARILA(UILAUTI+VIIAVID)
PI1/(GM1DGA(HII-0.54(UI1AUTI+VI1AVI1)))
RI1XHI1-FI1

([

RI1
EIl

Find reflected cell center values
RAVE2(1) = 0.25A(Q(3,I1)+R(3,I4)+RI1+KI4)
RAVES(2) = 0.25k(Q(4,I1)+R(4,I4)+RI1AUI1+RI4AUI4)
QAVE2(3) = 0.25k(Q(5,I1)+Q(3, I4)+RI1AVI1+RI4AVI4)
QAVE2(4) = 0.25%x{(Q(6,I1)+Q(6,14)+EI1+EI4)

o # u

Add contribution
00 66 K=1,4
KP2 = K+2
KPG = R+6
QAVELl = 0.254(Q(KP2, I1)+Q{KP2,I2)+R(KP2, I3) +R(KF2, I4))

Q{KPE,I1) = Q(KPG,I1)+0.25KAVISA(QAVELI+RAVEZ (K)-2.AQ(KF2,I1))
CONTINUE

ENDII IF
70 CONTINUE

RETUERN
ENI!

c

SURROUT INE FILE: TELTRS

C_.._

SUBROUTINE DELIRS
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This subroutine calculates the Navier-Stokes
viscous terms in 3 manor similar to the artifical
viscousity and adds them to the DU’s.

INCLUDE “MAIN.INC’

INCLUDE “MET.INC’

INCLUDE ‘GAM.INC’

INCLUDE “POINT.INC’

INCLUDE / INPT.INC’

DIMENSION RAVE(4),LR(4),05(4),DQDXI(4),DQDET(4),
DELR(4),DELS(4)

Calculate average properties for cell center
0 & K=1,4
KP2 = K+2
RAVE(K) = 0.29k(Q(KP2,I1)+Q(KP2, I2)+Q(KP2, I3 +R(KF2, I4))
RAVE = QAVE(D)

UAVE = QAVE(Z)/GAVE(]D)
VAVE = QAVE(3)/GAVE(LD)
TAVE = GAMMAAGM1A(QAVE(4)
-0. 534 (QAVE(2)AQAVE (2)+BAVE(3) ARAVE (3) ) /QAVE(1 ) ) /QAVE(D)

AMUE = (TAVEXX(3./2.))Yk(1.+CSTAR)/(TAVE+CSTAR)

Calculate cell center gradients in coordinate directions
o 10 K=1,3
KP2 = K+2
DRDXI(K)
DRIET(K)

A(Q{KP2, I3 +R(KP2, I4)-R(KP2, I1)-Q(KP2, I2))
K (QCKP2, I2)+Q(KP2, I3)-Q{KP2, I1)-Q(KF2, I4))

0.
0.

[ ]

TI1 = GAMMAKGM1A(Q(6,I1)

-0.9x(Q(4, I1)AR{4, I1)+Q(3, I1)XQ(5,I1))/Q(3,I1))/Q(3,I1)
TI2 = GAMMAAGM1A(Q(G6,I2)

-0.5A(0(4, I2YAQ(4, I2)+Q(S5, I2Z)AQ(S, I2))/Q(3, I2))/0(3, 1)
TI3 = GAMMAAGM1A(Q(6,I3)

-0.54 (G4, I3 AQ(4, I3)+R(5, I3)40(5, I3))/Q(3,13))/0(3,I3)
TI4 = GAMMAAGMIA(R(6,I4)

-0.54(Q(4, T4 AR (4, I4)+R(5, I4)AR(S, I14) ) /G(3,14))/0(3, 14)
OTOXI = 0.54(TI3+TI4-TI1-TIZ)
OTOET = 0.5&(TI2+TI3-TI1-TI4)
define constants
Cl = 4./3.
C2 = 2./3.
C3 = -AMUE/(RAVEAIVAKED)
C4 = -AMUE/ (GM1APRADVAREQ)

Calculste stress components
DUDX = DYDETADRLDXIC2)-DYDXIADQGDET(Z) .
-UAVEA (DYDETADGDXI(1)-DYDXIADRDET(1))
VDY =-DXDETADGDXI(3)+IXDXIADGDET(3)

-VAVEA(-DXDETADGDXI(1 y+DXOXIADQDET (1))
IXX = C3k(CIADUDX-C2ALVIY)
TYY = C3x{CIADVIY-C2AIUDIX)
IXY = C3x(-DXDETARQIXI(2)+DXDXIAIQIET{2)

23

n

- T -

14

8
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1 +OYDETADQDX I(3)-DYDXIADRIET(3?
2 +(UAVEADXDET-VAVEADYDET) ADQRDXI(1)
3 - (UAVEADXDX I-VAVEADYDIX I)ADQRLGETI (12
C
C Caleulate DRE(K) and DS{k)
OR({2) = TXX
DR(3) = IXY
[IR{4) = UAVEATXX+VAVEATXY
1 +CA4x (DYDETAOTOX I-DYDXIADTDET)
0s¢2) = IXY
Os{3y = IYY
08(4) = VAVEATYY+UAVERTXY
1 +C4k (-IXDETADTOX I+DXDXIADTDET)
c
€ Calculate DELE(K) and DELS(R)

OT2IV = 2.0ALT/IV
00 15 K=2,4

DELR(K) = (DYDETADR(K)-DXDETADS(K))ART2DV
DELS(K) =

(OXDXIADS (K)-TYDXIADR (K) ) ADT2IV
S CONTINUE
g
C Distribute to cell corner nodes
n0 20 R=2,4
KPG = K+6
R{KPG,I1) = G{KPG,I1)+0.25k(-DELR(K)-DELS(K))4AVIS1
Q{KPG,I2) = Q(KP6,I2)+0.25k(-DELR(K)+IELS(K))AVISZ
R{KPG6,I3) = R{KPG&,I3)+0.25A(DELR(K)+DELS(K))AVIS3
Q(KPG,I4) = Q{KP6,I4)+0.254(DELR(K)-DELS(K))AVI54
20 CONTINUE
C
cce
ccec WRITE(1,%)’ Il,DELR,DELS{(2)‘,I1,DELR(2),IELS{2)
cee
RETURN
END
L-—--—- - e -
[ SUEROUTINE FILE: FARFDEBCZ
C _______ — —
SUBROUTINE FARFIEC2
»
c k%  SPECIAL C-MESH FORMULATION Ak
C This subroutine calculates the far field boundary
C conditions using a local characteristic analysis
C tangent and normsl to the boundary. Eoth uniform
c freestream or far field vortex boundary conditions
c are possible. The selection is made by setting the
C following switch: .
C IFDTYPE = 0 for uniform freestreem conditions
€ 1 for vortex farfield conditions with
C the strength of the point vortex based
C on an integration of surface pressure
C to set the 1ift.
C
C Note: for supersonic flows the uniform freestream

~
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flow condition is automatically set since this
boundary condition is only correct for subsonic
flows. ~

INCLUDE “MAIN.INC’
INCLUDE ‘GAM.INC’
INCLUDE ‘INPT.INC’
INCLUDE ‘LUNITS.INC’
LIMENSION UBAR(4)

Constants
IFDTYPE = 1

PHI

= 3.141592654

Calculate Lift Force Coefficients throusgh an
integration of the surface pressures of airfoil.
IF(IFDTYPE.EG.1) THEN

CHORD = 0.0
CEN = 0.0
CET = 0.0
00 5 I=0,IPEEMX
IF(I.NE.0) THEN
J1 = ARS(IP(1,IPEE(2,1)))
12 = ABS(IP(4,IPER(2,1)))
ELSE
J1 = ABS(IP(1,IPEE(1,1)))
12 = ARS(IP(4,IPRE(1,1)))
END IF

IF(I.EQ.0) THEN
TX1 = Q(1,J1)
TY1 = Q(2,31)
END IF
TCHORD = (TX1-B(1,J2))kA24(TY1-0(2,J2)) k42
IE (TCHORD.GT.CHORI) CHORD = TCHORT:

oX = G(1,I2)-8(1,I1)

oY = @(2,12)-0(2,I1

IS = SQRT(IXAIX+DIYADY)

P1 = GN1A(B(6,J1)
~0.5%(Q(4,T1)A0(4,J1)+8(5,J1)4A(5,J1))/R(3,I1))

P2 = GM1k(R(6,J2)
~0.5%(0(4,I2)A0(4,12)+R(5,I2)40(5,12))/Q(3,12))

TMF = F1+P2

CEN = CEN+TMFADX

CET = CET+TMPADY

CONT INUE

CHORD = SGRT(CHORIN
QFS = KOFSA(UFSAUES+VESAVES)ACHORI
CEN = -CEN/QES
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CFT = CFI/QES

ALPHAR = 3.14159%ALPHA/180.0
CL = CENACOS(ALPHAR)-CEFTASIN(ALPHAK)

SET AIRFOIL CENTEK AT 1/4 CHORID

XQC = IX1-0.734CHORD
YGC = Tyl

ELSE
CL = 0.0

ENDII IF

Sweep around farfield boundary and correct IU’s
using Characteristic analysis tangent and normal
to the boundary.

I0 10 I=1,IFBUMX
IF(IPRU(3,1).ER.1) THEN
J1 = ABS(IP(2,IFEU(1,D)))
12 = ARS(IP(3,IFEUC1, D))
'ELSE IF(IPRU(3,I).EQ.2) THEN
J1 = ABS(IP(3,IPEU(1, D))
J2 = ARS(IP(4,IFBU(1,1)))
ELSE IE(IPBU(3,I).EQ.3) THEN
J1 = ARS(IP(4,IPRU(1,1)))
J2 = ABS(IP(1,IPEUC1,D1)))
ELSE IF(IPEU(3,1).EG.4) THEN
J1 = ABS(IP(1,IPEU{1,I)))
12 = ABS(IP(2,IFBU(1, D))
ELSE IF(IPRU(3,I).EQ.5) THEN
J1 = ARS(IF(4,IPRUC1,T)))
12 = ABS(IP(1,IPRU(1,I)))
ELSE IF(IPEU(3,I).EQ.6) THEN
31 = ABRS(IP(Z,IPEUCI,D)))
12 = ARS(IP(3, IFEU(1,I)))
ELSE IF(IPEU(3,I).EG.7) THEN

Ion

J1 = ABRS(IP(3,IFPBU(Z,DD))
J2 = ARS(IP(2,IPRW(Z,D)))
ELSE

WRITE(LUl,%)’ ERROR IN FARFDERC2 IFBU(3,I) NOT 1-6°
ENDI' IF

Calculste boundary normal vector

Note: Present analysis assumes eta lines run
Normal to the far field boundary.

f(1,32)-0(1,31)

Q(2,32)-0(2,31)

SGRI(THP1ATMF1+INP2ATHPZ)

3
X
g
[
[ R [

TMP1/TMP3
TMP2/THP3

La)
[
" un

Calculate local radius and direction
THMP1I = XQC-Q¢(1,J1)

i
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TMP2 = YRC-R(2,J1

KAD = SORT(TMPlAA2+THF2442)
IRX = TMP1/RAD

IRY = TMP2/RAL

Calculate extrapolated quantities from
the predicted values of G 3t the boundary.
REX = Q(3,311+G{7,J1)
UEX (Q(4,J1)+R(8,J1))/REX
VEX (Q(Z,J1)+0¢9,J1))/REX
EEX = [(6,J1y+Q(10,J1)
REAEX =UEXAUEX+VEXAVEX
PEX  =GM14(EEX-0.SAREXAQSQREX)
IF{PEX.LE.0.0) WRITE(LUl,%)’&% PEX<0 AT UP I=,1
AEX  =SQRT(GAMMAKXPEX/REX)

GNEX = UEXADX+VEXADY
GTEX =-UEXADY+VEXALX

Set barred or frozen quantities of linearization
based on the extrapolated conditions.

REAR = REX

ARAR = AEX

Calculate the free stream conditions without
the vortex.

GNFS = UESADX+VESADY

QTES =-UFSADIY+VFSALX

QES SART(ANFSAAZ2+QTESKAZ)

Set far field conditions to either free stream
or calculate and set to vortex farfield conditions

Set vortex farfield condition
IF(IFOTYPE.EQ.1.AND.AMFS.LE.1) THEN

COSED = (UESADRX+VESADRY)/QES

SINFII = (-UFSADRY+VESAIRX)/QFS

EETA = SQRI{1.0-AMESAAMES)

TMP1 = 1.0/{COSEDAA2+BETAABETAASINFDAS INFIN

DQVORT = QFSACHORDACLARETAATMF1/(4.0APHIARAL)

ANFI = QONES+IQVORTA(-DRYADX+DRXADY)

ATFI = QTTS+IQVORTA(DRYADY+DRXALX)

QFI = SORT(ONFDAA2+QTELAAZ)

FFII = (APFSAAGM1IGH+GMID2GAROESA{RESAAZ-QFIAA2)

/(APFSAk(1.0/GAMMA) ) ) kA (GAMMA/GHML)
ROFD = ROFSA{(PFLO/APFS)xA(1.0/GAMMA))
Otherwise set farfield conditions to freestream

ELSE

GNEL = GNES

QTEN = QIFS

FPFII = APFS

ROEFL = ROFS
ENL IE
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Calculate corrected farfield flow conditions
based on whether it is supersonic or subsonic

and inflow or cutflow

Subsonic inflow
IF{QNEX.GE.0.0.ANL.GNEX.LE.ARAR) THEN
PNEW = (.54 (FEL+PEX+RBARAABARA(QNED-QNEX)}

(]

{TNEW
QNNEY
RNEW

QIFD
ONED+{PEI-PNEW) / (RRARAARAR)
ROFD+{PNEW-FED)/ (ABARXARAK)

HoHou

[ee]

Subsonic outflow
note: sets the downsiream characteristic
ELSE IF(QNEX.GE.-ARAK.AND.QGNEX.LT.0.0) THEN

C

PNEW
PNE
QTNEW
QNNEW
RNEW

cc

= (.54 (PEI+PEX+REARKABARA (QNED-GNEX) )
W = FED

QTEX

QNEX+(PNEW-PEX)/ (KEARKXARAR)
REX+{PNEW-FEX)/ (ABARXARAR)

£

Supersonic inflow
ELSE IF(GNEX.GT.ABAR) THEN

PNEW
QTNEW
QNNEW
KNEW

PED

QTED
ONED
ROFL

Supersonic outflow
ELSE IF(QNEX.LT.-ABAK) THEN

PNEW
QTNEW
QNNEW

= PEX
QTEX
QINEX

[ I an ]

10

RNEW
END' IF

REX

ENEW = PNEW/GM1+0.5SARNEWA ( GNNEWAGNNEW+QTNEWARTNEMW)

Calculate corrected IIi’s
Q(7,J1) RNEW-Q(3,J1)
f§(g,I RNEWA (ONNEWADX-QINEWALY ) -Q(4,J1)
a¢9,J RNEWX (ONNEWADY +QTNEWADX) -Q(5,J1)
@(10,J1) = ENEW-R(6,J1)

CONTINUE

RETURN
ENI

[ap I8 a0 B o |

am

SURROUTINE FILE: INITIA

SURROUTINE INITIA
This subroutines calculates the freestream quantities

- BEH -
Soibd
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and if ISTARI=1 initializes the flow field tc uniform

flow based on ALPH& and AMES using isentropic relations.

If uniform flow is set the solid wall points are corrected
for a zero flux through the boundary by holding the pressure
and energy constant and rotating the velocity vector to

the local wall tangent. Note if ISTART=0 the flow is

ieft as read in the INPUT subroutine.

IF ISTART = ¢  THEN UNIFORM FLOW
1 THEN RESTART

INCLUDE ‘MAIN.INC
INCLUDE ‘GAM.INC’
INCLUDE " INPT.INC’
INCLUDE ‘LUNITS.INC’
DIMENSION FSU(4)

Calculate surface tangent, radius of curvature and
extrapolation scalings
CALL GEOWAL

WRITE(LUL,%)’ GEOWAL COMMENTED OUT’

CALCULATE FREE STREAM VECTOR U
ALFHAR = ALPHA%3.14159/180.0
T™P 1.0+GMI1D2AAMESAANES
ROFS = TMPkA(-1./GM1)
APFS = (THPAx(-1./GMIDG))/GAMMA
UES AMESACOS (ALFHAR) /SGRT (TMP)
VES AMESASIN(ALPHAR) /SQRT (TMF)
AES 1.0/SGRT(TINF)

H o 1 nn

EXITF = APES

WCEB(1)
WCES(2)
WCES(3)
WCES(4)

ROES-APES/ (AESAAES)

-VES

(UFS+APFS/ (ROESXAES) ) /SQRT(2.0)
(-UFS+APES/(ROFSAAFS) ) /SRRT(2.0)

ESU(1)
FSU{2)
ESU(3)
ESU(4)

ROES

ROFSAUES

ROESAVES

APFS/GM1+ROFSA (UFSAUFS+VESAVES) /2.0

RETURN IF RESTART
IF(ISTART.ER.1) RETUERN

INITIALIZE FLOW EIELD TO FKEE STREAM
001 I=1,I0MAX

01 K=1,4

B¢K+2,1) = FSUCK)

CORRECT WALL PROPERTIES
0o 2 I=1,IFEEMX



SET POINTERS § CALCULATE WALL TANGENT
IF{IPER{3,1).EQ.4) THEN

Ji = ABS(IF(1,IFER(1, D))

12 = ABS(IP(4,IPEE(1,D)))

I3 = ARS(IP(4,IPER(2,1)))

(]

TMP1 = Q¢1,J2)-G(1,J1)
THP2 = R(2,J2)-0(2,J1)
DS1 = SGRT(THE1ATHP1+THP2ATHEZ)
THPL1 = Q(1,J3)-0(1,12)
TMP2 = Q(2,13)-0(2,J2)
IS2 = SORT(THP1ATHF1+THF2ATHER)

TMF1
IMPS
IMP3
THP4

nS1+082

082/ (DS1ATMEL)
(IS2-DS1)/(DIIB1ANSE)
DS1/(IS2ATHFL)

i w nn

OXIs
DYDS
IMP1

-Q{1,J1)ATMP2+Q(1,J2)ATHF3+R(1,J3)ATMF4
-Q{2,J1)ATMP2+0(2,J2)ATHF3+Q{2, J3) ATHP4
SQRT (IXDSADXIS+IYDSADYIS)

wowon

L]

DX = IXDS/TMPL
oY = DYDS/IMPI

ELSE IF(IPER(3,1).ER.5) THEN
J1 = ARS(IP(1,IPER(1,D)))
J2 = ABS(IP(4,IPBR(1,D)))
J3 = ABS(IF(4,IPER(2,1)))

w ot n

THETAL
THETAZ
THETA

ATAN2((Q(2,J2)-0(2,J1)),(Q(1,J2)-G(1,J1)))
ATAN2((R(2,12)-Q(2,33)),(Q(1,J2)-Q(1,13)))
0.54(THETA1+THETAZ)

X

oY
ELSE

WRITE(LUl,%)’ ERROR INITIA IPBE(3,I) NOT 4
ENDIN IF

COS(THETA)
SIN(THETA)

RFS = SQRT(UFSAUFS+VESAVES)

SIGN = (UFSADX+VESALY)

SIGN = SIGN/ABS(SIGN)

TU = SIGNXQESADX

TV = SIGNARESADY

TR = APFS/(GM1DGA(HIOT-0.3x(TUATU+TVATV)))
TE = TRAHTOTI-APES

mnoun

(20

IF EULER CALCULATION (INSSWI=0) MAKE EFLOW TANGENT
IF{INSSWT.EG.0) THEN
cc 8(3,312) =TIk
cc Q(4,J2) = TRATU
cC Q(5,32) = TRATV
cc G(6,32) = TE
£cc

for3 0]
o
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IF NAVIER-STOKES CALCULATION (INSSWT=1) SET ZERO FLOW

ELSE IF(INSSWI.ER.1) THEN

@(3,32) = GAMMAKAPES/(AFSAA2)

Qe4,12) = 0.0

0¢5,J2) = 0.0

Q(6,32) = R(3,]2)AHTOT-AFES
END' IF
CONT INUE

28]

Ly

C QUTPUT OF INITIAL ELOW
WRITE(LU1,1000)
WRITE(LUL,1004) KOFS,UES,VES,AFES
IF (IPRNTZ2.ER.0) KETURN
WRITE(LULl,A) ¢ INITIAL & VALUER’
ng 50 k=1,6
S0 WRITE(LUL1,1001) (Q(K,I), I=1,I0MAX)

1000 FORMAT(///,10X,/INITIAL FLOW FIELDI Ul/U2/7U3/U4°,/)
1001 FORMAT(1X,(10E12.4))
1004 FORMAT(1X,'ROES,UFS,VES,APFS=",4E12.4,/)

c
RETURN
ENII
C.. —— - —
c SUBROUTINE FILE: NISTEFG
C ____________________ - — e o e e o e o S e o o

SUEROUT INE NISTEPS(N,LEV)

Akkk SPECIAL C-MESH FORMULATION Akk#
#kkk SHOULDN STILL WORK WITH O-MESHAXA

This subroutine sclves the Euler egns.

using 3 cell oreinted version of Ni‘s Method

over grid level LEV. This subroutine as written
performs either a fine mesh cell distribution or

a3 coarse mesh cell acceleration distribution depending
of the type of each cell.

In addition this particular version saves a
representative dt for each node in EIT(i) for use
in the error norm calculation. This same time step
then acts as a indicator as to wether the node is to
be updated {(i.e. if EDT(i}=0.0 then the node has not
beer distributed to or interpolated to and therefore
should not be updated).

This subroutine contains a switch which will include
the Navier-Stokes terms on level 1 based on the following
switch:

INSSWT = 0 For Euler solver.
1 For Navier-Stokes terms on level 1.
Note: In this case no smoothing is applied
on level 1.

OO OO0 OO0 OO0 oOn

INCLUDE ‘MAIN.INC’
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INCLUDE “SOLV.INC’
INCLUDE ‘INPT.INC’
INCLUDE “MET.INC’
INCLUDE ‘POINT.INC’
INCLUDE ‘LUNITS.INC’

Inject charges from the next finer level hiased on
orie of the following weighting formulse:

IFQRN = 0 FOR SIMPLE INJECTION OF VALUE AT INC
ALGEBRAIC WEIGHTING
AKEA WEIGHTING
NOTHING [IONE AT THIS TIME
SPECIAL LISTRIRUTION INJECTION
NOTHING IIONE AT THIS TIME
Ni‘s DMstribution (modified form 4)
IF(LEV.GT.1) CALL INJECTS(LEV,&6)

oY £N B 0 B3

Initialize DU 3nd EDT before sweep
If LBV = 1 then 31l IU’s =3nd EDT’s zeroed,
IF{LEV.EQ.1) THEN
0o 5 I=1,IGMAX
EDT(I) = 0.0
00 5 K=7,10
G(K,I) = 0.0

Otherwize zero [w and EI'T only at cell nodes.

. ELSE

[an B an B an BN o

00 7 I=LEVP(1,LEV),LEVF(2,LEW)
00 7 1=1,4

JF = ABS(IF(I,I))

EDT(JF) = 0.0

00 7 K=7,10

R(K,JE) = 0.0

in addition =zero boundary du’s so application
of boundary conditions on coarser levels will
only make changes at coarse nodes.

00 8 I=1,IPBRMX

JP = ARS(IP(1,IPBR{(2,I)))

Do 8 K=7,10

Q{K,JP) = 0.0

I0 9 I=1,IFEUNX
IF¢IFRU(3,1).EQ.1) THEN
IP = ARSCIP(1,IFBU(Z,1)))
ELSE IF(IFEU(3,I).EQ.2) THEN
IP = ARS(IF(2,IPRUCZ, 1))
ELSE IF(IFEU(3,I).EG.3) THEN
IP = ARS(IF(3,IPEU(Z,1)))
ELSE IF(IFEU(3,I).EG.4) THEN
IP = ABS(IF(4,IPRU(2,D1)))
ELSE IF(IPEU(3,I).EQ.5) THEN
IF = ARS(IF(1,IPRU(Z,I)))
ELSE IF(IPEU(3,I).EG.6) THEN

- 354 -
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JP = ABS(IP(2,IFBUCL,I)))
ELSE IF(IPRU(3,I).ER.7) THEN
JF = ARS(IF(3,IFRU(Z,I)))

ENI IF
L0 9 K=7,10
GLK,IE) = 0.0

END IE

Initialize embedded mesh interface nodes from
coarser mesh. This subroutine may s3lso be used
to initalize interface DU’s with embedded mesh
interface corrections.

CALL INEC4(LEW)

If qlobal time step is used calculate [T here
based on minimum DT for current level.
IF{ITIM.EQ.0) CALL GTIME(LEV)

Initizlize error norms to sero.
o 10 K=1,3
DELMAX(K) = 0.0
LELUMAX = 0.0
Start of relaxation sweep for DU
over current level.
L0 3¢ I = LEVF(1,LEV),LEVP(2,LEV)

Setup node pointers for cell.
CALL CELPOINI(I)

Calculate cell metrics, volume, and other distances
CALL METRC4

Calculste time step for local CEL calculations
-based on current cell.
IF({ITIM.ER.2) CALL CTINME

Store cell DT in EDT(i) for residual calculstions

Note: set in this way the final value of EDT is
the value of the last cell to be calculated
which contains this node. It is note an

average.
EDT(I1) = [T
ERDT(I2) = LT
EDT(I3) = IT
EDT(I4) = IT

Perform flux balance on cell for DELUCK)
then calculate distribution weightings
LELF and DELG for cell center.
Note: If INC = 0 this is 3 coarse cell
and injection is used.
CALL DELTU
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CALL DELTEG

If level 1 is Navier-5tokes reqion calculate terms
IF{INSSWT.ER.1.ANL.LEV.ER.1) CALL DELTIERS

Calculste artifical viscosity coefficient
if any of the cell nodes is to be smoothed.
IF(IVIS.GT.0) THEN
AVIS = AVISCEADTA(DL+IM)/LV
ENLI IF

Listribute cell changes to nodes and if

the node is to be smoothed then add smoothing.
oo 20 K=1,4
KPG = K+6

Distribution step

QR{KPE,I1) = Q(KPG&,I1)+{DNELUCK)-DELE(K)-DELG(K))/4.0
Q{KP6,I2) = R{KP&,I2)+(DELU(K)-DELE(K)+DELG(K))/4.0
Q{KPG, I3) = R(KP6,I3)+(DELUCKI+DELE(K)+DELG(K))/4.0
Q(KPG,I4) = Q{KPG,I4)+(DELUCK)+DELF(K)-DELG(K))/4.0

Smoothing step
IF(INSSWT.ER.1.ANIL.LEV.EQR.1) 60 T0 20
IF(IVIS.ER.Q) GO TO 20

KP2 = K+2

QRAR = 0,25A(R(KP2,I1)+R(KP2, I2)+Q(KP2, I3)+Q(KF2, I4))

Q{KPE,I1) = Q{KPG,I1)+0.204AVISA(QRAR-G(KP2,I1))AVIS]
Q{KPG6,I2) = Q(KPG,I2)+0.25AAVISA(QRRAR-Q(KP2,I2))AVIS2
Q{KFG,I3) = Q{KP6,I)+0.25AAVISA(QRAR-Q(KF2,I3))AVIS3
R(KPG,I4) = R(KPG,I4)+0.25AAVISA(QRAR-Q(KF2,I4))AVIS4
CONTINUE

Calculate Maximum cell KU residual
and its cell location.
IF{DELUMAX.LT.DELU(2)/DT) THEN
DELUMAX = DELU(2)/DT
IMax = 1
ENDN IF

CONTINUE

Zero embedded mesh interface points and
calculate interface corrections to be add
to interface points on the next coarser
level.

CALL INFACBC2(LEV)
IF(LEV.GT.1) CALL INFACEC(LEV)

louble solid wall boundary DU’s.
CALL WALLIDEL

ame
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Correct smoothing at =31l boundary points
{i.e. solid wall and farfield points at
this time.).

CALL EI'SMTH(LEV)

from current level to
in each mesh reagion.
IFQORM = 1 For centered interpolstion {i.e. algebraic)
2 For interpolstion based on physical lengtihs
IF{LEV.NE.1) CALL INTERPT(LEV,I)

Interpolate [ili‘s
the finest level

Apply boundary conditions to all
toundary points.
IF{INSSWT.ER.O) THEN
CALL SIWALEC
CALL EULERWAL(LEV)
ELSE IF(INSSWT.EQ.1) THEN
CALL NESSIWAL
ENI' IF
CALL FAREDLERC2

Update solution for all points
that have been changed and calculate
node error norms.
NUMFIS = 0
g 60 I = 1,I0MAX
IF(EDT(I).EQ.0.0) &0 TC 60
NUMPTS = NUMPIS+1
0 55 K = 1,4
KPG = K+b
KF2 = K+2
IF (DELMAX(K).LT.ABS(Q(KPG,I)/EIT(I})) THEN
LELMAX(K) = ARS(Q(KP&,I)/EDT(D))
IF (K.EG.2) THEN
IMAX = 1
ENDN IF
ENLt IF ,
Q{KF2,1I) = G(KP2, I)+Q(KPL, I)

- DELMAX(S) = DELMAX(3)+ARS(Q(8,I)/ELNT(I))

CONTINUE
DELMAX(S) = DELMAX(D)/ELOAT (NUMPIS)

Write out error norms to plot file if
LEV is less than or equal to LSICOF.
IF(LEV.LE.LSTOF) WRITE(LU2,1000) N, IMAX,DELMAX,JHAX,DELUMAX
FORMAT(2(2X,1I5),5E12.5,2X,I5,E12.9)
RETURN
END

SUERDUT INE NSSIWAL

iV
Sud S



kkkkk C HMESH VERSION kkAxxk

THIS SUBRCOUTINE CALCULATES LU FOR WALL

BOUNDARY POINIS FOR THE NAVIER-STOKES EGN.

USING NOEMAL EXTRAPOLATION OF PRESSURE ANL TEMPERATURE
I.E. ADIABATIC WALL CONDITION.

[an TR aw B 2o B on B ob B an I 40 B 4

INCLULIE ‘MAIN.INCY
INCLUDE ‘GAM.INC’
INCLUDE ‘INPT.INC’
INCLUDE LUNITS.INC’

4]

EOTTOM WALL
00 10 I=1,IPEEMX

(o]

law B ww]

SET FOINTERS & CALCULATE WALL TANGENT
IF(IPRE(3,1).E0.4) THEN
J1 = ABRS(IP(1,IPRE(1,1I)))
J2 = ABS(IP(4,IPBE(1,D)))
J3 = ABS(IP(4,IFEE(S,D1)))
J4 = ARS(IP(3,IPEE(1,DD))

TMP1
IMP2
I8l = §
IMP1
IMP2
082 = §

(1,32)-(1,I1
(2,32)-R(2,31)
RT(THP1ATHP1+THF2ATNF2)
(1,13)-8(1,12)
(2,33)-R(2,32)
RT (TMP1ATMP1+THP2ATMP2)

nou
[~ 3w B ~e B ~a i ot I v

TMP1
THP2
IMP3
IMP4

DS1+062

D52/ (NS1ATHEL)
(0S2-DS1)/(IIB1ALISS)
0S1/{0824ATHFL)

XIS
OYLS
IMF1

-Q(1,J1)ATHP2+R(1,J2)ATHP3+Q(1, J3)AINP4
-R(2,J1)ATHP2+Q(2,J2)ATMP3I+Q(2, I3) ATMF4
SART(IXDSADXDS+DYDSADIYTIS)

DX = DXDS/THEL
IY = DYDS/TMF1
IECOND = 1

ELSE IF(IFER(3,I).EG.5) THEN
J1 = ARS(IP(1,IFEE(1,1)))
12 = AES(IF(4,IPER(1,1)))
33 = ARS(IF(4,IPEE(2,1)))
J4 = ARS(IP(3,IFBE(1,1)))

Wonwonon

ATAN2((Q(2,12)-0(2,J1)),(0(1,J2)-6(1,I1)))
THETA2 = ATAN2((0(2,J2)-R(2,33)),(R(1,I2)-(1,J3)))
THETA = 0.54(THETAl+THETA2)

ce THETA = THETAL

THETAL

X = COS(THETA)
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0Y = SIN(THEIA)

IBCOND = 1
ELSE

WRITE(LU1,%)’ ERROER WALEC9C NOT VALID WALL TYPE I=7,I
END IF
IF{IRCOND.ER.0Q) GOTIO 10

CALCULATION OF IWT,IHN,AC

RTMP1 = B(3,J4)

UTKEL = G(4,J4)/RTMF1

VINEL = @(5,J4)/RTHF1

ETHP1 = G(6,J4)

PTMF1 = GM1A(ETMP1-0.5ARTHP1#(UTMF1AUTNE1+VTMP1AVIMPL))

TIMP1 = GAMMAAPTMP1/RTNP1

IE(PTHF1.LT.0.0) THEN
WRITE(LUL,A) ‘4 PTMP1<0.0 IN SDWALEC AT EOTION I=,I
STOF

END IF

W oW wnononn

CALCULATION OF CORRECTED DELTA’S
Q(7,J2) = GAMMAAFIMP1/TIMP1-Q(3,J2)

8(8,32) = 0.0-0(4,12)

#(9,12) = 0.0-8(5,J2)

0(10,J2) = FINF1/GH1-G(6,J2)
10 CONTINUE

RETURN

END

SUBROUTINE: OUTFPUI3

SUBROUTINE OUTPUTI3
**xkx SPECIAL C-MESH FORMULATION #kkk

THIS SURROUTINE CREATES THE OUTFUT FILE
CALL REST.DAT WHICH IS READ EY EULEK

INCLUDE ‘MAIN.INC’
INCLUDE ‘POINT.INC’
INCLUDE “INPT.INCY
INCLUDE ‘GAM.INC’
INCLUDE ‘LUNITS.INC’

CALCULATION OF LIFT FORCE COEFFICIENIS
CORD = 0.0 :
CEN = 0.0
CET = 0.0

G 5 I=0,IFERMX

IF(I.GT.0) THEN
J1 = ARS(IF(1,IPER(Z,D1)))
J2 = ARS(IP(4,IPRR(Z,I}))
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3

Lh

J1 = ABS(IP(1,IPEE(1,1)))
J2 = ABS(IP(4,IPBE(1,1)))
END IE

IF(I.ER.0) THEN
TX1 = @(1,J1)

TY1

(2,11)

END' IF
TCORD = (TX1-Q(1,J2) yA&Z+{TY1-0(2,J2))4A2
IF(ICORL.GT.CORI) CORD = TCORD

X
oy
(i

Pl

P2
1
IMP
CEN
CET
CON

wounon

1]

L
£

8(1,J32)-6(1,J1)
Q{2,32)-G(2,I11)
SQART (DXADX+DIYADY)

GMlA(QR(6,I1)
-0.5k(0(4,J1)AR(4,I1)+Q(3,I1)AR(S5,J1))/Q(3,I1))
GM1A(Q(6,J2)
-0.54(R(4,I2)%0(4,12)+Q(5,J2)40(5,32))/Q(3,J2))
F1+P2 '

CEN+TMPADX

CET+TIMPALY

NUE

- Hn

COKD = SQRT(CORI)

QFS
CEN
CET

ROFSA (UFSAUES+VESAVES ) ACORD
-CEN/QES
CET/QES

ALPHAR = 3.14159%ALPHA/180.0

CL
con

CENACOS(ALPHAR)-CETASIN(ALFHAR)
CENAS IN(ALPHAR) +CETACOS (ALPHAKR)

CALCULATE SPECTRIAL RADIUS

SRADN = (DELMAX(S)/DELMAX1(3))kx(1./{NEFINSH-NSTART})

OPEN{UNIT=LU4,TYPE=/NEW‘, FORM="UNFORMATIED)

SET CONSTANIS

ICONST(11) = NSTART
ICONST(12) = NEINSH
ICONST(13) = ITIM
ICONST(14) = ISTART
ICONST(13) = LSIOF
NICONST = 30
RCONST(1) = AMES
RCONST(2) = ALFPHA
RCONST(3) = CFL
RCONSTI(4) = AVISCE
RCONST(S) = ROES
RCONST(6) = UES
RCONST(7) = VES

'
0
[l
-
i
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cce
Ccc
gce
cce
CCC
Ccc
cec

cce

P ey e
WoT -

RCONST(8)

RCONST(9)

RCONST{10)
RCONST{11)
RCONST(12}
RCONST(I)
RCONST(14)
RCONST(13)
RCONSI(16)
RCONST(16)
RCONST(18)
RCONST{1i%)
RCONST(20)
RCONST(21)
RCONST(22)
RCONST(Z3)
RCONST{(24)
RCONST(25)

Ialats

[P L sy

[}

Gk

[A}]
!
k1
(53]
ot
I+

[ %)

APES

CORD

CEN

CFT

CL

Ch

CH
DELMAXI(1)
IELMAX1{2)
DELMAXI (D)
IELMAX1(4)
HELMAXI(S)
DELMAX{1)
DELMAX{2)
HELMAX(3)
OELMAX(4)
DELMAX(S)
SRAL

i o nonn

(1IN T T | B I 1

NRCONST = 350

WRITE(LUL,%) / IE,JE,LMAX,IC1,IC2,JCZ,IF2,JF2°
WRITE(LUI1,%) ‘ IGMAX,IPEUMX, IPEDMX, IPETMX, IFBEMX’
WRITE(LU1,%) ‘ DELTA,AK,Y0’

WRITE(LU1,1000) IE,JE,LMAX,IC1,IC2,JC2,IF2,JE2
WRITE(LU1,1000) IRMAX, IFEUMX, IPEDMX, IPETHX, IPEEMX
WRITE(LU1,1001) DELTA,AK,Y0

CCC 1000 FORMAT(1X,20I5)

CCC 1001 FORMAT{1X,10E13.4)

WRITE(LU1,1004)
WRITE(LU1,1005)RCES,UES,VES,CORD

WRITE(LUL,l

006)CEN,CET,CL,CI

1004 FORMAI{(//,5X, SECTION LIFT PROPERTIES’,/)

1005 EORMAT(SX, 'ROES =/,F10.7,5X, "UFS

1

1006 FORMAT(5X,’CEN
5X, 'CL

1
cce

[ B v I o

[a]

10

5X,

]
-~

,F10.7,
*,F10.7)
' ,F10.7,
*,F10.7)

VES * ,F10.7,5X, 'CHOKL
*,F10.7,5X,'CFT

*,F10.7,5X, ‘CL

WRITE OUT GRID POINTEKRS

WRITE(LU4)
WRITE(LU4)
WRITE(LU4)
WRITE(LU4)
WRITE(LU4)
WRITE(LU4)
WRITE(LU4)

00 10 LEV =

WRITE(LU4)
CONTINUE

RLAREL1,GLABEL2,RLAREL1,RLAREL2
NICONST,NKCONST

(ICONST(K), K=1,NICONST)

(RCONST(K), K=1,NRCONST)

LMAX, IGMAX , IPEUMX , IPEINX , IPETMX , IPRENX
(CIPRIMX(M,N), M=1,2), N=1,LNAX)
((LEVE(M,N), M=1,2), N=1,LMAX)

1,LMAX
{(IP(M,N), ¥=1,9), N=LEVP(1,LEV),LEVF(2,LEV))

.
- 361 -
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00 15 LEV=1,LMAX
IE({ IPEINX(2,LEV) .NE.O)
1 WRITE{LU4) (({IFEI{(H,N), M=1,3),
2 N=IPEIMX(1,LEV), IPEIMY(2,LEV})
15 CONTINUE

WRITE(LU4) ((IPEUCX,N), M=1,3), N=1,IFEUMX)
WRITE(LU4) ((IPED(M,N), ¥=1,3), N=1,IPEDNX)
WRITE(LU4) {(IPET(X,N), ¥=1,3), N=1,IPETHMX)
WRITE(LU4) ((IPEE(N,N), ¥=1,3), N=1,IFREMX)

I0 8 K =1,6
8 WRITE(LU4) (Q(K,I), I=1,I0MAX)

RETURN
ENI!

SUBROUT INE OUTRESTT
kkAxkx SPECIAL C-MESH FORMULATION &k#kk

THIS SUEROUTINE CREATES A TEMPORARY CGUTPUT FILE
CALL TREST.DAT WHICH IS READI RY EULER

INCLULE “HAIN. INC'
INCLUDE ‘POINT.INC’
INCLUDE * INFT.INC’
INCLUDE ‘GAM. INC

CALCULATION OF LIFT FORCE COEFFICIENIS
CORL = 0.0
CEN = 0.0
CET = 0.0

ng & I=0,IPREMX
IF(I.NE.0) THEN

J1 = ABRS(IP(1,IPBR(Z,I)))

J2 = ABS(IP(4,IPRR(2,D1)))
ELSE

J1 = ABS(IP(1,IPBE(1,1i)))

J2 = ARS(IP(4,IPRE(1,1)))
END' IE

IF(I.ER.0) THEN
TX1 = Q(1,J1)
TY1l = Q(2,J1)
END' IF ~
TCORD = (TX1-B(1,J2))AA2+(TY1-R(2,J2))AA2
IF(TCORD.GT.CORD) CORD = TCOKD

X
Iy

Q(1,32)-G6G(1,1D)
Q(2,J32)-0¢2,1D

- Té? -

P wFl)



Lar I o]

Yy

(&)

DS = SQRT(DXADX+DYALY

P1 = GM1a(Q(6,J1)

1 -0.0A(G(4,J1)AR(4,J1)+G(5,J1)AR(S, 1) /R{(3,I1))

P2 = GM1A{G{G,32)

i -0.5K(0(4,J2)YA0(4,J2)+0(5,J2)AR(5,12})/0(3,J2}))

IMP = P1+F2

CEN = CEN+IMFADIX
CET = CET+IMPALY
CONTINUE

CORDI = SQKI(CORIY

QFS = ROFSA{UFSAUES+VESAVES)YACORD
CEN = -CEN/QES
CFT = CFT/QES

ALFHAR = 3.141594ALPHA/180.0
CL = CENACOS(ALPHAR)-CETASIN(ALPHAR)

Cii = CENASIN(ALPHAR)+CETACOS(ALPHARD
CALCULATE SPECTRIAL KADIUS
SRAL = (DELMAX(S)/DELMAX1(35))Ax(1./{NEINSH-NSTART))

OPEN{(UNIT=4,NAME=‘TREST.DAT*,TYPE='0OLD}' ,FORM="UNFORMATTEL')

SET CONSIANIS
ICONST(11) = NSTART

ICONST(12) = NEINGH
ICONST(13) = ITIM
ICONST(14) = ISTART
ICONST(13) = LSTOF
NICONST = 30

RCONST(1) = AMES
RCONST{(2) = ALPHA
RCONST{(3) = CFL
RCONST(4) = AVISCE
RCONST(S) = ROES
RCONST{(6) = UFS
RCONST(7) = VES
RCONST(B) = APES
RCONST(9) = CORD
RCONST(10) = CEN
RCONST(11) = CET
RCONST(12) = CL
RCONST(13) = CI
RCONSI(14) = CH
RCONST(13) = DELMAX1(1)
RCONST(16) = DELMAX1(2)
RCONST(16) = DELMAX1(3)
RCONST(18) = DELMAX1(4)
RCONST(19) = DELMAXI{3)
RCONST(20) = BELMAX(1)
RCONST(3l) = DELMAX{(2)
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cc

cc

ct
10
10

10

cce
C
c
C

RCONST{23) = DELMAX(3)
RCONST{23) = DELMAX{4)
RCONST{24) = DELMAX{D)
RCONST{25) = SRAD
NRCONST = 30

WRITE(1,4)
WRITE(1,4)
WRITE(L,A)
WRITE(1,1000)

IE,JE,LMAX, IC1,IC2,JC2, IF2, JF2”

IGMAX, IFEUNX, IPRIMX , IPETHX , IFEENX ¢

IELTA, AK, Y0’

IE,JE,LMAX, IC1, IC2,3C2, IFZ, JE2
WRKITE(1,1000) IOMAX, IFRUMX, IPEIMX, IFETMX, IPEEMX
WRITE(1,1001} LELTA,AK,YO

1000 FORMAT(1X,201I5)

> 1001 FORMAT(1X,10E13.4)

WRITE(1,1004)
WRITE(1,1005)KOFS, UES,VES, COR
WRITE(1,1006)CEN,CET,CL,CD

04 FORMAT(//,5X,’SECTION LIFT PROPERTIES’,/)

05 EORMAT(5X, 'ROES ¢ ,F10.7,5X, ‘UES

1 SX, 'VES *,F10.7,5X, *CHORE

06 EDRMAT(SX,’CEN = ,F10.7,5X, 'CFT

1 5X,’CL =,F10.7,5X, ’CI

=/,F10.7,
=/ ,F10.7)
=/,F10.7,
=/ ,F10.7)

WRITE OUT GRID POINTERS

WRITE(4)
WRITE(4)
WRITE(4)
WRITE(4)
WRITE(4)
WRITE(4)
WRITE(4)

GLAEEL1,GLAREL2,RLAREL1,RLAREL2
NICONST,NKCONST

(ICONST(K), K=1,NICONST)

(RCONST(K), K=1,NKCONST)

LMAX , IQMAX , IPBUMY, IPRIMX , IPRTHX , IPREHNX
{ (IPRIMX(M,N), M=1,2), N=1,LMAX)
{(LEVP(¥,N), M=1,2), N=1,LMAX)

10 10 LEV = 1,LMAX
WRITE(4) ((IF{M,N), M=1,9), N=LEVP{(1,LEV),LEVF(Z,LEV))
10 CONTINUE
10 15 LEY=1,LMAX
IF(IPEIMX(2,LEV) .NE.0)
1 WRITE(4) (C(IPBI(M,N), M=1,3), N=IPEIMX(1,LEV),IPEIMX(2,LEV))
15 CONTINUE

WRITE(4)
WKITE(4)
WRITE(4)
WRITE(4)

(CIPRU(M,N), M=1,3), N=1, IPEUMX)
( (IPED{M,N), M=1,3), N=1, IFEDMX)
{(IPET(M,N), M=1,3), N=1,IPETMX)
((IFBB(M,N), ¥=1,3), N=1,IFEEMX)

I0 8 K =1,6
8 WRITE(4) (Q(K,I), I=1,IGMAX)

CLOSE(UNIT=4)

-y
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RETURN
END
C_ _____________________ e i e o e S e e . S e e o e e e
C DATA FILE: AIRFCGIL.INP
LS
RUN 219:
EULER ON C-MESH, NI INJECTION(&),CAR S/W DOURLE I/E,
$70 ENTER FREE STREAM MACH NO., AMES
.12 ENTER ANGLE OF ATIACK
.95 ENTER CEL NO.
4] ENTER TYFE OF TIME STEP ¢ = SINGLE TIME 2 = EACH CELL
00 ENTER ARTIFICIAL VISCOSITY COEF. 0.<AVISCE<(.1
1 1000 ENTEK NUMBER OF ITERATIONS: NSTART,NMAX
1E-3 ENTER CONVERGENCE CUT OFF DELSTF
1 ENTER LEVEL TO CHECK CONVERGENCE ON, LSTOF
o DO YOU WANT THE INITIAL FLOW FRINTED?? 0=NO  1=YES
i ENTER TYPE OF INITIAL SOLUTION ¢ = UNIFORM FLOW 1 = RESTART
{CFD.USAR.EULERCELL.EULERCMSHIREST . THF
0 ENTER NAVIER-STOKES SWITCH INSSWTI= 1:YES, O:NO

2.342E7 .72 388.0 ENTER REQ,TREF FOR NAVIEK- STDhES SUBDOMAIN
C __________________ -
Ck*kkk%kkk*k*k*k*kkk*xkkkkk*kkkkkkk*k**k**kkkk*k#k*hk*k***k*kkk**
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