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ABSTRACT

A computational procedure using a multiple-grid method
with embedded mesh regions is developed for solving the two
dimensional Euler equations. A pointer system is used to
define the general multiple grid structure, which may include
one or more, single or multiple embedded mesh regions of the
same grid topology as the global mesh.. The solution
algorithm, based on the Ni multiple-grid method, has been
extended to embedded mesh structures with the formulation of
proper global/embedded interface conditions. The present
approach combines the fast convergence to steady-state of
multiple-grid methods with the flexibility and efficiency of
an embedded mesh structure in resolving important flow
features. Results are presented for several two dimensional
subsonic and transonic airfoils using embedded meshes to
resolve flow details in the leading edge, trailing edge, and
shock regions. The present method is shown to retain the
global coarse mesh convergence rates while gaining the flow
resolution in embedded regions of a correspondingly globally
refined mesh. Through the use of embedded meshes the total
storage and computational work is significantly reduced over
that of a equivalent global refinement.

In addition to the development of a embedded mesh
approach the basic multiple-grid algorithm has been studied
and improved on the areas of boundary conditions and residual
transfers. All boundary conditions have been implemented in
characteristic form. For lifting airfoils a vortex far field
boundary condition has been developed which models the far
field flow as the superposition of a uniform freestream and a
compressible point vortex whose strength is determined by the
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calculated lift on the airfoil. With this far field

formulation the far field boundary may be placed much closer
to the airfoil than for solutions in which the traditional
uniform free stream boundary condition is used. Several
different residual transfer operator formulations have been
studied. Proper formulation of the residual transfer operator
has been shown to be very important for computations on highly
stretched meshes. A transfer operator based on the
distribution formula of the base solver is shown to give the
best performance for highly stretched meshes.

Thesis Supervisor: Earll M. Murman
Title: Professor of Aeronautics and Astronautics
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CHAPTER 1

INTRODUCTION

The field of computational fluid dynamics has evolved

over the last two decades from the first attempts at solving

model fluid flows to the stage where computational methods are

playing an important role in aerodynamic design. The latest

generation of aircraft are the first to have a significant

amount of design done with computational methods El-43. This

rapid evolution of computational methods has been driven by

the need for faster more accurate design tools and the

increasing cost of experimental design. In addition to cost,

experimental testing is time consuming, and is limited in the

flight regimes which can be tested and quantities which can be

measured. Computational design tools on the other hand are

becoming faster, less expensive, and more accurate due to the

rapid development of numerical methods and increasing

performance of computers. These tools have allowed the study

of a much wider range of designs. They can predict

information in regions which often can't physically be

measured and without the interference of walls, probes, and

other apparatus.
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INTRODUCTION

The ultimate goal of computational fluid dynamics for

transonic flows is the calculation of a complete aircraft

configuration including wings, body, engine nacelles, and any

external stores. Such a flow involves both complexity in

respect to the range of fluid mechanic features of the flow

and the geometric complexity of the problem. The flow

includes subsonic regions, supersonic regions, shocks, regions

where the flow is essentially inviscid, and others where

viscous effects dominate. While all these aspects of the flow

are described by the full Navier-Stokes equations, a solution

of these equations for a complete aircraft configuration is

impossible at the present time and will most likely remain so

in the near future. This conclusion is based on the

performance of present Navier-Stokes solvers and a simple

estimate of the computer resources required, which vastly

exceed any available today.

Rather than solve the full Navier-Stokes equations the

approach taken has been to consider a series of simplifying

approximations resulting in a model equation set which is much

simpler to solve. Based on the observations first made by

Prandtl that for high Reynolds number flows the effects of

viscosity are confined to thin layers near the surface of the

body, a majority of the flow may be considered essentially

inviscid. While the thin viscous shear layers in the flow are

important in determining the location of separation and

vorticity generated in the flow, the assumption of inviscid

flow described by the Euler Equations is a good approximation
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INTRODUCTION

for a majority of the flow. Although this step simplifies the

governing equations substantially, the Euler equations are

still difficult to solve. Observing that for external flows,

in addition to being inviscid, much of the flow is also

irrotational then leads to the next lower approximation to the

flow described by the full potential equation. Note, like the

first approximation, important information about the flow is

lost but the resulting model equation is much easier to solve.

In particular since the flow is irrotational there is no way

to generate entropy through shocks. This limits the flow

range for which the model equation may be considered a good

approximation. An even lower approximation is to assume the

body is thin and to limit the flow range even further to a

region near Mach 1. Under these conditions the small

disturbance approximation can be made resulting in the small

disturbance form of the potential equation.

Table 1-1 summarizes the levels of approximation and

resulting model equations for transonic flows. The level of

difficulty in solving these equations increases from bottom to

top in the table. Therefore it comes as no surprise that the

level of development of algorithms for solving these flows is

most advanced at the bottom and also decreases as one moves up

the table. The development process for any new algorithm can

be viewed in terms of three stages. In the first stage the

concentration is on formulation of the algorithm with the

algorithm being tested for simple model problems. The second

stage is the validation of the code for two dimensional flows
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INTRODUCTION

(such as airfoils, ducts, etc.) and development of the three

dimensional extension. Finally, if the algorithm is

successful, it is incorporated into the design process and an

ongoing process of extending the solver to increasingly

complex geometries begins. It is clear then that the level of

development of a solver then determines the level of

complexity of the flow geometries which can be solved.

Therefore the level of geometric complexity of the problems

which can be solved decreases with the level of approximation

of the model equation.

Table 1-1: Summary of Current Transonic Solver Development

MODEL APPROXIMATION LEVEL OF COMPLEXITY
EQUATION MADE DEVELOPMENT OF SOLUTIONS

Navier-Stokes Low Simple 2-D flows
Equations

Euler Inviscid 2-D and Simple 3-D

Full Inviscid 2-D and 3-D flows
Potential Irrotational

Small Above Plus High Complex 3-D flows
Disturbance M near 1
Equation Thin bodies

At this point consider the current level of development

of algorithms for solving the model equations of table 1-1.

The first sucessful transonic calculations were made with the

solution of the transonic small disturbance equation for flow

about two dimensional airfoils by Murman and Cole E53. Their

algorithm has served as the foundation for the many 2-D,

axisymmetric, and 3-D small disturbance potential solvers in

use today. Of particular importance was the combination of
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INTRODUCTION

multi-grid methods by South and Brandt E6) and approximate

factorization methods by Ballhaus, Jameson and Albert E7) with

a small disturbance solver to obtain accelerated convergence

for 2-D airfoil calculations. The extension of this algorithm

to complicated 3-D aircraft configurations (including body,

wings, and nacelle) has been made by Boppe [8,93. Boppe's

work represents a landmark in the calculation of complicated

geometries. At the present time methods for solving the small

disturbance equation are highly developed and well integrated

into the design process.

With the progress and experience gained from development

of small disturbance potential solvers the concentration

shifted to solution of the full potential equations. Fast and

efficient finite volume methods such as those of Jameson [10)

and Caspar, Hobbs and Davis [11) have been developed and

applied to a wide range of 2-D flow problems. These methods,

which give good results for a much wider range of flows and

geometries, have replaced many of the small disturbance

solvers as design tools. In addition these methods have been

extended to 3-D flows with a great deal of success. The

solution of simple aircraft configurations ( wing/body and

wing/body/tail geometries) have been demonstrated by Jameson

and Caughy [12). The limiting factor in extending these

methods to more complicated and realistic configurations

appears to be the difficulty in generating global body-fitted

grid systems required by current solvers. Atta and Vadyak

[13) have taken a new and promising approach to this problem
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INTRODUCTION

with wing/body/nacelle configurations by patching a

cylindrical mesh which fits the nacelle into a global

wing/body mesh.

The Euler equations are a much more difficult class of

equations to solve numerically than either of the two previous

classes. While both implicit and explicit algorithms for

solving these equations have existed for some time, the amount

of computional work required due to the poor convergence of

these methods has made them unacceptable for design

applications. Only very recently have new efficient

algorithms been developed which show a great deal of promise.

Of these, Ni's method 14) using a conservative Lax-Wendroff

scheme combined with a multiple-grid scheme has shown greatly

accelerated convergence rates. A second scheme using a

conservative finite volume algorithm coupled with an explicit

Runge-Kutta time stepping scheme has been presented by

Jameson, Schmidt and Turkel [153. This method has been

applied to flow past lifting airfoils and extended to 3-D wing

calculations by Jameson, Schmidt and Whitfield £163. Rizzi

£173 has also used this scheme for wing and wing/body

configurations. Even more recently Jameson £18) formulated a

multiple-grid acceleration technique to further accelerate

convergence, demonstrating this scheme for 2-D airfoil

solutions. With the development of these new algorithms it is

now possible to obtain Euler solutions to flow problems with

the same order of computational work as required by potential

solvers. Currently these new solvers are being integrated
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INTRODUCTION

into the design process.

To summarize, the level of development of algorithms for

solving the model equations of table 1-1 decreases as one

moves to better approximations to the flow. The geometric

complexity of the flow which can be solved also decreases as

the level of approximation increases. The major stumbling

block with each of these methods, as one proceeds to

increasingly complex geometries, has not been with the solvers

but the problem of generating properly distributed mesh

systems. Most of these methods require a continuous

body-fitted mesh which covers the entire flow domain. A

coordinate transformation is then used to map this domain into

a single rectangular box. This approach works quite well for

simple geometries such as 2-D problems with singly connected

domains (airfoils, cylinders, ducts) or individual 3-D

aircraft components (such as the body, wing, nacelle). Even

though wing/body meshes have been generated by Eriksson E193

and wing/body/tail meshes by Jameson and Baker [203, the

extension of this approach to complete aircraft configurations

would be extremely difficult, if at all possible. In addition

these mesh generation schemes often introduce singularities in

the grid which must be handled by the solver. These grid

structures often result in poor grid resolution in critical

areas and large numbers of unnecessary mesh points in others.

One obvious cause for these problems is the requirement of

body-fitted meshes. An alternative adopted by Boppe C8,93 and

others to simplify the grid generation problem is to use
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INTRODUCTION

nonbody-fitted grids, but this results in extremely

complicated boundary condition formulations.

The problem of grid generation is only amplified as one

moves from the small disturbance equations to higher model

equations. With the higher approximations, more and more flow

detail can accurately be modeled but to take advantage of this

requires better grid resolution in these feature areas. To

gain this resolution requires better grid control. In

addition, to compensate for the higher resolution in critical

areas, it is important to minimize the number of unnecessary

points in the grid structure if the overall computation times

are to remain realistic.

Even if the present problems associated with global grid

generation for complex geometries can be overcome, one must

question whether this approach is leading to more universal

and easily adaptable codes. At the present time this approach

is creating increasingly complex and specialized codes. Each

new geometry or higher approximation in the governing

equations results in a new and more difficult grid generation

problem. Once the grid generation problem is overcome the

code must be rewritten to operate on this grid.

An alternate approach to problems of increasing

geometric complexity is to view the solution domain as the sum

of simple subdomains rather than one continuous global domain.

In this view each subdomain is defined by some characteristic

geometric feature. For example a complete aircraft
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INTRODUCTION

configuration might be viewed in terms of a body region, wing

region, nacelle region and so on. The global solution is then

obtained by using a global solution scheme which couples and

provides interaction between individual solutions of each

subdomain. Such a component structure is more easily

adaptable to different geometries with increasing complexity.

Currently these approaches have taken one of the following two

forms; patching methods and multi-grid methods.

Patching methods involve dividing the domain into any

number of subdomains where the subdomains either butt against

each other or overlap each other such that the sum covers the

global solution domain. A simple body conforming or body

resolving refined mesh is then defined for each subdomain.

The global solution is found by cycling the solver between

these subdomains with proper boundary conditions defined on

subdomain boundaries. A landmark in the calculation of

complicated geometries has been set by Boppe E8,93 in solving

the small disturbance potential equation for full aircraft

configurations. Boppe's approach was the use a coarse global

Cartesian grid overlapping locally refined Cartesian grid

subdomains for each of the aircraft components ( body, wing,

nacelle). He incorporated Dirichlet type boundary conditions

on the overlapping boundaries. The solution is then obtained

by iterating between solving for the solution on the coarse

global grid and each of the subdomains with boundary

conditions being interpolated from adjoining subdomains. This

work stands as proof that solutions to full aircraft
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INTRODUCTION

configurations are attainable with the computational resources

available today. The actual method however is limited in

value since these are small disturbance solutions, a poor

approximation for realistic aircraft, and also since good

results appear to be strongly user dependent. A similar

approach for solving the full potential equation in

overlapping mesh structures has been studied by Atta and

Vadyak E13,213. Atta began by considering solutions for

transonic airfoil where a coarse global Cartesian mesh is

overlapped with a local body-fitted 0-type mesh. Dirichlet

type boundary conditions were used on the outer boundary of

the 0-type mesh, while a Neumann type condition was used on

the inner boundary of the global Cartesian mesh. With this

model formulation he then studied the effect of variations in

the two grid domains, overlap size, and cycling process on the

accuracy and convergence of the solution as compared with the

standard global calculation. He found that equivalent

accuracies are possible with a savings in computation time

with a proper grid sizing. Atta and Vadyak E133 then applied

this approach to the calculation of a wing/body/nacelle

aircraft configuration using a body-fitted cylindrical mesh

around the nacelle which overlapped with a global wing/body

mesh. One of the critical problems encountered in this

extension was the complexity of three dimensional

interpolations between the two mesh systems. While very

preliminary in nature the results suggest that this is a

promising approach to complex configurations. Finally,

Forester E22] employed an overlapping grid system for
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INTRODUCTION

calculation of subsonic potential flow in a lobed mixer nozzle

of a jet engine.

A second form of coupling of subdomains is through the

use of multi-grid methods. Multi-grid methods were originally

developed by Brandt E23,243 as a very fast and efficient way

of solving elliptic type equations. The basic concept of

multi-grid is to discretize the governing equations on a

series of increasingly coarser meshes and then to

systematically cycle through these meshes using a relaxation

scheme to simultaneously liquidate errors of all wavelengths

contained in the solution. In addition to the acceleration of

convergence, Brandt suggests that the multi-grid structure

provides the- perfect framework for embedding areas of local

mesh refinement. In this manner it is then possible to create

any number of local subdomains of the same grid topology as

the global grids with the multi-grid algorithm providing the

coupling between the subdomains and the global mesh. This

approach has the advantage of actually coupling the the entire

solutions rather than relying solely on boundary conditions to

couple the solution, as is done with patching methods.

Unfortunately there has been no published demonstration of

this approach by Brandt. The method has been implemented by

Brown E253 for the solution of the transonic potential

equation. Brown used a local embedded mesh refinement in the

leading edge region of a isolated nacelle to resolve the local

flow detail. With this approach he showed that there was a

great savings in computational work over the equivalent global
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mesh refinement.

From the preceeding review it is clear that the

development of transonic flow solvers may be characterized as

a step by step progression of higher approximations to the

actual flow. Beginning with the solution of simplified model

equations for simple geometries the development has steadily

moved toward better approximations of both the governing

equations and more realistic geometries. The point has now

been reached where current algorithms are capable of solving

complicated realistic aircraft configurations. Unfortunately

the complexity of the solvers, and in particular the mesh

generators, have grown in proportion to the problem

complexity. Currently, small changes in geometry require a

tremendous amount of code development. Rather than continue

the development of solvers on this case by case basis what is

needed is a more general approach

which is

features.

to view

subdomain

features.

(such as

requires

governing

s

to solving flow

easily adaptable to changing geometries

Another perspective in analyzing complex

the flow as composed of a number of r

distinguished by fluid dynamic or

To accurately solve for a fluid dynami

problems

and flow

flows is

egions or

geometric
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inviscid regions, viscous shear layers, shocks, etc.)
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characteristic structure

resolved through proper
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and length scale which must be

definition of the grid structure in
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the subdomain. Recognizing that a general flow may be

decomposed into components leads to the idea of a general

modular approach to solving flow problems. With a general

modular approach then the global domain is broken into any

number of suitable subdomains. A simple grid structure is

defined for each subdomain based on the features and

associated scales to be resolved. A general solver is then

used to simultaneously solve for the flow in each subdomain

while coupling the subdomain solutions and allowing proper

interaction. The patching and multi-grid formulations

previously mentioned represent an initial step in this

direction by using subdomains to handle complex geometries,

but the present modular concept is intended to lead to a much

broader and more systematic approach.

A general multiple-grid mesh structure provides an ideal

framework for a modular approach to solving flow problems by

providing a systematic way of assembling and coupling the

subdomains together. The multiple-grid structure consists of

a relatively crude global grid covering the entire solution

domain, and any number of embedded local grids providing

adequate resolution of local flow features. In this mesh

structure the local subdomains are defined through creation of

the embedded mesh regions where the resolution determined by

the number of embedded levels. The solution of the discrete

equations on the coarse global levels provide a very efficient

way of coupling the embedded region solutions together since

the coupling -takes place over the entire domain rather than a
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simple patching technique. This modular approach using a

multiple-grid structure follows the general approach suggested

by Brandt [23,243 for embedded solutions of elliptic type

equations. In principle this approach can be carried much

further by including a change of grid topology within the

embedded mesh region. By changing the grid structure much

better resolution of both fluid dynamic and geometric features

within the subdomain would be possible. A second extension

would be to allow a change in the level of approximation of

the governing equations within a subdomain. This change in

equation approximation would be beneficial since the finer

mesh scale within the embedded region would be capable of

resolving the feature scales associated with the higher

approximation. Conceptually the multiple-grid structure

provides a flexible framework for the development of a general

modular approach to solving flow problems.

The objective of the present thesis is to begin the

formulation of a general modular approach to solving complex

flow problems. The first step in such a formulation is the

development of a method for solving a single governing

equation set on a general multiple-grid structure with one or

more embedded mesh regions. To this point no mention has been

made of the solver which will be used. It is clear that this

choice will depend at least to some extent on the governing

equation set to be solved. The Euler equations have been

chosen as the appropriate governing equation set for the

following reasons. First and foremost, the Euler equations
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apply to a broad range of transonic flows, modeling inviscid

flow features to a higher approximation than either the small

disturbance or full potential equations. The higher

approximation of flow features in turn makes the high

resolution of an embedded mesh approach worth while. In

addition, Euler solvers do not have the nonuniqueness problems

associated with potential solvers E26,273. Considering the

current state of algorithm development for the various model

equations of table 1-1, the computational efficiency of the

recently developed Euler solvers are in the same range as

small disturbance and potential solvers. These new Euler

solvers will be replacing the current potential solvers as

future design tools. Therefore an embedded multiple-grid

approach for solving the Euler equations is in keeping with

the current state of the art for flow solvers. A final

consideration is the close relation between the Euler

equations and the full Navier-Stokes equations. The Euler

equations are a natural subset of the Navier-stokes equation

in the limit of zero viscosity. With the proper solver

formulation the viscous terms could be added in embedded

regions where these terms are important, thus adding equation

embedding to the general modular approach.

Of the new Euler solvers which have been recently

presented, Ni's multiple-grid algorithm E143 was chosen for

the present formulation. While this solver is not a true

multi-grid method in the sense of Brandt's work, Ni's method

is formulated around a global multiple-grid structure where
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modified discrete equations are solved on the coarser mesh

levels to accelerate solution convergence. This method will

be extended to general embedded mesh structures which contain

one or more embedded mesh regions. With this extension the

solver now plays dual roles of accelerating the convergence of

the solution and also providing the coupling mechanism between

embedded and the global mesh solutions. The storage with this

algorithm is kept to a minimum since the required solution

information is only stored once for each mesh point on the

finest level in each region.

In order to extend this scheme to completely general

grid structures the solution algorithm must be separated from

the grid structure. That is, the organization of the

computational data base, comprised of the variables at node

points, must not be determined by the solution algorithm.

This has been accomplished through the development of a

pointer system which defines the grid structure. The usual

subscripted index notation (i,j) of finite difference

procedures is replaced by a single numerical subscript to

identify mesh points. The pointer system is very similar to

the connectivity array which is used to define general finite

element systems. Boundary conditions and their location,

which also vary from problem to problem, must likewise be

defined in this pointer system. With the grid-structure

defined through a pointer system, a general solver may now be

written in terms of these pointers. This separation of grid

structure from the solver is the key to creation of a general
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modular approach to problems.

While a majority of the present work is concerned with

the solution of the Euler equations, Johnson and Chima [28,293

and Davis E30) have demonstrated that Ni's multiple-grid

accelerator is easily extendible to the Reynolds averaged

Navier-Stokes equation. The present author, in an unpublished

pilot study, also drew the same conclusion. It is felt that

the multiple-grid structure method given herein should prove

to be an attractive algorithm for extension to embedded

viscous regions where the Navier-Stokes would be solved.

The modular approach which has been developed has been

applied to the solution transonic flow about 2-D airfoils.

While these transonic flows are not geometrically complex they

do contain important flow features such as shocks, stagnation

points, leading edge detail and trailing edge detail which

must be correctly resolved for an accurate solution. With

conventional global solvers these features are solved through

the use of grid packing. Unfortunately, when grid packing is

used with a global mesh to resolve these features, packing

also occurs in the far field regions resulting in a large

number of unnecessary mesh points. The present modular

approach with embedded mesh regions can be used to resolve the

flow features while minimizing the total number of mesh points

and therefore the computational work required. A second

reason for choosing 2-D transonic airfoil flows to demonstrate

the current method is that analytical solutions for some

configurations are known. Using these cases, the accuracy of
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both the global solver and the embedded mesh solver can be

evaluated. Finally since the code development and testing was

performed using a VAX 750 mini-computer it was necessary to

choose a problem for which the solution computation times were

reasonable.

In the chapters which follow, the governing equations

will be defined followed by review of the basic Ni scheme.

The conditions used at farfield and solid wall boundaries are

described together with the Kutta condition. The extension to

embedded mesh regions is then made through formulation of

proper cell integrations at embedded mesh boundaries.

Finally, with the general solver formulated, the pointer

system which directs the solver is presented.
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CHAPTER 2

GOVERNING EQUATIONS

2.1 NAVIER-STOKES EQUATIONS

The compressible form of the Navier-Stokes equations

express the laws of conservation of mass, momentum and energy

for viscous flows. When combined with an equation of state,

such as the perfect gas law, the constant Prandtl number

assumption and an expression relating viscosity to temperature

there then results a complete set of equations for laminar

flows at standard pressures and temperatures. The

two-dimensional Navier-Stokes equations for unsteady

compressible flow may be expressed in conservation form for a

cartesian coordinate system as

U + F + G + R + S =0 (2.la)
t x y x y

where

l I Ipu I |yv I
U = | pu | F = | 1 uu + p | G = |uv j (2.lb)

Iyv lpuv y |vv + p
I e Iy uH y |yvH
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10

| xx
R = (1/Re ) t

0 xy
T u+ZV v-('/(-r-1)Pr) T

xx yx x|

0

yx
S= (1/Re )I '

0 yy
St v+t u-(fd/('-l)Pr) T |
| yy xy yI

and where

' = -#E (4/3)u - (2/3)v J
xx x y

'* = -If[ (4/3)v - (2/3)u J
yy y x

-r = ' =-,ME u +v 
xy yx y x

(2.lc)

in terms of density f, cartesian (xy) velocity components

(u,v), temperature T, total internal energy per unit volume e,

viscosity coefficient /, and Prandtl number Pr. The pressure

p and total enthalpy H are then defined for a perfect gas as

p = (r- 1)E e - 0.5 f( uu + vv )J (2.2)

H = ( e + p )/f

where -Y is the ratio of specific heats.

To complete the set of governing equations for laminar

flows an expression relating the viscosity to temperature is

required. Sutherlands law, an empirical relation describing

the viscosity 4 as a function of temperature T is given as
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1.5
/M=T (1 + K )/ T + K )

0

K = (110 K)/T
0

where T. is the reference temperature.

(2.3)

The above equations have been non-dimensionalized with

respect to stagnation reference conditions f,, a,, T,, and

reference length 1,, resulting in the appearance of the

reference Reynolds number, Re, in the above equations. A

detailed description of this non-dimensionalization is

presented on appendix A. Historically, the governing

equations have been non-dimensionalized to identify the

relevant non-dimensional parameters (such as Mach number,

Reynolds number, Prandtl number, etc.) and to determine the

relative order of magnitude of different terms in the

equations. For numerical calculations, scaling of the

equations performs two important functions. First, a proper

choice of reference conditions scales all computational

variables to similar order which reduces computational

truncation errors. Secondly, it eliminates concern over

carrying a consistent set of dimensions throughout the code

and reduces errors in definition of input by the user. The

present scaling based on stagnation reference conditions is

well suited for transonic flows where a majority of the flow

is near M = 1. It is also interesting to note that with this

scaling the Euler equation form is the same as the unscaled

equations.
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The governing equations (2.1) are presented in strong

conservation law form (SCLF) in terms of conservation

variables U, as opposed to the non-conservation form (NCF)

which would be expressed in terms of primitive variables ( Y,

u, v, and p). As shown by Hindman E31J, the choice of which

form to use requires consideration of the types of flows to be

solved and also has an impact on the way the equations should

be discretized. In particular the SCLF form of the equations

properly captures the weak shock solution with the correct

shock jump conditions while the NCF does not. Since the

present work is concerned with transonic flows with shocks,

where these shocks are resolved through shock capturing rather

than shock fitting, the SCLF is important. While the

governing equations of (2.1) are written for a Cartesian

coordinate system this SCLF can be preserved upon

transformation to a general nonorthogonal coordinate system as

shown by Viviand E32J and Warsi E333. Consider the following

transformation from cartesian system (x,y) to nonorthogonal

system (1,7) defined as

S= 5(xy) 7 =((xy). (2.3)

The SCLF form can be maintained as

(U/J) + E y F - x G J + E x G - y F J
t '1 S 3 1I

+ E y R - x S J + E x S - y R =0 (2.4)

where the transformation Jacobian J is

(1/J) = x y -x y (2.5)
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While this represents the SCLF for the differential

equation of a general coordinate system, Hindman E31] and

Thompkins, et al E343 point out that great care must be taken

in discretizing this system for a given algorithm if the final

scheme is to remain conservative. In particular, the

transformation matrices ( x , y , x , y ) must be defined
.5 F if I

properly if the desired result is a conservative finite volume

method. It is often helpful in constructing finite volume

methods if, in addition to equation (2.4), the corresponding

integral equation is considered. Integrating and applying the

divergence theorem, the governing equations may be cast in

integral form as

fU dA (F,G).n dS + (RS).n dS (2.6)

V av aV
Approximation of this equation then leads to a finite volume

method in conservation form.

For a majority of the viscous flows of interest the flow

is not laminar but turbulent. The laminar Navier-Stokes

equations can be extended to turbulent flows by modeling the

Reynolds stress terms of the Reynolds averaged Navier-Stokes

equations with an eddy viscosity model (such as Cebeci and

Smith E35) or Baldwin and Lomax E36]). These terms are then

included by replacing the laminar viscosity / with a total

effective viscosity /1, defined as the sum of the laminar

viscosity and turbulent eddy viscosity -. In addition the

thermal conductivity /?/Pr in the energy equation is replaced

with a total effective conductivity, the sum of laminar and

turbulent parts as 1/Pr+& /Pr
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2.2 EULER EQUATIONS

For high Reynolds number flows commonly encountered in

aircraft designs the viscous effects are often limited to very

thin shear layers near the body. Under these conditions the

assumption of inviscid flow is often a very good approximation

to the flow. Eliminating the viscous terms in the governing

equations (2.1) reduces them to the standard two dimensional

Euler equations. Setting R=S=0 results in the follow equation

for a cartesian system,

U + F + G =0 (2.8)
t x y

and for the general nonorthogonal system in (SCLF) form

-(U/J) + E y F - x G J + E x G - y F =0 (2.9)
t 1C 'CS 3 .3

Following eqn 2.6, the corresponding integral equation is

ff U dA f (FG).n dS (2.10)

V aV
which is useful in constructing a finite volume method in

conservation form.

2.3 PHYSICAL BOUNDARY CONDITIONS

With the governing differential equations defined, it is

now appropriate to define the physical boundary conditions

which are required for solution of transonic airfoil problems.

The term physical boundary condition is used here to describe

the known flow conditions along the boundary of the domain to

be solved. These boundary conditions should not be confused

with the implementation of the boundary conditions in solving
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the discrete equations which include not only the physical

conditions but may also include numerical conditions required

to close the system of discrete equations. The actual

implementation of these conditions will be discussed later in

chapter 3. Consider a typical airfoil in a transonic

freestream as shown in figure 2-1. There are basically two

types of boundaries for this problem, a solid wall boundary at

the airfoil surface and the farfield boundary at infinity.

For the solid wall boundary with viscous flow the physical

boundary condition is zero velocity and either specified

surface temperature or heat flux. Therefore,

U= 0 v = 0

E T =T or T =(T ) ) (2.11)
w n n w

The corresponding boundary condition for inviscid flow is no

flux through the surface,

(u,v).n = 0 (2.12)

The physical boundary conditions for the farfield

boundary of figure 2-1 are uniform freestream flow at

infinity,

u = (u) v = (v) p = (p) f= (f) (2.13)
FS FS FS FS

This farfield boundary condition applies to both inviscid and

viscous flows every where with exception of the wake region.

In this region the pressure must be constant. Therefore,

p = (p) (2.14)
FS
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across the wake on the downstream boundary. Unfortunately for

numerical calculations the farfield boundary is not placed at

infinity but at some large finite distance R from the airfoil

as shown by the dashed boundary in the figure. While the free

stream conditions presented above are very commonly used for

lifting airfoil problems, for accurate results the boundary

must be placed a large distance from the airfoil. In

practice, it is not uncommon to see a far field radius on the

order of 100 chords [37). This results form the fact that,

while there is a net circulation around lifting airfoils, the

farfield condition assumes zero circulation. If the flow is

irrotational ( both inviscid and shock free) with a subsonic

freestream, a much better approximation is possible by viewing

the farfield flow as the superposition of uniform flow and a

compressible point vortex centered at the airfoil. With this

formulation the outer boundary can be placed much closer to

the airfoil.

The compressible potential for this flow has been

derived by Ludford [383 as

1 -l
9 = q R cos(0- m) - (F/271)tan 1p tan(e -oc.)J (2.15a)

where

2
,6= - M (2.15b)

The circulation P is based on the lift coefficient found

from a surface integration of the pressure around the airfoil

r= 0.5 q c C (2.16)
c L
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Using the freestream conditions of (2.13) combined with the

compressible Bernoulli equation and the above potential, the

farfield flow conditions (denoted with subscript v) are

obtained as
U = U

v FS
2 2 2

+sin(e)q c C P/[4-7rREcos (e - oe-)+P sin (G -oC)]} (2.17)
Ot L

v = v

v FS
2 2 2

-cos(0)q c C e/[47rREcos (e-oeC)+tC sin (0-OL)3
L

2 2 2__
p = I p +(Y-l)y C q - u - v J/(2 p ) }
v FS FS FS FS FS

f f ( p /p )r
v FS v FS

It is clear that an assumption of uniform flow at the far

field boundary is simply a lower order approximation of the

above expressions.

The vortex far field boundary condition presented above

was developed under the assumption of irrotational and

therefore, shock free flow. This assumption allows one to

equate the circulation around the airfoil surface directly to

the circulation around the far field boundary. For transonic

flows with shocks the net circulation around the far field

boundary is not equal to the bound airfoil circulation due to

the additional vorticity within the rotational wake region

generated by the shock. Proper calculation of the far field

circulation would require both a surface integration for the
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bound circulation and a field integration of the wake

vorticity.

A simplified model is developed here. The important

assumption is that the flow is inviscid and at some distance

behind the airfoil the pressure and the velocity direction

return to freestream values. Consider the three contours

shown in figure 2-2 (1 the airfoil surface contour, 2 an

intermediate radius contour and 3 the finite far field radius

contour). The following observations can be made. First, a

momentum integration for the lift on the airfoil using each of

the three contours results in the following result:

L =L =L (2.18)
1 2 3

Second, with the presence of the shock, the circulation

corresponding to contour 1 can not be related to the lift on

the airfoil using equation 2.16, since this expression assumes

the flow is irrotational. In addition, with vorticity in the

wake region, the circulation for each of the three contours

can be different.

T" v r ' (2.19)
1 2 3

If, however, contour 2 is chosen to be a sufficient distance

from the airfoil to satisfy the stated assumptions, then the

circulation for contour 2 will be the same as contour 3. This

can be shown by performing an integration of the vorticity

over the area between contours 2 and 3. Noting that the flow

is irrotational everywhere outside the wake region then this
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integral reduces to the integration over the portion of the

wake between 2 and 3. After changing to a contour integration

then

= q.ds (2.20)
3 2

4
where contour 4 is defined as a path around the portion of the

wake, as shown in figure 2-2. Evaluating this integral in

segments, it is clear that since the flow conditions above and

below the wake are at the same freestream flow conditions, the

upper segment will cancel the lower. Since the flow is

unidirectional, the contributions from the sides also cancel,

and equation 2.20 reduces to the following,

= r (2.21)
2 3

What this says is that although the wake is rotational, there

is no net vorticity.

Now by viewing the flow field from a far field

perspective the flow at (or outside) contour 2 may once again

be represented as that of a compressible point vortex centered

at the airfoil with circulation of sufficient strength to

generate the lift determined by momentum integration using

contour 2. Since the lift is independent of the contour

chosen, the correct circulation is

= ' = L / f q,= L / q = 0.5 q c C (2.22)
2 2 so 1 00* L

Note that this is exactly the same expression for the vortex

strength as that used for irrotational (shock free) flows.
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Therefore, equation 2.17 is also a good approximation for the

far field flow of transonic airfoils with shocks.

For inviscid flows the definition of the far field flow

and body geometry alone are not sufficient to determine a

unique solution for lifting airfoils. To make the flow

solution unique requires also specifying the circulation about

the body. The lift is then determined by this circulation.

For lifting airfoils with sharp trailing edges the circulation

is fixed by the Kutta condition. The Kutta condition states

that a body with a sharp trailing edge in motion through a

fluid creates about itself a circulation of sufficient

strength to hold the rear stagnation point at the trailing

edge. The Kutta condition may be interpreted as the

requirement that the flows over the upper and lower surfaces

merge smoothly at a sharp trailing edge for lifting airfoils.
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BASIC MULTIPLE-GRID METHOD

3.1 INTRODUCTION

The foundation on which the present solver for a general

multiple-grid structure is based is the Ni multiple-grid

algorithm for the solution of the Euler Equations E143. This

algorithm is composed of two parts, a "base solver" and a

"coarse mesh accelerator". To illustrate the basic Ni

algorithm, the solution mesh is considered to be comprised of

a single global grid called the level h mesh. The first part,

the base solver, is a single step explicit Lax-Wendroff type

time marching method used on this solution mesh. The second

part is a coarse mesh accelerator which operates on residuals

transferred from the solution mesh to one or more

progressively coarser grids. The key to both parts of Ni's

multiple-grid scheme is the formulation of the discrete

equations in terms of a control volume integration of the

governing equations over each grid cell. The sum of this

control volume integration, which may be called the cell

residual or change, is then transferred to the surrounding

grid points by way of a "distribution" formula. The resulting
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formulae for the corrections to grid point variables is

equivalent to a standard Lax-Wendroff time step at each grid

point. One of the advantages of the Ni multiple-grid method

is that both the base solver and the coarse mesh accelerator

operate on the solution U and the change in solution dU

(dU = U -U ) which need be only stored for the solution

mesh. This represents a savings in storage over the

traditional multi-grid algorithm which stores the solution on

each level.

While the present scheme uses a Lax-Wendroff type time

marching scheme as the base solver, the method is not

restricted to only this base solver. Johnson E393 has shown

the coarse mesh accelerator to work equally well when combined

with other base solvers such as those of MacCormack, Lapidus,

and Burstein. Therefore, a great deal of flexibility is

possible in the choice of the base solver. The advantages of

using one particular base solver over another are in the

reduction in computational work required for each relaxation

sweep, ease of application of boundary conditions, and

possible improvements in acceleration to convergence. For the

present work the prime concern has been to demonstrate the

extension of the multiple-grid method to general embedded mesh

structures. In this light we have remained with the original

Lax-Wendroff base solver, it being a well established starting

point, while trying not to restrict the work to this solver.

For the inviscid transonic flow problems which have been

considered daring the code development this base solver has
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proven to be very robust, providing solutions even with poor

boundary condition formulations and minor errors during

development. This point was particularly helpful during the

development of the embedded mesh formulations.

It is not the intent here to rederive the Ni formulation

presented in [14). Rather, for completeness, the final

formulation of the multiple-grid method will be presented for

a general nonorthogonal grid system. Where possible,

observations from the current work with the method have been

included to help clarify areas that are unclear in the

original paper. These areas include the implementation of

boundary conditions and parts of the coarse mesh accelerator

which were not described in the original paper and therefore

are probably different from the implementation used by Ni. In

the present formulation, both the base solver and the coarse

mesh accelerator will be expressed in a cell reference frame

using numerical values for grid points, cell centers, etc..

This choice of reference frame has been made in preparation

for the pointer system to be presented in chapter 4.

3.2 BASE SOLVER

The base solver performs a Lax-Wendroff step in time for

each point on the finest mesh, referred to here as the h mesh.

This process is implemented in three passes over the mesh.

First, the mesh is swept node by node initializing all grid

point corrections (dU = U -U ) to zero. Next the h mesh is
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swept cell by cell calculating the new grid point corrections.

This is the solver sweep where a control volume flux balance

and distribution are performed for each cell. Finally, the

boundary conditions are applied and the mesh is swept once

again by nodes updating the solution. To help clarify the

general flow of the base solver during the discussion which

follows figure 3-1 presents a flow chart which summarizes this

process.

After the initialization sweep the solution sweep is

made, cell by cell, performing a flux balance and distribution

for each cell. For the typical cell shown in figure 3-2 this

involves the following 3 steps.

STEP 1: Finite volume approximation

DU = Cell Residual
c

= (Dt/DV)[ EO.5(F +F )(y -y )-0.5(G +G )(x -x )] (3.la)
1 2 2 1 1 2 2 1

-E0.5(F +F )(y -y )-0.5(G +G )(x -x )J
3 4 3 4 3 4 3 4

+EO.5(G +G )(x -x )-0.5(F +F )(y -y )J
1 4 4 1 1 4 4 1

-E0.5(G +G )(x -x )-0.5(F +F )(y -y )3)
2 3 3 2 2 3 3 2

where

DV = -0.5E (x -x )(y -y ) - (x -x )(y -y ) J (3.lb)
3 1 4 2 4 2 3 1

This step is a discrete approximation to the governing

integral equation (2.10) on a cell volume whose shape is

invariant with time.
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STEP 2: Distribution formulae

dU = dU + 0.25E DU -
1 1 c

dU = dU + 0.25E DU -
2 2 c

dU = dU + 0.25E DU +
3 3 c

dU = dU + 0.25E DU +
4 4 c

where

and

1
Df =(Dt/ DV )E DF Dy

C c

m
Dg = ( Dt/ DV )E DG Dx

C C

DF = ( F/ U ) DU DG
c C C

Dx = 0.5( x + x - x - x
2 3 1 4

m
Dx = 0.5( x + x - x - x

3 4 1 2

U =0.25( U + U + U
c 1 2 3

1
- DG Dx I

c

m
- DF Dy :

C

= (aG/4U ) DU
C C C

(3. 2b)

(3.2c)

1
Dy = 0.5( y + y - y - y )

2 3 1 4

m
Dy = 0.5( y + y - y - y )

3 4 1 2

+ U
4

This step "distributes" the cell residual of step 1

proportionally to the solution grid points resulting in a

Lax-Wendroff type formulation of the grid point correction

equations. Expressed in this form, the numerical signal

propagation phenomena appears similar in nature to

characteristics propagation E143. In this distribution

formula, (aF/aU ) and (a G/9U ), are the Jacobian matrices
C 8
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evaluated at the cell center in terms of Uc . As Ni points

out, a significant number of operations can be saved if DF and

DGCC are directly formulated in terms of Uc and DU before

coding.

STEP 3: Smoothing formulation

While Lax-Wendroff type algorithms are known to have a

significant amount of implicit artificial smoothing, for

transonic and supersonic flows with shocks additional explicit

artificial smoothing is required to stabilize the solution.

From the author's experience, when the multiple-grid

accelerator is used this smoothing greatly improves the

convergence rate, and, in many cases, is required for

convergence. The present smoothing formulation, expressed

here in a distribution format, would in practice be included

in step 2.

dU = dU + 0.25,/E U -U J (3.3)
1 1 c 1

dU = dU + 0.25,iaE U -U J
2 2 c 2

dU = dU + 0.25E U -U J
3 3 c 3

dU = dU + 0.25^E U -U J
4 4 c 4

S Dt E D1 + Dm / DV

Dl=1 2 1m 2 m2

While the distribution format presented above might

suggest a smoothing applied over the cell, this is really a
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smoothing operator applied directly to the nodal solution.

The net contributions from the four surrounding cells results

in the standard nine point Laplacian smoothing operator

applied on the computational mesh. For a cartesian coordinate

system, with Dx = Dy, this smoothing is equivalent to adding a

term of order Dx to the original governing equations of the

following form,

C-Dx U + U } (3.4)
xx yy

In practice, the type and amount of smoothing is often

determined through a trial and error process without any

rigorous mathematical study. The addition of any type of

artificial smoothing will add an error to the solution. It is

hoped that this error will be very localized, stabilizing the

solution near singularities in the flow while minimizing the

overall global effect. One common way of reducing the

detrimental effects of smoothing is to choose a form which

adds one or more terms of higher order to the original

governing equations. The present smoothing is particularly

disturbing in this respect since a first order term is added

to a second order accurate scheme, making the scheme spatially

only first order accurate. Quantitatively, as will be shown

in the results section, the present smoothing has a

surprisingly small effect on global parameters of interest,

such as the force coefficients, but does create errors in

regions of rapid expansion or isentropic compressions. In

addition, it does enhance convergence of multiple-grid
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solutions and allows the calculation of transonic flows with

shocks. Since smoothing is required by the present algorithm,

much further work should be done in this area to formulate a

smoothing which reduces these errors, preferably a smoothing

operator which is of higher order than the present.

Once the solution sweep has been performed over each

cell on the fine mesh, the required boundary conditions are

applied to the boundary nodes. These will be discussed in

more detail later. Finally, the third sweep over the h mesh

is made, node by node, to update the dependent variables.

n+l n
U =U + dU (3.5)
i i i

The newly calculated value of UL is equivalent to a second

order accurate (in time) Lax-Wendroff method.

This completes the formulation of the basic solver on

the solution mesh with the exception of the definition of the

time step restriction. This time step restriction is

determined by the stability limit of the Ni scheme applied to

the governing equations (2.9). Unfortunately since the

governing equations are nonlinear a stability analysis can not

be done directly for this system. A good indication of the

stability limit can be gained through analysis of a similar

linear model equation, in this case the 2-D scalar wave

equation. A Von Neuman analysis of the current scheme applied

to the 2-D wave equation is presented in appendix B. The

result of this analysis for a Cartesian system with Dx = Dy is
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the stability restriction of CFL1/I. Note for the

corresponding 1-D equation the restriction is CFLil. On this

basis one should expect the stability limit for the general

Euler system to also be CFLil//V where the CFL number is

appropriately defined for the new system.

The definition of the CFL number for the Euler equations

is defined in terms of the maximum eigenvalues of the Jacobian

matrices (aF/aU and dG/aU) of the quasilinear form of the

Euler equations for a general nonorthogonal coordinate system

(eqn 2.9) and the cell dimensions. For a general two

dimensional grid system we must satisfy a stability condition

in both coordinate directions. For the present system these

are,

1 1 m m

CFL = DtEIuDy -vDx I+aDl) CFL = DtEtuDy -vDx I+aDm] (3.6)
DV q DV

where a is the speed of sound. A derivation of these

expressions is presented on appendix C.

In practice both Ni and the present author have found

that the stability limit CFL<l/f is in fact much more

restrictive than necessary. The limit has been found to be

CFL(l, giving the following time step restriction,

DV , DV |
Dt <= MIN| 1 1 m m I (3.7)

1 tuDy -vDx I+aDl JuDy -vDx I+aDm I

The reasons for the less restrictive limit remains unanswered

but the following observations can be made. First, it is
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important to note that the true governing equation system is

non-linear unlike the present analysis. It is possible that

the non-linearity stabilizes the solutions scheme, but this

seems unlikely since other numerical schemes, such as

MacCormack's method, applied to the Euler Equations have

stability limits that agree quite well with the results of 2-D

wave equation analysis. Secondly, the addition of artificial

viscosity to the model system as implemented here reduces the

stability limit, eliminating it as a cause. Finally it is

interesting to note that the observed stability limit

corresponds to the l-D limit. Since in practice the grid

tends to be aligned with the flow in those regions where there

are rapid changes on the flow, these regions could be viewed

as 1-D along the coordinate direction. The stability limit

might then in effect be the one dimensional limit. This same

relaxation of the stability limit has been confirmed by

Dannenhoffer [40], for 2-D solutions of the wave equation when

the flow is aligned with the mesh while the expected limit of

CFLil/2Tis required if it is not.

If the basic solver is used without the coarse grid

accelerator, marching with a global time step based on the

above relation, yields second order time accurate solutions.

However, if only steady state .solutions are of interest, much

faster convergence is possible if each cell is advanced at the

local rather than global time step condition. Of course, if

the multiple-grid accelerator is used then the solutions are

no longer time accurate and local time stepping is also used.
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3.3 COARSE MESH ACCELERATOR

One of the largest problems with algorithms which have

been developed in the past for solving the Euler equations has

been their slow convergence to the steady state solutions. To

be accepted as a design tool for repetitive calculations the

method must provide steady state solutions as fast as or

faster than current potential flow solvers. As might be

expected, since the base solver is a single step Lax-Wendroff

time marching scheme, the base solver used alone converges

very slowly to the steady state solution. The poor

convergence rate is due to the severe time step restriction,

common with all explicit methods, for solutions on meshes with

good flow resolution. To accelerate the convergence rate Ni

developed the present multiple grid method which, while

sacrificing time accuracy, accelerates convergence rates to

the same order as current potential solvers.

The multiple grid method is formulated by considering a

series of increasingly coarser meshes, defined as the 2h, 4h,

8h, etc. levels, which overlay the fine h mesh. If the

governing equations were discretized on each of these levels

it is then clear that the time step restriction would grow

with the mesh scale as one moves to increasingly coarser

meshes. Equivalently, the distance of propagation of

disturbances during each time step will be on the order of the

mesh scale. Therefore, disturbances propagate much faster

with each step on coarser levels. Unfortunately, there is
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also a corresponding loss of resolution and accuracy on the

coarser levels. What is desired then, is a way of coupling

the solutions of each level in such a way that disturbances

which can be resolved on coarser levels are propagated on

those levels while preserving the accuracy of the fine mesh

solution.

One of the first attempts at this type of coupling was

in solving for a solution in terms of a series of repeated

mesh refinements. First the problem is solved for a very

coarse mesh, where a very fast solution is possible due to the

small number of mesh points and large time step possible.

This solution is then interpolated to a finer mesh and used as

the initial condition for the next solution. The process is

then repeated for finer and finer meshes until the desired

mesh is reached. The net work required using this method of

mesh refinement is less that solving the fine mesh problem

directly, but it still remains unacceptable for solution of

Euler flow problems.

The Multi-grid methods developed by Brandt E23,24,413

take full advantage of the coupling of discrete equations on a

system of mesh levels to provide very fast solutions to

elliptic or near elliptic type equations. In multi-grid

methods the discrete equations of each level are expressed in

terms of the discrete governing equations of the given level

plus a correction term relating the solution to the next finer

level. The solution is then solved for simultaneously on all
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levels by cycling through the levels, using a relaxation

method on each level. One of the keys to the rapid

convergence of the solution is the choice of a relaxation

scheme which rapidly smooths the solution errors of the

frequency of the mesh scale, often in just as few relaxation

sweeps. By cycling through all levels of the mesh structure

the complete spectrum of error frequencies are rapidly

reduced. In addition, since a majority of the relaxation

sweeps take place on coarser mesh levels where the work per

sweep is small, the total computational work is reduced to the

order of 6-9 work units. A work unit is defined here as the

work for one relaxation sweep on the fine mesh.

Unfortunately, such multi-grid methods are not directly

applicable to solution of the Euler equations since the

governing equation system is not elliptic.

Ni's multiple-grid method for solving the Euler

equations represents a very different approach from the true

multi-grid methods but the under lying concept of taking

advantage of the propagation (or smoothing as Brandt calls it)

of disturbances on coarser mesh levels remains the same. To

help eliminate confusion of the present algorithm with true

multi-grid methods the present algorithm will be called the

coarse mesh accelerator. Ni begins by viewing the base solver

in terms of a flux balance followed by a distribution. The

flux balance defines the cell centered residual or solution

change for the center of the cell. The distribution step then

moves this residual to the surrounding nodes defining the

- 56 -



BASIC MULTIPLE-GRID METHOD

cell. It is the distribution step then which defines how

disturbances propagate numerically throughout the domain.

Now, due to the stability limit for the Lax-Wendroff scheme,

the distance of propagation is limited to no more than one

cell per time step. If the same distribution formula is

considered for a coarser mesh level the maximum distance of

propagation is still one cell, but now it is a coarse mesh

cell which is a multiple of fine mesh cells. To retain the

fine mesh accuracy Ni proposed defining the coarse mesh flux

balance in terms of some weighted average of the fine mesh

node residuals given by the base solver. Defined in this way

a coarse mesh solution sweep filters out the lower frequency

components of the fine mesh residual and propagates them as

they would be by using the base solver on the coarse mesh.

Therefore much faster convergence is possible for these low

frequency errors than on the fine mesh. The accuracy of the

fine mesh is preserved since the residuals are defined by the

fine mesh and although redistributed, the net change at any

point after the coarse mesh sweep will be of the same order as

the fine mesh residuals to begin with. In other words, since

the coarse mesh sweep operates on the residuals of the fine

mesh discrete equation and not the solution, accuracy is

preserved.

In practice the solution process begins with application

of the base solver on the h mesh. The coarse mesh accelerator

is then applied on the 2h mesh defined by eliminating every

other mesh line in both directions. The 2h mesh solution
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changes are then interpolated back to the fine mesh and added

to the solution. The coarse mesh accelerator is then repeated

on the 4h mesh, the 8h mesh, and so on. This defines one

complete multiple-grid cycle. The mesh cycle is then repeated

until convergence is reached. As will be shown later, use of

the coarse mesh accelerator typically reduces the number of

iterations or cycles to reach convergence by a factor three or

better over the base solver alone.

Comparing the coarse mesh accelerator to the multi-grid

methods of Brandt the following should be noted. The coarse

mesh accelerator differs from true multi-grid, since only the

distribution step on each level is the same as the base solver

rather than the entire discrete equations. The coarse mesh

accelerator simply accelerates the propagation of the fine

mesh residuals. This could also be viewed as a smoothing of

the fine mesh residuals on the coarser mesh levels. The

similarity between the two is that the coarser levels are used

to efficiently propagate or smooth solution errors of the

frequency of the coarse grid scale. Finally while the

multi-grid method are limited to elliptic type problems the

present coarse mesh accelerator works well for convective type

problems.

The actual coarse mesh accelerator consists of

application of the following procedure on one or more

progressively coarser meshes. Figure 3-3 presents a simple

flow chart of this process. The process begins by elimination
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of every other grid line in both coordinate directions

resulting in what will be called the 2h mesh. A typical

coarse grid cell is shown in figure 3-4. Note we now have

access to the next level finer grid points, which we will

refer to as secondary nodes, shown as points 5-9 in the

figure. First dU at all 2h grid points is initialized to

zero. Then, following the basic solver, the 2h mesh is swept

cell by cell performing the following steps:

STEP 1: Residual Transfer

To retain the accuracy of the level h mesh solution the

change, or cell residual, for the center of the 2h cell is

determined from a weighted average of the level h mesh

corrections. Ni denotes this symbollically by defining a

transfer operator T as,

2h 2h h
DU = T dU (3.8)

c h

The simplest form is straight injection of the fine grid

corrections as

2h h
DU = dU (3.9)

c 5

Injection of the cell centered residual physically represents

a good approximation to the flux balance over the coarse mesh

cell. This can be shown by writing out the complete

h
expression for dU which is the sum of distributed changes

from the four surrounding fine mesh cell. This sum is
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equivalent to an application of the integral equation using

all the h mesh points plus an extra second order time term as

shown below,

h h h h h 2
DU = 0.25(DU +DU +DU +DU ) + Dt ( other terms ) (3.10)

5 A B C D

where subscripts A, B, C, and D correspond to the four

surrounding fine mesh cells as shown in figure 3-5. Note that

a flux balance defined in this manner is a lagged flux balance

based on conditions of the flow before application of the base

solver.

For moderately stretched meshes simple injection works

quite well. However, as the mesh becomes highly stretched in

either or both coordinate directions the overall performance

of the coarse mesh accelerator has been found to decrease,

eventually failing completely. This breakdown has been found

to be related to the type of transfer operator used. To

correct this breakdown a series of different operators have

been studied. In comparing the relative performance of the

following operators it is convenient to use the simple

injection formulation as a base line.

The first type of transfer operators considered were

different algebraic weightings of the residuals of the nine

nodes defining the cell. Straight injection of the cell

center residual is the simplest of this class of operators.

Of this class the following seemed promising,
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2h h h h h h
DU = [ 4dU + 2( dU + dU + dU + dU

5 6 7 8 9

h h h h
+( dU + dU + dU + dU ) 3/16 (3.11)

1 2 3 4

This represents an averaging of the residuals for each of the

four h cells, which are then averaged for the 2h cell center

value. This is consistent with the base solver flux balance

since is assumes a linear distribution for residual along each

face of the h cells. Unfortunately the above weighting, as

well as all other purely algebraic averaging formulas

considered were found to give the same performance as simple

injection. Since each requires many more computational

operations over simple injection there is a net loss in the

efficiency by using these transfer formulations.

Judging by the performance of algebraic type weightings

and noting that the decrease in performance occurs with high

mesh stretchings, the resulting breakdown might be attributed

to the variation of cell volumes between the four h mesh

cells. The algebraic weightings do not take this cell volume

variation into account. On this basis the following cell

volume weighting was proposed,

2h h h h h
DU = C DV dU +DV dU +DV dU +DV dU J/DV (3.12a)

C A A B B C C D D T

where

DV =DV + DV + DV + DV
T A B C D

and
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h h h h h h h h h h
dU = C dU +dU +dU +dU J/4 dU = I dU +dU +dU +dU J/4

A 1 6 5 9 C 5 7 3 8
(3.12b)

h h h h h h h h h h
dU = E dU +dU +dU +dU J/4 dU = E dU +dU +dU +dU 1/4

B 6 2 7 5 D 9 5 8 4

This volume weighting also gave the same performance as simple

injection with no improvement in performance. While it was

felt that the volume weighting should play a role in the

transfer operation it was clear that a key element was still

missing from the formulation.

The missing element in the transfer operator for highly

stretched meshes has been found to be the incorporation of the

signal propagation characteristics of the equation into the

transfer process. Assuming a definition of the residual dU at

the center of each of the four h mesh cells ( A,B,C,D of

figure 3-5), the signal propagation must be considered in

combining these residuals for the 2h cell centered residual

dU . The signal propagation is determined by the distribution

step (recall eqn. 3.2). Using this as a guide then,

2h h * h * *
DU =E dU + Df + Dg JDV /DV + E dU + Df - Dg JDV /DV

C A A A A T B B B B T
(3.13)

h h
+ E dU - Df -Dg JDV /DV + E dU -Df + Dg JDV /DV

C C C C T D D D D T

where volumes are defined by equation (3.lb) and for example
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Df
A

= ( Dt/ DV )1
A

Dg = ( Dt/ DV ) E
A

h
DF = (IF/ U ) dU

A A A

0A 1 * 1 -
DF Dy - DG Dx I

A A

* M A M
DG Dx - DF Dy J

A A

A h
DG = (<G/ cU ) dU

A A A

There now remains the question of how to define dU , dU,, dU

and dUD. The proper definition of these h mesh cell residuals

was determined by testing various averages. Three of the

possible formulations tried are described below. The first is

simply the cell center average defined above in equation

(3.12b). Using this definition with the distribution defined

above results in a transfer operator which is stable for

highly stretched meshes but with an acceleration of

convergence which is still less than satisfactory.

A second definition which improves the convergence rate

is

h h
I dU +dU 1/2

1 5

h h
C dU +dU J/2

3 5

h h h
dU = E dU +dU J/2

C 2 5

h h h
dU = [ dU +dU J/2

D 4 5

At this point a trend can be seen. This definition provides a

stronger weighting and influence of the residuals at the 2h

cell corner nodes (points 3,5,7,9 of fig 3-5). Taking this

one step farther results in the following weighting.
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h h h h
dU = dU dU = dU

A 1 C 3
(3.15)

h h h h
dU = dU dU = dU

B 2 D 4

This final form provides the best convergence for highly

stretched meshes. In hind sight there are several reasons to

expect this result. First, of all weightings considered, the

last takes the fullest advantage of the propagation of

information in a manner consistent with the numerical

propagation of information by the discrete equations.

Defining the transfer operator in this way is equivalent to a

time step on the 2h mesh. Second, equation (3.15) operates

only on the residual of the 2h mesh at the 2h mesh points,

thus filtering the residuals in the same manner as the

discrete equations applied on a 2h mesh would filter the

solution. This means the frequency of the errors resolved are

the same that would be normally resolved by the discrete

equations. The improvement in convergence by using a

transport operator has been confirmed by Ni E423.

Table 3-1 summarizes quantitatively the relative

performance of the different transport operators in terms of

the multiple grid cycles for a converged solution. Two cases

are shown on the table. Both are for a subsonic flow about a

NACA0012 airfoil using a 65A17 0-type mesh with 3 mesh levels

(65*17 fine mesh plus two coarser level). In the first case a

moderately stretched mesh was used, placing the farfield
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boundary at 5 chords from the airfoil. The second is for a

highly stretched mesh placing the farfield radius at 20 chords

from the airfoil. As the table shows all the operators

perform about the same for the moderately stretched mesh with

a slight improvement using the distribution formulations. For

the more severe case however, all but the distribution based

transfer operators fail. Of the distribution formulations it

is clear the final formulation provides the best overall

performance.

Table 3-1: Comparison of Transfer Operator Performance

TRANSFER CASE 1: MODERATE CASE 2: HIGH
OPERATOR STRETCHING, R = 5 STRETCHING, R = 20

SIMPLE INJECTION 616 Failed to Converge
(Eqn. 3.9)

ALGEBRAIC WEIGHTING 690 Failed to Converge
(Eqn. 3.11)

VOLUME WEIGHTING 588 Failed to converge
(Eqn. 3.11)

DISTRIBUTION 572 850
TYPE 1: (Eqn. 3.12b)

DISTRIBUTION 573 854
TYPE 2: (Eqn. 3.14)

DISTRIBUTION 578 619
TYPE 3: (Eqn. 3.15)

STEP 2: Distribution formulae

Following the distribution step of the base solver

equation (3.2) the 2h mesh distribution is defined as
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dU + 0.25E
1

dU + 0.25E
2

dU + 0. 25E
3

dU + 0.25E
4

DU - Df -
c c

DU -
c

DU +
c

DU +
c

Df +
c

Df +
c

Df -
c

= ( Dt/ DV )E DF Dy
C

m
=(Dt/ DV )E DG Dx

C

DF = ( aF/ U ) DU
C C C

1
- DG Dx I

C

m
- DF Dy J

c

DG = ( G/ aU ) DU
c c c

Dx = 0.5( x + x - x - x
2 3 1 4

Dy =0.5( y + y - y - y
2 3 1 4

Dx =0.5( x + x - x - x ) Dy =0.5( y + y - y - y
3 4 1 2 3 4 1 2

Since the solution is now known at the cell center (i.e. node

5), this is used for calculation of ( ZF/aU )c and ( 3G/aU )c '

Once the above steps have been performed at all 2h

cells, the boundary conditions are applied at all 2h boundary

points. Note that no smoothing is done for the coarse mesh

sweeps as is done in step 3 of the basic solver. Then the

corrections are interpolated back to the fine mesh using

bilinear interpolation.
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h 2h 2h h 2h 2h
dU = 0.5E dU + dU I dU = 0.5E dU + dU J

6 1 2 7 2 3

h 2h 2h h 2h 2h
dU = 0.5[ dU + dU J dU = 0.5E dU + dU J

8 3 4 9 1 4

h h h
dU = 0.5E dU + dU J (3.17)

5 6 8

It should be noted that the above interpolation is a bilinear

interpolation in computational space. It has been found that

while it might seem to be better to perform a bilinear

interpolation in physical space the above form actually gives

better convergence rates. In addition the above formulation

requires far less operations than the corresponding

formulation in physical space, providing a significant savings

in computational work.

Finally the boundary conditions are applied once again

on the fine mesh and the solution is updated using equation

(3.5). The above coarse mesh accelerator is then repeated for

progressively coarser meshes (i.e. 4h,8h,.....). A complete

multiple-grid cycle consists of one sweep through the level h

solution mesh followed by a coarse 2h mesh sweep, followed by

a 4h sweep, and so on to the coarsest mesh.

3.4 BOUNDARY CONDITIONS

Each of the boundary conditions used has been

implemented in a predictor/corrector form. The
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predictor/corrector form follows from the fact that second

order numerical integration schemes for internal points

incorporate a mathematical signal propagation phenomena

analogous to the theory of characteristics. For example,

Abbett E433 and others have viewed MacCormack's scheme as

computing the solution of two simple waves, the solutions of

which are summed to yield a complete solution. In the same

sense Ni suggests that the "distribution" formula represent

similar simple wave solutions. On boundaries the predictor

step consists of summing contributions from cells interior to

the boundary. The corrector step consists of enforcement of

the appropriate boundary conditions (i.e. inflow, outflow,

solid wall, or Kutta) using a simple wave type of treatment.

In this section, subscript "p" defines predicted values

obtained by distributions from the two boundary cells

belonging to point i. Subscript "c" refers to the corrected

values after application of the boundary conditions. Once

found the corrected change at boundary points.is then

n
dU =U - U (3.18)

i c 1

The corrector step for the farfield and solid wall

boundaries is based on a characteristic analysis of the

linearized Euler equations in a coordinate system tangential

and normal to the boundary at point 1, as shown in figure 3-6.

A general and easy to follow development of this

characteristic analysis is presented by McCartin [443.
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Rewriting the original governing equation (2.8) into this

local cartesian reference frame with normal and tangential

coordinates (n,s) gives-

U + F + G =0 (3.19)
t n s

Assuming locally that the tangential variation is much smaller

than the normal variation of U, this equation reduces to

U + F =0 (3.20a)
t n

which may be rewritten as

U + F U =0 (3.20b)
t U n

Now performing a local linearization by freezing the values of

F this equation can then be transformed into a system of

uncoupled scalar equations, the characteristic equations

W + W =0 (3.21)
t n

If q and q are defined as the normal and tangent velocity

components, and a is the speed of sound, then the eigenvalues

A and corresponding characteristic variables W of this

equation in the reference frame normal to the boundary are

| | | 2
Sf- p/() )

I n | |
X = | q W W = | q (3.22)

In I s 
q +a I I [q + p/( 'a)]/

In | n
I q -a I | E-q + p/(fT E)]/
In | | n

Barred quantities are linearized state conditions which are
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taken as the predictor state (p).

3.4.1 Far Field Boundary

The number of boundary conditions which may be specified

at the boundary is equal to the number of positive

eigenvalues. For the far field the specification of the

boundary conditions depends upon whether the normal velocity

is positive (inflow) or negative (outflow) and supersonic or

subsonic. For subsonic inflow (O(q (a) the three positive

eigenvalues require three boundary conditions be applied while

W4 must come from the flow interior to the boundary. The

interior flow is represented by the predicted values. The

boundary conditions are set by defining Wl, W2, and W3 in

terms of the finite radius far field vortex conditions, ( )v'

These correspond to a farfield flow projected normal and

tangential to the boundary. We thus have the following system

of equations defining the corrected state, C ).

2 2
f -p ( -p /(F) (3.23)
c c v v

q q
s s
c V

q +p /(i) =q + p /(fa)
n c n v
c v

-q +p /(fa) =-q + p /(.i)
n c n p
c p
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After recombination we have,

q = q (3.24)
5 5

c v

p = 0.5C p + p +.a( q -q )J
c v p n n

v p

2
f + ( p - p )/(a )

c v c v

q =q +( p -p (fi)
n n v c

c v

For supersonic inflow (q >a) all eigenvalues are

positive and four boundary conditions are required. In this

case the inflow boundary is frozen at the freestream

conditions.

For subsonic outflow (-a(q (0) there is only one

positive eigenvalue and therefore one required boundary

condition. On the outflow boundary the upstream traveling

characteristic W3 is set at the freestream value. Wl, W2, and

W4 are determined from the predicted flow conditions. After

rearranging we have the following relations,

p = 0.5E p + p +fa( q - q )3 (3.25)
c v p n n

v p

q =q
5 s

c p

2

1' =2 + ( p -p
c p v p
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q =q + ( p - p )/(Fa)
n n v p
C p

For supersonic outflow (q r(-c) all information comes

from the predicted state p.

3.4.2 Solid Wall Boundary

Finite volume methods with the state vectors defined at

cell centers (e.g. E15,173) only require the pressure on the

solid wall. Incorporation of the solid wall condition for

Ni's scheme requires all flow quantities be known or

determined at the solid surface. For this reason, a

characteristic analysis is also used at the solid walls.

Referring back to the boundary cells shown in figure 3-6 and

with qn=O in eqn. 3.22, there is one positive eigenvalue

requiring one boundary condition be set. The condition used

is q =0. Wl, W2, and W3 are then determined based on the

predicted state (p) where

n
(U ) =U + 2( dU ) (3.26)

1p 1 1 p

The factor of two in the above expression is used to

accelerate convergence. This might be thought of as either a

crude application of the reflection principle at the solid

wall or merely a over relaxation of the predicted change.

After substitution and recombination, the corrected conditions

are found to be
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q =0 (3.27)
n

C

q =q
s s

c p

p =p + q ra
c p n

p

S=9f + q f/a
c p n

p

It is interesting to note that this solid wall boundary

condition is a linearized version of the common simple wave

boundary condition, where the corrected state is based on the

generation of an isentropic expansion or compression wave

normal to- the boundary which is of sufficient strength to

cancel q .

3.4.3 Kutta Condition

All airfoil solutions to be presented have been obtained

on either 0-type or C-type meshes. This places a mesh point

at the trailing edge of the airfoil which is a singular point

in the flow field. At this point the procedure used to

enforce the body boundary condition should be modified to

enforce a Kutta condition. As stated in chapter 2 the Kutta

condition required that the flow on the upper and lower

surfaces of a sharp trailing edge must merge smoothly. In

real flows it is the viscosity, no matter how small, which

guarantees that the Kutta condition will be satisfied. While
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theoretically an inviscid solution requires a Kutta condition,

for numerical calculations the artificial smoothing, both that

implicit in the algorithm and that added explicitly for

stability, have been found to impose this condition

automatically. The artificial smoothing performs the same

function as the viscous terms in a true viscous flow.

Therefore for the present calculations the Kutta condition is

met without any special boundary condition. This approach

agrees with other published Euler calculations E15,173.

One question now remains in the treatment of the

trailing edge point. Since it is also a singular point in the

flow field, what boundary conditions should be imposed at this

point? The best results have been found to depend on the type

of mesh used. For an 0-type mesh the trailing edge point is

consider to be single valued. The most reliable procedure is

to not apply any condition and simply use the predicted

changes at this point. For C-type meshes the best procedure

is to consider the trailing edge point a double valued point

and applying the standard solid wall boundary condition using

the local tangent for the upper and lower surface at

respective upper and lower points. While these treatments of

the trailing edge points may seem rather arbitrary, they were

choosen after studying many possible formulations including

enforcing a stagnation point and various flow angle

conditions. It was found that while the local flow detail at

the trailing edge varied with various conditions imposed,

there was vary little variation in the global properties of
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the solution. This conclusion is consistent with results of

other calculations E45J.

3.4.4 Boundary Smoothing Formulation

In addition to the implementation of the physical

boundary conditions a special formulation of the smoothing is

required along the boundaries of the computational domain. As

noted in the smoothing discussion (Step 3 of the base solver),

the smoothing currently used for the internal solution points

is a nine point Laplacian type smoothing operator. Without

specifying information outside the computational domain, this

operator cannot be constructed along the domain boundary. The

approach currently used is to drop the smoothing along

computational lines running into the domain, thereby reducing

the smoothing operator to a one dimensional operator tangent

to the boundary. Considering the boundary cell shown in

figure 3-7, where points 1 and 4 lie along the boundary, the

corresponding one-dimensional smoothing operator is

dU = dU + 0.25,. E U -U J (3.28)
1 1 4 1

dU = dU + 0.25.E U -U J
4 4 1 4

To insure the smoothing is continuous from points internal to

the boundary to the boundary the viscosity s4. is defined as

the viscosity of the boundary cell and calculated using

equation (3.3).
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For 0-type mesh calculations wiggles in the solution

were found in some cases in the trailing edge region along the

surface. The odd/even decoupling in this region is caused by

the poor grid structure in this region (highly

non-orthogonal). To eliminate this decoupling the surface

smoothing was symmetrically increased about the trailing edge

by linearly increasing the artificial viscosity from its

normal value several points from the trailing edge to a

maximum at the trailing edge. This amounts to nothing more

than a cosmetic correction producing a smooth solution in this

region but without affecting the global parameters of

interest.

3.5 GLOBAL MULTIPLE-GRID SOLVER SOLUTIONS.

The basic multiple-grid Euler solver and boundary

conditions have been verified for several different flow

problems and a range of flow conditions. The objective of the

present section is twofold; first, to validate the present

formulation by comparing with known theoretical results, and

second, to illustrate the sensitivity of these results to

boundary conditions, grid resolution, smoothing and other

important parameters. The first problem considered was the

calculation of flows in a channel with a circular arc bump

presented by Ni E143. While of value, in the sense that the

present formulation could be directly compared with that of

Ni, the channel problem is not a good case for truly testing

the performance of the solver. Since the present solver
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reproduced those results of Ni, they will not be repeated

here. The test cases which will be presented consist of

several two-dimensional airfoil designs. These airfoils were

chosen as good test cases either since an analytical solution

is known or because they are commonly accepted test cases for

code comparison. Two types of grids have been used for these

solutions. The 0-type meshes have been generated using a 2-D

version of the transfinite interpolation routine described by

Eriksson in E19] and supplied by the author. The C-type

meshes were generated using a 2-D parabolic mapping routine

written by Loyd E46).

The first test case to be considered is a NACA0012

airfoil with a uniform freestream Mach number of 0.63 and 2.0

degrees angle of attack. Under these conditions the flow is

completely subsonic. A numerical solution of the

streamfunction equation for this case is provided in E473,

predicting a lift coefficient of 0.335. Figure 3-8 shows the

near field of a 65A17 0-type mesh with a farfield radius of 5

chords. As a base line for comparision, figure 3-9 presents

the surface pressure coefficient, surface total pressure loss,

the near field Mach number contours, and the near field total

pressure contours for a solution using the base solver alone.

The streamfunction solution of E47) has been included in

figure 3-9a to demonstrate that the correct pressure

distribution along the airfoil surface has been found. In

addition, the calculated lift coefficient of 0.324 agrees

quite well with the streamfunction solution value of 0.335.
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The total pressure loss, which should be zero for this case,

has been presented since it has been found to be a very

sensitive indicator of errors in the solver formulation and of

poor grid resolution. Considering the grid resolution with

only 65 points on the airfoil the total pressure loss is

acceptable. Note that the total pressure loss is generated by

the rapid expansion around the leading edge. This total

pressure loss is due to the artificial smoothing of the

solution. More will be said about the total pressure loss

later. Figure 3-10 presents a multiple-grid solution on the

same mesh with the same flow conditions where now in addition

to the base solver applied on the h mesh the coarse mesh

accelerator has been used on the 2h and 4h meshes. Comparing

the solution of figure 3-10 with that of 3-9 it is clear that

the multiple-grid solver gives almost identical solutions.

Note that the lift and drag coefficients also agree as

expected.

The convergence histories for these two cases are

presented in figure 3-lla. Included in the figure is the

convergence history for the intermediate case with only one

coarser level. The residual presented here is the average

change of d(fU)/Dt after the base solver sweep as a function

of the multiple grid cycle. Solution convergence for each

case has been defined as the point at which this residual

falls below 1E-5. This residual level is well beyond the

point at which the force coefficients have reached their

steady state values. To illustrate this, the lift and drag
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coefficients for the solution of figure 3-10 are presented as

a function of multiple-grid cycle in figure 3-llb. Each of

the other solutions exhibited a similar behavior. As shown in

ficure 3-lla, the base solver alone required 1562 iterations

to converge while the solution with three levels only required

570 cycles to converge resulting in a factor of 3 reduction in

the total cycles by using the coarse mesh accelerator. It is

also interesting to note that the relative reduction between

1, 2, and 3 levels decreases as the number of mesh levels is

increased. This has also been noted by Johnson E39). The

reason for this trend becomes clear if one recalls that the

actual finite volume approximation is only performed on the h

mesh. All coarser levels are based on a weighted average of

the fine mesh residual which is a lagged or old approximation

to the flux balances on the fine mesh. In contrast true

multi-grid methods always operate on the current solution and

therefore do not show this trend.

Now consider a global refinement of the above mesh

resulting in the 129*33 mesh with a farfield radius of 5

chords shown in figure 3-12. The previous 65*17 mesh (figure

3-8) was actually created by elimination of every other grid

line in the 129A33 mesh. Figure 3-13 presents the solution

for the same flow conditions as the previous result using the

multiple grid solver with 4 global mesh levels. The only

detectable changes from the 65*17 mesh solution are in the

reduction in the total pressure loss and the slightly better

lift and drag coefficients of .328 and .0009, respectively.

- 79 -



BASIC MULTIPLE-GRID METHOD

These changes are the direct result of the better mesh

resolution. In particular, since the smoothing term scales as

Dx, the factor of two reduction in total pressure loss- is as

expected. Figure 3-14 compares the convergence histories of

the 129A33 solution and the 65A17 mesh solution with 3 mesh

levels. If in addition to the difference in solution cycles

one considers the better than factor of 4 increase in the work

per cycle for the 129*33 mesh, the importance of minimizing

the total number of grid points is clear.

At this time consider the origin and detail in the total

pressure loss of figure 3-9. As previously mentioned, the

origin of this loss is the artificial viscosity term which has

been added to the governing equations to stabilize the solver.

Careful study of the region near the stagnation point at the

leading edge shows that in this region there is actually a

negative total pressure error. This overshoot in the

stagnation total pressure is caused by the smoothing of the

rapid compression in this region. The total pressure error

generated at the leading edge is also the result of smoothing,

in this case the smoothing of the rapid expansion around the

leading edge. After the leading edge region, the total

pressure error remains almost constant until the trailing

edge, which suggests that the formulation of the solid wall

boundary condition is correct. Figures 3-15 and 3-16 show the

surface pressure coefficient and total pressure errors,

respectively, for a range of smoothing coefficients between 0

and 0.08. Note that as the smoothing coefficient decreases to
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zero the total pressure loss almost disappears. Unfortunately

for the case of zero smoothing (fig 3-15e and 3-16e) the

solution failed to converge. It is clear that this breakdown

is the result of an odd/even decoupling of the solution,

particularly near the trailing edge. As will be shown

shortly, this breakdown is due to the skewness of the mesh in

the trailing edge region and the implementation of the

boundary conditions at the trailing edge. Comparing the lift

and drag coefficients as a function of the smoothing it is

important to note that the absolute change in both

coefficients is about the same. However, on a percentage

basis, the drag coefficient, which should be zero for inviscid

calculations, is very sensitive to the level of smoothing.

For reasonable levels of smoothing ( 0-.05) it remains quite

small. The lift coefficient, on the other hand, is

insensitive to the amount of smoothing. As stated in the

development of the smoothing, the amount of smoothing has a

great effect on the convergence rate of the multiple-grid

solutions. Figure 3-17 compares the convergence histories for

the solutions of figures 3-15 and 3-16. It is clear that

reasonable levels of smoothing greatly accelerate the rate of

convergence, but beyond a threshold value, the convergence

rate is insensitive to the level of smoothing. In conclusion,

since the artificial viscosity is necessary, further work

should be done to formulate a better smoothing operator.
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One particular detail which remains to be explained is

the total pressure spike at the trailing edge. This spike at

the trailing edge is a localized effect due to skewness of the

0-type mesh in this region. Figure 3-18 shows a blowup of the

mesh in this region. This poor mesh structure is one of the

problems with using an 0-type mesh. The skewness in the mesh

causes the breakdown of the solution noted earlier. In

addition to the odd/even decoupling, the maximum solution

residuals for the converged 0-mesh solution always occur in

the trailing edge region, giving a second indication of a

breakdown in the formulation. This error can be reduced, if

the mesh in this region is made more orthogonal to the

surface, as shown in figure 3-19 for a 65A17 mesh.

Unfortunately, by improving the orthogonality of the mesh in

this region, the resolution downstream of the trailing edge is

sacrificed.

Another alternative is to switch to a C-type mesh as

shown in figure 3-20. This mesh is a 97*17 C-type mesh with

65 mesh points along the airfoil (note the grid distribution

along the airfoil surface is not exactly the same as the

0-type mesh). The corresponding solution is shown in figure

3-21. By switching to a C-type mesh the spike in total

pressure has been removed. In addition, the odd/even

decoupling of the solution, common with 0-type meshes, no

longer occurs. The maximum residual for the converged C-mesh

solution no longer occurs in the trailing edge region. This

indicates that the formulation is much more stable in this

- 82 -



BASIC MULTIPLE-GRID METHOD

region with an orthogonal mesh. Figures 3-22 and 3-23 present

the surface pressure coefficient and total pressure loss for

the same range of smoothing coefficients as used for the

0-type mesh solutions of figures 3-15 and 3-16. Note that

both the spike in the total pressure and the odd/even

decoupling are not found for the C-type mesh solutions. Even

with no smoothing the solution converged as shown in figures

3-22e and 3-23e. Also note, with zero smoothing both force

coefficients show excellent agreement with the streamfunction

solution values. Figure 3-24 shows the convergence histories

as a function of the level of smoothing for these cases. The

convergence rate is once again greatly improved with

smoothing. In addition, comparing C-mesh convergence rates of

figure 3-24 with those for the 0-mesh of figure 3-17, shows

that elimination of the odd/even decoupling greatly improves

the rates of convergence. The maximum residual for these

converged C-mesh solutions now occur in the stagnation point

region of the leading edge. This agrees with the observation

of other authors E48) who have found that the Lax-Wendroff

scheme is only marginally stable in stagnation regions. There

is one important drawback in switching to C-type meshes.

While these meshes gain in resolution at the trailing edge,

they also require many more points for equivalent resolution

of the airfoil surface since packing along the surface leads

to a band of unnecessary points stretching out to the farfield

boundary.
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Each of the above calculations were performed using the

vortex far field characteristic boundary condition. Table 3-2

presents the lift and drag coefficients for solutions on a

65A17 0-type mesh with a far field radius ranging from 5 to 50

chords, with and without the far field vortex correction. If

each is compared with the streamfunction solution lift

coefficient value of 0.335 it is clear that, while the error

in both cases drop off with increasing radius, by using the

vortex correction the far field boundary may be brought much

closer to the airfoil. This in turn reduces the storage and

work by reducing the number of mesh points required for

equivalent mesh resolution.

Table 4-3: Variation of Force Coefficients with

Location and Type of Far Field Boundary Condition
(Actual values C = 0.335 and C = 0.000)

L D

+------------------------------------------------------------------------

j UNIFORM FREESTREAM I VORTEX FREESTREAM I
1 BOUNDARY CONDITION I BOUNDARY CONDITION |

I FAR FIELDI ----------------------------------------------- I
IRADIUS I C C | C | C |

(CHORDS) I L D L | D I
---------------------------------------------------------- I

5 0.2873 0.0030 0.3238 0.0019

10 0.3059 0.0022 0.3266 0.0016

20 0.3170 0.0016 0.3276 0.0013

30 0.3211 0.0013 0.3284 0.0011

50 0.3245 0.0010 10.3289 0.0009

+------------------------------------------------------------------------
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Returning to the solid wall boundary condition, recall

that the predicted changes were multiplied by a factor of two

(equation 3.26) with only a vague physical interpretation.

The following example demonstrates the importance of this

operation. Figure 3-25 presents the solution on the 65*17

0-type mesh of figure 3-8 without this operation. Comparing

this solution with that of figure 3-9, it is clear that this

operation has no significant effect on the final solution. It

does, however, greatly improve the rate of convergence of the

solution, as shown in figure 3-26.

The present global multiple-grid solver has been tested

for several other transonic airfoil flow problems. The global

solutions will be briefly described here and then used later

for comparison to the embedded mesh results of chapter 5. The

second case considered is a NACA0012 airfoil at flow

conditions of M = 0.85 and o(=1.0 degree. This is a lifting

case with strong shocks at 85% chord on the upper surface and

70% chord on the lower surface. This case is often chosen as

a test case because the lift is strongly dependent on the

shock location (see for example the GAMM workshop E493). A

good solution then requires a high resolution of the shocks.

Figure 3-27 presents a multiple-grid solution using 3 levels

for the 65*17 mesh of figure 3-28. While both shocks are

apparent, neither shock is very well defined due to the poor

mesh resolution in the shock regions. A global mesh

refinement was then made, resulting in the 129*33 mesh of

figure 3-29. This mesh gives much better mesh resolution in
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the shock regions as shown by the corresponding multiple-grid

solution using 4 levels in figure 3-30. The total pressure

losses across both shock is clearly resolved for the 129*33

global solution. The Mach number, pressure and total pressure

jumps across these shocks are within 0.5 percent of those

predicted by the normal shock relations based on the Mach

number just ahead of the shock. The convergence histories for

the 65*17 and 129A33 solutions are presented in figure 3-31.

A second common test case for code comparisons is the

RAE2822 supercritical airfoil at M = 0.75 and CC= 3.0 degrees

C493. The important features for this case are the very rapid

expansion around the leading edge and a strong shock which

occurs at 80% chord on the upper surface. Lerat and Sides

C50] have published solutions of the Euler equation for this

case using a explicit second order accurate finite-volume

method. Their calculations predict lift and drag coefficients

of 1.108 and 0.0424, respectively. A 65A17 mesh for this

airfoil is shown in figure 3-32 with the corresponding

multiple-grid solution shown in figure 3-33. Performing a

global h/2 mesh refinement results in the 129*33 mesh shown in

figure 3-34. A multiple-grid solution with 4 levels is

presented in figure 3-35. Once again the better grid

resolution of the 129*33 mesh results in a much sharper shock.

In addition, as expected the total pressure loss in the

leading edge region with the rapid expansion is reduced by a

factor of two with the finer mesh. The surface pressure

coefficient calculated by Lerat and Sides using a 188A24
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C-type mesh with 129 points alone the airfoil has been

included in figures 3-33a and 3-35a. The present calculation

on the 129A33 fine mesh (figure 3-35a) agrees quite well with

their solution. Considering the level of difficultly of this

case, the present fine mesh lift and drag coefficient values

of 1.088 and 0.0431 are also in very good agreement with the

values of 1.108 and 0.0424 calculated by Lerat and Sides

(within 2 percent). The convergence histories for these two

cases are shown in figure 3-36.

The last case to be presented is the Garabedian and Korn

supercritical airfoil [51) with design conditions of M = 0.75

and Oc= 0.12 degree. Since this airfoil was designed using an

inverse hodograph method the theoretical flow solution at the

design condition is known. The theoretical lift coefficient

for this design condition is 0.63. At these conditions the

supersonic region extends over about 60% of the upper surface.

In practice, the shock-free solution for this configuration

has been found to be very sensitive to the location of the

sonic line and the resolution of the flow in the supersonic

region. Full potential equation solutions by Jameson [52) and

others have shown that a poor resolution of the sonic line

will results in the supersonic region being terminated by a

shock and not the proper shock-free solution. The location

and strength of this shock is directly related to the mesh

resolution used. Jameson [52) found that as the mesh was

refined the strength the the shock decreased and that with the

proper grid resolution (in this case a 256*65 0-type mesh) the
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shock could be almost completely eliminated. Figures 3-37 and

3-38 present a 65A17 mesh and the corresponding solution using

the present formulation. Comparing the theoretical pressure

distribution with calculated solution in figure 3-38a shows

that the flow is not being properly predicted over a portion

of the supersonic region. This results in a lift coefficient

which is 5.8% below the theoretical value of 0.63. The drag

coefficient, which should be zero, is also much higher than

what might be viewed as acceptable for this grid resolution.

One possible explanation for the high drag coefficient is that

a very weak shock is terminating the supersonic region. While

the existence of such a shock can not be verified by the

pressure distribution, due to the poor mesh resolution and

possibly high smearing of such a shock, the rise in the total

pressure loss (figure 3-38b) in this region would agree with

this explanation. A 129A33 global mesh is shown in figure

3-39 with the corresponding multiple-grid solution presented

in figure 3-40. Figure 3-40a shows that the calculated

pressure coefficient is in slightly better agreement with the

theoretical pressure distribution in the supersonic region.

The higher mesh resolution has reduced the error in the lift

coefficient to 3.4% below the correct value. The error in the

drag coefficient has also been reduced by almost a factor of

2. Close inspection of the pressure distribution where the

supersonic region terminates shows what could be the formation

of a weak shock. Based on the improvement in the solution

with this higher mesh resolution, it is resonable to expect
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that an additional mesh refinement would result in a solution

very close to the correct shock-free solution. With such a

refinement the resulting mesh would be of the same resolution

as required be Jameson in C52).
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POINTER SYSTEM

The transition from global mesh structures to general

embedded mesh structures introduces a bookkeeping nightmare to

what would appear to be a logical technical extension. The

conventional approach in writing a global mesh solver begins

with the assumption that the solution mesh will have a certain

fixed structure. The solver is then constructed based on this

structure making it an integral part of the code. A typical

example is to assume the mesh consists of a rectangular array

of nodes, for which an (i,j) labeling of the nodes is

possible. Then by writing the solver in terms of indices i

and j the mesh structure becomes inseparable from the code.

With such an approach, the addition of an embedded mesh to the

grid structure in essence means a new mesh structure has been

defined. This in turn requires development of a new solver.

Obviously this approach cannot be extended to handle general

embedded mesh structures. The key to solving this dilemma is

to separate the definition of the multiple-grid structure from

,the solver.
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A very similar problem is commonly encountered in

general finite element solvers where more than one type of

element, each having a special shape (bar, triangle,

rectangle) and composed of a varying combination of nodes

(3,4,6,8,etc.), are assembled into a global finite element

system to define a given structure. The key, once again, is

to separate the structural definition from the solution

algorithm. For finite element calculations this separation is

done by assigning each node of the structure a node number (i)

and then defining a connectivity array which describes the

elements of the structure. The connectivity array often used

is a sequential list of the elements, defining for each

element the element type, nodes belonging to it, and any other

attributes desired. This connectivity array is then used by a

general solver as a guide for the systematic construction of

the system of equations describing the structure. After

solving, the array is then used as a guide for visual display

of the structure and solution.

In many respects the separation of the general embedded

mesh structure from the Euler solver is similar to the

separation required in finite element problems. The embedded

mesh structure envisioned would be composed of a combination

of several global coarse mesh levels followed by one or more

embedded regions containing several increasingly finer levels.

The solver must know the location and domain ( or domains,

since there may be several) of each level. In addition the

location and type of physical boundary conditions must be
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defined. The solution is to define a pointer system which

describes the mesh structure in the same way a connectivity

array defines a finite element system. The pointer system

then plays the role of a kind of road map for the solver.

Separation of this structure definition from the Euler

equation algorithm leaves a very general and easy to follow

program. Changes in the grid structure then require a new

pointer system but the solver remains unchanged.

Adopting a pointer system to describe the grid structure

opens the door for many other benefits. Foremost is the

flexibility possible in defining the structure. For

applications implemented on virtual or array processing

machines this flexibility means the pointer structure can be

organized to optimize access time, page faulting and

computational speeds. In addition, since the code is not

modified with changes in the grid, adaptive mesh techniques

can be implemented with the addition of new routines which

manipulate the pointer system.

There exists many possible choices for definition of

this pointer system, each with its own advantages and draw

backs. Even the conventional (i,j) indexing for global

calculations can be viewed as a very simple pointer system.

In the discussion which follows, three possible pointer

structures are presented and compared, the last of which was

actually chosen. Before these pointer systems are discussed

it is important to consider what information is required by
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the solver.

With the present Ni formulation the solution U and

change dU must be stored once and only once for each grid

point on the finest mesh in each region of the total domain.

For the full two dimensional Euler equations at least the

following 10 quantities must be stored for each node:

coordinates x and y. conservation variables f, u, pv, and

e,and the change in the conservation variables d(f ), d(fu),

d(fv), and d(e). They are stored in a 10 by N solution matrix

Q defined as,

Q = E Q I (4.la)
mn

where

m = Variable Type (1(=m(=10) (4.lb)
n = Node Number (l(=n(=N)

Additional quantities such as cell volumes, projected areas,

temporary variables, etc. could also be stored to reduce

repetitive calculations. At a minimum this implies a base

line storage requirement of 10 real variables per node of the

structure, independent of whether a pointer system is used or

not.

4.1 POSSIBLE POINTER SYSTEMS

A cell pointer matrix must now be defined which points

to the nodes in Q needed for the base solver and coarse mesh

accelerator formulae on each level of the multiple-grid
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structure. From the formulation of the base solver and coarse

mesh accelerator it is clear that the smallest element which

contains all required information for the solvers is the four

node cell for the base solver and modified nine node cell for

the coarse mesh accelerator. The nine node cell is then the

most basic element common to both solvers. In view of the

cell being the most basic element of the grid structure it

follows that the structural definition of the pointer system

should be composed around the cell or some higher structural

grouping of cells. Figure 4-1 shows three possible base

structures from which a global mesh structure could be

composed. In order of decreasing structure or increasing

flexibility they are: a rectangular block of cells, a line of

cells, or simply an individual cell. Assuming the vector

string of node information described above, a pointer system

can be constructed for each base structure pointing to the

nodes in this vector. It now becomes a trade off between the

amount of storage and the degree of flexibility in the type of

structure which can be defined. In the paragraphs which

follow a pointer system using each of the base structures will

be outlined. This is followed by a discussion of the

advantages and disadvantages. For comparison, the storage of

each system will be considered in terms of the storage

required per cell of the grid structure.

The first base structure to be considered is the

rectangular block structure. In this case we will consider

each region (embedded or global) of each level as composed of
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one or more rectangular blocks of cells. Considering a

typical (NAM) block of cells shown in figure 4-2 with primary

nodes (nodes used by both solvers) shown as solid dots and the

additional secondary nodes of the next finer level ( used by

the coarse mesh accelerator) shown as open dots, a two

dimensional integer pointer or an equivalent integer vector

must be created to point to the proper location in Q for each

node of the block. This process is then repeated for each

block of cells used to define the total multiple-grid

structure. The result is a three dimensional pointer array P,

defined as followed,

P = E P J (4.2a)
inm

where
i = Block Number (l(=iC=I) (4.2b)
n = Column Number of Block (l<=i<=2N+l)
m = Row Number of the Block (1<=j<=2M+l)

Where P;. (n=odd and m=odd) correspond to the primary nodes

and all others are secondary nodes. In addition a directory

consisting of the starting block number and ending block

number of each level would also be required. Of course, in

practice to save on storage this pointer array would be cast

in a standard integer vector format, using a directory to list

the starting and ending locations of each block in the vector

along with the block dimension (NAM) and level. The storage

required on a per cell basis, neglecting directory storage,

can be estimated as follows,

Storage/Cell = (Integers Pointers per Block)/(Cell per Block)
= E(2N+1)(2M+1)]/NM
= 4 Integers/cell
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The second possible base structure is a line of cells as

shown in figure 4-3. In this case the multiple-grid structure

would be decomposed into a set of lines of cells. The primary

and secondary nodes are shown as before. Each line can be

defined by a 3*Nr integer pointer array. Then combining all

lines in a single 3-D array P we have,

P = E P J (4.3a)
inm

where
i = Line Number (1(=i(=I) (4.3b)
n = Column Number of Line (l(=i<=3)
m = Row Number of the Line (1(=j(=2M+l)

This pointer can also be converted into an integer vector with

a corresponding directory. The storage required for this

pointer structure is given by,

Storage/Cell = (Integers Pointers per Line)/(Cells per Line)
= E3(2M+1)]/M
= 6 Integers/cell

The last base structure to consider and the most basic

is the cell itself. A typical cell is shown in figure 4-4,

with primary and secondary nodes marked. Here a pointer

vector P is constructed which contains 9 integer pointers per

cell for every cell on every level of the multiple-grid

structure. The cells are grouped by level, in any order on a

given level, with a directory used to define the start and end

of each level in the vector P. A detailed description of the

pointer system will be presented later. It is clear that in

this case the storage is simply

Storage/Cell = Integers Pointers per Cell
= 9 Integers/cell
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The approximate storage requirements per cell are

summarized in table 4-1. It is clear that, assuming a given

multiple-grid mesh structure, the rectangular block structure

is the most efficient in terms of storage.

Table 4-1: Comparison of Pointer Systems

BASE STORAGE/CELL STRUCTURAL
STRUCTURE FLEXIBLITY

Block 4 integers Highly Restrictive

Line 6 integers Moderately Restrictive

Cell 9 integers Least restrictive

While storage is an important factor there are many others

which are equally if not more important depending on the

application. Flexibility in -terms of the ease in which

multiple-grid structures, which include embedded regions, can

be defined is very important. Using this criterion a pointer

system based on the cell structure is the most flexible. Any

number of embedded regions of any shape can easily be defined.

Cells can be stored on any given level in any desired order

allowing optimization of not only the accessing of the

solution vector but also the pointer system. On the other

hand the line and block formats are increasingly less flexible

in this respect. For example, the definition of non-uniform

embedded regions with the block format requires either the

definition of many small blocks or the addition of unnecessary

points to create larger blocks out of the irregular shapes.

This flexibility is also important if the present scheme is to

be extended in the future to adaptive mesh calculations. The
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routines added for adaptive mesh calculation would be

concerned with the addition and removal of cells from the

pointer system to gain the resolution required. The more

flexible the system the simpler the adaptive routines are,

once again favoring the cell format. Two other factors, which

may be important in choosing a pointer system are the amount

of duplication of repetitive calculations and the ability to

vectorize the system. Duplicate calculations, such as

repeated calculations of cell dimensions could be reduced

through the greater structure offered by the block structure,

since it would be possible to construct the solver which

operates on the complete block and not just cell by cell. For

applications where vectorization is important either the line

or block format may allow more vectorization of calculations

than the cell format. This last point, if important, should

be considered in more detail.

In light of the advantages and disadvantages presented,

the cell format was chosen for having the maximum flexibility

in the definition of the multiple-grid structure. The domain

of a given level does not need to be simply connected,

topologically restricted, or even defined in any order. It

was also chosen in preparation of future possible adaptive

mesh calculations, an area of growing importance. It must be

kept in mind that this is not necessarily the best solution

for every application, but the concept of a pointer system is

very general and need not be limited to one particular solver

or application.
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Finally, while the present pointer system has been used

simply as a means of overcoming the complexity of a

multiple-grid structure with embedded mesh regions, it is

possible to extend the pointer system to include any other

information. In terms of a general modular approach not only

mesh embedding but equation embedding may be required. Then

the pointer system should not only define the cell structure

but also the equations to be solved within the cell. In this

manner the pointer system can change with the evolution of a

general modular approach.

4.2 THE 2-D CELL POINTER SYSTEM

The current implementation of the cell pointer uses the

following pointer definition. Nine pointers are required to

define the nine nodes of each cell of every level of the grid

structure (figure 4-4). They are stored in an integer matrix

P defined as

P = E P J (4.4a)

where

i = Cell Node Number (1(=i(=9) (4.4b)
j = Cell Number (l(=j<=J)

Note that for the fine mesh cells the injection and

interpolation points (5<=i<=9) are set to zero since those

nodes don't exist. The value of point 5 is then the "switch

indicator" as to whether the fine solver or the coarse mesh

accelerator should be applied.
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For embedded mesh calculations nodes must be smoothed on

different levels. This can be very efficiently handled by

setting the sign of the corner pointers (l(=i<=4). If the

node is to be smoothed by the cell it is positive, otherwise

it is negative.

Finally there must be some way of knowing which level

the cells belong to. By storing cells of the same level

together (in any order), then only a pointer for the first and

last cell of each level is required. The cell pointer matrix

P combined with a level directory containing these level

pointers completely defines the multiple-grid structure.

In addition to the basic grid structure, the location

and type of boundary conditions must be defined for the

solver. Boundary conditions are really exceptions to the

general solver and can be problem dependent. Boundary

conditions also tend to require different amounts of

information and quite often access to domains larger than one

cell. For these reasons, they are not included in the cell

pointer matrix since, once defined, we would like this matrix

definition to remain fixed.

At the present time there are two types of boundary

pointers. As the need arises new forms can be added. Type 1

is used for solid wall, farfield boundaries, and any other

boundary condition where pairs of cells are required. For

each boundary node on the finest local mesh level the

following information is stored in a 3 by K matrix called B1
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Bl= E Bl (4.5a)
ik

where

i = 1 Cell Number of Cell 1 (4.5b)
2 Cell Number of Cell 2
3 Cell Orientation

k = Boundary Point Number

The four possible cell orientations are shown in figure 4-5.

For more than one boundary condition defined by this pointer

all points of the same type are stored together alone with a

starting and ending pointer for each boundary condition.

The second boundary pointer, type 2, is for boundary

conditions that need only a cell side or string of 3 nodes as

shown in fig 4-6. The embedded interface formulation is the

only condition that uses this at this time. The definition of

this pointer matrix B2 follows,

B2 = B2 J (4.6a)
ij

where

i = 1 For Node Number of Point 1 (4.6b)
2 For Node Number of Point 2
3 For Node Number of Point 3

j = Number of Interface Interpolation Point

This pointer is used to define the solution interpolation for

point 2 along the embedded mesh interface before the embedded

sweep and to zero the interface corrections at points 1,2, and

3 after the sweep. In B2 all sides on a given level are

stored together from which a starting and ending pointer for

each level is defined.
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Clearly the pointer scheme described above provides a

very flexible approach for dealing with complex grid

structures. With an optimal grid structure the solution

storage and computer time can be minimized. The price which

must be paid for this flexibility appears in the total storage

required and organization of the data base for vector computer

architectures. While the solution storage is significantly

reduced, the pointer system must also be stored. To

illustrate the storage requirements let's compare the

following two dimensional cases. In the first case we have a

NAN global mesh with an embedded mesh (h/2) over one quarter

of the domain as shown in figure 4-7a. For the second case we

will consider a standard non-embedded mesh calculation where a

global h/2 mesh refinement has been used to gain the same

resolution as the first case, figure 4-7b. Storage of the

solution in both cases requires storage of 10 real variables

for each node of the finest mesh in each region (10 words(32

bit)/point); (10)(1.75)ANAN words for the first case and

(10)(4)ANAN in the second. Neglecting the boundary pointers,

the pointer system requires 9 integer variables for each cell

of each level (9 half-words/cell or 4.5 words(32 bit)/cell),

assuming two grid levels, the total pointer storage for the

embedded case is (4.5)(2)(N-1)(N-1) words. A summary of the

storage requirements for the two cases is presented in table

4-2. Comparing the total storage 'there is a reduction by

using the pointer system but this reduction is less than might

be expected if the pointers were not required. However, if

- 102 -



POINTER SYSTEM

less than one quarter of the region is covered by an embedded

mesh or if two embedded meshes are used, or more than 10

variables are stored at each node point the ratios will change

in favor of the present approach.

Table 4-2: Storage Requirements for 2-D Example

GLOBAL EMBEDDED
H/2 MESH H/2 MESH

2 2
NO. MESH POINTS 4N 1.75N

2 2
SOLUTION STORAGE 40N Words 17.5N Words

2
POINTER STORAGE 0 Words 9(N-1) Words

2 2
TOTAL STORAGE 40N Words 26.5N -18N+1 Words

4.3 EXTENSION TO 3-D

All the problems of mesh resolution , storage, and

computation times confronted in 2-D calculations tend to be

amplified in the extension to three dimensions. Presently the

limiting problems are large storage, long computing times and

the ability to treat complex geometries. Fortunately, even

though the problems are more severe, the payoff in adopting an

embedded multiple-grid structure also increases dramatically.

To illustrate the projected benefits of adopting a 3-D

extension of the current cell based pointer system consider

the corresponding base and coarse mesh accelerator cells

(figure 4-8) for a three-dimensional version of Ni's scheme.
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As shown in figure 4-8b the number of integer pointers

required per cell is three times that of the 2-D model. Both

solvers use the 8 primary nodes (shown as solid dots), while

the coarse mesh accelerator also requires the 19 secondary

nodes (open nodes 9-27). Following the 2-D pointer system, we

now define the cell pointer P as

P = E P J (4.7a)
iJ

where
i = Cell Node Number (l(=i<=27) (4.7b)
j = Cell Number (1(=j<=J)

The cells are grouped in P by level in any order within the

level and a level directory is created. In addition the

corresponding boundary condition pointers can be constructed

as required.

Now consider the storage requirements for two example

cases. Beginning with a NANAN global h mesh, consider a

global h/2 mesh refinement using the standard global solver

and, secondly, a embedded h/2 mesh refinement placed over 1/8

of the cube volume. The two mesh structures are illustrated

in figure 4-9 with the corresponding storage requirements

summarized in table 4-3 (columns 2 and 3). In both cases it

has been assumed that there are two mesh levels used and the

storage associated with the boundary condition pointers have

been neglected. Note that the for 3-D solutions the baseline

requirement for storage of the solution quantities at each

node increases from 10 for the 2-D case to 13 due to the

addition of the third coordinate z, conservation variable fw,

and it's change d(Fw). It is clear that for properly defined
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embedded mesh regions there is a great potential for saving on

storage by using the pointer system, even with the larger

amount of pointer storage required. One reason for the large

difference over the 2-D example is that in 3-D a global

halving of the mesh results in a factor of 8 increase in the

number of total nodes. It is important to note when trying to

extrapolate this savings that the pointer storage is based on

the assumption of half-word storage for integers. This places

an upper limit on the total number of nodes at 32,768, the

largest integer described by a half-word. Physically this

corresponds to the number of nodes in a cube of mesh .of

dimensions 32*32*32. For larger systems of nodes full-word

integers must be used which would double the amount of storage

required for the pointer system. The fourth column in table

4-3 shows the storage for full-word integers.

Table 4-3: Storage Requirements for 3-D Example

GLOBAL EMBEDDED FULL-WORD
H/2 MESH H/2 MESH INTEGERS

3 3 3
NO. MESH POINTS 8N 1.875N 1.875N

3 3 3
SOLUTION STORAGE 104N 24.375N 24.375N
(words)

3 3
POINTER STORAGE 0 27(N-1) 54(N-1)
(words)

3 3 2 3 2
TOTAL STORAGE 104N 51.375N-81N 78.375N-162N
(words)
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CHAPTER 5

GENERAL EMBEDDED MESH FORMULATION

The ultimate objective of this research is the

development of a general modular approach for solving complex

flow problems. The proposed method of implementing such a

modular approach is to cast the problem in terms of a general

multiple grid structure, where local flow features are

resolved through embedded mesh regions and embedded equation

regions with higher approximation of the governing equations.

Beginning with Ni's multiple-grid method for solution of the

Euler equations as described in chapter 3, this solver will

now be extended to general embedded mesh structures. The mesh

structure considered is constructed through the combination of

a coarse global mesh system, of one or more levels, and one or

more local embedded mesh systems. The embedded mesh

structures are really a continuation of the global mesh

structure in local subdomains. Each additional level in the

subdomain will be of the same grid topology as the coarse

mesh, but of arbitrary shape and size as required to resolve

the features of interest. The resulting solver for such

general mesh structures represents the first step toward a
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general modular approach.

The easiest way to illustrate the extension of- the

solver to general mesh structures is to follow the solver

through a multiple-grid cycle for a simple model embedded grid

structure. By following this process it will become clear

what special problems must be considered for a proper

formulation. Consider the addition of a local embedded mesh

of half the mesh spacing h/2 into the global mesh as shown in

figure 5-1. After renumbering the mesh levels, h/2 being

level 1, h being level 2, and so on, it is noted that level 2

is now a coarse mesh within the embedded region and a fine

mesh outside this region. It is desired to perform a control

volume flux balance for all cells on the finest mesh in each

region of the total domain in order that the fine mesh

accuracy be obtained. However, it is also desired to couple

the solution of the discrete equations throughout the total

domain in order to achieve rapid convergence. The solution

begins with a base solver sweep on level 1, which consists of

only the embedded mesh region. Steps 1 to 3 of the basic

solver are done for all cells in level 1. At this point the

solution changes at all level 1 points internal to the

embedded/global interface boundary are consistent with the

changes for a standard Lax-Wendroff time step with the fine

mesh accuracy. However, the changes for those points along

the interface are incomplete since they lack the distribution

of information from outside the interface. It is clear that a

special treatment of the interface boundary points will be
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required for a proper formulation of the solver. Noting this

as a problem which will be addressed later, the base solver

sweep is finished by updating the solution at all level 1

points. Proceeding to level 2, for those cells outside the

embedded mesh region the base solver is used. For those cells

within the embedded region the coarse mesh accelerator is

used. Once again the treatment of the embedded/global

interface points comes into question. In summary, on level 2

the solver must perform two functions, within the embedded

mesh region it accelerates the convergence of the solution

while outside this region it performs the standard base solver

operations. For levels greater than level 2 it follows that

the coarse mesh accelerator would be used everywhere. Beyond

the basic framework just described, two special problems must

be considered. One is the treatment of the boundary points

already mentioned. In addition to the multiple-grid

algorithm, the formulation of the solver at these points

provides coupling of the embedded and global mesh solutions.

The second question which arises is how the solver can be

constructed to be independent of changes in the location,

size, and shape of the embedded region. Key to this problem

is how to determine whether the base solver, coarse mesh

accelerator, and special interface formulation is required and

what points are involved. With the solution of these two

problems, the extension of the present approach to more than

one embedded region or a progression of embedded meshes in a

region is straight forward.
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Points at the boundary must be carefully treated in

order to maintain global conservation and computational

stability. Consider the embedded mesh/global mesh interface

shown in figure 5-2. A choice must be made as to whether

points 1,6,2 are to be considered as members of the global

grid or the embedded grid. That is, it must be decided as to

whether the solution of the equations at these points is to be

obtained to global or embedded grid accuracy. For the current

work, the approach has been adopted that the boundary points

are members of the global grid. The solution for points 1 and

2 is obtained on the level 2 sweep described above. Values at

point 6, which are needed to compute the level 1 sweep, are

obtained by linear interpolation from points 1 and 2. Linear

interpolation is consistent with the trapezoidal integration

used for the flux balances.

Treatment of the boundary cells proceeds as follows.

Prior to the solution sweep on level 1, points such as 6 are

initialized by linear interpolation from points 1 and 2.

Steps 1 through 3 of the base solver are performed for all

cells on level 1 including those bounded by points 1,6,2.

Prior to the update sweep, all values of dU at boundary points

between the embedded and global mesh are reset to zero (points

1,6,2). At this point the first step in the interface

formulation is performed. For each of the level 2 cells along

the embedded interface (such as the right hand part of figure

5-2) an order h/2 accurate flux balance is computed using all

nine points of figure 5-2. This flux balance is defined as
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follows,

2h h
(DU ) (5. la)

5

.5(Dt/DV)( C(F+F)(y-y)-(G+G)(X-x)]+E(F+F)(y-y)-(G+G)(x-x))
1 6 6 1 1 6 6 1 6 2 2 6 6 2 2 6

-E(F+F)(y-y)-(G+G)(x-x)]-E(F+F)(y-y)-(G+G)(x-x)]
3 8 3 8 3 8 3 8 8 4 8 4 8 4 8 4

+E(G+G)(x-x)-(F+F)(y-y)]+E(G+G)(x-x)-(F+F)(y-y)J
1 9 9 1 1 9 9 1 9 4 4 9 9 4 4 9

-E(G+G)(x-x)-(F+F)(y-y)]-E(G+G)(x-x)-(F+F)(y-y)]}
2 7 7 2 2 7 7 2 7 3 3 7 7 3 3 7

where

DV = -0.5E (x -x )(y -y ) - (x -x )(y -y ) I (5.lb)
5 1 9 6 9 6 5 1

-0.5E (x -x )(y -y ) - (x -x )(y -y ) J
7 6 5 2 5 2 7 6

-0.5E (x -x )(y -y ) - (x -x )(y -y ) 3
3 5 8 7 8 7 3 5

-0.5E (x -x )(y -y ) - (x -x )(y -y ) J
8 9 4 5 4 5 8 9

This flux balance is then distributed to the level 2 interface

points (such as points 1 and 2) using the distribution formula

of equation 3.16. After the flux balance and distribution has

been performed for all such cells the changes dU at these

points ( points 1 and 2 ) is saved in temporary storage for

use in the level 2 sweep. Since the solution changes at

points 1 and 2 are no longer zero, they are reset to zero

completing the first step of the interface formulation. The

level 1 sweep is then completed with the updating of the

solution. As a result, no change of U has taken place at the

boundary points.
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After deletion of every other point on the embedded

mesh, the level 2 solution outlined earlier proceeds except

for boundary cells as shown in figure 5-2. The injected value

from the fine mesh is used for coarse mesh accelerator

updating of interior points such as 3 and 4. However the

contribution to interface points 1 and 2 is determined by step

2 of the interface formulation rather than a coarse mesh

distribution of the transferred change. Step 2 of the

interface formulation is simply to recall the special changes

saved in step 1 during the level 1 sweep. These distributed

changes are added to the change at interface points 1 and 2.

The net result of the two steps of the interface formulation

is that an order h/2 flux balance has been performed for the

level 2 cell using the solution at all nine points at the same

time level. In fact, if the coarse mesh accelerator is

switched off this formulation is essentially a patching method

for coupling the embedded and global solutions. For all cells

of level 2 outside the embedded region the standard base

solver is used. This includes distribution to the level 2

interface points from outside the embedded mesh region. With

completion of the level 2 sweep the change dU is interpolated

back to the fine mesh and the solution is updated. For the

present model problem of figure 5-1 all coarser levels use

standard coarse mesh accelerator.

There remain two areas of the present formulation which

must be clarified, the smoothing formulation and the transfer

operator formulation near the interface. First recall that
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the smoothing operator is only applied once for each point on

the fine mesh for a global multiple-grid solver. Then since

the present embedded mesh approach assumes that the interface

points belong to the global mesh it is clear that the

interface points should be smoothed on the global solver

sweep. Therefore for the level 2 sweep smoothing is added

into the distribution formula for points 1,2. This is also

the only way the interface points can be smoothed normal to

the boundary since on level 1 no information is known outside

the embedded region. All other points are smoothed only on

the finest level in each region.

The formulation of the transfer operator along the

boundary presents a slightly different problem. If simple

injection (eqn 3.9) is used no special operation is required

for transfer of the change in cells along the boundary.

However if a distribution type transfer operator (eqn. 3.13

plus 3.15) is used the solution changes at points 1 and 2 are

required. Unfortunately since these points are updated on the

level 2 sweep, they are not known at the time of transfer.

The present approach has been to simply use the changes at

point 5 (the cell center) in place of the unknown values at

points 1 and 2 in the transfer operations. Essentially this

approach results in a transfer operator which is somewhere

between simple injection and a distribution type transfer

operator but which is no worse than simple injection. Since

this change is only used by the coarse mesh accelerator it has

no effect on the level of approximation of the scheme,
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although it may effect the rate of convergence.

The extension of the above procedure to multiple

embedded domains and embedded regions with more than one level

follows directly. The solution cycle always begins on the

finest mesh. Under the above described formulation, the

boundary of a h/4 mesh embedded in a h/2 mesh should be at

least a distance h from the boundary of the h and h/2 mesh.

Some changes in the formulation could remove this restriction.

However, this is not an important restriction since the

truncation error near an interface will be of the coarser h

level order anyway.

Finally in order to implement the present embedded mesh

formulation for general embedded mesh structures the solver

was written in terms of the pointer system described in the

previous chapter. Written in terms of this pointer system the

definition of the grid structure is completely independent

from the solver. The pointers for each cell completely define

the operations which should be performed (i.e. base solver,

coarse mesh accelerator, which nodes to smooth, etc.). The

interface boundary pointer, also described in chapter 4,

defines the location and orientation of internal mesh

boundaries where the interface formulation must be applied.

5.1 SOLUTIONS WITH THE EMBEDDED MESH FORMULATION

The embedded mesh extension to Ni's multiple-grid method

as presented in the preceding section provides a very flexible
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structure in which resolution of local flow detail is possible

while minimizing the storage and work required. In general

the addition of a local embedded h/2 level mesh region results

in very little change in the number of multiple-grid cycles

over the solution on the h global mesh alone. The price for

this higher resolution then only appears in the additional

work performed within the embedded mesh. The following 2-D

airfoil solutions demonstrate the performance and flexibility

of the present formulation. Each of these cases has special

flow details which must be resolved for a proper solution.

They are often chosen for code comparisons ( for example the

first two were part of the GAMM workshop E493). In each of

the following solutions the far field vortex correction has

been used with a mesh far field radius of 5 chords. Each of

the following embedded mesh structures were created by first

generating a global mesh and then removing the fine mesh cells

in the global region. This mesh generation approach was used

for the following two reasons. First, it provides the

corresponding global fine mesh which can be run with basic

multiple grid solver for accuracy comparisons. Secondly this

approach required the least amount of mesh generator

development. For production codes for use in design

applications a much better approach to generation of such

general mesh structure would be the formulation an interactive

mesh generation routine. As envisioned the user would

generate a coarse global mesh and then interactively define

regions of desired mesh refinement.
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To demonstrate the above embedded mesh formulation

consider the NACA0012 test case of figures 3-13. Beginning

with the global 65A17 mesh of figure 3-8, we now include

embedded h/2 meshes around the leading and trailing edges of

equal density to a 129A33 mesh as shown in figure 5-3. Note

that since the embedded mesh was generated from the 129A33

mesh of figure 3-12 the grid resolution and node locations in

the embedded region are the same. Using the embedded mesh

formulation presented above with a total of 4 multiple-grid

levels produced the solution shown in figure 5-4. Comparing

this solution with the 129A33 and 65A17 global solutions

(figures 3-10 and 3-13) shows that the embedded leading and

trailing edge regions have resolved the same flow detail as

the global 129A33 mesh (fig. 3-12). Total pressure loss for

this case is generated by the smoothing of the rapid expansion

around the leading edge and in the trailing edge region by the

skewness of the mesh as discussed in chapter 3. Comparing the

total pressure loss for the 129A33 mesh (fig. 3-13b) and the

embedded mesh (fig. 5-4b) shows that the embedded mesh

regions provide the same accuracy as the global mesh solution.

The total pressure contour plots presented in figures 3-13d

and 5-4d show that this is also true over the general region

around the airfoil. It is important to note that there is no

generation of total pressure losses at the embedded/global

mesh interface boundaries &s shown by figure 5-4d. Since the

total pressure loss is very sensitive to errors in the solver

formulation, this is a good indication that the interface
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formulation is correct. A calculated lift coefficient for the

embedded mesh solution of 0.331 is almost exactly the same as

the global 129A33 mesh result.

The residuals presented for embedded mesh solutions are

the average of the absolute value of d(fu)/Dt for all points

in the domain after the global level sweep. The global level

was chosen for evaluation of the residual because this level

includes all points in the domain. The spectral radius for

all other levels have been found to be the same. Figure 5-5

presents the residual as defined above after each of the of

the four levels of the embedded mesh solution. It is clear

from this figure that while the absolute levels vary somewhat,

the rates of convergence are the same. Figure 5-6 compares

the embedded mesh residual for the global level with the

convergence histories of global 129A33 solution and the global

65*17 solution. Note that the convergence rate is almost the

same as the 65*17 global solution and twice as fast as the

global 129A33 solution. Thus, we have gained the 129A33 mesh

resolution with a convergence rate on the order of the 65*17

global solution. Since the total number of mesh points is

much less than the number of global 129A33 mesh points, the

work per cycle is also significantly reduced.

To illustrate the benefit of continued mesh refinement

consider the NACA0012 embedded mesh structure of figure 5-3

but now include a second embedded h/4 mesh in the leading edge

region as shown in figure 5-7. The solution for this double
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embedded region is shown in figure 5-8. Table 5-1 compares

the force coefficients for the 33*17 global mesh, 129*33

global mesh, single embedded mesh, and doubled embedded mesh

solutions. As expected the higher resolution further reduced

the total pressure loss and shows an improvement in the force

coefficients. The convergence history on the global h mesh is

similar to the previous embedded mesh case, with no loss in

the rate of convergence with the addition of the new region

embedded region as shown in figure 5-9.

Table 5-1: Comparison of Force Coefficients for
NACA0012 Airfoil Using Different Mesh Structures
(M = 0.63 and angle of attack of 2.0 degrees)

MESH C C
STRUCTURE L D

Global Coarse (33A17) 0.326 0.0019
(figure 3-10)

Embedded 0.331 0.0011
(figure 5-4)

Global Fine (129*33) 0.328 0.0009
(figure 3-13)

Double Embedded 0.334 0.0008
(figure 5-7)

The second case considered is a NACA0012 airfoil at flow

conditions of M = 0.85 and "C= 1.0 deg.. This is a lifting

case with strong shocks at 85% chord on the upper surface and

70% chord on the lower surface. The lift in this case is a

strong function of the shock location making good shock

resolution very important.. The 65*17 global mesh and

corresponding solution are shown in figures 3-27 and 3-30.
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While both shocks are apparent in fig. 3-27 neither shock is

very well defined due to the poor mesh resolution in the shock

regions. Figure 5-10 shows the corresponding embedded mesh

used for this case where four embedded regions have been added

to resolve the leading and trailing edges and the two shock

regions. Comparing the embedded mesh solution with 4 mesh

levels as shown in figure 5-11 with the 65A17 global solution

shows much better resolution of the two shocks and a reduction

in the surface total pressure losses which occur in the

expansion region around the leading edge. The embedded mesh

solution also agrees very well with the 129A33 global solution

of figure 3-30. Note in this example that the upper surface

shock wave crosses the boundary of the embedded mesh region.

Other than local loss of resolution (fig 5-11c and d) no

difficulties are encountered. The convergence histories in

terms of multiple-grid cycles for these three cases are

compared in figure 5-12. Once again the embedded mesh

solution provides the fine mesh resolution with a 65A17 global

mesh convergence rate.

The next test case to be shown is the RAE2822

supercritical airfoil E493 at M = 0.75 and K= 3.0 deg.. At

these conditions there is a very rapid expansion around the

leading edge and also a strong shock at 80% chord on the upper

surface. The embedded mesh used is presented in fig. 5-13

using embedded regions around the leading and trailing edges

and in the shock region. The corresponding embedded mesh

solution is shown in fig. 5-14. Comparing this solution with
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the 129*33 global mesh of figure 3-35 shown good resolution of

both the leading edge and shock regions. The convergence

rates for a global 65*17 mesh, global 129A33 mesh and the

embedded mesh calculations are shown in fig. 5-15.

The final case to be presented is the Garabedian and

Korn supercritical airfoil E51) with a design condition of

M =0.75 and od=0.12 deg. and a theoretical lift coefficient

of 0.63. At design conditions the supersonic region extends

over about 60% of the upper surface. The solution in this

case is very sensitive to the location of the sonic line in

the flow. The embedded mesh used for this case is shown in

fig. 5-16. The corresponding embedded mesh solution is shown

in fig. 5-17 with a lift coefficient of 0.607. Comparing the

embedded mesh solution of figure 5-17 with the global 129A33

mesh solution of figure 3-40 clearly shows that the embedded

meshes have resolved the flow features in the leading and

trailing edge regions. This is also confirmed by the lift

coefficient agreement between the two cases. Note however,

that the drag coefficient for the embedded mesh solution

(0.0033) is not the same as the 129A33 global mesh solution

but falls midway between the values of the 65*17 mesh (0.0042)

and the 129A33 mesh (0.0022) solutions. This poor agreement

with the globally refined mesh is due to the fact that a

majority of the supersonic region is being resolved with the

global 65*17 mesh resolution, giving a much poorer resolution

of the sonic line. The rise in total pressure error at the

end of supersonic region (figure 5-17), which is similar to
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that of the 65*17 mesh solution (figure 3-38b), is also due to

the poor resolution of the sonic line. This total pressure

error rise tends to suggest the formation of a very weak

shock. The convergence histories the convergence histories

for a global 65*17, global 129A33, and embedded mesh solutions

are presented in figure 5-18.
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CHAPTER 6

CONCLUSIONS

This work represents the first step in the development

of a general modular approach to solving complex flow

problems. In the current approach, the flow problem has been

viewed in terms of a general multiple-grid structure

consisting of a global mesh combined with one or more embedded

mesh regions which provide local mesh refinement to resolve

important flow features. Ni's method C143, a Lax-Wendroff

type time marching scheme for multiple-grid solutions of the

Euler Equations, has been extended to the solution of flows

with general embedded mesh structures. While the present

formulation uses a Lax-Wendroff type time marching scheme, the

multiple-grid structure is a much more fundamental concept

which need not be limited to this scheme. Adopting a

multiple-grid formulation for embedded mesh calculations

yields several important advantages over a simple patching

approach. First, the coupling of the global and embedded mesh

solutions takes place over the entire embedded mesh domain,

rather than simply at the embedded mesh boundaries, resulting

in accelerated convergence to steady state. Second, the
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multiple grid structure provides a systematic way of

describing general embedded mesh structures.

The main contributions of the present thesis are the

following:

A Introduction of a pointer system for description of
general embedded mesh structures.

A Formulation of a consistent treatment for embedded
mesh regions in a multiple-grid formulation.

A Demonstration of the improved performance of the
embedded mesh formulation.

" Improvements to the basic Ni scheme in the following
areas:

- Implementation of boundary conditions
characteristic form.

- Development of a vortex far field bou
formulation for lifting airfoils.

- Development of an improved transfer operator
the coarse mesh accelerator.

in

ndary

for

These will be summarized in the following paragraphs together

with recommendations for future research.

One of the major problems in the formulation of a solver

for general embedded mesh structures is the organization of

the computational data base, comprised of the location and

flow solution at node points. For conventional global solvers

this data base organization is an integral part of the solver

formulation, with the solver being written for a particular

grid structure. While in principle this approach could be

extended to embedded mesh calculations, this would result in a

solver which must be rewritten for each new embedded mesh
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structure. This thesis presents a much simpler and more

flexible approach to this problem by constructing a pointer

system which defines the organization of the computational

data base for general embedded mesh structures. A general

solver is then written in terms of this pointer system, making

the solver independent from the organization of the grid

structure.

Several different pointer system formulations have been

considered, each constructed using a different base element

(block of cells, line of cells, or single cell). Each pointer

system has both advantages and drawbacks in terms of the

storage required, flexibility in definition of grid structures

and flexibility in the solver formulation. The pointer system

chosen here uses the cell as the base element. Since the cell

is the most fundamental element of general grid structures

this pointer system provides the greatest flexibility in the

type of grid structures which can be defined, allowing

irregular embedded mesh regions, any number of embedded

regions and multiple embedded regions. It is quite possible

that for certain applications, such as vectorized algorithms,

another pointer formulation might be more desirable. The

addition of a pointer system does add to the total storage

required per grid point of the system but for a proper

distribution of mesh points, made possible by the general

multiple-grid structure, the total number of grid points can

now be minimized. This can then result in a significant

reduction in storage over that required for an equivalent
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global grid.

After adopting the pointer system, the extension of the

global Ni scheme to embedded mesh structures is very straight

forward. Embedded regions are viewed simply as a continuation

of the global mesh in local regions. Of particular importance

in this extension is the proper formulation of the algorithm

at embedded/global interface boundaries. The formulation must

both satisfy the conservation laws across these boundaries as

well as resulting in a stable formulation. In the present

formulation, points along these boundaries are viewed as part

of the global mesh and therefore updated on the global mesh

sweep. Conservation is satisfied across these boundaries by

assuming a linear variation of the conservation variables

along the global cell faces. This is consistent with the

discrete finite volume approximation of the governing

equations for any cell.

This embedded multiple-grid formulation has been

demonstrated with the solution of the two-dimensional Euler

equation for transonic flow over airfoils. In the cases

presented, embedded mesh regions were used to resolve the flow

features in the region of shocks, the leading edge stagnation

point, and the trailing edge. Each of these cases used more

than one embedded mesh region, with the location, size and

shape of these regions being chosen to resolve the features of

importance (see figures 5-3, 5-10, 5-13, and 5-16). The

embedded regions need not be rectangular (in computational
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space) as shown by figures 5-10 and 5-13. Multiple-embedded

mesh regions are no more difficult to solve than a single

embedded region, as demonstrated by the double embedded mesh

used in the leading edge region of figure 5-7. These cases

clearly demonstrate the great flexibility possible in the

definition of general embedded mesh grid structures. For each

case, the embedded mesh solution has been compared with the

solutions for a global coarse mesh (the coarse global mesh

without any embedded regions) and a global mesh refinement

(the embedded mesh resolution over the complete domain). The

algorithm formulation at embedded mesh boundaries does not

generate errors in the flow (see figures 5-4 and 5-14).

Comparing the embedded mesh solutions with the corresponding

global refined mesh solutions demonstrates that the important

flow features within the embedded mesh regions are accurately

resolved (figures 3-13 and 5-4). This is also confirmed by

the good force coefficient agreement between embedded and

globally refined solutions. Even when a shock penetrates the

embedded mesh boundary the only noticeable effect is the

larger smearing of the shock outside the embedded mesh due to

the lower mesh resolution (see figure 5-14). Comparing the

convergence rates for global coarse, embedded, and global fine

solutions, the embedded mesh solutions have been found to

achieve the same convergence rates as the global coarse mesh

solutions, which are much better than the global fine mesh

solutions (see figures 5-6 and 5-15). In addition, since the

computational work per multiple-grid cycle is proportional to
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the number of mesh points used, the embedded mesh solutions

require far less work per cycle than the equivalent fine mesh

solution. Combining both the reduction in cycles required to

converge with the lower computational work per cycle and a

great reduction in computational work is possible by using

embedded mesh structures. For the cases presented, the

embedded mesh solutions have generally been 3-4 times faster

than the equivalent global fine mesh solutions.

In summary the following conclusions may be made about

the present embedded mesh formulation:

A Embedded mesh solutions always achieved the
convergence rate of the coarse global grid, resulting
in a significant reduction in work (a factor of 3-4
over the equivalent global fine mesh solution).

* The embedded mesh formulation in combination with the
pointer system allows great flexibility in the
definition of embedded mesh structures, including the
capability of:

- Any number of embedded regions.

- Embedded regions of arbitrary shape and size.

- Multiple embedded regions.

A Always achieved the virtually same accuracy as the
globally refined mesh.

In addition to the formulation of a general embedded

mesh approach to solving flow problems, the basic Ni's scheme

for global multiple-grid solutions of the Euler equation has

been studied and improved in the areas of boundary conditions

and residual transfers. Of particular importance in the

formulation of this scheme is the implementation of boundary
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conditions. Unlike cell centered finite volume methods, the

present scheme requires the calculation of the density and

velocities in addition to the pressure along solid wall

boundaries. A characteristic boundary condition formulation

for solid wall boundaries has been employed to provide the

additional information. As shown by the cases studied, this

boundary formulation has been found to be quite accurate. The

farfield boundary conditions are also implemented through a

characteristic boundary condition formulation. By modeling

the farfield flow in terms of the superposition of uniform

flow with a compressible point vortex, whose strength is

determined by the lift on the airfoil, the location of the

farfield boundary can be placed much closer to the airfoil

than that permitted by commonly used uniform flow boundary

conditions (see table 4-3). This represents a large savings

in the number of mesh points required for equivalent

resolution of the flow about lifting airfoils.

Proper formulation of the residual transfer operator for

multiple-grid solutions has been shown to be very important

for highly stretched meshes. For moderately stretched grids

simple injection works quite well but as the stretching

increases the convergence rate for the solver deteriorates and

finally fails altogether. Algebraic and area weighting

transfer operators have been found to also fail for highly

stretched meshes. A transfer operator which is based on the

distribution formula of the base solver has been presented

which corrects this problem. This distribution type transfer
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operator has been found to work where all other formulations

have failed (see table 3-1).

The effects of artificial smoothing on the solution of

two-dimensional airfoils has also been studied. While the

addition of smoothing causes the generation of total pressure

errors in high gradient regions of the flow, as well as errors

in the drag coefficient, it has little effect on the

calculated lift coefficient (figures 3-15 and 3-22). For

reasonable levels of smoothing these errors can be kept to an

acceptable level. While required for transonic flows,

smoothing has also been shown to greatly improve the

convergence rate of the multiple-grid solver for all types of

flows. For subsonic flows on 0-type meshes smoothing is

always required due to the mesh singularity at the trailing

edge.

Based on the present results it is clear that there are

many areas where future work is possible. In terms of the

basic multiple-grid solver these areas are the following.

First, the present smoothing formulation is only spatially

first order accurate. Since smoothing is required and the

algorithm itself is second order, a second order smoothing

should be formulated which is consistent with the accuracy of

the Ni algorithm. A switch to a first order smoothing (such

as the present) could then be made in the region of shocks

where the higher smoothing is required for stability. Such a

duel smoothing formulation would make the algorithm second
1%
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order over a majority of the flow and therefore reduce the

total pressure errors generated by the smoothing. Second,

while some progress has been made in understanding how the

coarse mesh accelerator works, there remains a great deal to

learn. An in-depth study of the coarse mesh acceleration

process would be helpful in formulation of special boundary

conditions for the coarser levels as well as improvements in

the basic accelerator formulation. A third area where some

work has already been done is in the choice of the base solver

used. Johnson E39] has demonstrated that the coarse mesh

accelerator may be used with other base solvers. An in-depth

study of these and other possible solvers should be made at

this point to determine which are best for different

applications. In particular while the present embedded mesh

formulation is considered to be relatively independent of the

base solver formulation, the choice of base solver may require

different interface formulations from those given here. It is

therefore important at this point to decide which solvers are

the most promising before this approach progresses much

farther.

The embedded mesh formulation in combination with the

pointer system presented here opens the door to a whole range

of future developments. These include the addition of

embedded viscous regions as formulated in Appendix D, leading

to an embedded equation approach as well as a embedded mesh

approach. Viewing the multiple-grid structure in terms of the

pointer system leads directly to adaptive solution problems

- 129 -



CONCLUSIONS

where routines are developed to manipulate the pointer

structure during the solution process to add and remove

embedded mesh regions as required. Since the mesh structure

is completely defined by the pointer system, the solver

algorithm would remain unchanged with changes in the grid.

This adaptive mesh approach is currently being developed by

Dannenhoffer and Baron E53). The next step toward a general

modular approach to solving complex flow problems will require

the extension of the present embedded mesh approach to include

embedded mesh regions where the embedded mesh is of different

topology from the global mesh. This would allow the

generation of simple, locally body fitted meshes around

complex bodies. One possibility for such an approach is to

consider patching meshes of different topologies together on

the global level resulting in a single global mesh. The

present embedded mesh procedure could then be used to resolve

important flow features on such a mesh. Norton, Thompkins and

Haimes [54) have demonstrated such a technique for turbine

cascade calculations without embedded meshes.
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APPENDIX A

NON-DIMENSIONALIZATION OF THE GOVERNING EQUATIONS

The two-dimensional Navier-Stokes equations for unsteady

compressible laminar flow may be expressed in conservation

form for a cartesian coordinate system as

U + F + G + R + S =0 (A.la)
t x y x y

where

p | Pu | jfv |
U = j pu F = f puu + p | G = j puv | (A.lb)

jfv |Puv I I pvv + p1
| e |j uH 1 IyvH |

10
| I

I xx
R = |

| xy
-T u+T v-(/'/('-l)Pr) T I

I xx yx x|

| 0

I yx
S =o|r

| yy
-V v+ T u-("/(r-1)Pr) T |

| yy xy y|

- 136 -



NON-DIMENSIONALIZATION OF THE GOVERNING EQUATIONS

and where

1C = -,gE (4/3)u - (2/3)v J
xx x y
t. = -iME (4/3)v - (2/3)u 3 (A.lc)

yy y x
' =' = - Eu +v 
xy yx y x

in terms of density f, cartesian (xy) velocity components

(u,v), temperature T, total internal energy per unit volume e,

viscosity coefficient /, and Prandtl number Pr. The pressure

p and total enthalpy H are then defined for a perfect gas as

p = (-Y- 1)E e - 0.5.f( uu + vv )) (A.2)

H = ( e + p )/f

where -Y is the ratio of specific heats.

In addition, the viscosity /? is defined by Sutherlands

law, an emperical relation describing the viscosity g as a

function of temperature T is given as

1.5 ,
= (T/T ) ( T + 110 K )/( T + 100 K ) (A.3)

where is a reference viscosity and T, is the reference

temperature.

The following reference quantities have been chosen to

non-dimensionalize the governing equation:

1 the reference length
0

P the reference density
0

T the reference temperature
-
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a the reference speed of sound
0

/4. the reference viscosity

Note that by choosing a. as the reference speed of sound,

rather than simply a reference speed, the following relation

between a. and T. results.

a = R T (A.4)

The above reference

of non-dimensional

primed variables.

x' = x/1 y
0

' f/f T'
o0

quantities are then used to define

variables, which will be denoted

= y/1
0

= T/T
0

U' = u/a
0

0

v' = v/a

a set

here as

(A.5)
0

2
p'= p/ (f a )

o00

H' = H/a
0

e'= e/(f a
0 0

Substituting these non-dimensional variables into equations

(A.1-A.3) and dropping the prime notation results in the

equations presented in chapter 2 (eqn. 2.1-2.3). Note that

with this particular scaling the non-dimensional expressions

for U, F, and G are identical to the original dimensional

expressions. Therefore, with this scaling the non-dimensional

Euler equations are the same as the dimensional Euler

equations. For the full Navier-Stokes equations the only

difference between dimensional and non-dimensional forms is
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the appearance of the reference Reynolds number Re0 in R and S.

This reference Reynolds number is defined as follows,

Re a 1 /a - (A.6)
0 0 oo 0

This non-dimensionalization also yields the following

useful relations:

p' = y' T'/'C ( equation of state)

a'l = [7  (A.7)
M = M' = u'/a'

Throughout the present work the freestream stagnation

conditions have been used to determine the reference

quantities of equation A.4. The advantage of using stagnation

conditions over the many other possible reference conditions

is that the non-dimensional stagnation quantities reduce to

p' = 1 /Y I' = 1 T' 1 (A.8)
T T T

and therefore, are independent of the actual flow conditions.
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APPENDIX B

STABILITY ANALYSIS OF THE 2-D WAVE EQUATION

An important step in both the development of new

algorithms and the application of existing algorithms is

performing a stability analysis of the chosen scheme. Such an

analysis determines the stability limit for the scheme, from

which the time step restriction for a stable solution is

defined. Even for well established schemes a stability

analysis can provide important insight into how and why an

algorithm performs as it does.

To gain such an understanding of the Ni scheme a Von

Neuman stability analysis has been performed for the 2-D

scalar wave equation. The wave equation was chosen over the

Euler equations for this analysis for the following reasons.

The wave equation is of the same form as the Euler equations

but since it is a scalar equation, rather than a system of

equations, the analysis is much easier to perform. In

addition since the Euler equations are nonlinear they must be

linearized for such an analysis to be possible. This adds a

further level of complexity without any additional insight

into the algorithm. Finally, as will be shown in appendix C,
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the stability limit for the linearized Euler equations can be

inferred directly from the results of the present analysis.

The 2-D scalar wave equation may be expressed for a

Cartesian system as

U + aU + bU =0 (B.1)
t x y

where a and b are constants. Now consider a discrete

approximation of equation B.1 on a uniform mesh of constant

mesh spacing Dx and Dy, as shown in figure B-1, using the base

solver discribed in chapter 3. Note for the present analysis

the conventional (i,j) node indexing has been used.

Performing the flux balance (eqn. 3.1) and distribution (eqn.

3.2) steps results in the following expression for the total

change at point (i,j) at time step n

n+1 n
dU =U - U (B.2)

inj i,1 i,,j

n n n n n n
C EU +2U +U -U -2U -U 3/8

x -i-1,j-1 i-1,j i-1,j+1 i+1,,j+1 i+1,,j i+1,j-1

n n n n n n
+C EU +2U +U -U -2U -U J/8
y i+lj-1 i,j-1 i-1,j-1 i+lj+l ij+1 i-1j+1l
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2 n
+C EU

x i-1,j-1

n n
+2U +U

i+lrj i+1,j+1
+2U

-2(U
n n

+2U +U
ij-J. irj iri+l

n
+C C EU

x y i+l,j+l i-l,j-1 i+l,j-1 i-l,j+l

2 n
+C EU

y i-1,j-1
+2U +U +U+

i'j-1 i+1,j-1 i-1,j+1
+2U +U

irj+1 i+1,j+1

n
-2(U

n n
+2U +U

i-lj irj i+l,j

where the CFL numbers in the two coordinate directions are

defined as

C = aDt/Dx C = bDt/Dy

If the solution U at point (i,j) and time level n is now

assumed to be of the form

n n
U = r expfIEk iDx + k jDyJ)

then the amplification factor G is defined as

n+l I
G = r /r

(B.4)

(B.5)

Substituting Equation B.4 into the discrete scalar wave

equation of B.2 and rearranging gives the following expression

for the amplification factor G.
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G = 1 -0.51CC sinoc (1+cosd )+C sind (1+cos..C)J
x y

2
+0.5C (cos--l)(cos,6+l) -C C sin*tsin

x x y

2
+0.5C (cos$ -1) (cos o.+1) (B.6)

where
DC=ik Dx = jk Dy

x y

For stability the magnitude of G must be less than or equal to

one for all values of oc. and . That is

2
IGI j 1 for 0 < *g-< 27 ' (B.7)

o 7 p-< 2 -7r

This inequality determines the relation and range of C. and C

for which the solution scheme is stable. To this point in

time the author has been unable to find a closed form solution

for C_ and C which satisfies this inequality. In view of

this two alternative approached have been taken. First is to

constrain C and C to certain values which simplify the

inequality to the point where it can be solved. While this

approach gives some indication of the stabilities boundaries

is does not give a full picture. The second approach which

has been taken is to numerically map out the stability

boundary by evaluating the inequality over a large range of

values of C and C

In the first approach there are three special cases for

which an analytic solution is possible. The first two are the

trivial 1-D limits corresponding to the two Cartesian
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coordinates x and y.

If C = 0 then C ( 1 (B.8)
y x

If C = 0 then C ( l
x y

The third special was found with the help of Abarbanel E553.

Assuming C =C =C equation B.6 may be rewritten as

2 2 2-T2 2 2f7
G = 1-2C 1 2 -12CC 1-7 +7 1-5 21-3 1-7 (B.9)

where 3 = sin( c4/2) and q = sin(# /2)

then for stability the following inequality must be satisfied.

2 [-2" 2 2 4 27[ 2 4

1 . IGI2= 1-4C E3 + 32+4C E+ 1- 3

2 2 2 2 2
+4C E3 -_ - J (1- )(1- (B.10)

2' 2 2
If E3l1- 1 + 1-3 J 0 (ie.3/O , 0 0)

then after simplification

222 22 2 2-
(1-2C 2 2 - (1-C )(3+) 1 -2C2f1_1 1_7 (B.11)

For C 1 the most restrictive case is when 51> 0. Finally,

squaring both sides

2 4 4 2 2 2 2 2 2 4 2 2
0( (1-4C ) 5 1 -(2-6C )5 I (3 +) + (2-4C -2C )3

2 4 4 4
+ (1-2C + C )( + (B.12)

The above inequality is satisfied for all values of 5

and if the follow stability criterion for C is met

C p 1/ e (B.13)

To prove this requires the following two steps. First direct
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substitution of C=1/2 shows that the inequatity is satisfied.

Second, by demonstrating that if C>1/2 this inequality is

violated for some combination of 3 and , then the above

limit is proven. By substitution of 3 = 7=0 the second point

is show. In summary, the most restrictive condition shown

analytically is that of eqn B.13. Based on this, the

following stability criterion results,

C = C 4 1/ (B.14)

x y

While special analytical solutions with constrained

values of C and C give some indication of the stability

limit for the Ni scheme, this approach does not define the

stability boundary completely. An alternate method, -which is

often used in cases such as this, is to solve the inequality

of B.6 numerically. This involves testing the inequality,

with fixed values of C., and C, for all o and . By

repeating this process for a large number of combinations of

(C,4,C) values the complete stability boundary can be mapped

out. The disadvantage of this approach is that it doesn't

result in a closed form solution defining the boundary as a

function of C,,and C In addition such calculations involve

a large amount of computing time to be done accurately.

A numerical analysis has been performed for the

inequality of equation B.6. The results are presented

graphically in figure B-2. The line in the figure is the

locus of points (C,,C ) for which IGI=l. The inequality is

satisfied and therefore, the scheme is stable for all points
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inside this line. As expected the three analytical solutions

agree with the numerical solution. While it can't be shown

analytically, Figure B-2 leads one to believe that the

stability boundary for the 2-D wave equation is a circle in

the (C , C ) plane. This results in the following general

stability criterion for the Ni scheme,

2 2
( C + C ) < 1 (B.15)

x y
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APPENDIX C

CFL NUMBERS FOR THE EULER EQUATIONS

The Von Neuman stability analysis of the Ni scheme for

the 2-D scalar wave equation presented in Appendix B leads to

a time step restriction expressed in terms of the CFL numbers

in the two Cartesian coordinate directions. Unfortunately it

is not possible to perform the same analysis for the 2-D Euler

equations (eqns. 2.9) since they are a nonlinear system of

equations. To gain some insight into the stability of the

present Euler solver, the Euler equations must first be

linearized. Once linearized the preceding Von Neuman analysis

can again be performed. Since the linearized form of the

Euler equations is the same as the scalar 2-D wave equation

(the only difference being a system of equations rather than a

single equation), it is much easier to simply relate the wave

equation results directly to the present system of equations.

The key to extending the wave equation analysis to the present

system of equations is the proper definition of the CFL

numbers coresponding to the two computational coordinate

directions. The derivation which follows will determine these

numbers.
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The non-orthogonal form of the 2-D Euler equations (eqn

2.9) may be expressed on quasilinear form through the chain

rule as

(U/J) + A (U/J) + B (U/J) = 0 (C.la)
t

where the Jacobian matrix A is defined as

A = [ y F - x G)JUJ1. 1. (U/J)

J E y F -x G JIUJ It U

It U

SJ y F -J x G (C.lb)

and similarly,

B = -J y F + J x G (C.lc)

(DF/BU) and (8G/8U) are the Jacobian matrices of the

quasilinear form of the Euler equations expressed in Cartesian

coordinates. While the form of equation C.1 resembles that of

the scalar wave equation, this system of equations is still

nonlinear since both A and B are functions of U.

Equation C.1 is linearized by freezing the values of

matrices A and B. Once frozen, the equations reduce to a set

of four constant coefficient linear equations of the same form

as the scalar wave equation. Recall that for the scalar wave

equation, the CFL numbers corresponding to Cartesian

coordinate directions x and y are
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CFL = DtlaI/Dx (C.2)
x

CFL = Dtjbj/Dy
y

where a and b are constants which determine the characteristic

propagation speeds in respective coordinate directions as

Dt/Dx = 1/a Dt/Dy = 1/b (C.3)

The corresponding characteristic propagation speeds for a

linear system of equations, such as equation C.l, are

determined by the eigenvalues of the coefficient matrices, A

and B. For the present system then

Dt/D% = 1/ >A Dt/Dj= 1/ -A (C.4)

A B

where A and X. are the eigenvalues of A and B, respectively.
A8

Note that since A and B are 4*4 matrices, there are 4

eigenvalues for each matrix and therefore, 4 propagation

speeds for each. The CFL number corresponding to each

coordinate direction is determined by the maximum propagation

speed or eigenvalue of the respective Jacobian matrix.

CFL =Dt |( A ) I/D (C.5)

5 A max

CFL =Dt 1( x ) |/D
B max

To complete the above expressions the actual eigenvalues

of A and B must be determined. Noting that both A and B are

of the form
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P = k F + k G (C.6)
1 U 2 U

where k f and k are constants, then if the eigenvalues of

matrix P are determined once in terms of these constants, the

eigenvalues of both A and B can be found through substitution.

While the derivation of these eigenvalues is not difficult, it

is extremely long and tedious, and therefore will not be

presented here. Rather, the reader is referred to a very

clear derivation of the eigenvalues of P presented by McCartin

Eli]. The eigenvalues of matrix P are

k = X = k u + k v (C.7)

1 2 1 2

2 2 0.5
= k u + k v + c ( k + k

3 1 2 1 2

2 2 0.5
= k u + k v - c ( k + k

4 1 2 1 2

where u and v are Cartesian velocity components and c is the

speed of sound. Substituting the correct values of k and k

for Jacobian matrices A and B into equation C.7 gives the

following maximum eigenvalues,

2 2 0.5

|(J) = JC|y u -x v + c (x +y ) 3
A max

(C.8)
2 2 0.5

= J E y u- x v + c (x +y ) )
B max S 3 S

With substitution of these expressions into C.5 the CFL

numbers are
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2 2 0.5
CFL = J Dt E I y u - x v I + c ( x + y ) J / D5

2 2 0.5
CFL = J Dt E y u - x vj + C ( x + y ) J / Dr

(C.9)

Finally, the metrics ( x ,y ,x ,y ) and Jacobian J must

be evaluated for a typical cell, such as shown in figure 3-2.

Using second order accurate, cell centered differences then

1
x = Dx / D

x = Dx / D

1
y =Dy / D

m
y =Dy / D
.3

J =D&D /(DV

where DxL, Dy&, Dx, Dy', and DV are defined by equations 3.2.

This choice of differencing is consistent with the

differencing used for the higher order time terms of the

presented Ni scheme. It also follows through equations 3.3

and C.10 that

2 2 0.5
x + y )

2 2 0.5
(x + y

$5

= D1 / D

= Dm / D

(C.11)

Substituting the metric definitions into C.9 then gives

1 1 m m
CFL DtEluDy -vDx I+aDl) CFL = DtECuDy -vDx |+aDm)

DV DV
(C.12)

The above expressions define the CFL numbers corresponding to
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non-orthogonal directions 3 and for a typical cell of

figure 3-2.
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APPENDIX D

EXTENSION TO THE NAVIER-STOKES EQUATIONS

For high Reynold's number flows viscosity plays an

important role only in thin layers near the body and small

wake regions. A majority of the flow is inviscid. Viewing

the Navier-Stokes equations as a combination of convective

terms which propagate information and viscous terms which

smooth information, it is clear that a majority of the flow is

dominated by the convective terms.

An extension of the Ni multiple-grid method seems well

suited as a solver for these flows since it takes advantage of

the convective nature of the equations to accelerate the

solution convergence to steady state. With the Ni scheme the

two parts of the solver, base solver and coarse mesh

accelerator, perform two different roles. The base solver

satisfies the physics of the problem by solving the governing

equations. The coarse mesh accelerator then models the

convective terms to rapidly propagate errors in the solution

out of the flow field for fast convergence. In addition, as

discussed in the conclusions, one of the next steps in the

direction of a general modular approach to solving transonic
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flow problems is the addition of embedded viscous regions into

the embedded multiple-grid approach. With the formulation of

a viscous version of Ni's Multiple-grid method s-uch embedded

equation solutions would be possible.

In this appendix a formulation of the Ni multiple-grid

method is presented for solution of the 2-D Navier-Stokes

equations. In this formulation a global mesh has been

assumed, removing the need for a special embedded mesh

boundary formulation. This should not be viewed as a

limitation, rather the embedded mesh formulation has been left

for future research. The approach which has been taken is to

include the viscous terms into the base solver. With this

modification the base'solver correctly models the physics for

viscous flows. The inviscid coarse mesh accelerator, as

presented in section 3.3, is then used to propagate the fine

mesh residuals accelerating the convergence to steady state.

Since the convective terms dominate over a majority of the

flow field, a coarse mesh accelerator based only on the

convective terms captures the principle physics of the flow

and will efficiently propagate the solution errors.

The present formulation was initially tested with the

calculation of 2-D laminar flow in a duct with a circular arc

bump on one wall. While these calculations were made on a

very coarse mesh, resulting in unrealistic cell Reynolds

numbers, and for a flow field which can not be considered very

severe, the approach showed a great deal of promise as a
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method for accelerated solutions of the Navier-Stokes

equations. Chima and Johnson E29) independently adopted a

similar approach, using a fine mesh solver based on

MacCormack's method combined with the Ni coarse mesh

accelerator, and also demonstrated accelerated convergence

rates for duct type flows. Based on the success with duct

type flows, preliminary calculations with the present

formulation were made for laminar flow over 2-D airfoils.

Unfortunately, these calculations proved to be much more

difficult that initially expected. As formulated, the present

approach failed to yield the expected acceleration of solution

convergence. Repeated attempts to correct the present

formulation failed to improve the rate of convergence. At

this point due to time limitations, the current research had

to be brought to a close, leaving the extension of Ni's

multiple-grid method to viscous flows as an area of future

research. In the author's opinion, this breakdown in the

formulation can be corrected and therefore, the current

approach will be presented as originally formulated. In the

paragraphs which follow the base solver presented in section

3.2 will be extended to the solution of the 2-D Navier-Stokes

equations.

The two dimensional Navier-Stokes equations were

presented in strong conservation form (equation 2.1) as

U + F + G + R + S =0 (D.1)
t x y x y
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The time differencing proposed for solution of this

equation is a combination of a Lax-Wendroff differencing of

the inviscid terms (terms containing F and G) and a forward

time-center space (FTCS) differencing of the dissipative terms

(those containing R and S).

n n
dU = -(Dt/DV)(F +G ) (D.2)

i~j x y irj

2 n
+0.5(Dt /DV)CEF (F +G )J + EG (F +G )) }

U x y x U x y y i,j

n
-(Dt/DV)(R +S )

x y ii

While the differencing of the inviscid terms is second order

accurate in time, this semi-discrete equation is only first

order accurate in time due to the FTCS differencing of the

dissipative terms. Since only the steady state solution is of

interest this lower accuracy is of little importance. The

discrete spatial approximation used for the first two terms on

the right hand side of equation D.2 is the same as that

presented in equations 3.1 and 3.2, the flux balance and

distribution steps for the Euler equations. The correct

discrete approximation of the last term is found through a

finite volume integration over the cell shown with a dashed

line in figure D-1.

1 1 m m
-(Dt/DV) (R +S )dV =.5(Dt/DV)f EDy R -Dx S )+EDx S -Dy R J }

x y A A A A A A A A

1 1 m m

tJDt/DV)f EDy R -Dx S J-EDx S -Dy R ) }
' B B B B B B B B
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(D.3)
1 1 m M

+.5(Dt/DV)C-EDy R -Dx S J-CDx S -Dy R J 3
C C C C C C C C

1 1 m m
+.5(Dt/DV)(-EDy R -Dx S J+EDx S -Dy R J 3

D D D D D D D D

where R and S are defined at cell centers A,B,C and D as will

be explained later. Cell centered values of Dx, Dy and DV are

defined by equations 3.1 and 3.2. The particular form in

which the above dissipative terms have been presented makes it

easy to include into the distribution step of the solver.

To complete the discrete approximation of the

dissipation terms the cell-centered values of R and S must be

found. For convenience R and S will be defined using the base

solver cell notation shown in figure 3-2. Recalling the

definition of R and S from equation 2.1 as

10

| xx
R = (1/Re) -r
C 01 xy

T u+''v-( (Y/(Y-1)Pr) T
xx yx xl

0

yx
S = (1/Re) -
C 01 yy

-rT v+ V' u- (p/ (Y-1)Pr) T I
| yy xy yI

it should be noted that both involve first derivatives of u

and v with respect to Cartesian coordinates x and y. In order

to approximate these derivatives with cell-centered

differencing of nodes 1-4, for a general nonorthogonal cell,
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EXTENSION TO THE NAVIER-STOKES EQUATIONS

these Cartesian derivatives must be transformed to derivatives

with respect to computational coordinates 3 and This

transformation is performed as follows

=JE y ( ) -y ( ) 3 (D.5)

( =JE y ( ) -y ( ) ]

y

In addition to a change of coordinates a large number of

computational operations can be saved by rewriting derivatives

of primitive variables u and v in terms of derivatives of

conservation variables U. For example,

u =I ( f u) -uf /f (D.6)

u =E ( f u) - u f -

Performing the above transformations results in the following

expressions for the shear stresses

or = -(fAJ/f )E(4/3)Ey (fu) -y3 (;u) - uy Y -Y )]

-(2/3)Ex (fv) -x (rv) - v(x.3 -xr)]}

( = -(fAJ/f )C(4/3)Ex (rv) -x ( v) - -

-(2/3)Ey (ru) -Y (ru) - u(Y -y r )3}

y= -(AJ/f ): x (ru) -x (ru) +y (rv) -y (rv)

+(ux -vy ) -( ux -vy ) } (D.7)

In addition,
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EXTENSION TO THE NAVIER-STOKES EQUATIONS

T = J E y T - y T J

T = J E x T - x T J (D.8)

At this point the cell-centered discrete approximation

for the first derivatives is defined using information at cell

corner points 1-4. For example,

1
U =DU = 0.5( U + U - U - U) (D.9)

2 3 1 4

m
U =DU = 0.5( U + U - U - U)

33 4 1 2

where D 3 and D are assumed to be equal to 1. This

differencing and notation is consistent with the cell-centered

metrics definitions of equation 3.2c.

Discretizing equation D.7, the final cell-centered form

of R and S may be summarized for a typical cell C as

0 0

| xx
R =(1/Re) I z
C o xy

r T u+T v-(/(/('-l)Pr) T I
xx yx x |C

0

| yx
S= (1/Re) -r
C 01 yy

I ' v+T u-(/f/(C-1)Pr) T I
| yy xy y IC
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where

1 m 1 m 1 m 1 M
W= (/DV)C(4/3)EDy D(f u) -Dy D(fu) -u (Dy Df -Dy Df )]

xx c

m 1 1 m 1 m 1

-(2/3)EDx D(fv) -Dx D(fv) -v (Dx Df -Dx Df )]}
C

m 1 1 m m 1 1 m
^'= -(A'/ DV)((4/3)EDx D(fv) -Dx D(fv) -v (Dx D( -Dx Df )J

yy c

1 m m 1 1 M M 1

-(2/3)EDy D(fu) -Dy D(fu) -u (Dy Df -Dy Df )]}

mn 1 1 mn 1 mn
' = -(A/(DV)f Dx D(fu) -Dx D(fu) +Dy D(fv) -Dy
xy

1 1 M M m 1
+(u Dx -v Dy )D -(u Dx -v Dy )Df }

C c ) C C
In addition,

1 m m 1

T = Dy DT - Dy DT 3/DV
x

m 1 1 M
T = E Dx DT - Dx DT 3/DV

m
Dr v)

(D. 10a)

(D. 1Ob)

and

D( ) = 0.5E ( ) +
2

m

D( ) = 0.5E ( ) +
3

( ) - ()

( ) - (
4 1

This completes the formulation of the dissipation terms

for the Navier-Stokes equations. These terms will now be

included into the base solver presented in chapter 3 resulting

in a formulation of Ni's multiple-grid method for solution of

the Navier-Stokes equations.
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EXTENSION TO THE NAVIER-STOKES EQUATIONS

Following the inviscid formulation of the base solver,

the viscous base solver is performed with three sweeps over

the fine mesh. First, the mesh is swept node by node,

initializing the node point corrections dU to zero. After

initialization, the second sweep is made, cell by cell,

performing a inviscid flux balance, a calculation of R and S,

and a modified distribution for each cell. For the typical

cell shown in figure 3-2 this involves the following 3 steps.

STEP 1: Inviscid Finite Volume Approximation

This step involves calculation of DU as defined by

equation 3.1. Note that this is no longer the discrete

approximation to the governing integral equation since it does

not include the dissipative components.

STEP 2: Calculation of R and S

R and S are calculated at the cell center using

equations D.10.

STEP 3: Modified Distribution

dU = dU + 0.25E DU - Df -
1 1 c c

dU = dU + 0.25E DU - Df +
2 2 c c

dU = dU + 0.25E DU + Df +
3 3 c c

dU = dU + 0.25E DU + Df -
4 4 c c

Dg - Dr - Ds I (D.lla)
c c c

Dg - Dr + Ds J
c c c

Dg + Dr + Ds I
c c c

Dg + Dr - Ds I
c c c
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where

= ( Dt/ DV )E

= ( Dt/ DV )E

= (Z-Dt/ DV )E

Df
c

Dg
c

Dr
C

Ds
c

DF Dy
C

m
DG Dx

c

1
DR Dy

c

m
DS Dx

c

DF = ( F/ aU) DU
c c c

1
Dx =0.5( x + x - x - x

2 3 1 4

1
DG Dx I

c

m
DF Dy 3

c

1
DS Dx I

c

m
DR Dy I

c

DG = (ZG/aU ) DU
c c c

(D. llb)

(D.llc)

1
Dy =0.5( y + y - y - y

2 3 1 4

M m

Dx =0.5( x + x - x - x ) Dy =0.5( y + y - y - y
3 4 1 2 3 4 1 2

U = 0.25( U + U + U + U
c 1 2 3 4

Note that the control volume integration for the dissipative

terms is actually being performed in the distribution step.

Once the solution sweep has been performed over each

cell on the fine mesh, the required boundary conditions are

applied to the boundary nodes. It is important to note that

with this formulation the changes predicted at all boundaries

are incorrect due to the way the dissipation terms are

approximated. For the dissipation terms to be correct,

changes must be distributed from all four surrounding cells,

only then is the finite volume integration of the dashed cell

- 162 -
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EXTENSION TO THE NAVIER-STOKES EQUATIONS

in figure D-1 complete. This point is not important for solid

wall boundary points, since the boundary condition is imposed

by extrapolating the pressure from the flow and setting the

velocity to zero and temperature to the wall temperature.

However, the far field boundary conditions require these

predicted boundary changes. This problem is corrected by

dropping the dissipative part of the distribution formula for

distributions to the far field boundaries. This is equivalent

to a inviscid flow assumption at the far field boundary, an

appropriate approximation in this region. With this

correction the inviscid far field boundary conditions

presented in equations 3.24 and 3.25 may be used.

After application of the boundary conditions the

solution is updated as

n+l n
U =U + dU (D.12)
i i i

This completes the formulation of the viscous base

solver. After a pass over the fine mesh the inviscid coarse

mesh accelerator described in section 3.3 is applied on the 2h

mesh, the 4h mesh, and so on. The coarse mesh accelerator,

which is now operating on residuals of the Navier-Stokes

equations, rapidly propagates errors in the solution by

modeling only the dominate convective terms.
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Figure 2-1. Typical two dimensional transonic airfoil flow.

3]

Figure 2-2. Three contours for far field boundary condition
discussion.
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Initialize Sweep by Nodes
hdU.= 0

Calculate Time Step Dt

Calculate Metrics Sweep by Cells

Flux Balance on Cell
DU

Distribute Cell
Changes to Nodes

Add Smoothing

Apply Boundary Conditions

Update Solution Sweep by NodesI
Un+= U.+ dU.

1 i i

Figure 3-1. Flow chart for base solver.
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F r 4
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Figure 3-2. Base solver cell notation.
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Set Mesh level L = 2h

Initialize Sweep by Nodes

dU= 0
L

Calculate Time Step Dt

Calculate Metricsi

Transfer Residuals From
Level L/2 for Flux Balance

DUL= TL dUL/ 2

c L/2

Sweep by Cells

F Distribute Cell
Chanaes to Nodes

Set k = L

Apply Boundary Conditions Sweep by Cells

Interpolate Solution Chanae

k=k/2 dUk/2= Ik/2dUk
k I

Is
NO k= h ?

LYES

Aco-lv Boundary Conditions

Update Solutio
Uri+1= U n+ dU.

L

Sweep by Nodes

_ .- -. . _ _J

Figure 3-3. Coarse mesh accelerator flow chart.
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3

K
4

Figure 3-4. Coarse mesh accelerator cell notation.

Figure 3-5. Cell notation for transfer operator discussion.
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S

1

n

Figure 3-6. Boundary cell notation.

Figure 3-7. Boundary cell notation for
smoothing discussion.

boundary
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Figure 3-8. Near field of NACA0012 airfoil for 65*17 global
0-type mesh. Erun 179)
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RUN 179.
. M =0.630

A =2.000
-CL=0.3242

CD=0.0020
-- REF.4

~0.00

Figure 3-9a.

0.40 0.80

X/C
Surface pressure coefficient.

RUN

A =~

....C L =ECCD=

. . .- .- --

1.00
X/C

Figure 3-9b. Surface total pressure loss.
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MACH NUMBER

Figure 3-9c. Mach number contours.

TOTAL PRESSURE LOSS
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0.005

0.000

Figure 3-9d. Total pressure loss contours.

Figure 3-9. NACA0012 airfoil for M = 0.63 and angle of attack
of 2.0 degrees. Base solver solution on 65*17 0-type mesh.
[run 1793
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RUN 182:
S.................. .. . .. - M =0 .630

A -=2.000
........ ........ ........ ...... . .. .. C L =0 . 32 56

*CD=0.0019

*~ ~ * REF47

Figure 3-10a. Surface pressure coefficient.

RUN

A=1

.. .... ........ ......... ........ ......... . .. ..... --. C L =

I CD=I
0. . . . . . . . . . . . . . . . . . .. . . . . . . .

X/C

Figure 3-10b. Surface total pressure loss.
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MACH NUMBER

Figure 3-10c. Mach number contours.

TTAL PRESSURE

Figure 3-10d. Total pressure loss contours.

3-10. NACA0012 airfoil for M = 0.63
of attack. Multiple-grid solution on
global levels. Crun 182)

and 2.0 degree
65A17 0-type mesh
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0

3 Levels
2 Levels
1 Level

0'.00 3'0.00 60.00 9'0.00 1120. 00 150.00
MULTIGRIO CYCLE5 x103

Figure 3-lla. Comparison of Convergence histories for
NACA0012 airfoil for M = 0.63 and 2.0 degrees angle of attack
with 1,2, and 3 global mesh levels. Cruns 179,180,1823

Gill

CL

CD

3'0. 00 60.00 90.00 120.00 150.00
MULTIGRIO CTCLE5 2IO'

Figure 3-llb. Lift and drag coefficient histories as a
function of multiple-grid cycle for NACA0012 airfoil at M =
0.63 and 2.0 degrees angle of attack with 3 global mesh
levels.
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Figure 3-12. Near field of NACA0012 airfoil for 129*33 global
0-type mesh. [run 1813
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RUN 181:
.---- M =0.630

R =2.000
- CL=0. 3280

CD=0.0009
. M REF.47

0h.00 0.20 0.40 0.60 0.80 1.00
X/C

Figure 3-13a. Surface pressure coefficient.

S.....RUN 181:

.. .. .... M =0.630

-- CL=0.3280

.. . .. . .. . . . .. . . . .. .. .

...... . CD=0 .0009

0.00 0.20 0.40 0.60 0.80 1.00

X/C

Figure 3-13b. Surface total pressure loss.
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Figure 3-13d. Total pressure loss contours.

Figure 3-13. NACA0012 airfoil for M = 0.63 and 2.0 degrees
angle of attack. Multiple-grid solution on 129A33 0-type mesh
with 4 global levels. Crun 181)

- 178



00 129x33
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MULTIGRIO CTCLES x10'

Figure 3-14. Comparison of Convergence histories for NACA0012
airfoil for M = 0.63 and 2.0 degrees angle of attack for 65*17
global solution with 3 levels and 129*33 global solution with
4 levels. Cruns 182,1813

RUN 174;

AR =2.000
- CL=0.,3208
:!0=0.0030

0;

CX/

Figure 3-15a. Smoothing coefficient of 0.08.
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0

RUN 182:
-- M =0.630

R:A =2.000
- CL=0. 3256

CD=0.0019

Th.OO 0.20 0.40 0.60 0.60 1.00

X/C

Figure 3-15b. Smoothing coefficient of 0.05.

RUN 175.
.... ...... . M =0. 630

8 A =2.000
. . ...... ... .. .CL=0 .3258

CD=0. 0013

~b.00 0.20 O'.40 0.60 0.80 1.00

X/C

Figure 3-15c. Smoothing coefficient of 0.03.
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:RUN 176:
... ........ ........ ......... M = 0 . 6 3 0

R =2.000
C. ............... ... ... ........ ........ .. ------ C. L=...3 27.i*CL=0. 3276

CD=0. 0007

CL.. ... ... ....... ......... ....... . .
O

oh.oo 0.20 0'.40 0. &0 0.8 1o 00

Figure 3-15d. Smoothing coefficient of 0.01.

RUN 177
NM =0. 630

8 AR =2.000
.CL=0. 2300
CD=0. 0003

cm

Th.oo 0.20 D'.40 o'.s 0.90 1.00

Figure 3-15e. Smoothing coefficient of 0.0.

Figure 3-15. Comparison of surface pressure coefficient for
various smoothing coefficient values for 0-mesh. Cruns
174,182,175,176,177)
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oRUN 174:
..... M =0.630

A =2.000
------- CL=0. 3208

CD=0. 0030

0.00 0.20 0.140 0.60 0.60 1.00
X/C

Figure 3-16a. Smoothing coefficient of 0.08.
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oRUN 182;
-M =0.630

A =2.000
o- CL=O. 3256

CD=O. 0019

X/C
Figure 3-16b. Smoothing coefficient of 0.05.

* * * * RUN 175;

... ** * M =0. 630

R =2.000

CL
.. ...... .. C... . L =..... .. .......... ... 3 2 5 8... ..

CD0.01

e

;0;

0.00 0.20 D.0L 0.60 0.80 1.00

X/C

Figure 3-16c. Smoothing coefficient of 0.03.
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:RUN 176;
M =0.630
R =2.000

*CL=0. 3276
CD=0.0007

0.00 0.20 0.40D 0.60 0.80 1.00
X/C

Figure 3-16d. Smoothing coefficient of 0.01.
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en

* . . RUN 177.
.-- . .N =0. 630

R =2.000
----- --CL=0. 2300

CD=0.0003

e

CD

c

0.00 0.20 0.40 0.60 0.80 1.00
X/C

Figure 3-16e. Smoothing coefficient of 0.0.

Figure 3-16. Comparison of surface total pressure loss for
various smoothing coefficient values for 0-mesh. Cruns
174,182,175,176,177]
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Smoothina of:

/- 0.08
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-0.01

r- 0.00

.0030.00 s.D 90.00
MULTIGRID CTCLES

Figure 3-17. Comparison of convergence rates as a function of
the smoothing coefficient of the 0-type mesh. Cruns
174,182,175,176,177)

Figure 3-18. Blowup of mesh in the trailing edge region for
NACA0012 for 65A17 0-type mesh. Erun 1823
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e._ ...................,................. .......--,..........-- - -.. --- ----- ---------------- --

RUN 194;
.- - -.M =0. 630

R =2.000
. . .CL=0.S3256

CD=0.0018
.. ...... .... ... ...... ... .... .e ... .. . -. . -ee.-.e.e.

0.00 0.20 D.40 0.60 0. BO 1.00
X/C

Figure 3-19. Total pressure loss for 65*17 0-type mesh with
reduced skewness in trailing edge region. Erun 1943

Figure 3-20. Near field of NACA0012 airfoil for 97*17 global
C-type mesh. [run 1893
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.RUN 189;

- M =0.630
CD R =2.000

. CL=0.3201
. CD=O.0023

c

~b.00 0.20 D.40O 0.60 0.6B0 1.00

Figure 3-21a. Surface pressure coefficient.

RUN 189;
-M =0. 630
R =2.000
CL=0. 3201
CD=0. 0023
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o

RI0 . ... . . . . .......... .....

0.00 0.20 .LD 0.GO 0.80 1.00
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Figure 3-21b. Surface total pressure loss.
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Figure 3-21c. Mach number contours.

TOT;L PFEU5LE LOSS

rm O . 0?2

nn1 0
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Figure 3-21d. Total pressure loss contours.

Figure 3-21. NACA0012 airfoil for M = 0.63
angle of attack. Multiple-grid solution on
with 3 global levels. Erun 1893

and 2.0 degree
97*17 C-type mesh
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RUN 190:
..... .. ..... ..~ ... . . ........ ......... N = 3M =0.630

C3 A =2.000
nL ............................ ....... . ....... C L = 0 . 3 1 1 1

CD=0. 003L4
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Figure 3-22a. Smoothing coefficient of 0.08.
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RUN 189;
N =0.630
R =2.000

- - - - CL=O.'3203
CD=0.0023

D/

FiUN 191. .........~~- -----... ... ... ....... ...... ....-- -C -=-.- 2 6
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X ,/C

Figure 3-22b. Smoothing coefficient of 0.05.
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Fiur 3-22c Smotin coeficen of 0. 3.0
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Figure 3-22d. Smoothing coefficient of 0.01.
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Figure 3-22e. Smoothing coefficient of 0.0.

Figure 3-22. Comparison of surface pressure coeff
various smoothing coefficient values for C-me
190,189,191,192,1933

00

icient for
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Figure 3-23a. Smoothing coefficient of 0.08.
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Figure 3-23b. Smoothing coefficient of 0.05.
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Figure 3-23c. Smoothing coefficient of 0.03.
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Figure 3-23d. Smoothing coefficient of 0.01.
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Figure 3-23e. Smoothing coefficient of 0.0.

Figure 3-23. Comparison of surface total pressure loss for
various smoothing coefficient values for C-mesh. Cruns
190,189,191,192,1933
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Figure 3-25b. Surface total pressure loss.
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Figure 3-25d. Total pressure loss contours.

Figure 3-25. NACA0012 airfoil for M = 0.63 and 2.0 degrees
angle of attack. Multiple-grid solution on 65A17 0-type mesh
with 3 global levels. No doubling of predicted wall changes.
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Figure 3-27b. Surface total pressure loss.
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Figure 3-27d. Total pressure loss contours.

Figure 3-27. NACA0012 airfoil for M = 0.85 and 1.0 degree
angle of attack. Multiple-grid solution on 65*17 0-type mesh
with 3 global levels. ERun 2143
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Figure 3-30a. Surface pressure coefficient.
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Figure 3-30b. Surface total pressure loss.
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Figure 3-30d. Total pressure loss contours.

Figure 3-30. NACA0012 airfoil for M 0.85 and 1.0 degree
angle of attack. Multiple-grid solution on 129A33 0-type mesh
with 4 global levels. ERun 2163
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Figure 3-33a. Surface pressure coefficient.
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Figure 3-33d. Total pressure loss contours.

Figure 3-33. RAE2822 airfoil for M = 0.75 and 3.0 degrees
angle of attack. Multiple-grid solution on 65*17 0-type mesh
with 3 global levels. CRun 211)
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Figure 3-35a. Surface pressure coefficient.
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Figure 3-35d. Total pressure loss contours.

Figure 3-35. RAE2822 airfoil for M = 0.75 and 3.0 degrees-
angle of attack. Multiple-grid solution on 129A33 0-type mesh
with 4 global levels. [Run 2133
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Figure 3-38a. Surface pressure coefficient.
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Figure 3-38b. Surface total pressure loss.
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Figure 3-38d. Total pressure loss contours.

Figure 3-38. KORN airfoil for M = 0.75 and 0.12 degrees angle
of attack. Multiple-grid solution on 65*1l7 0-type mesh with 3
global levels. CRun 2083
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Figure 3-40a. Surface pressure coefficient.
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Figure 3-40d. Total pressure loss contours.

Figure 3-40. KORN airfoil for M = 0.75 and 0.12 degrees angle
of attack. Multiple-grid solution on 129A33 0-type mesh with
4 global levels. ERun 2103
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Figure 4-6. Embedded mesh interface pointer notation.

N/2
Figure 4-7a. Figure 4-7b.

Figure 4-7 Embedded and global mesh refinement for 2-D example
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Figure 4-8. 3-D cell structure for the base and coarse mesh
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Figure 4-9. Example of embedded and global mesh refinement.
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Figure 5-1. Embedded mesh topology.
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Figure 5-2. Embedded mesh interface notation.
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Figure 5-3. Near field of NACA0012 airfoil for embedded
0-type mesh. Erun 1973
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Figure 5-4a. Surface pressure coefficient.
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Figure 5-4b. Surface total pressure loss.
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Figure 5-4.d. Total pressure loss contours.

Figure 5-4. NACA0012 airfoil for M = 0.63 and angle of attack
of 2.0 degrees. Embedded mesh solution on 0-type mesh. Crun

197)
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multiple-grid levels for solution of figure 5-4.
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Figure 5-6. Comparison of convergence histories for embedded
solution, 65*17 global solution, and 129*33 global solution
(figures 5-4,3-10,3-13). Eruns 197,182,1813
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Figure 5-7. Double embedded mesh in leading edge region.
Erun 1993
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Figure 5-8d. Total pressure loss contours.

Figure 5-8. NACA0012 airfoil for M = 0.63 and angle of attack
of 2.0 degrees. Double embedded mesh solution on 0-type mesh.
Erun 1993
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Figure 5-9. Convergence history for double embedded mesh
solution. Erun 1993

Figure 5-10. Near field of NACA0012 airfoil for embedded
0-type mesh. Erun 1983
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Figure 5-11. NACA0012 airfoil for ~M = 0.85 and angle of
attack of 1.0 degrees. Embedded mesh solution on 0-type mesh.
[run 1983
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Figure 5-13. Near field of RAE2822 airfoil for embedded
0-type mesh. [Run 2123
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Figure 5-14. RAE2822 airfoil for M = 0.75 and angle of attack
of 3.0 degrees. Embedded mesh solution on 0-type mesh. CRun
2120
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Figure 5-15. Comparison of convergence histories for embedded
solution, 65*17 global solution, and 129A33 global solution
(figures 5-14,3-33,3-35). ERuns 211, 212, 213)

Figure 5-16. Near field of KORN airfoil for embedded 0-type
mesh. ERun 2093
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Figure 5-17. KORN airfoil for M = 0.75 and angle of attack of
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2093
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APPENDIX E

2-D AIRFOIL EULER CODE FOR 0-TYPE MESHES

This appendix contains listings of the two- computer

codes used to generate the 2-D transonic airfoil solutions on

0-type meshes presented in this thesis. The first program

called GEOCREAT reads in a global 0-type mesh as input and

then interactively generates a file which contains the pointer

system and mesh coordinates for the complete embedded mesh

structure. The second program, EULERCELL, is the embedded

multiple-grid Euler solver. EULERCELL requires two files as

input, the pointer file defining the embedded mesh structure

and a second file containing the flow conditions and control

parameters (a sample of this file is given at the end of this

appendix).
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2-D AIRFOIL EULER CODE FOR 0-TYPE MESHES

12345678901234567890123456789012345678901234567890123456789012345
C----------------------------------------------------------------

C----------------------------------------------------------------
C
C----------------------------------------------------------------
C PROGRAM: GEOCREAT
C----------------------------------------------------------------
C
C THIS PROGRAM GENERATES THE GRID STRUCTURE AND POINTERS
C FOR A 0-MESH GRID TOPOLOGY.
C

CALL GEOIN3
C

CALL GEOPONT4
C

CALL GEO0UT3
C

STOP
END

C----------------------------------------------------------------
C INCLUDE FILE: GEOCOM.COM
C----------------------------------------------------------------

COMMON/GEOCOM/IEJEIEM1,JEMiLMAXISUBD,
1 DELTAAK,YOIC1,IC2,JC2,IF2,JF2,
2 X(257,65),Y(257,65),XS(49,9),YS(49,9),
3 IPC(257,65),IPS(49,9),IQMAX,Q(2,8424),
4 ILEVP(2,5),LEVP(2,5),IP(9,10816),
5 IPBIMX(2,5),IPBUMXIPBDMXIPBTMXIPBBMX,
6 IPBI(3,257),IPBU(3,257),IPBD(3,9),
7 IPBT(3,33),IPBB(3,257),
8 LEVSET(257,65),IPSET(257,65),
9 ICONST(50),RCONST(50),LU1,LU2,LU3,LU5,LU6
COMMON/GEOLAB/GLABEL1,GLABEL2,RLABEL1,RLABEL2,
1 IN NAME,OUTNAME
CHARACTER GLABEL1*30,GLABEL2*100,RLABEL1*10,RLABEL2*100,
1 INNAMEA15,OUTNAMEA15

C----------------------------------------------------------------
C SUBROUTINE: GEOBCEL
C----------------------------------------------------------------

SUBROUTINE GEBCEL(I,,I2,I3,ICEL1,ICEL2)
C
C THIS SUBROUTINE FINDS THE BOUNDARY CELLS
C CORRESPONDING TO THE GIVEN BOUNDARY NODES
C

INCLUDE 'GEOCOM.COM'
C

ICEL1 = 0
ICEL2 = 0
ICON3 = 0
1= 0

C
10 I = I+1

ICON1 = 0
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ICON2 = 0
J1 = ABS(IP(1,I))
J2 = ABS(IP(2,I))
J3 = ABS(IP(3,I))
J4 = ABS(IP(4,I))

C
IF(II.EQ.J1) THEN

ICON1 = ICON1+1
ELSE IF(I1.EQ.J2) THEN

ICONI = ICON1+1
ELSE IF(I1.EQ.J3) THEN

ICON1 = ICON1+1
ELSE IF(I1.EQ.J4) THEN

ICON1 = ICON1+1
END IF

C
IF(I2.EQ.J1) THEN

ICON1 = ICON1+1
ICON2 = ICON2+1

ELSE IF(I2.EQ.J2) THEN
ICON1 = ICON1+1
ICON2 = ICON2+1

ELSE IF(I2.EQ.J3) THEN
ICON1 = ICON1+1
ICON2 = ICON2+1

ELSE IF(I2.EQ.J4) THEN
ICON1 = ICON1+1
ICON2 = ICON2+1

END IF
C

IF(I3.EQ.J1) THEN
ICON2 = ICON2+1

ELSE IF(I3.EQ.J2) THEN
ICON2 = ICON2+1

ELSE IF(I3.EQ.J3) THEN
ICON2 = ICON2+1

ELSE IF(I3.EQ.J4) THEN
ICON2 = ICON2+1

END IF
C

IF(ICON1.EQ.2) THEN
ICEL1 = I
ICON3 = ICON3+1

ENDIF
C

IF(ICON2.EQ.2) THEN
ICEL2 = I
ICON3 = ICON3+1

END IF
C

IF(ICON3.EQ.2) THEN
RETURN

ELSE IF(ICON3.EQ.1) THEN
IF(II.EQ.O) RETURN
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IF(I3.EQ.0) RETURN
END IF

C
IF(I.LT.ILEVP(2,LMAX)) GO TO 10

C
RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: GEOIN3
C----------------------------------------------------------------

SUBROUTINE GEOIN3
C
C THIS SUBROUTINE READS REQUIRED INPUT
C PARAMETERS FROM THE TERMINAL
C

INCLUDE 'GEOCOM.COM'
C
C LOGICAL UNIT ASSIGNMENTS FOR INPUT AND OUTPUT
C INPUT:
C LUl = GLOBAL 0-MESH GRID FILE
C LUS = INTERACTIVE INPUT
C OUTPUT:
C LU2 = POINTER SYSTEM FILE
C LU3 = POINTER SYSTEM SUMMARY
C LU6 = INTERACTIVE PROMPTS
C

LUl = 1
LU2 = 2
LU3 = 3
LUS = 5
LU6 = 6

C
WRITE(LU6,*)' ENTER AIRFOIL SECTION NAME (GLABEL1<30 CHARACTERS'
READ(LUS,1000)GLABELl

1000 FORMAT(A)
WRITE(LU6,*)' ENTER GRID COMMENTS (GLABEL2<100CHARACTERS)'
READ(LUS,1001)GLABEL2

1001 FORMAT(A)
WRITE(LU6,A)' ENTER NUMBER OF GLOBAL GRID TO BE READ IN:'
READ(LUS,A)IGRID
WRITE(LU6,A)' ENTER TOTAL NUMBER OF GRID LEVELS'
WRITE(LU6,A)' FOR POINTER SYSTEM:'
READ(LUS,*)LMAX

C
C READ GRID

OPEN(UNIT=LU1,READONLY,
1 TYPE='OLD',FORM='UNFORMATTED')
DO 10 N=1,IGRID
READ(LU1)IE,JE
WRITE(LU6,A)' IE,JE=' ,IE,JE
READ(LU1)CL,((X(I,J),Y(I,J),I=1,IE),J=1,JE)

10 CONTINUE
C

IEM1 = IE-1
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JEM1 = JE-1
C
C SET UP GRID STRUCTURE

WRITE(LU6,*)' ENTER GLOBAL GRID LEVEL FOR POINTER SYSTEM:'
READ(LUS,*)LGLOB
DO 15 I=1,IE
DO 15 J=1,JE

15 LEVSET(IJ) = LGLOB
C

18 WRITE(LU6,*)' DO YOU WISH A SUBDOMAIN? 1=YES 0=NO'
READ(LUS,*)ISUB
IF(ISUB.EQ.O) RETURN
WRITE(LU6,*)' ENTER IC1,IC2,JC1,JC2 BASED ON THE GLOBAL LEVEL'
READ(LUS,*) IC1,IC2,JC1,JC2
WRITE(LU6,A)' ENTER LEVEL FOR THIS SUBGRID, LSUB'
READ(LUS,A) LSUB
LGLOBS = 2**(LGLOB-1)
DO 20 I=LGLOBS*(IC1-1)+1,LGLOBS*(IC2-1)+1
DO 20 J=LGLOBSA(JC1-1)+1,LGLOBS*(JC2-1)+1

20 LEVSET(IJ) = LSUB
C

GO TO 18
C

END
C----------------------------------------------------------------
C SUBROUTINE: GEOOUT3
C----------------------------------------------------------------

SUBROUTINE GEOUT3

THIS SUBROUTINE CREATES THE OUTPUT FILE
AND POINTER SYSTEM SUMMARY

INCLUDE 'GEOCOM.COM'

WRITE(LU6,*)' DO YOU WANT THE CELL POINTERS '
WRITE(LU6,*)' AND (X,Y) WRITTEN?'
WRITE(LU6,*)' ENTER 1 = YES AND 0 = NO'
READ(LU5,A)IPRINTI

WRITE(LU3,1027) GLABEL1,GLABEL2
1027 FORMAT(5X,A30,/,5X,A100,/,5X,A10,/,5X,A100)

WRITE(LU3,1028) INNAMEOUTNAME
1028 FORMAT(//,5X,'INPUT GRID FILE NAME: ',A15,/,

1 5X,'OUTPUT POINTER FILE NAME:',A15,//)
WRITE(LU3,A) ' LEVSET(IJ)='
DO 100 I=1,IE
WRITE(LU3,1003) (LEVSET(IJ), J=1,JE)

100 CONTINUE
WRITE(LU3,A) ' IPSET(IJ)='
DO 101 I=1,IE
WRITE(LU3,1000) (IPSET(I,J), J=1,JE)

101 CONTINUE

SET CONSTANTS FOR OUTPUT
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ICONST(l) = IE
ICONST(2) = JE
ICONST(3) = IC1
ICONST(4) = IC2
ICONST(5) = JCl
ICONST(6) = JC2
ICONST(7) = IFl
ICONST(8) = IF2
ICONST(9) = JF1
ICONST(10) = JF2
NICONST = 50

C
RCONST(16) = DELTA
RCONST(17) = AK
RCONST(18) = YO
NRCONST = 50

C
WRITE(LU2) GLABELlGLABEL2,RLABEL1,RLABEL2
WRITE(LU2) NICONST,NRCONST
WRITE(LU2) (ICONST(N), N=lNICONST)
WRITE(LU2) (ICONST(N), N=lNRCONST)
WRITE(LU2) LMAXIQMAXIPBUMX,IPBDMXIPBTMX,IPBBMX
WRITE(LU2) ((IPBIMX(M,N), M=l,2), N=lLMAX)
WRITE(LU3,A) ' IE,JE,LMAX,IC1,IC2,JC2,IF2,JF2'
WRITE(LU3,*) ' IOMAXIPBUMX,IPBDMX,IPBTMX,IPBBMX'
WRITE(LU3,*) ' DELTAAK,Y0'
WRITE(LU3,1000) IE,JE,LMAXIClIC2,JC2,IF2,JF2
WRITE(LU3,1000) IGMAXIPBUMX,IPBDMX,IPBTMX,IPBBMX
WRITE(LU3,1001) DELTA,AK,YO
WRITE(LU3,*) ' IPBIMX(2,LEV)='
WRITE(LU3,1000) ((IPBIMX(M,N), M=1,2), N=1,LMAX)

1000 FORMAT(lX,20I5)
1001 FORMAT(lX,10E13.4)
1003 FORMAT(lX,33I3)

C
C WRITE OUT GRID POINTERS

WRITE(LU2) ((ILEVP(MN), M=1,2), N=1,LMAX)
WRITE(LU3,*) ' ILEVP(2,LEV)='
WRITE(LU3,1000) ((ILEVP(MN), M=1,2), N=1,LMAX)

C
WRITE(LU3,A) ' IP(MN)='
DO 10 LEV = 1,LMAX
IF(IPRINT1.EQ.1) WRITE(LU3,A) ' LEV =',LEV
WRITE(LU2) ((IP(MN), M=1,9), N=ILEVP(1,LEV),ILEVP(2,LEV))
IF(IPRINT1.EQ.1)
1 WRITE(LU3,1002) ((IP(MN), M=1,9), N=ILEVP(1,LEV),ILEVP(2,LEV))

10 CONTINUE
1002 FORMAT(lX,18I5)
C

WRITE(LU3,*) ' IPBI(2,N)='
DO 15 LEV=1,LMAX
WRITE(LU3,*) ' LEV=',LEV
IF( IPBIMX(2,LEV) .NE.0)

1 WRITE(LU2) ((IPBI(MN), M=1,3), N=IPBIMX(1,LEV),IPBIMX(2,LEV))
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IF(IPBIMX(2,LEV).NE.0)
1 WRITE(LU3,1002) ((IPBI(M,N), M=1,3),
2 N=IPBIMX(1,LEV),IPBIMX(2,LEV))

15 CONTINUE

WRITE(LU2) ((IPBU(M,N), M=1,3), N=1,IPBUMX)
WRITE(LU2) ((IPBD(MN), M=1,3), N=1,IPBDMX)
WRITE(LU2) ((IPBT(MN), M=1,3), N=1,IPBTMX)
WRITE(LU2) ((IPBB(MN), M=1,3), N=1,IPBBMX)
WRITE(LU3,*) ' IPBU(MN)='
WRITE(LU3,1002) ((IPBU(M,N), M=1,3), N=1,IPBUMX)
WRITE(LU3,*) ' IPBD(M,N)='
WRITE(LU3,1002) ((IPBD(M,N), M=1,3), N=1,IPBDMX)
WRITE(LU3,*) ' IPBT(3,N)='
WRITE(LU3,1002) ((IPBT(M,N), M=1,3), N=1,IPBTMX)
WRITE(LU3,*) ' IPBB(3,N)='
WRITE(LU3,1002) ((IPBB(MN), M=1,3), N=1,IPBBMX)
WRITE(LU2) (Q(1,I), I=1,IQMAX)
WRITE(LU2) (0(2,I), I=1,IQMAX)
TZERO = 0.0
DO 8 KT =3,6

8 WRITE(LU2) (TZERO, I=1,IQMAX)

IF(IPRINT1.EQ.1) WRITE(LU3,*) ' O(KI)='
IF(IPRINT1.EQ.1) WRITE(LU3,*) ' I=11'
IF(IPRINT1.EQ.1) WRITE(LU3,1005) (0(1,I), I=1,IGMAX)
IF(IPRINT1.EQ.1) WRITE(LU3,*) ' I=2'
IF(IPRINT1.EG.1) WRITE(LU3,1005) (Q(2,I), I=1,IQMAX)

1005 FORMAT(2X,(10E12.5))
C

RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: GEOPONT4
C----------------------------------------------------------------

SUBROUTINE GEOPONT4

THIS SUBROUTINE GENERATES THE POINTERS
FOR THE GIVEN GRID AND BOUNDARY CONDITIONS.

INCLUDE 'GEOCOM.COM'

SETUP AND FILLING OF 0-VECTOR
IND = 0
DO 10 L=1,LMAX
LSKIP = 2**(L-1)
DO 10 I=1,IEM1,LSKIP-
DO 10 J=1,JE,LSKIP
IF(LEVSET(I,J).EQ.L) THEN

IND = IND+1
Q(1,IND) = X(IJ)
Q(2,IND) = Y(I,J)
IPSET(I,J) = IND

END IF
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10'CONTINUE
C

DO 12 J=1,JE
12 IPSET(IE,J) = IPSET(1,J)

C
IQMAX = IND-
WRITE(LU6,A) ' IQMAX=' , IQMAX

C
C GENERATE POINTERS

IND = 0
C

DO 30 LEV=1,LMAX
ILEVP(1,LEV) = IND+1
LSKIP = 2**(LEV-1)
LSKIP2 = LSKIP/2
DO 25 I=1,IEM1,LSKIP
DQ 25 J=1,JEM1,LSKIP
ICOUNT = 0
IF(LEVSET(I,J).LE.LEV) ICOUNT = ICOUNT+1
IF(LEVSET(I,J+LSKIP).LE.LEV) ICOUNT = ICOUNT+1
IF(LEVSET(I+LSKIP,J+LSKIP).LE.LEV) ICOUNT = ICOUNT+1
IF(LEVSET(I+LSKIPJ).LE.LEV) ICOUNT = ICOUNT+1
IF(ICOUNT.EG.4) THEN

IND = IND+1
IP(1,IND) = -IPSET(I,J)
IP(2,IND) = -IPSET(IJ+LSKIP)
IP(3,IND) = -IPSET(I+LSKIPJ+LSKIP)
IP(4,IND) = -IPSET(I+LSKIPJ)
IF(LEV.EQ.l) THEN

IF(J.GT.1) THEN
IF(I.GT.1) THEN

IF(LEVSET(I-1,J).EQ.1.AND.LEVSET(I,J-1).EO.1)
1 IP(1,IND) = -IP(1,IND)

ELSE
IF(LEVSET(IEM1,J).EQ.1.AND.LEVSET(I,J-1).E.1)

1 IP(1,IND) = -IP(1,IND)
END IF
IF(I.LT.IEM1) THEN
IF(LEVSET(I+2,J).EQ.1.AND.LEVSET(I+1,J-1).EQ.1)

1 IP(4,IND) = -IP(4,IND)
ELSE

IF(LEVSET(2,J).EQ.1.AND.LEVSET(I+1,J-1).EG.1)
1 IP(4,IND) = -IP(4,IND)

END IF
END IF
IF(J.LT.JEM1) THEN

IF(I.GT.1) THEN
IF(LEVSET(I-1,J+1).EQ.1.AND.LEVSET(I,J+2).EQ.1)

1 IP(2,IND) = -IP(2,IND)
ELSE

IF(LEVSET(IEM1,J+1).EQ.1.AND.LEVSET(IJ+2).EG.1)
I IP(2,IND) = -IP(2,IND)

END IF
IF(I.LT.IEM1) THEN

- 247 -



2-D AIRFOIL EULER CODE FOR 0-TYPE MESHES

IF(LEVSET(I+2,J+1).EQ.1.AND.LEVSET(I+1,J+2).EQ.1)
1 IP(3,IND) = -IP(3,IND)

ELSE
IF(LEVSET(2,J+1).EQ.1.AND.LEVSET(I+1,J+2).EQ.1)

1 IP(3,IND) = -IP(3,IND)
END IF

END IF
DO 17 K=5,9

17 IP(KIND) = 0
ELSE

IF(LEVSET(I+LSKIP2,J+LSKIP2).E.LEV) THEN
IF(J.GT.1) THEN

IF(I.GT.1) THEN
IF(LEVSET(I-LSKIPJ).LE.LEV

1 .AND.LEVSET(IJ-LSKIP).LE.LEV)
1 IP(1,IND) = -IP(1,IND)

ELSE
IF(LEVSET(IE-LSKIPJ).LE.LEV

1 .AND.LEVSET(I,J-LSKIP).LE.LEV)
1 IP(1,IND) = -IP(1,IND)

END IF
IF(I.LT.IE-LSKIP) THEN
IF(LEVSET(I+2*LSKIPJ).LE.LEV

1 .AND.LEVSET(I+LSKIPJ-LSKIP).LE.LEV)
1 IP(4,IND) = -IP(4,IND)

ELSE
IF(LEVSET(LSKIPJ).LE.LEV

1 .AND.LEVSET(I+LSKIPJ-LSKIP).LE.LEV)
1 IP(4,IND) = -IP(4,IND)

END IF
END IF
IF(J.LT.JE-LSKIP) THEN

IF(I.GT.1) THEN
IF(LEVSET(I-LSKIPJ+LSKIP).LE.LEV

1 .AND.LEVSET(I,J+2*LSKIP).LE.LEV)
1 IP(2,IND) = -IP(2,IND)

ELSE
IF(LEVSET(IE-LSKIP,J+LSKIP).LE.LEV

1 .AND.LEVSET(I,J+2*LSKIP).LE.LEV)
1 IP(2,IND) = -IP(2,IND)

END IF
IF(I.LT.IE-LSKIP) THEN
IF(LEVSET(I+2*LSKIPJ+LSKIP).LE.LEV

1 .AND.LEVSET(I+LSKIPJ+2ALSKIP).LE.LEV)
1 IP(3,IND) = -IP(3,IND)

ELSE
IF(LEVSET(LSKIPJ+LSKIP).LE.LEV

1 .AND.LEVSET(I+LSKIPJ+2*LSKIP).LE.LEV)
1 IP(3,IND) = -IP(3,IND)

END IF
END IF

ELSE IF(LEVSET(I+LSKIP2,J+LSKIP2).EQ.LEV-1) THEN
IF(J.GT.1) THEN

IF(I.GT.1) THEN
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IF(LEVSET(I-LSKIPJ).EQ.LEV
1 .OR.LEVSET(IJ-LSKIP).EQ.LEV)
1 IP(1,IND) = -IP(1,IND)

ELSE
IF(LEVSET(IE-LSKIPJ).EQ.LEV

1 .OR.LEVSET(IJ-LSKIP).EQ.LEV)
1 IP(1,IND) = -IP(1,IND)

END IF
IF(I.LT.IE-LSKIP) THEN
IF(LEVSET(I+2ALSKIPJ).EQ.LEV

1 .OR.LEVSET(I+LSKIPJ-LSKIP).EQ.LEV)
1 IP(4,IND) = -IP(4,IND)

ELSE
IF(LEVSET(LSKIP,J).EG.LEV

1 .OR.LEVSET(I+LSKIP,J-LSKIP).EQ.LEV)
1 IP(4,IND) = -IP(4,IND)

END IF
END IF
IF(J.LT.JE-LSKIP) THEN

IF(I.GT.1) THEN
IF(LEVSET(I-LSKIP,J+LSKIP).EQ.LEV

1 .OR.LEVSET(IJ+2*LSKIP).EQ.LEV)
1 IP(2,IND) = -IP(2,IND)

ELSE
IF(LEVSET(IE-LSKIPJ+LSKIP).EQ.LEV

1 .OR.LEVSET(IJ+2*LSKIP).EQ.LEV)
1 IP(2,IND) = -IP(2,IND)

END IF
IF(I.LT.IE-LSKIP) THEN
IF(LEVSET(I+2*LSKIP,J+LSKIP).EQ.LEV

1 .OR.LEVSET(I+LSKIPJ+2*LSKIP).EQ.LEV)
1 IP(3,IND) = -IP(3,IND)

ELSE
IF(LEVSET(LSKIPJ+LSKIP).EQ.LEV

1 .OR.LEVSET(I+LSKIPJ+2*LSKIP).EQ.LEV)
1 IP(3,IND) = -IP(3,IND)

END IF
END IF

END IF
IF(LEVSET(I+LSKIP2,J+LSKIP2).LT.LEV)

1 IP(5,IND) = IPSET(I+LSKIP2,J+LSKIP2)
IF(LEVSET(I,J+LSKIP2).LT.LEV)

1 IP(6,IND) = IPSET(IJ+LSKIP2)
IF(LEVSET(I+LSKIP2,J+LSKIP).LT.LEV)

1 IP(7,IND) = IPSET(I+LSKIP2,J+LSKIP)
IF(LEVSET(I+LSKIPJ+LSKIP2).LT.LEV)

1 IP(8,IND) = IPSET(I+LSKIPJ+LSKIP2)
IF(LEVSET(I+LSKIP2,J).LT.LEV)

1 IP(9,IND) = IPSET(I+LSKIP2,J)
END IF

END IF
25 CONTINUE

ILEVP(2,LEV) = IND
WRITE(LU6,*)' ILEVP(2,LEV)=',ILEVP(2,LEV)
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30 CONTINUE
C
C INTERPOLATION BC POINTER

IND = 0
DO 47 LEV = 2,LMAX
LEVM1 = LEV-1
LSKIP = 2AA(LEV-1)
LSKIP2 = LSKIP/2
IPBIMX(1,LEV-1) = IND+1
DO 45 I=1,IEM1,LSKIP
DO 45 J=1,JEM1,LSKIP
IF(LEVSET(I+LSKIP2,J+LSKIP2).EQ.LEV) THEN

IF(LEVSET(I,J+LSKIP2).EQ.LEV-1) THEN
IND = IND+1
IPBI(1,IND) = IPSET(IJ+LSKIP)
IPBI(2,IND) = IPSET(I,J+LSKIP2)
IPBI(3,IND) = IPSET(I,J)

END IF
IF(LEVSET(I+LSKIP2,J+LSKIP).EQ.LEVM1) THEN

IND = IND+1
IPBI(1,IND) = IPSET(I+LSKIP,J+LSKIP)
IPBI(2,IND) = IPSET(I+LSKIP2,J+LSKIP)
IPBI(3,IND) = IPSET(IJ+LSKIP)

END IF
IF(LEVSET(I+LSKIPJ+LSKIP2).EQ.LEVM1) THEN

IND = IND+l
IPBI(1,IND) = IPSET(I+LSKIP,J)
IPBI(2,IND) = IPSET(I+LSKIPJ+LSKIP2)
IPBI(3,IND) = IPSET(I+LSKIP,J+LSKIP)

END IF
IF(LEVSET(I+LSKIP2,J).EQ.LEVM1) THEN

IND = IND+1
IPBI(1,IND) = IPSET(I,J)
IPBI(2,IND) = IPSET(I+LSKIP2,J)
IPBI(3,IND) = IPSET(I+LSKIPJ)

END IF
END IF

45 CONTINUE
IF(IPBIMX(1,LEV-1).GT.IND) THEN

IPBIMX(1,LEV-1) = 0
IPBIMX(2,LEV-1) = 0

ELSE
IPBIMX(2,LEV-1) = IND

END IF
47 CONTINUE

C
C FARFIELD & SOLID WALL BC POINTERS

IND = 0
1= 0

50 I = I+1
IF(IPSET(I,JE).GT.0) THEN

IND = IND+1
IPBU(2,IND) = IPSET(IJE)
IF(IND.GT.1) THEN
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IPBU(3,IND-1) = IPBU(2,IND)
IPBU(1,IND) = IPBU(2,IND-1)

END IF
END IF
IF(I.LT.IE) GO TO 50

C
IPBU(1,1) = IPBU(1,IND)
IPBUMX = IND-1

C
IND = 0
1= 0

51 I = I+1
IF(IPSET(I,1).GT.0) THEN

IND = IND+1
IPBB(2,IND) = IPSET(I,1)
IF(IND.GT.1) THEN

IPBB(3,IND-1) = IPBB(2,IND)
IPBB(1,IND) = IPBB(E(2,IND-1)

END IF
END IF
IF(I.LT.IE) GO TO 51

C
IPBB(1,1) = IPBB(1,IND)
IPBBMX = IND-1

C
DO 52 IND=1,IPBUMX
Il = IPBU(1,IND)
12 = IPBU(2,IND)
13 = IPBU(3,IND)
CALL GEOBCEL(I1,I2,I3,ICEL1,ICEL2)
IPBU(1,IND) = ICEL1
IPBU(2,IND) = ICEL2
IPBU(3,IND) = 2

52 CONTINUE
C

DO 53 IND=1,IPBBMX
Il = IPBB(1,IND)
12 = IPBB(2,IND)
13 = IPBB(3,IND)
CALL GEOBCEL(I1,I2,I3,ICEL1,ICEL2)
IPBB(1,IND) = ICEL1
IPBB(2,IND) = ICEL2
IF(IND.GT.1) THEN

IPBB(3,IND) = 4
ELSE

IPBB(3,IND) = 5
END IF

53 CONTINUE
C
C OTHER POINTERS

IPBDMX = 0
IPBTMX = 0

C
RETURN
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END
C----------------------------------------------------------------
C LINK COMMAND FILE: GEOLINK.COM
C--------------------------------------------------------------
$LINK GEOCREATGEOBCELGEGIN3,GEOPONT4,GEOOUT3
C---------------------------------------------------------------

C----------------------------------------------------------------
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12345678901234567890123456789012345678901234567890123456789012345
C----------------------------------------------------------------

C----------------------------------------------------------------
C
C----------------------------------------------------------------
C PROGRAM:O-MESH EULERCELL
C---------------------------------------------------------------
C PROGRAM EULERCELL SOLVES THE 2-D EULER EON'S
C USING A CELL POINTER BASED VERSION OF
C NI'S METHOD. IT INCLUDES THE CAPABILITY
C OF ANY NUMBER OF SUBDOMAINS.
C
C
C READ INPUT PROPERTIES

CALL INPUT2
C
C CALCULATE CONSTANTS CONTAINING GAMMA

CALL GAMMAS
C
C INITIALIZE FLOW FIELD TO UNIFORM FLOW

CALL INITIA
C
C SOLVE EULER EQN'S USING NI'S METHOD

CALL NI
C
C OUTPUT FINAL SOLUTION

CALL OUTPUT3
C

STOP
END

C---------------------------------------------------------------
C INCLUDE FILE: GAM.INC
C----------------------------------------------------------------

COMMON/GAM/ GAMMAHTOT,
1 GM1,GM1D2,GM1DG,GM1D2G,
2 GP1DGGP1D2G,GM3

C----------------------------------------------------------------
C INCLUDE FILE: INPT.INC
C---------------------------------------------------------------

COMMON/INPT/ AMFSCFL,AVISCF,EXITPITIM,
1 ISTARTNSTARTNMAXLMAX,
2 LSTOPDELSTPIPRNT1,IPRNT2,
3 WCFS(4),DELTA,AK,Y0,
4 IEJEIC1,IC2,JC2,IF2,JF2,
5 ALPHA,ROFS,APFSUFS,VFS,
6 NFINSHDELMAX1(5),
7 ICONST(50),RCONST(50),
8 INSSWTREOPRCSTAR,TREF
COMMON/INPTLAB/GLABEL1,GLABEL2,RLABEL1,RLABEL2
CHARACTER GLABEL1*30,GLABEL2A100,RLABEL1*10,RLABEL2*100

C----------------------------------------------------------------
C INCLUDE FILE: LUNITS.INC
C----------------------------------------------------------------
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COMMON/LUNITS/LU1,LU2,LU3,LU4,LU5,LU6,LU7
C----------------------------------------------------------------
C INCLUDE FILE: MAIN.INC
C----------------------------------------------------------------

COMMON/MAIN/TDTDTE(82),DELMAX(5),IMAX,
1 IGMAX,LEVP(2,5),IPBIMX(2,5),IPBUMXIPBDMX,
2 IPBTMX, IPBBMX,Q(10,8424), IP(9,10816), IPBI(3,257),
3 IPBU(3,257),IPBD(3,9),IPBT(3,33),IPBB(3,257),
4 GIB(4,257),EDT(8424)

C----------------------------------------------------------------
C INCLUDE FILE: MET.INC
C----------------------------------------------------------------

COMMON/MET/ DV,DLDMDXDXI,DYDXIDXDET,DYDET,
1 DXIDXDXIDYDETDXDETDYAJAC
COMMON/MET2/ IWP1(258),TX(258),TY(258),
1 RC(258),TSCL(258),SSCL(258)

C----------------------------------------------------------------
C INCLUDE FILE: POINT.INC
C----------------------------------------------------------------

COMMON/POINT/ I,12,I3,I4,INCIN1,IN2,IN3,IN4,
1 VISlVIS2,VIS3,VIS4,IVIS

C----------------------------------------------------------------
C INCLUDE FILE: SOLV.INC
C----------------------------------------------------------------

COMMON/SOLV/ F(4,4),G(4,4),DELU(4),DELF(4),DELG(4)
C----------------------------------------------------------------
C SUBROUTINE: BDSMTH
C----------------------------------------------------------------

SUBROUTINE BDSMTH(LEV)
C
C This subroutine smooths the far field and solid
C wall boundary points. Points are always smoothed
C on the lowest level in which the two adjoining cell
C to the boundary exist. This is consistent with the
C internal point smoothing.
C For the far field boundary the smoothing used is
C the corresponding one model applied along the boundary.
C For the solid wall boundary two formulations are
C possible:
C Type 1: The same as the farfield boundary with a
C ramp increase in smoothing around the t.e.
C Type 2: A standard internal smoothing using extrapolated
C information to define an imaginary line of points
C inside the wall. In this case the smoothing is not
C increased in the t.e. region.
C

INCLUDE 'MAIN. INC'
INCLUDE 'POINT.INC'
INCLUDE 'MET.INC'
INCLUDE /INPT.INC'

INCLUDE 'GAM.INC'
C

DIMENSION QN1(4),QN2(4),QAVE2(4)
C
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C Far Field boundary point smoothing using a 1-D smoothing
C tangent to the boundary

DO 10 I=1,IPBUMX
C
C Is point to be smoothed on this level?

ICONT1 = 0
IF(IPBU(lI).GE.LEVP(lLEV).AND.IPBU(1,I).LE.LEVP(2,LEV))THEN

IF(IPBU(2,I).LE.LEVP(2,LEV)) ICONT1 = 1
ELSE IF(IPBU(2,I).GE.LEVP(1,LEV).AND.IPBU(2,I).LE.LEVP(2,LEV))
1 THEN

IF(IPBU(1,I).LE.LEVP(2,LEV)) ICONT1 = 1
END IF

C
C If it is then calculate and add contributions
C for each cell surrounding the point.

IF(ICONT1.Eg.1) THEN
C
C First cell:

CALL CELPOINT(IPBU(1,I))
CALL METRC4
CALL CTIME
AVIS = AVISCF*DT*(DL+DM)/DV

C
DO 4 K=1,4
KP2 = K+2
KP6 = K+6

4 Q(KP6,I3) = Q(KP6,I3)+0.125AAVISA(Q(KP2,I2)-Q(KP2,I3))
C
C Second Cell:

CALL CELPOINT(IPBU(2,I))
CALL METRC4
CALL CTIME
AVIS = AVISCF*DT*(DL+DM)/DV

C
DO 6 K=1,4
KP2 = K+2
KP6 = K+6

6 Q(KP6,I2) = g(KP6,I2)+0.125AAVISA(Q(KP2,I3)-Q(KP2,I2))
END IF

10 CONTINUE
C
C Solid Wall Boundary point Smoothing
C Possible forms:
C IBCOND = 1 1-D tangent smoothing model
C with ramp increase at t.e.
C = 2 For reflected points and standard
C internal point smoothing model.
C
C Constants

IBCOND = 1
JTESMTH = 5
TECOEF = 4.0
IF(IBCOND.EQ.2) GO TO 40

C
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C Type 1: 1D smoothing formulation
DO 30 I=1,IPBBMX

CCC IF(IPBB(3,I).NE.4) GO TO 30
C
C Is point to be smoothed on this level?

ICONT1 = 0
IF(IPBB(lI).GE.LEVP(1,LEV).AND.IPBB(1,I).LE.LEVP(2,LEV))THEN

IF(IPBB(2,I).LE.LEVP(2,LEV)) ICONT1 = 1
ELSE IF(IPBB(2,I).GE.LEVP(1,LEV).AND.IPBB(2,I).LE.LEVP(2,LEV))
1 THEN

IF(IPBB(1,I).LE.LEVP(2,LEV)) ICONT1 = 1
END IF

C
C If yes, calculate and add contributions form
C both cells surrounding the cell

IF(ICONTl.EQ.l) THEN
C
C First cell:

CALL CELPOINT(IPBB(lI))
CALL METRC4
CALL CTIME
AVIS = AVISCF*DTA(DL+DM)/DV

C
C Ramp smoothing near t.e.

IF(I.LE.JTESMTH+1) THEN
AVIS = (1.0+TECOEF*FLOAT(JTESMTH-I+1)/FLOAT(JTESMTH))*AVIS

ELSE IF(I.GE.IPBBMX-JTESMTH+l) THEN
AVIS = (1.0+TECOEF*FLOAT(I+JTESMTH-IPBBMX-1)

1 /FLOAT(JTESMTH))AAVIS
END IF

C
DO 24 K=l,4
KP2 = K+2
KP6 = K+6

Q(KP6,I4) = Q(KP6,I4)+0.25*AVIS*(Q(KP2,Il)-Q(KP2,I4))
24 CONTINUE

C
C Second cell:

CALL CELPOINT(IPBB(2,I))
CALL METRC4
CALL CTIME
AVIS = AVISCF*DTA(DL+DM)/DV

C
C Ramp soothing near t.e.

IF(I.LE.JTESMTH+1) THEN
AVIS = (1.0+TECOEF*FLOAT(JTESMTH-I+1)/FLOAT(JTESMTH))AAVIS

ELSE IF(I.GE.IPBBMX-JTESMTH+l) THEN
AVIS = (1.0+TECOEF*FLOAT(I+JTESMTH-IPBBMX-1)

1 /FLOAT(JTESMTH))AAVIS
END IF

C
DO 26 K=1,4
KP2 = K+2
KP6 = K+6
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Q(KP6,Il) = Q(KP6,II)+0.25*AVISA(O(KP2, I4)-Q(KP2,Il))
26 CONTINUE

END IF
30 CONTINUE

C
RETURN

C
C Type 2: Reflection wall smoothing

40 CONTINUE
DO 70 I=1,IPBBMX
IF(IPBB(3,I).NE.4) GO TO 70

C
C Is this point to be smoothed on this level?

ICONT1 = 0
IF(IPBB(1,I).GE.LEVP(1,LEV).AND.IPBB(lI).LE.LEVP(2,LEV))THEN

IF(IPBB(2,I).LE.LEVP(2,LEV)) ICONT1 = 1
ELSE IF(IPBB(2,I).GE.LEVP(lLEV).AND.IPBB(2,I).LE.LEVP(2,LEV))
1 THEN

IF(IPBB(1,I).LE.LEVP(2,LEV)) ICONT1 = 1
END IF

C
C If Yes, calculate and add contributions form both cells

IF(ICONT1.EQ.1) THEN
C
C Calculate surface tangent vector (dx,dy)

J1 = ABS(IP(lIPBB(lI)))
J2 = ABS(IP(4,IPBB(lI)))
J3 = ABS(IP(4,IPBB(2,I)))

C
TMP1 = Q(1,J2)-Q(1,J1)
TMP2 = Q(2,J2)-0(2,J1)
DS1 = SQRT(TMP1*TMP1+TMP2*TMP2)
TMPl = Q(lJ3)-Q(1J2)
TMP2 = Q(2,J3)-Q(2,J2)
DS2 = SQRT(TMP1*TMPl+TMP2*TMP2)

C
TMP1 = DSl+DS2
TMP2 = DS2/(DSlATMP1)
TMP3 = (DS2-DS1)/(DS1*DS2)
TMP4 = DS1/(DS2ATMPI)

C
DXDS = -Q(1,Jl)ATMP2+Q(1J2)*TMP3+Q(lJ3)*TMP4
DYDS = -0(2,Jl)*TMP2+0(2,J2)*TMP3+Q(2,J3)*TMP4
TMP1 = SQRT(DXDS*DXDS+DYDSADYDS)

C
DX = DXDS/TMP1
DY = DYDS/TMP1

C
C First cell:

CALL CELPOINT(IPBB(1,I))
CALL METRC4
CALL CTIME
AVIS = AVISCFADT*(DL+DM)/DV
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C Extrapolate r~p,hO and reflect u,v
P4 = GMl*(G(6,I4)-O.5*(Q(4,I4)*0(4,I4)+Q(5,I4)AQ(5,I4))/Q(3,I4))
P3 = GMl*(Q(6,13)-O.5*(Q(4,I3)*O(4,13)+Q(5,I3)*Q(5,I3))/Q(3,I3))
P14 = P3-2.A(P3-P4)
H4 = (0(6p14)+P4)/0(3pI4)
H3 = (Q(6,13)+P3)/0(3,13)
H14 = H3
VELT3 = (Q(4,I3)*DX+0(5,I3)AE'Y)/Q(3,I3)
YELN3 = (-Q(4,13)*DY+Q(5,13)ADX)/Q(3,13)
U14 = VELT3*DX+VELN3*DY
V14 = VELT3*DY-VELN3*DX
R14 = P14/(GMlDGA(HI4-0.5*(UI4AUI4+VI4AVI4)))
E14 = R14*HI4-PI4
P1 = GM1*(Q(6,Il)-O.5*(Q(4,Il)*0(4,h1)+G(5,Il)*0(5,Il))/Q(3pIl))
P2 = GMl*(Q(6,I2)-0.5*(O(4,I2)*O(4,I2)+O(5,I2)*O(5, 12))/Q(3,12))
P11 = P2-2. *(P2-Pl)
H1 = (0(6,Il)+Pl)/Q(3vIl)
H2 = (0(6y12)+P2)/0(3lI2)
HIl = H2
VELT2 = (Q(4,12)*DX+Q(5, 12)*DY)/Q(3,I2)
VELN2 = (-Q(4,12)*DY+Q(5,12)*DX)/Q(3,I2)
UIl = YELT2*JJX+VELN2*'Y
VIl = VELT2*DY-VELN2*DX
RIl = PIl/(GMlDG*(HIl-O.5*(UI1*UIl+VII*VIl)))
EIl = RI1AHIl-PIl

C
C Find reflected cell center values

QAYE2(l) = O.25*(0(3,Il)+Q(3,I4)+RIl+RI4)
QAVE2(2) = O.25*(Q(4,I1)+Q(4,I4)+RII*UI1+RI4*UI4)
QAVE2(3) = O.25*(O(5,Il)+Q(5,I4)+RIl*yI1+RI4*y14)
QAVE2(4) = O.25*(Q(6,I1)+0(6,I4)+EII+EI4)

C
C Add constribution~

DO 64 K=1,4
KP2 = K+2
KP6 = K+6
GAVEl = O.25*(Q(KP2,Il)+Q(KFI2)+Q(KP'2,I3)+Q(KP2Q, 14))

C
Q(KP6,14) = Q(KPG,14)+O.25*AVIS*(QAVE1+QAVE2(K)-2.*Q(KP2, 14))

64 CONTINUE
C
C Second Cell:

CALL CELPOINT(IPBB(2,I))
CALL METRC4
CALL CTIIIE
AVIS = AVISCF*DT*(DL+DM)/DV

C
C Extrapolate r,p,hO and reflect u,v

P4 = GM1*((6I4)-.5*O0(4,I4)*0(444)+(5,I4)*(5,I4))/0(3,I4))
P3 = M*06I)05(4I304I3+5y3Q5I3/03I)
P14 = P3-2.*(P3-P4)
H4 = (0(6r14)+P4)/0(3fI4)
H3 = (Q(6tI3)+P3)/Q(3yI3)
H14 = H3
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VELT3 = (Q(4,I3)*DX+Q(5,I3)*DY)/Q(3,I3)
VELN3 = (-Q(4,I3)*DY+O(5,I3)*DX)/Q(3,I3)
UI4 = VELT3*DX+VELN3ADY
VI4 = VELT3*DY-VELN3ADX
RI4 = P14/(GMIDG*(HI4-0.5*(UI4*UI4+VI4AVI4)))
EI4 = R14*HI4-PI4
P1 = GM1*(Q(6,Il)-0.5*(Q(4,Il)*Q(4,Ii)+Q(5,Il)*Q(5,Il))/Q(3,Ii))
P2 = GM1*((6,I2)-0.5A(Q(4,I2)AQ(4,I2)+0(5,I2)AQ(5,I2))/Q(3,I2))
PI1 = P2-2.*(P2-Pl)
H1 = (Q(6,Il)+Pl)/Q(3,Il)
H2 = (Q(6,I2)+P2)/Q(3,I2)
HIl = H2
VELT2 = (Q(4,I2)*DX+0(5,I2)*DY)/Q(3,I2)
VELN2 = (-Q(4,I2)ADY+Q(5,I2)*DX)/Q(3,I2)
UIl = VELT2*DX+VELN2ADY
VIi = VELT2*DY-VELN2ADX
RIl = PI1/(GMIlDG(HI-0.5*(UIl*UIl+VIlAVIi)))
EIl = RIlAHIl-PI1

C
C Find reflected cell center values

QAVE2(1) = 0.25A(0(3,Il)+Q(3,I4)+RII+RI4)
QAVE2(2) = 0.25*(Q(4,Il)+Q(4,I4)+RI1*UIl+RI4*UI4)
QAVE2(3) = 0.25A(Q(5,Il)+Q(5,I4)+RI1*VI1+RI4*VI4)
QAVE2(4) = 0.25*(Q(6,Il)+Q(6,I4)+EII+EI4)

C
C Add contribution

DO 66 K=1,4
KP2 = K+2
KP6 = K+6
QAVEl = 0.25*(Q(KP2,Il)+Q(KP2,I2)+Q(KP2,I3)+Q(KP2,I4))

C
Q(KP6,Il) = Q(KP6,Il)+0.25*AVIS*(QAVEl+QAVE2(K)-2.AQ(KP2,II))

66 CONTINUE
END IF

70 CONTINUE
C

RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: CELPOINT
C----------------------------------------------------------------

SUBROUTINE CELPOINT(I)
C
C Subroutine CELPOINT sets up local cell pointer names
C for the current cell I from the cell pointer system.
C In addition to the definition of the cell smoothing
C switches are set for the 4 corner nodes.
C

INCLUDE 'MAIN.INC'
INCLUDE 'POINT. INC'

C
C Define corner nodes

Il = ABS(IP(1,I))
12 = ABS(IP(2,I))
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13 = ABS(fP(3,I))
14 = ABS(IP(4,I))

C
C Define interpolation pointers

INC = IP(5,I)
INI = IP(6,I)
IN2 = IP(7,I)
IN3 = IP(8,I)
IN4 = IP(9,I)

C
C Set smoothing switches based on the sign
C of the corner pointers

IF(IP(1,I).GE.0) THEN
VISI = 1.0

ELSE
VIS1 = 0.0

END IF
IF(IP(2,I).GE.0) THEN
VIS2 = 1.0

ELSE
VIS2 = 0.0

END IF
IF(IP(3,I).GE.0) THEN

VIS3 = 1.0
ELSE

VIS3 = 0.0
END IF
IF(IP(4,I).GE.0) THEN

VIS4 = 1.0
ELSE

VIS4 = 0.0
END IF
IVIS = VIS1+VIS2+VIS3+VIS4

C
RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: CTIME
C----------------------------------------------------------------

SUBROUTINE CTIME
C
C Subroutine CTIME calculates the maximum stable time step
C for the current cell based on the following equation:
C
C (DT) = CFLAMIN< DV/(!UAY -V*X !+A*DL), DV/(!U*Y -V*X !+A*DM) I
C MAX ET ET XI XI
C

INCLUDE 'MAIN.INC'
INCLUDE 'GAM.INC'
INCLUDE 'MET.INC'
INCLUDE 'INPT.INC'
INCLUDE 'POINT.INC'
INCLUDE 'LUNITS.INC'
DIMENSION QAVE(4)
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C
C FIND MIN OF DX/(IUI+A) AND DY/((VI+A)

DO 2 K=1,4
KP2 = K+2
IF(INC.EQ.0) THEN

QAVE(K) = 0.25*(Q(KP2,I1)+Q(KP2,I2)+Q(KP2,I3)+Q(KP2,I4))
ELSE

QAVE(K) = Q(KP2,INC)
END IF

2 CONTINUE
UTEMP = QAVE(2)/QAVE(1)
VTEMP = QAVE(3)/QAVE(1)
A2 = GAMMA*GM1*(QAVE(4)/QAVE(1)
1 -0.5A(UTEMP*UTEMP+VTEMPAVTEMP))
IF (A2.LT.O.0) THEN

WRITE(LU1,*) '** ERROR IN CTIME A2<0, I=',I
STOP

END IF
A = SQRT(A2)

C
DTA = DV/(ABS(UTEMP*DYDET-VTEMP*DXDET)+AADL)
DTB = DV/(ABS(UTEMP*DYDXI-VTEMPADXDXI)+A*DM)

C
DT = CFL*MIN(DTA,DTB)

C
RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: DELTFG
C----------------------------------------------------------------

SUBROUTINE DELTFG
C
C THIS SUBROUTINE CALCULATES DELF AND DELG
C USING THE VERY EFFICIENT DELTA FORM
C

INCLUDE 'MAIN. INC'
INCLUDE 'MET.INC'
INCLUDE 'SOLV.INC'
INCLUDE 'GAM.INC'
INCLUDE 'POINT. INC'
DIMENSION QAVE(4),DF(4),DG(4)

C
C CALCULATE THE CELL AVERAGE U

DO 1 K = 1,4
KP2 = K+2
IF(INC.EQ.O) THEN

QAVE(K) = 0.25*(Q(KP2,II)+Q(KP2,I2)+Q(KP2,I3)+Q(KP2,I4))
ELSE

QAVE(K) = Q(KP2,INC)
END IF

1 CONTINUE
C
C FIND DF AND DG

W1 = QAVE(2)/QAVE(1)
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W2 = QAVE(3)/QAVE(l)
W3 = GAMMA*QAVE(4)/QAVE(l)-GM1D2*(W1*W1+W2*W2)
W4 = DELU(2)-W1*DELU(l)
W5 = DELU(3)-W2*DELU(l)
W6 = W1*(DELU(2)+W4)
W7 = W2*(DELU(3)+W5)
W8 = GM1*(DELU(4)-0.5*(W6+W7))
W9 = DELU(4)+W8-W3*DELU(l)
DTDV = DT/DV

C
DF(l) DELU(2)
DF(2) = W6+W8
DF(3) = W2ADELU(;)+WlAW5
DF(4) = W3*DELU(2)+Wl*W9

C
DG(1) = DELU(3)
DG(2) = DF(3)
DG(3) = W7+W8
DG(4) = W3ADELU(3)+W2*W9

C
C CALCULATE DELF AND DELG

DO 4 K=l,4
DELF(K) = (DYDETADF(K)-DXDET*DG(K))*DTDV
DELG(K) = (DXDXI*DG(K)-DYDXI*DF(K))*DTDV

4 CONTINUE
C

RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: DELTRS
C----------------------------------------------------------------

SUBROUTINE DELTRS
C This subroutine calculates the Navier-Stokes
C viscous terms in a manor similar to the artifical
C viscousity and adds them to the DU's.

INCLUDE 'MAIN.INC'
INCLUDE 'MET.INC'
INCLUDE 'GAM.INC'
INCLUDE 'POINT.INC'
INCLUDE 'INPT.INC'

C
DIMENSION QAVE(4),DR(4),DS(4),DQDXI(4),DQDET(4),
1 DELR(4),DELS(4)

C
C Calculate average properties for cell center

DO 5 K=1,4
KP2 = K+2

5 QAVE(K) = 0.25*(Q(KP2,Il)+Q(KP2,I2)+Q(KP2,I3)+Q(KP2,I4))
RAVE = QAVE(l)
UAVE = QAVE(2)/QAVE(l)
VAVE = QAVE(3)/QAVE(l)
TAVE = GAMMA*GM1*(QAVE(4)
1 -0.5*(QAVE(2)*QAVE(2)+QAVE(3)QAVE(3))/QAVE())/QAVE(l)
AMUE = (TAVE**(3./2.))*(l.+CSTAR)/(TAVE+CSTAR)
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C
C Calculate cell center gradients in coordinate directions

DO 10 K=l,3
KP2 = K+2
DQDXI(K) = 0.5*(O(KP2,I3)+Q(KP2,I4)-Q(KP2,Il)-Q(KP2,I2))

10 DQDET(K) = 0.5*(Q(KP2,I2)+Q(KP2,I3)-Q(KP2,Il)-Q(KP2,I4))
C

TIl = GAMMAAGM1*(Q(6,Il)
1 -0.5A(Q(4,Il)AQ(4,I1)+Q(5,I1)AQ(5,I1))/Q(3,I1))/Q(3,I1)
T12 = GAMMAAGMlk((6,12)
1 -0.5*(Q(4,I2)*Q(4,I2)+Q(5,I2)*A(5,I2))/9(3,I2))/Q(3,I2)
T13 = GAMMA*GM1*((6,I3)
1 -0.5*(Q(4,I3)*A(4,I3)+Q(5,I3)*(5,I3))/Q(3,I3))/Q(3,I3)
T14 = GAMMA*GM1*(Q(6,14)
1 -0.5A(Q(4,I4)*(4,I4)+Q(5,I4)*(5,I4))/0(3,I4))/Q(3,I4)
DTDXI = 0.5*(TI3+TI4-TIl-TI2)
DTDET = 0.5*(TI2+TI3-TIl-TI4)

C
C define constants

Cl = 4./3.
C2 = 2./3.
C3 = -AMUE/(RAVE*DV*REO)
C4 = -AMUE/(GM1*PRADV*REO)

C
C Calculate stress components

DUDX = DYDET*DQDXI(2)-DYDXI*DQDET(2)
1 -UAVE*(DYDET*DQDXI(l)-DYDXIADQDET(l))
DVDY =-DXDET*DQDXI(3)+DXDXI*DQDET(3)
1 -VAVE*(-DXDET*DQDXI(1)+DXDXI*DQDET(1))
TXX = C3*(Cl*DUDX-C2ADVDY)
TYY = C3*(ClADVDY-C2ADUDX)
TXY = C3A(-DXDET*DQDXI(2)+DXDXIADODET(2)
1 +DYDET*DQDXI(3)-DYDXI*DQDET(3)
2 +(UAVE*DXDET-VAVEADYDET)*DQDXI(1)
3 -(UAVE*DXDXI-VAVE*DYDXI)*DQDET(1))

C
C Calculate DR(k) and DS(k)

DR(2) = TXX
DR(3) = TXY
DR(4) = UAVEATXX+VAVEATXY

1 +C4*(DYDET*DTDXI-DYDXI*DTDET)
DS(2) = TXY
DS(3) = TYY
DS(4) = VAVE*TYY+UAVEATXY
1 +C4*(-DXDET*DTDXI+DXDXIADTDET)

C
C Calculate DELR(k) and DELS(k)

DT2DV = 2.0*DT/DV
DO 15 K=2,4
DELR(K) = (DYDETADR(K)-DXDET*DS(K))*DT2DV
DELS(K) = (DXDXI*DS(K)-DYDXI*DR(K))*DT2DV

15 CONTINUE
C
C Distribute to cell corner nodes
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DO 20 K=2,4
KPG = K+6
Q(KP6,Il) = Q(KP6,Il)+0.25*(-DELR(K)-DELS(K))
Q(KP6,I2) = Q(KPGI2)+0.25*(-DELR(K)+DELS(K))
Q(KP6,I3) = Q(KPGI3)+0.25*(DELR(K)+DELS(K))
Q(KP6,I4) = Q(KP6,I4)+0.25A(DELR(K)-DELS(K))

20 CONTINUE
C

RETURN
END

C---------------------------------------------------------------
C SUBROUTINE: DELTU
C----------------------------------------------------------------

SUBROUTINE DELTU
C
C Subroutine DELTU performs a flux balance over the current
C cell. If this is a fine mesh cell then the flux balance
C is actually calculated, otherwise for coarser mesh cells
C simple injection is used.
C

INCLUDE 'MAIN. INC'
INCLUDE 'SOLV.INC'
INCLUDE 'MET.INC'
INCLUDE 'POINT.INC'

C
C If this is a fine mesh cell the following flux balance
C is performed

IF(INC.EQ.0) THEN
C
C Calculate cell side lengths

XA = Q(l12)-Q(l,Il)
XB = Q(l1,I3)-Q(lI2)
XC = Q(l1,I3)-Q(lI4)
XD = Q(1,I4)-Q(l,Il)
YA = Q(2,12)-Q(2,Il)
YB = Q(2,I3)-Q(2,I2)
YC = Q(2,I3)-Q(2,I4)
YD = Q(2,I4)-Q(2,Il)
DTDV2 = 0.5*DT/DV

C
C Find F and G at the cell corner nodes

CALL FINDFG(II,1)
CALL FINDFG(I2,2)
CALL FINDFG(I3,3)
CALL FINDFG(I4,4)

C
C Perform flux balance using simple
C averaging alone cell sides

DO 8 K=1,4
8 DELU(K)=DTDV2*(((F(K,1)+F(K,2))*YA-(G(K,1)+G(K,2))*XA)

2 -((F(K,3)+F(K,4))*YC-(G(K,3)+G(K,4))AXC)
3 +((G(Kl)+G(K,4))*XD-(F(K,1)+F(K,4))*YD)
4 -((G(X,2)+G(K,3))*XB-(F(K,2)+F(K,3))AYB))

10 CONTINUE
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C
C If this is a coarse cell use simple injection
C of fine grid DU's for value of flux balance.

ELSE
DO 20 K=1,4

20 DELU(K) = Q(K+6,INC)
END IF

C
RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: EULERWAL
C----------------------------------------------------------------

SUBROUTINE EULERWAL(LEV)
C
C This subroutine preforms a stream line intergration
C of the euler eqn. in natural coordinates to inforce
C the solid wall no normal flow boundary condition.
C

INCLUDE 'MAIN. INC'
INCLUDE 'GAM.INC'
INCLUDE 'INPT.INC'
INCLUDE 'POINT.INC'
INCLUDE 'MET.INC'

C
DIMENSION PIP1(257),PEX(257),H0EX(257),TX(257),TY(257),
1 UT(257),DUT(257),QAVE(4)
DIMENSION QN1(4),QN2(4),QAVE2(4),QSAV(6,257)

C
C Calculate pressures at ring of points just inside the
C flow ajoining the boundary

DO 10 I=1,IPBBMX
C

J1 = ABS(IP(3,IPBB(1,I)))
C

PIPl(I) = GM1*(Q(6,Jl)-0.5*(Q(4,Jl)AA2+Q(5,Jl)AA2)/Q(3,Jl))
10 CONTINUE

C
C Calculate extrapolated values at surface

II = 1
IIPl = 2

C
DO 20 I=1,IPBBMX+l
IF(I.LE.IPBBMX) THEN
JPM1 = ABS(IP(1,IPBB(1,I)))
JP = ABS(IP(4,IPBB(1,I)))
JPP1 = ABS(IP(4,IPBB(2,I)))

ELSE
JPM1 = ABS(IP(1,IPBB(1,1)))
JP = ABS(IP(4,IPBB(l,1)))
JPP1 = ABS(IP(4,IPBB(2,1)))

END IF
C
C calculate normal vector

- 265 -



2-T AIRFOIL EULER CODE FOR 0-TYPE MESHES

TMPI = Q(1,JP)-Q(1,JPM1)
TMP2 = Q(2,JP)-0(2,JPM1)
DS1 = SQRT(TMP1*TMP1+TMP2ATMP2)
TX1 = TMPl/DSl
TY1 = TMP2/DS1
TMPI = Q(1,JPPl)-Q(1,JP)
TMP2 = Q(2,JPPl)-Q(2,JP)
DS2 = SQRT(TMPlATMPl+TMP2*TMP2)
TX2 = TMPl/DS2
TY2 = TMP2/DS2

C
TMPl = DSl+DS2
TMP2 = DS2/(DSlATMPl)
TMP3 = (DS2-DS1)/(DSlADS2)
TMP4 = DS1/(DS2ATMPl)

C
RC = 0.5ATMPl/SQRT((TX2-TX1)AA2+(TY2-TYl)AA2)

DXDS = -Q(1,JPMl)*TMP2+Q(1,JP)ATMP3+Q(1,JPP1)ATMP4
DYDS = -Q(2,JPM1)ATMP2+Q(2,JP)ATMP3+Q(2,JPP1)ATMP4
TMP1 = SQRT(DXDSADXDS+DYDSADYDS)

C
DX = DXDS/TMPl
DY = DYDS/TMPl
IF(I.EQ.l) THEN

DXTMP = DX
DYTMP = DY
DX = TX2
DY = TY2
RC = 1.E+20

ELSE IF(I.EQ.IPBBMX+1) THEN
DX = TX1
DY = TY1
RC = 1.E+20

END IF
C

DNX = -DY
DNY = DX

C
C Search for intersection of normal line and ring

AP1 = Q(lJP)
AP2 = DNX
BPl = Q(2,JP)
BP2 = DNY

C
11 CONTINUE

JN = ABS(IP(3,IPBB(1,II)))
JNPl = ABS(IP(3,IPBB(1,IIPl)))

C
Al = Q(1,JN)
A2 = Q(1,JNPl)-Al
B1 = Q(2,JN)
B2 = Q(2,JNPl)-Bl

C
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DEL = AP2AB2-BP2AA2
T = (AP2*(BP1-Bl)-BP2*(APl-Al))/DEL

C
ITMP = 0
IF(T.LT.O.0) THEN

ITMP = 1
IIP1 = II
IF(II.GT.1) THEN
II = II-1

ELSE
II = IPBBMX

END IF
ELSE IF(T.GT.1.0) THEN

ITMP = 1
II = IIP1
IF(IIPl.LT.IPBBMX) THEN

IIP1 = IIP1+1
ELSE

IIP1 = 1
END IF

END IF
IF(ITMP.EQ.1) GO TO 11

C
S = (A2A(BP1-B1)-B2*(APl-A1))/DEL

C
PINT = PIPl(II)+TA(PIPl(IIP1)-PIPl(II))
TMP1 = (Q(6,JN)+PIP1(II))/Q(3,JN)
TMP2 = (0(6,JNP1)+PIP1(IIP1))/Q(3,JNPl)
HOINT = TMPl+T*(TMP2-TMP1)

C
DO 12 K=1,6
QSAV(K,I) = Q(K,JN)+TA(Q(K,JNPl)-Q(K,JN))

12 CONTINUE
C
C Extrapolate to surface using normal momentum eqn
C for pressure and zeroth order extrapolation for
C total enthalpy

PEX(I) = PINT
HOEX(I) = HOINT
IF(I.GT.1) THEN
TX(I) = DX
TY(I) = DY

ELSE
TX(l) = DXTMP
TY(l) = DYTMP

END IF
UT(I) = (DX*Q(4,JP)+DYAQ(5,JP))/Q(3,JP)
PEX(I) = PINT-Q(3,JP)*UT(I)AUT(I)AS/RC

20 CONTINUE
C
C Correct t/e pressure to average of upper and lower
C points just upstream of t/e and set tangent to bisector

PEX(IPBBMX+l) = 0.5A(PEX(1)+PEX(IPBBMX+1))
HOEX(IPBBMX+1) = 0.5*(HOEX(1)+HOEX(IPBBMX+1))
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TX(IPBBMX+1) = -TY(l)
TY(IPBBMX+l) = TX(l)
JP = ABS(IP(4,IPBB(ll)))
UT(IPBBMX+1) = (TX(IPBBMX+1)*Q(4,JP)

+TY(IPBBMX+1)*Q(5,JP))/Q(3,JP)
PEX(l) = PEX(IPBBMX+l)
HOEX(l) = HOEX(IPBBMX+l)
TX(l) = -TX(IPBBMX+l)
TY(l) = -TY(IPBBMX+1)
UT(l) = -UT(IPBBMX+1)

Solve streamline euler eqn.

Zero wall DU's
DO 30 I=1,IPBBMX+l
DUT(I) = 0.0

30 CONTINUE

SWEEP CELL BY CELL AND CALCULATE DU'S
DO 40 I=1,IPBBMX
IP1 = 1+1
Jl = ABS(IP(lIPBB(2,I)))
J2 = ABS(IP(4,IPBB(2,I)))
DS = SQRT(((1,J2)-Q(l,Jl))*A2+(Q(2,J2)-Q(2,Jl))A*2)

DO 32 K=l,4
KP2 = K+2
QAVE(K) = 0.5*(Q(KP2,3l)+Q(KP2,J2))

32 CONTINUE

UTEMP = QAVE(2)/QAVE(l)
VTEMP = QAVE(3)/QAVE(l)
A2 = GAMMA*GM1*(QAVE(4)/QAVE(l)

-0.5*(UTEMP*UTEMP+VTEMP*VTEMP))
A = SORT(A2)

DT = CFLADS/(SQRT(UTEMPAA2+VTEMPAA2)+A)

CHNU = 0.5*((UT(I)AA2-UT(IP1)**2)
1 +(1./Q(3,Jl)+l./Q(3,J2))*(PEX(I)-PEX(IP1)))ADT/DS
CHNF = 0.5*(UT(I)+UT(IPl))*CHNUADT/DS

DUT(I) = DUT(I) +0.5A(CHNU-CHNF)
DUT(IPl) = DUT(IP1)+0.5*(CHNU+CHNF)

40 CONTINUE

DUT(l) = DUT(1)-DUT(IPBBMX+1)
C
C Calculate new conditions and correct DQ's

DO 50 I=1,IPBBMX
CCC IF(IPBB(3,I).NE.4) GOTO 50

JP = ABS(IP(4,IPBB(lI)))
UT(I) = UT(I)+DUT(I)

C
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RNEW = PEX(I)/(GMIDG*(HOEX(I)-0.5AUT(I)*UT(I)))
UNEW = TX(I)AUT(I)
VNEW = TY(I)*UT(I)
ENEW = RNEW*HOEX(I)-PEX(I)

C
Q(7,JP) = RNEW -Q(3,JP)
Q(8,JP) = RNEWAUNEW -0(4,JP)
Q(9,JP) = RNEW*VNEW -Q(5,JP)
Q(10,JP) = ENEW -Q(6,JP)

50 CONTINUE
C
C This section smooths the solid wall boundary points.
C Points are always smoothed on the lowest level in
C which the two adjoining cell to the boundary exist.
C This is consistent with the internal point smoothing.
C For the solid wall boundary two formulations are
C possible:
C
C IBCOND = 0 no smoothing applied, just return
C
C = 1 1-D tangent smoothing model
C The same as the farT ield boundary with a
C ramp increase in smoothing around the t.e.
C
C =2 Standard internal smoothin model usin
C reflected points.
C A standard internal smoothing using extrapolated
C information to define an imaginary line of points
C inside the wall. In this case the smoothing is not
C increased in the t.e. region.
C
C Constants

IBCOND g0
JTESMTH =5

TECOEF =4.0

IF( IBCOND.EQ.0) RETURN
IF(IBCOND.EQ.2) GO TO 140

C
C Type 1: sD smoothing formulation

DO 130 I=l,IPBBMX
CCC IF(IPBB(3,I).NE.4) GO TO 130
C
C Is point to be smoothed on this level?

ICONTD = 0
IF( IPBB(l, I) .GE.LEVP(1,LEV) .AND.IPBB(l, I) .LE.LEYP(2,LEV) )THEN

IF(IPBB(2,I).LE.LEVP(2LEV)) ICONTl = 1
ELSE IF(IPBB(2I).GELEVP(TRLEV).AND.IPBB(2I).LE.LEVP(2LEV))

1THEN
IF(IPBB(l,I).LE.LEVP(2,LEV)) ICONTi = 1

END IF
C
C If yes, calculate and add contributions form
C both cells surrounding the cell

IF(ICONT1.EQ.l) THEN
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C
C First cell:

CALL CELPOINT(IPBB(1,I))
CALL METRC4
CALL CTIME
AVIS = AVISCF*DTA(DL+DM)/DV

C
C Ramp smoothing near t.e.

IF(I.LE.JTESMTH+1) THEN
AVIS = (1.0+TECOEF*FLOAT(JTESMTH-I+1)/FLOAT(JTESMTH))*AVIS

ELSE IF(I.GE.IPBBMX-JTESMTH+l) THEN
AVIS = (1.0+TECOEF*FLOAT(I+JTESMTH-IPBBMX-1)

1 /FLOAT(JTESMTH))AAVIS
END IF

C
DO 124 K=1,4
KP2 = K+2
KP6 = K+6
Q(KP6,14) = Q(KP6,I4)+0.25*AVISA(Q(KP2,Il)-Q(KP2,I4))

124 CONTINUE
C
C Second cell:

CALL CELPOINT(IPBB(2,I))
CALL METRC4
CALL CTIME
AVIS = AVISCFADT*(DL+DM)/DV

C
C Ramp soothing near t.e.

IF(I.LE.JTESMTH+1) THEN
AVIS = (1.0+TECOEF*FLOAT(JTESMTH-I+1)/FLOAT(JTESMTH))*AVIS

ELSE IF(I.GE.IPBBMX-JTESMTH+l) THEN
AVIS = (1.0+TECOEF*FLOAT(I+JTESMTH-IPBBMX-1)

1 /FLOAT(JTESMTH))*AVIS
END IF

C
DO 126 K=1,4
KP2 = K+2
KP6 = K+6

Q(KP6,Il) = Q(KP6,Il)+0.25AAVIS*(Q(KP2,I4)-Q(KP2,Il))
126 CONTINUE

END IF
130 CONTINUE

C
RETURN

C
C Type 2: Reflection wall smoothing

140 CONTINUE
DO 170 I=1,IPBBMX
IP1 = I+1
IM1 = I-1
IF(IPBB(3,I).NE.4) GO TO 170

C
C Is this point to be smoothed on this level?

ICONT1 = 0
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IF( IPBB(1, I).GE.LEVP(1,LEV). AND. IPBB(l, I).LE.LEVP(2, LEV))THEN
IF(IPBB(2,I).LE.LEVP(2,LEV)) ICONT1 = 1

ELSE IF(IPBB(2,I).GE.LEVP(1,LEV).AND.IPBB(2,I).LE.LEVP(2, LEV))
1 THEN

IF(IPBB(1,I).LE.LEVP(2,LEV)) ICONT1 = 1
END IF

C
C If Yes, calculate and add contributions form both cells

IF(ICONTl.EQ.l) THEN
C
C Calculate surface tangent vector (dx,dy)

Jl = ABS(IP(1,IPBB(lI)))
J2 = ABS(IP(4,IPBB(1,I)))
J3 = ABS(IP(4,IPBB(2,I)))

C
TMP1 = Q(lJ2)-Q(1,J1)
TMP2 = Q(2,J2)-Q(2,J)
DS1 = SQRT(TMP1ATMPl+TMP2ATMP2)
TMP1 = Q(1,J3)-Q(1,J2)
TMP2 = Q(2, J3)-Q(2,J2)
DS2 = SQRT(TMPlATMPl+TMP2ATMP2)

C
TMP1 = DS1+DS2
TMP2 = DS2/(DSlATMPl)
TMP3 = (DS2-DS1)/(DSI*DS2)
TMP4 = DSl/(DS2ATMP1)

C
DXDS = -Q(1,J)ATMP2+0(lJ2)ATP3+Q(lJ3)ATMP4
DYDS = -Q(2,J1)ATMP2+Q(2,J2)ATMP3+O(2,J3)ATMP4
TMP1 = SQRT(DXDSADXDS+DYDSADYDS)

C
DX = DXDS/TMPl
DY = DYDS/TMP1

C
C First cell:

CALL CELPOINT(IPBB(1,I))
C

DXDXI = 0.5A(QSAV(1,I)+Q(1,I4)-QSAV(1,IMl)-Q(l,Il))
DYDXI = 0.5A(GSAV(2,I)+Q(2,I4)-QSAV(2, IM1)-Q (2,Il))
DXDET = 0.5A(QSAV(1,IM1)+QSAV(1,I)-Q(1,II)-Q(l,I4))
DYDET = 0.5A(QSAV(2,IM1)+QSAV(2,I)-Q(2,Il)-Q(2,I4))
DV = DXDXIADYDET-DXDETADYDXI
DL = SQRT(DXDETADXDET+DYDETADYDET)
DM = SQRT(DXDXIADXDXI+DYDXIADYDXI)

C
C FIND MIN OF DX/(IUI+A) AND DY/(IVI+A)

DO 150 K=1,4
KP2 = K+2
QAVE(K) = 0.25A(G(KP2,Il)+QSAV(KP2,IM1l)

1 +QSAV(KP2,I)+Q(KP2,I4))
150 CONTINUE

UTEMP = QAVE(2)/QAVE(l)
VTEMP = QAVE(3)/QAVE(l)
A2 = GAMMAAGMlA(QAVE(4)/QAVE(1)
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-0.5A(UTEMPAUTEMP+VTEMPAVTEMP))
A = SQRT(A2)

C
DTA = DV/(ABS(UTEMPADYDET-VTEMPADXDET)+AADL)
DTB = DV/(ABS(UTEMPADYDXI-VTEMPADXDXI)+AADM)
DT = CFL*MIN(DTADTB)

C
AVIS = AVISCFADTA(DL+DM)/DV

C
C Extrapolate r,p,hO and reflect u,v

P4 = GMlA(Q(6,I4)-0.5A(Q(4,I4)*Q(4,I4)+0(5,I4)*Q(5,I4))/0(3,I4))
P3 = GM1*(QSAV(6,I)-0.5*(OSAV(4,I)AA2+QSAV(5,I)AA2)/QSAV(3,I))
P14 = P3-2.*(P3-P4)
H4 = (Q(6,14)+P4)/0(3,I4)
H3 = (QSAV(6,I)+P3)/QSAV(3,I)
H14 = H3
VELT3 = (QSAV(4,I)ADX+QSAV(5,I)ADY)/QSAV(3,I)
VELN3 = (-QSAV(4,I)ADY+QSAV(5,I)*DX)/QSAV(3,I)
U14 = VELT3ADX+VELN3ADY
V14 = VELT3ADY-VELN3DX
R14 = P14/(GMlDG*(HI4-0.5A(UI4AUI4+VI4AVI4)))
E14 = R14AHI4-PI4
P1 = GMlA(Q(6,I)-0.5A(Q(4,Il)*(4,Il)+(5,Il)*(5,I1))/0(3,Il))
P2 = GMlA(GSAV(6,IMl)-0.5A(GSAV(4,IM1)**2

1 +QSAV(5,IMl)AA2)/QSAV(3,IM1))
PI1 = P2-2 .A(P2-Pl)
Hl = (Q(6,Il)+Pl)/Q(3,Il)
H2 = (QSAV(6,IM1)+P2)/QSAV(3,IMl)
HIl = H2
VELT2 = (QSAV(4,IM1)ADX+QSAV(5,IM1)ADY)/QSAV(3,IMl)
VELN2 = (-QSAV(4,IM1)*DY+QSAV(5,IM1)ADX)/QSAV(3,IMI)
UIl = VELT2ADX+VELN2ADY
VII = VELT2*DY-VELN2ADX
RIl = PIl/(GMlDG*(HIl-0.5A(UIlAUIl+VIlAVIl)))
EIl = RIlAHIl-PIl

C
C Find reflected cell center values

GAVE2(l) = 0.25*(Q(3,Il)+Q(3,I4)+RIl+RI4)
QAVE2(2) = 0.25A(G(4,II)+O(4,I4)+RIlAUIl+RI4AUI4)
QAVE2(3) = 0.25*(Q(5,Il)+Q(5,I4)+RIlAVIl+RI4AVI4)
QAVE2(4) = 0.25A(Q(6,Il)+Q(6,I4)+EIl+EI4)

C
C Add contribution

DO 164 K=1,4
KP2 = K+2
KP6 = K+6
QAVEl = 0.25*(Q(KP2,Il)+QSAV(KP2,IM1)+QSAV(KP2,I)+Q(KP2,I4))

C
Q(KP6,I4) = Q(KP6,I4)+0.25AAVIS*(QAVEl+QAVE2(K)-2.AQ(KP2,I4))

164 -CONTINUE
C
C Second Cell:

CALL CELPOINT(IPBB(2,I))
C
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DXDXI = O.5A(QSAV(,IPl)+Q(l,14)-QSAV(l, I)-Q(l,Il))
DYDXI =O05*(QSAV(,IP1)+Q(2,I4)-QSAV(2, ~I)-O (2fn,1))
EIXDET = 0.5iA(QSAV(l, I)+QSAV(l, IPl)-G(1, Il)-U(l, 14))
DYDET = 0.5*(QSAV(2,I)+QSAV(2,'IPl)-Q(2.,11)-Q(2, 14))
DV = DXDXIADYDET-DXDET*DYI'XI
DL = SQRT (DXDETADXDET+DYDETADYDET)
DM = SQRT(CDXDX IADXDX I+DYiX IADYDXI)

C
C FIND MIN OF DX/(IUI+A) AND DY/(IVI+A)

DO 165 K=l,4
KP2 = K+2
QAVE(i<) = O.2&5*(Q(KP2Q,I1)+QSAV(KP2,I)+QSAV(<P2, IP1)+Q(KP2,14))

165 CONTINUE
UTEMP = QAVE(2)/QAVE(1)
VTEMP = QAVE(3)/QAVE(1)
A2 = GAMMA*GMl(AVE(4)/GAVE(l)
1 -O.5*(UTEMP*UTEMP+VTEMP*VTEMP))

A = SQRT(A2)
C

PTA = DV! (ABS (UTEMPADYDEI-VTEMP*DXDET )+A*DL)
DTB = DV! (ABS(CUTEMPADYDX I-VTEMPADXDX I) +AAI'M)
DT = CEL*MIN(DTA,DIB)

C
AVIS = AVISCF*DT*(DL+DM)/DV

C
C Extrapolate r,p,hO and reflect u,v

P4 = GM1*(Q(6,I4)-O.5*(Q(4,14)*Q(4,14)+0(5,14)AQ(5,14))/Q(3yI4))
P3 = GMl*(QSAV(6,IPl)-O.5*(QSAV(4,IPl)**2

1 +QSAV(5, IPl)*A2)/QSAV(3, IPI))
P14 = P3-2.*(P3-P4)
H4 = (G(GF14)+P4)/0(3,I4)
H3 = (QSAV(GrIPl)+P3)/GSAV(3,IPl)
H14 = H3
VELT3 = (QSAV(4,IPl)*DX+QSAV(5,IPl)*DY)/QSAV(3,IPI)
VELN3 = (-QSAV(4,IPl)*DY+QSAV(5,IPl)APX)/QSAV(3,IPl)
U14 = VELT3ADX+VELN3*DY
V14 = VELT3*DY-VELN3*DX
R14 = P14/(Gt~lDG*(HI4-0.5i(UI4*UI4+VI4*VI4)))
E14 = R14*HI4-PI4

P2 = GMl*(QSAV(6,I)-O.5*(QSAV(4,I)**2+QSAV(5, I)**2)/QSAV(3,I))
P11 = P2-2.*(P"-Pl)
HI = (0(6Ii)+Pl)/0(3,Il)
H2 = (QSAV(GI)+P2)/QSAV(3,I)
HIl = H2
VELT2 = (QSAV(4,I)*DX+QSAV(5,I)*DY)/QSAV(3,I)
VELN2 = (-QSAV(4,I)*DY+QSAV(5,I)*DX)/QSAV(3,I)
UHl = VELT2*DX+VELN2*DY
VIl = VELT2ADY-VELN2*DX
Rhl = PII/(GMlDG*(HIl-O.5A(UIl*UIl+VI1*VIl)))
El = RIlAHIl-PIl

C
C Find reflected cell cernter values

QAVE2(l) = O.25*(Q(3,I1)+Q(3pl4)+RI1+RI4)
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QAVE2(2) = 0.25A(G(4,Il)+Q(4,I4)+RIlhUIl+RI4AUI4)
QAVE2(3) = 0.25A(O(5,Il)+Q(5,I4)+RIlkVIl+RI4AVI4)
QAVE2(4) = 0.25A(Q(6,Il)+Q(6,I4)+EIl+EI4)

C
C Add contribution

DO 166 K=1,4
KP2 = K+2
KP6 = K+6
QAVEl = 0.25A(Q(KP2,Il)+QSAV(KP2,I)+QSAV(KP2,IP1)+Q(KP2,I4))

C
Q(KP6,Il) = Q(KP6,Il)+0.25AAVISA(QAVEl+QAVE2(K)-2.*Q(KP2,Il))

166 CONTINUE
END IF

170 CONTINUE
C

RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: EULERWAL2
C----------------------------------------------------------------

SUBROUTINE EULERWAL2(LEV)
C
C This subroutine preforms a stream line intergration
C of the euler eqn. in natural coordinates to inforce
C the solid wall no normal flow boundary condition.
C

INCLUDE 'MAIN.INC'
INCLUDE 'GAM.INC'
INCLUDE 'INPT.INC'
INCLUDE 'POINT.INC'
INCLUDE 'MET.INC'
INCLUDE 'LUNITS.INC'

C
DIMENSION PIPl(257),PEX(257),H0EX(257),
1 UT(257),DUT(257),QAVE(4)
DIMENSION QN1(4),QN2(4),QAVE2(4),QSAV(6,257)

C
C Calculate pressures at ring of points just inside the
C flow ajoinin3 the boundary

DO 10 I=lIPBBMX
C

Jl = ABS(IP(3,IPBB(1,I)))
C

PIPl(I) = GMlA(Q(6,J1)-0.5A(Q(4,J1)AA2+Q(5,Jl)AA2)/Q(3,Jl))
10 CONTINUE

C
C Calculate extrapolated values at surface

II = 1
IIPl = 2

C
DO 20 I=1,IPBBMX+l
IF(I.LE.IPBBMX) THEN

JP = ABS(IP(4,IPBB(1,I)))
ELSE
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JP = ABS(IP(4,IPBB(1,l)))
END IF

C
II = IWPl(I)
IF(II.LT.IPBBMX) THEN

IIPI = II+1
ELSE

IIP1 = 1
END IF
JN = ABS(IP(3,IPBB(lII)))
JNP1 = ABS(IP(3,IPBB(1,IIP1)))

C
PINT = PIPl(II)+TSCL(I)*(PIPl(IIPl)-PIPl(II))
TMP1 = (Q(6,JN)+PIPl(II))/Q(3,JN)
TMP2 = (Q(6,JNP1)+PIPl(IIP1))/Q(3,JNP1)
HOINT = TMP1+TSCL(I)A(TMP2-TMP1)

C
DO 12 K=1,6
QSAV(K,I) = Q(K,JN)+TSCL(I)A(Q(K,JNPl)-Q(KJN))

12 CONTINUE
C
C Extrapolate to surface using normal momentum eqn
C for pressure and zeroth order extrapolation for
C total enthalpy

PEX(I) = PINT
HOEX(I) = HOINT
IF(I.EQ.1.OR.I.EQ.IPBBMX+1) THEN
DX = TX(l)-TX(IPBBMX+l)
DY = TY(l)-TY(IPBBMX+l)
TMP = SQRT(DXADX+DY*DY)
DX = DX/TMP
DY = DY/TMP

ELSE
DX = TX(I)
DY = TY(I)

END IF
UT(I) = (DXAQ(4,JP)+DYAQ(5,JP))/Q(3,JP)
PEX(I) = PINT-Q(3,JP)AUT(I)*UT(I)ASSCL(I)/RC(I)

20 CONTINUE
C
C Correct t/e pressure to average of upper and lower
C points just upstream of t/e and set tangent to bisector

PEX(IPBBMX+1) = 0.5*(PEX(1)+PEX(IPBBMX+1))
HOEX(IPBBMX+l) = 0.5*(HOEX(1)+HOEX(IPBBMX+1))
DX = TX(l)-TX(IPBBMX+1)
DY = TY(l)-TY(IPBBMX+l)
TMP = SQRT(DXADX+DYADY)
DX = DX/TMP
DY = DY/TMP
JP = ABS(IP(4,IPBB(l,l)))
UT(IPBBMX+1) = (-DX*Q(4,?JP)

-DYAQ(5,JP))/0(3,JP)
PEX(l) = PEX(IPBBMX+l)
HOEX(1) = HOEX(IPBBMX+l)
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UT(1) = -UT(IPBBMX+1)
C
C Solve streamline euler eqn.
C
C Zero wall DU's

DO 30 I=1,IPBBMX+l
DUT(I) = 0.0

30 CONTINUE
C
C SWEEP CELL BY CELL AND CALCULATE DU'S

DO 40 I=1,IPBBMX
IP1 = I+1
J1 = ABS(IP(lIPBB(2,I)))
J2 = ABS(IP(4,IPBB(2,I)))
DS = SQRT((Q(lJ2)-Q(1,J1))*A2+(Q(2,J2)-Q(2,Jl))AA2)

C
DO 32 K=1,4
KP2 = K+2
QAVE(K) = 0.5*(Q(KP2,Jl)+Q(KP2,J2))

32 CONTINUE
C

UTEMP = QAVE(2)/QAVE(l)
VTEMP = QAVE(3)/QAVE(l)
A2 = GAMMAAGMI*(QAVE(4)/QAVE(1)
1 -0.5*(UTEMP*UTEMP+VTEMP*VTEMP))
A = SORT(A2)

C
DT = CFLADS/(SORT(UTEMP*A2+VTEMP**2)+A)

C
CHNU = 0.5*((UT(I)**2-UT(IP1)**2)
1 +(1./(3,J1)+1./Q(3,J2))A(PEX(I)-PEX(IPl)))*DT/DS
CHNF = 0.5*(UT(I)+UT(IP1))ACHNUADT/DS

C
DUT(I) = DUT(I) +0.5*(CHNU-CHNF)
DUT(IPI) = DUT(IP1)+0.5A(CHNU+CHNF)

40 CONTINUE
C

DUT(1) = DUT(1)-DUT(IPBBMX+l)
C
C Calculate new conditions and correct DO's

DO 50 I=1,IPBBMX
CCC IF(IPBB(3,I).NE.4) GOTO 50

JP = ABS(IP(4,IPBB(1,I)))
UT(I) = UT(I)+DUT(I)

C
IF(I.EQ.1) THEN
DX = TX(1)-TX(IPBBMX+1)
DY = TY(1)-TY(IPBBMX+l)
TMP = SQRT(DX*DX+DY*DY)
DX = DX/TMP
DY = DY/TMP

ELSE
DX = TX(I)
DY = TY(I)
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END IF
RNEW = PEX(I)/(GMlDG*(HOEX(I)-0.5AUT(I)AUT(I)))
UNEW = DXAUT(I)
VNEW = DY*UT(I)
ENEW = RNEW*HOEX(I)-PEX(I)

C
0(7,?JP) = RNEW -Q(3,JP)
Q(8,JP) = RNEWAUNEW -Q(4,JP)
0(9,?JP) = RNEWAVNEW -0(5,JP)
Q(10,JP) = ENEW -Q(6,JP)

50 CONTINUE
C
C This section smooths the solid wall boundary points.
C Points are always smoothed on the lowest level in
C which the two adjoining cell to the boundary exist.
C This is consistent with the internal point smoothing.
C For the solid wall boundary two formulations are
C possible:
C
C IBCOND =0 ro smoothing applied, just return
C
C = 1 1-r tangent smoothing model
C The same as the farfield boundary with a
C ramp increase in smoothing around the t.e.
C
C = 2 Standard internal smoothing model using
C reflected points.
C A standard internal smoothing using extrapolated
C information to define an imaginary line of points
C inside the wall. In this case the smoothing is not
C increased in the t.e. region.
C
C Constants

IBCOND = 0
JTESMTH = 5
TECOEF =4.0

IF( IBCONI.EQ.0) RETURN
IF(IICOND.EQ.2) GO TO 140

C
C Type 1: I -smoothing formulation

DO 130 I=lIPBBMX
CCC IF(IPBBf(3,I).NE.4) GO TO 130
C
C Is point to be smoothed on this level?

ICONTS = 0
IF( IPBBEIII) .GE.LEVP(1,LEV) .AND. IPBB(l, I) .LE.LEVP(2yLEV) )THEN
IA(IsBB(2,I).LE.LEVP(2LEV)) ICONTl = 1

ELSE IF(IBB(2I).GE.LEP(URLEV).AND.IPBB(2I).LE.LEVP(2,LEV))
C THEN

IF(IPBB(lI).LE.LEVP(2LEV)) ICONT = 1
END IF

C
C If yes, calculate and add contributions form
C both cells surrounding the cell
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IF(ICONT1.EG.1) THEN
C
C First cell:

CALL CELPOINT(IPBB(1,I))
CALL METRC4
CALL CTIME
AVIS = AVISCF*DT*(DL+DM)/DV

C
C Ramp smoothing near t.e.

IF(I.LE.JTESMTH+1) THEN
AVIS = (1.0+TECOEFAFLOAT(JTESMTH-I+1)/FLOAT(JTESMTH))*AVIS

ELSE IF(I.GE.IPBBMX-JTESMTH+l) THEN
AVIS = (1.0+TECOEF*FLOAT(I+JTESMTH-IPBBMX-1)

I /FLOAT(JTESMTH))*AVIS
END IF

C
DO 124 K=1,4
KP2 = K+2
KP6 = K+6
Q(KP6,I4) = Q(KP6,I4)+0.25AAVIS*(Q(KP2,Il)-Q(KP2,I4))

.124 CONTINUE
C
C Second cell:

CALL CELPOINT(IPBB(2,I))
CALL METRC4
CALL CTIME
AVIS = AVISCF*DTA(DL+DM)/DV

C
C Ramp soothing near t.e.

IF(I.LE.JTESMTH+l) THEN
AVIS = (1.0+TECOEF*FLOAT(JTESMTH-I+1)/FLOAT(JTESMTH))*AVIS

ELSE IF(I.GE.IPBBMX-JTESMTH+l) THEN
AVIS = (1.0+TECOEF*FLOAT(I+JTESMTH-IPBBMX-1)

1 /FLOAT(JTESMTH))*AVIS
END IF

C
DO 126 K=1,4
KP2 = K+2
KP6 = K+6

O(KP6,Il) = Q(KP6,Il)+0.25*AVIS*(Q(KP2,I4)-Q(KP2,II))
126 CONTINUE

END IF
130 CONTINUE

C
RETURN

C
C Type 2: Reflection wall smoothing

140 CONTINUE
DO 170 I=1,IPBBMX
IPl = I+1
IM1 = I-1
IF(IPBB(3,I).NE.4) GO TO 170

C
C Is this point to be smoothed on this level?
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ICONT1 = 0
IF(IPBB(1,I).GE.LEVP(1,LEV).AND.IPBB(lI).LE.LEVP(2,LEV))THEN

IF(IPBB(2,I).LE.LEVP(2,LEV)) ICONTI = 1
ELSE IF(IPBB(2,I).GE.LEVP(1,LEV).AND.IPBB(2,I).LE.LEVP(2,LEV))
1 THEN

IF(IPBB(1,I).LE.LEVP(2,LEV)) ICONTI = 1
END IF

C
C If Yes, calculate and add contributions form both cells

IF(ICONTl.EQ.l) THEN
C
C Calculate surface tangent vector (dxdy)

J1 = ABS(IP(lIPBB(l,I)))
J2 = ABS(IP(4,IPBB(1,I)))
J3 = ABS(IP(4,IPBB(2,I)))

C
TMP1 = Q(1,J2)-Q(1,J1)
TMP2 = 0(2,J2)-0(2,Jl)
DS1 = SORT(TMPlATMP1+TMP2ATMP2)
TMP1 = Q(lJ3)-Q(1,J2)
TMP2 = 0(2,J3)-Q(2,J2)
DS2 = SORT(TMPlATMP1+TMP2ATMP2)

C
TMPl = DSl+DS2
TMP2 = DS2/(DSlATMP1)
TMP3 = (DS2-DS1)/(DSlADS2)
TMP4 = DS1/(DS2ATMPl)

C
DXDS = -O(1,Jl)ATMP2+Q(1,J2)ATMP3+0(1,J3)ATMP4
DYDS = -0(2,J1)ATMP2+0(2,J2)ATMP3+Q(2,J3)ATMP4
TMPl = SORT(DXDSADXDS+DYDSADYDS)

C
DX = DXDS/TMP1
DY = DYDS/TMP1

C
C First cell:

CALL CELPOINT(IPBB(lI))
C

DXDXI = 0.5*(QSAV(1,I)+Q(1,I4)-QSAV(lIMl)-Q(1,Il))
DYDXI = 0.5A(QSAV(2,I)+Q(2,I4)-QSAV(2,IM1)-0(2,Il))
DXDET = 0.5A(QSAV(lIM1)+QSAV(lI)-Q(l,Il)-Q(lI14))
DYDET = 0.5A(QSAV(2,IM1)+QSAV(2,I)-Q(2,Il)-Q(2,I4))
DV = DXDXIADYDET-DXDETADYDXI
DL = SORT(DXDETADXDET+DYDETADYDET)
DM = SORT(DXDXI*DXDXI+DYDXIADYDXI)

C
C FIND MIN OF DX/(IUJ+A) AND DY/(IVI+A)

DO 150 K=1,4
KP2 = K+2
OAVE(K) = 0.25A(Q(KP2, Il)+OSAV(KP2,IMl)

1 +SAV(KP2,I)+Q(KP2,I4))
150 CONTINUE

UTEMP = QAVE(2)/QAVE(l)
VTEMP = QAVE(3)/QAVE(l)
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A2 = GAMMA*GMlA(GAVE(4)/QAVE(1)
1 -O.5k(UTEMP*UTEM'+VTEMF'*VTEMP))

A = SQRT(A2)
C

PTA = DV! (ABS (UTEMP*DYDET-VTEMPArDXDET) +AADL)
DTB = DV! (ABS (UTEMP*DYDX I-VTEMP*DXDX I) +A*DM)
DT = CFL*MIN(r'TAyDTB)

C
AVIS = AV ISCFAIT* (DrL+DM )/DV

C
C Extrapola3te r,p,hO arnd reflect u,v

P4 = GMl*(Q(G,14)-O.5*(Q(4,14)*Q(4,14)+O(5,14)*Q(5,14))/Q(3,14))
P3 = GMlA(QSAV(G,I)-O.5*(QSAV(4,I)**2+QSAV(5,I)**A2)/QSAV(3,I))
P14 = P3-2.*(P3-P4)
H4 = (Q(6r14)+P4)/Q(3fI4)
H3 = (QSAV(I)+P3)/QSAV(3,I)
H14 = H3
VELT3 = (QSAV(4,I)ADX+QSAV(5,I)*DY)/QSAV(3,I)
VELN3 =(-QSAV(4,I)*DY4-QSAV(,I)ADX)/QSAV(3,I)
U14 =VELT3*DX+VELN3rIY
V14 = VELT3*DY-VELN3ADX
R14 = P14/(GMlDG*(HI4-0.5h(UI4*UI4+VI4*VI4)))
E14 = R14*HI4-PI4

P2 = GM1*(QSAV(6,IMl)-0.5*(QSAV(4,IMl)**2
1 4-QSAV(5, IMl)**2)/QSAV(3, 111))

P11 = P2-23 *(P2-Pl)
HI = (0(6tI1)+P1)/Q(3,Il)
H2 = (QSAV(G,IMI)+P2)/QSAV(3,I~l)
HIl = H2
VELT2 = (QSAV(4,IMI)r'X+SAV(5,M1*ADY)/OSAV(3,IMl)
VELN2 = (-QSAV(4,IM1)ADY+QSAV(5,IM1)*IX)/QSAV(3,IMl)
UIl = VELT2ADX+VELN2ADY
VIl = VELT2*DY-VELN2*DX
Rhl = PI1/(GMlDG*(HII-0.5*(UIl*UI1+VI1*VII)))
El = RIlAHIl-PIl

C
C Find reflected cell center values

GAVE2(l) = Q.25*(0(3,Il)+Q(3tI4)+RI1+RI4)
QAVE2(2) = 0.25*(0(4,I1).Q(4,14)4-RI1*UIl+RI4*UI4)
QAVE2(3) = 03 215*(Q (5,11)-0 (5,14)+RIl*VI1+RI4*Y14)
QAVE2(4) = 0.25A(G(G,Il)+Q(6yI4)+EIl+E14)

C
C Add contribution

DO 164 K1,y4
KP2 = K+2
KP6 = G
QAVE1 = 0.25*(0(KP2,Il)+QSAV(KP2,IMI)+QSAV(KP2,I)+Q(KP2,14))

C
Q(KP6,14) = Q(KP6,I4)+0.25*AVIS*(QAVEi4-QAVE2(K)-2.AQ(KP2,14))

164 CONTINUE
C
C Second Cell:

CALL CELPOINT(IPBB(2,I))
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C
DXDXI = O.5A(QSAV(i,IP1)+Q(i,14)-QSAV(Ii)-Q(li))
DYDXI = Q0.5(QSAV(,IP1)+Q(,tI4)-QSAV(2,I)-Q(2,Ii))
DXr'ET = O.5*(QSAV(iI)+QSAV(i, IP1)-Q(i,Ii)-O(i, 14))
DYDET = O.5*(QSAV(2,I)+QSAV(2,IPI)-Q('2,Ii)-GQ2,4))
DV = DXDXI*DYDET-DXDET*DYDXI
DL = SORT (DXDEITADXDET+DYDET*DYDET)
D'M = SORT (DXDX I*DXDX I+DYDX I*DYDX I)

C
C FIND MIN OF DX/(IUI+A) AND DY/(jVj+A)

rO 165 K=104
KP2 = K<+2
GAVE(K) = Q.25*(Q(KP2,uI1)+QSAV(KP2,I)+QSAV(KPQ, IPI)+Q(KP2, 14))

165 CONTINUE
UTEMP = QAVE(2)/GAVE(i)
VIEMP = GAVE(3)/QAVE(i)
A2 = GAMMAAGMi*(DAVE(4)/QAVE(i)
I -Q.5*(UIEMP*UTEMP+VTEMP*VTEMP))

A = SORT(A2)
C

DIA = DV! (ABS (UTEMPADYDET-VTEMPADXDET )+A*DL)
DTB = DV! (ABS (UTEMP*DYDX I-VTEMPADXDX I) +A*DM)
DT = CEL*MIN(DTA,DTB)

C
AVIS = AVISCFADTA(DL+DM)/DV

C
C Extrapolate r,p,hO and reflect u,v

P4 = GMi*(Q(6,14)-O.5*(0(4,I4)*O(4,14)+O(5,14)*Q(5,14))/O(3,14))
P3 = GMIA(QSAY(6,IPl)-O.5*(QSAV(4,IPi)*A2

1+QSAV(5,IIi)*A2)/OSAV(3, IPi))
P'14 = P3-2.*(P3-P4)
H4 = (Q(GP14)+P4)/0(3tI4)
H3 = (OSAV(GIPi)+P3)/QSAY(3,IPi)
H14 = H3
VELT3 = (OSAV(4,IPI)ADX+QSAV(5,IPI)*DY)/OSAV(3,IPi)
VELN3 = (-OSAV(4,IPi)*DY+QSAV(5,IPi)*DX)/QSAV(3,IPI)
U14 = VELT3*DX+VELN3*DY
V14 = VELT3ADY-VELN3*DX
R14 = P14/(GMlDG*(HI4-0.5*(UI4AUI4+VI4hVI4)))
E14 = R14*HI4-PI4
P1 = GMiA((G, Ii)-0.5*(O(4, Ii)AQ(4, Ii)+0(5, Ii)AQ(5, Il))/Q(3, Ii))
P2 = GM1*(QSAY(6,I)-O.5A(QSAV(4,I)**2+QSAV(5, I)A*2)/QSAV(3,I))
P11 = P2-2.*(P241l)
HI = (Q(G,Ii)+Pi)/0(3,Ii)
H2 = (QSAV(G,I)+PnQ)/QSAV(3,I)
HIl = H2
VELT2 = (QSAV(4,I)*DX+QSAV(5,I)*DY)/QSAV(3,I)
VELN2 = (-OSAV(4,I)ADY4-QSAV(5,I)*DX)/QSAV(3,I)
Ul = VELT2*DX+VELN.2ADY
VIl = VELT2*DY-YE LN2ADX
RH = PIi/(GM1DGA(HIi-O.5A(UIIAkUIi+VI1*YI1)))
Eli = RIi*HIi-PIi

C
C Find reflected ceii center values
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QAVE2(l) = 0.25A(Q(3,Il)+Q(3,I4)+RII+RI4)
QAVE2(2) = 0.25A(Q(4,II)+Q(4,I4)+RIlAUIl+RI4*UI4)
QAVE2(3) = 0.25*(Q(5,II)+Q(5,I4)+RI1AVIl+RI4*VI4)
QAVE2(4) = 0.25*(Q(6,Il)+Q(6,I4)+EIl+EI4)

C
C Add contribution

DO 166 K=1,4
KP2 = K+2
KP6 = K+6
QAVEl = 0.25*(Q(KP2,II)+0SAV(KP2,I)+QSAV(KP2,IP1)+Q(KP2,I4))

C
Q(KP6,Il) = Q(KP6,Il)+0.25AAVIS*(QAVE1+QAVE2(K)-2.*Q(KP2,II))

166 CONTINUE
END IF

170 CONTINUE
C

RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: FARFDBC2
C----------------------------------------------------------------

SUBROUTINE FARFDBC2(CLCD)
C
C This subroutine calculates the far field boundary
C conditions using a local characteristic analysis
C tangent and normal to the boundary. Both uniform
C freestream or far field vortex boundary conditions
C are possible. The selection is made by setting the
C following switch:
C IFDTYPE = 0 for uniform freestreem conditions
C 1 for vortex farfield conditions with
C the strength of the point vortex based
C on an integration of surface pressure
C to set the lift.
C
C Note: for supersonic flows the uniform freestream
C flow condition is automatically set since this
C boundary condition is only correct for subsonic
C flows.
C
C Note: RAD for vortex farfield boundary assumes the vortex
C is located at the quarter chord of the airfoil.
C

INCLUDE 'MAIN. INC'
INCLUDE 'GAM.INC'
INCLUDE 'INPT.INC'
INCLUDE 'LUNITS.INC'
DIMENSION UBAR(4)

C
C Constants

IFDTYPE = 1
PHI = 3.141592654

C
C Calculate Lift Force Coefficients through an
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C integration of the surface pressures of airfoil.
IF(IFDTYPE.EQ.1) THEN

C
CHORD = 0.0
CFN = 0.0
CFT = 0.0

C
DO 5 I=1,IPBBMX
J1 = ABS(IP(1,IPBB(2,I)))
J2 = ABS(IP(4,IPBB(2,I)))

C
IF(I.EQ.1) THEN
TXl = Q(1,J)
TY1 = Q(2,J1)

END IF
TCHORD = (TX1-Q(1,J2))A*2+(TY1-Q(2,J2))*A2
IF(TCHORD.GT.CHORD) CHORD = TCHORD

C
DX = Q(1,32)-Q(1,J1)
DY = Q(2,32)-0(2,J1)
DS = SQRT(DX*DX+DY*DY)

C
P1 = GM1*(Q(6,J1)

1 -0.5*(Q(4,J1)AQ(4,J)+Q(5,J1)AQ(5,J1))/Q(3,J1))
P2 = GM1A(Q(6,J2)

1 -0.5*(0(4,J2)*Q(4,J2)+0(5,J2)*0(5,J2))/Q(3,J2))
TMP = P1+P2
CFN = CFN+TMPADX
CFT = CFT+TMP*DY

5 CONTINUE
C

CHORD = SQRT(CHORD)
QFS = ROFSA(UFS*UFS+VFSAVFS)ACHORD
CFN = -CFN/QFS
CFT = CFT/QFS

C
ALPHAR = 3.14159*ALPHA/180.0
CL = CFN*COS(ALPHAR)-CFT*SIN(ALPHAR)
CD = CFN*SIN(ALPHAR)+CFTACOS(ALPHAR)

C
C SET AIRFOIL CENTER AT 1/4 CHORD

XQC = TX1-0.75*CHORD
YOC = TYl

ELSE
CL = 0.0

END IF
C
C Sweep around farfield boundary and correct DU's
C using Characteristic analysis tangent and normal
C to the boundary.
C

DO 10 I=1,IPBUMX
IF(IPBU(3,I).EG.2) THEN

IF(IPBU(1,I).NE.0) THEN
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31 = ABS(IP(3,IPBU(lI)))
J2 = ABS(IP(4,IPBU(1,I)))

ELSE
J1 = ABS(IP(2,IPBU(2,I)))
J2 = ABS(IP(1,IPBU(2,I)))

END IF
ELSE

WRITE(LUl,A)' ERROR IN UDBC2C IPBU(3,I) NOT l'
END IF

C
C Calculate boundary normal vector
C Note: Present analysis assumes eta lines run
C Normal to the far field boundary.

TMP1 = Q(1,J2)-0(1,J1)
TMP2 = Q(2,J2)-Q(2,J1)
TMP3 = SQRT(TMPlATMP1+TMP2ATMP2)

C
DX = TMPl/TMP3
DY = TMP2/TMP3

C
C Calculate local radius and direction

TMPl = XQC-Q(1,Jl)
TMP2 = YOC-Q(2,Jl)
RAD = SQRT(TMPl*A2+TMP2AA2)
DRX = TMPl/RAD
DRY = TMP2/RAD

C
C Calculate extrapdlated quantities from
C the predicted values of D at the boundary.

REX = Q(3,Jl)+Q(7,Jl)
UEX = (Q(4,JI)+Q(8,Jl))/REX
VEX = (Q(5,Jl)+Q(9,1l))/REX
EEX = 0(6,1l)+Q(lOJl)
QSQEX =UEXAUEX+VEXAVEX
PEX =GMlA(EEX-0.5AREXAQSQEX)
IF(PEX.LE.O.0) WRITE(LU1,A)'AA PEX<O AT UP I=',I
AEX =SQRT(GAMMAAPEX/REX)

C
QNEX = UEXADX+VEX*DY
QTEX =-UEXADY+VEXADX

C
C Set barred or frozen quantities of linearization
C based on the extrapolated conditions.

RBAR = REX
ABAR = AEX

C
C Calculate the free stream conditions without
C the vortex.

ONFS = UFS*DX+VFSADY
QTFS =-UFSADY+VFS*DX
QFS = SQRT(QNFSA*2+QTFSAA2)

C
C Set far field conditions to either free stream
C or calculate and set to vortex farfield conditions
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C
C Set vortex farfield condition

IF(IFDTYPE.EQ.1.AND.AMFS.LE.1) THEN
COSFD = (UFS*DRX+VFSADRY)/QFS
SINFD = (-UFS*DRY+VFS*DRX)/OFS
BETA = SQRT(1.0-AMFSAAMFS)
TMP1 = 1.0/(COSFDAA2+BETAABETAASINFDASINFD)
DQVORT = OFS*CHORDACL*BETA*TMP1/(4.0*PHIARAD)
QNFD = QNFS+DQVORT*(-DRY*DX+DRXADY)
OTFD = QTFS+DQVORTA(DRYADY+DRXADX)
QFD = SQRT(QNED**2+QTFD**2)
PFD = (APFS**GMlDG+GMlD2G*ROFS*(GES**2-'GFDAA2)

1 /(APPSA*(1.0/GAMMA)))**(GAMMA/GM1)
ROFD = ROFSA((PFD/APFS)AA(1.0/GAMMA))

C
C Otherwise set farfield conditions to freestream

ELSE
QNFD = ONFS
QTFD = OTFS
PFD = APFS
ROFD = ROFS

END IF
C
C Calculate corrected farfield flow conditions
C based on whether it is supersonic or subsonic
C and inflow or outflow
C
C Subsonic inflow

IF(QNEX.GE.0.0.AND.QNEX.LE.ABAR) THEN
PNEW = 0.5A(PFD+PEX+RBAR*ABARA(DNFD-DNEX))
UTNEW = QTFD
ONNEW = QNFD+(PFD-PNEW)/(RBAR*ABAR)
RNEW = ROFD+(PNEW-PFD)/(ABARAABAR)

C
C Subsonic outflow
C note: sets the downstream characteristic

ELSE IF(QNEX.GE.-ABAR.AND.QNEX.LT.0.0) THEN
PNEW = 0.5*(PFD+PEX+RBAR*ABARA(QNED-ONEX))
DTNEW = OTEX
ONNEW = QNEX+(PNEW-PEX)/(RBAR*ABAR)
RNEW = REX+(PNEW-PEX)/(ABAR*ABAR)

C
C Supersonic inflow

ELSE IF(DNEX.GT.ABAR) THEN
PNEW = PFD
OTNEW = QTFD
ONNEW = QNFD
RNEW = ROED

C
C Supersonic outflow

ELSE IF(DNEX.LT.-ABAR) THEN
PNEW = PEX
QTNEW = GTEX
QNNEW = GNEX
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RNEW = REX
END IF

C
ENEW = PNEW/GM1+0.5ARNEWA(GNNEWAQNNEW+QTNEWAQTNEW)

C
C Calculate corrected DO's

G(7,1) = RNEW-Q(3,J1)
Q(8,J1) = RNEWA(QNNEWADX-QTNEWADY)-Q(4,J1)
0(9,1) = RNEWA(QNNEWADY+QTNEWADX)-Q(5,J1)
Q(10,1) = ENEW-Q(6,J1)

C
10 CONTINUE

C
RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: FINDFG
C----------------------------------------------------------------

SUBROUTINE FINDFG(I,M)
C
C SUBROUTINE FINDFG CALCULATES F AND G AT POINT I
C FROM U AND LEAVES THEM IN LOCATION M OF F AND G
C

INCLUDE 'MAIN.INC'
INCLUDE 'SOLV.INC'
INCLUDE 'GAM.INC'

C
W1 = Q(4,I)AQ(4,I)/Q(3,I)
W2 = Q(5,I)AQ(5,I)/Q(3,I)
PTMP = GM1A(Q(6,I)-0.5A(W1+W2))
HTMP = (Q(6,I)+PTMP)/0(3,I)

C
F(1,M) = Q(4,I)
F(2,M) = W+PTMP
F(3,M) = Q(4,I)A(5,I)/Q(3,I)
F(4,M) = Q(4,I)AHTMP

C
G(1,M) = Q(5,I)
G(2,M) = F(3,M)
G(3,M) = W2+PTMP
G(4,M) = Q(5,I)AHTMP

C
RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: GAMMAS
C----------------------------------------------------------------

SUBROUTINE GAMMAS
C
C This subroutine calculates constants containing gamma
C for later use in other routines.
C

INCLUDE 'GAM.INC'
C
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GAMMA = 1.4
GM1 = GAMMA-1.0
GM3 = GAMMA-3.0
GMID2 = GMl/2.0
GMlDG = GMl/GAMMA
GMlD2G= GMlD2/GAMMA
GPlDG = (GAMMA+1.)/GAMMA
GPID2G= GPlDG/2.0
HTOT = 1.0/GM1

C
RETURN
END

C--------------------------------------------------------------
C SUBROUTINE: GEOWAL
C---------------------------------------------------------------

SUBROUTINE GEOWAL
C
C This subroutine calculates the surface tangent, radius of
C curvature, and scaling distances for calcuating extrapolated
C flow values form the line of nodes next to the wall.
C Note: this routine as written only applies to airfoils
C with solid wall pointers generated by geocreat
C

INCLUDE 'MAIN.INC'
INCLUDE 'GAM.INC'
INCLUDE 'INPT.INC'
INCLUDE 'POINT.INC'
INCLUDE 'MET.INC'
INCLUDE 'LUNITS.INC'

C
C Calculate extrapolated values at surface

II = 1
IIPl = 2

C
DO 20 I=lIPBBMX+l
IF(I.LE.IPBBMX) THEN

JPMl = ABS(IP(1,IPBB(1,I)))
JP = ABS(IP(4,IPBB(1,I)))
JPP1 = ABS(IP(4,IPBB(2,I)))

ELSE
JPMl = ABS(IP(lIPBB(l,1)))
JP = ABS(IP(4,IPBB(l,l)))
JPP1 = ABS(IP(4,IPBB(2,1)))

END IF
C
C calculate normal vector

TMP1 = Q(1,JP)-Q(lJPM1)
TMP2 = Q(2,JP)-Q(2,JPM1)
DS1 = SQRT(TMPI*TMP1+TMP2ATMP2)
TX1 = TMPl/DSl
TYl = TMP2/DSl
TMP1 = Q(lJPPl)-Q(1,JP)
TMP2 = Q(2,JPPl)-Q(2,JP)
DS2 = SQRT(TMP1*TMP1+TMP2*TMP2)

- 87 -



2-D AIRFOIL EULER CODE FOR 0-TYPE MESHES

TX2 = TMPl/DS2
TY2 = TMP2/DS2

C
TMP1 = DS1+DS2
TMP2 = DS2/(DSI*TMP1)
TMP3 = (DS2-DS1)/(DS1*DS2)
TMP4 = DSl/(DS2*TMP1)

C
RC(I) = 0.5*TMPl/SQRT((TX2-TX1)*A2+(TY2-TYl)AA2)

C
DXDS = -0(1,JPM1)*TMP2+0(1,JP)ATMP3+0(1,JPP1)*TMP4
DYDS = -Q(2,JPM1)*TMP2+0(2,JP)*TMP3+0(2,JPP1)ATMP4
TMP1 = SORT(DXDSADXDS+DYDS*DYDS)

C
TX(I) = DXDS/TMP1
TY(I) = DYDS/TMP1
IF(I.EO.1) THEN

TX(I) = TX2
TY(I) = TY2
RC(I) = 1.E+20

ELSE IF(I.Eg.IPBBMX+1) THEN
TX(I) = TX1
TY(I) = TY1
RC(I) = 1.E+20

END IF
C

DNX = -TY(I)
DNY = TX(I)

C
C Search for intersection of normal line ard ring

API = Q(1,JP)
AP2 = DNX
BPl = Q(2,JP)
BP2 = DNY

C
11 CONTINUE

JN = ABS(IP(3,IPBB(1,II)))
JNP1 = ABS(IP(3,IPBB(1,IIP1)))

C
Al = Q(1,JN)
A2 = Q(1,JNP1)-Al
Bl = Q(2,JN)
B2 = 0(2,JNP1)-B1

C
DEL = AP2AB2-BP2AA2
T = (AP2A(BP1-B1)-BP2*(AP1-A1))/DEL

C
ITMP = 0
IF(T.LT.0.0) THEN

ITMP = 1
IIP1 = II
IF(II.GT.1) THEN

II = II-1
ELSE
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II = IPBBMX
END IF

ELSE IF(T.GT.l.0) THEN
ITMP = 1
II = IIP1
IF(IIPl.LT.IPBBMX) THEN

IIP1 = IIPl+1
ELSE

IIP1 = 1
END IF

END IF
IF(ITMP.EQ.1) GO TO 11

C
IWPl(I) = II
TSCL(I) = T
SSCL(I) = (A2*(BP1-Bl)-B2A(APl-Al))/DEL

C
20 CONTINUE

C
RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: GTIME
C---------------------------------------------------------------

SUBROUTINE GTIME(LEV)
C
C This subroutine calculates the maximum stable global
C time step over the current level. This is done by
C calling CTIME for each cell ( which determines the
C cell time step based on local flow properties and
C the CFL No.) and saves the minimum value.
C

INCLUDE 'MAIN.INC'
INCLUDE 'POINT.INC'
INCLUDE 'GAM.INC'
INCLUDE 'MET.INC'
INCLUDE 'INPT.INC'
DIMENSION QAVE(4)

C
C Find MIN of DX/(IUI+A) and DY/(IVJ+A) for each cell

DO 1 I = LEVP(1,LEV),LEVP(2,LEV)
C
C Set local cell pointers

Il = ABS(IP(1,I))
12 = ABS(IP(2,I))
13 = ABS(IP(3,I))
14 = ABS(IP(4,I))
INC = IP(5,I)

C
C Find cell time step

CALL METRC4
CALL CTIME

C
C Compare with current minimum
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IF(I.NE.LEVP(1,LEV)) THEN

DTMIN = MIN(DTMIN,DT)
ELSE

DTMIN = DT
END IF

1 CONTINUE
C
C Set final value of time step

DT = DTMIN
C

RETURN
END

C--------------------------------------------------------------
C SUBROUTINE: INBC4
C------------------------------------------------------------

SUBROUTINE INBC4(LEV)
C
C THIS SUBROUTINE CALCULATES THE SUBDOMAIN-GLOBAL
C INTERFACE BOUNDARY CONDITIONS FROM THE GLOBAL
C LEVEL SOLUTION.
C

INCLUDE 'MAIN. INC'
C
C INTERPOLATE INTERFACE BOUNDARY POINTS

IF(IPBIMX(1,LEV).EQ.O) RETURN
DO 5 I=IPBIMX(1,LEV),IPBIMX(2,LEV)
J1 = IPBI(1,I)
J2 = IPBI(2,I)
J3 = IPBI(3,I)
DO 5 K=3,6

5 Q(KJ2) = 0.5*(Q(KJ1)+Q(KJ3))
C

RETURN
END

C----------------------------------------------------------
C SUBROUTINE: INFACBC
C-----------------------------------------------------------

SUBROUTINE INFACBC(LEV)
C
C THIE SUBROUTINE CORRECTS THE INTERFACE
C BOUNDARY DU'S.
C

INCLUDE 'MAIN. INC'
INCLUDE 'MET.INC'
INCLUDE 'SOLV.INC'
INCLUDE 'GAM.INC'
INCLUDE 'POINT. INC'
DIMENSION DELUSAV(4)

C
IF(IPBIMX(1,LEV-1).EQ.O) RETURN

C
C NEW CORECTION SWEEP

DO 55 ICEL=LEVP(1,LEV),LEVP(2,LEV)
IF(IP(5,ICEL).EG.O) GOTO 55
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ITYPEl = 0
ITYPE2 = 0
ITYPE3 = 0
ITYPE4 = 0
NOCELL = 0

C
C FIND TO CELLS

DO 15 1 = IPBIMX(1,LEV-1),IPBIMX(2,LEV-1)
J2 = IPBI(2,I)
IF(J2.EQ.IP(6,ICEL)) THEN

ITYPEl = 1
NOCELL = 1

ELSE IF(J2.EQ.IP(7,ICEL)) THEN
ITYPE2 = 1
NOCELL = 1

ELSE IF(J2.EQ.IP(8,ICEL)) THEN
ITYPE3 = 1
NOCELL = 1

ELSE IF(J2.EQ.IP(9,ICEL)) THEN
ITYPE4 = 1
NOCELL = 1

END IF
15 CONTINUE

IF(NOCELL.EQ.0) GOTO 55
C
C CALCULATE DV AND DT FOR TOTAL CELL

CALL CELPOINT(ICEL)
CALL METRC4
CALL CTIME
CALL DELTU

C
DO 17 K=1,4

17 DELUSAV(K) = -DELU(K)
C
C FLUX BALANCE ON SUBCELL 1

Il = ABS(IP(1,ICEL))
12 = IP(6,ICEL)
13 = IP(5,ICEL)
14 = IP(9,ICEL)
INC = 0
CALL DELTU

C
DO 18 K=1,4

18 DELUSAV(K) = DELUSAV(K)+DELU(K)
C
C FLUX BALANCE IN SUBSCELL 2

Il = IP(6,ICEL)
12 = ABS(IP(2,ICEL))
13 = IP(7,ICEL)
14 = IP(5,ICEL)
INC = 0
CALL DELTU

C
DO 19 K=1,4
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19 DELUSAV(K) = DELUSAV(K)+DELU(K)
C
C FLUX BALANCE IN SUBSCELL 3

Il = IP(5,ICEL)
12 = IP(7,ICEL)
13 = ABS(IP(3,ICEL))
14 = IP(8,ICEL)
INC = 0
CALL DELTU

C
DO 20 K=1,4

20 DELUSAV(K) = DELUSAV(K)+DELU(K)
C
C FLUX BALANCE IN SUBSCELL 4

Il = IP(9,ICEL)
12 = IP(5,ICEL)
13 = IP(8,ICEL)
14 = ABS(IP(4,ICEL))
INC = 0
CALL DELTU

C
DO 21 K=1,4

21 DELU(K) = DELUSAV(K)+DELU(K)
C
C CALCULATE DELF AND DELG

CALL CELPOINT(ICEL)
CALL METRC4
INC = 0
CALL DELTFG

C
C DISTRIBUTE DELTA'S

DO 50 K=1,4
KP6 = K+6
IF(ITYPE4.EQ.1.OR.ITYPEl.EQ.1)
1 Q(KP6,Il) = Q(KP6,II)+(DELU(K)-DELF(K)-DELG(K))/4.0
IF(ITYPEl.EQ.1.OR.ITYPE2.EQ.1)

1 Q(KP6,12) = Q(KP6,12)+(DELU(K)-DELF(K)+DELG(K))/4.0
IF(ITYPE2.EQ.1.OR.ITYPE3.EQ.1)
1 Q(KP6,I3) = Q(KP6,I3)+(DELU(K)+DELF(K)+DELG(K))/4.0
IF(ITYPE3.EQ.1.OR.ITYPE4.EQ.1)
1 Q(KP6,I4) = Q(KP6,14)+(DELU(K)+DELF(K)-DELG(K))/4.0

50 CONTINUE
C

55 CONTINUE
C

RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: INFACBC2
C----------------------------------------------------------------

SUBROUTINE INFACBC2(LEV)
C
C THIS SUBROUTINE CALCULATES THE COARSE GRID DU'S
C FOR THE FINE MESH INTERFACE AND CORRECTS THE INTERFACE
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C BOUNDARY DU'S ON THE COARSE MESH.
C

INCLUDE 'MAIN. INC'
INCLUDE 'MET.INC'
INCLUDE 'SOLV.INC'
INCLUDE 'GAM.INC'
INCLUDE 'POINT. INC'
DIMENSION DELUSAV(4),QI(4,2,257)

C
IF(IPBIMX(1,LEV).EQ.O) GOTO 100

C
C ZERO INTERFACE DU'S

DO 5 I=IPBIMX(1,LEV),IPBIMX(2,LEV)
J1 = IPBI(1,I)
32 = IPBI(2,I)
J3 = IPBI(3,I)
DO 5 K=7,10
G(KJ1) = 0.0
Q(KJ2) = 0.0
Q(KJ3) = 0.0

5 CONTINUE
C
C NEW CORECTION SWEEP

DO 55 ICEL=LEVP(1,LEV+1),LEVP(2,LEV+1)
IF(IP(5,ICEL).EQ.0) GOTO 55
ITYPE1 = 0
ITYPE2 = 0
ITYPE3 = 0
ITYPE4 = 0
NOCELL = 0

C
C FIND TO CELLS

DO 15 I = IPBIMX(1,LEV),IPBIMX(2,LEV)
J2 = IPBI(2,I)
IF(J2.EQ.IP(6,ICEL)) THEN

ITYPE1 = 1
NOCELL = 1

ELSE IF(J2.EQ.IP(7,ICEL)) THEN
ITYPE2 = 1
NOCELL = 1

ELSE IF(J2.EQ.IP(8,ICEL)) THEN
ITYPE3 = 1
NOCELL = 1

ELSE IF(J2.EG.IP(9,ICEL)) THEN
ITYPE4 = 1
NOCELL = 1

END IF
15 CONTINUE

IF(NOCELL.EQ.0) GOTO 55
C
C CALCULATE DV AND DT FOR TOTAL CELL

CALL CELPOINT(ICEL)
CALL METRC4
CALL CTIME
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C
C FLUX BALANCE ON SUBCELL 1

Il = ABS(IP(1,ICEL))
12 = IP(6,ICEL)
13 = IP(5,ICEL)
14 = IP(9,ICEL)
INC = 0
CALL DELTU

C
DO 18 K=1,4

18 DELUSAV(K) = DELU(K)
C
C FLUX BALANCE IN SUBSCELL 2

Il = IP(6,ICEL)
I2 = ABS(IPF(2,ICEL))
13 = IP(7,ICEL)
14 = IP(5,ICEL)
INC = 0
CALL DELTU

C
DO 19 K=1,4

19 DELUSAV(K) = DELUSAV(K)+DELU(K)
C
C FLUX BALANCE IN SUBSCELL 3

Il = IP(5,ICEL)
12 = IP(7,ICEL)
13 = ABS(IP(3,ICEL))
14 = IP(8,ICEL)
INC = 0
CALL DELTU

C
DO 20 K=1,4

20 DELUSAV(K) = DELUSAV(K)+DELU(K)
C
C FLUX BALANCE IN SUBSCELL 4

Il = IP(9,ICEL)
12 = IP(5,ICEL)
13 = IP(8,ICEL)
14 = ABS(IP(4,ICEL))
INC = 0
CALL DELTU

C
DO 21 K=1,4

21 DELU(K) = DELUSAV(K)+DELU(K)
C
C CALCULATE DELF AND DELG

CALL CELPOINT(ICEL)
CALL METRC4
INC = 0
CALL DELTFG

C
C DISTRIBUTE DELTA'S

DO 50 K=1,4
KP6 = K+6
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IF(ITYPE4.EQ.1.OR.ITYPEl.EG.i)
1 Q(KP6,Il) = Q(KP6,II)+(DELU(K)-DELF(K)-DELG(K))/4.0
IF(ITYPEI.EQ.1.OR.ITYPE2.EQ.1)
1 Q(KP6,I2) = Q(KP6,I2)+(DELU(K)-DELF(K)+DELG(K))/4.0
IF(ITYPE2.EQ.l.OR.ITYPE3.EG.1)

1 Q(KP6,13) = Q(KP6,I3)+(DELU(K)+DELF(K)+DELG(K))/4.0
IF(ITYPE3.EQ.1.OR.ITYPE4.EG.1)

1 Q(KP6,I4) = Q(KP6,I4)+(DELU(K)+DELF(K)-DELG(K))/4.0
50 CONTINUE

C
55 CONTINUE

C
C STORE NEW DU'S IN QI AND ZERO DU'S

DO 60 I=IPBIMX(1,LEV),IPBIMX(2,LEV)
J1 = IPBI(1,I)
J2 = IPBI(3,I)
DO 60 K=1,4
KP6 = K+6
QI(K,1,I) = Q(KP6,J1)
GI(K,2,I) = Q(KP6,J2)
Q(KP6,J1) = 0.0
Q(KP6,J2) = 0.0

60 CONTINUE
C
C CORRECTION OF COURSE GRID DU'S

100 IF(LEV.EQ.1) RETURN
IF(IPBIMX(1,LEV-1).EQ.0) RETURN

C
C NEW CORECTION SWEEP

DO 155 ICEL=LEVP(1,LEV),LEVP(2,LEV)
IF(IP(5,ICEL).EQ.0) GOTO 155
ITYPEl = 0
ITYPE2 = 0
ITYPE3 = 0
ITYPE4 = 0
NOCELL = 0

C
C FIND TO CELLS

DO 115 I = IPBIMX(1,LEV-1),IPBIMX(2,LEV-1)
J2 = IPBI(2,I)
IF(J2.EG.IP(6,ICEL)) THEN

ITYPEl = 1
NOCELL = 1

ELSE IF(J2.EQ.IP(7,ICEL)) THEN
ITYPE2 = 1
NOCELL = 1

ELSE IF(J2.EQ.IP(8,ICEL)) THEN
ITYPE3 = 1
NOCELL = 1

ELSE IF(J2.EG.IP(9,ICEL)) THEN
ITYPE4 = 1
NOCELL = 1

END IF
115 CONTINUE
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IF(NOCELL.EG.0) GOTO 155
C
C CALCULATE DV AND DT FOR TOTAL CELL

CALL CELPOINT(ICEL)
CALL METRC4
CALL CTIME
CALL DELTU

C
DO 117 K=1,4

117 DELU(K) = -DELU(K)
C

CALL DELTFG
C
C DISTRIBUTE DELTA'S

DO 150 K=1,4
KP6 = K+6
IF(ITYPE4.EQ.1.OR.ITYPEl.EG.l)

1 O(KP6,Il) = Q(KP6,Il)+(DELU(K)-DELF(K)-DELG(K))/4.0
IF(ITYPEl.EQ.l.OR.ITYPE2.EQ.l)
1 Q(KP6,I2) = Q(KP6,I2)+(DELU(K)-DELF(K)+DELG(K))/4.0
IF(ITYPE2.EQ.l.OR.ITYPE3.EQ.l)

1 Q(KP6,I3) = Q(KP6,I3)+(DELU(K)+DELF(K)+DELG(K))/4.0
IF(ITYPE3.EQ.l.OR.ITYPE4.EQ.l)

1 Q(KP6,14) = Q(KP6,14)+(DELU(K)+DELF(K)-DELG(K))/4.0
150 CONTINUE

C
155 CONTINUE

C
DO 160 I=IPBIMX(lLEV-1),IPBIMX(2,LEV-1)
J1 = IPBI(lI)
J2 = IPBI(3,I)
DO 160 K=1,4
KP6 = K+6
Q(KP6,Jl) = Q(KP6,J1)+QI(Kl,I)
Q(KP6,J2) = Q(KP6,J2)+QI(K,2,I)
GI(K,1,I) = 0.0
QI(K,2,I) = 0.0

160 CONTINUE
C

RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: INITIA
C----------------------------------------------------------------

SUBROUTINE INITIA
C
C This subroutine calculates the freestream quantities
C and if ISTART=1 initializes the flow field to uniform
C flow based on ALPHA and AMFS using isentropic relations.
C If uniform flow is set the solid wall points are corrected
C for a zero flux through the boundary by holding the pressure
C and energy constant and rotating the velocity vector to
C the local wall tangent. Note if ISTART=O the flow is
C left as read in the INPUT subroutine.
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C
C IF ISTART = 0 THEN UNIFORM FLOW
C 1 THEN RESTART
C

INCLUDE 'MAIN.INC'
INCLUDE 'GAM.INC'
INCLUDE 'INPT. INC'
INCLUDE 'LUNITS.INC'
DIMENSION FSU(4)

C
C Calculate surface tangent, radius of curvature and
C extrapolation scalings

CALL GEOWAL
C
C CALCULATE FREE STREAM VECTOR U

ALPHAR = ALPHAA3.14159/180.0
TMP = 1.0+GMlD2AAMFSAAMFS
ROFS = TMPAA(-1./GM1)
APFS = (TMP*A(-l./GMlDG))/GAMMA
UFS = AMFSACOS(ALPHAR)/SQRT(TMP)
VFS = AMFSASIN(ALPHAR)/SQRT(TMP)
AFS = 1.0/SGRT(TMP)

C
FSU(l) = ROFS
FSU(2) = ROFSAUFS
FSU(3) = ROFSAVFS
FSU(4) = APFS/GMl+ROFSA(UFSAUFS+VFSAVFS)/2.0

C
C RETURN IF RESTART

IF(ISTART.EQ.1) RETURN
C
C INITIALIZE FLOW FIELD TO FREE STREAM

DO 1 I = 1,IQMAX
DO 1 K = 1,4

1 Q(K+2,I) = FSU(K)
C
C CORRECT WALL PROPERTIES

DO 2 I=1,IPBBMX
C
C SET POINTERS & CALCULATE WALL TANGENT

IF(IPBB(3,I).EQ.4) THEN
J1 = ABS(IP(1,IPBB(1,I)))
J2 = ABS(IP(4,IPBB(1,I)))
J3 = ABS(IP(4,IPBB(2,I)))

C
TMPI = Q(1,J2)-Q(1,JI)
TMP2 = Q(2,J2)-Q(2,Jl)
DS1 = SQRT(TMPl*TMP1+TMP2*TMP2)'
TMP1 = Q(lJ3)-Q(lJ2)
TMP2 = 0(2,J3)-0(2,32)
DS2 = SQRT(TMPl*TMPl+TMP2ATMP2)

C
TMPi = DS1+DS2
TMP2 = DS2/(DSl*TMPl)
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TMP3 = (DS2-DS1)/(DSlADS2)
TMP4 = DSl/(DS2ATMPl)

C
DXDS = -Q(1,J1)*TMP2+Q(1,J2)ATMP3+D(1,J3)ATMP4
DYDS = -Q(2,J1)ATMP2+Q(2,J 2)*TMP3+0(2,J3)*TMP4
TMP1 = SQRT(DXDS*DXDS+DYDS*DYDS)

C
DX = DXDS/TMPl
DY = DYDS/TMP1

ELSE IF(IPBB(3,I).EQ.5) THEN
J1 = ABS(IP(1,IPBB(1,I)))
32 = ABS(IP(4,IPBB(1,I)))
J3 = ABS(IP(4,IPBB(2,I)))

C
THETAl = ATAN2((Q(2,J2)-Q(2,J1)),(Q(1,J2)-Q(1,J1)))
THETA2 = ATAN2(((2,J2)-D(2,J3)),((1,J2)-0(1,J3)))
THETA = 0.5*(THETAl+THETA2)

C
DX = COS(THETA)
DY = SIN(THETA)

ELSE
WRITE(LU1,A)' ERROR INITIA IPBB(3,I) NOT 4'

END IF
C

DFS = SQRT(UFS*UFS+VFS*VFS)
SIGN = (UFSADX+VFS*DY)
SIGN = SIGN/ABS(SIGN)
TU = SIGNAGFS*DX
TV = SIGN*GFS*DY
TR = APFS/(GM1DG*(HTOT-0.5*(TU*TU+TVATV)))
TE = TR*HTOT-APFS

C
C IF EULER CALCULATION (INSSWT=0) MAKE FLOW TANGENT

IF(INSSWT.EQ.0) THEN
CC 0(3,J2) = TR
CC Q(4,J2) = TR*TU
CC Q(5,J2) = TRATV
CC 0(6,J2) = TE
C
C IF NAVIER-STOKES CALCULATION (INSSWT=1) SET ZERO FLOW

ELSE IF(INSSWT.EQ.1) THEN
Q(3,J2) = GAMMA*APFS/(AFS*A2)
Q(4,J2) = 0.0
Q(5,J2) = 0.0
Q(6,J2) = D(3,J2)AHTOT-APFS

END IF
2 CONTINUE

C
C OUTPUT OF INITIAL FLOW

WRITE(LU1,1000)
WRITE(1,1004) ROFS,UFS,VFSAPFS
IF (IPRNT2.ED.O) RETURN
WRITE(LU1,A) ' INITIAL 0 VALUES'
DO 50 K=1,6
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50 WRITE(LU1,1001) (Q(K,I), I=1,IQMAX)
C
1000 FORMAT(///,10X,'INITIAL FLOW FIELD Ul/U2/U3/U4',/)
1001 FORMAT(lX,(10E12.4))
1004 FORMAT(lX,'ROFS,UFS,VFSAPFS=', 4E12. 4,/)

C
RETURN
END

C-----------------------------------------------------------
C SUBROUTINE: INJECT
C---------------------------------------------------------------

SUBROUTINE INJECT(LEV,INJTYPE)
C
C THIS SUBROUTINE INJECTS FINE MESH DU'S INTO
C THE COARSE GRID USING A WEIGHTED DISTRIBUTION
C

INCLUDE 'MAIN. INC'
INCLUDE 'POINT.INC'
INCLUDE 'INPT. INC'
INCLUDE 'MET.INC'

C
IF(INJTYPE.E.0) RETURN

C
C FORM TYPE 1: SIMPLE ALGEBRAIC WEIGHTING
C 11 2 11
C 1/16A12 4 21
C |1 2 11

IF(INJTYPE.NE.1) GO TO 100
TMP 1./16.
DO 50 I=LEVP(1,LEV),LEVP(2,LEV)

C
C CHECK FOR FINER GRID

IF(IP(5,I).EQ.0) GO TO 50
C

CALL CELPOINT(I)
C

DO 40 K=7,10
Q(K,INC) = TMPA(2.A(2.AQ(K,INC)
1 +Q(K,IN1)+Q(K,IN2)+Q(KIN3)+Q(KIN4))
2 +Q(KIl)+Q(KI2)+Q(KI3)+Q(KI4))

40 CONTINUE
C

50 CONTINUE
RETURN

C
C FORM TYPE 2: VOLUME WEIGHTING

100 IF(INJTYPE.NE.2) RETURN
DO 150 I=LEVP(1,LEV),LEVP(2,LEV)

C
C CHECK FOR FINER GRID

IF(IP(5,I).EG.0) GO TO 150
C

CALL CELPOINT(I)
C %
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C CALCULATE VOLUMES
VA = -0.5*((Q(1,INC)-O(1,II))A(Q(2,IN4)-Q(2,IN1))

1 -(Q(1,IN4)-Q(1,IN1))(Q(2, INC)-Q(2,Il)))
VB = -0.5A((Q(1,IN2)-Q(1,IN1))A(Q(2, INC)-Q(2,I2))
1 -(Q(1,INC)-Q(1,I2))A(Q(2,I1N2)-O(2, IN1)))
VC = -0.5A((Q(1,I3)-Q(1,INC))A(Q(2,IN3)-Q(2,IN2))

1 -(Q(1,IN3)-Q(1,IN2))A(O(2,I13)-Q(2, INC)))
VD = -0.5A((Q(1,IN3)-O(1,IN4))A(Q(2,I4)-Q(2,INC))
1 -(Q(1,I4)-Q(1,INC))*(O(2,I1N3)-Q(2,IN4)))
VT = (VA+VB+VC+VD)

C
DO 140 K=7,10
Q(KINC) = 0.25*(Q(K,INC)
1 +( L(K,II)*VA+Q(K,I2)*VB+Q(KI3)*VC+Q(KI4)*VD
2 +Q(K,IN1)A(VA+VB)+Q(KIN2)A(VB+VC)
3 +Q(K,IN3)*(VC+VD)+Q(K,IN4)*(VD+VA) )/VT)

140 CONTINUE
C

150 CONTINUE

C
RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: INJECTS
C----------------------------------------------------------------

SUBROUTINE INJECT5(LEV,INJTYPE)
C
C THIS SUBROUTINE INJECTS FINE MESH DU'S INTO
C THE COARSE GRID USING A WEIGHTED DISTRIBUTION
C

INCLUDE 'MAIN.INC'
INCLUDE 'POINT.INC'
INCLUDE 'INPT.INC'
INCLUDE 'MET.INC'
INCLUDE 'SOLV.INC'

C
DIMENSION QSAVE(4)
DIMENSION QAVE(4),DF(4),DG(4)

C
IF(INJTYPE.EQ.0) RETURN

C
C FORM TYPE 1: SIMPLE ALGEBRAIC WEIGHTING
C |1 2 l
C 1/16*12 4 21
C 11 2 11

IF(INJTYPE.NE.1) GO TO 100
TMP = 1./16.
DO 50 I=LEVP(1,LEV),LEVP(2,LEV)

C
C CHECK FOR FINER GRID

IF(IP(5,I).EQ.0) GO TO 50
C

CALL CELPOINT(I)
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C
DO 40 K=7,10
Q(KINC) = TMP*(2.A(2..AQ(KINC)

1 +0(K,IN1)+0(K,IN2)+0(K,IN3)+0(K,IN4))
2 +0 (K, Il)+0 (K,I12) +0(K,I13) +0(K,I14))

40 CONTINUE
C

50 CONTINUE
RETURN

C
C FORM TYPE 2: VOLUME WEIGHTING

100 IF(INJTYPE.NE.2) GO TO 200
DO 150 I=LEVP(1,LEV),LEVP(2,LEV)

C
C CHECK FOR FINER GRID

IF(IP(5,I).EQ.0) GO TO 150
C

CALL CELPOINT(I)
C
C CALCULATE VOLUMES

VA = -0.5A((Q(1,INC)-Q(1,I1))A(0(2,IN4)-0(2,IN1))
1 -(0(1,IN4)-Q(1, IN1))A(Q(2, INC)-0(2, Il)))
VB = -0.5A((Q(1,IN2)-Q(1,IN1))A(Q(2,INC)-Q(2,I2))
1 -(0(1,INC)-0(1,I2))A(Q(2,IN2)-Q(2,IN1)))
VC = -0.5*((Q(1,I3)-Q(1,INC))A(0(2,IN3)-0(2,IN2))

1 -(0(1,IN3)-Q(,1IN2))*(Q(2,I3)-0(2,INC)))
VD = -0.5*((Q(1,IN3)-Q(1,IN4))A(Q(2,I4)-Q(2,INC))

1 -(Q(1,I4)-Q(1,INC))*(0(2,IN3)-0(2,IN4)))
VT = (VA+VB+VC+VD)

C
DO 140 K=7,10
Q(K,INC) = 0.25A(0(KINC)
1 +( Q(K,Il)AVA+Q(K,I2)AVB+Q(KI3)AVC+Q(KI4)*VD
2 +Q(K,IN1)A(VA+VB)+Q(K,IN2)A(VB+VC)
3 +Q(KIN3)*(VC+VD)+0(KIN4)*(VD+VA) )/VT)

140 CONTINUE
C

150 CONTINUE
C

RETURN
C
C FORM TYPE 3: DONE AT THIS TIME

200 GO TO 300
C
C TYPE 4: DISTRIBUTION OF DU'S
C SET TYPE OF CELL AVERAGING BEFORE DISTRIBUTION
C BASED ON THE FOLLOWING SWITCH,
C IT4SWT = 1 AVERAGE OF NODES 1-4
C 2 AVERAGE OF NODES 1+3
C 3 AVERAGE OF NODES 2+4
C 4 AVERAGE OF NODES 2+3+4

300 IF(INJTYPE.NE.4) GO TO 400
IT4SWT = 2

C
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DO 330 I = LEVP(1,LEV),LEVP(2,LEV)
C

CALL CELPOINT(I)
C
C CALCULATE VOLUMES

VA = -0.5A((Q(1,INC)-a(1,Il))A(Q(2,IN4)-Q(2,IN1))
1 -(Q(1,IN4)-Q(1, IN1))A(Q(2, INC)-Q(2,II)))

VB = -0.5*((Q(1,IN2)-Q(1,INI))A(Q(2,INC)-Q(2,I2))
1 -(Q(1,INC)-Q(1,I2))*(Q(2,IN2)-Q(2,IN1)))

VC = -0.5*((Q(1,I3)-Q(1,INC))*(Q(2,IN3)-0(2,IN2))
1 -(Q(1,IN3)-Q(1,IN2))*(Q(2,I3)-Q(2,INC)))
VD = -0.5*((Q(1,IN3)-Q(1,IN4))*(Q(2,I4)-Q(2,INC))
1 -(Q(lt14)-Q(1,INC))A(Q(2,IN3)-Q(2,IN4)))
VT = (VA+VB+VC+VD)

C
C CELL I

Il = ABS(IP(1,I))
I2 = IP(6,I)
13 = IP(5,I)
14 = IP(9,I)
INC = 0

C
CALL METRC4
CALL CTIME

C
DO 305 K=1,4
KP6 = K+6
IF(IT4SWT.EQ.1) THEN
DELU(K) = 0.25*(Q(KP6,II)+Q(KP6,I2)+(KP6,I3)+Q(KP6,I4))

ELSE IF(IT4SWT.EQ.2) THEN
DELU(K) = 0.5A(Q(KP6,II)+Q(KP6,I3))

ELSE IF(IT4SWT.EQ.3) THEN
DELU(K) = 0.5*(Q(KP6,I2)+Q(KP6,I4))

ELSE IF(IT4SWT.EQ.4) THEN
DELU(K) = (Q(KP6,II)+Q(KP6,I 2)+Q(KP6,I4))/3.

END IF
305 CONTINUE

C
CALL DELTFG

C
DO 307 K=1,4

307 QSAVE(K) = (DELU(K)+DELF(K)+DELG(K))*DV/VT
C
C CELL 2

Il = 12
14 = 13
12 = ABS(IP(2,I))
13 = IP(7,I)
INC = 0

C
CALL METRC4
CALL CTIME

C
DO 310 K=1,4
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KP6 = K+6
IF(IT4SWT.EQ.1) THEN
DELU(K) = 0.25*(Q(KP6,I1)+Q(KP6,I2)+Q(KP6,I3)+Q(KP6,I4))

ELSE IF(IT4SWT.EG.2) THEN
DELU(K) = 0.5*(Q(KP6,I2)+Q(KP6,I4))

ELSE IF(IT4SWT.EQ.3) THEN
DELU(K) = 0.5*(Q(KP6,II)+Q(KP6,I3))

ELSE IF(IT4SWT.EQ.4) THEN
DELU(K) = (Q(KP6,II)+Q(KP6,I12)+Q(KP6,I3))/3.

END IF
310 CONTINUE

C
CALL DELTFG

C
DO 312 K=1,4

312 QSAVE(K) = QSAVE(K)+(DELU(K)+DELF(K)-DELG(K))*DV/VT
C
C CELL 3

Il = 14
12 = 13
13 = ABS(IP(3,i))
14 = IP(8,I)
INC = 0

C
CALL METRC4
CALL CTIME

C
DO 315 K=1,4
KP6 = K+6
IF(IT4SWT.EQ.1) THEN

DELU(K<) =0.25*(Q(KP6,II)+Q(KP6,I2)+Q(KP6,I3)+Q(KP6,I4))
ELSE IF(IT4SWT.EQ.2) THEN

DELU(K) = 0.5*(Q(KPGII)+(KP6,I3))
ELSE IF(IT4SWT.EQ.3) THEN

DELU(K) = 0.5*(Q(KP6,I2)+Q(KP6,I4))
ELSE IF(IT4SWT.EQ.4) THEN

DELU(K) = (Q(KP6,12)+Q(KP6,I3)+Q(KP6,I4))/3.
END IF

315 CONTINUE
C

CALL DELTFG
C

DO 317 K=1,4
317 QSAVE(K) = QSAVE(K)+(DELU(K)-DELF(K)-DELG(K))ADV/VT

C
C
C CELL 4

12 = Il
13 = 14
Il = IP(9,I)
14 = ABS(IP(4,I))
INC = 0

C
CALL METRC4
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CALL CTIME

DO 320 K=1,4
KP6 = K+6
IF(IT4SWT.EQ.1) THEN
DELU(K) = 0.25A(Q(KP6,Il)+Q(KP6,I2)+Q(KP6,I3)+Q(KP6,I4))

ELSE IF(IT4SWT.EQ.2) THEN
DELU(K) = 0.5*(Q(KP6,I2)+Q(KP6, i4))

ELSE IF(IT4SWT.EG.3) THEN
DELU(K) = 0.5*(Q(KP6,I)+Q(KP6,I3))

ELSE IF(IT4SWT.EQ.4) THEN
DELU(K) = (O(KP6,Il)+Q(KP6,I3)+Q(KP6,I4))/3.

END IF
320 CONTINUE

C
CALL DELTFG

C
DO 322 K=1,4
KP6 = K+6

322 Q(KPF6,I2) = GSAVE(K)+(DELU(K)-DELF(K)+DELG(K))*DV/VT
C

330 CONTINUE
C

RETURN
C
C TYPE 5: NOTHING HERE

400 GO TO 500
C
C TYPE 6: NI DISTRIBUTION OF CORNER DU'S FROM SMALL CELL CENTER

500 IF(INJTYPE.NE.6) RETURN
DO 530 I = LEVP(1,LEV),LEVP(2,LEV)

C
IF(IP(5,I).EO.0) GO TO 530

C
CALL CELPOINT(I)

C
C CALCULATE VOLUMES

VA = -0.5*( (Q(1, INC)-Q(1, II))*(G(2, IN4)-Q (2, INI))
1 -(Q(1,IN4)-0(1,IN1))A(Q(2,INC)-Q(2,II)))
VB = -0.5A((Q(1,IN2)-Q(1,IN1))*(Q(2,INC)-0(2,I2))
1 -(Q(1,INC)-Q(1,I2))*(Q(2,IN2)-Q(2,IN1)))
VC = -0.5*((Q(1,I3)-Q(1,INC))*(Q(2,IN3)-Q(2,IN2))
1 -(Q(1,IN3)-Q(1,IN2))*(Q(2,I3)-Q(2,INC)))
VD = -0.5*((Q(1,IN3)-Q(1,IN4))*(Q(2,I4)-Q(2,INC))
1 -(Q(1,I4)-Q(1,INC))A(O(2,IN3)-O(2,IN4)))
VT = (VA+VB+VC+VD)

C
C CELL 1

Il = ABS(IP(1,I))
12 = IP(6,I)
13 = IP(5,I)
14 = IP(9,I)
INC = 0

C
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CALL METRC4
CALL CTIME

C
PCHECK = Q(7,I1)+0(8,I1)+Q(9,I1)+Q(10,I1)

C
DO 505 K=1,4
KP6 = K+6
IF(PCHECK.NE.0.0) THEN
DELU(K) = Q(KP6,II)

ELSE
DELU(K) = Q(KP6,13)

END IF
505 CONTINUE

C
CALL DELTFG

C
DO 507 K=1,4

507 QSAVE(K) = (DELU(K)+DELF(K)+DELG(K))ADV/VT
C
C CELL 2

Il = 12
14 = 13
12 = ABS(IP(2,I))
13 = IP(7,I)
INC = 0

C
CALL METRC4
CALL CTIME

C
PCHECK = Q(7,I2)+0(8,I2)+Q(9,I2)+Q(10,I2)

C
DO 510 K=1,4
KP6 = K+6
IF(PCHECK.NE.O.0) THEN

DELU(K) = Q(KP6,I2)
ELSE

DELU(K) = Q(KP?6,14)
END IF

510 CONTINUE
C

CALL DELTFG
C

DO 512 K=1,4
512 QSAVE(K) = QSAVE(K)+(DELU(K)+DELF(K)-DELG(K))ADV/VT

C
C CELL 3

Il = 14
12 = 13
13 = ABS(IP(3,I))
14 = IP(8,I)
INC = 0

C
CALL METRC4
CALL CTIME
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C
PCHECK = 0(7,I3)+Q(8,I3)+0(9,I3)+D(10,I3)

C
DO 515 K=l,4
KP6 = K+6
IF(PCHECK.NE.O.0) THEN
DELU(K) = Q(KP6,13)

ELSE
DELU(K) = Q(KP6,Il)

END IF
515 CONTINUE

C
CALL DELTFG

C
DO 517 K=1,4

517 QSAVE(K) = QSAVE(K)+(DELU(K)-DELF(K)-DELG(K))*DV/VT
C
C
C CELL 4

12 = Il
13 = 14
Il = IP(9,I)
14 = ABS(IP(4,I))
INC = 0

C
CALL METRC4
CALL CTIME

C
PCHECK = 0(7,I4)+Q(8,14)+Q(9,I4)+Q(10,I4)

C
DO 520 K=1,4
KP6 = K+6
IF(PCHECK.NE.O.0) THEN
DELU(K) = Q(KP6,14)

ELSE
DELU(K) = Q(KP6,12)

END IF
520 CONTINUE

C
CALL DELTFG

C
DO 522 K=1,4
KP6 = K+6

522 G(KP6,12) = QSAVE(K)+(DELU(K)-DELF(K)+DELG(K))ADV/VT
C

530 CONTINUE
C

RETURN
END

C-----------------------------------------------------
C SUBROUTINE: INPUT2
C-----------------------------------------------------------

SUBROUTINE INPUT2
C
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C THIS SUBROUTINE READS REQUIRED INPUT PARAMETERS FROM THE TERMINAL
C

INCLUDE 'MAIN.INC'
INCLUDE 'INPT.INC'
INCLUDE 'MET.INC'
INCLUDE 'LUNITS.INC'

C
CHARACTER TLABEL1*l10,TLABEL2A100,INNAMEA50

C
C SET UP LOGICAL UNIT NUMBERS
C INPUT:
C LU3 = POINTER SYSTEM AND FLOW START FILE
C - LU5 = INTERACTIVE INPUT
C LU7 = STOP COMAND FILE
C OUTPUT:
C LU1 = SOLUTION SUMMARY
C LU2 = RESIDUAL FILE
C LU4 = POINTER AND SOLUTION FILE
C LUG = INTERACTIVE PROMPTS
C

LU1 = 1
LU2 = 2
LU3 = 3
LU4 = 4
LU5 = 5
LUG = 6
LU7 = 7

C
C READ RUN CONDITIONS

WRITE(LUG,A)' ENTER RUN NAME (RLABELl<10)'
READ(LU5, 1020)RLABEL1
WRITE(LU6,*)' ENTER RUN COMMENTS (RLABEL2<100)'
READ(LU5,1020)RLABEL2

1020 FORMAT(A)
WRITE(LU6,*)' ENTER FREE STREAM MACH NO., AMFS'
READ(LUS,A)AMFS
WRITE(LU6,A)' ENTER ANGLE OF ATTACK ALPHA'
READ(LU5,A)ALPHA
WRITE(LU6,A)' ENTER CFL NO.'
READ(LU5,*)CFL
WRITE(LUG,*)' ENTER TYPE OF TIME STEP'
WRITE(LU6,A)' 0 = SINGLE TIME STEP FOR SWEEP'
WRITE(LU6,*)' 2 = TIME STEP FOR EACH CELL'
READ(LU5,*)ITIM
WRITE(LU6,*)' ENTER ARTIFICIAL VISCOSITY COEF. 0.<AVISCF<0.1'
READ(LUS,*)AVISCF
WRITE(LU6,A)' ENTER NUMBER OF ITERATIONS: NSTARTNMAX'
READ(LU5,*) NSTARTNMAX
WRITE(LU6,*)' ENTER CONVERGENCE CUT OFF DELSTP'
READ(LUS,A)DELSTP
WRITE(LUG,*)' ENTER LEVEL TO CHECK CONVERGENCE ON, LSTOP'
READ(LU5,A)LSTOP
WRITE(LUS,A)' DO YOU WANT THE INITIAL FLOW PRINTED??'
WRITE(LU6,*)' 0=NO 1=YES'
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READ(LU5,) IPRNT2
WRITE(LU6,A) ENTER TYPE OF INITIAL SOLUTION'
WRITE(LU6,A) ' 0 = UNIFORM FLOW'
WRITE(LU6,A) ' 1 = RESTART'
READ(LU5,A) ISTART
WRITE(LU6,A)' ENTER NAVIER-STOKES SWITCH INSSWT= 1:YES, 0:NO'
READ(LU5,A)INSSWT
IF(INSSWT.EQ.1) THEN

WRITE(LU6,*)' ENTER REO, PR, TREF FOR NAVIER-STOKES SUBDOMAIN'
READ(LU5,A)REO,PR,TREF
CSTAR = 110.0/TREF

ELSE
RE0 = 1
PR = 1
TREF = 1
CSTAR = 1

END IF
C
C INPUT OF GRID AND POINTER SYSTEM

OPEN(UNIT=LU3,TYPE='OLD',FORM='UNFORMATTED',
1 READONLY)

C
READ(LU3) GLABEL1,GLABEL2,TLABEL1,TLABEL2
READ(LU3) NICONST,NRCONST
READ(LU3) (ICONST(K, K=1,NICONST)
READ(LU3) (RCONST(K), K=1,NRCONST)
READ(LU3) LMAX,IQMAX,IPBUMX,IPBDMXIPBTMX,IPBBMX
READ(LU3) ((IPBIMX(MN), M=1,2), N=1,LMAX)
READ(LU3) ((LEVP(MN), M=1,2), N=1,LMAX)

C
DO 10 LEV = 1,LMAX
READ(LU3) ((IP(MN), M=1,9), N=LEVP(1,LEV),LEVP(2,LEV))

10 CONTINUE
C

DO 15 LEV=1,LMAX
IF(IPBIMX(2,LEV).NE.0)
1 READ(LU3) ((IPBI(M,N), M=1,3),
2 N=IPBIMX(1,LEV),IPBIMX(2,LEV))

15 CONTINUE
C

READ(LU3) ((IPBU(M,N), M=1,3), N=1,IPBUMX)
READ(LU3) ((IPBD(M,N), M=1,3), N=1,IPBDMX)
READ(LU3) ((IPBT(M,N), M=1,3), N=1,IPBTMX)
READ(LU3) ((IPBB(M,N), M=1,3), N=1,IPBBMX)

C
DO 20 K=1,6

20 READ(LU3) (Q(K,I), I=1,IQMAX)
C

CLOSE(UNIT=LU3)
C
C SET GRID CONSTANTS

IE = ICONST(1)
JE = ICONST(2)

C
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OUTPUT OF INPUT DATA
WRITE(LU1,1000) RLABEL1,GLABEL1 ,RLABEL2,GLABEL2
WRITE(LUl,1001)
WRITE(LU1,1004) AMFSALPHACFLAVISCF,ITIM
WRITE(LU1,1005) NSTARTNMAXLSTOP,DELSTP,ISWT
WRITE(LU1,1006) ISTARTIPRNT1,IPRNT2,REO,TREF
WRITE(LU1,1007)
WRITE(LU1,1008) LMAXIQMAXIPBUMX,IPBBMX,IPBDMX
WRITE(LUl,1009) IPBTMXIEJEIC1,IC2
WRITE(LU1,1010) IF1,IF2,JC2,DELTA,AK

1000 FORMAT(//,5X,A1O,2X,A30,/,5X,A100,/,5X,A100)
1001 FORMAT(//,5X,'INPUT
1004 FORMAT(5X,'AMFS

1 5X,'CFL
2 5X,'ITIM

1005 FORMAT(5X,'NSTART
1 5X,'LSTOP
2 5X,'ISWT

1006 FORMAT(5X,'ISTART
1 5X,'IPRNT2
2 5X,'TREF

1007 FORMAT(//,5X,'GRID
1008 FORMAT(5X,'LMAX

1 5X,'IPBUMX
2 5X,'IPBDMX

1009 FORMAT(5X,'IPBTMX
1 5X,'JE
2 5X,'IC2

1010 FORMAT(5X,'IF1
1 5X,'JF2
2 5X,'AK

PARAMETERS',/)
=',Ell.4,5X,'ALPHA
=',Ell.4,5X,'AVISCF

=',I6,5X,5X,'NMAX
=',I6,5X,5X,'DELSTP
=',I3)
=',14,7X,5X,'IPRNT1
=',14,7X,5X,'RE0
=',E11.4)
PARAMETERS')
=',I4,7X,5X,'IQMAX

=',I6,5X,5X,'IPBBMX
=',I6)
=',I6,5X,5X,'IE
=',I14,7X,5X,'/IC1

=',14,7X)
=',I4,7X,5X,'IF2
=',14,7X,5X,'DELTA

=',E11.4)

=',E11.4,
=' ,E11.4,

=' ,I6,5X,
=' ,E11.4,

=',14,7X,

=' ,E11.4,

=',I6,5X,
=',16,X,

=',I14,7X,

=',I14,7X,

=,I14, 7X,
=' ,E11.4,

RETURN
END

C---------------------------------------------------------
C SUBROUTINE: INTERPT
C---------------------------------------------------------

SUBROUTINE INTERPT(LEVIFORM)
C
C THIS SUBROUTINE INTERPOLATES THE COARSE GRID
C SOLUTION TO THE LOCALLY FINEST GRID.

INCLUDE 'MAIN.INC'
INCLUDE 'POINT.INC'
INCLUDE 'INPT. INC'
INCLUDE 'MET.INC'
INCLUDE 'LUNITS.INC'

C FORM TYPE 1: CENTERED INTERPOLATION
C

IF(IFORM.NE.1) GO TO 100
C
C INTERPOLATION TO FINE GRID DU
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DO 50 LL=1,LEV-1
L=LEV-LL+1

C
C UPDATE BOUNDARIES

IF(INSSWT.EO.0) THEN
CALL SDWALBC

CC CALL EULERWAL2(L)
ELSE IF(INSSWT.EQ.1) THEN

CALL NSSDWAL
END IF
CALL FARFDBC2(CLN, CDN)

C
DO 50 I=LEVP(1,L),LEVP(2,L)

C
C CHECK FOR F INER GR ID

IF(IP(5,I).EQ.0) GO TO 45
C
C INTERPOLATE CELL

CALL CELPOINT(I)
C

EDT(INC) = EDT(II)
EDT(IN1) = EDT(II)
EDT(IN2) = EDT(Il)
EDT(IN3) = EDT(Il)
EDT(IN4) = EDT(II)

C
DO 40 K=7,10
Q(KIN1) = Q(K,II)+0.5*(Q(K,I2)-Q(K,II))
Q(KIN2) = Q(K,12)+0.5*(Q(K,I3)-Q(K,I2))
Q(KIN3) = g(K,I4)+0.5A(Q(K,I3)-Q(K,I4))
Q(KIN4) = Q(KII)+0.5A(Q(K,I4)-Q(K,II))
Q(KINC) = 0(KIN1)+0.5*(Q(K,IN3)-Q(KIN1))

40 CONTINUE
C

45 CONTINUE
C

50 CONTINUE
C

RETURN
C
C FORM TYPE 2: WEIGHTED INTERPOLATION
C

100 IF(IFORM.NE.2) GO TO 200
C
C INTERPOLATION TO FINE GRID DU

DO 150 LL=1,LEV-1
L=LEV-LL+1

C
C UPDATE BOUNDARIES

IF(INSSWT.EG.0) THEN
CALL SDWALBC

ELSE IF(INSSWT.EQ.1) THEN
CALL NSSDWAL

END IF
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CALL FARFDBC2

DO 150 I=LEVP(1,L),LEVP(2,L)

CHECK FOR FINER GRID
IF(IP(5,I).EQ.0) GO TO 145

INTERPOLATE CELL
CALL CELPOINT(I)

CALCULATE SCALINGS FOR NONUNIFORM GRIDS
SQRT((Q(1,IN1)-0(1,II)
SQRT( (Q(1, I2)-Q(1, IN1)
SGRT((Q(1,IN2)-Q(1,I2)
SQRT((Q(1,I3)-0(1,IN2)
SQRT((0(1,IN3)-Q(1,I3)
SORT((Q(1,I4)-Q(1,IN3)
SQRT((Q(1,IN4)-Q(1,I4)
SQRT((Q(1,Il)-Q(1,IN4)
TMP1/(TMP1+TMP2)
TMP3/(TMP3+TMP4)
=MP6/(TMP5+TMP6)
TMP8/(TMP7+TMPB)
0.5*(SCAL2+SCAL4)

1)
2)
3)
4)

)*A2+(Q(2, IN1)-Q(2,INl))AA2)

)A2+(Q(2, 1I2)-0 (2, 12))**2)
)A*2+(a(2, 13)-Q(2, 1N2) )*A2)

)AA2+(Q(2, IN3)-0(2, 13))AA2)
)*A2+(Q(2, 14)-Q(2, IN3) )AA2)
)AA2+(0(2, IN4)-Q(2, 14) )**2)
)*A2+(Q(2, I1)-0(2, IN4) )*a2)

EDT( Ii)
EDT( II)
EDT(Il)
EDT(II)
EDT(II)

DO 140 K=7,10
Q(KIN1) = Q(K,II)+SCALlA(Q(KI 2)-Q(K,II))
Q(KIN2) = Q(KI2)+SCAL2A(Q(K,I3)-Q(K,I2))
Q(KIN3) = Q(K,14)+SCAL3A(Q(K,I3)-Q(KI4))
Q(KIN4) = Q(K,II)+SCAL4A(Q(KI4)-Q(K,II))
Q(KINC) = Q(K,IN1)+SCAL5A(Q(K,IN3)-Q(K,IN1))

140 CONTINUE

145 CONTINUE
C

150 CONTINUE
C

RETURN
C
C ERROR IN FORM TYPE CHOOSEN
C

200 WRITE(LU1,*)' WRONG FORM IN INTERPT IFORM=',IFORM
STOP
END

C----------------------------------------------------------------
C SUBROUTINE: METRC4
C----------------------------------------------------------------
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SUBROUTINE METRC4
C
C THIS SUBROUTINE CALCULATES THE METRICS FOR THE
C CENTER OF CELL (I) USING BILINEAR INTERPOLATION

INCLUDE
INCLUDE
INCLUDE

DXDXI =
DYDXI =
DXDET =
DYDET =

'MET. INC'
'MAIN.INC'
'POINT.INC'

0.5A(Q(1,I3)+0(1,I14)-Q(1, I2)-0(1, II))
0.5*(Q(2, 13)+0(2, 14)-0(2, I2)-0Q(2, II))
0.5*(Q(1,I2)+Q(1,I3)-Q(1,II)-Q(1,I4))
0.5A(0(2,I12)+0(2,I13)-Q(2, II)-Q(2,I14))

C CALCULATE JACOBIAN
DV = DXDXIADYDET-DXDETADYDXI
DL = SORT(DXDETADXDET+DYDETADYDET)
DM = SORT(DXDXIADXDXI+DYDXIADYDXI)

C
RETURN
END

C------------------------------------------------------------
C SUBROUTINE: METRC5
C----------------------------------------------------------~

SUBROUTINE METRC5(DXX1,DYX1,DXE2,DYE2,
1 DXX3,DYX3,DXE4,DYE4,VT)

THIS SUBROUTINE CALCULATES THE METRICS FOR THE
CENTER OF CELL (I) USING BILINEAR INTERPOLATION

INCLUDE 'MET.INC'
INCLUDE 'MAIN.INC'
INCLUDE 'POINT.INC'

DIMENSION VT(3000)

IF(INC.EQ.O) THEN
DXDXI = 0.5*(Q(1,I3)+Q(1,I4)-Q(1,I2)-Q(1,II))
DYDXI = 0.5A(Q(2,I3)+0(2,I4)-Q(2,I2)-0(2,II))
DXDET = 0.5A(Q(1,I2)+Q(1,I3)-Q(1,II)-Q(1,I4))
DYDET = 0.5A(Q(2,I2)+0(2,I3)-0(2,I1)-Q(2,I4))

DV = DXDXIADYDET-DXDETADYDXI
ELSE
DXX1 = Q(1,INC)-Q(1,IN1)
DYXI = 0(2, INC)-0( 2,IN1)
DXE2 = 0(1,IN2)-Q(1,INC)
DYE2 = Q(2,IN2)-Q(2,INC)
DXX3 = 0(1,IN3)-Q(1,INC)
DYX3 = Q(2,IN3)-Q(2,INC)
DXE4 = Q(1,INC)-Q(1,IN4)
DYE4 = 0(2,INC)-0(2,IN4)
DXDXI = DXX1+DXX3
DYDXI = DYX1+DYX3
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DXDET = DXE2+DXE4
DYDET = DYE2+DYE4
DV = VT(INC)

END IF
C

DL = SORT(DXDET*DXDET+DYDET*DYDET)
DM = SORT(DXDXIADXDXI+DYDXIADYDXI)

C
RETURN
END

C--------------------------------------------------------------~~
C SUBROUTINE: NI
C-----------------------------------------------------------~-~

SUBROUTINE NI
C
C SUBROUTINE NI DEFINES THE GRID CYCLING
C FOR THE GENERAL CELL ORIENTED NI SOLVER
C "NISTEP' WHICH SOLVES THE GOVERNING EON'S
C ON EACH LEVEL. THIS SUBROUTINE THEN CHECKS
C FOR CONVERGENCE ON THE DEFINED LEVEL.
C

INCLUDE 'MAIN.INC'
INCLUDE 'INPT.INC'
INCLUDE 'LUNITS.INC'

C
WRITE(LU1,1001)

C
N = NSTART-1
ISTOP = 0

1 N = N+1
C
C RELAXATION SWEEP ON EACH GRID LEVEL FINE TO COARSE

DO 5 LEV = 1,LMAX
C
C SOLVE EON'S

CALL NISTEP5(NLEV)
IF(N.EQ.NSTART.AND.LEV.EO.1) THEN
WRITE(LU1,1000)N,IMAXDELMAX
DO 2 K=1,5

2 DELMAX1(K) = DELMAX(K)
END IF

CCC
CCC WRITE TEMP RESTART FILE
CCC TMPREST = FLOAT(N)/100.-FLOAT(N/100)
CCC IF(LEV.EG.LSTOP.AND.TMPREST.E.0) CALL OUTRESTT
C
C CHECK FOR CONVERGENCE

IF(ISTOP.EQ.1.AND.LEV.EQ.1) GOTO 10
IF(LEV.EG.LSTOP.AND.DELMAX(5).LE.DELSTP) ISTOP = 1

5 CONTINUE
C

IF(N.GE.NMAX-1) ISTOP = 1
OPEN(UNIT=LU7,READONLYTYPE='OLD')
READ(LU7,A)JSTOP
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IF(JSTOP.EG.l) ISTOP = 1
CLOSE(UNIT=LU7)
GOTO 1

C
10 WRITE(LUl,1000)NIMAXDELMAX

NFINSH = N

1000 FORMAT(2(2X,I5),6E12.5)
1001 FORMAT(///,'CONVERGENCE HISTORY',/,4X,'N',5X,'IMAX',

1 2X,'DELMAX(U1)' ,2X,'DELMAX(U2)' ,2X,'DELMAX(U3)',
2 2X,'DELMAX(U4)',2X,'D(U2/DT)AV')
RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: NISTEP5
C----------------------------------------------------------------

SUBROUTINE NISTEP5(N,LEV)
C
C This subroutine solves the Euler eqns.
C using a cell oreinted version of Ni's Method
C over grid level LEV. This subroutine as written
C performs either a fine mesh cell distribution or
C a coarse mesh cell acceleration distribution depending
C of the type of each cell.
C In addition this particular version saves a
C representative dt for each node in EDT(i) for use
C in the error norm calculation. This same time step
C then acts as a indicator as to wether the node is to
C be updated (i.e. if EDT(i)=0.0 then the node has not
C been distributed to or interpolated to and therefore
C should not be updated).
C This subroutine contains a switch which will include
C the Navier-Stokes terms on level 1 based on the following
C switch:
C INSSWT = 0 For Euler solver.
C 1 For Navier-Stokes terms on level 1.
C Note: In this case no smoothing is applied
C on level 1.
C

INCLUDE 'MAIN.INC'
INCLUDE 'SOLV.INC'
INCLUDE 'INPT.INC'
INCLUDE 'MET.INC'
INCLUDE 'POINT.INC'
INCLUDE 'LUNITS.INC'

C
C Inject changes from the next finer level based on
C one of the following weighting formulae:
C IFORM = 0 FOR SIMPLE INJECTION OF VALUE AT INC
C 1 ALGEBRAIC WEIGHTING
C 2 AREA WEIGHTING
C 3 NOTHING DONE AT THIS TIME
C 4 SPECIAL DISTRIBUTION INJECTION
C 5 NOTHING DONE AT THIS TIME
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C 6 Ni's Distribution (modified form 4)
IF(LEV.GT.1) CALL INJECT5(LEV,6)

C
C Initialize DU and EDT before sweep
C If LEV = 1 then all DU's and EDT's zeroed,

IF(LEV.EQ.1) THEN
DO 5 I=1,IQMAX
EDT(I) = 0.0
DO 5 K=7,10

5 Q(K,I) = 0.0
C
C Otherwize zero Du and EDT only at cell nodes.

ELSE
DO 7 I=LEVP(lLEV),LEVP(2,LEV)
DO 7 J=l,4
JP = ABS(IP(J,I))
EDT(JP) = 0.0
DO 7 K=7,10

7 Q(KJP) = 0.0
C
C In addition zero boundary du's so application
C of boundary conditions on coarser levels will
C only make changes at coarse nodes.

DO 8 I=lIPBBMX
JP = ABS(IP(lIPBB(2,I)))
DO 8 K=7,10

8 O(KJP) = 0.0
C

DO 9 I=1,IPBUMX
JP = ABS(IP(2,IPBB(2,I)))
DO 9 K=7,10

9 Q(K,JP) = 0.0
C

END IF
C
C Initialize embedded mesh interface nodes from
C coarser mesh. This subroutine may also be used
C to initalize interface DU's with embedded mesh
C interface corrections.

CALL INBC4(LEV)
C
C If global time step is used calculate DT here
C based on minimum DT for current level.

IF(ITIM.EQ.0) CALL GTIME(LEV)
C
C Initialize error norms to zero.

DO 10 K=1,5
10 DELMAX(K) = 0.0

DELUMAX = 0.0
C
C Start of relaxation sweep for DU
C over current level.

DO 30 I = LEVP(1,LEV),LEVP(2,LEV)
C
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C Setup node pointers for cell.
CALL CELPOINT(I)

C
L. Calculate cell metrics, volume, and other distances

CALL METRC4
C
C Calculate time step for local CFL calculations
C based on current cell.

IF(ITIM.EQ.2) CALL CTIME
C
C Store cell DT in EDT(i) for residual calculations
C Note: set in this way the final value of EDT is
C the value of the last cell to be calculated
C which contains this node. It is note an
C average.

EDT(Il) = DT
EDT(I2) = DT
EDT(I3) = DT
EDT(14) = DT

C
C Perform flux balance on cell for DELU(k)
C then calculate distribution weightings
C DELF and DELG for cell center.
C Note: If INC = 0 this is a coarse cell
C and injection is used.

CALL DELTU
CALL DELTFG

C
C If level 1 is Navier-Stokes region calculate terms

IF(INSSWT.EQ.1.AND.LEV.EQ.1) CALL DELTRS
C
C Calculate artifical viscosity coefficient
C if any of the cell nodes is to be smoothed.

IF(IVIS.GT.0) THEN
AVIS = AVISCF*DTA(DL+DM)/DV

END IF
C
C Distribute cell changes to nodes and if
C the node is to be smoothed then add smoothing.

DO 20 K=l,4
KP6 = K+6

C
C Distribution step

Q(KP6,Il) = Q(KP6,Il)+(DELU(K)-DELF(K)-DELG(K))/4.0
Q(KP6,I2) = Q(KP6,I2)+(DELU(K)-DELF(K)+DELG(K))/4.0
Q(KP6,I3) = Q(KP6,I3)+(DELU(K)+DELF(K)+DELG(K))/4.0
Q(KP6,14) = Q(KP6,I4)+(DELU(K)+DELF(K)-DELG(K))/4.0

C
C Smoothing step

IF(INSSWT.EQ.1.AND.LEV.EQ.1) GO TO 20
IF(IVIS.EG.0) GO TO 20
KP2 = K+2

C
OBAR = 0.25A(Q(KP2,Il)+O(KP2, I2)+Q(KF2,I3)+Q(KP2,I4))
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Y(KP6,Il) = Q(KP6,II)+0.25AAVISA(QB ARQ(KP2,II))AVIS1
Q(KP6,I2) = Q(KP6,12)+0.25AAVISA(QBAR-Q(KP2,I2))AVIS2
(KP6,13) = Q(KP6,13)+0.25AAVISA(QBAR-Q(KP2,I3))kVIS3

0(KP6,14) = Q(KP6,I4)+0.25*AVISA(QBAR-Q(KP2,I4))AVIS4
C

20 CONTINUE
C
C Calculate Maximum cell RU residual
C and its cell location.

IF(DELUMAX.LT.DELU(2)/DT) THEN
DELUMAX = DELU(2)/DT
JMAX = I

END IF
C

30 CONTINUE
C
C Zero embedded mesh interface points and
C calculate interface corrections to be add
C to interface points on the next coarser
C level.

CALL INFACBC2(LEV)
C
C Double solid wall boundary DU's.

CALL WALLDBL
C
C Correct smoothing at all boundary points
C (i.e. solid wall and farfield points at
C this time.).

CALL BDSMTH(LEV)
C
C Interpolate DU's from current level to
C the finest level in each mesh region.
C IFORM = 1 For centered interpolation (i.e. algebraic)
C 2 For interpolation based on physical lengths

IF(LEV.NE.1) CALL INTERPT(LEV,1)
C
C Apply boundary conditions to all
C boundary points.

IF(INSSWT.EQ.0) THEN
CALL SDWALBC

CC CALL EULERWAL(LEV)
ELSE IF(INSSWT.EQ.l) THEN

CALL NSSDWAL
END IF
CALL FARFDBC2(CLN,CDN)

C
C Update solution for all points
C that have been changed and calculate
C node error norms.

NUMPTS = 0
DO 60 I = lIQMAX
IF(EDT(I).EQ.0.0) GO TO 60
NUMPTS = NUMPTS+l
DO 55 K = 1,4
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KFP6 = KI+6
KP2 = K+2
IF (DELMAX(K).LT.ABS(Q(KP6,i)/EDT(I))) THEN

DELMAX(K) = ABS(Q(KP6,I)/EDT(I))
IF (K.EO.2) THEN

IMAX = I
END IF

END IF
55 Q(KP2,I) = O(KP2,I)+Q(KP6,I)

DELMAX(5) = DELMAX(5)+ABS(Q(8,I)/EDT(I))
60 CONTINUE

C
DELMAX(5) = DELMAX(5)/FLOAT(NUMPTS)

C
C Write out error norms to plot file if
C LEV is less than or equal to LSTOP.

IF(LEV.LE.LSTOP) WRITE(LU2,l000) N,IMAX,DELMAX,JMAX,DELUMAX,
1 CLN,CDN

1000 FORMAT(2(2X,I5),5El2.5,2X,I5,E12.5,2X,E12.5,2X,El2.5)
C

RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: NSSDWAL
C----------------------------------------------------------------

SUBROUTINE NSSDWAL
C
C THIS SUBROUTINE CALCULATES DU FOR WALL
C. BOUNDARY POINTS FOR THE NAVIER-STOKES EON.
C USING NORMAL EXTRAPOLATION OF PRESSURE AND TEMPERATURE
C I.E. ADIABATIC WALL CONDITION.
C

INCLUDE 'MAIN. INC'
INCLUDE 'GAM.INC'
INCLUDE 'INPT.INC'
INCLUDE 'LUNITS.INC'

C
C BOTTOM WALL

DO 10 I=1,IPBBMX
C
C SET POINTERS I CALCULATE WALL TANGENT

IF(IPBB(3,I).EQ.4) THEN
J1 = ABS(IP(1,IFBB(1,I)))
J2 = ABS(IP(4,IPBB(1,I)))
J3 = ABS(IP(4,IPBB(2,I)))
J4 = ABS(IP(3,IPBB(1,I)))

C
TMP1 = (lJ2)-Q(1,J1)
TMP2 = Q(2,J2)-Q(2,J1)
DS1 = SQRT(TMP1*TMP1+TMP2*TMP2)
TMP1 = Q(lJ3)-Q(1,J2)
TMP2 = Q(2,J3)-Q(2,J2)
DS2 = SQRT(TMPlATMP1+TMP2*TMP2)

L
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TMP1 = DSl+DS2
TMP2 = DS2/(DSlATMP1)
TMP3 = (DS2-DSl)/(DSIADS2)
TMP4 = DS1/(DS2ATMP1)

C
DXDS = -Q(1,J1)ATMP2+0(1,J 2)ATMP3+0(1,J3)ATMP4
DYDS = -Q(2,J1)ATMP2+Q(2,J2)ATMP3+Q(2,J3)ATMP4
TMP1 = SORT(DXDSADXDS+DYDSADYDS)

C
DX = DXDS/TMP1
DY = DYDS/TMP1
IBCOND = 1

ELSE IF(IPBB(3,I).EQ.5) THEN
J1 = ABS(IP(1,IPBB(1,I)))
J2 = ABS(IP(4,IPBB(1,I)))
J3 = ABS(IP(4,IPBB(2,I)))
J4 = ABS(IP(3,IPBB(1,I)))

C
THETAI = ATAN2((0(2,J2)-Q(2,Jl)),(0(1,J2)-0(1,J1)))
THETA2 = ATAN2((0(2,J2)-0(2,J3)),(Q(1,J2)-Q(1,J3)))
THETA = 0.5A(THETA1+THETA2)

CC THETA = THETAl
C

DX = COS(THETA)
DY = SIN(THETA)
IBCOND = 1

ELSE
WRITE(LU1,*)' ERROR WALBC9C NOT VALID WALL TYPE I=',I

END IF
IF(IBCOND.EQ.0) GOTO 10

C
C CALCULATION OF DWT,DWN,AO

RTMPi = 0(3,34)
UTMP1 = 0(4,J4)/RTMPI
VTMPI = 0(5,J4)/RTMP1
ETMP1 = Q(6,J4)
PTMPI = GM1A(ETMP1-0.5ARTMPlA(UTMPlAUTMPl+VTMPlAVTMP1))
TTMPl = GAMMAAPTMPl/RTMPl
IF(PTMPl.LT.0.0) THEN

WRITE(LUl,*) '*A PTMP1<0.0 IN SDWALBC AT BOTTOM I=',I
STOP

END IF
C
C CALCULATION OF CORRECTED DELTA'S

0(7,J2) = GAMMA*PTMPl/TTMP1-Q(3,J2)
Q(8,J2) = 0.0-0(4,J2)
Q(9,J2) = 0.0-0(5,32)
Q(10,J2) = PTMPl/GMI-Q(6,J2)

C
10 CONTINUE

C
RETURN
END
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C SUBROUTINE: OUTPUT3
C------- ---------------------------------------------

SUBROUTINE OUTPUT3
C
C THIS SUBROUTINE CREATES THE OUTPUT FILE
C CALL REST.DAT WHICH IS READ BY EULER
C

INCLUDE 'MAIN.INC'
INCLUDE 'POINT.INC'
INCLUDE 'INPT.INC'
INCLUDE 'GAM.INC'
INCLUDE 'LUNITS.INC'

C
C CALCULATION OF LIFT FORCE COEFFICIENTS

CORD = 0.0
CFN = 0.0
CFT = 0.0

C
DO 5 I=1,IPBBMX
31 = ABS(IP(1,IPBB(2, I)))
J2 = ABS(IP(4,IPBB(2,I)))

C
IF(I.EQ.1) THEN

TX1 = Q(1,J1)
TYl = Q(2,J1)

END IF
TCORD = (TX1-G(1,J2))AA2+(TY1-Q(2,J2))*A2
IF(TCORD.GT.CORD) CORD = TCORD

C
DX = Q(1,J2)-Q(1,J1)
DY = Q(2,J2)-Q(2,J1)
DS = SQRT(DXADX+DYADY)

C
P1 = GM1A(Q(6,J1)
1 -0.5A(Q(4,J1)AQ(4,JI)+C(5,JI)AQ(5,J1))/Q(3,31))

P2 = GM1*(Q(6,J2)
1 -0.5A(Q(4,J2)*Q(4yJ2)+Q(5,J2)AQ(5 ,J2))/Q(3,32))

TMP = Pl+P2
CFN = CFN+TMPADX
CFT = CFT+TMP*DY

5 CONTINUE
C

CORD = SQRT(CORD)
QFS = ROFSA(UFSAUFS+VFSAVFS)ACORD
CFN = -CFN/QFS
CFT = CFT/GFS

C
ALPHAR = 3.14159AALPHA/180.0
CL = CFNACDS(ALPHAR)-CFTASIN(ALPHAR)
CD = CFN*SIN(ALPHAR)+CFT*COS(ALPHAR)

C
C CALCULATE SPECTRIAL RADIUS

SRAD = (DELMAX(5)/DELMAX1(5))**(1./(NFINSH-NSTART))
C
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OPEN(UNIT=LU4,TYPE='NEW',FORM='UNFORMATTEI")
C
C SET CONSTANTS

ICONST(11) = NSTART
ICONST(12) = NFINSH
ICONST(13) = IIIM
ICONST(14) = ISTART
ICONST(15) = LSTOP
NICONST = 50

C
RCONST(1) = AMES
RCONST(2) = ALPHA
RCONST(3) = CFL
RCONST(4) = AVISCF
RCONST(5) = ROFS
RCONST(6) = UPS
RCONST(7) = VFS
RCONST(8) = APFS
RCONST(9) = CORD
RCONST(10) = CFN
RCONST(11) = CPT
RCONST(12) = CL
RCONST(13) = CD
RCONST(14) = CM
RCONST(15) = DELMAX1(1)
RCONST(16) = DELMAX1(2)
RCONST(16) = DELMAX1(3)
RCONST(18) = DELMAX1(4)
RCONST(19) = DELMAXI(5)
RCONST(20) = DELMAX(1)
RCONST(21) = DELMAX(2)
RCONST(22) = DELMAX(3)
RCONST(23) = DELMAX(4)
RCONST(24) = DELMAX(5)
RCONST(25) = SRAD
NRCONST = 50

C
WRITE(LU1,1004)
WRITE(LU1,1005)ROFS,UFS,VFS,CORD
WRITE(LU1,1006)CFN,CFT,CL,CD

1004 FORMAT(//,5X,'SECTION LIFT PROPERTIES',/)
1005 FORMAT(5X,'ROFS =',F10.7,5X,'UFS =',F10.7,

1 5X,'VFS =',F10.7,5X,'CHORD =',E1O.7)
1006 FORMAT(5X,'CFN =',F10.7,5X,'CFT =',10.7,

1 5X,'CL =',F10.7,5X,'CD =',F1O.7)
C
C WRITE OUT GRID POINTERS
C

WRITE(LU4) GLABEL1,GLABEL2,RLABEL1,RLABEL2
WRITE(LU4) NICONST,NRCONST
WRITE(LU4) (ICONST(K), K=1,NICONST)
WRITE(LU4) (RCONST(K), K=1,NRCONST)
WRITE(LU4) LMAX,IDMAXIPBUMXIPBDMX,IPBTMXIPBBMX
WRITE(LU4) ((IPBIMX(MN), M=1,2), N=1,LMAX)
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WRITE(LU4) ((LEVP(MN), M=1,2), N=1,LMAX)
C

DO 10 LEV = 1,LMAX
WRITE(LU4) ((IP(M,N), M=1,9), N=LEVP(1,LEV),LEVP(2,LEV))

10 CONTINUE

DO 15 LEV=1,LMAX
IF(IPBIMX(2,LEV).NE.0)
1 WRITE(LU4) ((IPBI(MN), M=1,3), N=IPBIMX(1,LEV),IPBIMX(2,LEV))

15 CONTINUE
C

WRITE(LU4) ((IPBU(MN), M=1,3), N=1,IPBUMX)
WRITE(LU4) ((IPBD(MN), M=1,3), N=1,IPBDMX)
WRITE(LU4) ((IPBT(MN), M=1,3), N=1,IPBTMX)
WRITE(LU4) ((IPBB(MN), M=1,3), N=1,IPBBMX)

C
DO 8 K =1,6

8 WRITE(LU4) (Q(K,I), I=1,IQMAX)
C

RETURN
END

C----------------------------------------------------------------
C SUBROUTINE:OUTRESTT
C----------------------------------------------------------------

SUBROUTINE OUTRESTT
C
C THIS SUBROUTINE CREATES A TEMPORARY OUTPUT FILE
C CALL TREST.DAT WHICH IS READ BY EULER
C

INCLUDE 'MAIN. INC'
INCLUDE 'POINT.INC'
INCLUDE 'INPT.INC'
INCLUDE 'GAM.INC'

C
C CALCULATION OF LIFT FORCE COEFFICIENTS

CORD = 0.0
CFN = 0.0
CFT = 0.0

C
DO 5 I=1,IPBBMX
J1 = ABS(IP(1,IPBB(2,I)))
32 = ABS(IP(4,IPBB(2,I)))

C
IF(I.EQ.1) THEN
TX1 = Q(1,J1)
TYl = 0(2,J1)

END IF
TCORD = (TX1-Q(1,J2))AA2+(TYl-Q(2,J2))*A2
IF(TCORD.GT.CORD) CORD = TCORD

C
DX = Q(1,J2)-Q(1,J1)
DY = 0(2,J2)-Q(2,J1)
DS = SQRT(DX*DX+DY*DY)

C

I
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Pi = GM1A(Q(6,J1)
1 -0.5A(Q(4,J1)AQ(4,J1)+0(5,J1)AQ(5,J1))/Q(3,J1))
P2 = GMlA(Q(6,J2)

1 -0.5A(Q(4,J2)AQ(4,2)+Q(5,J2)AQ(5,J2))/0(3,J2))
TMP = Pl+P2
CFN = CFN+TMPADX
CFT = CFT+TMP*DY

5 CONTINUE

CORD = SORT(CORD)
QFS = ROFSA(UFSAUFS+VFSAVFS)ACORD'
CFN = -CFN/QFS
CFT = CFT/QFS

ALPHAR = 3.14159AALPHA/180.0
CL = CFNACOS(ALPHAR)-CFTASIN(ALPHAR)
CD = CFNASIN(ALPHAR)+CFTACOS(ALPHAR)

CALCULATE SPECTRIAL RADIUS
SRAD = (DELMAX(5)/DELMAX1(5))*A(1./(NFINSH-NSTART))

OPEN(UNIT=8,NAME='TREST.DAT',TYPE='OLD',FORM='UNFORMATTED')

SET CONSTANTS
ICONST(11) = NSTART
ICONST(12) = NFINSH
ICONST(13) = ITIM
ICONST(14) = ISTART
ICONST(15) = LSTOP
NICONST = 50

RCONST(1)
RCONST (2)
RCONST(3)
RCONST(4)
RCONST(5)
RCONST(6)
RCONST(7)
RCONST(8)
RCONST(9)
RCONST(10)
RCONST(11)
RCONST(12)
RCONST(13)
RCONST(14)
RCONST(15)
RCONST(16)
RCONST(16)
RCONST(18)
RCONST(19)
RCONST(20)
RCONST(21)
RCONST(22)
RCONST(23)

AMFS
ALPHA
CFL
AVISCF
ROFS
UFS
VFS
APFS
CORD
CFN
CFT
CL
CD
CM
DELMAX1(1)
DELMAXI(2)
DELMAX1(3)
DELMAXI(4)
DELMAXI(5)
DELMAX(1)
DELMAX(2)
DELMAX(3)
DELMAX(4)
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RCONST(24) = DELMAX(5)
RCONST(25) = SRAD
NRCONST = 50

C
1004 FORMAT(//,5X,'SECTION LIFT PROPERTIES',/)
1005 FORMAT(5X,'ROFS =',F10.7,5X,'UFS =',F10.7,

1 5X,'VFS =',F10.7,5X,'CHORD =',F10.7)
1006 FORMAT(5X,'CFN =',F10.7,5X,'CFT =',F10.7,

1 5X,'CL =',E10.7,5X,'CD =',F10.7)

C WRITE OUT GRID POINTERS
C

WRITE(8) GLABEL1 , GLABEL2,RLABEL1,RLABEL2
WRITE(8) NICONST,NRCONST
WRITE(8) (ICONST(K), K=1,NICONST)
WRITE(8) (RCONST(K), K=1,NRCONST)
WRITE(8) LMAX,IGMAX,IPBUMX,IPBDMX,IPBTMX,IPBBMX
WRITE(8) ((IPBIMX(M,N), M=1,2), N=1,LMAX)
WRITE(S) ((LEVP(M,N), M=1,2), N=1,LMAX)

C
DO 10 LEV = 1,LMAX
WRITE(8) ((IP(MN), M=1,9), N=LEVP(1,LEV),LEVP(2,LEV))

10 CONTINUE
C

DO 15 LEV=1,LMAX
IF(IPBIMX(2,LEV).NE.0)
1 WRITE(S) ((IPBI(M,N), M=1,3), N=IPBIMX(1,LEV),IPBIMX(2,LEV))

15 CONTINUE
C

WRITE(8) ((IPBU(MN), M=1,3), N=1,IPBUMX)
WRITE(8) ((IPBD(MN), M=1,3), N=1,IPBDMX)
WRITE(8) ((IPBT(MN), M=1,3), N=1,IPBTMX)
WRITE(S) ((IPBB(MN), M=1,3), N=1,IPBBMX)

C
DO 8 K =1,6

8 WRITE(8) (Q(KI), I=1,IGMAX)
C

CLOSE(UNIT=8)
C

RETURN
END

C----------------------------------------------------------------
C SUBROUTINE: SDWALBC
C----------------------------------------------------------------

SUBROUTINE SDWALBC
C
C THIS SUBROUTINE CALCULATES DU FOR WALL
C BOUNDARY POINTS USING A SIMPLE WAVE
C BC FOR THE 4 EQN EULER PROBLEM.
C

INCLUDE 'MAIN. INC'
INCLUDE 'GAM.INC'
INCLUDE 'INPT.INC'
INCLUDE 'LUNITS.INC'
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C
C BOTTOM WALL

DO 10 I=1,IPBBMX
C
C SET POINTERS & CALCULATE WALL TANGENT

IF(IPBBI(3,I).EG.4) THEN
J1 = ABS(IP(1,IPBB(1,I)))
J32 = ABS(IP(4,IPBB(1,I)))
33 = ABS(IP(4,IPBB(2, I)))

TMP1 = 0(1,J2)-0(1,31)
TMP2 = 0(2,J2)-Q(2,Ji)
DS1 = SQRT(TMP1*TMPl+TMP2ATMP2)
TMP1 = Q(1,J3)-Q(1,J2)
TMP'2 = 0(2,33)-Q(2,J2)
DS2 = SQRT(TMPlATMP1+TMP2*TMP2)

C
TMP1 = DSl+DS2
TMP2 = DS2/(DSlATMP1)
TMP3 = (DS2-DS1)/(DSlADS2)
TMP4 = DSl/(DS2*TMP1)

C
DXDS = -Q(1,J1)*TMP2+0(1,J2)ATMP3+Q(1,J3)*TMP4
DYDS = -Q(2,J1)*TMP2+0(2,J2)*TMP3+0(2,J3)*TMP4
TMP1 = SORT(DXDS*DXDS+DYDSADYDS)

C
DX = DXDS/TMP1
DY = DYDS/TMP1
IBCOND = 1

ELSE IF(IPBB(3,I).EG.5) THEN
J1 = ABS(IP(1,IPBB(1,I)))
J2 = ABS(IP(4,IPBB(1,I)))
J3 = ABS(IP(4,IPBB(2,I)))

C
THETAI = ATAN2((Q(2,J2)-Q(2,J1)),(Q(1,J2)-Q(1,J1)))
THETA2 = ATAN2((0(2,J2)-0(2,J3)),(Q(1,J2)-0(1,33)))
THETA = 0.5*(THETAl+THETA2)

CC THETA = THETAl
C

DX = COS(THETA)
DY = SIN(THETA)
IBCOND = 0

ELSE
WRITE(LUl,*)' ERROR WALBC9C NOT VALID WALL TYPE I=',I

END IF
IF(IBCOND.EQ.) GOTO 10

C
C CALCULATION OF DWTDWNAO

RTMP1 = 0(3,J2)+Q(7 ,32)
UTMP1 = (0(4,J 2)+Q(8,J2))/RTMP1
VTMP1 = (0(5,J2)+0(9,J2))/RTMP1
ETMP1 = 0(6,J2)+Q(10,J2)
PTMP1 = GM1A(ETMP1-0.5ARTMPlA(UTMPlAUTMPl+VTMPlAVTMP1))
IF(PTMPl.LT.O.0) THEN
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WRITE(LUl,A) '*A PTMPl<0.0 IN SDWALBC AT BOTTOM I=',I
STOP

END IF
IF(IBCOND.EQ.1) THEN

AO1 = SQRT(GAMMAAPTMPl/RTMP1)
UWT1 = DX*UTMPl+DYAVTMPl
DWN1 =-DYAUTMPl+DXAVTMPl

C
UNEW = UWTlADX
VNEW = UWTIADY
TMP = 1.0-0.5*GMlADWN1/AO1
IF(TMP.LT.0.0) THEN

WRITE(LU1,A)' AATMP<0.0 IN SDWALBC AT BOTTOM I=',I
STOP

END IF
RNEW = RTMPIA((TMP)AA(2.0/GM1))
PNEW = PTMPlA((TMP)AA(2.0/GMlDG))

ELSE IF(IBCOND.EQ.2) THEN
UNEW = 0.0
VNEW = 0.0
PNEW = (PTMP1*AGMIDG+GMID2GARTMPlA(UTMPlAA2+VTMPlAA2)

/(PTMPlAA(1./GAMMA)))AA(1.0/GMlDG)
RNEW = RTMPl((PNEW/PTMP1)AA(1./GAMMA))

ELSE IF(IBCOND.EQ.3) THEN
UNEW = 0.0
VNEW = 0.0
PTMPA = GM1A(i(6,J)-0.5A(Q(4,J1)AA2+Q(5,J1)AA2)/0(3,J1))
PTMPB = GM1A(Q(6,J3)-0.5A(Q(4,J3)AA2+Q(5,J3)AA2)/0(3,J3))
PNEWA = (PTMPAAAGMIDG+GMID2GA(Q(4,J1)AA2+0(5,J1)*A2)/0(3,J1)

1 /(PTMPAAA(1./GAMMA)))AA(1.0/GMlDG)
PNEWB = (PTMPBAAGMIDG+GMID2GA(0(4,J3)AA2+0(5,J3)AA2)/O(3,J3)

/(PTMPBAA(1./GAMMA)))AA(1.0/GMIDG)
PNEW = 0.5A(PNEWA+PNEWB)
RNEW = RTMPlA((PNEW/PTMPA)AA(1./GAMMA))

ELSE IF(IBCOND.EG.4) THEN
ONEW = SQRT(UTMPlAA2+VTMPlAA2)
UNEW = QNEWADX
VNEW = QNEWADY
PNEW = PTMP1
RNEW = RTMP1

END IF
C
C CALCULATION OF CORRECTED DELTA'S

0(7,J2) = RNEW-Q(3,J2)
Q(8,J2) = RNEWAUNEW-0(4,J2)
0(9,J2) = RNEWAVNEW-0(5,J2)
0(10,J2) = PNEW/GM1+0.5ARNEWA(UNEWAUNEW+VNEWAVNEW)

1 -Q(6,J2)
C

10 CONTINUE
C

RETURN
END

C----------------------------------------------------------------
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C SUBROUTINE: WALLDBL
C---------------------------------------------------- -----

SUBROUTINE WALLDBL
C
C THIS SUBROUTINE DOUBLES THE SOLID WALL
C DU'S BEFORE INTERPOLATION AND APPLICATION
C OF BOUNDARY CONDITIONS.
C

INCLUDE 'MAIN.INC'
INCLUDE 'LUNITS.INC'

BOTTOM WALL POINTS
DO 5 I=1,IPBBMX
IF(IPBB(3,I).EG.4) THEN

IF(IPBB(1,I).NE.0) THEN
J2 = ABS(IP(4,IPBB(1,I)))

ELSE
J2 = ABS(IP(1,IPBB(2,I)))

END IF
ELSE IF(IPBB(3,I).EQ.5) THEN

IF(IPBB(1,I).NE.0) THEN
J2 = ABS(IP(4,IPBB(1,I)))

ELSE
J2 = ABS(IP(1,IPBB(2, I)))

END IF
ELSE

WRITE(LUl,*)' ERROR WALLDBL
END IF
DO 5 K=7,1O

5 Q(K,J2) = 2.OAQ(KJ2)

IPBB(3,I) NOT 4 OR 5'

RETURN
END

C---------------------------------------------------------~---
C SUBROUTINE: ZERO4
C------------------------------------------------------------

SUBROUTINE ZERO4(LEV)
C
C THIE SUBROUTINE SETS SUBDOMAIN-GLOBAL
C BOUNDARY DU'S TO ZERO.

INCLUDE 'MAIN.INC'

IF(IPBIMX(1,LEV).EQ.O) RETURN
C

DO 5 I=IPBIMX(1,LEV),IPBIMX(2,LEV)
DO 5 J=1,3
JPOINT = IPBI(JI)
DO 5 K=7,1O

5 Q(K,JPOINT) = 0.0
C

RETURN
END

C----------------------------------------------------------

- 3'27 -



2 4 IRF0l L EUL EP. CODE 0-TYPE MESHES

C LINK COMMAND FILE: AFLLINK.COM

SETl BDSMTH,CELPOINTCTIME,DELTFG,DELTU,METRC5,-
INFACBC2, INTERPT,NISTEP5, INJECT5, EULERWAL2,

SET2 := FINDFG,GAMMAS,GEOWALGTIME, INBC4, INITIA, INFACBC,
SET3 := INPUT2,METRC4,NI,
SET4 := OUTPUT3,FARFDBC2, SDWALBCWALLDBL,-

ZERO4,DELTRS, NSSDWAL,OUTRESTT
LINK EULERCELL,'SET1' 'SET2' 'SET3' 'SET4'
C------------------------------------------------------------
C DATA FILE: AIRFOIL.TMP
C--------------------------------------------------------------~~
RUN 216:
EULER, NI INJECTION(6), CHAR S/W, VORTEX DS'CHAR. QUARTER CHORD
.85 ENTER FREE STREAM MACH NO., AMFS
1.0 ENTER ANGLE OF ATTACK
.95 ENTER CFL NO.
2 ENTER TYPE OF TIME STEP 0 = SINGLE TIME 2 = EACH CELL
.08 ENTER ARTIFICIAL VISCOSITY COEF. 0.'AVISCF<0.1
1 2000 1500 ENTER NUMBER OF ITERATIONS: NSTARTNMAX
1E-5 ENTER CONVERGENCE CUT OFF DELSTP
1 ENTER LEVEL TO CHECK CONVERGENCE ON, LSTOP
0 DO YOU WANT THE INITIAL FLOW PRINTED?? 0=NO 1=YES
0 ENTER TYPE OF INITIAL SOLUTION 0 = UNIFORM FLOW 1 = RESTART
ECFD.USAB.EULERCELL.GRIDFOILJNACA0012.015
0 ENTER NAVIER-STOKES SWITCH INSSWT= 1:YES, 0:NO
2.342E6 .72 288.0 ENTER REO,PR,TREF FOR NAVIER-STOKES SUBDOMAIN
C----------------------------------------------------------------

C----------------------------------------------------------------
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2-D AIRFOIL EULER CODE FOR C-TYPE MESHES

This appendix contains listings of the two computer

codes used to generate the 2-D transonic airfoil solutions on

C-type meshes presented in this thesis. The first program

called GEOCREATC reads in a global C-type mesh as input and

then interactively generates a file which contains the pointer

system and mesh coordinates for the complete mesh structure.

The second program, EULERCELL, is the multiple-grid Euler

solver. EULERCELL requires two files as input, the pointer

file defining the embedded mesh structure and a second file

containing the flow conditions and control parameters (a

sample of this file is given at the end of this appendix).

Since most of the subroutines used by GEOCREATC and EULERCELL

are the same as those used by the corresponding 0-mesh codes,

only those subroutines which are different are presented here.

All others may be taken directly from the 0-mesh codes.
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12345678901234567890123456789012345678901234567890123456789012345
C ----------------------------------------------------------------

C ----------------------------------------------------------------
C
C ----------------------------------------------------------------
C PROGRAM: GEOCREATC
C----------------------------------------------------------------
C
C THIS PROGRAM GENERATES THE GRID AND POINTERS
C FOR A AIRFOIL WITH A CGRID.

CALL GEOIN3
C

CALL GEOPONTC
C

CALL GEOOUT3
C

STOP
END

C----------------------------------------------------------------
C INCLUDE FILE: GEOCOM.COM
C----------------------------------------------------------------

COMMON/GEOCOM/IEJEIEMiJEM1,LMAXISUBD,
1 DELTAAK,YOICl,IC2,JC2,IF2,JF2,
2 X(257,65),Y(257,65),XS(49,9),YS(49,9),
3 IPC(257,65),IPS(49,9),IQMAX,Q(2,8424),
4 ILEVP(2,5),LEVP(2,5),IP(9,10816),
5 IPBIMX(2,5),IPBUMXIPBDMXIPBTMXIPBBMX,
6 IPBI(3,257),IPBU(3,257),IPBD(3,9),
7 IPBT(3,33),IPBB(3,257),
8 LEVSET(257,65),IPSET(257,65),
9 ICONST(50),RCONST(50),LU1,LU2,LU3,LUS,LU6
COMMON/GEOLAB/GLABEL1,GLABEL2,RLABEL1,RLABEL2,
1 INNAMEOUTNAME
CHARACTER GLABELIA30,GLABEL2A*100,RLABELlA10,RLABEL2A100,
1 INNAME*15,UTNAMEA15
COMMON/GAM/ GAMMAHTOT,
1 GM1,GMlD2,GMlDGGMlD2G,
2 GPlDGGPlD2G,GM3

C----------------------------------------------------------------
C SUBROUTINE FILE: GEOPONTC
C----------------------------------------------------------------

SUBROUTINE GEOPONTC
C
C THIS SUBROUTINE GENERATES THE POINTERS
C FOR THE GIVEN GRID AND BOUNDARY CONDITIONS.
C THIS IS A EXTENDED VERSION OF GEOPONT3.

INCLUDE 'GEOCOM.COM'
C
C FIND T/E LOCATION

I = 0
ITE = 0
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5 I = I+1

IF(Y( I,1).EG.Y(IE-I+1,1))
ITE = I
GO TO 5

END IF
WRITE(LU6',A)' DOUBLE T/E

THEN

SETUP'

ITE =ITE-1

WRITE(LU6,A)' ITE =',ITE

SETUP AND FILLING OF 0-VECTOR
IND = 0
DO 10 L=1,LMAX
LSKIP = 2**(L-1)
DO 10 I=1,IE,LSKIP
DO 10 J=1,JE,LSKIP
IF(LEVSET(I,J).EG.L) THEN

IF(J.GT.l.OR.I.LE.IE-ITE) THEN
IND = IND+1
Q(1,IND) = X(IJ)
Q(2,IND) = Y(IJ)
IPSET(IJ) = IND

ELSE
IPSET(I,J) = IPSET(IE-I+1,J)

END IF
END IF

10 CONTINUE

IGMAX = IND
WRITE(LUG,*) ' IQMAX='

GENERATE POINTERS
IND = 0

IDMAX

DO 30 LEV=1,LMAX
ILEVP(1,LEV) = IND+1
LSKIP = 2**(LEV-1)
LSKIP2 LSKIP/2
DO 25 I=1,IEM1,LSKIP
DO 25 J=1,JEM1,LSKIP
ICOUNT = 0
IF(LEVSET(IJ).LE.LEV) ICOUNT = ICOUNT+1
IF(LEVSET(I,J+LSKIP).LE.LEV) ICOUNT = ICOUNT+1
IF(LEVSET(I+LSKIPJ+LSKIP).LE.LEV) ICOUNT = ICOUNT+1
IF(LEVSET(I+LSKIP,J).LE.LEV) ICOUNT = ICOUNT+1
IF(ICOUNT.EQ.4) THEN

IND = IND+1
IP(I,IND) = -IPSET(I,J)
IP(2,IND) = -IPSET(I,J+LSKIP)
IP(3,IND) = -IPSET(I+LSKIPJ+LSKIP)
IP(4,IND) = -IPSET(I+LSKIP,J)
IF(LEV.EQ.1) THEN

IF(J.GT.1) THEN

CCC

CCC
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IF(I.GT.1) THEN
IF(LEVSET( I-1,%J) .EQ.1.AND. LEVSET( IJ-1) .EQ.)

1 IP(1,IND) = -IP(1,IND)
END IF
IF(I.LT.IEM1) THEN

IF(LEVSET( I+2,J).EQ.1.AND.LEVSET( I+1,J-1) .EQ.1)
1 IP(4,IND) = -IP(4,IND)

END IF
ELSE

IF(I.LE.ITE.OR.I.GE.IE-ITE+) THEN
IF(I.NE.1) IP(1,IND) = -IP(1,IND)

END IF
IF(I.LT.ITE.OR.I.GE.IE-ITE) THEN

IF(I.NE.IEM1) IP(4,IND) = -IP(4,IND)
END IF

END IF
IF(J.LT.JEM1) THEN

IF(I.GT.1) THEN
IF(LEVSET(I-1,J+1).EQ.1.AND.LEVSET(I,J+2).EQ.i)

1 IP(2,IND) = -IP (2,IND)
END IF
IF(I.LT.IEM1) THEN

IF(LEVSET(I+2,J+1).EQ.1.AND.LEVSET(I+1,J+2).Eg.1)
1 IP(3,IND) = -IP(3,IND)

END IF
END IF
DO 17 K=5,9

17 IP(KIND) = 0
ELSE

IF(LEVSET(I+LSKIP2,J+LSKI'P2).EQ.LEV) THEN
IF(J.GT.1) THEN

IF(I.GT.1) THEN
IF(LEVSET(I-LSKIPJ).LE.LEV

1 .AND.LEVSET(I,J-LSKIP).LE.LEV)
1 IP(1,IND) = -IP(1,IND)

END IF
IF(I.LT.IE-LSKIP) THEN
IF(LEVSET(I+2ALSKIP,J).LE.LEV

1 .AND.LEVSET(I+LSKIPJ-LSKIP).LE.LEV)
1 IP(4,IND) = -IP(4,IND)

END IF
ELSE

C
C AAAA ADD EMBEDDED MESH SYMMETRY CONDITIONS
C

WRITE(LU6,*)' AAA ERROR SYMMETRY CONDITION MISSING'
END IF
IF(J.LT.JE-LSKIP) THEN
IF(I.GT.1) THEN

IF(LEVSET(I-LSKIP,J+LSKIP).LE.LEV
1 .AND.LEVSET(IJ+2ALSKIP).LE.LEV)
1 IP(2,IND) = -IP(2,IND)

END IF
IF(I.LT.IE-LSKIP) THEN
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IF(LEVSET(I+2ALSKIPJ+LSK IP).LE.LEV
1 .AND.LEVSET(I+LSKIPJ+2ALSKIP) .LE.LEV)
1 IP(3,IND) = -IP(3,IND)

END IF
END IF

ELSE IF(LEVSET( I+LSKIP2,J+LSKIP2).EQ.LEV-1) THEN
IF(J.GT.1) THEN

IF(I.GT.1) THEN
IF(LEVSET( I-LSK IP,J). EQ.LEV

1 .OR.LEVSET(I,J-LSKIP).EQ.LEV)
1 IP(1,IND) = -IP(1,IND)

END IF
IF(I.LT.IE-LSKIP) THEN
IF(LEVSET(I+2ALSKIP,J).EG.LEV

1 .OR.LEVSET(I+LSKIP,J-LSKIP).EQ.LEV)
1 IP(4,IND) = -IP(4,IND)

END IF
ELSE

C
C *AAA ADD EMBEDDED MESH SYMMETRY CONDITIONS
C

WRITE(LU6,A)' A*A ERROR SYMMETRY CONDITION MISSING'
END IF
IF(J.LT.JE-LSKIP) THEN

IF(I.GT.1) THEN
IF(LEVSET(I-LSKIPJ+LSKIP).EQ.LEV

1 .OR.LEVSET(I,J+2ALSKIP).EQ.LEV)
1 IP(2,IND) = -IP'(2,IND)

END IF
IF(I.LT.IE-LSKIP) THEN

IF(LEVSET(I+2ALSKIP,J+LSKIP).EG.LEV
I .OR.LEVSET(I+LSKIP,J+2ALSKIP).EQ.LEV)
1 IP(3,IND) = -IP(3,IND)

END IF
END IF

END IF
IF(LEVSET(I+LSKIP2, J+LSKI P2).LT.LEV)

1 IP(5,IND) = IPSET(I+LSKIP2,J+LSKIP2)
IF(LEVSET(I,J+LSKIP2).LT.LEV)

1 IP(6,IND) = IPSET(IJ+LSKIP2)
IF(LEVSET(I+LSKIP2,J+LSK IP).LT.LEV)

1 IP(7,IND) = IPSET(I+LSKIP2, J+LSKIP)
IF(LEVSET(I+LSKIPJ+LSKIP2).LT.LEV)

1 IP(8,IND) = IPSET(I+LSKIP,J+LSKIP2)
IF(LEVSET(I+LSKIP2,J).LT.LEV)

1 IP(9,IND) = IPSET(I+LSKIP2,J)
END IF

END IF
25 CONTINUE

ILEVP(2,LEV) = IND
WRITE(LU6,A)' ILEVP(2, LEV)=',ILEVP (2,LEV)

30 CONTINUE
C
C INTERPOLATION BC POINTER
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C
WRITE(LUG,A)' A* NOTE: NO SYMMETRY CONDITIONS HERE'

C
IND = 0
DO 47 LEV = 2,LMAX
LEVM1 = LEV-1
LSKIP = 2AA(LEV-1)
LSKIP2 = LSKIP/2
IPBIMX(1,LEV-1) = IND+1
DO 45 I=1,IEMI,LSKIP
DO 45 J=1,JEM1,LSKIP
IF(LEVSET(I+LSKIP2,J+LSKIP2).EQ.LEV) THEN

IF(LEVSET(I,J+LSKIP2).EQ.LEV-1) THEN
IND = IND+1
IPBI(1,IND) = IPSET(IJ+LSKIP)
IPBI(2,IND) = IPSET(IJ+LSKIP2)
IPBI(3,IND) = IPSET(I,J)

END IF
IF(LEVSET(I+LSKIP2,J+LSKIP).EQ.LEVM1) THEN

IND = IND+1
IPBI(1,IND) = IPSET(I+LSKIPJ+LSKIP)
IPBI(2,IND) = IPSET(I+LSKIP2,J+LSKIP)
IPBI(3,IND) = IPSET(I,J+LSKIP)

END IF
IF(LEVSET(I+LSKIPJ+LSKIP2).EG.LEVM1) THEN

IND = IND+1
IPBI(1,IND) = IPSET(I+LSKIPJ)
IPBI(2,IND) = IPSET(I+LSKIP,J+LSKIP2)
IPBI(3,IND) = IPSET(I+LSKIP,J+LSKIP)

END IF
IF(LEVSET(I+LSKIP2,J).EQ.LEVM1) THEN

IND = IND+1
IPBI(1,IND) = IPSET(I,J)
IPBI(2,IND) = IPSET(I+LSKIP2,J)
IPBI(3,IND) = IPSET(I+LSKIP,J)

END IF
END IF

45 CONTINUE
IF(IPBIMX(1,LEV-1).GT.IND) THEN

IPBIMX(1,LEV-1) = 0
IPBIMX(2,LEV-1) = 0

ELSE
IPBIMX(2,LEV-1) = IND

END IF
47 CONTINUE

C
C FARFIELD & SOLID WALL BC POINTERS
C
C DEFINE FARFIELD POINTS

IND = 0
J= 0

49 J = J+1
IF(IPSET(1,J).GT.0) THEN

IND = IND+1
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IPBU(2,IND) = IPSET(1,J)
IF(J.GT.1) THEN

IPBU(3,IND-1) = IPBU(2,IND)
IPBU(1,IND) = IPBU(2, IND-1)

END IF
END IF
IF(J.LT.JE) GO TO 49

C

50 1 = I+1
IF(IPSET(I,JE).GT.0) THEN

IND = IND+1
IPBU(2, IND) = IPSET(I,JE)
IF(I.GT.2) THEN

IPBU(3,IND-1) = IPBU(2,IND)
IPBU(1,IND) = IPBU(2,IND-1)

ELSE
IPBU(1,IND) = IPBU(2,IND-1)

END IF
END IF
IF(I.LT.IE-1) GO TO 50

C
J = JE+1

51 J = J-1-
IF(IPSET(1,J).GT.0) THEN

IND = IND+1
IPBU(2,IND) = IPSET(IE,J)
IF(J.LT.JE) THEN

IPBU(3,IND-1) = IPBU(2,IND)
IPBU(1,IND) = IPBU(2,IND-1)

ELSE
IPBU(3,IND-1) = IPBU(2,IND)

END IF
END IF
IF(J.GT.1) GO TO 51

C
IPBU(1,1) = IPBU(1,IND)
IPBUMX = IND-1

C
C DEFINE SOLID WALL POINTS

IND = 0
I = ITE

52 I = I+1
IF(IPSET(I,1).GT.0) THEN

IND = IND+1
IPBB(2,IND) = IPSET(I,1)
IF(IND.GT.1) THEN

IPBB(3,IND-1) = IPBB(2,IND)
IPBB(1,IND) = IPBB(2,IND-1)

ELSE
IPBB(1,IND) = IPSET(ITE,1)

END IF
END IF
IF(I.LT.IE-ITE+1) GO TO C2
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C
IPBBMX = IND-1

C
DO 53 IND=1, IPBUMX
Il = IPBU(1,IND)
12 = IPBU(2,IND)
13 = IPBU(3,IND)
CALL GEOBCEL(I1,I2,I3, ICELlICEL2)
IPBU(1,IND) = ICELl
IPBU(2,IND) = ICEL2
IF(ICEL1.NE.O.AND.ICEL2.NE.0) THEN

IF(ABS(IP(2,ICEL1)).EG.ABS(iP(1, ICEL2))) THEN
IPBU(3,IND) = I

ELSE IF(ABS(IP(3,ICEL1)).EQ.ABS(IP(2, ICEL2))) THEN
IPBU(3,IND) = 2

ELSE IF(ABS(IP(4,ICEL1)).EG.ABS(IP(3,ICEL2))) THEN
IPBU(3,IND) = 3

ELSE IF(ABS(IP(1,ICEL1)).EQ.ABS(IP(4,ICEL2))) THEN
IPBU(3,IND) = 4

ELSE
WRITE(LU6,A)' ** ERROR IN DEFINING IPBU TYPE 1'

END IF
ELSE IF(I3.EG.0) THEN

IPBU(3,IND) = 6
ELSE IF(I1.EQ.O) THEN

IPBU(3,IND) = 7
ELSE

WRITE(LU6,A)' AA ERROR IN DEFINING IPBU TYPE 2'
END IF
IF(IND.EQ.1) IPBU(3,IND) = 5

53 CONTINUE
C

DO 54 IND=1,IPBBMX
Il = IPBB(1,IND)
12 = IPBB(2,IND)
13 = IPBB(3,IND)
CALL GEOBCEL(IlI2,I3,ICEL1,ICEL2)
IPBB(lIND) = ICELI
IPBB(2,IND) = ICEL2
IPBB(3,IND) = 4

54 CONTINUE
C
C OTHER POINTERS

IPBDMX = 0
IPBTMX = 0

C
RETURN
END

C-------------------------------------------------------------

C---------------------------------------------------- ---

- 33 6 -



2-L: AIRFOL EULER CDE FO C-IYPE MESHES

1234 7m901234567890123456789012345678901234567890123456789012345
C----------------------------------------------------------------

C
C ----------------------------------------------------------------
C PROGRAM: C-MESH EULERCEL
C----------------------------------------------------------------
C PROGRAM EULERCELL SOLVES THE 2-D EULER EON'S
C USING A CELL POINTER BASED VERSION OF
C NI'S METHOD. IT INCLUDES THE CAPABILITY
C OF ANY NUMBER OF SUBDOMAINS.
C
C
C READ INPUT PROPERTIES

CALL INPUT2
C
C CALCULATE CONSTANTS CONTAINING GAMMA

CALL GAMMAS
C
C INITIALIZE FLOW FIELD TO UNIFORM FLOW

CALL INITIA
C
C SOLVE EULER EON'S USING NI'S METHOD

CALL NI
C
C OUTPUT FINAL SOLUTION

CALL OUTPUT3
C

STOP
END

C----------------------------------------------------------------
C INCLUDE FILE: GAM.INC
C----------------------------------------------------------------

COMMON/GAM/ GAMMA,HTOT,
1 GM1,GMlD2,GMlDG,GMlD2G,
2 GPlDGGPlD2G,GM3

C----------------------------------------------------------------
C INCLUDE FILE: INPT.INC
C----------------------------------------------------------------

COMMON/INPT/ AMFSCFLAVISCFEXITPITIM,
1 ISTARTNSTARTNMAXLMAX,
2 LSTOPDELSTP,IPRNT1,IPRNT2,
3 WCFS(4),DELTAAK,YO,
4 IE,JEIC1,IC2,JC2,IF2,JF2,
5 ALPHAROFSAPFSUFSVFS,
6 NFINSH,DELMAX1(5),
7 ICONST(50),RCONST(50),
8 INSSWTREOPRCSTARTREF
COMMON/INPTLAB/GLABEL1,GLABEL2,RLABEL1,RLABEL2
CHARACTER GLABELl*30,GLABEL2A100,RLABELIA1O,RLABEL2A100

C----------------------------------------------------------------
C INCLUDE FILE: LUNITS.INC
C----------------------------------------------------------------
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COMMON/LUN ITS/LUl , LU2,LU3 ,LU4 , LU5,LU6,LU7

C------- ------------------------------------------------------
C INCLUDE FILE: MAIN.INC
C----------------------------------------------------------------

COMMON/MAIN/TrDT,DTE(82) ,DELMAX(5),IMAX,
1 IQMAXLEVP(2,5),IPBIMX(2,5),IPBUMX,IPBDMX,
2 IPBTMXIPBBMXQ(lO,8424),IP(9,10816),IPBI(3,257),
3 IPBU(3,257),IPBD(3,9),IPBT(3,33),IPBB(3,257),
4 QIB(4,257),ErDT(8424)

----------------------------------------------------------------
C INCLUDE FILE: MET.INC

C----------------------------------------------------------------

COMMON/MET/ DVDL, DMDXDXI,DYDXI,DXDET,DYDET,

1 DXIDXDXIDYDETDX,DETDY,AJAC

COMMON/MET2/ IWP1(258),TX(258),TY(258),

1 RC(258),TSCL(258),SSCL(258)

C----------------------------------------------------------------

C INCLUDE FILE: POINT.INC

C----------------------------------------------------------------

COMMON/POINT/ II,I2,I3,I4,INC,IN1,IN2,IN3,IN4,

1 VIS1,VIS2,VIS3,VIS4,IVIS

C----------------------------------------------------------------

C INCLUDE FILE: SOLV.INC

C--------------------------------------------------------------~

COMMON/SOLV/ F(4,4),G(4,4),DELU(4),DELF(4),DELG(4)

C----------------------------------------------------------------

C SUBROUTINE FILE: BDSMTH

C----------------------------------------------------------------

SUBROUTINE BDSMTH(LEV)

C

C AAAA SPECIAL C-MESH FORMULATION A*A*

C AAAA SHOULD WORK WITH 0-MESH *A*A

C

C This subroutine smooths the far field and solid

C wall boundary points. Points are always smoothed

C on the lowest level in which the two adjoining cell

C to the boundary exist. This is consistent with the

C internal point smoothing.

C For the far field boundary the smoothing used is

C the corresponding one model applied along the boundary.

C For the solid wall boundary two formulations are

C possible:

C Type 1: The same as the farfield boundary with a

C ramp increase in smoothing around the t.e.

C Type 2: A standard internal smoothing using extrapolated

C information to define an imaginary line of points

C inside the wall. In this case the smoothing is not

C increased in the t.e. region.

C

INCLUDE 'MAIN.INC'

INCLUDE 'POINT.INC'

INCLUDE 'MET.INC'

INCLUDE 'INPT.INC'

INCLUDE 'GAM.INC'
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C
DIMENSION QN1(4),QN2(4),QAVE2(4)

C
C Far Field boundary point smoothing using a 1-D smoothing
C tangent to the boundary

DO 10 I=1,IPBUMX
C
C Is point to be smoothed on this level?

ICONT1 = 0
IF(IPBU(lI).GE.LEVP(1,LEV).AND.IPBU(1,I).LE.LEVP(2,LEV))THEN

IF(IPBU(2,I).LE.LEVP(2,LEV)) ICONT1 = 1
ELSE IF(IPBU(2,I).GE.LEVP(lLEV).AND.IIPBU(2,I).LE.LEVP(2, LEV))
1 THEN

IF(IPBU(1,I).LE.LEVP(2,LEV)) ICONT1 = 1
END IF

C
C If it is then calculate and add contributions
C for each cell surroundin3 the point.

IF(ICONT1.EQ.l) THEN
C

IF(IPBU(3,I).EQ.l) THEN
31 = ABS(IP(1,IPBU(lI)))
J2 = ABS(IP(2,IPBU(1,I)))
J3 = ABS(IP(2,IPBU(2,I)))

ELSE IF(IPBU(3,I).EQ.2) THEN
J1 = ABS(IP(2,IPBU(lI)))
-32 = ABS(IP(3,IPBU(1,I)))
J3 = ABS(IP(3,IPBU(2,I)))

ELSE IF(IPBU(3,I).EQ.3) THEN
31 = ABS(IP(3,IPBU(1,I)))
J2 = ABS(IP(4,IPBU(1,I)))
J3 = ABS(IP(4,IPBU(2,I)))

ELSE IF(IPBU(3,I).EQ.4) THEN
J1 = ABS(IP(4,IPBU(1,I)))
J2 = ABS(IP(l,IPBU(l,I)))
J3 = ABS(IP(1,IPBU(2,I)))

ELSE IF(IPBU(3,I).EQ.5) THEN
Jl = ABS(IP(3,IPBU(1,I)))
J2 = ABS(IP(4,IPBU(1,I)))
J3 = ABS(IP(2,IPBU(2,I)))

ELSE IF(IPBU(3,I).GT.5) THEN
GO TO 10

END IF
C
C First cell:

CALL CELPOINT(IPBU(lI))
CALL METRC4
CALL CTIME
AVIS = AVISCFADTA(DL+DM)/DV

C
DO 4 K=1,4

- KP2 = K+2
KP6 = K+6

4 Q(KP6,J2) = Q(KP6,J2)+0.125AAVISA(Q(KP2,J1)-Q(K'P2,J2))
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C
C Second Cell:

CALL CELPOINT(IPBU(2,I))
CALL METRC4
CALL CTIME
AVIS = AVISCFADT*(DL+DM)/DV

C
DO 6 K=l,4
KP2 = K+2
KP6 = K+6

6 Q(KP6,32) = Q(KP6,J2)+0.125*AVISA(Q(KP2,J3)-Q(KP'2,J2))
END IF

10 CONTINUE
C
C Solid Wall Boundary point Smoothing
C Possible forms:
C IBCOND = 1 1-i tangent smoothing model
C with ramp increase at t.e.
C =2 For reflected points and standard
C internal point smoothing model.
C
C Constants

IBCOND = 1
JTESMTH = 5
TECOEF = 4.0
IF(IBCOND.EG.2) GO TO 40

C
C Type 1: ID smoothing formulation

DO 30 I=1,IPBBMX
CCC IF(IPBB(3,I).NE.4) GO TO 30
C
C Is point to be smoothed on this level?

ICONTI = 0
IF(IPBB(lI).GE.LEVP(1,LEV).AND.IPBB(1,I).LE.LEVP(2,LEV))THEN

IF(IPBB(2,I).LE.LEVP(2,LEV)) ICONT1 = 1
ELSE IF(IPBB(2,I).GE.LEVP(1,LEV).ANI.IPBB(2,I).LE.LEVP(2,LEV))

1 THEN
IF(IPBB(1,I).LE.LEVP(2,LEV)) ICONT1 = 1

END IF
C
C If yes, calculate and add contributions form
C both cells surrounding the cell

IF(ICONT1.EQ.l) THEN
C
C First cell:

CALL CELPOINT(IPBB(1,I))
CALL METRC4
CALL CTIME
AVIS = AVISCF*DT*(DL+DM)/DV

C
C Ramp smoothing near t.e.
CCC IF(I.LE.JTESMTH+1) THEN
CCC AVIS = (1.0+TECOEFAFLOAT(JTESMTH-I+1)/FLOAT(JTESMTH))AAVIS
CCC ELSE IF(I.GE.IPBBMX-JTESMTH+l) THEN
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CCC AVIS = (1.0+TECOEFAFLOAT(I+JTESMTH-IPBBMX-1)
CCCL 1 /FLOAT(JTESMTH))AAVIS
CCC END IF
CCC
C

DO 24 K=1,4
K = K+2
KP6 = K+6

CC IF(IPBB(3,I).EQ.4) THEN
C Q(KP6,14) = O(KP6,14)+0.125AAVIS*(G(KP2,Il)-Q(KP2, I4))

Q(KP6,I4) = g(KP6,I4)+0.25AAVISA(G(KP2, Il)-Q(KP2,I4))
CC ELSE IF(IPBB(3,I).EQ.5) THEN
CC Q(KP6,14) = G(KP6,I4)+0.0625AAVIS*(Q(KP2,Il)-Q(KP2,I4))
CC 1 +0.0625AAVISA(G(KP2, I3)-Q(KP2,I4))
CC END IF

24 CONTINUE
C
C Second cell:

CALL CELPOINT(IPBB((2,I))
CALL METRC4
CALL CTIME
AVIS = AVISCFADTA(DL+DM)/DV

C
C Ramp soothing near t.e.
CCC IF(I.LE.JTESMTH+1) THEN
CCC AVIS = (1.0+TECOEFAFLOAT(JTESMTH-I+1)/FLOAT(JTESMTH))AAVIS
CCC ELSE IF(I.GE.IPBBMX-JTESMTH+l) THEN
CCC AVIS = (1.0+TECOEFAFLOAT(I+JTESMTH-IPBBMX-1)
CCC 1 /FLOAT(JTESMTH))AAVIS
CCC END IF
C

DO 26 K=l,4
KP2 = K+2
KP6 = K+6

CC IF(IPBB(3,I).EQ.4) THEN
C Q(KP6,Il) = Q(KP6,Il)+0.125AAVISA(Q(KP2,I4)-Q(KP2,Il))

Q(KP6,Il) = (KP6, Il)+0.25AAVISA(Q(KP2, 14)-Q(KP2, Il))
CC ELSE IF(IPBB((3,I).EQ.5) THEN
CC O(KPG, II) = Q(KP6,Il)+0.0625AAVISA(Q(KP2,I4)-Q(KP2,Il))
CC 1 +0.0625AAVISA(Q(KP2,I2)-Q(KP2,Il))
CC END IF

26 CONTINUE
END IF

30 CONTINUE
C

RETURN
C
C Type 2: Reflection wall smoothing

40 CONTINUE
DO 70 I=1,IPBBMX
IF(IPBB(3,I).NE.4) GO TO 70

C
C Is this point to be smoothed on this level?

ICONT1 = 0
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IF( IPBB(1, I) .GE.LEVP(1,LEV) .AND. IPBB(l, I) .LE.LEVP(2,LEV) )THEN
IF(IPBB(2,I).LE.LEVP(2,LEV)) ICONT1 =

ELSE IF(IPBB(2,I).GE.LEVP(1,LEV).AND.IPBB(2,I).LE.LEVP(2,LEV))
1 THEN

IF(IPBB(1,I).LE.LEVP(2,LEV)) ICONT1 = 1
END IF

C
C If Yes, calculate and add contributions form both cells

IF(ICONT1.EQ.l) THEN
C
C Calculate surface tangent vector (dXdy)

J1 = ABS(IP(1,IPBB(l,I)))
J2 = ABS(IP(4,IPBB(l,I)))
J3 = ABS(IP(4,iPBB(2,I)))

C
TMP1 = Q(1,J2)-0(1,Jl)
TMP'2 = 0(2,J32)-0(2, Ji)
DS1 = SQRT(TMPlATMPl+TMP2ATMP2)
TMP1 = Q(1,J3)-Q(1,J2)
TMP2 = 0(2, 33)-Q(2,j2)
DS2 = SQRT(TMPlATMPl+TMP2ATMP2)

C
TMP1 = DSl+DS2
TMP2 = DS2/(DSlATMPl)
TMP3 = (DS2-DS1)/(DSlADS2)
TMP4 = DSl/(DS2ATMPl)

C
DXDS = -Q(1,J1)ATMP2+Q(1,J2)ATMP3+Q(1,J3)ATMP4
DYDS = -Q(2,Jl)ATMP2+0(2,J2)ATMP3+0(2,J3)ATMP4
TMP1 = SQRT(DXDS*DXDS+DYDSADYDS)

C
DX = DXDS/TMPl
DY = DYDS/TMPl

C
C First cell:

CALL CELPOINT(IPBB(1,I))
CALL METRC4
CALL CTIME
AVIS = AVISCFADTA(DL+DM)/DV

CCC
CCC Find surface tangent
CC DX = Q(14)-0(1,II)
CC DY = 0(2,I4)-Q(2,Il)
CC DS = SQRT(DXADX+DYADY)
CC DX = DX/DS
CC DY = DY/DS
C
C Extrapolate r,p,hO and reflect u,v

P4 = GM1A(Q(6,I4)-0.5A(Q(4,I4)AQ(4,I4)+0(5,14)AQ(5,I4))/0(3,I4))
P3 = GM1*(Q(6,I3)-0.5A(0(4,I3)*0(4,I3)+0(5,I3)*Q(5,I3))/(3 ,I3 ))
P14 = P3-2.A(P3-P4)
H4 = (Q(6,I4)4P4)/Q(3,I4)
H3 = (Q(6,13)+P3)/Q(3,I3)

CCC H14 = H3-2.A(H3-H4)
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H 14 = H3
VELT3 =(Q(4,13)AkDX+Q(5,I3)AIY)/Q(3,I13)
VELWN3 =(-C(43)ADY+Q(5,II3)ADX)/Q(3,I3)
U14 = VELT3ADX+VELN3ADY
V14 = VELT3ADY-VELN3ADX

CC R14 = Q13,3)-2.A 1y3)-Q(3, 14))
CCC E14 = P'14/GMI+0.5ARI4A(UI4*UI4+VI4AVI4)

RI4 = P'I4/(GMiDGA(HI4-O.5A(UI4A'UI4+VI4AVI4)))
EM4 = R14;kHI4-PI4
Pl = Gl((,i-.*Q4I)Q4I)Q51)L(,i)Q

3 I)

P21 = P-.('-l

Hi = ((,l+l/(,l
H2 =((61)2)/(,)

CCC HIl = H2-2.A(H2-Hl)
HII = H2
VELT2f1 = (O(4,12)*DX+Q(5,12)AIDY)/Q(3, 12)
VELN2 = (-Q(4,I2)AkDY+Q(5,12,')*EIX)/Q(3,12)
UIi = VELT2ADX+VELN2*DY
VIi = VE"LT2ADY-VELN2ADX

CCC RIh = Q3 2-.((,2-(,I)
CCC EI1 = PIl/GMi+O.5AR11A(UIi*kUIl+VIi*kVIl)

R-1 = Pli/(GaMiDGA(HIl-0.5*c(UIl*UII+VIi*VIi)))
ElI = RIl*kHIl-PIl

C
C Find reflected cell center values

GAVE2(l) = O.25*(0(3,Il)+0(3,14)+RI1+RI4)
GAVE2(2) = O.25*(Q(4,Il)+O(414)+RIiAUI+R4AUI4)
QAVE2(3) = O325((5,Il)+L0(5,I4)+RI'i*V1+RI4*kV14)
GAVE2(4) = 03 2.5*((,'Ii)+Q(6,14)+EIl+EI4)

C
C Add contribution

DO 64 fl=i,4
KP2 = K'+2
1'(PG = K+G
QAVEl .5((PI)Q P21)QK21)QK2I)

C(YPG,14) = Q(KP,1I4)+0.2Q5*AVISA(QIAVEi+QAVE241(K)-2Q.AQ(KP2', 14))
64 CONTINUE

C
C Second Cell:

CALL CELF'OINT(IPBB(2,I))
CALL METRC4
CALL CTIME
AVIS = AVISCF*IITA(DL+ilM)/DV

CCC
CCC Find surface tangent
cc DX = 0(1,14)-G(I,Il)
cc DY = 0(2, 14)-Q(2, Il)
cc DS = SORT(DXADX+DYADY)
cc DX = DX/DS
cc DY = D1Y/DS
C
C Extrapolate r,p,hO and reflect u,v
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P4 = GM1A(Q(6,I4)-0.5A(Q(4,I4)AQ(4,I4)+0(5,I4)*AL(5,I4))/L(3,I4))
P3 = GMlA(L(6,13)-0.5A(Q(4,I3).*(4,13)+0(5,I3)AQ(5,I3))/f(3,I3))
P14 = P3-2.A(P3-P4)
H4 = (Q(6,14)+P4)/Q(3,I4)
H3 = (Q(6,13)+P3)/Q(3,I3)

CCC H14 = H3-2.A(H3-H4)
H14 = H3
VELT3 = (Q(4,I3)ADX+0(5,I3)ADY)/G(3,I3)
VELN3 = (-Q (4,I3)ADY+Q(5,I3)ADX)/Q(3, I3)
U14 = VELT3ADX+VELN3ADY
V14 = VELT3ADY-VELN3ADX

CCC R14 = Q(3,I3)-2.A(Q(3,I3)-Q(3,I4))
CCC E14 = PI4/GMl+0.5ARI4A(UI4*UI4+VI4*VI4)

R14 = P14/(GMlDG*(HI4-0.5A(UI4*UI4+VI4AVI4)))
E14 = R14AHI4-P14
Pl = GM1A (L (6, Il )-0.5A (Q (4, Il ) A(4, Il )+Q (5, Il1)AQ (5, Il))/Q (3, Il) )
P2 = GM1A (Q (6, I2)-0.5A (Q (4, I2)AQ (4, I2)+Q (5, I2)*Q (5, I2) )/Q (3, I2) )
PIl = P2-2.A(P2-P1)
Hi = (Q(6,Il)+P1)/Q(3,Il)
H2 = (Q(6,I2)+P2)/Q(3,I2)

CCC HIl = H2-2.A(H2-Hl)
HIl = H2
VELT2 = (Q(4,I2)ADX+0(5,I2)ADY)/Q(3,I2)
VELN2 = (-Q(4,I2)*DY+o(5,I2)*DX)/Q(3,I2)
UIl = VELT2ADX+VELN2ADY
VIl = VELT2ADY-VELN2ADX

CCC RIl = Q(3,I2)-2.A(Q(3,I2)-Q(3,I))
CCC EIlI = PIl/GMi+0.5ARIlA(UI1*UIl+VIl*VII)

RIl = PII/(GMlDGA(HIl-0.5A(UIlAUIl+VIlAVII)))
EIl = RIlAHIl-PIl

C
C Find reflected cell center values

QAVE2(l) = 0.25A(Q(3,Il)+Q(3,I4)+RIl+RI4)
QAVE2(2) = 0.25*( Q(4,Il)+0 (4,I4)+RIlAUII+RI4A UI4)
GAVE2(3) = 0.25A(Q(5,Il)+0(5,I4)+RII*VIl+RI4*VI4)
QAVE2(4) = 0.25A(Q(6,Il)+Q(6,14)+EII+EI4)

C
C Add contribution

DO 66 K=1,4
KP2 = K+2
KP6 = K+6
QAVEl = 0.25A(G(KP2, Il)+Q(KP2,I2)+Q(KP2,I3)+Q(KP2,I4))

C
Q(KP6,Il) = 0 (KP6, II)+0.25AAVISA (QAVEl+QAVE2(K)-2.AQ (KP2, Ii))

66 CONTINUE
END IF

70 CONTINUE
C

RETURN
END

C----------------------------------------------------------------
C SUBROUTINE FILE: DELTRS
C--------------------------------------------------------------~~

SUBROUTINE DELTRS
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C This subroutine calculates the Navier-Stokes
viscous terms in a manor similar to the artifical

C viscousity and adds them to the DU's.
INCLUDE 'MAIN.INC'
INCLUDE 'MET.INC'
INCLUDE 'GAM.INC'
INCLUDE 'POINT.INC'
INCLUDE 'INPT.INC'

C
DIMENSION QAVE(4),DR(4),DS(4),DQDXI(4),DQDET(4),

1 DELR(4).DELS(4)
C
C Calculate average properties for cell center

DO 5 K=l,4
KP2 = K+2

5 QAVE(K) = 0.25A(Q(KP2,II)+Q(KP2,2)+Q(KP2,I3)+Q(KP2,I4))
RAVE = QAVE(l)
UAVE = QAVE(2)/QAVE(l)
VAVE = QAVE(3)/QAVE(l)
TAVE = GAMMAAGM1*(GAVE(4)
1 -0.5A(QAVE(2)AQAVE(2)+QAVE(3)AOAVE(3))/QAVE(l))/GAVE(l)
AMUE = (TAVE**(3./2.))Ak(l.+CSTAR)/(TAVE+CSTAR)

C
C Calculate cell center qradients in coordinate directions

DO 10 K=l,3
KP2 = K+2
DQDXI(K) = 0.5*(Q(KP2,I3)+Q(KP2,I4)-Q(KP2,Il)-Q(KP2,I2))

10 DQDET(K) = 0.5A(Q(KP2,I2)+Q(K P2,I3)-Q(KP2,Il)-Q(KP2,I4))
C

TIl = GAMMAAGMlA(Q(6,Il)
1 -0.5A(Q(4, II)AQ(4, II)+LQ(5, II)*Q(5, Il))/Q(3, II))/O(3, Il)
TI2 = GAMMAAGM1A(Q(6,I2)

1 -0.5A(Q(4, I2)*Q(4, 12)+0(5,12)AQ(5,12))/0(3,I2))/Q(3,I2)
TI3 = GAMMA*GM1*(Q(6,I3)
1 -0.5A(Q(4,I3)AQ(4,I3)+Q(5,I3)*Q(5,I3))/0(3,I3))/0(3,I3)

T14 = GAMMAAGM1A(G(6,14)
1 -0.5A(Q(4,I4)AQ(4,I4)+Q(5,I4)A(5,I4))/Q(3,I4))/Q(3,I4)

DTDXI = 0.5A(TI3+TI4-TIl-TI2)
DTDET = 0.5A(TI2+TI3-TIl-TI4)

C
C define constants

Cl = 4./3.
C2 = 2./3.
C3 = -AMUE/(RAVEADVAREO)
C4 = -AMUE/(GM1APRADV*REO)

C
C Calculate stress components

DUDX = DYDETADQDXI(2) -DYDXIADQDET(2)
1 -UAVEA(DYDETADQDX1(1)-DYDXIADQDET(l))

DVDY =-DXDETADQDXI(3)+DXDXIADQDET(3)
1 -VAVEA(-DXDETADQDXI(1)+DXDXIADODET(1))

TXX = C3A(ClADUDX-C2ADVDY)
TYY = C3A(CIADVDY-C2ADUDX)
TXY = C3A(-DXDETADQDXI(2)+DXDXIADQDET(2)
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1 +DYDETADQDX (3)-DYrXIADQDET(3)
2 +(UAVE*DXDET-VAVEADYDET )ADQDXI(1)
3 - (UAVE*DXDXI-VAVEADYDXI)ADQDET(1))

C
C Calculate DR(k) and DS(k)

DR(2) = TXX
DR(3) = TXY
DR(4) = UAVEATXX+VAVEATXY
1 +C4A(DYDET*DTDXI-DYDXIADTDET)
DS(2) = TXY
DS(3) = TYY
DS(4) = VAVEATYY+UAVEATXY
1 +C4A(-DXDETADTDXI+DXDXIADTDET)

C
C Calculate DELR(k) and DELS(k)

DT2DV = 2.0ADT/DV
D 0 15 K=2, 4
DELR(K) = (DYDETADR(K)-DXDETADIS(K)) ADT2DV
DELS(K) = (DXDXIADS(K) -DYDXIADR(K))ADT2DV

15 CONTINUE
C
C Distribute to cell corner nodes

DO 20 K=2,4
KP6 = K+6
Q(KP6,Il) = Q(KP6,Il)+0.25A(-DELR(K)-DELS(K))AVIS1
Q(KP6,I2) = Q(KP6,I2)+0.25A(-DELR(K)+DELS(K))AVIS2
Q(KP6,13) = Q(KP6,I3)+0.25A(DELR(K)+DELS(K))AVIS3
Q(KP6,I4) = Q(KP6,I4)+0.25A(DELR(K)-DELS(K))AVIS4

20 CONTINUE
C
CCC
CCC WRITE(1,*)' IlDELR,DELS(2)',IlDELR(2),yDELS(2)
CCC

RETURN
END

C---------------------------------------------------------------
C SUBROUTINE FILE: FARFDBC2
C------------------------------------------------------------~

SUBROUTINE FARFDBC2
C
C AA SPECIAL C-MESH FORMULATION AA
C This subroutine calculates the far field boundary
C conditions using a local characteristic analysis
C tangent and normal to the boundary. Both uniform
C freestream or far field vortex boundary conditions
C are possible. The selection is made by setting the
C following switch:
C IFDTYPE = 0 for uniform freestreem conditions
C 1 for vortex farfield conditions with
C the strength of the point vortex based
C on an integration of surface pressure
C to set the lift.
C
C Note: for supersonic flows the uniform freestream
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C flow condition is automatically set since this

C boundary condition is only correct for subsonic
C flows.
C

INCLUDE 'MAIN. INC'
INCLUDE 'GAM.INC'
INCLUDE 'INPT.INC'
INCLUDE 'LUNITS.INC'
DIMENSION UBAR(4)

C
C Constants

IFDTYPE = 1
PHI = 3.141592654

C
C Calculate Lift Force Coefficients through an
C integration of the surface pressures of airfoil.

IF(IFDTYPE.EG.1) THEN
C

CHORD = 0.0
CFN = 0.0
CFT = 0.0

C
DO 5 I=0,IPBBMX
IF(I.NE.0) THEN

31 = ABS(IP(1,IPBB(2,I)))
J2 = ABS(IP(4,IPBB(2,I)))

ELSE
31 = ABS(IP(1,IPBB(1,1)
32 = ABS(IP(4,IPBB(1,1)))

END IF
C

IF(I.EQ.0) THEN
TX1 = Q(l,Jl)
TY1 = Q(2, 31)

END IF
TCHORD = (TXl-Q(1,J2))AA2+(TYl-Q(2,J2))AA2
IF(TCHORD.GT.CHORD) CHORD = TCHORD

C
DX = Q(1,J2)-O(1,J1)
DY = Q(2,J2)-Q(2,J1)
DS = SQRT(DXADX+DYADY)

C
P1 = GMIA(Q(6,J1)

1 -0.5*(Q(4,J1)AQ(4,J1)+(5,J1)*(5,J1))/Q(3,J1))
P2 = GM1*(Q(6,J2)

1 -0.5*(Q(4,J2)AQ(4,J2)+Q(5,J2)*Q(5,J2))/Q(3,J2))
TMP = Pl+P2
CFN = CFN+TMPADX
CFT = CFT+TMPADY

5 CONTINUE
C

CHORD = SQRT(CHORD)
QFS = ROFS*(UFSAUFS+VFS*VFS)ACHORD
CFN = -CFN/QFS
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F= CFT/GPS

ALPHAR = 3.14159AALPHA/180.0
CL = CFNACOS(ALPHAR)-CFTASIN(ALPHAR)

C
C SET AIRFOIL CENTER AT 1/4 CHORD

XQC = TX1-0.75ACHORD
YQC = TYI

ELSE
CL = 0.0

END IF
C
C Sweep around farfield boundary and correct DU's
C using Characteristic analysis tangent and normal
C to the boundary.
C

DO 10 I=1,IPBUMX
IF(IPBU(3,I).EQ.1) THEN

J1 = ABS(IP(2,IPBU(1,I)))
J2 = ABS(IP(3,IPBU(lI)))

ELSE IF(IPBU(3,I).EQ.2) THEN
J1 = ABS(IP(3,IPBU(1,I)))
J2 = ABS(IP(4,IPBU(1,I)))

ELSE IF(IPBU(3,I).EL.3) THEN
J1 = ABS(IP(4,IPBU(lI)))
J2 = ABS(IP(1,IPBU(1,I)))

ELSE IF(IPBU(3,I).EQ.4) THEN
J1 = ABS(IP(1,IPBU(1,I)))
J2 = ABS(IP(2,IPBU(1,I)))

ELSE IF(IPBU(3,I).EQ.5) THEN
J1 = ABS(IP(4,IPBU(1,I)))
32 = ABS(IP(1,IPBU(1,I)))

ELSE IF(IPBU(3,I).EQ.6) THEN
31 = ABS(IP(2,IPBU(1,I)))
J2 = ABS(IP(3,IPBU(1,I)))

ELSE IF(IPBU(3,I).EQ.7) THEN
J1 = ABS(IP(3,IPBU(2,I)))
32 = ABS(IP(2,IPBU(2,I)))

ELSE
WRITE(LU1,A)' ERROR IN FARFDBC2 IPBU(3,I) NOT 1-6'

END IF
C
C Calculate boundary normal vector
C Note: Present analysis assumes eta lines run
C Normal to the far field boundary.

TMPI = 0(1,J2)-Q(1,J1)
TMP2 = Q(2,J2)-Q(2,J1)
TMP3 = SORT(TMPlATMPl+TMP2ATMP2)

C
DX = TMPl/TMP3
DY = TMP2/TMP3

C Calculate local radius and direction
TMP1 = XQC-Q(l,31)
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TMP2 = YQC-O(2,Jl)
RAD = SQRT(TMPlAA2+TMP2'A2)
DRX = TMPI/RAD
DRY = TMP2/RAD

C
C Calculate extrapolated quantities from
C the predicted values of Q at the boundary.

REX = (3,1)+0 (7,31)
UEX = (Q(4,J1)+0(8,Jl))/REX
VEX = (0(5,Jl)+Q(9,Jl))/REX
EEX = (6,Jl)+0(10,J1)
QSOEX =UEXAUEX+VEXAVEX
PEX =GM1A(EEX-0.5AREXAQSQEX)
IF(PEX.LE.0.0) WRITE(LUl,A)'AA PEX<0 AT UP I=',1
AEX =SQRT(GAMMAAPEX/REX)

C
ONEX = UEXADX+VEXAkDY
GTEX =-UEXADY+VEXADX

C
C Set barred or frozen quantities of linearization
C based on the extrapolated conditions.

RBAR = REX
ABAR = AEX

C
C Calculate the free stream conditions without
C the vortex.

QNFS = UFSADX+VFSADY
QTFS =-UFSADY+VFSADX
QFS = SQRT(QNFSAA2+QTFSAA2)

C
C Set far field conditions to either free stream
C or calculate and set to vortex farfield conditions
C
C Set vortex farfield condition

IF(IFDTYPE.EQ.1.AND.AMFS.LE.1) THEN
COSFD = (UFSADRX+VFSADRY)/QFS
SINFD = (-UFSADRY+VFSADRX)/QFS
BETA = SQRT(1.0-AMFSAAMFS)
TMP1 = 1.0/(COSFDAA2+BETAABETAAS INFDASINFD)
DVORT = QFSACHORDACLABETAATMPl/(4.OAPHIARAD)
GNFD = ONFS+DQVORTA(-DRYADX+DRXADY)
QTFD = GTFS+DQVORTA(DRYADY+DRXADX)
QFD = SQRT(QNFDAA2+QTFDAA2)
PFD = (AFFSAAGMlDG+GMID2GAROFS*(QFSAA2-QFDAA2)

1 /(APFSAA(1.0/GAMMA)))AA(GAMMA/GM1)
ROFD = ROFSA((PFD/APFS)AA(1.0/GAMMA))

C Otherwise set farfield conditions to freestream
ELSE

ONFD = QNFS
QTFD = QTFS
PFD = APFS
ROFD = ROFS

END IF
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C Calculate corrected farfield flow conditions
C based on whether it is supersonic or subsonic
C and inflow or outflow
C
C Subsonic inflow

IF(QNEX.GE.0.0.AND.NEX.LE.ABAR) THEN
PNEW = 0.5A(PED+PEX+RBARAABAR*(QNFD'-QNEX))
QTNEW = QTFD
ONNEW = GNED+(PF'FD-PNEW) /(RBARAABAR)
RNEW = ROFD+(PNEW-PFD)/(ABARAABAR)

C
C Subsonic outflow
C note: sets the downstream characteristic

ELSE IF(QNEX.GE.-ABAR.AND.QNEX.LT.0.0) THEN
PNEW = 0.5A(PFD+PEX+RBARAABARA(QNFD-0NEX))

CCC PNEW = PFD
TNEW = GTEX
ONNEW = QNEX+(PNEW-PEX)/(RBARAABAR)
RNEW = REX+(PNEW-PEX)/(ABARAABAR)

C
Supersonic inflow

ELSE IF(QNEX.GT.ABAR) THEN
PNEW = PFD
QTNEW = QTFD
ONNEW = ONFD
RNEW = ROFD

C
C Supersonic outflow

ELSE IF(QNEX.LT.-ABAR) THEN
PNEW = PEX
OTNEW = GTEX
QNNEW = GNEX
RNEW = REX

END IF
C

ENEW = PNEW/GMl+0.5*RNEWA(QNNEWAQNNEW+QTNEWAQTNEW)
C
C Calculate corrected DQ's

Q(7,J1) = RNEW-Q(3,Jl)
0(8,J1) = RNEWA(GNNEWADX-QTNEWADY)-Q(4,Jl)
Q(9,J1) = RNEWA(PNNEW*DY+QTNEW*DX)-Q(5,J1)
Q(l0,Jl) = ENEW-Q(6,J1)

C
10 CONTINUE

C
RETURN
END

C--------------------------------------------------------------
C SUBROUTINE FILE: INITIA
C-------------------- -------------------------------------

SUBROUTINE INITIA
C
C This subroutine, calculates the freestream quantities
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C and if ISTART= initializes the flow field to uniform
C flow based on ALPHA and AMFS using isentropic relations.
C If uniform flow is set the solid wall points are corrected
C for a zero flux through the boundary by holding the pressure
C and energy constant and rotating the velocity vector to
C the local wall tangent. Note if ISTART=O the flow is
C left as read in the INPUT subroutine.
C
C IF ISTART = 0 THEN UNIFORM FLOW
C 1 THEN RESTART
C

INCLUDE 'MAIN.INC'
INCLUDE 'GAM.INC'
INCLUDE 'INPT.INC'
INCLUDE 'LUNITS.INC'
DIMENSION FSU(4)

C
C Calculate surface tangent, radius of curvature and
C extrapolation scalings
CCCC CALL GEOWAL

WRITE(LU1,A)' GEOWAL COMMENTED OUT'
C
C CALCULATE FREE STREAM VECTOR U

ALPHAR = ALPHAA3.14159/180.0
TMP = 1.0+GMlD2AAMFSAAMFS
ROFS = TMPAA(-l./GM1)
APFS = (TMPhA(-1./GMIDG))/GAMMA
UFS = AMFSACOS(ALPHAR)/SQRT(TMP)
VFS = AMFSASIN(ALPHAR)/SQRT(TMP)
AFS = 1.0/SQRT(TMP)

C
CCC EXITP = APFS
CCCC
CCC WCFS(1) = ROFS-APFS/(AFSAAFS)
CCC WCFS(2) = -VFS
CCC WCFS(3) = (UFS+APFS/(ROFSAAFS))/SQRT(2.0)
CCC WCFS(4) = (-UFS+APFS/(ROFSAAFS))/SQRT(2.0)
C

FSU(l) = ROFS
FSU(2) = ROFSAUFS
FSU(3) = ROFSAVFS
FSU(4) = APFS/GMl+ROFSA(UFSAUFS+VFSAVFS)/2.0

C
C RETURN IF RESTART

IF(ISTART.EQ.1) RETURN
C
C INITIALIZE FLOW FIELD TO FREE STREAM

DO 1 1 = 1,IQMAX
DO 1 K = 1,4

1 Q(K+2,I) = FSU(K)
C
C CORRECT WALL PROPERTIES

DO 2 I=i,IPBBMX
C
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C SET POINTERS I CALCULATE WALLw TANGENT
IF(IPPP(3,I).EQ.4) THEN

31 = APS(I?(iIPE(1))
32L' = ABS(IP(4,IPBB(l1,1)))
33 = ABS (IP (4 IPBB (2,L.

IMP1 = 01 2-(,1
TMF'2 = 02 2-(,1
DS1 = SQRT(TMF'1*TMPl+TLMP2ATMP?2)
TMPI = (,3-(3)
TMP2 = 0(2, 33)-Q(2,2)
DS52 = SORT (TMP1ATMP1+TMP2*ATMF'2)

TMP1 = DS1+EIS2
TMF'Q2 = DSIO/(E'SlATMP1)
TM?3 = (DS.I-DSI)/(DSIADS2)
TMP4 = DS1/(DS2*TMP1)

C
DXI'S = -0(1,31 )ATMPF'2+0( 1,3I)*TMP3+0(1 ,33)ATMP4
DYE'S = -0(24,y31)*TMP2+(2,32"))TMP3+Q(2, 3p3)*TMP4
TMPI = SORT (DXDSADXDS+IYE'SAD YES)

DiX = DXE'S/TMP1
'Ely = EIYDS/IMPi

ELSE IF(IFBB(3,I).E08 5) THEN
31 = ADS(IP(1,IPBB(1,I)))
32 = ABS(IP(4,IPBB(1,I)))
J3 = ABS(IP(4,IPBB(0Q,I)))

C
THETAl = ATAN2((Q(,32jn)-GQ2,3)),(Q(1,32Q)-Q(1,J)))
THETA2 = ATAN2((Q(2,J 12)-Q(2~l,33)),(0(1,32Q)-0(1,33)))
THETA = O.5k(THETA1+THETA2Q)

C
DX = COS(THETA)
Ely = SIN(THETA)

ELSE
WRITE(LU1,A)' ERROR INlIA IPBE(3,I) NOT 4'

END IF
C

OFS SQRT(UES*UES+VFSAVFS)
SIGN =(UESADX+VES*DY)
SIGN =SIGN/AEBS(SIGN)
TU = SIGNAOESAIX
TV = S IGNAOFS*DY
TR = APFS/(GMIDG*(HTOT-O.5A(TUATU+TVATV)))
TE = TRAHTOT-APFS

C
C IF EULER CALCULATION (INSSWT=O) MAKE FLOW TANGENT

IF(INSSWT.E0O) THEN
cc 0(3,32) = TR
cc 0(4,32) = TRATU
CC 0(5,32) = TRATV
cc 0(6,32) = TE
CCC
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C
C IF NAVIER-STOKES CALCULATION (INSSWT=1) SET ZERO FLOW

ELSE iF(INSSWT.EQ.1) THEN
Q(3,32) = GAMMAAAPFS/(AFSAA2)
0(4,J2) = 0.0
Q(5,J2) = 0.0
Q(6,J2) = Q(3,J2)AHTOT-APFS

END IF
2 CONTINUE

C
C OUTPUT OF INITIAL FLOW

WRITE(LUl,1000)
WRITE(LUl,1004) ROFS,UFSVFSAPFS
IF (IPRNT2.EQ.0) RETURN
WRITE(LUlA) ' INITIAL 0 VALUES'
DO 50 K=1,6

50 WRITE(LUl,1001) (Q(K,I), I=1,IQMAX)
C
1000 FORMAT(///,1OX,'INITIAL FLOW FIELD Ul/U2/U3/U4',/)
1001 FORMAT(lX,(10E12.4))
1004 FORMAT(lX,'ROFS,UFS,VFS,APFS=',4E12.4,/)
C

RETURN
END

C----------------------------------------------------------------
C SUBROUTINE FILE: NISTEP5
C----------------------------------------------------------------

SUBROUTINE NISTEP5(N,LEV)
C
C *A*A SPECIAL C-MESH FORMULATION *AAA
C AA*A SHOULD STILL WORK WITH O-MESHAAA
C
C This subroutine solves the Euler eqns.
C using a cell oreinted version of Ni's Method
C over grid level LEV. This subroutine as written
C performs either a fine mesh cell distribution or
C a coarse mesh cell acceleration distribution depending
C of the type of each cell.
C In addition this particular version saves a
C representative dt for each node in EDT(i) for use
C in the error norm calculation. This same time step
C then acts as a indicator as to wether the node is to
C be updated (i.e. if EDT(i)=0.0 then the node has not
C been distributed to or interpolated to and therefore
C should not be updated).
C This subroutine contains a switch which will include
C the Navier-Stokes terms on level 1 based on the following
C switch:
C INSSWT = 0 For Euler solver.
C 1 For Navier-Stokes terms on level 1.
C Note: In this case no smoothing is applied
C on level 1.
C

INCLUDE 'MAIN.INC'



INCLUDE 'SOLV.INC'
INCLUDE 'INPT.INC'
INCLUDE 'MET. INC'
INCLUDE 'POINT.INC'
INCLUDE 'LUNITS. INC'

Inject changes from the next finer level based on
one of the following weighting formulae:

IFORM = 0 FOR SIMPLE INJECTION OF VALUE AT INC
1 ALGEBRAIC WEIGHTING
2 AREA WEIGHTING
3 NOTHING DONE AT THIS TIME
4 SPECIAL DISTRIBUTION INJECTION
5 NOTHING DONE AT THIS TIME
6 Ni's Distribution (modified form 4)

IF(LEV.GT.1) CALL INJECT5(LEV,6)

Initialize DU and EDT before sweep
If LEV = 1 then all DU's and EDT's zeroed,

IF(LEV.EQ.1) THEN
DO 5 I=1,IQMAX
EDT(I) = 0.0
DO 5 K=7,10

5 Q(KI) = 0.0

Otherwize zero Du and EDT only at cell nodes.
ELSE

DO 7 I=LEVP(1,LEV),LEVP(2,LEV)
DO 7 J=1,4
JP = ABS(IP(J,I))
EDT(JP) = 0.0
DO 7 K=7,10

7 Q(KJP) = 0.0

in addition zero boundary du's so application
of boundary conditions on coarser levels will
only make changes at coarse nodes.

DO 8 I=1,IPBBMX
JP = ABS(IP(lIPBB(2,I)))
DO 8 K=7,10

8 Q(KJP) = 0.0

DO 9 I=1,IPBUMX
IF(IPBU(3,I).EQ.1) THEN

JP = ABS(IP(lIPBU(2,I)))
ELSE IF(IPBU(3.I).EQ.2) THEN

JP = ABS(IP(2,IPBU(2,I)))
ELSE IF(IPBU(3,I).EG.3) THEN

JP = ABS(IP(3,IPBU(2,I)))
ELSE IF(IPBU(3,I).EQ.4) THEN

JP = ABS(IP(4,IPBU(2,I)))
ELSE IF(IPBU(3,I).EQ.5) THEN

JP = ABS(IP(1,IPBU(2,I)))
ELSE IF(IPBU(3,I).EQ.6) THEN
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JP = ABS(IP(2,IPBU(1,I)))
ELSE IF(IPBU(3,I).EQ.7) THEN

JP = ABS(IP(3,IPBU(2,I)))
END IF
DO 9 K=7,10

9 Q(K,JP) = 0.0
CCC

END IF
C
C Initialize embedded mesh interface nodes from
C coarser mesh. This subroutine may also be used
C to initalize interface DU's with embedded mesh
C interface corrections.

CALL INBC4(LEV)
C
C If global time step is used calculate DT here
C based on minimum DT for current level.

IF(ITIM.E0.0) CALL GTIME(LEV)
C
C Initialize error norms to zero.

DO 10 K=1,5
10 DELMAX(K) = 0.0

DELUMAX = 0.0
C
C Start of relaxation sweep for DU
C over current level.

DO 30 1 = LEVP(1,LEV),LEVP(2,LEV)
C
C Setup node pointers for cell.

CALL CELPOINT(I)
C
C Calculate cell metrics, volume, and other distances

CALL METRC4
C
C Calculate time step for local CFL calculations
C based on current cell.

IF(ITIM.EQ.2) CALL CTIME

C Store cell DT in EDT(i) for residual calculations
C Note: set in this way the final value of EDT is
C the value of the last cell to be calculated
C which contains this node. It is note an
C average.

EDT(Il) = DT
EDT(12) = DT
EDT(I3) = DT
EDT(14) = DT

C
C Perform flux balance on cell for DELU(k)
C then calculate distribution weightings
C DELF and DELG for cell center.
C Note: If INC = 0 this is a coarse cell
C and injection is used.

CALL DELTU



CALL DELTFG
C

C If level 1 is Navier-Stokes region calculate terms
IF(INSSWT.EQ.1.AND.LEV.EQ.l) CALL DELTRS

C Calculate artifical viscosity coefficient
C if any of the cell nodes is to be smoothed.

IF(IVIS.GT.0) THEN
AVIS = AVISCFADTA(DL+DM)/DV

END IF

C Distribute cell changes to nodes and if
C the node is to be smoothed then add smoothing.

DO 20 K=l,4
KP6 = K+6

C
C Distribution step

Q(KP6,Il) = Q(KP6,II)+(DELU(K)-DELF(K)-DELG(K))/4.0
Q(KP6,12) = Q(KP6,I2)+(DELU(K)-DELF(K)+DELG(K))/4.0
Q(KP6,13) = Q(KP6,I3)+(DELU(K)+DELF(K)+DELG(K))/4.0
Q(KP6,I4) = O(KP6,14)+(DELU(K)+DELF(K)-DELG(K))/4.0

C
C Smoothing step

IF(INSSWT.EQ.l.AND.LEV.EQ.l) GO TO 20
IF(IVIS.EQ.0) GO TO 20
KP2 = K+2

C
OBAR = 0.25A(Q(KP2,Il)+Q(KP2,I2)+§(KP2,I3)+Q(KP2,I4))
Q(KP6,Il) =Q(KP6,I)+0.25AAVISA(QBAR-Q(KP2,II))AVIS1
Q(KP6,12) = Q(KP6,I2)+0.25AAVISA(QBAR-Q(KP2,I2))AVIS2
Q(KP6,I3) = Q(KP6,I3)+0.25AAVISA(GBAR-Q(KP2,13))AVIS3
Q(KPG,14) = Q(KP6,I4)+0.25AAVIS*(QBAR-Q(KP2,I4))*VIS4

C
20 CONTINUE

C
C Calculate Maximum cell RU residual
C and its cell location.

IF(DELUMAX.LT.DELU(2)/DT) THEN
DELUMAX = DELU(2)/DT
JMAX = I

END IF
C

30 CONTINUE
C
C Zero embedded mesh interface points and
C calculate interface corrections to be add
C to interface points on the next coarser
C level.

CALL INFACBC2(LEV)
CCC IF(LEV.GT.1) CALL INFACBC(LEV)
C
C Double solid wall boundary DU's.

CALL WALLDBL
C
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C Correct smoothing at all boundary points
C (i.e. solid wall and farfield points at
C this time.).

CALL BDSMTH(LEV)
C
C Interpolate DU's from current level to
C the finest level in each mesh region.
C IFORM = 1 For centered interpolation (i.e. algebraic)
C 2 For interpolation based on physical lengths

IF(LEV.NE.1) CALL INTERPT(LEV,1)
C
C Apply boundary conditions to all
C boundary points.

IF(INSSWT.EQ.0) THEN
CALL SDWALBC

CC CALL EULERWAL(LEV)
ELSE IF(INSSWT.EQ.l) THEN

CALL NSSDWAL
END IF
CALL FARFDBC2

C
C Update solution for all points
C that have been changed and calculate
C node error norms.

NUMPTS = 0
DO 60 I = 1,IGMAX
IF(EDT(I).EQ.0.0) GO TO 60
NUMPTS = NUMPTS+1
DO 55 K = 1,4
KP6 = K+6
KP2 = K+2
IF (DELMAX(K).LT.ABS(Q(KP6,I)/EDT(I))) THEN

DELMAX(K) = ABS(Q(KP6,I)/EDT(I))
IF (K.EQ.2) THEN

IMAX = I
END IF

END IF
55 O(KP2,I) = Q(KF2,I)+Q(KP6,I)

DELMAX(5) = DELMAX(5)+ABS(Q(8,I)/EDT(I))

60 CONTINUE
C

DELMAX(5) = DELMAX(5)/FLOAT(NUMPTS)
C
C Write out error norms to plot file if
C LEV is less than or equal to LSTOP.

IF(LEV.LE.LSTOP) WRITE(LU2,1000) NIMAXDELMAXJMAXDELUMAX
1000 FORMAT(2(2X,I5),5E2.5,2XI5,E12.5)
C

RETURN
END

C-------------------------------------------------------------
C SUBRdUTINE FILE: NSSDWAL
C----------------------------------------------------------------

SUBROUTINE NSSDWAL
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C *AAAA C MESH VERSION AA
C

THIS SUBROUTINE CALCULATES DU FOR WALL
C BOUNDARY POINTS FOR THE NAVIER-STOKES EON.
C USING NORMAL EXTRAPOLAT ION OF PRESSURE AND TEMPERATURE
C I.E. ADIABATIC WALL CONDITION.
C

INCLUDE 'MAIN.'INC'
INCLUDE 'GAM.INC'
INCLUDE 'INPT.INC'
INCLUDE 'LUNITS.INC'

BOTTOM WALL
DO 10 I=1,IPBBMX

C
C SET POINTERS & CALCULATE WALL TANGENT

IF(IPBB(3,I).EQ.4) THEN
J1 = ABS(IP(1,IPBB(1,I)))
32 = ABS(IP(4,IPBB(1,I)))
33 = ABS(IP(4,IPBB(2,I)))
34 = ABS(IP(3,IPBB(1,I)))

C
TMP1 = O(1,J2)-Q(1,31)
TMP2 = 0(2,J2)-Q(2,J1)
DS1 = SORT(TMPlATMPl+TMP2ATMP2)
TMP1 = Q(1,J3)-Q(1,J2)
TMP2 = Q(2,33)-Q(2,J2)
DS2 = SQRT(TMPlATMP1+TMP2*TMP2)

C
TMP1 = DSl+DS2
TMP2 = DS2/(DSIATMP1)
TMP3 = (DS2-DS1)/(D[SlADS2)
TMP4 = DS1/(DS2ATMPI)

C
DXDS = -Q(1,Jl)*TMP2+O(1,J2)*TMP3+Q(1,J3)ATMP4
DYDS = -Q(2,J1)*TMP2+O(2,J2)ATMP3+O(2,J3)ATMP4
TMP1 = SORT(DXDS*DXDS+DYDS*DYDS)

C
DX = DXDS/TMP1
DY = DYDS/TMPl
IBCOND = 1

ELSE IF(IPBB(3,I).EQ.5) THEN
31 = ABS(IP(1,IPBB(1,I)))
J2 = ABS(IP(4,IPBB(1,I)))
J3 = ABS(IP(4,IPBB(2,I)))
J4 = ABS(IP(3,IPBB(1,I)))

C
THETAl = ATAN2((Q(2,J2)-Q(2,J1)),(Q(1,J2)-Q(1,J1)))
THETA2 = ATAN2((Q(2,J2)-Q(2,J3)),(Q(1,J2)-Q(1,J3)))
THETA = 0.5A(THETAl+THETA2)

CC THETA = THETAl
C

DX = COS(THETA)

C,
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DY = SIN(THETA)
IBCOND = 1

ELSE
WRITE(LUl,A)' ERROR WALBC9C NOT VALID WALL TYPE I=',I

END IF
IF(IBCOND.EQ.0) GOTO 10

C CALCULATION OF DWT,DWN,AO
RTMP1 = 0(3,34)
UTMP1 = 0(4,J4)/RTMPI
VTMP1 = 0(5,J4)/RTMPl
ETMP1 = Q(6,J4)
PTMPl = GM1*(ETMP1-0.5ARTMPlA(UTMPlAUTMP1+VTMP1VTMP1))
TTMPl = GAMMAAPTMPl/RTMP1
IF(PTMPl.LT.O.0) THEN

WRITE(LU1,A) 'AA PTMP1<0.0 IN SDWALBC AT BOTTOM I=',I

STOP
END IF

C
C CALCULATION OF CORRECTED DELTA'S

Q(7,J2) = GAMMAAPTMPl/TTMPl-Q(3,J2)
Q(8,J2) = 0.0-Q(4,J2)
Q(9,J2) = 0.0-0(5,J2)
0(10,32) = PTMPl/GM1-Q(6,J2)

C
10 CONTINUE

C
RETURN
END

C---------------------------------------------------------------
C SUBROUTINE: OUTPUT3
C----------------------------------------------------------------

SUBROUTINE OUTPUT3
C
C AAAA SPECIAL C-MESH FORMULATION AAAA
C
C THIS SUBROUTINE CREATES THE OUTPUT FILE
C CALL REST.DAT WHICH IS READ BY EULER
C

INCLUDE 'MAIN.INC'
INCLUDE 'POINT.INC'
INCLUDE 'INPT.INC'
INCLUDE 'GAM.INC'
INCLUDE 'LUNITS.INC'

C
C CALCULATION OF LIFT FORCE COEFFICIENTS

CORD = 0.0
CFN = 0.0
CFT = 0.0

DO 5 I=0,IPBBMX
IF(I.GT.0) THEN

J1 = ABS(IP(1,IPBB(2,I)))
32 = ABS(IP(4,IPBB(2,I)))



ELSE
J1 = ABS(IP(1,IPBB(1,1)))
J2 = ABS(IP(4,IPBB(1,1)))

END IF

IF(I.EG.0) THEN
TXi = Q(1,11)
TYl = Q(2,J1)

END IF
TCORD = (TX1-Q(1,J2))AA2+(TYl-Q(2,J2))AA2
IF(TCORD.GT.CORD) CORD = TCORD

DX = Q(1,J2)-Q(1,JI)
DY = Q(2,J2)-Q(2,J1)
DS = SORT(DXADX+DYADY)

C
Pl = GMlA(Q(6,Jl)

1-0.5A(Q(4,Jl)AQ(4,J1)+Q(5,J1)AQ(5,J1))/0(3,31j))I
P2 = GM1A(Q(6,j2)

1-0.5A(Q(4, J2)AQ(4,J32)+Q (5,J2)AQ(5,32))/O(3,J2))
TMP = Pl+P2
CFN = CFN+TMPADX
CFT = CFT+TMPADY

5 CONTINUE
C

CORD = SQRT(CORD)
QFS = ROFSA(UFSAUFS+VFSAVFS)ACORD
CFN = -CFN/QFS
CFT = CFT/QFS

C
ALPHAR = 3.14159AALPHA/180.0
CL = CFNACOS(ALPHAR)-CFTASIN(ALPHAR)
CD = CFNASIN(ALPHAR)+CFTACOS(ALPHAR)

C
C CALCULATE SPECTRIAL RADIUS

SRAD = (DELMAX(5)/DELMAX1(5))A*(1./(NFINSH-NSTART))

OPEN(UNIT=LU4,TYPE='NEW',FORM='UNFORMATTED')

C SET CONSTANTS
ICONST(11) = NSTART
ICONST(12) = NFINSH
ICONST(13) = ITIM
ICONST(14) = ISTART
ICONST(15) = LSTOP
NICONST = 50

C
RCONST(1) = AMFS
RCONST(2) = ALPHA
RCONST(3) = CFL
RCONST(4) = AVISCF
RCONST(5) = ROFS
RCONST(6) = UFS
RCONST(7) = VFS
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RCONST(8) = APFS
RCINST (9 1 = CORI!
RCONST(i0) = CFN
RCONST(11) = CETF -
RCONST(12) = C L
RC(O3.N ST (13 ) = C-1D
RCONST(14) = CM
RCONST(15) =DELMAXI(1)
RCONST(16) = DELMAX1(2)
R CO N ST G ) = DELMAXI(3)
RCONST(18) = DELMAX1(4)
RCONST(19) = D ELM AXI( r-,)
RCONST(20) = DELtIAX(l)
RCONST(21) = DELMAX(12)
RCONST(22) = EELMAX(3)
RCONST(,23) = DELMAX(4)
RCONST(24) = EELMAX(5)
RCONST(25) = SRAD
NRCONST = 50

WRITE(LU1,*) ' IE,JE,LMAX,IC1,1C2,JC2Z,1F2,3F2'
WRITE(LU1 ,*) ' IQMAX, IPBUMX, IPBDMX, IPETMX, IPBBMX'
WRITE(LU1,A) ' DELTAAK,,Y0'
WRITE(LU1,iO00) IEJE,LMAX,IC1,IC2,JC2?,1E2,JF2Q
WRITE(LU1,1000) IQMAX, IPBUMX, IFBDMX, IF'TMX, IPBBMX
WRITE(LU1,2001) EELTAAK,YO

1000 FORMAT(1X ,2015)
1001 FORMAT(1X,10E13.4)

WRITE (LUl ,1004)
WRITECLUl ,1005)ROFS,UFS,VES,CORI
WRITE(LU1,1 006)CFN,CET,CL.CD

1004 FORMAT(//.SX,'SECTION LIFT PROPERTIES',!)
1005 FORMAT(5X,'ROFS =,E10l.7,5X,'UFS

I 5Xy'VFS =',F1O.7,5X,'CHORD
1006 FORMAT(5X,'CEN = F10 .7 SXy'CET

1 5X,'CL =/,FlO.7,SXy'CD
CCC

-'J1O.7y

J',10.7)
JF1O.79

=/J,1O.7)

WRITE OUT GRID POINTERS

WRITE(LU4)
WRITE(LU4)
WRITE(LU4)
WRITE(LU4)
WRITE(LU4)
WRITE(LU4)
WRITE(LU4)

GLABEL1,GLABEL2 , RLABEL , RLABEL2
NICONST,NRCONST
(ICONST(K)y K=1,NICONST)
(RCONST(K, K=1,NRCONST)

LMAX, IOMAX, IF'EUMX, IPBDMX, IPBTMX, IPBBMX
((IPBIMX(MN), M1,y2)y,N1,LMAX)
((LEVP(MIN)p M=ly,2), N=1,LMAX)

rO 10 LEV = 1,LMAX
WRITE(LU4) ((IP(MrN), M=119)p N=LEVP(1,LEV)yLEVP(2,LEV))

10 CONTINUE

cCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC



DO 15 LEV=1,LMAX
IF(IPBIMX(2,LEV).NE.0)

1 WRITE(LU4) ((IPBI(MN), M=1,3),
2 N=IPBIMX(1,LEV),IPBIMX(2.LEV))

15 CONTINUE
C

WRITE(LU4) ((IPBU(M,N), M=1,3), N=1,IPBUMX)
WRITE(LU4) ((IPBD(MN), M=1,3), N=1,IPBDMX)
WRITE(LU4) ((IPBT(M,N), M=1,3), N=1,IPBTMX)
WRITE(LU4) ((IPBB(M,N), M=1,3), N=1,IPBBMX)

DO 8 K =1,6
8 WRITE(LU4) ((K,I), I=1,IQMAX)

C
RETURN
END

C SUBROUTINE: OUTRESTI
r----------------------------------------------------------------

SUBROUTINE OUTRESTT

C A**A SPECIAL C-MESH FORMULATION AAAA
C
C THIS SUBROUTINE CREATES A TEMPORARY OUTPUT FILE
C CALL TREST.DAT WHICH IS READ BY EULER
C

INCLUDE 'MAIN.INC'
INCLUDE 'POINT.INC'
INCLUDE 'INPT.INC'
INCLUDE 'GAM.INC'

C
C CALCULATION OF LIFT FORCE COEFFICIENTS

CORD = 0.0
CFN = 0.0
CFT = 0.0

DO 5 I=0,IPBBMX
IF(I.NE.0) THEN

J1 = ABS(IP(1,IPBB(2,I)))
J2 = ABS(IP(4,IPBB(2,I)))

ELSE
J1 = ABS(IP(1,IPBB(1,1))
32 = ABS(IP(4,IPBB(1,1)))

END IF
C

IF(I.EQ.0) THEN
TX1 = Q(1,31)
TYl = Q(2,J1)

END IF
TCORD = (TXI-Q(1,
IF(TCORD.GT.CORD) CORD = TCORD

C
DX = Q(1,J2)-Q(1,31)
DY = Q(2,J2)-Q(2,J1)
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DS = SQRT'DXADX+DY*DY)

P1 = GM1A(Q(6,J1)
1 -0.5A(Q(4,j1)*Q(4,1)+0(5,J1)*Lk(5,J1))/Q(3,j1))

P2 = GM1A(Q(6,32)
1 -0.5A(V(4,J2)AQ(4,J2)+CG(5,J2)Q(5,J2))/O(3,J2))

TMP = Pl+P2
CFN = CFN+TMPADX
CET = CFT+TMPADY

5 CONTINUE

CORD = SQRT(CORD)
QFS = ROFSA(UFSAUFS+VFSAVFS)ACORD
CFN = -CFN/QFS
CFT = CFT/QFS

ALPHAR = 3.14159AALPHA/180.0
CL = CFNACOS(ALPHAR)-CFTASIN(ALPHAR)
CDi = CFNASIN(ALPHAR)+CFTACOS(ALPHAR)

CALCULATE SPECTRIAL RADIUS
SRAD = (DELMAX(5)/DELMAX1(5))A*(I./(NFINSH-NSTART))

OPEN(UNIT=4,NAME='TREST.DAT',TYPE='OLD',FORM='UNFORMATTED')

SET CONSTANTS
ICONST(ll) = NSTART
ICONST(12) = NFINSH
ICONST(13) = ITIM
ICONST(14) = ISTART
ICONST(15) = LSTOP
NICONST = 50

RCONST(1)
RCONST(2)
RCONST(3)
RCONST(4)
RCONST(5)
RCONST(6)
RCONST(7)
RCONST(8)
RCONST(9)
RCONST(10)
RCONST(11)
RCONST( 12)
RCONST(13)
RCONST(14)
RCONST(15)
RCONST( 16)
RCONST(16)
RCONST(18)
RCONST(19)
RCONST(20)
RCONST(21)

AMFS
ALPHA
CFL
AVISCF
ROFS
UFS
VFS
APFS
CORD
CFN
CFT
CL
CD
CM
DELMAX1(1)
DELMAX1(2)
DELMAX1(3)
DELMAXI(4)
DELMAXI(5)
DELMAX(1)
DELMAX(2)
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RCONST(22) = DELMAX(3)
RCONST(23) = DELMAX(4)
RCONST(24) = DELMAX(5)
RCONST(25) = SRAD
NRCONST = 50

CCC WRITE(1,*) 'IE,JE,LMAX,ICl,IC2,JC2,IF2,F2'
CCC WRITE(1,A) ' IGMAXIPBUMX, IPBDMXIPBTMX, IFBBM'X'
CCC WRITE(1,A) ' DELTA,AK,YO'
CCC WRITE(1,1000) IE,JE,LMAX,IC,IC2,JC2,IF2,JF2
CCC WRITE( 1,1000) IQMAX, IPBUMX,IPBDMX,IPBTMX,IPBBMX
CCC WRITE(1,1001) DELTA,AKY0
CCC 1000 FORMAT(1X,2015)
CCC 1001 FORMAT(lX,10E13.4)
CCC
C
CC WRITE(1,1004)
CC WRITE(1,1005)ROFSUFSVFSCORD
CC WRITE(1,1006)CFN,CFT,CL,CD
1004 FORMAT(//,5X,'SECTION LIFT PROPERTIES',/)
1005 FORMAT(5X,'ROFS =',F10.7,5X,'UFS =',F10.7,

1 5X,'VFS =',F10.7,5X,'CHORD =',F10.7)
1006 FORMAT(5X,'CFN =',F10.7,5X,'CFT =',F1O.7,

1 5X,'CL =',F10.7,5X,'CD =',F10.7)
CCC
C
C WRITE OUT GRID POINTERS
C

WRITE(4) GLABEL1,GLABEL2,RLABEL1 ,RLABEL2
WRITE(4) NICONST,NRCONSI
WRITE(4) (ICONST(K), K=1,NICONST)
WRITE(4) (RCONST(K), K=1,NRCONST)
WRITE(4) LMAX,ILMAXIPBUMXIPBDMXIPBTMXIPBBMX
WRITE(4) ((IPBIMX(M,N), M=1,2), N=1,LMAX)
WRITE(4) ((LEVP(MN), M=1,2), N=1,LMAX)

C
DO 10 LEV = 1,LMAX
WRITE(4) ((IP(MN), M=1,9), N=LEVP(1,LEV),LEVP(2,LEV))

10 CONTINUE
C

DO 15 LEV=1,LMAX
iF(IPBIMX(2,LEV).NE.0)
1 WRITE(4) ((IPBI(MN), M=1,3), N=IPBIMX(1,LEV),IPBIMX(2,LEV))

15 CONTINUE
C

WRITE(4) ((IPBU(MN), M=1,3), N=1,IPBUMX)
WRITE(4) ((IPBD(MN), M=1,3), N=1,IPBDMX)
WRITE(4) ((IPBT(MN), M=1,3), N=1,IPBTMX)
WRITE(4) ((IPBB(M,N), M=1,3), N=1,IPBBMX)

C
DO 8 K =1,6

8 WRITE(4) (Q(K,I), I=1,IGMAX)
C

CLOSE(UNIT=4)
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RETURN
END

C-------------------------------------------------------------
C DATA FILE: AIRFOIL.INP
C------------------------------- ---------------------------
RUN 219:
EULER ON C-MESH, Ni INJECTION(6),CAR S/W DOUBLE T/E,
.75 ENTER FREE STREAM MACH NO., AMFS
.12 ENTER ANGLE OF ATTACK
.95 ENTER CFL NO.
2 ENTER TYPE OF TIME STEP 0 = SINGLE TIME 2 = EACH CELL
.05 ENTER ARTIFICIAL VISCOSITY COEF. 0.<AVISCF<0.1
1 1000 ENTER NUMBER OF ITERATIONS: NSTART,NMAX
IE-5 ENTER CONVERGENCE CUT OFF DELSTP
1 ENTER LEVEL TO CHECK CONVERGENCE ON, LSTOP
0 DO YOU WANT THE INITIAL FLOW PRINTED?? 0=NO 1=YES
1 ENTER TYPE OF INITIAL SOLUTION 0 = UNIFORM FLOW 1 = RESTART
ECFD.USAB.EULERCELL.EULERCMSH]REST.TMP
0 ENTER NAVIER-STOKES SWITCH INSSWT= 1:YES, 0:N0
2.342E7 .72 288.0 ENTER RE0,TREF FOR NAVIER-STOKES SUBDOMAIN
C -------------------------------------------------------------- ~~

C---------------------------------
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