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ON SPHERICAL PROBABILITY DISTRIBUTIONS

I, INTRODUCTION: STATEMENT OF PROBLEM

| We agk for a probability density function in two vari-
ables corresponding to the colatitude and longitude coordinates
on & sphere such that the distribution corresponds in some manner
to the two-dimensional normal curve for rectangular coordinates
on & plane, Several methods for obtaining a correspondence to the
normal curve for one variable corresponding to the angular codr-
dinate on a circle have been investigated, Two of these have led
to usable functions, These methods are here applied to the case
of & distribution on a spherical surface, In addition, the cireu-
lar and spherical cases for axes rather than points are conside
ered and distributions obtained,

The two methods used in the derivations are character-
ized in the following as (1) the heat-flow method, and (2) the
center<of-gravity method, The use of the heat-flow method derives
from the kinetic theory, FPor our purposes a first approximation
can be described as follows: A particle, initially at a given
point on a circle or sphere, moves in an arbitrary direction
along the circle or along an arbitrary great circle through the
initial point on the sphere at a fixed speed for a fixed time, It
again chooses an arbitrary direction or arbitrary great circle
through the new position along which it moves at the same speed
for the same amount of time, This process is repeated many times,

We let the time occupied by one unit of this motion approach
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zero, at the same time keeping the total elapsed time for the
whole process of the same order of magnitude, We ask for the
probability that the particle will be in a given section of the
circle or spherical surface after a given total elapsed time for
the whole process,

The center-of-gravity method, on the other hand, asks
for the probability density function for which the simultaneous
probability of observations in the neighborhood of any n indepen-
dent sample points each of weight % is a maximum with respect to
variations in a parameter or parameters representing the codrdi-
nate or codrdinates of the point on the circle or sphere nearest
the center of gravity of the n sample points, For rectangular
coordinates in the plane either of these methods gives the normal

law, 1

lsome properties of the normal law cannot be obtained
by any but trivial correspondences on the circle, See, for
example:

M. Kac and E, R, van Kampen, Circular eguidigstributions
and statistical independence, American Journal of Mathematics, 61
(1939), pp. 677-682,

A, Vintner, On the stable distribution laws, American

Journal of Mathematics, 55 (1933), pp. 335-339,
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II, EQUIVALENT PHYSICAL PROBLBEMS

A use for such a distribution was brought to our atten=
tion by Dr, James F, Bell in 1938, He was interested in deter-~
mining a preferred direction for optical axes of crystals in rock
specimens and was not satisfied with the standard procedurel nor
with a then recent improvement,?2

Krumbeind recently used a combination of circle and
line methods in the analysis of preferred orientation of long
axes of pebbles in a collection of pebbles observed in a glacial
till in eastern Wisconsin, We have used this data later in an
example, Krumbein remarks that a similar problem occurs in the
investigation of the direction of neutron discharges., A similar
problem occurs in determining the position of a star, Here,

however, the small sector of the sphere used allows a plane to be

1Bruno Sander, Gefiigekunde der Gesteine, Julius

Springer, Vienna, 1930, See pp. 118-135,
2Horace Winchell, A new method of interpretation of

petrofebric diagrams, The American Mineralogist, 22 (1937),

pp. 15-36,
Sw. c. Krumbein, Preferred orientation of pebbles in
sedimentary deposits, The Journal of Geology, 47 (1939)

pp. 673-706, The paper contains a bibliography of other methods
of statistical analysis which have been used on circular and

spherical distributions in Geology.
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substituted as an excellent approximation to the surface of the

sphere,

111, HEAT-FLOW SOLUTION FOR CIRCLE

Using the heat-flow method on the circle, we ask for
the energy density at 17‘9} t =t resulting from an instantaneous
point source of unit energy at 29=@, t =0, Taking ©®=0 our circu-
lar distribution is the solution of the heat flow equation

(v, t) _ a¥(W, t)
2/ ot

with the condition

¥(7, 0) ~3= {11' 2 Zlcos n?}

The series is Cesaro summable to zero except at /=0 at which
point it becomes infinite, t is measured in such units that the
conductivity is one, The solution of the heat-flow equation under

these conditions is
_ 1 5 - o1 9
¥(J,t) = ;2—7({1+ 21c08 0V e n21}~ -2-;77:5(-5,e*t)
or in terms of ®
1 V-0 _
f(ﬁ}@,t):'g;ﬁé(—§~,e F)

where ﬁ%(x,q) is a Theta-function,
Understandably, if #(x,0) is the normal curve with mean
zero, and if we ask for the continuous function ¥(x,s) such that

2n X

SgHx,e)ax = Sz, ax+f J50 T Fa(x,0)axt J2T T X g, o) ax oo

2nmt+x 2nw + x
+j ~-2nmw 4’(){:,0’) dx +12n7( ‘#(x,o*)dx + oo x<27(
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we get the same type of distribution,

~ _{(Jtenm)e
1 > 20

_p2(  _ _2nBz%/ 2ntd _ZnW?)
= e 27 lf‘ﬁale T (e T ote 7

=
N
9
I
EI!
q
=
M
8
@

_ —§§§ if(wﬁi —%Eé)
-m(re N2
2
-1 é'aa ﬁ'(rﬁl 2wi)
{277 5 o T
g2
-HH{5 )
This derivetion has been given by Wintner,l a similar one by
Zernike, <
Writing

‘f/(ﬁo@:Q) = ]*2‘;('773(%@’(1)

the maximumlikelihood estimates of @ and q from a sample of n

points: ﬁl’ ﬁg,...,ﬁh, are found by solving for these quantities

1A, Wintner, loc, cit.,p. 339.
2F. Zernike, Wahrscheinlichkeitsrechnung und mathema-
tische Statistik, Mathematische Hilfsmittel in der Physik, Bd,III

of Handbuch der Physik, Julius Springer, Berlin, 1928
pp. 419-492, See pp., 477-478,
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the equations

n 0log¥(?y,0,q) _ n g q2J~lsin(?; -0O) .
i%1 v T 221 511 + 2q 29 Toos(9i-0@)rqid 2 O
and
D 210g¥(¥;,0,9)  n J T ,.. 9i-2 cos(Pi -®) +q2j"1
i1 dq Ti1]=(2 ~ L)X 2q2d " Lleos(D,-0) + q4d ™2

= . ged-1 | _
jé]_‘] 1-g=<Jd J 0

Since it would be impractical to work with such equar
tions it is of interest that the position of the center of
gravity of the sample points provides éonsistent estimates of
these parameters for q bounded away from zero, For ©® the property
is obvious, For q, taking ®=0 for convenience, the center of
gravity of the distribution as a whole will be the distance a

from the center of the circle where

8= 2" (9) cos 9 af
- -2]_-;({]5”608 ¥ adreq ngcosgﬁdt‘} t 2n§2qnzjgwcos nfcos ¥ 419}
2r
= %fo coslPd P

=q
For the center of gravity of centers of gravity of all
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pairs of points

- Jgﬁjng(ﬁi)f(ﬁﬁ)coa ﬁ&-fcos ﬂédﬁide
:jg”f(ﬁg)[ !cos (D) ad + &?;_f%a"r(ﬁ )dﬁ]
- J2"y( 5[ Efg_%]d 9,-4rd

:q.
By induction, the center of gravity of centers of

gravity of all possible samples of n points will be the same, The
stochastic cdnvergence is physically obvious, Hence, the center
of gravity of the sample points furnishes consistent and unbiased

estimates of the parameters,

IV, CENTER-OF-GRAVITY SODUTION FOR CIRCLE
The center-of-gravity solution for the circle was
introduced by von Misesl, Requiring that

- b 2log (75,0)
i=1 06 )

for all sets of n points satisfying the relation

n .
i3 gin(?; -@) = 0,

he gets

ek cos(V-60)

¥(2,0) enig(k) °

1R, v, Mises, Uber die "Ganzahligkeit" der Atomgewichte
und verwandte Fragen, Physikalische Zeitschrift, 19 (1918),

pp. 490-500,
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By reason of the condition yielding the distribution,
the maximum likelihood estimate of ® is the angular coordinate of
the center of gravity of the sample points, It is easily shown
that the maximum likelihood estimate of k is the solution of the
equation

_Li(x
a._
Tolk

in which a is the radial codrdinate of the center of gravity of
the sample points. Ip(k) is the nth order Bessel function with

pure imaginary argument,

V. HEAT-FLOW SOLUTION FOR SPHERICAL SURFACE
For the spherical surface the heat-flow solution

amounts to the solution of the heat-flow equation

2 Q¥ (D,t)] - 3¥(D,t)
3'55[(1”‘2) 5x 4 ot

with the condition

, X =cos o

¥ (5,0)~ 2 g

The series is Cesaro summable to zero except at 7 =0 at which
point it becomes infinite, t is measured in such units that the
conductivity is one, P,(x) is the nth order Legendre polynomial.

The solution of the heat flow equation under these conditions is
Y(ﬁtt):‘%ngo(zn-fl)Pn(cos 9)en(ntl)t

For an instantaneous point source at ©, ¥, cos 2 would
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be replaced by cos vcos ©+sin Usin @cos(¥-¥) or Pp(cos ¥) by

n(n-m!
Pp(cos V)P (cos 6) + 2m§1%_ﬂg‘n+m TPh(cos #)PR(cos ©)cos m(¥-2¢)
where PB(x) is the associated Legendre function of degree n and

order m,
In order to find the maximum likelihood estimates of O,
%, and t from a sample of n points (791,501), (792, ‘Pg),,,,, (ﬁn, Wn)

we would have to solve for ©, ¥, and t the three equations

n l‘} ® Y ¢
.Z - = -cos iBin O + sin jco8 008( i~ )}

i=1 2@ i=1

X 3§B(2J'fl)P3(0°B di)e~J(J+1)t

oQ . " 'f -
1%0(23 *1)Pj(cos = )e J(3+1)t

n M‘P( ﬁiilpi ﬂ@.§jt)_ n
if1 o¢ - ;Z;8in Vjein Osin(¥; - ¥)
> (2§ - (3t1) ¢
X 15o{3 T1)Pj(c0s =4) e
= — -5
350(23+l) Pj(eos xi)e J(J+l)§
and
o -j(jt1) ¢
5 otoe (95,%;,6,%,8) B .3 j(j+1)(2jt1)P;j(cos %;)e
i=1 T i=1 = Gt =0
ot jEo 23+ 1) Py (008 =) &9 (371)
where
co8s O(i: cOo8 icos @‘f sin 79185.1’1 @COB(‘P]'_“'%)
and

_ 4
Pn(x) = xfn(x)
Since it would be impractical to work with such

equations it is of interest that again the center of gravity of
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the sample points provides consistent estimates of these para-
meters for t positive, finite and bounded away from zero,
The distance of the center of gravity from the center
of the sphere will be; taking ©=0
a:'%n§6(2n-fl)e—n(nfl)tJQixPn(x)dx
= ‘%e-ztj_ix.?.dx
= g 2t

[ ]

We could go on as with the circular distribution and indicate
that the center of gravity gives consistent and unbiased esti-

mates of the three parameters,

Vi, A LEMMA

We prove here a lemms which we shall use in the
following derivations,

If f(x,y) is & continuous function of x and y which hasg

continuous derivatives for 8ll values of x and y with the

possible exception of & set of values lying along a finite number
of curves of finite length in the x,y-plane and if for some

integer n=>3

n
13 T(xi,¥i) =0
whenever

- n =
igl xi= 0 §21 Y170

f a derivative

no x;,yj oceurring at a point of discontinuity
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then
f(x,y)= ax +by
where a and b are independent of x and vy,
From the first equation we may write
ey f(xi,Yi)*‘f("?éi xiryn) =0
Taking derivatives with respect to X3

af(xi,yi) N of (X, ¥n) =0
aXn

0X]
or since xj; and x, could be any pair of coordinates
Qié(;c-"ﬂ=a , a constant,
Similarly
of(x,y) D
oy

Integrating, we get
f(x,y) = ax+«(y) = by +5 (x)
The only form possible is then

f(x,y)= ax +by +c

But
.? f(xj,yi)=a > x+b 2 y. +nc
=4 i=1 i1 "3
Hence
c=0
and



VI1I, CENTER-OF~-GRAVITY SOLUTION FOR SPHERICAL SURFACE

To find the center of gravity of n points on the
surface of a unit sphere, the points being (7y,%;), (f%,?%),....
(ﬁ%,?h) where 7 is a colatitude and ¥ a longitude coordinate, we
solve for ®, ¢, and a the equations
:

gin Ogin ¢ = sin Jysin #;

Bl

i=1

gin ©cos ¢-=

Sle
M

4 gin ¥, cos ¥ (1)

cos D,
i=1 1

We are interested in @ and ¢ only, hence eliminating %

Slo
M

cos @@=

from (1) we have the equations

. ) n n . .
sin ©gin # (= cos UJ; =cos @ > sin Vjsin ¥,
i=1 i1 i

(2)

=

n
gsin ®cos $ = cos 191 =gos ® = sin U, cos ¢,
i=1 i=1 i i

To find the distribution for the spherical surface by

the center of gravity method we require that

n
s alog‘/’(ﬁi.‘f’i.@.§) =0 a,nd g 6108)"(1919301’@,%)
i=1 EXC) i=1 =0
o¢
whenever
n . -
151 (sin Gcos %cosi% — cos ®sin 5&003 ?&)— 0
and
n . . . . _
i1 (8in ®gin %cosi% - co8 ®sin ﬁgslu V&)— 0
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By our lemma, this means that we have

alog‘/’g%‘/’.(@.é) = «(sin ®cos $cos I - cos Osin Fcos ¥)
+3(sin @sin #cos ¥ -cos @sin Vsin %) (3)
m”f;f'@'%) = ¥(sin @cos #cos 7 -cos Osgin Vcos ¥)
+4 (sin @sin ¥cos U -cos @sin Jsin ¥) (4)

where «, 5,7, and J are independent of ¥ and ¥ but are possibly
functions of @ and &,

Let us write (3) and (4)

2logt(v,%,0,%) .
¢Log” f@(P at) . sin Gcos V(«cos ¥ +ssin¥)
- cos @sin Y(«cos ¥+ sin ¥) (5)
2 OR:3 _
_;ggﬂ(%% ) sin Ocos Y(7cos #+4 sin ¢)

|

cos @sin V(scos ¥+ sin ¢) (6)
Since ¢ and % can enter ¥(7,%,0,%) only in the form of
a difference between them and since v varies independently of ¢
< cos® +5 gin & (7)
and
Ycosd+d gind (8)
must be independent of ¢,
But if (8) were not zero log¥(9,%,0,%#) would have a
term linear in & which is impossible; hence

Tcosd td sin$ =0 (9)
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Now 92]&&2(&‘/;@-5) must be the same in either order,

00 ¢
2 Py o,
g logagi’:’@’%) = —cos @sin ﬁ(‘a’; cos ‘Pfﬁ sin ‘/’)
= 8in @sin Y (Ycos ¥ +dsin ¥) (10)

- ogin 9 (2L +2d . )
cos €8 (9@ cos ¢ 35 gin ¢
Setting equal coefficients in the two expressions of

gin? cos ¥ and sin® sin¥

53% cos @='f'£ cos G- Fsin @ (11)

gf cos @=-‘-99?°; cos O - ésin @ (12)
Differentiating ('i) with respect to ¢

325- cos %+-§§ sin $#-«gind + gcos ¢ =0 (13)

Using (11) and (12) in (13)

o7 B o . g .
55 °0s ¢ — 7tan 6cos ¢ + v gin ¢ -Jdtan ®gin ¢

-~«gin & tocos £ =0 (14)

Ditferentiating (9) with respect to @

o7 od .
5o C08 Ft5p sin =0 (15)

Using (9) and (15) in (14)
« gin § =scos & (16)
Putting (11) and (12) in terms of « and J

_ 24 Y - 9L
Y tan ¢ + Jtan Gtan £ = >3

9d _gtan - 2«

2
56 53 tan ¢ + xgecc §
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giving

P
~-§§ ctn ff:;;;- tan ¢ +xgecl &

or
oxX _
53 ~xtan ¢

We have then

a(®)cos ¢

R
I

a(®) sin ¥

Y
i

By (11)

27 o .
= -7tan 0 = a(@)sin ¢

hence

)
7=-gec ®sin éJ a(@)cos @46 —~b(¥)sec ® gin &

)
i= sgec @Pcos %j a(@)cos® d® +b($) sec Gcos ¢

Putting (18), (19), (21) and (22) in (5) and (6)

aIOg*(ﬂ)¢’®s¢) _

56 = a(0)sin ®cos J —a(06)cos © sin Jcos( ¥-#)

2log¥(V,¥,0,%)
o¢

Integrating (23) and (24)

= —-gin ﬁsin(fPﬂi){f@a(@) cos @d@ﬂg(%)}

(17)

(18)
(19)

(20)

(21)

(22)

(=3)

(24)

) ®
log ¥, %,@,%) = cos ﬁf a(6)sin 0406 - gin 9cos(‘P-§)f a(@)cos @d e

. ©
sin 29003(<P-45)f a(®)cos ®d ®

H

+£(0, ¢-4)

¢ &
+gin Vecos ‘/’] b(#)sin# d$-gin Pgin ‘P[ b(#)cosd d é

t g(9,6)
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Since
¢ ¢
cos‘ff v(#)sin 9‘d§>~sin‘l’f b($)cos$d P

must be a function of ¥-¢, write

cos? = cos(¥-%)cos?® - sin(¥-¢)sin?

1

sin¢¥ = sin(¢-%¢)cos$ + cos(¥-3)sin %

and (26) beconmes

¢
sin(¢-%) {- sin%f%(é)sin ‘ﬁd@—cos%f b(#)cosé dé’}

¢ _ ¢
+cos(4’-§>){ cos}j b($)siné df#-sin%f b(%)cos%dﬁ?}

The coefficients of sin(¢-#) and cos(¢-%) must be

independent of #, hence must be constants, Let

¢ $
cos %f b(#)sin $d¢-sin %f b(¢)cos $d P =0y

¢ ¢
—sinif b($)sin? dg’—cos%f b(#) cos %dézcg

Differentiating (27)
co +1(#)sin $cos $ ~b(#)sind cos $= 0

or
co=0
Differentiating (28)
cy+ b(#)sin® #+1($)cos3=0
or

b(#) =-c1, a constant,

Let

(26)

(27)

(28)

b(#)=1 (29)
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By (25)

log¥(7,¥,0,%) = cos ﬁf@a(@) sin Ode
—s8in Joos(‘/’*i’){bw“f@a(@)cos@d@}+f(19) (30)

If we require that the distribution be independent of
the orientation of the sphere, it must, in a special case, be a
function of cos Zcos @+ sin ?8in@cos(¥-¢), The only way this
can be arranged is by having a(@) = k, a constant, b=0,
£(#) independent of ¥, Since the form of £(/) does not change
with a change in b or the constants involved in a(®), £(/) must
always be independent of ﬁ, Since a constant ( depending possibly
on b and the constants involved in a(@)) is to be multiplied into
our ¥(J,9) igbrder that the total probability be one, we may
drop £(7) in (30) and write

1og¥( Y, ¥,@,+) = cos ﬁj@a(@) gin @46 -sin ﬂcos(‘f—{’) {b

+§ ®a(6) cos 006} (31)

or
¥/(19’(?’@’%)
= 0eCO8 ﬁf@a(@) sin @d®© -sin ﬂcos(‘/’%%){’b +f®a(®)cos ©d @} (32)

In order that this be a probability density function
® G
T (2r_cos?f a(®)sin ©dC -sin cos(P-$){Db + () Fdé
Jolo"e J=@) (=910 S a(6) cos }sin Y%
(33)

must be independent of @ and ¥, It is obviously independent of P,
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We can write it as
© ®
: i O - gi + ede
jgfgwecos 7 a(®)sin @46 -sin ¥ cos ‘P{b f a(®) cos }sin 9494

(34)
Let k(®) be defined so that
( f@a(@) sin @d6) 2 + (b +f@a(@) cos ©a6)° = (k(6))2 (35)
Writing
k(0) = k
f@a(@) gin @dO _ cos A (36)

k(®)

b +f@a(@) cos ®d 0O
k(6)

= —-8in A

we write (54) as
i i 3
J"jzﬂ k{COS 75008 A t8in 195111 Acos 9} in o ‘/,S 19;)

Efgfgek {cos Pcos A+sin Vsin Acos <f’} sin 9 a%ad

The direction cosines of a point ﬁ,‘f on the sphere will

be
1= sin Vcos ¥
m= sin? sin ¢ (38)
n=cos?

(37) ean then be written as

2jjmaoek{n cogs A+l sin A}dw (39)

where m>0 means integration over the hemisphere in which m>0 and

dw ig the differential of area,

By a cyclical change of direction cosines (39) can be



written in the form

2ﬂnzoek{l cos Atm sin A}dw

- 2];72]?{3]‘ sin 19009(‘P-A)sinz9d¢d19

- 2j0772j§1rek sin ¥ cos q)sin 9 afad

-2ff o
= 2ﬂmao ekndw
=2 f) Jje* °o® P gin® a%a 9

n

- inh k
= == Slk (40)

Hence (33) is independent of @ and ¢ only when k is

constant ( independent of @),

By (35)
®
(f a(@)sin ©a6)° +(b +f@a(@) cos @d6) 2 -2 (41)
Differentiating (41) with respect to ®
. e . ®
-2a(@) sin @f a(®) 8in ©d O +2a(0) cos O(b+ [ a(6)cos ©de) = 0  (42)

a(0) cannot be zero, Dividing by -2a(®) and taking

another derivative

e
cos 6 a(@)sin ® —gin O(v + f@a(@) cos €d6) + a(p) = 0
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®
By (42) we may replace b +J a(@)cos @d@ by

—tan @an(@) sin P4 ©

{-2'102—?-3+cos @}[J@a(@) gin @4 @} = - a(@)

f®a(@) 8in @4 @ = -cos Oa(E)

Differentiating
gin @a(®) = sin @a(O) - cos @ %@"
a(C@) = copstant, (43)
(41) becomes
8in® @+cos2 @ +2b sin O +Db2 =1
which will be true in general only if
=0 (44)
Combining results, the only possible form for a center-
of-gravity probability density function independent of the ori-

entation of the sphere is

' ® in?y gin @ -
\,,(?9,('0’@’;,)_.4’7811{&}:ek(cosz?cos +ginv 8in @ cos (¥ f)} (45)

For the maximumlikelihood estimates of © and ¢ we have
determined our distribution so that the point on the sphere
nearest the center of graviiy gives these estimates, For k we

have the equation

2 olog¥(#,¥,0,%,k) 1_ )

+igl {coa Dicos @ +sin Ujsin ©@sin(f; *sﬁ)} =0

M

i
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This means that, if a denotes the distance of the
center of gravity of the sample points from the center of the
sphere, the maximum likelihood estimate of k is given by the

solution of the equation

ctnh k - (46)

o
I
o

VIII, THE AXIS PROBLEM

If, in the case of the circle, we have dadt corres-
ponding to diameters rather than to points on the circumference,
that is, if we cannot distinguish between the points ¥ and 7+7,
our problem presents a slightly different aspect, Unless our
points are in some way associated with a physical circle, we may
not be able to distinguish between this case and the one pre-
viously considered,

If we did not distinguish between the two cases but
took the angles given for the diameter case and multiplied by two
then after solving divided the angles by two, the heat-flow

solution would be represented by the distribution
¥(9) = 4= Vs(9-0,p)

The center-of-gravity solution using the gemicircle as
the whole circle, solving and considering the solution as repre-
senting half the distribution is

_ 1 k cos 279
V() = T, (x) ©
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For the sphere there is no distribution corresponding

to multiplying our angle by 2,

IX, HEAT-FLOW-SOLUTION FOR CIRCLE AXES
For the heat flow problem with instantaneous point
sources of half-unit energy at © and O+7, we get the same dis-

tribution as in the last paragraph,

Y(9) = 77 {793 (—72'_5@&) t %(i;g‘ﬂ,q» = z},ﬁs(ﬂ‘@,q‘l)

X, CENTER-OF-GRAVITY SOLUTION FOR CIRCLE AXES

In dealing with diameters of a circle, the center of
gravity of the points where the diameters intersect the circle
will always be zero, If both ends of the same diameter do not
always appear, the center of gravity of the points appearing
gives little information about the distribution, We know that
the theoretical center of gravity, the center of gravity of the
population, is at the center of the circle, 1If we want an analogy
to the center-of-gravity method it seems most logical to deal
with a semicircle, However we divide our circle into semicircles
we have two equivalent semicircles,

We can ask for the distribution for which

n .
i alog‘!;(g;,@) -0

when the projection of the center of gravity of the points on the

semicircle on the line 19=C)perpendicular to the line of cut is a
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maximum distance from the center of the circle, We require then

that
irzll lcos(7; - @) maximum,
This condition causes no trouble when we have the points 'ﬂ-@hg,

In what follows these points could cause trouble,

-®=- X,
v 2
However the probability of getting a given pair of points is

zero, We shall not vitiate our method if we neglect consideration

of the effect of having these points occur,
Differentiating the condition above with respect to &

nl g sin(ﬁi‘ ®)=0

i
1:
where
S = { 1 when OOBE&i‘@;>°
~ |1 when cos(;-6)<0
By our lemma
a_]ﬁﬂai(.@ﬁ;.@l =Jgin(d-6)
Integrating, we get
log¥(?,0) = kdcos (v -0) = klcos(#-6)
or
CP(D,0) = cek lcos (V- 0)
= TCE) L
)
Igvr ek lcos( ) 4o 453/2 ek 00819d_,9
hence
ek Icos (7-0)

\F(ﬂo@) =
413/2 gk ©os8 Z?dvf’

For the maximum likelihood estimates of @ and k we



solve for these quantities the equations

n alo%*(‘&i ,@sk) -

n
z i ., - =
ki=1 dsin(¥; @) =0

i=1 FY0)
4 k cos ¥
H alqﬂ%%,@})__rhhcosﬁe q2 )
i=1 ok B 7k cos ﬁdﬁ tleos(¥-@)f = 0
e

x
We see that, if we find the center of gravity of the
sample points on the semicircle as prescribed above, the angular
codordinate of this point gives the maximum likelihood estimate
of ®, For the maximum likelihood estimate of k we find the k
which gives the distribution having its center of gravity at the
same distance from the center of the circle as the radial codr-
dinate of the projection of the center of gravity of the points

on the semicircle,

XI, HEAT-FLOW SOLUTION FOR SPHERE AXLS

For the heat-flow solution for instantaneous point
sources at opposite ends of a diameter, we simply add together
two solutions for simple instantaneous point sources,

1

iz -n(n+l)t 1 § -n(n+l) t
4 oo (2nt1)Py(cos F)e t3

n=ZO (2n +1)Pu( - cos #)e

.12 -2n(2n+l) t
'"ané (4n +1)Poy(cos P)e ( )

As before, the general form is obtained by replacing

the Legendre polynomials with associated Legendre functions,
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XII. CENTER-OF-GRAVITY SOLUTION FOR SPHERE AXES
The snalogy to the semicircle method will be for the

sphere a hemisphere method, We require

D 3logH(D,s,0,%
2 ogt(vi, 73 ):o

0B
o alog‘{"(ﬁ; 9(701' 0, %) ~
i=1 2 -0
whenever
n . . -

iZ1 5[8in®cos % cos 191 - cos Osin ﬂicos ‘Pij =0

igl § [8in & sin ¢ cos 7% ~cos ®sin 1915111 ‘Pi}= 0
where

g:{ 1 when cos ﬁicos @+ gin v, sin@cos$¢i~% >0
-1 when cos Yjcos @ +sin ﬂisin@coa i-%) <0

Following through the derivation of paragraph VII we
get the distribution |

X lcos ¥ cos ®+sin & gin ©cos(¥-3)
¥Y(4,9,0,%) = Jgjgﬁ;klcos Jcos O+ginv sin O cos(v-2 Yein $ava

or

W(2,9,0,%) = k cklcos ¥ cos ©rsin FeinOcos(4-4)

4r(eX - 1)
For the maximum likelihood estimates of ®, ¢ and k we

solve for these quantities the equations

iglalog\y( ﬁils(’pi 0, %,k)
o®
iglabcg ¥( 79;]3 (?pj_ s®@, %,k )
) 2 ¢

n
:kE] J[—cos ﬁisin ® +sin 191009(9 cos(¢i—¥>)} =0

= k_g}t;sin 79131!1 @gin(?5-%) =0



and
g 3108*151.41,@,§,k)::1 ek
i1 ak X ex—7/°

+ igl cos 7;co8 © +gin ¥isin Ocos(¥; %)l = 0
We see that, if we find the center of gravity of the
sample points on the hemisphere, the angular coordinates of thie
point give the maximum likelihood estimates:6f © and ¢, For the
meximum likelihood estimate of k, we find the k which gives the
distribution having its center of gravity at the same distance
from the center as the radiak coordinate of the center of gravity

of the pointe on the hemisphere,

XI1I, TABLES OF DISTRIBUTION FUNCTIONS

Table I gives values of

i
jg cos Je= 08 it I.(k
Jovrekcosﬁd?} Io(k

the distance of the center of gravity of the circular distribu-
tion with parsmeter k from the center of the circle,
Table II gives values of
DY
§x k °°379d;9 (x k cos 7 g

o © o €
Jgrek cos v

a7 2 Iy(k)

THe distribution function for the circle, Angle 20° in the table
gives the probability of getting an observation between @ -20°
and @+ 20",
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TAELE I
DISTANCE OF CENTER OF GRAVITY FROM CENTER

OF CIRCLE FOR VALUZS OF k

k Distance

0.0 .000,000
0.5 242,500

1.0 .4463290

2.0  ,697,775
2e5  .764,997

3.0 .809,985



TABLE II

PROBABILITY INTEGRAL FOR CIRCLE

Angle k=0.0 k=0.5 k =1.0 k=1.5 k=20 k=2.5 k= 3.0

0 .000,000 .000,000 ,000,000 .000,000 .000,000 .000,000 .000,000
10" .055,556 ,085,900 ,118,678 .150,057 .178,269 .203,148 ,225,194
20° +111,111 .170,533 .233,830 ,293,486 ,346,129 .391,597 .431,002
30 .166,667 ,252,677 .342,341 .424,658 .495,354 ,554,126 ,603,362
40 .222,222 ,331,326 ,441,825 .539,905 .620,600 .685,025 .736,336
50" .277,773 .405,699 .53%0,796 .637,3556 .720,917 .784,115 831,575
60 .333,333 .475,279 .608,676 .717,175 .797,815 .855,206 .895,535
70,388,889 ,539,809 ,675,669 .780,867 .854,739 .904,031 ,936,293
80  .444,444 ,599,273 .732,561 .830,718 .895,802 .936,496 .961,276
90 .500,000 ,653,853 ,780,492 .869,267 .924,953 ,957,653 ,976,222

100° .555,556 703,883 ,820,765 ,898,959 .945,520 ,971,345 .985,089
110° .611,111 ,749,803 .854,690 .921,913 ,960,135 .980,260 .990,386
120° .666,667 .792,114 .883,492 .939,868 .970,656 .986,177 .993,625
130° 722,222 .831,351 .908,258 .954,182 .978,433 ,990,221 .995,682
140" 777,778 .868,055 .929,927 .965,895 .984,383 ,993,132 .997,058
150° .833,233 .902,760 .949,298 ,975,793 .989,137 .995,322 .998,039
160° .888,889 .935,985 ,967,051 .984,476 .993,127 .997,081 ,998,794

170,944,444 .968,235 .983,775 .992,415 .996,668 ,998,596 ,999,425

180° 1.000,000 1,000,000 1,000,000 1,000,000 1.000,000 1,000,000 1,000,000
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Table III gives values of

Jg/’?' cos e ©0F ﬁdﬁ
jg/:? ek cos ﬁdyq

the distance of the center of gravity of the semicircular dis-
tribution with parameter k from the center of the circle,
Teble IV gives values of
(X Xk cos v 4

JOVZ RITD '}dz?

the distribution function for the semicircle, Angle 20° in the
table gives the probability of getting an observation between
©-20° and ®+20° or between @+160° and O+200°,

Table V gives values of

jg cos O ek ©08 Z}sain Jdd

1
=etnh k™ %

the distance of the center of gravity of the spherical distribu-
tion with parameter k from the center of the sphere,
Table VI gives values of
jgos“lx k cos ?

sin /d/ ek _ gkx
k_k

ST & insas e
the distribution function for the sphere, Cosine of angle .8
gives the probability of an observation in the zone covering .1
of the area of the sphere spmetrical about the point on the

sphere nearest the center of gravity.



TABLE III
DISTANCE OF CENTER OF GRAVITY FROM CENTER

OF SEMICIRCLE POR VALUES OF k

k Distance

0.0  .636,520
0.5 .681987

1.0  .722,834
1.5  .758,725
2,0 ,789,661
2.5 815,954

3.0 ,838,094



0" ,000,000
10° .111,111
20" ,222,222
30°  .333,333
444, 444
50° .555,556
666,667
70° 777,778

80  .888,889

TABLE IV

PROBABILITY INTEGRAL FOR SEMICIRCLE

.000, 000
131,391
.260,812
.386,443
.506,728
.620,474
726,889
.825, 581

.000,000
.152,055
«299,593
.438,622
.566,085
«680,079
«779,862
«865,697

.938, 588

000,000
172,625
337,624
.4383,523
.621,104
733,209
.825,034
.893, 305

955,651

.000,000
.192,733
374,313
«535,545
.670,953
« 779,409
.862, 547
«924,089

968,483

k=2.5

.000,000
.212,131
.408,914
.578,629
715,317
.818,788
.893,023
944,007

977,907

k=3.0

.000,000
230,679
441,499
.618,057
J754,271
.851,830
917,347
.959,098

. 984,689

90° 1.900,000 1.000,000 1,000,000 1,000,000 1,000,000 1.000,000 1.000,000
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TABLE V
DISTANCE OF CENTER OF GRAVITY FROM CENTER
OF SPHERE FOR VALUES OF k

k Distance

0.0 .000,000
0.5 .163,953
l.0 .33,035
1,5 .438,125
2.0 .537,315
2.5 613,567

3.0 .671,636



Cosine

of angle k=0.0

1.0
9
«8
o7
«8
]
4
3
2
.1

0.0

o1

3
o4
5
«6
o7
«8
9

1.0

000,000
.050,000
.100,000
150,000
«200,000
.250,000
. 300,000
+350,000
+400,000
+450,000
.500,000
.550,000
.600,000
.650,000
.700,000
750,000
.800,000
.850,000
.900,000

.950,000

PROBABILITY INTEGRAL FOR

k=0.5

000,000
077,154
150,545
220,357
.286,764
.349,932
410,020
467,177
521,546
573,264
.622,459
669,256
713,769
756,112
."796, 390
834,704
.871,149
905,816
938,793

970,161

.

TAELE VI

.000,000
.110,057
.209,641
299,748
.281,281
455,054
.521,807
.582, 208
.636,861
.686,313
731,059
JP71,546
.808,181
.841,330
871,324
.898,464
.923,021
945,241
965, 347

»983,539

.000,000
.146,590
272,762
.381, 359
474,829
555,279
.624,524
.684,123
735,420
779,572
817,574
.850,283
.878,436
.902, 667
.923,523
941,474
956,925
970,223
981,669

.991,521

1,000,000 1,000,000 1,000,000 1,000,000

SPHERE

k=2.0

.000,000
.184,651
.335, 831
.459,606
.560,945
.643,914
711,844
767,460
.812,994
.850, 274
.880,797
.905,787
.926,247
.942,998
956,713
.967,941
977,135
.984,661
.890,824

«995,869

.000,000
.222,700
. 396,139
531,213
.636,409
718,335
782,140
.831,831
.870,530
900,669
.924,142
942,422
956,659
967,746
976,381
.983,106
.988, 344
992,423
.995,599

»998,073

.000,000
.259,826
.452, 310
.594,905
700,542
778,800
836,775
879,724
911,542
935,112
952,574
965,510
.975,093
.932,193
.987,452
991,348
994,235
996,373
997,957

«999,131

1.000,000 1,000,000 1,000,000
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Table VII gives values of

/9 4
Jg/z cos e %°° sin7/d / ok
0/% o K co8 ﬂsinzyd 5 R

o Ll

the distance of the center of gravity of the hemispherical dis-
tribution with parameter k from the center of the sphere,
Table VIII gives values of

cos 1x k cos 7

jo e Blnljdﬂ:ek__ekx
fg/z ek cos ﬁginz9dz9 ek"l

the distribution function for the hemisphere, Cosine of angle .8
gives the probability of an observation in either of the two

zones covering together ,2 of the area of the sphere symmetrical
about the two points nearest the center of gravity of the proper-

ly chosen hemispheres,

XIV, A CIRCULAR AXIS DISTRIBUTION

It was thought that the axis distributions derived from
the center-of-gravity argument should be supplemented by an
example, We have taken a set of data for directions of long axes
of pebbles from a glacial $i11l for our primary data, The form in
which the date is presented ip a paper by Krumbein is that of a
polar coordinate diagram, Table IX gives the longitude and co-
latitude angles obtained by reading the diagram, The colatitude
is measured positively along the sphere from the bottom, the

longitude positively in the NESWN direction from the north,

1w, c.Krumbein, loc, cit. p.683, Fig 3 Left,



TAZLE VII
DISTANCE OF CENTER COF GRAVITY FROH CENTER

OF HEMISPHERE FOR VALUES OF k

k Distance

0.0  .500,000
0.5  ,541,494
1.0 .581,977
1.6 .620,550
2.0 656,518
2.5 .689,425

3.0  ,719,062



Cosine
of angle
1.0
«9
.8
o7
6
«5

.8

o2
ol

0.0

k=0.0

.000,000
.100,000
+200,000
. 300,000
.400,000
500,000
.600,000
«700,000
.800,000

«900,000

TABLE VIII

PROBABILITY INTEGRAL FOR HEMISPHERE

k=0.5

.000,000
.123,950
.241,855
.354,010
.460,695
562,176
.658,709
.750, 533
.837,880

«920,966

k=1.90

.000,000
150,545
286,764
.410,020
521,546
.622,459
713,769
.796,390
.871,149

»938,793

k=1.5

.000,000
.179,299
. 333,623
466,451
580,777
679,179
763,874
.836,771
.899,515

953,518

k=2.0

.000, 000
.209, 641
.381,281
.521, 807
.636,861
731,059
.808,181
871,324
.923,021

«965, 347

k=2,5

.000,000
240,641
.428,656
574,817
.688,648
777,300
.846,342
900,112
941,988

« 974,601

k= 3.0

.000,000
.2%8,762
474,829
.624,524
.735,420
.817,574
.878,436
.923,523
.956,925

981,669

1.000,000 1,000,000 1,000,000 1,000,000,1,000,000.1,000,000 1,000,000
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TABLE IX

LONGITUDE () AND COLATITUDE (J) ANGLES FOR LONG AXIS OF PE3ELES:

¢ 9 ¢ 7 ¢ 9 ¢ J ¢

8 22 84 82 122 54 233 72 276 85

11 48 84 20 126 70 233 84 278 72
12 68 856 64 129 46 236 72 282 77
20 18 85 72 132 580 238 80 292 68
23 66 86 83 137 47 242 20 293 80
26 78 87 74 139 75 243 57 293 85
32 31 89 71 141 39 =46 62 295 53
32 57 89 84 141 69 249 69 300 50
34 78 92 82 155 69 251 85 302 67
35 85 94 55 159 85 2563 81 309 74
38 72 96 69 175 89 253 88 211 64
39 89 96 82 179 48 356 72 311 77
48 62 101 80 182 b2 2062 32 311 85
49 72 103 25 182 565 263 78 315 B0
62 69 105 10 206 82 264 71 317 70
66 89 109 70 222 88 264 82 321 8l
73 73 110 585 224 57 267 69 326 67
76 67 1a2 71 231 52 267 84 332 90

80 64 114 8l 231 82 271 70 343 60

84 75 115 70 232 60 271 79 344 32

1
Data from W.C.Krumbein, Journal of Geology 47 (1939), p. 683,
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Although the table gives one end of each axis only, account was
taken in the calculations of the end appearing in the upper
hemisphere,

For comparison with eur eireular distribution we have
used the longitude () coordinate alone, This corresponds to the
treatment given by Krumbein, Table X gives the results of trials
to determine the value of ¢ which gives the maximum value to

}20 |cos(¥;-& ). $=87"gives the largest sum, $=86" gives a

i;iger value than !¥=88°, hence for ease in comparison #-86,5°
was uged to congtruct Table XI, The points occuring between 76,5°
and 96,5° and between 156,5° and 176,5° are given in the second
column, first line; those between 66,5° and 76.5°, 96.5° and
106,5°, 146,5° and 156,5°, and between 176,5° and 186,5° are
given in the second column, second line, etc. The "Theoretical

Values" of the third column were obtained by linear interpolation

from Table IV,

XV, A SPHERICAL AXIS DISTRIBUTION
Table XII gives the results of trials to determine the

values of @ and ¢ which give the maximum value %o
100
i%1
largest sum, If we set cosxjy = cos ﬁicos ® t gin ﬂisin@cos(‘Pj_*%)

cos ﬁicoa @ + gin ﬂisin@cos(‘l’i”}) . @=90°, $=g7° gives the

the number of points for which the absolute value of cos« lies
between 1.0 and .9, ,9 and .8, etc, is given in column twog.
The "Theoretical Values" of column three were obtained by linear

interpolation from Table VIII,



TABLE X

TRIALS FOR DETERMINATION OF % FOR SELICIRCULAR DISTRIBUTION

1 100
$ T@‘@‘n{—l cos(¥; - )

70 740,715
80 761,859
84 764,828
85 764,989
86 765, 265

87 765,308
88 765,118
90 764,388

100 754,829

110 J732,426
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TABLE XI
COMPARISON OF ACTUAL AWD THEORETICAL DISTRIBUTIONS

FOR SEMICIRCULAR CASE

Distance fro? Actusl  Theoretical
either 86.5 number of  mumber of
or 266.,5° points points
0'-10° 23 17.69
10° - 20° 12 16.85
20°— 20° 15 15,31
30° - 40° 12 13.32
40°~ 50° 11 11.13
50°— 60° 11 © 9.00
60"~ 70° 6 7.08
70°— 80° 6 5.46

80°—~ 90° 4 4.16
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TABLE XII

TRIALS FOR THE DETERMINATION OF ® AND ¢

«679, 622

FOR HEMISPHERICAL DISTRIBUTION

86° a7 ° 88° g9°
.680,713
680,001 .681,039 .530,138 .679,895
.679,414

«674,540

90

.579,705
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TABLE XIII
COMPARISON OF ACTUAL AND THEORETICAL DISTRIBUTIONS
FOR HEMISPHIRE CASE

Cosine of
distance from Actual Theoretical
©=90°, $=87°0r number of number of

©-90°, $=267° points points
1.0 .9 28 23,30

9 .8 17 18.36

8 7 12 14,47

7 o6 10 11.41

6 .5 9 9,01

5 4 9 7.11

4 .3 4 5.62

o3 &2 2 4,44

o2 ol 4 3.51

1 0 5 2,77
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ABSTRACT

For the straight line and the plene both the solution of the equa~
tion of heat flow and the requirement that the probability of the simulta~—
" neous occurrence of points in the neighborhood of any n samvle points be a
maximum with respect to variations in a parameter or parameters of the pro-
bability density function when this parameter or these parameters are set
equal to the coordinate or coordinates of the center of gravity of the sample
points, a2ll points having the same weight, lead to the Gaussian erfor curve.

For the circle the heat flow equation gives the probability

density function
1 9[- e t) .
*(9’6’”:271' 3(2 ’ }

et ig the distance of the center of gravity of the distribution from the
center of the circle, The cdnter of gravity of the sample points provides
congistent estimates of © and t.

Requiring that the probability of the simultaneous occurrence of
points in the neighborhood of any n sample points be a maximum with respect to
variations in the angular coordinate of the center of gravity, von Mises

R, v. Mises, Uber die "Ganzahligkeit" der Atomgewichte und verwandte Fragen,

Physikalische Zeitschrift, 19 (1918), pp. 490-500 obtained for the circle the
probability density function

_ ek cos(V-@)
YO0 = s

The maximum likelihood estimate of k is the solution of the equation

L), -

- a=&'ér(§-)n
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where a is the distance of the center of gravity of the sample points from the
center of the cirecle.

These two methods are extended to obtain distributions for the
sphere, In addition, both methods are extended for the circle and sphere to
obtain distributions for data corregponding to axes rather thean to points on
the circumference or spherical surface.

The solution of the heat flow equation for the sphere isg

Y(8,9,0,8,6)= 3 T (zn+1)2 (008 <)o 1)
where J
cos « = cos Ycos ©® + sin Vsin@cos(¥-¢)
e2¥ ig the distance of the center of gravity of the distribution from the
center of the sphere., The center of gravity of the sample points provides
consistent estimates of @,%, and t.

Requiring that the probability of the simultaneous occurrence of
points in the neighborhood of any n sample points be a maximum with respect
to variations in the two parameters representing the angular coordinates of

the center of gravity yields the probability density function

Y(P,4,0,8) = K __ kicos Pcos ®+sinPsin®cos(¥-¥
( | M Dl ) 4rsinhk e )}
The maximam likelihood estimate of k is given by the solution of the equation

a=ctnh k-1

where a 1s the distance of the center of gravity of the sample polints from
the center of the sphere,

For circle axes the heat flow solution is

P(0,0) - L 95(9-0,0)
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If we divide the circle into semicircles in such a way that the
projection of the center of gravity of the points on the semicircle on a line
through the center of the circle perpendicular to the line of cut is a max-
imum distance from the center of the circle and ask that the probability of
the simultaneous occurrence of points in the neighborhood of the n sample
points be a maximum with respect to variations in the parameter representing

the angular coordinate of the center of gravity, we get the distribution
ok lcos(F-0)

¥ (7,6)
4}0772 ek cos? a5

The maximum 1ikBlihood estimate of ® smd— ape the angular coomdinates of
this center of gravity. The maximum likelihood estimate of k is found by
finding the k which gives the distribution for which the center of gravity
of the points on the semicircle is the same distance from the center as that
of the sample points,

For the sphere axes the heat flow solution is

¥ (7,%,t) = %:' 1:};0 (4n+ l)l‘zn(cosot )e_'Zn(zn*l)t
where V
eogx = cosP cos @+ sinVsin® cos(?-%) .

If we divide the sphere axis distribution into hemispheres in such
a way that the projection of the center of gravity of the points on the hemi-
sphere on the line through the center of the sphere perpendicular to the plane
of cut is a maximum distance from the center of the sphere and ask for the
distribution for which the probability of the simultaneous occurrence of
points in the neighborhood of the n sample points be a maximum with respect

to variations in the parameters representing the angular coordinates of thés



center of gravity we get the distribution

Y(9,¢,0,%) _ m_e.%._n ok lcos Jcos® + ginF sin® cos(?-¢)!

The maximum likelihood estimates of © and € are the angular coordinastes of

thig cdnter of gravity. The maximum lilelihood estimate of k is the solution

of the equation
2 = 1 (kek _1)
k eE_ 1
where g is the radlal coordinate of the center of gravity of the sample

points on the hemisphere,



