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ON SPEERICAL PROBABILITY DISTRIBUTIONS

I. INTRODUCTION: STATELENT OF PROBLEM

We ask for a probability density function in two vari-

ables corresponding to the colatitude and longitude cobrdinates

on a sphere such that the distribution corresponds in some manner

to the two-dimensional normal curve for rectangular codrdinates

on a plane. Several methods for obtaining a correspondence to the

normal curve for one variable corresponding to the angular coor-

dinate on a circle have been investigated. Two of these have led

to usable functions. These methods are here applied to the case

of a distribution on a spherical surface. In addition, the circu-

lar and spherical cases for axes rather than points are consid-

ered and distributions obtained.

The two methods used in the derivations are character-

ized in the following as (1) the heat-flow method, and (2) the

center-of-gravity method. The use of the heat-flow method derives

from the kinetic theory. For our purposes a first approximation

can be described as follows: A particle, initially at a given

point on a circle or sphere, moves in an arbitrary direction

along the circle or along an arbitrary great circle through the

initial point on the sphere at a fixed speed for a fixed time. It

again chooses an arbitrary direction or arbitrary great circle

through the new position along which it moves at the same speed

for the same amount of time. This process is repeated many times.

We let the time occupied by one unit of this motion approach
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zero, at the same time keeping the total elapsed time for the

whole process of the same order of magnitude. We ask for the

probability that the particle will be in a given section of the

circle or spherical surface after a given total elapsed time for

the whole process.

The center-of-gravity method, on the other hand, asks

for the probability density function for which the simultaneous

probability of observations in the neighborhood of any n indepen-

dent sample points each of weight 1 is a maximum with respect to
n

variations in a parameter or parameters representing the coordi-

nate or coordinates of the point on the circle or sphere nearest

the center of gravity of the n sample points. For rectangular

coordinates in the plane either of these methods gives the normal

law.1

lSome properties of the normal law cannot be obtained

by any but trivial correspondences on the circle. See, for

example:

M. Kac and E. R. van Kampen, Circular equidistributions

and statistical independence, American Journal of Mathematics, 61

(1939), pp. 677-682.

A. Wintner, On the stable distribution laws, American

Journal of Mathematics, 55 (1933), pp. 335-339.
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II. EqUIVALENT PHYSICAL PROBLIMS

A use for such a distribution was brought to our atten-

tion by Dr. James F. Bell in 1938. He was interested in deter-

mining a preferred direction for optical axes of crystals in rock

specimens and was not satisfied with the standard procedure1 nor

with a then recent improvement. 2

Krumbein 3 recently used a combination of circle and

line methods in the analysis of preferred orientation of long

axes of pebbles in a collection of pebbles observed in a glacial

till in eastern Wisconsin. We have used this data later in an

example. Krumbein remarks that a similar problem occurs in the

investigation of the direction of neutron discharges. A similar

problem occurs in determining the position of a star. Here,

however, the small sector of the sphere used allows a plane to be

ltBruno Sander, Gefu*gekunde der Gesteine, Julius

Springer, Vienna, 1930. See pp. 118-135,

2Horace Winchell, A new method of interpretation of

petrofabric diagrams, The American Mineralogist, 22 (1937),

pp. 15-36.

3W. C. Krumbein, Preferred orientation of pebbles in

sedimentary deposits, The Journal of Geology, 47 (1939)

pp. 673-706. The paper contains a bibliography of other methods

of statistical analysis which have been used on circular and

spherical distributions in Geology.
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substituted as an excellent approximation to the surface of the

sphere.

III. HEAT-FLOW SOLUTION FOR CIRCLE

Using the heat-flow method on the circle, we ask for

the energy density at iM% t = t resulting from an instantaneous

point source of unit energy at 75=, t =0. Taking 0=0 our circu-

lar distribution is the solution of the heat flow equation

with the condition

f(#,0 ~ lt 2 Ycoo n.

The series is Cesaro summable to zero except at >=0 at which

point it becomes infinite. t is measured in such units that the

conductivity is one, The solution of the heat-flow equation under

these conditions is

21+ 2n loos n e-nt 3 -et)

or in terms of 6

t) 32 ,e

where 3 (x,q) is a Theta-function.

Understandably, if P(xr-) is the normal curve with mean

zero, and if we ask for the continuous function f(x,r) such that

x,, r) dx = jx,#(x,r a) dx + f vtx (x, T_) dx + 27 f x, or) dx +---

0 -2n x 2nr tx 2
+ -2nrx +(x,r) dx t2nr < x(x,r) dx + .x<27r
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we get the same type of distribution.

,(z+ 2n-r) 2

T(#,, n=-e

2n2r 2  2nT- 2n7r9

e 1 2( )1 + ntle

2 21(2

2

1 2a- 3 1 rfi 1ri

-2i 3 -,e2

This derivation has been given by WAintner,l a similar one by

Zernike.2

Writing

f( , ,q)=3

the maximunilikelihood estimates of 9 and q from a sample of n

points: 01i, V#***n, are found by solving for these quantities

1 A. Wintner, loc. cit.,p. 339.
2F. Zernike, Wahracheinlichkeitarechnung und mathema-

tische Statistik, Mathematische Hilfsmittel in der Physik, Bd.III

of Handbuch der Physik, Julius Springer, Berlin, 1928

pp. 419-492. See pp. 477-478.
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the equations

n 1 (og ,6,q) n C q2j-1sin(Vi -8)
ill a 6 2~ ~ Jli + 24q I s(ei-) 4-

and

n alogT(V ,6,) (n 0s(p -p ) + q2j -1
i=l aq ji1(2j -1)q 2j + 2q2j -lcos( -) q4j -2

-2j-1
~j2j i-q2 = 0

J;l~ l-q2J

Since it would be impractical to work with such equar

tions it is of interest that the position of the center of

gravity of the sample points provides consistent estimates of

these parameters for q bounded away from zero. For 6 the property

is obvious. For q, taking O=0 for convenienoe, the center of

gravity of the distribution as a whole will be the distance a

from the center of the circle where

a = 2(p) cos z dp

± f02fgcos Pdt2q J0cos29dl t 2n 2 j0q cos n9cos 79 d

780 cos2d

For the center of gravity of centers of gravity of all
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pairs of points

a 0~(z) 22) t Oos 2

-= 0 2 2 ldfi cos p 2x()d 2
f 2f ( '2 [hcoo 221'YQ1)dP1+ ~f2 -K(91) d 91]j '42

0 2)7+ cos z2 d a2- +

q.

By induction, the center of gravity of centers of

gravity of all possible samples of n points will be the same. The

stochastic convergence is physically obvious. Hence, the center

of gravity of the sample points furnishes consistent and unbiased

estimates of the parameters.

IV. CENTER.-OFGRAVITY SODUTION FOR CIRCLE

The center-of-gravity solution for the circle was

introduced by von Misesi. Requiring that

n alog (fr,®)

for all sets of n points satisfying the relation

.z sin(9i -6) =0,

he gets

ek cos(P-0)
2 7r 10 (k)

1R. v. Mises, _Uber die "Ganzahligkeit" der Atomgewichte

und verwandte Fragen, Physikalische Zeitschrift, 19 (1918),

pp. 490-500.
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By reason of the condition yielding the distribution,

the maximum likelihood estimate of e is the angular coordinate of

the center of gravity of the sample points. It is easily shown

that the maximum likelihood estimate of k is the solution of the

equation

a= k

in which a is the radial co6rdinate of the center of gravity of

the sample points. In(k) is the nth order Bessel function with

pure imaginary argument.

V. HEAT-FLOW SOLUTION FOR SPHERICAL SURFACE

For the spherical surface the heat-flow solution

amounts to the solution of the heat-flow equation

( ) a at , x=cos

with the condition

7'(0,0)~ -(2n f-1) Pn(x)2 n 0
The series is Cesaro summable to zero except at z=O at which

point it becomes infinite, t is measured in such units that the

conductivity is one. Pn(x) is the nth order Legendre polynomial.

The solution of the heat flow equation under these conditions is

For a ) instan (2n + 1) Pat csc) e-n(n+1) t
2n=0 (0 )

For an instantaneous point source at (, , cos 77would



be replaced by cos Nos + tsin Visin Gcos( #-) or Pn(cos ) by

Pn( cos 9) Pn(COS 6) +F 2m Z m Pan1(cos)pn cs6 o m

where Pm(x) is the associated Legendre function of degree n and

order m.

In order to find the maximum likelihood estimates of 6,

, and t from a sample of n points (P1,R1), (#2 '''' nn)

we would have to solve for 6, 4 , and t the three equations

n

1 ~00os Visin 19sl icos Ocos( 91 -<

4  -jtU{j j+1) t(j t 1)p)(o i

0i (2j + 1) P ( coo -<i) e -0tit
=0

n
lin 2/isin Osin(Pi - 4)

**0 -j ( j+) tZ (2j t 1)P'(cos c.i) e
0=0

j C) (2j+1) Pj ( cos cwi) e ~(0t) t

and

n+1) (2jtl)P (coo ai) e
Si= I

jF (2jtl) P (cos ci)e-j(j,-l)t

where

Cos o Ci= COS Oicos 0+ sin Ot~i sin ecos('i -4 )

and

s d ~
nAx = F jn(:X)

Since it would be impractical to work with such

equations it is of interest that again the center of gravity of

i l o ' , 0,+
-= a. r t

ai ogf'( , , t)

n alog iit f ,6,1, t)1
i=.17 - 4

-9-
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the sample points provides consistent estimates of these para.-

meters for t positive, finite and bounded away from zero.

The distance of the center of gravity from the center

of the sphere will be, taking 0=0

S n (2n +1) e-(n 1) t X xdx

2e2tflx2dx

-2 t.

We could go on as with the circular distribution and indicate

that the center of gravity gives consistent and unbiased esti-.

mates of the three parameters,

VI. A LEMMA

We prove here a lemma which we shall use in the

following derivations.

I' f(x,y) is a continuous function of x and y which has

continuous derivatives for all values of x and y with the

possible exception of a set of values lying along a finite number

of curves of finite length in the x,y-2lane ad if for some

integer n 3 3

n
. f(xi,yi) 0i=1

whenever

i 1xi= 0 y=0

no xi,yi occurring at a point of discontiniy of a derivative



then

f(x,y)= ax tby

where a and b are independent of x and y.

From the first equation we may write

nl -1
i=1~ 1=K~y)+ 51 xi-tyn =0

Taking derivatives with respect to x,

D f (xj'9yj) _ af (xM n-) = 0
Dxi 3xn

or since x, and xn could be any pair of co6rdinates

a , a constant.

Similarly

3y =

Integrating, we get

f (x,y) ax + o (y) = by +/3 (x)

The only form possible is then

f (x,y)= ax + by f c

But

- f (xi, yi) = a xi +j * y+nci=1 i=i i=l

Hence

c=0

and

f(x,y) = ax * by



I VII. CENTER-OF-GRAVITY SOLUTIOl FOR SPHERICAL SURFACE

To find the center of gravity of n points on the

surface of a unit sphere, the points being (tpI9), (2' P2, ,*

(i&n' Rn) where L is a colatitude and V a longitude coordinate, we

solve for O, , and a the equations

sin ®sin 2 sin i/sin 50
i=l

sin GCos z sin cosn i=l 1()
a n

Cos e xoCosn l

We are interested in 0 and 4 only, hence eliminating a
n

from (1) we have the equations

sin sin + Cos O sin Pin Ti

n n
sin coo 4 ; cos# i =cos 2 : sin .cos

i =1 i=1

To find the distribution for the spherical surface by

the center of gravity method we require that

n a3logf(5 7. ,g = 0 and lf
i=1 a0 i= 0

whenever

1 (sin Gcos -coszg - cos 8sin Ojcos i)= 0

and

i 1 (sin 8sin +cos o - co0 in isin Pi)= o

-12-
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By our lemma, this means that we have

=(sin Ocos c - cos 6sin Scos P)

+73(sin &sin 4 cos z9- cos 6sin Psin f) (3)

34 1(sin Gcos # cos - cos &sin 7000s I)

+- (sin ®sin f cos 0 -cos &sin *sin If) (4)

where ',, 3,W, and J are independent of A ana V but are possibly

functions of & and !.

Let us write (3) and (4)

sin Gcos (o cos #-+psinl)

-cos 6sin d(-c cos (f/ sin 9) (5)

1 = sin Ocos z9(cos #+c sin #)

- cos @sin P( cos Y -- S sin 9P) (6)

Since f and + can enter -(7, ,,F) only in the form of

a difference between them and since v varies independently of If

o< cos +11 sin# (7)

and

I cosl4 + 6 sin f (8)

must be independent of f.

But if (8) were not zero logV(9,9,@,f) would have a

term linear in 4 which is impossible; hence

-tcosi4-t sin = 0 (g)
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must be the same in either order,

c(o s Gsin Cos+ sin )

sin Osin PS(cos V + psin ) (

-cos esin 0 Cos /+ Bin ps

Setting equal coefficients in the two expressions of

sinz5 cosf and sinz9 sins(

-os G-
c) = e G - -Isin G (

Differentiating (7) with respect to #

cos it sin 4- osinj4 pcos = 0

Using (1l) and (12) in (13)

COB - Itan G cos aF+ sin f -6tan Osin 4

-osin 4 +locos= 0

Differentiating (9) with respect to 6

aCos + + sin 0

Using (9) and (15) in (14)

.1 sin 4 =/a cos f?

Putting (11) and (12) in terms of < ano

-a tan 0 6- tan &tan =

de d4

10)

1)

12)

13)

L4)

L)

16)
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ctn tan 4 + c< sec 2 !

- O tan +

We have then

A = a(e) cos #

3 = a(&) sin +

--ftan 6 = - a(e) sin +

(18)

(19)

(20)

y = - see 6 sin #Ja() cos d6 -b(+) sec 6 sin 4

J-= sec ®cos + a(6) cos 6 d6 +b(f) se 6os 4

(21)

(22)

Putting (18), (19), (21) and (22) in (5) and (6)

) ogc ( - oc s6n 
6 ae a(6) sin Bcos - a(o) cos e sin # cos( Y - )

logp(% Y,*sin Poin(V - i )Ila___ ___ __a 4~ a(8) cos 6cd6+b(#)j

Integrating

logy 'O 7,6,) = cos Pf

(23) and (24)

a(G) sin 6dG - sin Scos(9-4) f a(6)cos d&
f f (O, <f )

sin i cos(q -4)f

+sin dcos Yf b(f) sin,1 d4

6
a(6) Cos 6d G

- sin zsin 4 :

f- s(0 ,6)

-o(

or

(17)

By (11)

hence

(23)

(24)
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Since

cos 9f b(+) sin #d +-sin Pf b(f) cos ' d I

must be a function of T-K, write

cosS= cos(Y- )cos 4 - sin(q-4c )sine

sin? = sin((P-f) cost + cos(q - I) sin

and (26) becomes

(q'-q) - sink f b(j) sin fdf - cos#J b(f) cosl

cos If b(+) sin d - sin f b(b) cos '

The coefficients of sin(P -f) and cos(Y-+)

independent of 41, hence must be constants. Let

cos +f b(#) sin f d+ - sin j b(+) cos

- sin kf b(+) sin+ d - cos 44

Differentiating

b(f) cos + d+ = c2

(27)

c2 -b(4)sin +cos 4 - b(.)sini cos

iDif f erenti ating

c 2 = 0

(28)

cl + b(f) sin2 4+ b(+) cos2 += 0

or

- ci, a constant.

Let

b(+) = b (29)

(26)

d +j

must be

(27)

(28)

= 0

+ Cos( ( - + ) I
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By (25)

logf(5,f,,) = cos f a(e) sin ecd

-sin icos(V-A)Ib tJ a(O) cos & d j& _f( ) (30)

If we require that the distribution be independent of

the orientation of the sphere, it must, in a special case, be a

function of cos cOS 6 + sin P sin 6 cos (V - ). The only way thi s

can be arranged is by having a(O)= k, a constant, b= 0,

f(t9) independent of V9. Since the form of f(0 ) does not change

with a change in b or the constants involved in a(&), f(9) must

always be independent of 79. Since a constant ( depending possibly

on b and the constants involved in a(6)) is to be multiplied into

our i(9,9) ilbrder that the total probability be one, we may

drop f(2) in (30) and write

log(0,,Y'(i 9 , ) = cos dJoa(6) sin OdO -sin )cos( f)tb

+J ea(&) cos dej (31)

or

Cecos f a(G)sin Od-sin zcos('P -,4)b+ a( ) cosAceJ (32)

In order that this be a probability density function

JiJ2recos Pfa(0) sin OdG -sin 0 oos((P- +) tb +f a(&)cos d&J
0 0 ~sin 7 ~

(33)

must be independent of 0 and *. It is obviously independent of #.
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We can write it as

r 2vr dos Pf 6a(G) sin ®d& - sin z9 cos 9t b +f a( ) coso d si i9djPj z5

(34)

Let k(0) be defined so that

(fea(6) sin O de) 2 f (b+ if'a(O) cos Ode) 2 = (k(G))2

Wri ting

k(8) z k

a(2) sin GO
(6)

bif f a(6) coos0d 6

we write (34)

(35)

(36)cos A

-sin A

as

jrS2r k fcos zcos A t sin P sin Acos VI .

2fjf0 0k(cos 5 cos A + sin O2sin Acos'oJ

The direction cosines of a point 5P, on the sphere will

be

1= sin V cosqI

m= sin 9 sin 99

n cos P

(38)

(37) can then be written as

21fm 0 ek{n cos A fl1 sin Al dw

where m>O means integration over the hemisphere in which maO

(39)

and

dw is the differential of area.

By a cyclical change of direction cosines (39) can be
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2IfnOe k1l cos Atm sin A]d}

=2 /22 k sin -0 os(s -A) d

2J0 2J 0k

2 f f ekl ±c

00

=2?rJ*k Cos 9 sin O'd 7O

sinh k
4r k (40)

Hence (33) is independent of @ and

constant (

#' only when k is

independent of 0).

By (35)

(J a(6) sin 9d&)2 f(b ff a(e) cos Od&)2 = k2

Differentiating (41) with respect to 0

-2a(6) sin &f a() sin i dG t 2a(&) oos 0(b +f a(0)Cos &d) = 0

a(®) cannot be zero. Dividing by -2a(e) and taking

another derivative

oos 6J 0a(e) sin 0 - sin &(b + fa() coo OdO) - a(&) = 0

(41)

(42)

sin 0 Cos 9 sin V dipd 7



F
By (42) we may replace b -f a(S) cos 0 d6 by

-tan Gf Oa(e) sin Gd 0

si 0 f+cos @ a(G) sin }d 6 a(G)

J Oa(G) sin 9d= -cos G a(®)

Differentiating

sin Sa(O) = sin Oa(O) - cos d )

da(d)
d G) = 0

a(G)= coastant.

(41) becomes

sin 2 &+cos 2 &+2b sin & + b2 =1

which will be true in general only if

(46)

b=0 (44)

Combining results, the only possible form for a center-

of-gravity probability density function independent of the ori-

entation of the sphere is

(,P,,) = k fcos9 cos +V sin9 sin 9cos(Y-4)j (45)4rsinh 1ke

For the maximumlikelihood estimates of 0 and + we have

determined our distribution so that the point on the sphere

nearest the center of gravity gives these estimates. For k we

have the equation

n tlogoo( ics1i9sif-})
z= =n k th

+ I, Cos Picos 6 + sin gisin 6sin(fi - )}=0

-20-

I
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center of gravity of thE

sphere, the maximum like

solution of the equatior
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at, if a denotes the distance of the

sample points from the center of the

elihood estimate of k is given by the

a = ctnh k - 1

VIII. THE AXIS PROBLEM

If, in the case of the circle, we have dadt corres-

ponding to diameters rather than to points on the circumference,

that is, if we cannot distinguish between the points z9 and Z+7r',

our problem presents a slightly different aspect. Unless our

points are in some way associated with a physical circle, we may

not be able to distinguish between this case and the one pre-

viously considered.

If we did not distinguish between the two cases but

took the angles given for the diameter case and multiplied by two

then after solving divided the angles by two, the heat-flow

solution would be represented by the distribution

%V(d) = 1 3#6p4Kr 3(V_6 P)

The center-of-gravity solution using the semicircle as

the whole circle, solving and considering the solution as repre-

senting half the distribution is

1 k cos 2
4?rIO (k)

(46)
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For the sphere there is no distribution corresponding

to multiplying our angle by 2.

IX. HEAT-FLOW-SOLUTION FOR CIRCLE AXES

For the heat flow problem with instantaneous point

sources of half-unit energy at 0 and Gir, we get the same dis-

tribution as in the last paragraph.

T0) 3 3 (q) I 3(Oq)

X. CENTER-OF-GRAVITY SOLUTIOi FOR CIRCLE AXES

In dealing with diameters of a circle, the center of

gravity of the points where the diameters intersect the circle

will always be zero. If both ends of the same diameter do not

always appear, the center of gravity of the points appearing

gives little information about the distribution. We know that

the theoretical center of gravity, the center of gravity of the

population, is at the center of the circle. If we want an analogy

to the center-of-gravity method it seems most logical to deal

with a semicircle. However we divide our circle into semicircles

we have two equivalent semicircles.

We can ask for the distribution for which

n alogl (P1,O)

when the projection of the center of gravity of the points on the

semicircle on the line 1 =9 perpendicular to the line of cut is a
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maximum distance from the center of the circle. We require then

that

i I... (d -g 6)1 maximum.

This condition causes no trouble when we have the points 7-O= ,

- In what follows these points could cause trouble,

However the probability of getting a given pair of points is

zero. We shall not vitiate our method if we neglect consideration

of the effect of having these points occur.

Differentiating the condition above with respect to 6

isl

where

1 when cos(9i-6))>
-l when cos(#9-o)<0

By our lemma

Calog*('1'O.) mJsin(P-19)

Integrating, we get

log(0,9) = kJcos(Y-e) = k fcos(-6)j

or

( Cek Icos(~6~)

J2 70 k lcos(- /)2 k cos d

hence

ek lo os(79-1)1
4j / 2 ek cos #
0

For the maximum likelihood estimates of & and k we
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solve for these quantities the equations

n blgog(iek) n

1i0
n dlogV(fi ,6k) _nJcosfek cos (#d)#=

i 1Jk Cos 0o ( - =

We see that, if we find the center of gravity of the

sample points on the semicircle as prescribed above, the angular

codrdinate of this point gives the maximum likelihood estimate

of 6. For the maximum likelihood estimate of k we find the k

which gives the distribution having its center of gravity at the

same distance from the center of the circle as the radial co6r-

dinate of the projection of the center of gravity of the points

on the semicircle.

XI. HEAT-FLOW SOLUTION FOR SPHERE AXES

For the heat-flow solution for instantaneous point

sources at 'opposite ends of a diameter, we simply add together

two solutions for simple instantaneous point sources.

1 goo -n(nt-l) t 1 "D-n(n+1) t
-nO0 (2n t1) Pn(cos 19) e + n (2n + 1)Pn( - cos &#) e

1 PC -2n (2n+1P) t
-nO 1 (4n +l)P2n(cos z)e
n=0

As before, the general form is obtained by replacing

the Legendre polynomials with associated Legendre functions.



XII. CENTER-OFGRAVITY SOLUTION FOR SPHERE AXES

The analogy to the semicircle method will be for the

sphere a hemisphere method. We require

n 2)1og( 9i,G )

n logt(,,,
i 0

whenever

.21 [sin D cos i cos i Cos 0 sin lCos 0
SJ [ sin P sin T cos -cO5 sin Osin '=0

where

= { 1 when cos zjcos : sin 8 sin flCOs -- > 0
-1 when c o0sjCos +i-+ <0

Following through the derivation of paragraph VII we

get the distribution

e cos cos 0 -t-sin z sin 6) cos (-)

0,0,2) ek / cos i9cos 6+ sin *sin & cos( 4 in z9d(Pd 9

or

( , ) 47r(e-) e cos P cos 0 sin i sin 0 cos(Lf 4))

For the maximum likelihood estimates of 0, 4 and k we

solve for these quantities the equations

9 alog'( 19i,cfg,&,4,k) " ~Y +i
nn k 2 Cos insin 6) +sin 0coo co(1P--) = 0

J aoog,fG ,@,#,9 .k)
,= k; sin 01isin Osin(Pi - 4) )=0-
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and

nalog"V(# ,,0,k) _ ki 1 ac~'""1 ekn

+ cos zicos O +sin isinOcos(i-4)= 0

We see that, if we find the center of gravity of the

sample points on the hemisphere, the angular coordinates of this

point give the maximum likelihood estimates-oef & and f . For the

maximum likelihood estimate of k, we find the k which gives the

distribution having its center of gravity at the same distance

from the center as the radial coordinate of the center of gravity

of the points on the hemisphere.

XIII. TABIES OF DISTRIBUTION FUNCTIONS

Table I gives values of

IT cos Pek cos Pd

e k cos zdzs

the distance of the center of gravity of the circular distribu.

tion with parameter k from the center of the circle.

Table II gives values of

x kcos dz9 0 k cos zdz

et cos z9d- 2I4e dz ~ 2 10(k)

The distribution function for the circle, Angle 200 in the table

gives the probability of getting an observation between 0~205

and 0 *20" .
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TAILE I

DISTANCE OF CFMER OF GRAVITY FROM CENTER

OF CIRCLE FOR VALUES OF k

k Distance

0.0 .000,000

0.5 .242,500

1.0 .446,3390

1.5 .596,133

2.0 .697,775

2.5 .764,997

3.0 .809,985
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Table III gives values of

r/2 Cos 0ek Cos 05d0

r/2 ,k-cos z dz
0 e

the distance of the center of gravity of the semicircular dis-

tribution with parameter k from the center of the circle.

Table IV gives values of

Sx ek Cos Z d
/ 2 ek cos t

the distribution function for the semicircle. Angle 200 in the

table gives the probability of getting an observation between

6-20a and 0 + 200 or between Of160" and 0+2000.

Table V gives values of

J0 .*o ek cos 0sinPd 1

0 rk cos z9 ctnh k ~

the distance of the center of gravity of the spherical distribu-

tion with parameter k from the center of the sphere.

Table VI gives values of

0 ek Cos sin Zd ek - ekx

f 1 k Cose 29sndz k - k
Se sinz Odd e ~e

the distribution function for the sphere. Cosine of angle .8

gives the probability of an observation in the zone covering .1

of the area of the sphere symetrical about the point on the

sphere nearest the center of gravity.
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TABLE III

DISTANCE OF CENTER OF GRAVITY FROM CENTER

OF SEICIRCLE FOR VALUES OF k

k Distance

0.0 .636,620

0.5 .681987

1.0 .722,834

1.5 .758,725

2.0 .789,661

2.5 .815,954

3.0 .838,094



TA[LE IV

PROBABILITY INTEGRAL FOR SEIICIRCLE

Angle k = 0.0 k=0.5 k =1.0 k =1.5 k = 2.0 k =2.5 k =3.0

0

10

20

30

400

50

60

70

80

.000,000

.111,111

.222,222

.333,333

.444,444

.555,556

.666,667

.777,778

.888,889

.000,000

.131,391

.260,812

.386,443

.506,728

.620,474

.726,889

.825,581

.916,525

.000,000

.152,055

.299,593

.438,622

.566,085

.680,079

.779,862

.865,697

.938,588

.000,000

.172,625

.337,624

.488,523

.621,104

.733,209

.825,034

.898,305

.955,651

.000,000

.192,733

.374,213

.535,545

.670,953

.779,409

.862,547

.924,089

.968,483

.000,000

.211P, 131

.408,914

.578,629

.715,317

.818,788

.893,023

.944,007

.977,907

.000,000

.230,679

.441,499

.618,057

.754,271

.851,830

.917,347

.959,098

.984,689

906 1.000,000 1.000,000 1.000,000 1.000,000 1.000,000 1.000,000 1.000,000
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TAIE V

DISTANCE OF CENTER OF GRAVITY FROM C3NTER

OF SPHRE FOR VALUEMS OF k

k Distance

0.0 .000,000

0.5 .163,953

1.0 .313,035

1,5 .438,125

2.0 .537,315

2.5 .613,567

3.0 .671,636
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Table VII gives values of

(5/2 k cos
0 cos e sin

/2 e k cos
in zd z

ek 1

ek -l k

the distance of the center

tribution with parameter k

Table VIII gives

cos~1 x k
A0
J/2
0

of gravity of the hemispherical dis-

from the center of the sphere.

values of

Cos Zsin P d9 ek - kx
k cos -sin zd z e k

the distribution function for the hemisphere. Cosine of angle .8

gives the probability of an observation in either of the two

zones covering together .2 of the area of the sphere symmetrical

about the two points nearest the center of gravity of the proper-

ly chosen hemispheres.

XIV. A CIRCULAR AXIS DISTRIBUTION

It was thought that the axis distributions derived from

the center-of-gravity argument should be supplemented by an

example. We have taken a set of data for directions of long axes

of pebbles from a glacial till1 for our primary data. The form in

which the data is presented i# a paper by Krumbein is that of a

polar coordinate diagram. Table IX gives the longitude and co-

latitude angles obtained by reading the diagram. The colatitude

is measured positively along the sphere from the bottom, the

longitude positively in the NESWN direction from the north.

1W.C.Krumbein, loc. cit. p. 6 83, Fig 3 Left.

d0 z

-34-



TAME VII

DISTANCE OF OENTER OF GRAVITY FROM CENTER

OF HEMISPHERE FOR VALUES OF k

k Distance

0.0 .500,000

0.5 .541,494

1.0 .581,977

1.5 .620,550

2.0 .656,518

2.5 .689,425

3.0 .719,062
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TAME IX

(S) AND COLATITUDE (d) ANGLES FOR LONG AES OF PEEES

(P v

8 22

11 48

12 68

20 18

23 66

26 78

32 31

32 57

34 78

35 85

38 72

39 89

48 62

49 72

62 69

66 89

73 73

76 67

80 64

84 75

(ez9 cel9

84 82

84 20

85 64

85 72

86 83

87 74

89 71

89 84

92 82

94 55

96 69

96 83

101 80

103 25

105 10

109 70

110 55

112 71

114 81

115 70

122 54

126 70

129 46

132 50

137 47

139 75

141 39

141 69

155 69

159 85

175 89

179 48

182 52

182 55

206 82

222 88

224 57

231 52

231 82

232 60

233 72

233 84

236 72

238 80

242 30

243 57

246 62

249 69

251 85

253 81

253 88

256 72

262 32

263 78

264 71

264 82

267 69

267 84

271 70

271 79

Data from W.C.Krumbein, Journal of Geology 47 (1939), p. 683.

276 85

278 72

282 77

292 68

293 80

293 85

295 53

300 50

302 67

309 74

311 64

311 77

311 85

315 50

317 70

321 81

326 67

332 90

343 60

344 32
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Although the table gives one end of each axis only, account was

taken in the calculations of the end appearing in the upper

hemisphere.

For comparison with our siroular distribyution we have

used the longitude (f) coordinate alone. This corresponds to the

treatment given by Krumbein. Table X gives the results of trials

to determine the value of F which gives the maximum value to
100

,5 Icosfi-#)[ + =87 0gives the largest sum. 4=86* gives a
1=1
larger value than P=880, hence for ease in comparison P=86.50

was used to construct Table XI. The points occuring between 76.5*

and 96.50 and between 156.50 and 176.50 are given in the second

column, first line; those between 66.50 and 76.5, 96.50 and

106.5", 146.50 and 156.50, and between 176.50 and 186.50 are

given in the second column, second line, etc. The "Theoretical

Values" of the third column were obtained by linear interpolation

from Table IV.

XV. A SPIfRICAL AXIS DISTRIBUTION

Table XII gives the results of trials to determine the

values of & and 4, which give the maximum value to
10 cos z9icos O tsin disin&cos(fi-+) . @=90*, +=870 gives the

largest sum. If we set COsGi= cos Licos @+ sin isincos(fi-4)

the number of points for which the absolute value of cosa lies

between 1.0 and .9, .9 and .8, etc. is given in column twoge

The "Theoretical Values" of column three were obtained by linear

interpolation from Table VIII.
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TABLE X

TRIALS FOR DETERMINATION OF + FOR SEMICIRCULAR DISTRIBUTION

1 100
+ - Cos(ftb

n=1

70 .740,715

80 .761,859

84 .764,828

85 .764,989

86 .765, 265

87 .765,308

88 .765,118

90 .764,388

100 .754,829

110 .732,426
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TAME XI

COMARISON OF ACTUAL AND TIORETICAL DISTRIBUTIONS

FOR SEMICIRCULAR CASE

Distance from
either 86.50
or 266.5'

Actual
number of

points

0' - 100

100 - 20

20 0- 300

30" - 400

400- 50"

50'- 60'

60'- 70 *

700- 80,

Theoretical
number of
points

17.69

16.85

15.31

13.32

11.13

9.00

7-.08

5.46

80*- 90b 4 4.16



TABLE XII

TRIALS FOR THE DETERMINATION OF ) AND I

FOR HEMISPHERICAL DISTRIBUTION

86 87 83 89* 90*

.680,713

.679,622 .680,001 .681,039 .680,138 .679,895 .679,705

.679,414

.674,540

+ 85*

0

89

90 *

91

92*

93*

94

95 0
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TA3LE XIII

COMPARISON 0 ACTUAL AND THEORETICAL DISTRIBUTIONS

]'OR HEMI SPHE CASE

Cosine of
distance from Actual
0=90* #L87*or number of
@=90*, t=267* points

1.0 .9

.9 .8

.4 .3

28

17

12

10

9

9

4

Theoretical
number of
points

23.30

18.36

14.47

11.41

9.01

7.11

5.62

4.44

3.51

2.77
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A:BSTRACT

For the straight line and the plane both the solution of the equa-

tion of heat flow and the requirement that the probability of the simulta.-

neous occurrence of points in the neighborhood of any n sample points be a

maximum with respect to variations in a parameter or parameters of the pro-

bability density function when this parameter or these parameters are set

equal to the coordinate or coordinates of the center of gravity of the sample

points, all points having the same weight, lead to the Gaussian erfor curve.

For the circle the heat flow equation gives the probability

density function

( 0t) *)

O-t is the distance of the center of gravity of the distribution from the

center of the circle. The cdnter of gravity of the sample points provides

consistent estimates of & and t.

Requiring that the probability of the simultaneous occurrence of

points in the neighborhood of any n sample points be a maximum with respect to

variations in the angular coordinate of the center of gravity, von Mises

R. v. Mises, Uber de OGanzahligkeit" der Atomgewichte und verwandte Fragen,

Physikalische Zeitschrift, 19 (1918), pp. 490-500 obtained for the circle the

probability density function

2'rIO(k)

The maximum likelihood estimate of k is the solution of the equation

- a ,
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where a is the distance of the center of gravity of the sample points from the

center of the circle.

These two methods are extended to obtain distributions for the

sphere. In addition, both methods are extended for the circle and sphere to

obtain distributions for data corresponding to axes rather than to points on

the circumference or spherical surface.

The solution of the heat flow equation for the sphere is

p Z (2n+l)?(cosw)e-n(n*l)t
n 0

where

Cos cos 12cos 0 + sin Psin&cos( -4)

e-zt is the distance of the center of gravity of the distribution from the

center of the sphere. The center of gravity of the sample points provides

consistent estimates of &,f, and t.

Requiring that the probability of the simultaneous occurrence of

points in the neighborhood of any n sample points be a maximum with respect

to variations in the two parameters representing the angular coordinates of

the center of gravity yields the probability density function

= k kfcos z cos P+sin9sin'cos(Y-)J
4irsinh k e

The maximum likelihood estimate of k is given by the solution of the equation

a= ctnh k--l
k

where a is the distance of the center of gravity of the sample points from

the center of the sphere.

For circle axes the heat flow solution is

f(9 q)L. 9
3 (~z9*q.)

47r
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If we divide the circle into semicircles in such a way that the

projection of the center of gravity of the points on the semicircle on a line

through the center of the circle perpendicular to the line of cut is a max.

imum distance from the center of the circle and ask that the probability of

the simultaneous occurrence of pointw in the neighborhood of the n sample

points be a maximum with respect to variations in the parameter representing

the angular coordinate of the center of gravity, we get the distribution

W ) k icos(i9-&)'
* jr/2 k cos 0

0 ed9V

The maximum likblihood estimate of @ and-k etwe the angular coo&dinates of

this center of gravity. The maximum likelihood estimate of k is found by

finding the k which gives the distribution for which the center of gravity-

of the points on the semicircle is the same distance from the center as that

of the sample points.

For the sphere axes the heat flow solution is

( 0, 7, )1 n- (4n+ 1) 2n(cos e ) -2( l)t
n0O

where

cos- Cos -cos &t sin sint cos((f 4 )

If we divide the sphere axis distribution into hemispheres in such-

a way that the projection of the center of gravity of the points on the hemi-

sphere on the line through the center of the sphere perpendicular to the plane

of cut is: a maximum distance from the center of the sphere and ask for the

distribution for which the probability of the simultaneous occurrence of

points in the neighborhood of the n sample points be a maximum with respect

to variations in the parameters representing the angular coordinates of this

- -
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center of gravity we get the distribution

k ek Icos V cosG't- sin 1 sinO cos(V-4 )I

The maximum likelihood estimates of 6 and 4 are the angular coordinates of

this cdnter of gravity. The maximum lilelihood estimate of k is the solution

of the equation

where a is the radial coordinate of the center of gravity of the sample

points on the hemisphere.


