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Abstract

Whispering Gallery Mirrors are broad band soft x-ray mirrors that have been demonstrated
to achieve close to 70% reflectivity for 180 degree turn, or close to 50% reflectivity for 360
degree turn, which is higher perfonning than other designs, such as the multilayer mirrors.
Both the theoretical and experimental aspects of the mirrors are explored in detail.

Literature on the analysis of the electromagnetic field for cylindrical boundary and perfectly
conducting and lossy medium is reviewed in detail, from the earliest analysis accomplished
by Lord Rayleigh.

Reports on progress made in manipulating the 2D Helmholtz equation for numerical
modeling are included. Examinations of both the high frequency limit and the low
frequency limit (which correspond physically to x-ray radiation and infrared waveguides,
respectively) are described.

Losses of soft x-rays due to scattering is studied by modelling the surface irregularities as
Gaussian distribution. Surface smoothness requirements for soft x-rays are described.

Losses due to photoabsorption is studied by examining the materials' Cooper Minimum.
The term, Cooper Minimum, is briefly explained. Kramer-Kronig analysis is described
here and will be used in the near future to compute the optical constants of promising
materials for surface coatings.

A survey of the susceptibility to oxidation, toxicity, malleability, and the Cooper Minimum
wavelength of the elements Z = 36 - 94 is included. A selection of materials for whispering
gallery mirror to reflect light of 200 angstroms wavelength is chosen and described.

Industries who can polish surfaces on the order of tens of angstroms are described. Issues
in constructing the whispering gallery mirrors and their solutions are discussed.
Techniques to evaluate surface roughness are examined.

Thesis Supervisor: Prof. Peter L. Hagelstein
Title: Associate Professor of Electrical Engineering and Computer

Science
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I. INTRODUCTION

All materials' reflecting power, at normal incidence, deteriorates rapidly when the

incoming light's wavelength becomes less than 400 angstroms. At optical wavelengths

(0 2000 angstroms), reflectivity close to unity has been achieved. However, for soft x-

rays, losses incurred by photoabsorption make it impossible to achieve similar high reflect-

ing power. Only close to 40% of reflectivity has been achieved in the multilayer mirror

schemes.'. Here, we are proposing a different scheme, the whisper gallery mirrors (See Fig-



ure I.1). Close to 50% has been demonstrated by an experiment conducted by Vinogradov.2

Figure I.1 Whispering Gallery Mirror

The name, "whispering gallery", was first used by Lord Rayleigh to describe the trapping of high

frequency fields, in our example, by a concave surface. The incoming light beam, represented by

arrows in the figure, hits the mirror at a shallow angle. The beam bounces around the mirror and

is turned 180 degrees in the mirror shown.

We, the MIT Short Wavelength Laser Group, are currently designing and building a

table-top soft x-ray laser. The major thrust of this thesis' research is to explore and develop

optics for the soft x-ray laser. In our experimental design, we wish to see maximum reflec-

tivity at approximately 195 angstroms. The theory and implementation issues discussed

in this thesis does not limit itself to that specific wavelength. The specific wavelength is,

rather, more often used as an example to demonstrate the principles and results.

To design the mirrors for soft x-rays, we can take either of the two approaches: multi-

layer mirrors or whispering gallery mirrors. In the multilayer mirrors,' 3 ~9 soft x-rays are



shined on the material at normal incidence (Figure 1.2). Each layer is L thick, so that the4

optical path of the reflected beam is . Those reflected light beam add in phase; and we

receive a considerable amount reflected light back.

Mo S

Figure 1.2 Multilayer Mirror

Multilayer mirrors are periodic structures of absorbing (Si) and reflecting (Mo) layers.

Some of the highest reflectivities, in the soft x-ray range, that have been demonstrated

hover around 40%.1 Multilayer mirrors have advanced tremendously in the last decade

through the use of synthetic layers. However, not everyone has the facilities to build mul-

tilayer mirrors with synthetic layers and not everyone can do a precise job in building

them. The other major problem associated with multilayer mirrors is that they are ex-

tremely wavelength sensitive, i.e., narrow-banded. In Figure 1.3, the reflectivity of the



mirror drops from 40% to 20% when the wavelength changes by 3.0%.

Mo/Si multilayer
d=107A N=20 f=0.1
Substrate: C 50A
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Figure 1.3 Transmission/reflectivity vs. X-ray energy plot

The amount of transmission/reflectivity of a multilayer soft x-ray optical structure is plotted against

the incoming light's energy. The peak of the mirror's reflectivity occurs for incoming light with a

wavelength of 206 angstroms. (Courtesy of Ceglio N. M.)

Similarly, in Figure 1.4, the reflectivity drops from 60% to 50% when the wavelength

changes by 3.4%. In addition, the focusing optics still in its infancy for multilayer mirrors
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due to its rigid geometry.

Figure 1.4 Reflectivity vs. X-ray energy plot

The reflectivity of a multilayer soft x-ray mirror is plotted against the incoming light's energy.

The peak of the mirror's reflectivity occurs for incoming light with a wavelength of 209 angstroms

(Courtesy of Ceglio N. M.)

Whispering gallery mirrors, on the other hand, are broad band soft x-ray mirrors.

Material's Cooper Minima, at which the maximum reflectivity can be achieved, occurs at

a wider range of wavelengths compared to the narrow, specific wavelength for absorption

edges. This property is what makes whispering gallery mirrors broad band and versatile as

compared to multilayer mirrors. As we can see in Vinogradov's data (Figure 1.5): for Rh,

5-

0.8-
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the reflectivity only drops from 65% to 55% when the incoming light's wavelength changes

by 8.3%.

30 60 90 120

Figure 1.5 Vinogradov's Data

Vinogradov plotted the reflectivity of a whispering gallery mirror with 180 degree or 90 degree turn.

The reflectivity of mirrors with 180 degree turn is approximately the square of the reflectivity of

mirrors with 90 degree turn

The reflectivity decreases gently to 20% only when the incoming light's wavelength

changes by as much as 25%.

We will first examine, in Chapter 2, what has been done in the design of the whispering

gallery mirrors. Theoretically, the idea has been studied widely for acoustic waves. Lord

Rayleigh pioneered the study of whispering gallery modes. Experimentally, on the other

hand, it has only been carried out recently for soft x-rays by Vinogradov of P. N. Lebedev

of Physics Institute.



The major literature review of the study of whispering gallery modes is extremely

mathematical. It can be found in the appendices. Readers who are only interested in

getting a flavor of what the "whispering gallery" mirrors are need not skim through this

section.

In Chapter 3, both practical and theoretical design issues are discussed. A design on

size and the shape of the mirror is discussed in the first section. The size of the glancing

angle is determined by the optical constant of the material at their particular Cooper

minimum wavelengths. In the third section, we study, from two approaches the effect of

perturbations from a perfectly smooth surface on the mirror's reflectivity. The requirement

for our implementation is also described. In the last section, the Kramers-Kronig analysis,

which will be used to calculate the optical constants of the materials, is described. This

section also has a table of all elements that displays Cooper minimum in the wavelength

range that we are interested in. Their properties are listed so that we can examine which

element should be used over the others.

We would like to write a program to analyze the 2D Helmholtz equation. A progress

report is included in here as to how have we been manipulating the Helmholtz equation.

The first section examines the high frequency approximation, which, physically correspond

to the x-ray mirror design. The second section examine the low frequency approximation,

which, physically correspond to the infrared waves. We also present another approach to

solve the problem, the gradient method, which is useful for solving heterogeneous boundary

conditions.

In Chapter 4, we examine the issues involved in implementing the mirrors. We examined

what Perkin-Elmers has done in building the Space X-Ray Telescope. They have achieved

a surface smoothness of 15 angstroms on the average. We will discuss what it would take to



build the whispering gallery mirrors locally. The measuring techniques are also discussed

for both approaches.

Issues that are yet to be investigated are discussed in Chapter 5. Whispering gallery

mirrors places stringent requirements on the quality of the surface. Large companies, such

as Perkin-Elmers, have successfuly built the x-ray telescope. However, such procedure has

not been commercialized. We have only been able to find one local industry to undertake

such a construction.

Cambridge, Mass., May 1988 Judy Hung



II. Present Status of the Whispering Gallery Mirrors

Presently, x-ray optics utilizing the whispering gallery sliding modes have only been

built and tested by A. V. Vinogradov at the P. N. Lebedev Physics Institute. Vinogradov

have tested whispering gallery mirrors for wavelengths range from 10 to 120 angstroms.

For mirror of rotation angle of 180 degrees, he has achieved close to 70% reflectivity (or

close to 50% for 360 degrees) for wavelength of 120 angstroms using a Rh coating. The

material that coats the mirror is rhodium, Rh. He has also tested other material coatings

such as Ag, B, In, La, Ba, LiF, and Be for different wavelengths.

Lord Rayleigh' was the first one to study whispering gallery modes in wave propaga-

tion. He pioneered the mathematical analysis, such as the high frequency expansion of the

Bessel functions, needed to analyze such problems. He solved the problem for both per-

fectly conducting and lossy boundary. Recent important work includes ones accomplished

by: Wasylkiwskyj3 , Ishida & Felsen4 , and others explore further into the problems. The



boundary geometry so far treated are all cylindrical. Bahar5, in solving wave propaga-

tion problems along irregular soil surfaces, formulated mathematical expression studying

boundary that is consisted of different radii of curvature. Even though Bahar treated a

more general problem, his mathematical expressions are hard to manipulate.

In this section, we will examine briefly what each of them have accomplished in the

analysis of whispering gallery modes. Detailed derivations, done by Lord Rayleigh, Wa-

sylkiwskyj, and Bahar, can be found in Appendix A, B, and C, respectively, for interested

reader.

After this literature review, we will outline the problem that we are interested in solving:

electromagnetic (EM) field on an arbitrarily shaped surface. We will outline the problem

at the end of this section. What we have accomplished so far in solving the problem will

be found in Chapter 3, Section B.

I O



II.1 LORD RAYLEIGH'S FORMULATION

A whispering gallery mode, a hump of energy as shown in Figure II.1.1,

Sur face of the mirror

Intensity of the lin(z)
Whisper Gallery Mode

Figure 1I.1.1

The intensity of a whispering gallery mode is described by the square of a Bessel's function. The

closeness of the hump of energy to the surface of the mirror is what made Lord Rayleigh call it a

"clinging" wave. is described by Lord Rayleigh as a field that "clings" around a concave

surface. Lord Rayleigh pioneered the mathematical description of the trapping of the

high frequency fields inside cylindrical surfaces. He first described how high frequency

I I



waves (in his experiment, a bird call) propagate around the dome of St. Paul's cathedral

with exceptionally low loss. However, he did not analyze mathematically the phenomenon

until 30 years later(in 1910). He first analyzed a perfectly conducting surface.' He later

treated the problem for a lossy medium.2 His analysis of high frequency fields paralleled

his analysis of the waves traveling on a membrane, a problem that he had already analyzed

mathematically in his Theory of Sound.' Nevertheless, he needed to take the higher order

expansion of the Bessel functions, a technique which was only just developing at the time

when he published his mathematical analysis. In our application, we use smaller structures

to achieve the similiar effect for the much higher frequency x-rays.

A wave which travels around a cylindrical surface can be described in terms of a Bessel

function

w(r, 0, t) = AJ (kr) cos(kct - nO) (II.1.1)

where w is the displacement of the membrane, which parallels the E field in our analysis

and Jn(kr) is the Bessel function. The acoustic wave travels with the velocity c, and

k = 27r/A. The waves oscillate around the cylinder with a discrete number of wavelength.

We will explain why the waves have such dependence. w satisfies the wave equation,

d2w 1dw 1 d2W
d2 + + + k2w2 = 0 (II.1.2)dr2 +r dr r2 d02 kW=0

w is harmonic in time and can be expanded into a Fourier series:

w(r,6,t) = wm(r)cos[m(O + am)]ek** (II.1.3a)

dr2 r dr ( C)w cosm(O+ am)=0 (II.1.3b)

. 2)



If we multiply this sum by cos[n(O + a,)] and integrate it with respect to 0 from 0 to

27r, we obtain,

d2w. 1 dw 2 2

dr r dr22 (k 2 )Wn = 0 (1I.1.4)r r dr r

which is Bessel's equation. There exist two distinct solutions to Bessel's equation (a

regular and an irregular solution). We will use the regular solution (J,(kr)) because the

other solution becomes singular at the origin. The index of this Bessel function n takes on

integer values because the waves have to retrace themselves around the cylindrical surface.

Therefore, we can express Jn(kr) in the following form:

J,(kr) = - cos(n sin 0 - kr)di (II.1.5)
7r 0

The boundary condition for a perfectly conducting surface is

Jn(kR) = 0 (II.1.6)

The "whispering gallery" modes correspond to the first zero that occurs away from the

surface.

For a lossy medium, the approach for solving for the transmission of the displacement on

the membrane w, which parallels the E field in our analysis can be shown to be (Appendix

A)

27rpa -2,.(P-hsp)
Transmission = 1 - re - (1.1.7)

np

where t is the ratio of the refractive index of inside with respect to the refractive index of

the boundary (outside); a and p are the densities inside and outside the surface respectively;

and # obeys the relation: z = n cosh/3. If n is big, i.e., the frequency is high the damping

is not significant. Moreover, the less curved the surface is, the smaller y needs to be.

I -~D



Therefore, for a lossy medium, the whispering gallery effect may still persist given that

the frequency of the waves is high enough.

I,+



11.2 WASYLKIWSKYJ'S FORMULATION

Green's functions are kernel functions used to describe electromagnetic radiations. Its

mathematical representation provides a pleasing and accesible way to describe the EM

fields. Wasylkiwskyj analyzed the high frequency fields on a perfectly conducting surface

excited by a line source using Green's functions.' He pointed out that to analyze the fields

that are excited by a line source we can, as a first approach, use ray optics. We shall

collect the field solutions for rays that have been reflected one time, two times, - -. It is

unlikely, however, that this infinite series will provide any numerical insights.

Another way to sum over all the contributions is to use the whispering gallery modes to

collect rays that have the same angle of incidence. However, there is only a finite number

of such whispering gallery modes, and they are not sufficient enough to describe all the

rays emitted from a singular source. The remaining rays constitute a spectral integral

which we shall derive shortly.

Wasylkiwkyj used a perfect absorber to enclose the cylindrical surface to absorb any

rays that might have been reflected from the plane. The absorber generates some spurious

waves. This spurious contribution is small and can be identified.

Through mathematical manipulations, Wasylkiwkyj transformed the Green's function

into a ray optics and/or whispering gallery mode representation of the fields. He identified

the accuracy for each representation. Therefore, as developed in a later work by Ishihara

I 



and Felsen, it might be necessary to use a combination of such representations to describe

the fields.

I'("



1. The Whispering Gallery Modes and the Continuous Spectrum Integral Representa-

tion

The Green's function's angular dependence assumes the form:

exp(iv0 4 - 01)
g0(0 1o; V) = - )(I.2.1)-2wv

where 0 denotes the angle at which the source point is located and V is the propagation

constant of the waves.

The Green's function can be expanded into a set of eigenfunctions:

G(f fo) = Ego (0 1o; v) 0,(r) bL,(ro) (11.2.2)

(11.2.2) satisfies the wave equation for a cylindrical surface:

(1 a 182 2 = 6(r - ro)6(4 - Oo)
r- + + k) G(f Io) - (II.2.3)

rr o r r2ag02r

The perfectly reflecting surface has the boundary condition,

=G(f 0) = 0 (11.2.4)
49r r=a

with a as the radius of the cylinder.

We obtain, for the Green's function:

. N ika -00

G ( a , 4 , o ) = - -
kan (7r/2 - wn) cos w,

00 dye- c 0--oIsnh (11.2.5)oe -* + 0 (II.2.5

where the first term is the whispering gallery modes and the second term the continuous

spectrum integral. The last term is the spurious effect generated by the absorbing boundary

condition. Detailed derivation can be found in Appendix B for interested readers.

I'7



2. Geometrical Ray Representation

In the geometrical ray representation, we try to represent the Green's function as

consisted of rays that bounces off the cylindrical surface 1, 2, - - - , I times. To establish a

geometrical ray representation of the fields, we use a Fourier transform representation of

the Green's function:

G(f fo)= - e"'1O#O*gr(r ro; v)dv (11.2.6)
27r -oo

which we take the high frequency expansion and is shown in Appendix B to be:

G(a, 4,1 40) ~ E:(-1)'eiqw/2 -(+1)1 (11.2.7)
L-1

summing over all rays.



3. Geometric Optics and the Whispering Gallery Modes Representation

Wasylkiwskyj tries to compensate the imperfection in each formulation by using a

combination of the the geometric optics and the whispering gallery modes representation,

he arrives at the result:

L

G(a, 4, 40) ~E(-1)'e ~/x+)I (a, 4, 40)
L=1

+ (-)L+1 ei(/2)L+ 2)FL+1 (a, 4, 0o) (11.2.8)
2

M ika -40 sinWn

+ EZ/2 )
ka n_1 (7r/2 - Wn) cos Wn

where the first term is the geometric rays and the last term the whispering gallery modes.

The second corrects for the field that is not represented by either of the two representation.



11.3 ISHIHARA and. FELSEN'S FORMULATION

Ishihara and Felsen reconstructed each of Wasylkiwskyj's formulation of the high fre-

quency fields on a perfectly conducting cylindrical surface that is excited by a line source.

They verified the accuracy of each formulation numerically and developed a representation

to explain the fields that are close to the source point."

All formulations except for the whispering gallery modes plus the canonical integral

representation fail to explain what happens to the field when the observation point is close

to the source point. The ray optics representation fails miserably when the observation

point gets close to the source point. This is so because when we try to get close to the

source point, numerous caustics are formed. Even if we try to scrape up the contributions

from those caustics by collecting them in an integral expression, the integrand is shown

to diverge. The whispering gallery modes and the ray optics representation, on the other

hand, do not explain what is on the surface field either. The ray optics terms in this

representation, again, diverge when the observation point gets close to the source point.

We shall resort to the integral expression of the field,

_1e~G(If fo)=d (I.3.1)
i(rka)2 IeH (ka) J,(ka)

After we take the respective contour integral and plug in the appropriate Wronskian

20



relation, (11.3.1) is shown by Ishihara and Felsen to reduce down to

eik* ka 2/3G~ - -
2irka 2 I +oo-is e Ai(t)dt-o-iS Ai(t)

ka ( / S

2 a
(II.3.2a)

and

(II.3.2b)

Part of the integrand in (11.3.2) can be shown to be expanded into

Ai(t)

Ai(t)

10 )/ + 0(t-34/2)

j=0
I -7r < argt < 0

By Laplace's inversion, (11.3.3) can be expanded into the terms

G~H 1)(ks) { bjT(3/2)j + 0( 3 3 /2)
2 Ij=0

The coefficients in the series are given:

b0 = 1

bi = iei/4/4

b2= -7i/60

b3 = -7-resr/ 4 /512

b4 = -. 4398134 x 10-2

b5 = -. 4109687 x 10~3geir/4

b= .1122861 x 10- 3 i

b= .9182121 x 10-5 Fe "/4

b= .2093046 x 10-'

b9 = .1637812 x 1 0-6/7e i/4

[ 1

where

(11.3.2)

(11.3.3)

(11.3.4)



bio = -. 3633427 x 10-7i

iH( 1 )(ka)/2 is the Green's function for a perfectly conducting plane.

To analyze the case in which the surface changes from concave to convex while the

distance of the convex surface remains the same, we let a change continuously from 0 to

2ir.

The whispering gallery mode and continuous spectrum representation gives accurate

results except for low ka values, where the whispering gallery eigenfunctions are difficult

to be evaluated. In the near field, values are (as previously pointed out by Wasylkiwskyj)

dominated by the Neumann's function and the whispering gallery modes.

The whispering gallery mode and canonical integral representation, on the other hand,

serves as a good reference for low ka values for the near field calculation. It does not

exhibit the whispering gallery mode calculation problem as in the previous representation.

The combination of rays and whispering gallery modes, as calculated by Ishihara, provides

a good approximation for length within the inequality. For observation points very far

away, we have to include a large number of whispering gallery modes. Therefore, the

representation becomes hard to calculate.



II.4 BAHAR'S FORMULATION

E. Bahar analyzed the high frequency field on a surface that is of both varying impedance

and curvature.' This is a more general approach than the one undertaken by Ishihara,

Felsen, and Wasylkiwskyj. However, Bahar did not generate numerical results.

Bahar describes a surface of arbitrary curvature and variable impedance by x, y, and

z.

The coordinates are defined in the following way: Surfaces on which z are constant are

normal to our surface; surfaces on which y are constant enclose the surface (y > 0, when

y is outside our surface); surfaces on which z are constant are normal to the axis of the

cylinder.

The x, y, z coordinates are related to the cylindrical coordinates in the following Jaco-

bians:

ar ar dR
J -a y _ z- (II.4.1a)

!M 2± 1- Oam ay R

am 8: 0 R

JT= _ r - (II.4.1b)
1y RdR

ar a4 dz

The Maxwell's equations in cylindrical coordinates can be made to depend on x and r

while eliminating the 4 dependent component of the magnetic field. We obtain:

23



?x W H, (II.4.2a)
5T Rr

8H, . r 1 8 (r aE,] r
-- = E, + k-2 or R - + -J, (II.4 .2 b)ax IR k 2 5-r B-

where k = w(pIE)1/2 and J, = rS(r-ro)6(,-Zo)
R

For the cylindrical case, where r = R, E, satisfies the following scalar wave equation:

1ia 8E 1 a 2E
V 2 E, = r-(r ) + - + k 2E, = impJ, (11.4.3)

E, can be expanded into the following eigenfunction expressions for zero impedance.

E,(, 4 = FH2 ( o)Hj () X

H,(,) (e) cos vn (4 - 40 - 7r)(144
8H. (2)(g)) sin y,,

av M.

where H' 2) ( ) are the Hankel functions of the first and second kind and that and

CR denote the number of waves in the specified radius.

The electromagnetic fields satifies the impedance boundary condition at r = R,

aE. n Ez(II.4.5)
d(kr) Z.

where r1 is the intrinsic impedance of the medium.

Each order vn of the basis functions satisfy the equation

H (t) - !H7 )() = 0(11.4.6)

We can write the azimuthal dependence of (11.4.4) as a superposition of the forward

traveling and backward traveling waves:

24



E(e, x) = [an(x) + b.(x)] (11.4.7)

We can express the magnetic fields in a similar way:

00Y (e)H()

H,(,z) {an(z) - b (11.4.8)
n=1

The forward traveling waves, as noted before by Lord Rayleigh and others, constitutes

not only the direct wave propagating in the positive x direction but also the whispering

gallery waves which propagate around the cylinder p times (p is an integer).

After a number of manipulations, we obtain for the amplitudes of the traveling waves:

a.(z) = f ao(u) x exp ( + ()dv] du (11.4.9)

= o dTu i d Rv]bn(z) = -ao(u) x exp (- (Vo \R) dvo du (II.4.10)



11.5 WHERE DO WE GO FROM HERE

Using mathematical tools, such as the contour integral, WKB method, and asymptotic

expansion of the Hankel functions to obtain the Green's function, Lord Rayleigh, Wasylki-

wskyj, Ishihara and Felsen, and Bahar have exhausted the development of the Green's

function for a cylindrical surface in the high frequency limit. We now outline the approach

that we propose to take in solving this problem.

To determine the electromagnetic field in the region of an arbitrary shaped surface

containing a high frequency source, we need to use the Huygen's principle. Given that

we know the field or its normal derivative everywhere on a closed surface, the Huygen's

principle tells us what the field is everywhere inside the surface. We shall rederive it in

Appendix A.

The following technique will be used to apply Huygen's principle: we divide the surface

into small finite elements (Fig. 1). The field on one finite surface element can be found by

summing over the contributions from all other finite element surface fields weighted by a

Green's function. The source surface element has an additional source term. If we let E

denote either the field itself or its normal derivative, then

E; = EG;;Eg i = 2, 3, 4, -.--. n

1j

j 19213,..,n (II.5.la)
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Ei = EG 1 E, + S j = 2,3,. -, n (II.5.1b)
i

jo1

where Gij is a Green's function that associates surface i to surface j and S is the source

term.

If we know what the Green's functions are, we can solve for the E fields on the surface

by solving (11.5.1) self-consistently. However, each finite surface element is large compared

to the wavelength of the field.

Recently, we have found literature from Check Lee of Prof. J. A. Kong's group that

analyzes the problem of the arbitrarily shaped surface. Check Lee is also working on this

problem. The approaches taken by Check Lee and authors of the literature are slightly

different than the one we have just described.

The Huygen's principle is derived in Appendix A to establish the theoretical basis of

our analysis. We also derive the eigenfunction expansion of the Green's function (Appendix

B) because we need this tool to study a light source composed of more than one mode. We

shall explore the solution for the Green's function for an arbitrarily shaped surface further

in Chapter 3.
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III.A.1 The Size and the Shape of the Whispering

Gallery Mirrors

It can be shown that the whispering gallery modes are insensitive to the size of the mirrors

to the first order. In other words, the reflectance of the whispering gallery mirrors does

not depend on the size of the mirror. The geometry of the inner surface, (See photograph

of the mirror) determines the number of focal points (See Figure III.A.1) If we wish the
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light beam to focus only at the endpoints of a 360 degree turn mirror, we use elliptical

8B.

Figure III.A.1 Whispering Gallery Mirror's Focusing Optics

Focusing optics of the whispering gallery mirrors is determined by the geometry of the inside

surface. The inside surface of a 360 degree mirror is shown in the figure. A. Elliptic : the focus

occurs at the two endpoints; B. Spherical : the focii occur in the center and the the endpoints; C.

Toroidal : the number of focii is determined by the toroid's radius of curvature.
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surface (A in Figure III.A.1). Spherical surfaces can focus at two points (B in Figure

III.A.1). Three or more focal points will require the inner surface geometry be toroidal,

with different curvature of radii.

Since the reflectivity of the whispering gallery mirror is independent of the size of the

mirror, we can vary the size of the mirror to accomodate the light pulsed that comes in.

The size is designed to be at 10 cm diameter to fit the envelope of 15 pulses that comes

in. The pulse is 30 nanosecond in duration.

350



III.A.2 Glancing Angles

In the x-ray regime, all materials' indices of refraction differ little from unity, that is,

n = 1 - 6, where 6 is a small number1 . In other words, for a beam of x-ray, the vacuum,

whose index of refraction is unity, is optically denser than any material

Figure II.A.2.1 Light beam at an interface

Incoming beam, i, coming at an angle Oi from material with index of refraction n2, hits a ma-

terial with index of refraction ni. Part of the beam is reflected and the other part transmitted.

that constitutes a whispering gallery mirror. Therefore, there exists an angle at which



considerable amount of reflection of x-ray will occur. Because n differs little from unity,

this critical angle is extremely small. Those small angles have been referred as grazing

incidence angles or glancing angles 2 9.

The light rays in Figure III.A.2.1 obeys the Snell's law which states that the sine of

the transmitted angle of the light ray isio proportional to the sine of the incident angle of

the light ray by a proportion of the refractive indices of the two materials:

sind, = -sinO; (III.A.1)
nl2

As stated above, all materials indices of refraction becomes less than unity in the x-ray

regime. Therefore, there exist a critical angle 6, at which the transmitted angle Ot becomes

parallel to the interface and the power of the light ray transmitted become an exponential

decay,

0C = sin-n2 (III.A.2)

In the x-ray regime, the ratio n is very close to 1. The critical angle, 0,, becomes

closer and closer to 90 degrees. The incident ray is grazing the surface of the mirror.

If the index of refraction is complex, so that

k = k, - ki (III.A.3)

the field attenuate exponentially into the material.

E = Eoe~kiz (III.A.4)

where z is the depth of the material. Penetration depth of the material is defined to be

d, = (III.A.5)
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where the field has become of its original values. If the incoming light beam is 200

angstroms, copper's index of refraction is .96 + i.10. Its skin depth would be 10 angstroms.

For nickel, the index of refraction for the same wavelength is .98 + i.09. Its skin depth

would be 11.1 angstroms. For silver, its index of refraction is .88 + i.21 which leads to a

skin depth of 4.76 angstroms.

III.A.1 The size of the glancing angles and beam height

Let us assume that the material has its real part of the refractive index .999, its critical

angle is 2.6 degrees, the height of the beam for a mirror with the radius R, is equal to, (by

simple geometry) R[1 - sin,]. If the radius is 5 cm, the beam height would be - 51p.

III.A.2 Absorption of soft x-ray in air and one-bounce experiments

It is necessary to work in a vacuum chamber for soft x-ray experiments, because x-rays'

penetration depth of an impure environment is very shallow.

In experiments, physicists have dealt extensively with one-bounce experiments to obtain

the optical property of the materials"-". Multiple-bounces, as required by the whispering

gallery mirrors, have only been carried out extensively by Vinogradov.

III.A.3 Theoretical problems associated with glancing angles

Glancing angles treat the "particle-like" picture of the x-rays. If we work with the

particle model, the picture is follows: on each bounce, there is some loss associated with

it, the total reflectance of the mirror is consequently dependent on how many bounces there

is, and thus dependent on the mirror's size. We can calculate how many bounces that the

light particle coming in at an angle 0 and turned by a mirror of angle (. Each bounce of

the particle encompass twice the incidence angle. Therefore, by simple geometry, we can

see that the light beam make approximately j bounces. If the incoming beam is .54 degree



Figure III.A.2.2 Sliding Angle Graph

The incoming light beam, denoted by the arrows in the figure, comes in at a shallow angle 6.

and that the light beam is turned by 180 degrees. The beam would have bounced off the

mirror approximately 100 times. Suppose the reflectance of each bounce is 99.7%. The

intensity of the beam turned by this 180 deg mirror is approximately 74% of the incoming

beam.
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III.A.3 Perturbation Analysis of Surface Roughness

of the Whispering Gallery Mirrors

It is imperative to consider the effect of the irregularities that are left on the surface

have on the reflectivity of the whispering gallery mirrors because they exist inherently in

any polished (or superpolished, for that matter) surface.

We can model the imperfect surface as a perfectly smooth surface that has a Gaussian

distribution of irregularities with a correlation radius, a and a height, g.

It is shown by Vinogradov by solving the solving a two dimensional Helmholtz equation

adding the surface irregularities as perturbation terms, that the reflectivity of a bent surface

mirror is 1

R2 = R|2 - b1R|2 = |R 2 1 - 4k2 2 2 (12 ) (III.A.3.1)

where R is the reflectivity of the bent surface mirror, el is the permittivity of the mirror,

0 is the angle of incidence, and k is the wavenumber. p. is a measure of the size of the

incidence angle. a is incorporated in the expression p. It is equal to:

1
ajkE 2p= ak?6

4

The expression 4 (p) can be evaluated for two limits: either L >> 1 or y < 1 1

( = t

7rW



1= 1 - + - -16p2

2 i [r ( ) + 2 \)
(III.A.3.2)

If the incidence angle is extremely small, as in the case of x rays, Eq. (III.A.3.1) reduces

R'= |R12 1 -E(4 (III.A.3.3)
7r 2 (ka)2

For whispering gallery mirrors, we can represent the propagation of the x ray beam as

a series of reflections off the mirrors. Consequently,

IR(6, 4)|2 = |R(O)I (III.A.3.4)

There are a large number of reflections. In such limit, Eq. (III.A.3.3) can be shown to

transformed to the following expression,

R(, = exp [- (1 - IRI2 exp -44 p(/I> (p) (III.A.3.5)

For grazing incidence angle, where a - 0, the surface is considered smooth if the

following condition is satisfied:

(III.A.3.6)

Since our wavelength is larger compared to correlation radius, we can choose smaller

correlation radius, say greater or equal to 1 p. For incoming light with a wavelength of

D

k 3 ' < a

- 44
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200 angstroms hitting a surface with correlation radius of 2 y, the irregularities' height

should be less than 100 angstroms.

Let us calculate the loss of reflectivity due to scattering, which is described by the

second exponential term in Eq. (III.A.3.4), for the example just mentioned. There is

also losses due to photoabsorption. Let us consider for a mirror that rotate the incoming

light beam 180 degrees. If the height of the irregularities is 100 angstroms, as we can

see in FigureIII.A.3.1, the loss due to scattering is 82%. Let us assume that loss due to

absorption is 30%. The mirror's reflectivity would be 5.4%. If the height reduces by a

half to 50 angstroms, the loss due to scattering will have decreased appreciably to 34.8%;

the mirror's reflectivity would be 65.2% x 30.0% = 19.5%. The scattering becomes closer

negligible, when the height reduces to 10 angstroms. The surface's scattering losses are



sensitive to microirregularities with the height between 10 and 100 angstroms.

Scattering Loss

1.000-

0.900--
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Height of Irregularities (m)

Figure III.A.3.1 Scattering loss vs. Height of surface irregularities

Assuming the correlation radius is 2 y, the height of the surface irregularities is plotted against

scattering loss. For a surface with irregularities of height less than 10 angstroms, it can be considered

scattering loss free.

In Vinogradov's example, the incoming light beam is also 200 angstroms in wavelength.

He rotated the light beam 90 degrees. His surface's microirregularities were 60 angstroms

in height rms. He considered the surface to be smooth if the correlation radius g is >

1 y, which agrees with our calculations. Figure III.A.3.2 plots the relationship between



irregularities' height and correlation radius.

height of irregularities (M)
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correlation radius (m)

Figure III.A.3.2 Height vs. Correlation radius

The values of surface irregularities' height are plotted against their correlation radius for different

(1 - scattering loss).

Practical issues that are involved in reducing microirregularities can discussed in Chap-

ter 4. Obtaining smoothness on the order of hundreds of angstroms is easy. Obtaining

smoothness of 10 angstroms require much more work and have only been carried out by

very few industries.
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III.A.4 Kramers-Kronig Analysis

The real part of the optical constant is related to the imaginary part of the optical

constant by the Kramers-Kronig relation1 (50).

n,.(w) - f iW d (III.A.4.1)

Therefore, if we know the real part of the optical constant, we also know the imaginary

part and vice-versa. Kramers-Kronig have been used extensively to calculate the optical

constants theoretically. It provides a good estimation for the energy range that we are

interested in.

For energy above 100eV, the relationship for finding the optical constants become

much simpler. The relationship is linear2 . If we write the dielectric constant as a complex

constant e:

b and # are related to the atomic scattering factor f,,

b = () A X2 0EXPfip (III.A.4.2)

3 = ( A24 zxpf 2p (III.A.4.3)

where fi, and f2p designate the real part and imaginary part of the scattering factor,

respectively and 4 is the number of molecular groups per unit volume each with x, atoms.



The experimental data for photoabsorption cross section for 100eV and above have

been compiled by Henke, B.L. for all elements 2 . Therefore, the optical constants can be

much more easily obtained for energy of that range.

III.A.4.1 Kramers-Kronig's relation

We have been setting up the program to use Kramers-Kronig to calculate the optical

constants of all material at energy range below 100eV. We describe the Kramers-Kronig

briefly below.

The analyticity of the optical constant, ic, in the upper half plane of w allows the

use of the Cauchy's theorem to relate the imaginary and real parts of ic as shown in Eq.

(III.A.4.1). The real part of the optical constant is related to the total cross section at

1c,(2) -1=02--PW 2 dw (III.A.4.1.1)

where the total cross section is composed of both the absorption cross section, o, and

the scattering cross section, a, 3

at = Ga + a, (III.A.4.1.2)

The scattering cross section can be shown to be negligible compared to the absorption

cross section. Consequently, we shall worry only about contribution due to only the the

absorption cross section. We can rewrite Eq.(III.A.4.1.1)

IC,(W) - 1 s 2 -- P ,2 2 dw(III.A.4.1.3)
?A 0o 12- W

The equation becomes singular at w. We can resolve this singularity by subtracting

the singular value from the integrand,



(W) - W) * + d W &0'(III.A.4.1.4)

The first term can be calculated by numerical integration, and the second term can be

evaluated analytically. In addition, we will truncate the integration interval for the first

integrand at which the absorption cross section starts to decrease.

Most photoabsorption cross section may have steep slope. To approximate such high

rate of change, the quadrature that we use will follows Simpson's i rule.

III.A.4.2 Utilization of the Cooper Minimum

For a specific wavelength that we wish to design the mirror for, we want to use elements

that has their Cooper Minimum at that or close to that specific wavelength. Basically,

Cooper Minimum is the point at which the photoabsorption cross section of the element

is at its Minimum. If the element absorbs less, it reflects more.

J. W. Cooper used a nonhydrogenic model with central field to describe the absorption-

edge-like phenomenon in lower energy (between threshold and a few hundreds of eV) 4-7 .

Cooper Minima is due to the zero of the photoionization matrix element. It is an interfer-

ence effect.

For 200 angstroms, which correspond approximately to 64eV, both thorium and barium

_L



displays a Cooper Minimum at that energy level. (See Figure III.A.4.1)
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Figure III.A.4.1

The Cooper Minima, which occur at less than 100eV for both Ba, plot on the left, and Th, plot on

the right has a much gentler slope than the absorption edges, which appear as sharp peaks at the

higher energy levels.

III.A.4.3 Selection of material for our WGM mirror design

The wavelength for which we want to build a whispering gallery mirror for is approxi-

mately 195 angstroms.

The following criteria are used in narrowing down the elements.

1. It should not be radioactive

2. It should not oxidize easily (especially on the outer few angstroms, because the skin

depth is on the order of angstroms)

3. It should serve as a good thin film coating (malleable; not brittle)

Besides the criteria cited above, the element should be within budgetary constraints. Of

all the elements listed, none of them is beyond reach. Some elements are toxic. However,

f2t

80
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since highly toxic elements, such as Ga and As, have been successfully handled in labs,

toxicity does not serve as a major criteria.

The following survey shows the properties of the elements that has their Cooper Min-

imum in the soft x-rays.

The final three elements that we are considering are molybdenum, strontium, and

zirconium.
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III.B Theoretical Design of the Whispering Gallery

Mirrors

III.B.1 Finite Element Analysis of 2D Helmholtz Equation for An Arbitrarily

Shaped Surface

In our design, we want to solve the Green's function for an arbitrarily shaped surface.

We will do so through a finite-element approach. We cut a surface into small pieces. On

each piece, there is a field Ej associated with it. To visualize the E field more easily, we

can define a new set of coordinate for each piece. (1 is parallel to the piece; 2 is normal



to the piece1-3

Figure III.B.1

An arbitrarily shaped surface can be described by finite elements. A new set of coordinates, one is

normal to the finite element, and the other parallel, can be defined to describe each element

where they are transformed from the x and y axis in the following way:

el= zcosi + ysin/

2= -Xsin) + ycosk

According to the Helmholtz's equation, the contribution of E to Ej is

Sa eik-[(C1-$1)
2+ (2-4 2 j)

2 +Z 2]-

E0 (1 2)_ + (dz -di2( + Z212



e ik[((e1-i,) 2 +(2-2) +,21 2 dE (, () (III.B.1.1)

[(e1 - 1s)2 + ( 2 - 2i)2 + Z2] dC
where we have assumed that the field does not vary along the z-axis. As stated by the

Huygen's principle (as mentioned in Appendix D), if we know how each piece is related

to one another, we can solve for the E field on the boundary and within the surface by

solving each of the piece self-consistently. At this point, we will concentrate on simplifying

(III.B.1.1) rather than solving the matrix itself.

We can rearrange the terms in (III.B.1.1),

69 f oo eik[((1- _ig)2 +(62-62j)2+Z2]2

E;(j)( (2) = d(2Ej((1, W2 dz
-(6 01 -, ( _ 2 + (e2 - 0) 2 + Z212

- dE ( ) 0iL ei(e]-ktI12 +(62-62) 2 +,2)+

- de2 f dz () (III.B.1.2)
We di -o* [(1 valu)2t+ (t2 - 2e)2 + 2r2

We can evaluate the expression along the z-axis. We are evaluating the expression,

Since variables (1 and C2

substitution,

00 ik{(f]1-(1g)2+( C2-C2j )2+X21 j

[(ej . dz (III.B.1.3)
1 ~~,) 2 + (6 - C2) 2 + Z212

act as constants in this expression, we can make the folowing

a2 =(e 1 )2 + (e2 - 2) 2

Equation (11.3) becomes,

00 _eia 2 +Z2 ] I

-co (a2 + z2)

We can expand the exponential into cos's and sin's,

f dzeskt 2+z211~
-00 i~

(III.B.1.4)



foo z cosk(as2 + Z2)1/2
= f W +

J-oo (a2 + z 2) 1/2

dz cosk(a2 + 22 + 2i
(a2 + Z2)1/2

+ f dzsink(a + z)1/2
- (a2 + z2)1/ 2

00 dz sink (a2 + Z2)1/2

o (a2 + z2)1/2

due to the integrands' evenness.

We can make another substitution to simplify the integral. Let

U 2 2 2

(11.5) becomes,

2 d u cosk u2] (u2 
-2

(U a
2 )2

+ 2if du sinku
a (U2 - a2)2

Equation (11.6) is evaluated to be

No(ka) + iV/r Jo(ka)

an expression that can be simplified to the Hankel's function expression. (11.3) is equivalent

to

inrHo(ka)

We can substitute (II.7) back into our original equation, we arrive at

- i7rHo(k[( 
1 -

el1
e15)2 + (62 - e2;)2])

- dE ( ( 2) -iHo'(k[(e1 - (1;)2 + (2 - )
-6d del irH16 ~

Most of the time we are interested in how many wavelengths do each piece contain, that

is, we are interested in ka and not a itself. We can substitute the following expressions,

2 = k2 2
Ol7 k( 1 -

= 2f
0o

E!) (1, 2) =

( III.B.1.5)

(III.B.1.6)

(III.B.1.7)

-f6de2E (el1, e2)

(III.B.1.8)

(III.B.1.9.1)

-r (2



Cr = k - 2 )2

+ 1j

= + 2i

20rida = 2((1 - e15)d(1

2a 2da 2 = 2(e2 - e25)de2

so that,

d(1 = , da0

(0)

dw2 = a2d2

we can rewrite (II.8) in the following manner:

6J~' kda2E, (ai,Or2) k

f -k(6-i) kd dE(ai,o2)
Jk(-6-CIj) dor1

i r cH (
aa1

[a + )

,., 2 Hi)({cTi + uj]i)au1

Lf I

(III.B.1.9.2)

j =
k2(

(III.B.1.9.3)

(III.B.1.9.4)

(III.B.1.9.5)

(III.B.1.9.8)

(III.B.1.10)



III.B.2 Analysis of 2D Helmholtz for High Frequency

Approximations

Essentially, we wish to solve the result we obtained in Section III.B.1 for all frequencies.

We want to simplify Eq. (III.B.10). We can take two different approximations: the

high frequency approximation and the low frequency approximation. Physically the high

frequency approximation correspond to solution for uv or x-rays. On the other hand, the

low frequency approximation correspond to infrared light beams.

In this section, let us examine the integral using asymptotic high frequency approxi-

mation, we get

6 Ho (k(x - x')) e'"' dx' = dz 8 d'eiteik(-z)CosZ

= inf dzetkc**f d'xeik'cosz+iI7z'
7r C J-6

1i(n-kcosz)6 _-i(r-kcoz)6
= - dze'****

7 c 1 - kcosz I

if dz i(kzcosz-k6coz+96) _ -ikxcosz-k6cosx+i6)

ux c 7 - kcosz

If we evaluate the first term of the integral in (III.B.2.1), we arrive at

1 ei76 f s ei(kzcos"coa) dz
ix C 17 - kcosz

z is a complex number, i.e.,

z = U + iv (III.B.2.3)

Moreover, we have satisfy the condition that it is constant phase; consequently,

i (kxcosz - kocosz)

isc

(III.B.2.1)

(III.B.2.2)



cos (u + iv) = cosucoshv + isinusinhv

and that

cosucoshv = 1

Therefore, we arrive at the result,

1 ~k**inu*mnhv

-e i"6e ik(z-6) e*ksnuih dz(III.B.2.5)
SW I c' r - k - isinusinhv

If we substitute e for sinusinhv, we obtain,

(III.B.2.6)

1 +sin

sinh (cosh-l ())
dx (III.B.2.7)

d = cosxsinhy + sindcoshydzsincos~pdx

(;;i ()2si

.sinh (cosh-1

nx
dx

(C I))
(III.B.2.9)

Therefore,

(cosh-' ())+ tan2
cosh- co1(T L

I+(, ) sin:
arnh COMh 1

SCoax

(III.B.2.10)

is real.

(III.B.2.4)

1
ir

dz =

dC =cosxsinh cosh-1
(co1sz

(III.B.2.8)

+ sinx
(cos 01
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O() =

We can try to simplify the expression sinh (cosh-1 (.)).

Let

a +
cosz + (c08Z+1

(III.B.2.12)

a = g + g2 +1 (III.B.2.13)

f + f2 + 1=g + g2 +1 (IIIB.2.14)

+ f2 +1 - f2+1) = a (f - f 2 + 1) (III.B.2.15)

f+ Vf 2 + 1= a

f - f 2 +1=- a
(III.B.2.16.2)

(III.B.2.16.3)

or that,

5~Q

and let

, we get

(f

(III.B.2.11)

(III.B.2.16.1)

f = (a-



1 1
+ cos 2 x +1 ~ ~+ co 2 z+1

(III.B.2.16.4)

d becomes

S[ Itco2-coe2z +2tan2

coss
****,

1+2( _L)2 sinz

coes

= dz 1 + tan2 X

1 + tanx

=dz 1
cosx (sinx + cosx)

S+ I/1 + -cos2X - cosz]

I /cosa z+1

(III.B.2.18)

Thm

1 1
f = c 12 cosz
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= - sinx -
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III.B.3 Analysis of the 2D Helmholtz Equation Using

Steepest Descent Approximation

Another approach to evaluate the Helmholtz's equation for high frequency fields is to

take its steepest descent approximation. We start with the equation:

1 e" 8  ' kn
1 ks e ' c )*dz (III.B.3.1)

i1r t7 - kcosz fc

For large z we can expand cosz into its Taylor's series expansion in the exponential in

the numerator, while ignoring and making it unity in the denominator:

1 ein e ik("- 6) z2 _z 2
cosk (x - ) - -isink (x - b) -dz (III.B.3.2)

ix 77 - k fc 2 2

We can expand the exponential term into sin and cos terms, so that Eq(III.B.3.2)

becomes:

1 e itn e ik("-6) f1

- (cosu2 - isinu2) du (III.B.3.3)
12rr;- ck (x - b) (}')

To evaluate the integral expressions, we can make a substitution such that

u2U2 = (I-) eco-me2

With this replacement of variable, Eq (III.B.3.3) becomes:

(III.B.3.4)



1 eil 6 eik(z- 6 ) i 
2)

Wek ( - 6) g

We evaluate the integral between

7r k (x - 6) and-
2 2 2

- iC (U2)] I(III.B.3.5)

k (X -6)
2

. We can, expand the expression to

1 ein6 eik(Z 6) i

7rk (z -6) (
iC (U2) k(z-6)

IS (U2) - C( 2 k(z-b)
2 2

1 ein7eik(=-6) 1
-x

7r -k k(z-6)( ) 2

12 z- ) 2 s in u d +

N/z-7 Jo U du + f 0f=2r k(Z-6) du

+i22 du - i = COSu du
fo U f2 2

Due to the evenness of the integral expressions in (11.8), we obtain,

1 e? 6eik("-6) 1

7r 1 - k k (x 6) { 2

J 2 sin

We can expand the expression into sin and cos terms,

-i 1
-- k (cosjy6 + isinr6) (cosk (x - 6) + isink (x - 6))

- r , (z-6) I

i 2 -
f2 r iJV 2 ) dt - i f

2 i

(2t2) dt (III.B.3.8)
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which is expanded to,

-i 1
[i (cosr6cosk (x - 6) - (sinr;6sink (x - 6)) - (cosr;6sink (x - 6) + cosk (x - 6) sinr/S)} x

7r r; - k
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7r 22
Cos tP dt - i 22 sin (t dt(III.B.2.9)

To evaluate (IIII.B.2.9), we need to break the expressions to real and imaginary parts.
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2
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IV. Implementation Issues

The following issues are involved in the construction of a whispering gallery mirror.

A. Cutting the surface

Making a spherical surface has become a standard task in machine shops and metal

shops'(55). In machine shops, the surface can be created within 2/1000 of an inch preci-

sion. The task itself can be done in a few hours. Many "higher-tech" machinery shops have

diamond-turning, diamond-grinding machines. Those machines achieve approximately the

same precision as that of the machines in machine shops operated by a skilled machinist.

Therefore, the initial cutting of a spherical surface need not be accomplished by an expen-

sive tool such as the diamond-grind machine, even though on the first thought it may be

a more appealing machine to use to achieve higher precision.

To build other designs of the whispering gallery mirrors, the inner surface of the mirror

has to have an aspheric curvature. To cut an aspheric surface, it is almost impossible to

4_7



cut it on the usual machineries found in machine shops. One of the following methods can

be applied:

1. bend a surface (apply pressure)

2. diamond-grind it using a 2-axis machine (e.g. CNC 2-axis)1

B. Substrate Material Selection

In selecting the substrate material, the following criteria are being used:

1. Sturdiness

The material will not be easily squashed and bent, so that it will not break to pieces

when it falls off of an optical bench.

2. Easy to be cut

The material would not splinter or leave off holes when cut by machinery'. The cut

surface should be closed to an excellent polished surface quality.

3. Thermal tolerance

The material should moderate tolerance for heat. However, the incoming light does not

carry too much energy. Therefore, the material need not to be high quality heat resistant.

C. Polishing the surface

There are two ways to polish the surface.

1. Use chemical compounds

For each material, a specific compound or a family of compounds can be used to polish

the material2 (56). For aluminum, aluminum oxide is used to polish the surface. Aluminum

oxide can also be used to polish many other metals: brass, hard chromium, copper, nickel

and its alloys, steel and stainless steel, and zinc. The compound(s) cannot guarantee that

the material can be polished to a smoothness on the order of tens of angstroms. Certain

experimenters (such as) have developed specific compounds that can accomplish much



greater smoothness than the compounds mentioned above. However, they do not usually

share the information. Moreover, these "in-house" compounds do not necessarily satisfy

our stringent requirement.

2. Apply a nickel surface

In practice, nickel can be polished easily to a smoothness on the order of tens of

angstroms3 (57). Therefore, we can apply such a nickel surface and polish this surface to

our specification.

D. Distortion due to stress

The metal is subject to mechanical stress. However, the amount of distortion caused

by the mechanical stress is not negligible.' Machinists have to wait enough time after the

mechanical work in done on the piece for the stress to be relieved from the substrate. Only

until then can the machinists detect the amount of distortion and make the corresponding

corrections.



IV.A Construction of the Whisper Gallery Mirrors

Locally

IV.A.I Constructing Mirrors of Smoothness on the Order of Angstroms

The experts for making mirrors that will be smooth on the order of tens of angstroms are

the x-ray mirror groups in Perkin-Elmers and in Zeiss. 1 ,2 The HEAO-2 group in Perkin-

Elmers is known for sending the first x-ray telescope to space. (the size of the mirror)

Scientists at HEAO-2 have been able to achieve smoothness on the order of angstroms.

The group at Zeiss have been able to achieve similar precisions on a Wolter-I type mirror.

Producing a mirror of smoothness of that order is painstaking.

The substrates used by HEAO-2 are fused quartz1 . They were manufactured by Hereaus

Quartzschmelze in West Germany. Preparation of these substrates require a 20 major steps

which take ten months to complete. These steps ensure an absolute minimum of bubbles

and imperfections in the substrate to minimize scatter. The residual bubbles, if they do

occur, are made to occur at discrete intervals. The bubbles eventually become negligible

when they are hidden behind the support structures.

The height of the surface roughness for the HEAO-2 X-Ray Telescope is specified to

be less than 30 angstroms rms. The group has achieved a surface roughness of less than



21 angstroms on the average, with 14 angstroms minimum, and 25 angstroms maximum.

Scientists at Perkin-Elmers pointed out that it is easier to produce smaller mirrors than

large ones due to their stiffness. (describe the process done at Perkin-Elmers).

Group at Zeiss also manufactured a similar x-ray optical device for the West German

X-Ray satellite ROSAT2 . As verified by x-ray scatter measurements performed in the

130 m long x-ray test facility PANTER at the Max-Planck-Institut fur Extraterrestrische

Physik in Garching, the group has achieved surface roughness of less than 2.8 angstroms

on the average, with 1.8 angstroms minimum and 3.7 angstroms maximum, with high

reproducibility.



IV.A.2 Constructing Whisper Gallery Mirrors

The production of a mirror of smoothness on the order of tens of angstroms does not

require the high-precision instrumentations comparable to that accomplished in Perkin-

Elmers. Brookhaven National Laboratory (Takacs) have accomplished in-house production

of mirrors of this smoothness3 . Oak Ridge National Laboratory has produced mirror on

the smoothness of 100 angstroms. A few industries can accomplish the task. At first

conjecture, jewelry shops and metal shops should have the capacity to accomplish this

project. However, they claim not being able to do so. A few places within the United

States can accomplish the smoothness criteria for glass. General Optics, for one, can

polish glass surface to roughness of less than 5 angstroms rms'. The scattering factor is

less than 50 ppm. For metal smoothness, after a few months of scouting, the author is

only able to find one such company. Diamond Electrooptics claim to be able to accomplish

smoothness of 15 angstromsa.



IV.B Surface quality

IV.B.I Experiments to test surface quality in Perkin-Elmers

Perkin-Elmers adopted the following strategy when they were manufacturing the HEAO-

2 X-Ray Telescope1 . First, they tried to achieve the surface quality needed on smaller

mirrors. Once they did achieve the quality, they examine whether the same instrumenta-

tion and testing techniques can be used to produce larger mirrors. From hindsight, they

discovered that the small mirrors do not have the problem of locked-in strain due to stiff-

ening tooling and the poor repeatability on the air-bearing measuring station. Those are

the two essential problems that the group faced when they tried to manufacture the large

mirror. The locked-in strain was discovered later and removed. The mercury flotation test

was adopted to replace the air-bearing measuring station.

The HEAO-2 group automated their fringe scanning and manual data reduction process

to speed up the surface quality tests. They used FECO interferometry test and scanners

to examine the surface quality. They used the following schedule to examine their surface

quality' :

1. Scan X-ray mirror and fringe scanner toroidal test plate.

2. Reduce paper tape data with computer.

3. Check computer output to ensure input entered and read correctly.



4. Review sagittal and slope error outputs and prepare figuring and smoothing sched-

ules.

5. Figure mirror with designated polishing laps in accordance with schedule.

6. Install annular end caps and-submerge-polish (smooth surface) in accordance with

schedule.

7. Clean X-ray mirror and replicate mirror and calibration flat.

8. Measure inside diameter 1.500 inches from each end.

9. Measure inside roundness 1.5 inches from each end.

10. Coat replicas with silver, test with FECO interferometer, and analyze data.

11. Compute bR and 6(bR) and determine clear aperture location.

12. Return to Step 1.

The FECO (Fringes of Equal Chromatic Order) interferometry test in Perkin-Elmers

is modified to test aspheric surfaces. The scanners are limited by the size of the stylus.

Usually the scanners can measure height greater than 25 angstroms2 . FECO examines the

multiple-beam fringe of equal chromatic order created by two partially silvered surfaces, one

of which is the test surface and the other supersmooth reference surface (~ 8 angstroms).

FECO interferometry can determine surface microirregularities as small as 8 angstroms2 .

Readers who are interested in the detailed setup can read Jean M. Bennett's paper on

FECO interferometry.

IV.B.II Experiments to test surface quality in Whispering Gallery Mirrors

Diamond Electrooptics tests the surface of the mirror by Computer-Generated Hologra-

phy (CGH)3 . This technique have been studied by Lee, and Lohmann and Paris independently'.



The instrument has been developed by Honeywell, Tropel and the University of Arizona.

IV.B.II.1 Description of CGH

The instrument generates a reference wavefront and matches the wavefront reflected

by the aspheric test surface. There are five "arms" in the instrument : the source arm,

the test arm, the relay arm, the reference arm, and the viewing arm6 ' 7'8 .

Figure IV.B.II.1 CGH Interferometer
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The source arm controls the direction of the source beam by adjusting the half-wave

plate. The polarized source beam is expanded and collimated. The beam encounters the

first beamsplitter (BS-1). BS-1 reflects the S-polarized component, which serves as the

reference beam. The transmitted P-polarized componenet thus serves as the test beam. A

quarter-wave plate (QW), adjusts the polarization of the test beam and controls the test

beam's transmittance.

The test surface reflects the test beam back to the vertical test arm, which is consisted

of a series of interchangeable beam expanding and focusing lenses. The size of the beam

can be adjusted by the variable beam expander.

The test beam is sent to the relay arm by the BS-1. It projects a real image of the test

surface back through the beamsplitter toward the reference beam in the viewing arm.

The test beam and the reference beam are combined in the space between the two

beamsplitters. However, they are still orthogonally oriented to each other. A second

beamsplitter (BS-2) separates the two beams, reflecting the test beam along the axis of

the viewing arm and transmits the reference beam.

The holographic image is contained in the viewing arm. The hologram is plotted by a



computer.
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Figure IV.B.II.2 Viewing arm of CGH interferometer

It is a fringe pattern. Some of the test beam and the reference beam is diffracted by this

hologram into plus and minus first-order beam. They are brought to focus on a white

pinhole. The first-order reference beam and the zero-order test beam are superimposed

if the reference beam if properly adjusted. The TV camera is behind the pinhole and

records this superimposed image. The accuracy of this testing technique is limited by the



geometric accuracy of the hologram.

W/0 CGH With CGH

Figure IV.B.II.3 The left picture shows the fringe pattern without using CGH. The right

picture shows the fring pattern with CGH

IV.B.II.1 Capabilities of CGH

CGH has overcome the limitation of the commercial optical recording devices by using

direct e-beam. writing on an electron-resist8 . By using e-beam lithography, the number

of pixels that can be used to write the holographic image can exceed 1010 due to the

C'/



submicron image resolution achievable.
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Figure IV.B.II.4

Holographic images are concatenation of little patches, shown in the inset. The accuracy of CGH

depends on how small those patches can be and on how accurate those patches can be put together

The sources of errors in e-beam direct writings are the followings: drift of the electron

optical axis due to contamination charging and stray fields; aberrations in electron optics;

deviations from flatness and orthogonally of the mirrors on the workpiece stage. Honeywell



has achieved patterns with stitching errors of 1.15pz in the x direction and 1.30p in the

y direction. In storing the wave, it is only necessarily to store the phase information of

the wave in this technique. For a typical hologram of 10 mm diameter, the image can be

drawn in about 90 minutes.
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V. Summary and Conclusions

This thesis surveys the both theoretical and experimental issues in building a whis-

pering gallery mirror. It gives calculations and estimates for all issues in the design and

implementation of the whispering gallery mirrors. Scattering losses, size of the incident

angle, and skin depths were calculated to estimate the requirements to build a whispering

gallery mirror for light source with a wavelength of 200 angstroms. The major issues in

building a whispering gallery mirror were examined in detail. Schemes to obtain the re-

quired surface smoothness were proposed. In the theoretical design issues, the thesis also

described the progress that has been made in Helmholtz equation for an arbitrarily-shaped

surface for later numerical analysis.

Whispering gallery mirrors have several advantages over the multilayer mirrors. Its

broad band transmission (IL' is z 30% - the peak value of the reflectivity drops by a factor

of i - in better cases, as in Rh. ; 8% in worse cases, as in La shown in Figure 1.4, versus

z 3% to 4% for multilayer mirrors) and its focusing power make it a superior soft x-ray

optics design.

We first examine the literature on the analysis of the whispering gallery modes. The



first analysis was accomplished by Lord Rayleigh for a perfectly conducting cylindrical

surface. Wasylkiwskyj and Ishida & Felsen have used several representations (whispering

gallery modes plus continuous spectrum intergral, geometrical rays, geometrical rays plus

whispering gallery modes) to study the radiation on and within a cylindrical surface. At

the end of this literature review, we sketch out our approach to analyze Helmholtz equation

for an arbitrarily shaped surface.

We then examine the practical aspects in designing whispering gallery mirrors. The

shape of the mirror, on the first order, is independent of the size of the mirror. This allows

us designing the sahpe to adapt the focusing design needs. The size of the critical angle is

the size of the light's incident angle and the angle that mirror turns. Skin depths, which is

crucial in determining the thickness of the coating to be put on the surface of the mirror,

are given for a few elements at 200 angstroms. Moreover, we study the scattering loss due

to surface roughness. The requirement for the surface irregularities' height is roughly 10

angstroms for a correlation radius of 2 yt and an incoming light of 200 angstroms, to avoid

scattering loss. The equations described in the section apply to other wavelengths incident

on a bent surface. In the fourth section, we described the Kramers- Kronig relation, which

has been the basis of our code for calculating optical constants of interested materials.

The phenomenon of Cooper Minimum is described briefly. It serves as the main criterion

in our selection of materials for coating.

To build a whispering gallery mirror, we describe the issues that are involved in cut-

ting the surface, selecting the substrate, and polishing the surface. Perkin-Elmers' X-Ray

Telescope and Zeiss' ROSAT, our counterparts, have been able to polish the surface irreg-

ularities to a height less than 30 angstroms rms or 2 angstroms by Zeiss. Locally, we have

found Diamond Electrooptics that can polish metal to a roughness of 15 angstroms rms



and General Optics that can polsih glass to a roughness of 5 angstroms rms.

The following issues still need to be studied and examined for whispering gallery mirror

designs. First, the design of a coupler to direct light out of the mirror. Several schemes

have been proposed inour group. However much work and research still need to be carried

out in this area.

Second, the study of the interaction of the soft x-rays with whispering gallery mirrors.

When the soft x-ray plasma hits the surface, the plasma is mostly likely to splatter in all

directions. We need to understand this interaction better.

The size of the critical angles at soft x-rays regime places stringent requirement on the

alignment of the source and the mirrors. Designs have been studied in our group.

We will pursue the Helmholtz equation analysis for an arbitrarily shaped surface. The

outline has been given.

Coding and debuggin work is still needed in caculating the optical constants using

Kramers-Kronig.



Appendix A

A DERIVATION OF THE HUYGEN'S PRINCIPLE

The divergence's theorem states:7,8

V -AdX3 = f A -ndx2

The vector A , can be formed from two scalar potentials 4 and k by 4Vi# or OV4.

Let A first be 4V#,

V - (kV) = (VIP -4) + 4Vtp

49# . n = 40 

(A.1) becomes

f(Vjp. V + 4V 24)dz3 = dz2

We can obtain a similar equation for A = oV#

f(V4.-V04+kV24)dX3= f dx2

Subtracting (4) from (3), we obtain the general equation

(4V21p _ pV 24)dx3 = (4 o - # )dX2

4 is often used to represent the field potential while 4 its Green's function.

(A.1)

(A.2a)

(A.2b)

(A.3)

(A.4)

(A.5)



If we allow ip be the scalar wave function tp(rt) (with a harmonic time dependence

eiwt), the field # satisfies the Helmholtz wave equation,

(V2 + k 2)(X) = 0 (A.6a)

Moreover, if we allow k be the Green's function that satisfies the above Helmholtz equation,

so that

(V2 + k2)G(x,x') = -6(x,x') (A.6b)

Since our observation point lies within the surface, equation (A.5) becomes

(x) = [k(x', n') -V'G(x, x') - G(x, x')n' -V'#(x)]da' (A.7)

To reach a vectorial representation for E(x), we let O(x) be one of the rectangular

component of the field:

E(x) = [E(n') - V'G - G(n' - V')E]da'

This is called the Kirchoff's expansion of the Green's function. (It is also known as the

Huygen's principle.)

K

(A.8)



Appendix B

EIGENFUNCTION EXPANSIONS OF THE GREEN'S FUNCTION

Since the source rays are composed of a number of modes, we need to use the eigen-

function expansions of the Green's function to describe the rays.

If the Green's function is composed of a set of eigenfunctions8 oin(r)-

Gk(rjro) = ZAm~m(r) (B.1)
n

where GA,(r ro) is a Green's function that has its observation point at ro.

The eigenfunctions tPm(r) have an orthonormal set, such that

J PmIndV = Snm (B.2)

Green's function satisfies the wave equation,

V 2Gk + k2Gk = -47rb(r - ro) (B.3)

The V 2 operator introduces -k 2 factor; consequently,

E(k 2 - k 2)Amtkm(r) = -47rb(r - ro) (B.4)
n

By multiplying this equation by its orthonormal set and integrating it over the volume,

we pick out each An

An = 47r#n (ro) (B.5)
*k2 - kV



The eigenfunction expansion of the Green's function is, therefore,

Gk(r V;,,k - (B.6)
n n
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Appendix C

C. LORD RAYLEIGH'S FORMULATION FOR LOSSY MEDIUM

For a lossy medium, we need to construct a field solution outside the boundary surface

and match the boundary conditions at the surface. Since we are outside the surface, we

do not need to worry about having singularity occur at the origin. Therefore,

w*** = BY(hr)eat cos nO (C.1)

where Yn(kr) is the general solution and the time dependence is decoupled from its angular

dependence. We expand Yn(kr) into its integral expression:

Yn(hr) = J-.(hr) - einrJn(hr) (C.2)
sin(nr)

Yn(hr) = enO-z sinhOdO + cos n7r 00  nO-zsinh dO

- sin(z sin - nO) - -] cos(z sin 0 - nO)dO (C.3)

For n > kr, the significant terms of the integral are the first and the last terms. Setting

z = n cosh3,

f '>)



Yn(hr) = coth3 1/2 [2e-* - iet] (C.4)
2nxr

Y'(hr) = - sinh # cosh# ~/ (2e~* + ie' (C.5)
2nxr

where

t =n(tanh3 -,3) (C.6)

The field inside still depends solely on Jn(kr). Where k/h = y , the refractive index with

respect to the field outside. We need to consider the case where t > 1, so that we can

have total reflection.

wi" = AJn(kr)e'kt cos nO (C.7)

The force must be continuous across the boundary. Let p and a be the densities inside

and outside the surface respectively:

B,Y(ha) = AaJn(ka) (C.8)

The normal motion is continuous across the boundary:

AkJ'(ka) = BhY(ha) (C.9)

Let

Y(h a) = sinhO (C.10)
Yn(ha)

From the previous approximation for n > z, (C.4) and (C.5),

J'(ka) kp (.1
Jn(ka) ah

sinh# 2e . = - - sinh3(1 + ie~2 ) (C.12)
Yn(ha) e-* - e*



Letting x' = x/y and y' = y/y,

= {1 - y (C.13)
Jn(X + jy) J( )J(z)

we obtain,

Y'(z' + _y sin hl 1 + ie2t + iy' -cos h# + sin 2 - ) (C.14)
Ynz' + iys) \ n Y n /

Adjusting (C.13) by a constant , the first part in the y' terms becomes 0 when n is very

big, while the other two terms cancel each other. We arrive at the result,

ak est lpo -2n(,O-ta.h P>

y = = -- e inhP (C.15)
ph sinh#6 p

#'s real part is n and its imaginary part y. We substitute (C.15) for the time dependent

term and get

ikRat int 1 .ak -2.m(-anh
ikat = = -- 1 +-- -si-anh hspace2in (C.16)

y yRI n p

If (C.15) is small, the decrease in magnitude for a wave traveled around one circle can

be approximated by

27rysor -2n($-tnh$)
Transmission = 1 - e -inh 0 (C.17)

np

If n is big, the damping is not significant. Moreover, the less curved the surface is, the

smaller yA needs to be. Therefore, for a lossy medium, the whispering gallery effect may

still persist given that the frequency of the waves is high enough.



Appendix D

Wasylkiwskyj's Formulation

1. The Whispering Gallery Modes and the Continuous Spectrum Integral Representation

The Green's function's angular dependence assumes the form:

g (0 0; v) = exp(iV.O - 001) (D.1)
-2iw

where 0 denotes the angle at which the source point is located and v is the propagation

constant of the waves.

The Green's function can be expanded into a set of eigenfunctions:

G(I Ifo) = Ego(40 1o; v)0,,(r)0,(ro) (D.2)

(D.2) satisfies the wave equation for a cylindrical surface:

(1 a a 1 892 2 (r - ro)b(4 - 40)
r + + k2 G( F) - - -ro(D.3)

The perfectly reflecting surface has the boundary condition,

-- G(; Io) = 0 (D.4)
or r=a

with a as the radius of the cylinder.



The eigenfunctions in the r domain satisfy the following relationship:

ro6(r - ro) = Z,(r)b,(ro) = f gr(r ro; y )dy (D.5)

G(-, To) as shown by Wasylkiwskyj, has the following Kontorovich-Lebedev integral form:

ir j1(k a)
G(7,g0) = - (ka) J,,(kr)J,,(kro)

2 n j, (ka)

1 r'0 sinl/ 7r
+j f de .W, (r,a)W,(ro,a) (D.6)

16 0 o, J(ka) J., (ka)

W is the Wronskian of H(2 ) and H(.

For each ka, there corresponds a finite number of poles. The terms in the series

correspond to the contributions of the poles. They represent the whispering gallery modes.

The other contributions sum up and comprise a continuous spectrum representation.

(D.6) has the following form if both the observation point and the source point lie on

the surface:

G(a, 4, do) = z Dinje 0 J,,(ka)
ka n kJ,(ka)
ka t1-01[ vk ) -,(a

+ iodvez,-oJ(a _(a (D.7)
27rkao j.(ka) j-, (ka)J

Let us examine the behavior of (D.6) for high frequency fields, i.e., when ka is large.

When ka is large, the Bessel's function has the following form:

J,/(ka) ~# 1/ 6Ai [-(#)2/3] (D.8a)

J,(ka) ~ (2ai)1/2#-1/6A- P(32/ s (D.8b)
ka

After the expansions, we obtain,

G(a, ) = N e osinWn
kan_1 (7r/2 - Wn) cos wn



1 0dve~kk sin h+0 (D.9)

(D.9) describes the field when both the observation point and the source point lie on the

surface. The waves described in (D.9) are evanescent relative to the whispering gallery

modes. The last term in (D.9) is the spurious effect generated by the absorbing boundary

condition. The second to last term in (D.7) is the difference between the zeroth order

Neumann and Struve functions. As the observational point approaches the source point,

the Neumann function dominates and approaches the real part of the Green's function for

an infinite perfectly conducting plane, while the whispering gallery modes converge to the

imaginary part of the expression.

(-.



2. Geometrical Ray Representation

To establish a geometrical ray representation of the fields, we use a Fourier transform

representation of the Green's function:

G(rIro) = C iI*~OIg,(r ro; v)dy (D.10)

The points of observation and source both lie on the surface and that ka is large, we

can expand (D.10) asymptotically and obtain:

1 r a ,~ #3/3Ai[(-(3) 2/|
G(a, 4, 0) -- dwe sin w (D.11)

27r f, Ai[-(#)2/s)]

The path of integration is shown in Figure 2. # in (D.11) works for an arbitrary set of

complex numbers,

IKe 1)

Figure 2

3 7r
-ka[cos w - (- - w) sin w]# =2 2

3 +i
2ka[cos w + ( 2+ W ) sinw|]

Rew > 0

Rew < 0

(D.12a)

(D.12b)



In the previous section, we obtained the whispering gallery mode representation from

evaluating the poles in the complex plane. The ray representation, however, is obtained

from evaluating the integral through a steepest descent path. We obtain a set of integrals

from (D.11) by expressing the denominator in an infinite series 1:

1 2 * Ai- iBi(.

Ai[ -( P)2/1 Ai + iBil Ai + Bi

The steepest descent paths are paths running through the saddle points:

7r 4-00o
W - - = 1,2,3 (D.14)

2 21

After evaluating the integrals and some manipulations, we arrive at the ray optics

representation of the Green's function,

00

G(a, 4, 4o) ~ (-1)'e (I/ 2 x +)F(a, 4, 4o) (D.15)
L=1

where
00

F (a, 4, 40) ~ E(1)'es/x+ I(a, 4, 40) (D.16)

I is a ray that has been reflected I - 1 times.

When I is big, or when we are close to the source point, the amplitude of the ray remains

finite. This is somewhat surprising because, from a geometric optics point of view, a large

number of caustics would lie close to the source point. The only possible explanation

would be for the illuminated region to be of very small value when the observation point

approaches the source point. The series itself is divergent as it represents an infinite

number of caustic rays.

Wasylkiwkyj also attempted to express the surface field in both rays and an integral

expression. As we evaluate the integrals in (D.11), the saddle points become progressively

~y)



closer as I increases. The asymptotic Airy integral expressions, which were obtained from

the WKB method, break down. The approximations are valid when

( kald) 2 /3
2

( ka)2/( - sin )2/3 1

The Green's function becomes,

G(a,04, 4) ~ E(-1)'ei(r/2)+1)1
1-1

For large 1, (D.18) can be reduced down to

/~ -
3d1/6 e ikIS 2lU1/ A 24 ) I 2kal)h1/3

Ud - vi ~ r 3 .. A2/31 I
( d )1/3(2kal)2/s 2- 2 Jadl

A large sum of this diverges very quickly because the intensity decays only as l1/3.

(D.17)

(D.18)

(D.19)

(3 kald, )2/31_



3. Geometric Optics and the Whispering Gallery Modes Representation

Wasylkiwskyj developed geometric optics and the whispering gallery mode representa-

tion by expanding the denominator in (D.11) into the following form:

1 = 2 1 2 ( L L+1 (D.20)
Ai A2 1-Y A2 1=0 + -2

where

y = (D.21)
A2

A1 =A- ibi (D.22a)

A 2 =Ai + ibi (D.22b)

The Green's function has the form

L

G(a, , 4o) = ZGi + RL (D.23)
1=0

where

G = - side 1/A dyI (D.24)
irJp A2

and

RL =- dika +- 0 sinw,1/3 A L+1 (D.25)
27r p Ai

The whispering gallery modes are represented by (D.25) which has singularities in its

denominator.

L in (D.25) satisfy the condition,

( ka)2/3 sin cos >> 1(D.26)
2 [ 2L 2L 2L

After a number of manipulations, we arrive at the whispering gallery modes and ray

optics representation.



G(a, 4, 4o)
L

(1(a, 4, o)

+ !(-1)L+1ei(4/2)(L+2)FL+1(a 4, 4o)

M ika -40 sinWn

+ kZ(/2W)
where F7r/2 - W,) cos Wn

where F (a, 45, do) is given in (D. 16).

(D.27)



Appendix E

E. Bahar's Formulation

E. Bahar analyzed the high frequency field on a surface that is of both varying impedance

and curvature.' This is a more general approach than the one undertaken by Ishihara,

Felsen, and Wasylkiwskyj. However, Bahar did not generate numerical results.

Bahar describes a surface of arbitrary curvature and variable impedance by x, y, and

z.

The coordinates are defined in the following way: Surfaces on which x are constant are

normal to our surface; surfaces on which y are constant enclose the surface (y > 0, when

y is outside our surface); surfaces on which z are constant are normal to the axis of the

cylinder.

The x, y, z coordinates are related to the cylindrical coordinates in the following Jaco-

bians:

Br Br dR 1
J _ BM _ d' (E.1a)

2!t 1 0

B 2 9' 0 R

JT= Br a (E.1b)

B9r Bo dz



The Maxwell's equations in cylindrical coordinates can be made to depend on x and r

while eliminating the 4 dependent component of the magnetic field. We obtain:

aE, r
= iwpi-H, (E.2a)

Ox R

= iWE E,+ + -J (E.2b)
axz k 2 r R 49r R

where k = w(pe)1/2 and J, = rs(r-ro)6(x-zo)

For the cylindrical case, where r = R, E, satisfies the following scalar wave equation:

1 a aE 1 a2 E
72,- (r ") + - " + k2E = 1Aw J, (E.3)r or or r2 a42

E, can be expanded into the following eigenfunction expressions for zero impedance.

E, (, 4) w4rI H(2)( o)H (2() X

H2)((a) cos vn(4 - 40 - 7r(.4
aH. ()()) sin vgr

where H, 2) ( ) are the Hankel functions of the first and second kind and that and

(R denote the number of waves in the specified radius.

The electromagnetic fields satifies the impedance boundary condition at r =R,

OE, ir;E,
- aE, iqE,(E.5)

a(kr) Z,

where r7 is the intrinsic impedance of the medium.

Each order v, of the basis functions satisfy the equation

( -- II = 0 (E.6)



We can write the azimuthal dependence of (E.4) as a superposition of the forward

traveling and backward traveling waves:

** H (2)() H2 (2)
E,(e, x) = E en(x)- E{an(x) + bn(X)] N (E.7)

n=1 N

an(4) + bn(4) = 2i (e-'""(O-0*) + e-Yn(O~Oo2r) E eip'"'' (E.8)
p=o

The electric field amplitude ef,(x) can be expressed to be the transform of the function

using the orthogonal properties of the basis functions.

en W) = f E,((, z) vn -- (E.9)

We can express the magnetic fields in a similar way:

*0 Y ( ) Hv(2)( oo Yn( Hv2)(g
H,(, x) =E hn(X) Nn n =,[an(z) - bW(z)I Nm (E.10)

n=1 n=1

where

h0(x) = H,(, z)H 2 (E.11)

The forward traveling waves, as noted before by Lord Rayleigh and others, constitutes not

only the direct wave propagating in the positive z direction but also the whispering gallery

waves which propagate around the cylinder p times (p is an integer).

For kR > 1 and for lossy surfaces, we may retain only direct waves:

a'n() -Jo " Mn(x)Nn(xo) exp f-i vn±) (E.12)
( N(X) \Jz R 1



The disappearance of the whispering waves conforms to our intuition because such

waves would have been absorbed by the surface before they propagate around again.

After a number of manipulations, we obtain for the amplitudes of the traveling waves:

= -JT dT"* ao(u) x exp - ( dv"+) dv] du

bn(x) = - dT" ao(u) x exp - ( -n n) dv du
fzdu [-f dv R I

(E.13)

(E.14)

For M. = Nm = 1,

dTnm - idy*dH 2 () [H,2)(6R) - iy.H 2)

dz RLconst - - Vm Hu Hk-

-d ys,/dx H ,( nR)

un - Vn H,) (R)n

dR_,_ _ -y-vdT"

dX I R=const -v + in dx R=const'
n5 m

(E.15)

(E.16)
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