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Abstract

The Expansion of the Alumina Industry:
The Case of Venezuela

by

Juan Andres Yanes Luciani

SUBMITTED TO THE DEPARTMENT OF
URBAN STUDIES AND PLANNING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
OF THE DUAL DEGREE:

MASTER OF SCIENCE and MASTER IN CITY PLANNING
at the

MASSACHUSETI'S INSTITUTE OF TECHNOLOGY
May 1990

The objective of this thesis is to provide Corporaci6n Venezolana de Guayana
[CVG] with a decision-making framework to facilitate investment planning for the
Venezuelan alumina industry. This framework of analysis reflects not only the importance
of investing in an alumina project, but implies a strong relationship with possible
development options either horizontally and/or vertically in the industry. The industry is
analyzed from a global perspective, and its main determinants evaluated: capital costs,
bauxite, energy, caustic soda, labor and alumina prices. This study further enumerates the
factors affecting alumina pricing, and discusses two models, perfect competition and
oligopoly, to describe the underlying behavior of the industry. A simulation model is
presented, which considers a Net Present Value [NPV] approach from the equity-holders'
perspective as an investment decision-rule, to appraise an alumina refinery with a capacity
of one million tons per year in Venezuela.

To accomplish the proposed objective, important questions need to be discussed:
(1) Is it worthwhile to undertake an alumina expansion project in Venezuela?; (2) what is
the comparative advantage for Venezuela to invest in alumina?; (3) if Venezuela does not
expand its domestic primary aluminum industry, can the Venezuelan alumina project
compete internationally in the free market?; and (4) what risks and uncertainties are
associated with investing in alumina refineries?

The study concludes that at this point, alumina capacity expansion in Venezuela is
not recommended. If all non-linearities, option-characterized cash flows, such as subsidies,
preferential financing, government guarantees, and tax exemptions are removed, the most
likely scenario would result in a zero-NPV outcome. Further, the alumina industry is
highly volatile and a risky business to enter. CVG should focus rather on exploiting the
possibilities of expanding its primary aluminum capacity, where clear comparative
advantages exist.

Thesis Supervisor: Paul Smoke
Assistant Professor of Political Economy and Planning.
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Introduction

The objective of this thesis is to provide Corporaci6n Venezolana de Guayana

[CVG]' with a decision-making framework to facilitate investment planning for the

Venezuelan alumina industry. This framework of analysis reflects not only the importance

of investing in an alumina project, but implies a strong relationship with possible

development options either horizontally and/or vertically in the industry2. The industry is

analyzed from a global perspective, and its main determinants evaluated: capital costs,

bauxite, energy, caustic soda, labor and alumina prices. This study further enumerates the

factors affecting alumina pricing, and discusses two models, perfect competition and

oligopoly, to describe the underlying behavior of the industry. A simulation model is

presented, which considers a Net Present Value [NPV] approach from the equity-holders'

perspective as an investment decision-rule, to appraise an alumina refinery with a capacity

of one million tons per year in Venezuela.

To accomplish the proposed objective, important questions need to be discussed:

(1) Is it worthwhile to undertake an alumina expansion project in Venezuela?; (2) what is

the comparative advantage for Venezuela to invest in alumina?; (3) if Venezuela does not

expand its domestic primary aluminum industry, can the Venezuelan alumina project

compete internationally in the free market?; and (4) what risks and uncertainties are

associated with investing in alumina refineries?

Alumina is the product of a bauxite refining process. Depending on quality, two to

four tons of bauxite are required to produce one ton of alumina. All refineries use basically

the same technology, but it should be modified to be appropriate to the bauxite type used in

1 Corporaci6n Venezolana de Guayana is a development corporation created in 1960 to
manage the Guayana Region development.
2 "Horizontally" refers to further expansion within the alumina industry, and
"vertically" refers to backward and/or forward integration into bauxite and/or primary
aluminum, respectively.
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the process. Bauxite from any given mine then, can be processed only by some of the

refineries, and similarly, each refinery can use bauxite from only some of the mines. The

refined bauxite or alumina, is then smelted to produce primary aluminum at a ratio of 1.95

tons of alumina per ton of primary aluminum. Further transformations are made to

manufacture end-user products. This thesis will study the alumina refining stage and its

relationship with bauxite and primary aluminum operations.

The Venezuelan alumina industry has an installed capacity of 1.4 million tons per

year, and is currently expanding its capacity to reach two million tons per year by the end

of 1990. The target of Venezuelan policy makers is to have a balanced and fully integrated

aluminum sector 3 capable of mining eight million tons per year of bauxite, refining four

million tons per year of alumina, and smelting two million tons per year of primary

aluminum.

The search for economic and social progress involves making the most rational use

of limited resources, such as management, capital, foreign exchange, and natural

resources. Individual investment proposals in the aluminum sector must always be

evaluated in accordance with a coherent set of policies which define the objectives for each

industry in the sector. Planning and evaluation of capital investments in alumina refining,

are increasingly complicated because of sudden changes in the price of resources, output

price volatility, government intervention, and new technological developments. Further,

aluminum sector projects often require large initial capital outlays, long lead time, and time

lags between initial investment and future returns.

The alumina market is characterized by high volatility and has no reference cycle, as

that found in primary aluminum or other products. Alumina transactions are, for those

firms outside integrated systems, primarily contractual arrangements with few spot

3 The aluminum sector is that sector which contains the bauxite, alumina and primary
aluminum industries.



transactions. In 1989, only about 5% of free-market sales were in the spot market.4 Given

time delays for alumina prices to adjust to new conditions as a result of its contractual

market nature, contract price oscillation tends to increase. Factors that might provoke

alumina prices to oscillate are primary aluminum prices, supply and demand balance in the

free-market alumina, changes in productive capacity, and different contractual agreements

among the concerned parties. To understand alumina's pricing response to these factors, it

is necessary to understand the underlying industry organization. Two models are presented:

perfect competition and oligopoly, assuming there is a price leader. Although it is beyond

the scope of this thesis to demonstrate which of the two is the underlying organization of

the industry, both are presented to shed some light on the issues that might be encountered

by any firm when analyzing potential alumina capacity expansions, as is the case for CVG.

Modern finance theory provides a general equilibrium framework for the valuation

of capital assets under uncertainty: the Capital Asset Pricing Model [CAPM]. 5 Initially

formulated in the context of perfect markets and a single holding period, it has been

extended to cover multi-period projects.6 The CAPM provides the theoretical foundations

for the NPV decision-rule whose usefulness lies in pointing out the sources of economic

value accruing to various agents involved in the project.

In evaluating capital investment decisions, in this case in the Venezuela's alumina

industry, it is not sufficient to provide the decision-maker with a project appraisal alone. In

order to make an intelligent decision, it is necessary to understand the factors affecting the

environment in which the investment is to be undertaken, i.e., the economic situation of the

country, the organization of the industry, the valuation model itself, and most important the

sources of competitive advantage that justify the investment. Finally, it is important to

4 Venalum C.A. data base.
5 To review the model, see Michael C. Jensen, "Capital Markets: Theory and Evidence", in
The Bell Journal of Economics and Management Science, 3(2), (Autumn 1972): 357-398.
6 Eugene F. Fama, "Risk-Adjusted Discount Rates and Capital Budgeting Theory Under
Uncertainty", Journal of Financial Economics, 5(1), (August 1977): 3-24.
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answer the following question: if assuming perfect markets7 where the expected NPV is

zero, what are the sources of value that make the project's NPV greater than zero?

The study concludes that at this point, alumina capacity expansion in Venezuela is

not recommended. If all non-linearities, option-characterized cash flows, such as subsidies,

preferential financing, government guarantees, and tax exemptions are removed, the most

likely scenario would result in a zero-NPV outcome. Further, the alumina industry is

highly volatile and a risky business to enter. CVG should focus rather on exploiting the

possibilities of expanding its primary aluminum capacity, where clear comparative

advantages exist.

This thesis consists of seven chapters, organized as follows: Chapter 1 analyzes the

alumina industry vis-a-vis Venezuela's current economic situation. This industry has

changed dramatically since the energy shocks of the 1970's and 1980's, from a strong

oligopoly since its beginnings in 1900, to a more segmented industry, which is now a

quasi-competitive organization. This chapter also describes the Venezuelan aluminum

sector, its strategy and future prospects. Chapter 2 analyzes the alumina industry from a

global perspective. Chapter 3 examines issues concerning CVG-Aluminum's [CVG-AL] 8

vertical integration policy and strategic planning. Although discussed at a general level,

these issues are illustrative in defining an optimal investment plan. Chapter 4 analyzes the

cost structure of the industry, and is divided into two main sections: capital costs, which

focuses on analyzing the impact of the large initial capital outlays required for new

greenfield projects9, and operating costs, which focuses on the refinery's main operating

cost determinants: bauxite, caustic soda, labor and energy. Chapter 5 studies the underlying

organization of the alumina market and its behavior, analyzes the factors that affect alumina

7 A perfect market means the opportunity to undertake the project is available to all
competitors, which is true in the case of the alumina industry.
8 CVG-Aluminum is the organization within CVG in charge of the aluminum sector.
9 Greenfield projects are new projects which require considerable investment in
infrastructure. On the other hand, bronwfield projects are referred to as projects which
use the infrastructure facilities already in place.
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prices, and examines the impact of new capacity expansion on the industry. Chapter 6 then

presents the valuation results for a Venezuelan alumina refinery plant, with the capacity of

one million tons per year. The objective of this chapter is to provide a decision-making tool

for strategic investment planning. Chapter 7 presents the conclusions and policy

recommendations for the expansion of the Venezuelan alumina industry.

14



Chapter 1

General Background

Venezuela is currently going through a restructuring program at all levels. The

target is the implementation of a set of policies that will provide the country with a

coherent, sustainable development strategy. This chapter will provide background

information on the aluminum industry, globally and in Venezuela, and the country's

economic situation for the analysis of capital investments in the alumina industry. Alumina

refining is one of the aluminum four-stage-production process, which also includes bauxite

mining, primary aluminum smelting, and aluminum semi-fabricating and manufacturing.

1.1. The Aluminum Industry.

The organization of the aluminum industry has changed from a monopoly since its

beginnings in 1900, to an oligopoly between World War II and the 1970's. Since then, the

industry has been changing towards a more segmented, quasi-competitive organization.

This pattern of evolution, typical of many mature industries, will be analyzed in this

chapter, and the aluminum production process described.

1.1.1. Brief Historical Developments.

The development of the aluminum industry is divisible into three periods. Each

period reflects changes both in the industry itself and the industry's focus on downstream

operations as main source of revenue. Prior to World War II, the monopolistic nature of

the industry in the United States was the dominant one globally. New entry and an

oligopolistic structure characterized the immediate post-war years. Recently, there has been

a new wave of independent entrants as a result of their access to low cost raw materials and

energy resources. This increasing segmentation in the industry has led to a much more

competitive organization.



The history of the aluminum industry is closely tied to its current organization. The

degree of vertical integration necessary to compete in this industry changes as its

organization changes. In its early periods during the late 19th and early 20th centuries,

competitive suppliers of alumina and/or buyers of primary aluminum simply did not exist.

This forced pioneer companies to integrate their operations. In the immediate post-World

War II years, the advent of new entrants, as a consequence of Alcoa's divestiture, resulted

in a opening of the arm-length alumina market10 .

The surplus alumina position11 of pioneer companies, and because of the sudden

increase in energy prices during the 1970's, permitted new entrants to enter the industry at

the primary aluminum stage only. New primary smelters arose principally in areas with

access to low-cost energy resources. Consequently, since then, a more segmented, quasi-

competitive organization has characterized the industry.

This industry evolution is consistent with the general life-cycle theory of

integration, i.e., that competitive markets can only become established when the market is

large enough to support buyers and suppliers at a minimum efficient scale. When this stage

is reached, vertical integration incentive declines, and the industry organization leads to a

competitive environment. 12

1.1.2. Aluminum Industry Production Process.

It is useful at this point to describe the primary aluminum production process and its

derivative products. The production of aluminum involves a series of different processes

10 An arm-length market is defined as the market where transactions are made between
unrelated parties.
11 Long position is an available surplus for the free-market after covering internal
requirements. Short position is defined as the dependence on the free-market to cover
internal requirements.
12 Arnoldo C. Hax and Nicolds S. Majluf, Strategic Management: An Integrative
Perspective. (New Jersey: Prentice-Hall, 1984), pp. 182-208, and Edward H. Forbes and
Thomas J. Bate, II, "The Life Cycle Approach to Strategic Planning", unpublished master
thesis, Sloan School of Management, Cambridge, MA., 1980.
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that can be thought of as a vertical integrated production chain from upstream mining to

downstream fabricated products. 13 Upstream, the industry's commercial history and

available technology have been relatively invariant, allowing the chain of production to be

broken into a set of well recognized and technically independent stages.

Each stage of production combines the output of the previous stage with an array of

other goods and services, to produce the output for the next stage. Bauxite mines produce a

mineral called bauxite and alumina refineries produce a semi-processed mineral called

alumina. Primary smelters produce a metal called primary aluminum or primary, which

includes a variety of alloys and shapes such as sheet ingot, casting ingot, and extrusion

billet. Fabrication mills produce a wide range of products such as plates, tubes, and cables,

which are shaped from primary aluminum. Figure 1 depicts the various aluminum

production stages.

The first stage in the production process is the mining of bauxite, an ore composed

of a mixture of minerals of at least 30% recoverable alumina. Bauxite is not a homogeneous

ore, and differs in composition across deposits and sometimes within the same deposit.

While alumina content is its most important variable, other variables and impurities also

have important implications in the technology and cost of processing bauxite. Commercial

prospects for a given bauxite deposit depend upon alumina and organic content, as well as

impurities, availability of local infrastructure, distance from the refineries, and the bauxite

market price.

Bauxite is refined into alumina by the Bayer process, 14 in which two to five tons of

bauxite are required to produce one ton of alumina. All refineries use the Bayer process

technology, however, each refinery must modify this process to suit the type of bauxite

13 Upstream are the activities that involve bauxite mining and alumina refining.
Downstream are activities related to semi-fabricated and fabricated products.
14 A.R. Barkin, Production of Aluminum and Alumina, Published on behalf of the Society
of Chemical Industry, J. Wiley, 1987.

17



Figure 1. Stages and Flows in Aluminum Production.

Non metallic uses
(e.g. abrasive uses)

Source: Merton Peck, The World Aluminum Industry in a Changing Era, Washington D.C.,
Resources for the Future, John Hopkins University Press, 1988)



used. Substantial economies of scale exist in alumina refineries, with a minimum efficient

scale approximately 700,000 tons per year, including the necessary infrastructure.

Primary aluminum metal is produced from alumina at a ratio of approximately two

tons of alumina per one ton of primary aluminum, by the Hall-Herault process. 15 Though

several variations to this process exist, their economics are similar. Primary smelters

consist of individual pots arranged in one or more pot-lines. Economies of scale are

significant, but not as large as in the case of alumina refineries. 16 For a single smelter, the

efficient scale is between 100,000 to 130,000 tons per year.

Primary aluminum is used to make fabricated aluminum products through a variety

of processes common to metalworking, such as rolling, casting, and extruding.

Fabrications are used to manufacture items ranging from window frames, household foil,

and engine blocks to aircraft wings. In terms of application, aluminum is second only to

steel. Manufacturing operations are small in scale compared to those performed at smelters

and refineries. Although economies of scale are usually not significant, for operations such

as sheet, plate, and foil mills, there is a minimum efficient scale of 50,000 tons per year.

Like most metal industries, the aluminum industry generates scrap from its operations and

final products re-usage. The scrap is used in secondary smelting, which can be substituted

for primary aluminum in most uses. 17 Finally, the processes used in the various stages of

production have undergone few fundamental changes since the beginnings of the industry.

Major improvements have focussed on increasing technology productivity and improving

quality of outputs.

15 Ibid.
16 Compared in terms of relative primary units.
17 Merton Peck, The World Aluminum Industry in a Changing Era, (Washington D.C.,
Resources for the Future, John Hopkins University Press, 1988).
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1.2. The Venezuelan Situation.

The Venezuelan aluminum industry typifies industrial development in Venezuela

and is the result of an intentional government industrial policy, the development of energy-

intensive industries, linked to the hydroelectric infrastructure in the Guayana region in

development since the 1960's. In this section we will explain briefly the current economic

situation of Venezuela and its aluminum industry.

1.2.1. Overview of the Economic Situation.

For the past 20 years, Venezuela has failed to invest its revenues from natural

resources, especially from oil, into productive assets growth. This situation has come about

because of, in the absence of a coherent and feasible development strategy, 18 the

implementation of a set of different, often contradictory, policies, and increased direct

economic controls and subsidies by the government. As a consequence, the system was

incapable of generating sufficient growth from its productive capacity. Venezuela today

remains highly dependent on oil which, until the 1986 collapse in oil prices, provided about

95% of its export earnings. 19 The country remains exposed to the volatility in oil prices,

and more important, other productive industries remain underdeveloped. 20 Implemented

policies have failed to address the problem of poverty effectively in government's

development policies. In spite of continuous efforts, Venezuela's public sector is still

inefficient and does not provide the basis needed for modernizing government operations to

support a sustainable development strategy.

18 Based on the World Bank Report prepared for Venezuela, November, 1988.
19 Banco Central de Venezuela, La Economfa Venezolana en los Ultimos Treinta y Cinco
afnos (1987). See also, Harvard Business School, Venezuela 1988, (N9-389-034, 1989).
20 Underdeveloped is defined as a strong dependency on Government policies and/or the
incapacity to compete in the international market.
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Relatively high growth rates of real GNP were achieved from 1960 to 1973 by

taking advantage of the financial resources and foreign exchange provided by oil.2 1 During

the 1970's, starting with the 1973 oil boom, the government's role expanded, characterized

by a rapid increase in direct production, promotional activities, and regulatory

interventions. Industrial development was heavily promoted, based on energy-intensive

industries such as steel, aluminum and petrochemicals; an effort which fostered large

infrastructure investments, including large hydroelectric developments.

Simultaneously, due to depressed relative prices for traded goods, the industrial

sector became dependent on government promotional policies. Government policies

encouraged changes in factor use toward less intensive use of labor, more intensive use of

land and capital, and more generalized use of imported inputs. 22 However, the magnitude

of the public sector investment program in 1974-78 proved too ambitious, and

inefficiencies in the use of resources were substantial. As a result, during 1978-79, the

government was forced to undertake contractional policies characterized by investment cut

backs.

During the 1980's, despite a second oil boom in 1980, production also declined as

inappropriate policies encouraged capital flight rather than growth; however, inflation was

moderate from 1982 to 1986.23 Between 1986 and 1988, although policy again shifted to

stimulation and GNP growth was about 6%, this growth was characterized by a sharp

deterioration in the balance of payments and by increasing inflation. In 1986 average

Venezuelan oil prices fell by almost 50%, from $25.7 per barrel in 1985 to just $13.6 per

barrel in 1986.24 The government responded to this situation by drawing down external

reserves and pursuing short-term financing policies.

21 Banco Central de Venezuela, La Economfa Venezolana en los Ultimos Treinta y Cinco
al.&, 1987.
22 Based on interviews in various industrial sectors.
23 Ibid.
24 Based on interviews in the oil sector.
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By the end of 1988, Venezuela's economic situation had become critical: operating

reserves were depleted, and imports were increasing, as it was clear that the government

would implement a major devaluation. Inflation continued to accelerate, and by January

1989, there were substantial shortages of primary goods in the markets. High levels of

uncertainty in all sectors set up a critical situation.

In light of this situation, in 1989 the new government initiated a program to redefine

the role of the public sector. The objective was to reduce the participation in direct

investment, and to restructure the complex regulatory and institutional framework which

distorted the economy. Equally important, the program was expected to encourage private

sector activity and investment in the aluminum and petrochemical sectors, and various

medium and small industries.

1.2.2. Summary of the Venezuelan Aluminum Industry.2 5

The Venezuelan aluminum industry is owned by the government and managed by

Corporaci6n Venezolana de Guayana [CVG]. Its underlying objective is to help diversify

the Venezuelan economy from the oil sector. CVG-Aluminum [CVG-AL] is now under

expansion due to expected increases in world aluminum demand.26 The sources of value

for the Venezuelan aluminum industry stem from low cost of energy and labor, and close

proximity to the sources of raw materials. 27 CVG-AL's target is to produce two million

tons per year of primary aluminum within a balanced, vertical integrated structure.

Figure 2 shows the location of the aluminum industry in Venezuela. Located around

Puerto Ordaz, about 600 km from the capital of Caracas, it is composed of an alumina

refinery run by Interalumina C.A., two smelters run by Alcasa C.A. and Venalum C.A.,

25 This section is based on information from CVG-Planificaci6n Corporativa and CVG-
Subsidiaries' Corporate Plans.
26 Shearson-Lehman-Hutton, Annual Review of the World Aluminum Industry 1989, (pp.
41-48).
27 Venalum C.A., Plan Corporativo 1989-1993., p.75.
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Figure 2. Location of the Aluminum Sector in Venezuela.

Caribbean Sea Atlantic Sea

Orinoco River

Source: Venezolana de Aluminio, Venalum



and the Los Pijiguaos bauxite mine run by Bauxiven C.A. The primary smelters and

refinery are located together along the Orinoco River close to Puerto Ordaz, having

available a well-developed infrastructure system. These plants also have the benefit of

being close to the Guri dam, which provides hydroelectric power to the smelters; and to

low-cost natural gas in the case of the alumina refinery. However, the mine is located about

600 km from Puerto Ordaz in an undeveloped area requiring high infrastructure investment

and an effective solution to bauxite transportation from the mine to the refinery. The

location of the industry along the Orinoco River provides an easy and cheap transportation

route.

1.2.2.1. CVG-Aluminum [CVG-AL] Company Profile.

CVG-AL, the organization within CVG in charge of managing the aluminum

sector, is involved in all stages of the aluminum production process. The corporation's goal

is to develop a balanced, vertically integrated industry from bauxite to primary aluminum.

The structure of the CVG-AL presented in Figure 3 shows the current and planned

capacities at each stage of production. Industry inputs for the industry are sourced by

PDVSA [Petr6leos de Venezuela S.A.], which provides CVG with the natural gas required

by Interalumina C.A. as its main source of energy, and some of the inputs for the carbon

anodes production required for primary aluminum smelting. PDVSA is expected to cover

all caustic soda requirements for alumina refining now imported in its totality. The energy

required by the smelters is generated at the Guri dam, while needed carbon anodes are

mainly imported, along with some quantity provided by CVG-Carbonorca C.A. In the

future, it is expected that Carbonorca C.A. will totally cover all primary aluminum industry

requirements. Table 1 is self-explanatory, and shows the current capacity of the industry

and its future plans.
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Figure 3. Structure of the Venezuelan Aluminum Industry.
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Table 1. General Summary of the Venezuelan Aluminum Sector.

Resources

Bauxite
Expansion

Alumina

Aluminum

Carbon Anodes

Electrical Energy

Natural Gas

Petroleum Coke

Coal Tar Pitch

Caustic Soda

Aluminum Technical
manpower.

Present Capacity

460K tpy

2.4m tpy

1.3m tpy

670K tpy

140K tpy

10K megWatts

n/a

280K tpy

60K tpy

1OOK tpy

12K

Source

Los Pijiguaos.

Imported.

Interalumina Refinery.

Alcasa-Venalum Smelters.

Existing captive plants
Carbonorca Central
anode plant.

Edelca - Electrification
Caroni Hydro-Power.

Petroleos de Venezuela
(PDVSA)-Corpoven.

U.S.A imports

U.S.A / Europe

U.S.A

CVG-Aluminum

Future Capacity

8.Om tpy

Remarks

Bauxiven C.A.

--0--

4.Om tpy

2.Om tpy

1.2m tpy

26K megWatts

900k tpy

180K tpy

300K tpy

30K

Interalumina expansion
and new refinery.

Further Alcasa expansion
and seven new smelters.

Carbonorca I and and
expansion to 750K tpy.

New Hydro-Electric
Plants.

Capacity available for all
operations.

PDVSA Project plus
imports.

Imports. Also, research
for blending petroleum
pitch with coal tar pitch.

Imports / Project in phase
to produce caustic soda
(PDVSA).

Increase aluminum
technical manDower base.

Source: Venezolana de Aluminio, Venalum C.A. September-1989.
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CVG-AL revenues are almost entirely due to sales of primary aluminum. Sales of

alumina and downstream products amount to less than 20% of the total. 28 Therefore,

revenues are not especially sensitive to movements in the price of alumina or downstream

products. Because of significant bauxite requirements, CVG-AL's position is sensitive to

changes in bauxite prices as long as its alumina operations depend on imported bauxite.

However, the negative impact of bauxite prices on revenues is expected to decline as

domestic bauxite production increases.

Huge cost advantages stemming from cheap hydroelectric power put CVG-AL in a

particularly strong position in the primary aluminium industry. 29 As shown by this study,

CVG-AL's emphasis should be on primary production in spite of its exposure to primary

price fluctuations. Alumina production is also competitive, but less so than primary.

Bauxite costs are high, and will probably remain so until Bauxiven C.A. reaches full,

efficient production.

28 CVG-Planificaci6n Corporativa data base.
29 CVG has the potential of becoming the lowest primary producer in the industry as a
result of the low-energy tariff for the industry.
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Chapter 2

The Alumina Industry - Baseline Analysis

This chapter analyzes the alumina industry from the perspective of the alumina free-

market. The objective is to study the alumina transactions made outside integrated systems

to avoid possible distortions in the use of internal transfer pricing policies. We will first

look at strategic groups involved in the alumina industry, the classification of which

resulted from grouping companies according to degree of vertical integration, alumina

position, 30 and, to a lesser extent, historical development. This chapter also analyzes

alumina industry concentration, barriers to entry, cost structure, and a sensitivity analysis

on the main cost determinants: investment costs, bauxite, caustic soda, energy and labor.

Finally, it presents a baseline recommendation on expanding alumina capacity.

2.1. Strategic Groups.

This section analyzes the different strategic groups and defines their main

characteristics and interests. The relationships among the strategic groups depicted in

Figure 4 show the different groups and their relationship through their alumina and bauxite

transactions. This figure is defined by two dimensions: the degree of vertical integration

and the alumina position. From the figure, two points are important to note: Miners and

Refiners are located within the same group, given their similarities in characteristics and

interests. As explained later in Chapter 3, the strong dependence between Miners and

Refiners makes it necessary to consolidate them into one strategic group. The arrows

represents the flow of alumina and/or bauxite from one group to another.31

3 0 Alumina position is defined as long or short. Long position refers to the availability of
alumina to the free-market after all the internal requirements have been fulfilled. Short
position refers to the dependency on the free-market to fulfill alumina requirements.
31A sixth group, defined as Independent Fabricators, would complete the list of groups
within the aluminum industry; however, since there is no relationship of this group with
alumina, it was excluded from the analysis.
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Figure 4. Strategic Groups Relationships.
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Source: Based on Classification made by Colin Pratt, "Is Vertical Integration in Aluminum
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To specify the location of each group within the aluminum industry production

process, Figure 5 shows a simplified version of the process depicted in the aluminum

production figure [Figure 1]. The location of each group depends on its free-market

position at each stage of production. Differentiation is made between the integrated system,

where products flow through internal transfers with no interaction with other producers

and/or buyers, and the free-market segment, which represents the arm-length transactions

side. The existence of the Miners and Refiners in the bauxite and alumina stages is notable.

As explained before, mines and refineries are dependent on one another due to bauxite

mineralogy. Also, at the end of the production process it is shown that Independent

Fabricators' group represents the demand side for arms-length primary aluminum

transactions. The analysis of this group is beyond the scope of this study.

After locating each of the strategic groups in the process and seeing their relation to

one other, each is now defined: The "Integrated Majors" and "Second-Tier Producers"

groups are very similar in characteristics and interests. Both groups are characterized by

their strong integration of primary aluminum and down-stream operations. 32 Both are

focused on down-stream markets as their main source of revenues. Table 2 shows the

firms included in each group. 33

Apart from size and history, the alumina balance is what distinguishes the

Integrated Majors from Second-Tier Producers. Contrary to the Second-Tiers alumina

position, the Integrated Majors group includes the six companies substantially long in

alumina. In 1989 this group controlled more than 60% of the free-market alumina supply to

firms short in alumina.34 Although some of the members are closely balanced in primary

32 Colin Pratt, "Is Vertical Integration in Aluminum Really Necessary?," Prepared for:
Metals Week's Second Aluminum Symposium, (1989), pp. 9-11.
33 For locating each company in its country of origin, see International Primary
Aluminum Institute [IPAIL Statistical summary, Volume 4 (part), (1987-1988): 30-34.
34 Shearson-Lehman-Hutton, Annual Review of the World Aluminum Industry, (1989),
pp.41-48.
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Figure 5. Location of Strategic Groups in the Production Proccess.
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and may, in certain circumstances, be in a short position, they are characterized by being

long in aluminum production. This group however, is no longer the main supplier of the

aluminum free-market, currently dominated by the Independent Smelters group.

Table 2. Integrated Majors and Second-Tier Producers.

Integrated Majors Second-Tier Producers
Alumina Long: Alumina Balance:
Alcoa Alumix
Alcan Inespal
Kaiser
Pechiney Alumina Short:
Alusuisse VAW

Noranda Aluminum
Alumax
Austria Metal
Hoogovens
Granges

Source: Venezolana de Aluminio, Venalum C.A.

The main concern for both the Integrated Majors and Second-Tier Producers is the

maintenance of a stable pricing system of downstream products. Important for this group is

the decline in concentration of downstream markets due to the entry of new Independent

Fabricators. Even though sales of primary aluminum are not an important source of

revenue for the Integrated Majors and Second-Tiers, these groups are not indifferent to

volatility in the primary price. Primary prices exercise pressure on semi-fabricated prices,

and low prices in the primary market create entry opportunities for new Independent

Fabricators, reducing the Majors' and Second-Tiers' respective market shares.

The "Miners/Refiners" group traditionally has been a small and weak strategic

group. Closely linked because of bauxite physical heterogeneity and its market

imperfections, there is a strong dependence between bauxite miners and alumina refiners.

The growth of this group has not been matched by the growth of the Independent Smelters

group. This is because refining plants are associated with high initial capital outlays, large

minimum efficient scale, and high volatility in the output's price. These facts imply that an
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alumina refinery is an expensive and risky project. Further, a large part of the alumina

required by Independent Producers is supplied by the Majors group, which collectively run

a large alumina surplus. Table 3 shows the firms included in the "Miner/Refiners" group.

Table 3. Miner/Refiners.

Refiners: Miners:
Billiton IBA Member States
Alcoa of Australia e.g. Guyana
Comalco Indonesia
Jamaican Government Greek Bauxite Producers

MRN
Source: Venezolana de Aluminio, Venalum C.A.

The main concerns of this group are the possibility to capitalize on low-cost bauxite

and energy, and the existence of a balanced, alumina free-market so that prices are not

driven down by overcapacity. Finally, Miners/Refiners are also interested in stable alumina

contracts to avoid output price volatility.

The "Independent Smelters" group, except for CVG 35 and to some extent

Comalco, are predominantly primary aluminum producers and are not developed, if at all,

downstream. The reason Independent Producers entered the aluminum industry was the

access to a low-cost energy source, and for most of them this remains as main source of

competitive advantage. Independent Producers are the most recent entrants in the industry,

and except for CVG, the firms in this group are short of alumina, and depend on supplies

from one of the Integrated Majors and/or the Miners/Refiners for their alumina needs. Table

4 shows the companies included in this group.

35 CVG is located in this group only temporarily due to its changing balance. Currently
its position is not clearly defined. The stated policy is vertical integration, although
CVG's position is clearly unbalanced with a long alumina and a short bauxite position.
CVG is included in this group because its origin was as an independent smelter given its
low energy cost position. However, CVG's current interests lie between that of Independent
Producers and of Miners/Refiners.
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Table 4. Independent Smelters.

Short of Alumina: Balanced/Long in Alumina:
Aluvic CVG
CVRD Comalco
SGF
Hydro-Aluminum
Elkem
Aluminum Bahrain
Dubai Aluminum
Aluar
Alusaf
Egyptalum

Source: Venezolana de Aluminio, Venalum C.A.

Independent Smelters maximize their profits when primary aluminum prices are

relatively high and, coinciding with the Majors Group, when alumina prices are low. Since

their key advantage is low energy cost, Independent Smelters should focus their future

plans on capacity expansion within the smelting stage. If expansion exceeds the overall

market growth, they may need to capture market share from the Majors group. Otherwise,

overcapacity might drive primary aluminum prices down.

2.2. Market Concentration.

In theory, forward integration by monopolists or oligopolists can enable them to

practice price discrimination between different markets. 36 Price discrimination in the

alumina industry occurs when different transfer pricing policies are used, dependent on the

buyer and the contractual agreements of the parties concerned. Although the alumina

industry can change to a more competitive industry as concentration declines, the

concentration of vertically integrated producers is expected to remain high, especially

Alcoa. 37 Up to the mid-1970's, the alumina market could be said to be characterized by

36 F.M. Scherer, Industrial Market Structure and Economic Performance, (Second Edition),
Rand McNally College, 1980, (pp.315-319).
37 Until the 1960's the alumina market simply did not exist and primary producers were
forced to backward integrate.
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sticky, administered pricing, such that the market failed to clear through price.38 Since

then, a declining market concentration has led to a more competitive environment 39 where

prices are more responsive to changes in alumina supply and/or demand. See Table 5 and

Figure 6 which show the concentration levels for the alumina market in 1988.

As shown in Table 6, the trend for shares of the six Majors in the alumina market

has been in a continuous decline. The arm-length market is expected to increase in size,

although Alcoa's concentration is expected to remain.40 The implication is that while

alumina market size and liquidity will increase, market concentration will decrease. Because

of this, new entrants will have an incentive to join the Independent Smelters group, taking

advantage of competitive alumina prices.

2.3. Cost Structure.

Although infrastructure costs are not considered explicitly, they would represent

important costs for greenfield projects in developing countries. Fixed capital costs which

vary from refinery to refinery depending on location, infrastructure needs, and future

plans, constitute about $700-1,200 per ton of installed capacity.4 1 As for any industrial

plant, unit capital costs for alumina refineries diminish with increasing plant size. Minimum

efficient scale is reached at about 700,000 tons per year.

Table 7 presents the operating costs distribution of alumina refining, based on raw

materials, energy labor, and other costs (this cost structure analysis is expanded in Chapter

3). As shown in the table, cost advantage in alumina production stems from the proximity

38 John A. Stuckey, Vertical Integration and Joint Ventures in the Aluminum Industry,
(Cambridge MA., Harvard University Press), 1983. pp. 88-91.
39 Colin Pratt, Is vertical Integration in Aluminum Really Necessary?, Prepared for:
Metals week's Second Aluminum Symposium, 1989, pp.9-11.
40 Ibid.
41 Frank A. McCawley, and Luke H. Baumgardner, Aluminum, (Preprinted) from Bulletin
675. Mineral Facts and Problems, 1985 Edition, Bureau of Mines, pp. 15-16, and Venalum
C.A. data base.
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Table 5. Concentration in the Alumina Market, 1989.

Company '000 tpy. % Cumulative

Alcoa 8,560 26.8 26.8
Alcan 4,080 12.8 39.6
Reynolds 2,570 8.1 47.7
Pechiney 2,310 7.2 54.9
Kaiser 2,000 6.3 61.2
Billiton 1,646 5.2 66.4
CVG 1,344 4.2 70.6
Comalco 1,180 3.7 52.9
Alusuisse 1,140 3.6 77.9
Inespal 1,140 3.6 81.5

Source: Venezolana de Aluminio, Venalum C.A.

Table 6. Shares of the Six Majors: 1955, 1963, 1971, 1979, and 1988.

Company 1955 1963 1971 1979 1988
Alcoa 24.8 18.0 23.0 27.6 26.8
Alcan 27.3 26.3 19.0 13.9 12.8
Reynolds 16.9 15.4 11.1 9.2 8.1
Kaiser 12.3 11.7 12.2 9.4 6.3
Pechiney 5.1 8.6 11.0 8.9 7.2
Alusuisse 4.2 4.6 2.9 4.8 3.6

Total 90.6 84.6 79.2 73.8 64.8
Source: John A. Stuckey, Vertical Integration and Joint Ventures in the Aluminum
Industry., Harvard University Press, 1983, p. 84.



Figure 6a. Distribution of Alumina refining Capacity in 1988.

Source: Shearson-Lehman-Hutton. Annual Review of the World Aluminium, 1989, p. 45.

Source: Shearson-Lehman-Hutton. Annual Review of the World Aluminium, 1989, p. 45.
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to a low-cost source of bauxite and the low-cost source of energy and caustic soda. For a

non-integrated firm, alumina supply has been of high variability, resulting in an

unpredictable market. However, we could expect a more segmented market in the medium

term, where competitive pricing might prevail.

Table 7. Alumina Operating Costs Variations, 1989.

Total Bauxite Caustic Labor Energy Other
Mean ($/tn) 127 43.9 22.0 18.0 33.6 9.5
As % of Total 100 34.5 17.3 14.2 26.4 7.6
Std. Deviation 27.2 22.0 6.9 9.9 14.1 2.4
Source: Venezolana de Aluminio, Venalum C.A.

2.4. Alumina Prices.

Spot and contract alumina prices have been characterized by high volatility and, in

contrast to primary aluminum prices, alumina prices do not follow any reference cycle.

Figure 7 shows the alumina and bauxite prices imported into the United States. Bauxite and

alumina prices generally move together, although when the alumina market is in tight

balance, as in 1982 and during the last two years, alumina prices are more volatile than

bauxite prices. Given the dependence between mines and refineries, usually governed by a

vertical structure organization, bauxite transactions are usually made, on a cost-plus basis.

This type of contractual agreement will recognize a band for the bauxite operations' profit

margin, which will increase as alumina prices increase, as in 1982. However, if the price

of alumina is too high, there is a limit to bauxite prices imposed by escalation formulas

used to set a floor and a ceiling price for the product. In the last two years, bauxite prices

increased, but not as much as alumina prices. What, then, causes alumina prices to

fluctuate so much?
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Figure 7. Prices of Alumina and Bauxite imported into US (Current $).
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Figure 8 shows the alumina and aluminum prices imported into the U.S. As we can

see, there are clear time lags between the two markets, created mainly by time delays in

renegotiating alumina contracts resulting from a market characterized by contractual

transactions with few spot sales. The primary aluminum price, however, is not the only

factor affecting alumina prices. Prices also depend on the negotiation power of the parties

concerned, the balance position of supply and demand for the free-market, and the distance

between the refiner and the buyer, explained in detail in Chapter 5.

2.5. Barriers to Entry.

Clearly, low operating costs are a major source of competitive advantage, and

access to them represents a major barrier for new entrants in alumina production, resulting

in a cost-focused industry. The sources of cost advantage are primarily natural resource-

based, such as low-cost bauxite deposits, usually in the hands of host governments. They

play a major role in the alumina refining stage, especially in developing countries.

Industrial policy, such as subsidized transfer pricing and long-term arrangements for low-

energy tariffs, is the main instrument for promoting the industry. Governments might also

encourage the development of their state-owned enterprise through tax benefits and low-

interest, long-term financing.

As for any capital-intensive industry, alumina refineries require high initial capital

investments, about $700-1,200 per ton, plus contingencies and required infrastructure

investments as initial outlay.4 2 The most important risks associated with this investment

are imperfect input markets and cost variability, excessive output price volatility, political

risk in the case of smelters located in unstable countries, or dependence on sources of

supply from risky countries, volatility of exchange rates, and the cyclical nature of the

business due to its correlation with the economy business cycle.

40

42 Ibid.



Figure 8. Alumina Contract Prices in US and Metals Week Aluminum Prices. (Current $).
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Given the historical, dominant vertical integration structure in the industry, alumina

distribution channels have been controlled by major integrated producers. However, due to

increasing fragmentation of the industry as a whole, there are new distribution channels

related to Independent Refiners, thus reducing market failure risk.4 3 The technology is

owned by firms in the Integrated Majors group. Even though technology is fairly

homogeneous, it is costly for new entrants to gain access, and technical expertise as well.

Especially for developing countries, greenfield projects have infrastructure needs which

represent a high-cost entry barrier to the industry. On average, infrastructure requirements

could increase initial capital outlays between $100-400 per ton.44

2.6. Sensitivity to Major Alumina Investment Determinants.

After describing the main determinants in the alumina industry, this section now

presents baseline results, and their sensitivity to the most important variables: investment

costs, bauxite costs, and alumina prices. Our aim is to draw a baseline conclusion as a

framework for a further detailed analysis on the issues raised in this chapter. The results

and sensitivity analysis are based on the simulation model described in Chapter 6, and the

figures presented are drawn from the results using the base case simulation parameters

presented in Table 8.

As shown in Figures 9-11, the base case scenario which assumes an above average

state-of-the-world 45 results in a just positive NPV. Even though neither option equivalents

nor terminal values cash flows are considered in the valuation model [see assumptions in

Chapter 6], the results show the expected zero-NPV outcome coinciding with our initial

expectations. This outcome might be explained by the fact that (1) alumina is an

intermediate good, for which there is no developed market, (2) the parameters are based on

43 Colin Pratt, "Is vertical Integration in Aluminum Really Necessary?," Prepared for:
Metals Week's Second Aluminum Symposium, 1989.
44 Venalum C.A. data base.
45 States-of-the-World can be pessimistic, average, or optimistic.
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data as if the project were to be built in Venezuela by CVG-AL which, as shown later, does

not have clear competitive advantages in alumina production, and (3) the market dominance

of contractual agreements, in principle, are zero-NPV agreements if risks are assumed to be

well diversified.

Table 8. Base Case Simulation Parameters.

Alumina Price 275($/on)
Alumina Production Schedule ('000 ton,year)

(100,3);(650,4);(900,5);( 1000,5-22)
Inflation Rate 1.04 (l+%Iyear)
Investment Costs 800,000 ($'000)
Construction Period 3 (Years, 2<>6)
Percentage Construction Completion per Year (l,20%);(2,40%);(3,40%) (%,year)
Depreciation Period 20 (Years)
Bauxite Costs 25 ($/ton Bauxite)
Caustic Soda Costs 200 ($/ton Caustic Soda)
Energy Costs 15 ($/ton Alumina)
Labor Costs 15 ($/ton Alumina)
Equity Participation 30(%)
Debt Participation 70(%)
Interest Rate on Debt 10(%)
Debt Repayment Period 15 (Years)
Pre-opening and Organization Costs 8,200 ($'000)
Amortization Period for Preop.&Org.Costs 5 (Years)
Unleveraged Beta for the Project 0.92
Risk Free Rate 0.08
Market Risk Premium 0.08 6

In terms of risk, alumina investments are highly sensitive to alumina prices, bauxite

costs, and investment costs, as depicted in Figures 9-11. Because of the high sensitivity to

alumina prices and their volatility, refineries will be forced to hedge their positions such

that, if risks are well diversified, will result in expected zero-NPV investments.46 Also,

alumina sensitivity to environmental conditions, such as humidity, makes alumina

transportation difficult and does not permit the product to be stored for more than two

months, increasing the risky nature of alumina investment.

46 Hedge refers to the elimination of any risk by protecting the investment from any
downturn at the cost of giving up the upside potential.
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Figure 9. Sensitivity to Alumina Prices ($/ton).
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Figure 10. Sensitivity to Bauxite Costs, ($/ton).
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Figure 11. Sensitivity to Investment Costs, ($/ton Alumina).
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Finally, given the high initial capital outlays required, the uncertainties of the

market, the risky nature of the project, and CVG-AL's currently long in alumina, we do not

recommend at this point expanding alumina capacity in Venezuela. To support this

assessment, strategic issues across the alumina industry, its cost structure, and the

valuation model cited in this section are detailed in the following chapters. Our objective is

to present a complete analysis that not only considers the project appraisal, but also

analyzes the factors that affect the organization of the industry, and responsiveness of the

input and output markets to changes in capacity.

47



Chapter 3

Strategic Issues for the Alumina Industry

The structure governing the linkages between alumina-bauxite operations, and

alumina-primary aluminum operations represents an important planning and strategic

decision for CVG-Aluminum. This chapter examines on a general level the issues

concerning the integration between bauxite mining and alumina refining, and the integration

of primary aluminum and alumina operations. This discussion lays down the issues to

define what should be the optimal degree of vertical integration across the alumina industry.

3.1. Integration Between Bauxite Mining and Alumina Refining.

Non-homogeneity and highly imperfect markets are characteristics for bauxite.

Refineries depend on particular bauxites, implying high switching costs in changing from

one bauxite to another. Therefore, mines and refineries are dependent on each other in

long-term relationships. In addition, bauxite is a low value product whose transportation

costs represent a high proportion, approximately 50%, of its cif price. The interrelationship

between mine and refiner due to bauxite internal properties favors a refinery location close

to the mine supplier.

The mutual dependence of miner and refiner and their close physical location need

not necessarily lead to bauxite-alumina vertical integration. They could be independent

entities, with their transactions governed by long-term contracts. However, this condition

represents a bilateral monopoly bargaining situation, in which neither buyer nor seller has

any other rational alternative.47 The pricing terms of contracts are indeterminate, and even

when concluded by negotiations, would tend to break down as external conditions change.

No matter how comprehensive the contractual terms, the contracts would always be

47 F. M. Scherer, Industrial Market Structure and Economic Performance, (Second Edition),
Rand McNally College, 1980.
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incomplete. As a consequence, bauxite transactions, in general, are internalized between the

mine and the refinery by internal transfer prices, and there is no reason to believe that this

will change in the future.48

But vertical integration has not eliminated the need to place a value on bauxite, for

which no single free-market price exists. The reason is basically the scale mismatch

between mines and refineries. In the 1960's and 1970's huge bauxite deposits were

developed in Australia, Guinea and Brazil.49 These mines still dominate the world bauxite

supply. If developed as vertically integrated projects, each of these mines would have

required the construction of between two to four large refineries to process their output.

The capital costs and risks of such a venture would deter all but the largest companies.

The solution to this scale mismatch was the formation of joint ventures of several

companies to develop the mines and take bauxite in proportion to their ownership to feed

their own refineries needs, still a form of vertical integration. This form of organization

ensured an outlet for the bauxite, and an assured supply of bauxite for the refineries

enabling the joint venture partners to share the costs and risks of development. 50 It did not,

however, avoid the problem of bilateral monopoly. Long term contracts were still

necessary because mines ownership does not necessarily correspond to output shares by

the partners, 51 potential conflict over contractual prices, or the destination of the bauxite;

and host governments were concerned about the establishment of "fair" bauxite prices for

taxation purposes.

Arguments for vertical integration recognize the strong mutual dependence between

mines and refiners, and the extreme difficulty of setting bauxite prices. Long-term bauxite

48 John A. Stuckey, Vertical Integration and Joint Ventures in the Aluminum Industry,
(Cambridge, MA., Harvard University Press), 1983.
49 Shearson-Lehman-Hutton, Annual Review of the World Aluminum Industry, (1989), pp.
41-48.
50 Ibid
51 John A. Stuckey, Vertical Integration and Joint Ventures in the Aluminum Industry.,
(Cambridge, MA., Harvard University Press), 1983.
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contracts are a second-best solution. For example, Japan used to be a major purchaser of

traded bauxites from the Pacific Rim, from Weipa and Gove, Bintan and Malaysia. The

collapse of Japanese refining has left the mines at minimal operation,5 2 and due to the

impact of freight costs, it is difficult for these bauxites to compete in North America or

Europe.

Because of the superiority of vertical integration between mines and refineries, most

of the probable refinery expansions in the medium term are expected to be governed by a

vertical structure. The traded bauxite market is likely to shrink. For example, a major

buyer, CVG-AL, is building its own mine. CVRD, a major seller, is building its own

refinery. Expansion of Australian refineries are also probable. The problems of mutual

dependence are not all producer-oriented; the remaining bauxite buyers in Europe and

North America must face the problem of their increasing dependence on a few sources of

bauxite, mainly Boke in Guinea, in a declining bauxite market.

Vertical integration is therefore the best form of organization between mines and

refineries, and may be inevitable in cases where freight costs reduce the possibility of

exporting bauxite, such as in Western Australia. If there is no vertical integration, the

strength of mutual dependence is such that transactions will almost always be governed by

long-term contracts. These are the second-best solutions for bauxite transactions because of

the scale mismatch between modem mines and refineries. Joint venture arrangements were

a response to this mismatch, but the problems of enforcing long-term contracts have forced

companies to internalize bauxite transactions. As a result, most refinery expansions and

new refineries likely will be part of a vertically integrated system. 53

52 CVG-Planificacion Corporativa data base.
53 Ibid.
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3.2. Should Primary and Alumina Operations be Fully Integrated?

It is assumed that the firm is already integrated, and any change to its current state,

even if desirable, will happen slowly.54 One reason why structural changes might not be

necessary is that alumina operations are competitive in their own right. If integration

resulted from undertaking profitable alumina investments per se, in principle there would

be no need to change. However, if changes are required, they will be slowed down by the

high barriers to exit from the alumina industry.

The Integrated Majors' existing pattern of integration across the alumina market was

not accidental, but resulted from a necessity to integrate backward because alumina markets

did not exist. A characteristic for the Majors is their long alumina position, as a group they

run a substantial alumina surplus. Therefore, they all produce enough alumina to supply

their integrated smelting operations, plus a surplus to cover most of the Independent

Smelters and Second-Tier Producers alumina deficit.55

The Miner/Refiners group is long in alumina, although its capacity did not grow in

the same proportion as that of Independent Smelters. This is mainly because of the large

minimum efficient scale required for greenfield alumina refineries, the need for access to

low-cost bauxite sources, and the high risks associated with alumina investment. Thus, the

Majors' alumina position is the one that complements the Independent Smelters' short

position.

CVG-AL, classified as Independent Smelter mainly in response to historical

developments, currently falls between the Miners/Refiners and the Independent Smelters.

Its long alumina position and clear competitive advantage in energy locate CVG-AL in a

contradictory situation at this point. Its access to cheap energy resources should provide

incentive to CVG-AL to concentrate its investment plans in primary aluminum production

54 John A. Stuckey, Vertical Integration and Joint Ventures in the Aluminum Industry.,
(Cambridge, MA., Harvard University Press), 1983.
55 Colin Pratt, "Is Vertical Integration in Aluminum Really Necessary?", Prepared for:
Metals Week's Second Aluminum Symposium, 1989, pp. 4.



and run a short alumina position.56 Currently, CVG-AL's operating costs in alumina are

above average, while its primary aluminum production costs are among the lowest in the

industry. 57 Although it is expected that CVG-AL alumina operating costs will be reduced

as the Los Pijiguaos mines start producing efficiently, is it necessary to be fully integrated

across its alumina operations?

As discussed previously, there is a growing alumina free-market, and the risk of

supply shortage should decline due to the increasing size of the market and the number of

buyers and sellers. Moreover, there is still high alumina price volatility and time lags

between alumina and primary aluminum prices, thus alumina to primary aluminum

relationship tends to be even more volatile. However, these sources of risk should be well

managed by a low cost smelter. If a long alumina position is fully justified on cost

grounds, revenues from increasing alumina capacity should be compared with potential

revenues from increasing primary aluminum capacity because, in general, alumina revenues

account for only a small proportion of total revenues.

Another consideration is that once an alumina investment is undertaken, exit from

ongoing operations will not be easy due to high fixed costs, backward ties to bauxite either

through mine ownership or long-term bauxite contracts, and especially, in the case of a

state-owned enterprise, the social and political implications. Given these facts, exit from

alumina operations only occurs in extreme conditions. In addition, because increases in

alumina capacity are required to be large scale, any potential firm entering the industry, or

any existing firm considering expanding its current capacity, must evaluate the impact of its

own move on the prices of alumina.

Therefore, a fully vertical integrated organization between alumina and primary

aluminum operations might not be the optimal decision. If there is no balance between

alumina and primary operations, and the firm has clear cost advantages in its primary

56 This is assuming the development of the alumina free-market.
57 Venalum C.A. data base.

52



aluminum operations, then the possible risks associated with running a short alumina

position can be managed by structuring an efficient portfolio of contracts. Even if the firm's

alumina expansion can be justified on cost grounds, access to low energy sources would

force the firm to concentrate its expansion plans in the smelting stage.
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Chapter 4

Cost Structure Analysis

This chapter analyzes the cost structure for the alumina industry and provides a base

case estimate for a greenfield alumina refinery with the capacity of one million tons per

year. This estimate is to be used as a base case for the valuation model presented in Chapter

6. It is based on cost data from the United States Bureau of Mines, and adjusted by data

provided by Venalum C.A. The analysis is divided into three sections: capital costs, where

the discussion is focussed on analyzing the capital outlays required for greenfield projects;

operating costs which present an average operating cost scenario; and finally, the main

operating cost: bauxite, caustic soda, labor and energy are studied on a company and a

regional basis.

4.1. Capital Costs.

A capital cost estimate of $800 per ton of alumina is detailed in Table 9.58 It is

expected to be an average estimate of the actual cost for a greenfield project with a capacity

of one million tons per year of alumina. Although the actual costs for a specific project will

vary from this estimate, it serves as a base case for analyzing capital investments in the

alumina industry. The actual cost of a refinery will vary depending on the infrastructure

needs and the rated capacity on the equipment.

Equipment costs for the process are based on cost-capacity data and manufacturer's

costs quotations. To cover minor construction costs and equipment not listed explicitly, a

10% contingency is added in each section. The field indirect costs for each section are

58 Deborah Kramer and Frank A. Peters, Cost Estimate of the Bayer Process for Producin2
Alumina. based on 1982 equipment prices. (Bureau of Mines-Department of Interior, IC-
8958, 1983). The estimate is updated using information from Venalum C.A.
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estimated as 10% of the direct cost.59 Included under plant facilities, estimated at 8% of

fixed capital costs, are the costs of material and labor for auxiliary buildings and the cost of

non-process equipment. Also included are labor and material costs for site preparation.

Plant utilities, including the cost of water, power, and steam are estimated at 10% of fixed

capital costs.

Table 9. Capital Costs Estimate, 1989.

($'000)
Fixed Capital:

Bauxite Handling and slurry preparation section 34,856
Digestion section 94,132
Clarification section 73,564
Precipitation and decomposition section 112,475
Caustic regeneration section 241,545
Steamplant 30,730

Sub-Total 587,302

Plant facilities, 8% of above sub-total 46,984
Plant utilities, 10% of above sub-total 58,730

Total plant cost 693,016

Land cost 0
Sub-total 693,016

Interest during construction period 50,990
Total fixed capital cost 744,006

Working Capital:
Raw materials and supplies 12,000
Product and in-process inventory 23,550
Accounts receivables 18,500
Desired cash 5,000

Working capital cost 59,050

Capitalized start-up costs 8,200
Sub-total 67,250

Total capital costs 811,256
Source: Deborah Kramer, Cost Estimate of the Bayer Process for Producing
Alumina. based on 1982 equipment prices, (IC-8958, Department of
Interior, Bureau of Mines, 1983): 6. The estimate is updated using
information from Venalum C.A.

59 This estimate includes field supervision, inspection, temporary construction, and
equipment rentals.
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The cost of interest on capital borrowed for construction is included as interest

during construction. A 70% debt-to-equity ratio at the end of the construction period and

10% cost of debt, with no debt repayment during construction, are assumed.60 Interests

during construction are calculated as follows: interest for half of the new loan amount every

year, plus full amount of previous outstanding debt. Land costs and port facilities are not

included in this estimate. Working capital is estimated as follows: raw materials and

supplies inventory for two months of operation, typical in the alumina industry , product

and in-process inventory, accounts receivable assuming 30 days receivables, 6 1 and

required cash. One percent of the fixed capital is estimated for capitalized start-up costs.

In greenfield projects, capital costs will vary considerably, depending upon the

different infrastructure requirements, location, size and availability of local labor and

materials. Although difficult to generalize, total capital costs for new refineries are currently

in the range of $700 to $1,200 per ton of alumina installed capacity.62

The annual debt-servicing costs associated with such projects will vary according to

the size of the initial investment, construction period, and the financial arrangements

employed: debt to equity ratio, cost of debt, loan repayment period, assumed project cost of

capital, and a variety of tax considerations. Table 10 shows the annual debt service for

projects with different fixed capital costs, assuming a 10% cost of debt, and repayment

periods of 10, 15 and 20 years. A constant debt to equity ratio of 70% is assumed and the

debt repayment is calculated as an annuity. Even though this is not precise, it will give a

sense of the debt service for alumina projects.63

60 A 70% debt-to equity ratio is high if compared to aluminum companies' ratio at an
average of 20-30%; however, it is usually the case on this type of investment to have such
a high debt due to its high interest coverage ratio over the life of the project.
61 Days receivables is defined as accounts receivables over sales per day.
62 Frank X. McCawley, and Luke H. Baumgardner, Aluminum, Bureau of Mines, Preprint
from Bulletin 675, Mineral Facts and Problems, 1985 Edition.
63 Investment cost is defined as the sum of fixed capital costs, interest during
construction, and working capital needs at the end of the construction period.
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Table 10 indicates that even in the case of low-cost projects depreciated over 20

years, capital charges could amount to $50 per ton of output. It also shows that for projects

exceeding $1,000 per ton of capacity, annual debt service is around or in excess of $100

per ton depending on the amortization period. This example illustrates the high impact debt

service payments could have on the project's cash flows. Operating costs will be analyzed

in the next section.

Table 10. Annual Debt Service Estimates ($ millions).

Repayment Period (Years)

Total Investment Debt Portion 10 15 20

600 420 68.35 55.22 49.33

800 560 91.14 73.63 65.78

1,000 700 113.92 92.03 82.22

1,200 840 136.71 110.44 98.67

4.2. Operating Costs.

Table 11 provides an estimate for raw material requirements per ton of alumina

using bauxite from the "Los Pijiguaos" mine in Venezuela. 64 Table 12 provides an estimate

for average operating costs per year. Both tables are based on Interalumina C.A.'s financial

operating costs. 65

The operating costs are divided into direct and indirect costs. Direct costs include

raw materials, utilities, direct labor, plant maintenance, and operating supplies. The raw

material costs, except for bauxite, are fob prices. Electricity, water and gas utilities are

based on market prices.

64 Venalum C.A. data base.
65 In this case, the difference between financial and economic costs is not significant
given that bauxite, caustic soda, replacement materials, and energy are quoted at market
prices. Also, the sum of these costs accounts for more than 85% of total operating costs.
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Table 11. Raw Materials Requirements per ton of alumina.

Bauxite66  2.340 ton
Caustic Soda (100%)67 0.140 ton
Limestone 0.010 ton
Starch 0.007 ton
Water 3.500 m3

Electricity 230.000 Kwh
Natural Gas 222.000 NM3

Source: Venezolana de Aluminio, Venalum C.A.

Table 12. Operating Costs Estimate, 1989.

Direct Costs:
Raw Materials:

Bauxite at $34.6 per ton
Caustic Soda at $210 per ton
Limestone at $1.65 per ton
Starch at $170 per ton
Others

Sub-total
Utilities:

Electricity at $0.015 per Kwh
Natural Gas at $0.038 per NM3
Industrial Water at $0.05 per m3

Sub-total
Direct Labor at $8.40 per hour
Plant Maintenance
Operating Supplies (10% of plant maintenance)
Indirect costs (40% of labor and maintenance)

Sub-total
Total Operating Costs

Source: Deborah Kramer, Cost Estimate of the
Alumina, based on 1982 equipment prices,

Interior, Bureau of Mines, 1983): 8.68 The
information from Venalum C.A.

Annual Cost
($'000)

80,960
29,600

1,330
760
300

112,610

Cost per ton
($)

80.96
29.26

1.33
0.76
0.30

112.61

3,450 3.45
8,440 8.44

500 0.05
11,940 11.94
9,700 9.70
7,250 7.25

730 0.73
6,780 6.78

24,460 24.46
149,010 149.01

Bayer Process for Producing
(IC-8958, Department of

estimate is adjusted using

Plant maintenance is estimated separately considering: maintenance labor,

maintenance materials, inventory adjustments, rental equipment, and other maintenance

66 Considering bauxite from the Los Pijiguaos mine in Venezuela.
67 It is obtained in liquid form (50%). One ton of Caustic Soda (100%) requires 2.58 tons
of Caustic Soda (50%). From Interalumina C.A. data base.
68 Fixed Costs were excluded from the table provided by the source.
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services. The cost of operating supplies is estimated as 10% of the cost of plant

maintenance. Indirect costs are estimated to be 40% of the direct labor costs, plus

maintenance costs. Indirect costs include expenses for control laboratories, accounting,

plant protection and safety, plant administration, marketing, and company overhead.

Research and overall company administrative costs outside the plant are excluded here.

The estimated annual operating cost for the base case is about $150 million or $150

per ton of alumina. This estimate is very sensitive to changes in the cost of bauxite, caustic

soda, labor and energy. Special infrastructure requirements which depend on the individual

plant site, have not been considered in this estimate. To estimate the significance of

infrastructure cost, each project must be considered individually; thus making an estimate

would be very misleading. In order to understand the factors affecting the main operating

costs bauxite, caustic soda, labor and energy are each discussed separately in the next

section.

4.3. Major Operating Costs.

The objective of this section is to present a comparative analysis of major alumina

operating costs: bauxite, caustic soda, labor and energy, and determine the sources of

competitive advantage that CVG-Aluminum might have in producing alumina. This

analysis presents a cost distribution by companies and regions.69

4.3.1. Distribution by Major Companies.

Comparing CVG with other major alumina producers as shown in Figure 12, CVG

currently has an average position. This is largely because of high bauxite cost. 70 It

represents more than 50% of CVG's operating costs, and reflects the dependence on

69 The regional division is based on that used by the International Primary Aluminum
Institute [IPAI].
70 Interalumina C.A. had contracts for 1989 at $34.6 per ton of bauxite. This represents,
on average, $76.8 per ton of alumina.
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Figure 12. Average Operating Costs by Company,1989 (Current $).
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expensive imported bauxite, primarily from Trombetas, Brazil. CVG bauxite costs are

expected to decline in the short term as the "Los Pijiguaos" mine comes fully on stream.

Costs are expected to be at about $25 per ton cif considerably improving CVG's position.

This cost is on the optimistic side. High investment costs and time delays already

incurred by the mine might force prices to be increased. Also, this expected price assumes

an efficient transportation system along the Orinoco River which, has yet to be solved. So,

if the bauxite cost to be used in the valuation should reflect real opportunity costs and not a

subsidized transfer pricing policy, we would expect that the bauxite costs would be

approximately $30 per ton of bauxite, or $67.2 per ton of alumina, assuming that 2.34 tons

of bauxite are required per ton of alumina. If the latter is true, CVG's position would still

be that of an average alumina producer with no real competitive advantage in increasing its

capacity.

Other important points are notable from Figure 12: The low operating costs of

Alcoa of Australia and Alusuisse would make these companies the most likely to increase

their alumina refinery capacities, given the possibility they have to expand their ongoing

refineries. In addition, Alusuisse has the best technology for alumina operations. Pechiney

and Alcan have the highest operating costs in the industry. As the free market continues to

expand, we would expect Alcan and Pechiney to rely more on the arm-length market. This

situation may open new opportunities for existing low-cost producers or for new entrants.

4.3.2. Distribution by Regions.

The following sections consider each of the major operating costs and describe the

average cost by region. It presents the average cost in 1988 and 1989 in current U.S.

dollars, and a personal estimate of what the trend might be in the short term. A consolidated

view of the major operating costs is shown in Figure 18.



4.3.2.1. Bauxite Costs.

Trends in bauxite capacity and markets can be viewed as evolutionary rather than

subject to the cyclical swings which have characterized primary aluminum, and more

specifically alumina. Since 1960, bauxite production has steadily shifted from industrial

countries to less developed countries, except for the case of Australia, whose output is

mostly refined into alumina.71

The pattern of bauxite production is not expected to change through the 1990's. It

will continue shifting from industrial countries to less developed ones. Guinea and Jamaica

should remain as major producers, and growth in output is expected in Brazil and

Venezuela to cover their domestic primary aluminum production fully.72

In analyzing bauxite prices it is important to differentiate between refineries which

form part of an integrated mining operation, and those which rely on imported bauxite. At

many integrated mines bauxite prices depend upon the adopted internal transfer pricing

policy. For those bauxites traded on a free market, such as in Western Australia, India and

Brazil, bauxite is priced on the basis of the prevailing market prices.

Bauxite prices vary considerably, from as low as $6 per ton at integrated mines to

as high as $35 per ton for Boke material. To a large extent, this wide spread in prices

reflects quality differences between the various bauxites. Proximity to the consuming

refinery also affects freight rate differentials and therefore ultimately has an impact on

prices. Government-imposed levies or export taxes are other factors to be considered when

comparing different bauxite prices.73

To compare different bauxite types, it is necessary to consider prices in terms of the

recoverable alumina content of each material. Indeed, bauxites with similar fob or cif prices

could be valued entirely differently by refineries due to wide variations in the alumina

7 1 The World Bank, Price Prospects for Major Primary Commodities. 1988-2000,
(Washington D.C., The World Bank, 1989).
72 Ibid.
73 Venalum C.A. data base.
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content of each bauxite. It is therefore important to obtain a standardized bauxite price

which takes account of the available alumina content of the ore. The amount of bauxite

required per ton of alumina varies, depending on the sourcing mine, ranging from 1.95

tons to almost 3.5 tons of bauxite per ton of alumina.

Figure 13 shows the prices of imported bauxite into the United States relative to

imported alumina contract prices. Here we can see a close correlation between bauxite and

alumina prices. However, when compared to aluminum prices, there are clear time lags

between alumina and primary aluminum prices created by the adjustment time required by

the alumina and bauxite contracts. Indeed, both markets are mainly contractual markets

with few spot transactions.74

Figure 14 shows weighted average bauxite costs in U.S. dollars per ton of alumina

for 1988-1989, and a medium term, speculative tendency. This accounts for refineries'

bauxite arrangements, specifications and prices cif.75 As the figure shows, Oceania has the

lowest bauxite cost by a considerable margin, primarily as a result of low operating costs

and integrated mining operations. Also, Australian refineries are closer to their bauxite

source of supply, excluding the case of QAL. 76 Of all the Australian refineries, Gove

enjoyed the lowest bauxite cost at around $14 per ton of alumina in 1989. The QAL

refinery had the highest bauxite cost of any refinery in the region, over $45 per ton of

alumina in 1989. This was due mainly to the transfer policy of Weipa bauxite to the

refinery at a market price rather than on a cost basis.77 The plant also incurred considerable

freight charges on the long distance from the mine to the refinery. In future years average

74 Ibid.
75 Ibid.
76 Queensland Alumina Limited, Australia.
77 Venalum C.A. data base.
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Figure 13. Prices of Alumina and Bauxite imported into US (Current $).
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bauxite costs in Australia are set to decline in real terms, largely as a result of the Australian

Dollar falling in value with respect to the U.S. Dollar.78

Figure 14. Average Bauxite Costs by Region (Current $).
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Asia ranks second among regions in terms of low bauxite costs, a ranking which

reflects the close relationship of adjacent mines-refineries in the area. Indeed, all India's

alumina capacity is fed by local bauxites. 79 Over the next few years, the price is expected

to remain constant in real terms in the region.80

Despite access to large local supplies, Latin American refineries must pay

comparatively high bauxite prices due to high transportation costs, especially in Brazil and

78 The World Bank, Price Prospects for Major Primary Commodities. 1988-2000,
(Washington D.C., The World Bank, 1989).
79 Venalum C.A. data base.
80 The World Bank, Price Prospects for Major Primary Commodities. 1988-2000,
(Washington D.C., The World Bank, 1989).
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Venezuela, and the impact of the Jamaican bauxite levy. Another factor putting upward

pressure on average prices has been the poor operating performance of the Los Pijiguaos

mine in Venezuela. A series of delays from Los Pijiguaos have forced CVG to depend

greatly on imported bauxite at a cost of approximately $80 per ton of alumina. However,

expected improvement in Los Pijiguaos's operations, a projected fall in Trombetas bauxite

price, and a decline on the Jamaican bauxite levy should ultimately result in a lower average

bauxite price for the region.

Bauxite costs are far higher in Europe due to the fact that most of the bauxite

consumed is imported at market prices, plus the cost of transportation from the producing

region. Indeed, European producers with local supplies had bauxite costs well below

average in 1989. European bauxite costs rose in 1989 when Guinean [Boke] bauxite prices

increased. Boke bauxite accounts for most of the bauxite consumed in Europe. But this

high bauxite cost is likely to decline after 1989 as a result of declining prices in alumina and

primary aluminum markets. 81

Bauxite costs in North America are currently the highest in the world, because of

the unavailability of local bauxite supplies. North American refineries must thus depend

fully on expensive, traded bauxites, which as noted earlier have high transportation costs.

U.S. bauxite costs will tend to remain constant over the next few years.

4.3.2.2. Caustic Soda Costs.

Caustic soda costs come from two sources, chemical losses and physical losses. In

1989, chemical losses varied from as low as 17 kg per ton of alumina in refineries running

solely bauxite from the Boke mine, to as high as 128 kg per ton on refineries running high-

reactive-silica-content bauxites. Physical losses can range from as low as 20 kg per ton to
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as high as 50 kg per ton of alumina. Thus, total caustic soda losses can vary from a low of

37 kg per ton to a high of 148 kg per ton of alumina.

Between 1986-1989 caustic soda prices increased, and they are expected to

continue increasing, largely as a result of a tight chlorine market. From the refineries'

perspective, costs of caustic soda represent, approximately 20% of full operating cost, the

third highest cost behind bauxite (37%), and energy (25%).

Figure 15 shows the distribution of caustic soda costs per region in U.S. dollars

per ton of alumina. North American caustic soda costs average the lowest in the world and

are expected to remain low throughout the next several years, a reflection of North

American access to low soda prices and the consumption of high-cost, low-reactive-silica

bauxites.

Source: Venezolana de Aluminio, Venalum CA.
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Caustic soda costs are relatively low in Europe for similar reasons. The high

amount of Boke bauxite consumed in European refineries should help to ensure that caustic

soda costs remain at their 1989 level for the next several years. However, those refineries

consuming European bauxites will continue to have high caustic soda costs.

In Latin America, the cost of caustic soda has not risen as steeply as elsewhere in

recent years, mainly because Brazilian caustic soda prices were already at extremely high

levels prior to 1986.82 Over the next few years, Latin America caustic soda costs are

expected to remain close to today's level. However, because of high reliance on the spot

market, the region may still be vulnerable to the high short-term volatility of the market.

Costs are much higher in Oceania due to the proportionately greater reactive silica

content of Australian bauxites. In the last two years the cost of caustic soda has risen by

more than 200%.83 This sharp rise in caustic soda prices has reduced the operating costs

gap between Australian and the rest of world refineries.

Due to the exceptionally high level of domestic prices in India, Asia experiences the

highest caustic soda costs. Although some decline is expected in real terms for the future, it

is expected that Asia will continue to maintain the highest costs in the industry.

4.3.2.3. Labor Costs.

On average, labor costs account for approximately 15% of total direct operating

costs, and varies considerably depending on different regional labor productivity ratios and

employment costs. Figure 16 shows labor cost distribution in U.S. dollars per ton of

alumina.

Labor costs in North America and Europe are considerably higher than those in

other regions as a result of higher minimum wages. Indian labor costs are the lowest,

despite poor productivity, because of extremely low employment costs and a depreciated
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currency. In general, the higher average productivity of North American and European

refineries is insufficient compensation for the lower wages of the less developed countries.

An exception is Australia, where productivity is high and labor cost half way between

developed and developing countries84 . By 1995, Oceania and Latin America are expected

to increase their labor-competitive advantage due to major brownfield expansions and

currency depreciation against the dollar.

Figure 16. Average Labor Costs by Region (Current $).
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4.3.2.4. Energy Costs.

Energy costs represent 20-25% of total operating costs. Of all operating costs,

energy costs have decreased the most due to technological improvements in alumina
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refining.85 Refineries differ markedly, however, in terms of energy efficiency and fuel

costs. CVG's refinery is one of the lowest energy cost refineries in the world, with energy

costs at about 8% of total operating costs. Indian refineries have the highest energy costs,

accounting for almost 50% of total direct production costs. These illustrate the wide

variations between energy costs when considering refineries' relative cost position.

Figure 17 shows average energy cost distribution by region on U.S. dollars per ton

of alumina86. North America has the lowest energy costs in the industry. Relatively low,

energy-consumption technology and more importantly, access to cheap gas supplies,

provide North America with a clear competitive advantage over other regions. This

advantage is expected to remain, though it is likely to diminish as the other low-energy cost

regions, Australia and Latin America, begin to close the gap, as a result of U.S. dollar

appreciation.

Latin America has relatively low energy costs, estimated at about $26 per ton of

alumina in 1989. However, the region's average cost is significantly affected by the low

energy costs incurred at CVG's refinery. This efficient refinery has extremely inexpensive

gas supplies, with energy costs at about $12 per ton of alumina. Most other refineries in the

region are dependent on expensive heavy fuel oil.

Costs in Oceania are relatively low, at about $32 per ton on average in 1989, due in

part to the region's accessibility to local gas supplies. A decline is expected in the future

due to the U.S. dollar appreciation.

Due to higher average fuel oil prices, energy costs in Europe are relatively high

compared to other regions. In 1989, the average was about $45 per ton. It is expected that

high energy costs will remain in the region unless new, cost-effective technological

improvements increase refineries' efficiency.
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Asia's costs are the least cost-competitive, at an average of $63 per ton due to high

fuel prices and high energy consuming refineries. Although Asia's costs are expected to fall

as a result of the installation of new energy-efficient technology and a depreciating

exchange rate in India, it will have very little effect on Asia's position as the highest energy

cost region.

Figure 17. Average Energy Costs by Region (Current $).
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4.3.2.5. Consolidated Distribution by Regions.

Figure 18 shows the 1989 consolidated cost structure by region, including major

operating costs, expressed in U.S. dollars per ton of alumina. It is important to note the

variability of bauxite and energy costs, which both account for more than 60% of the total

in all regions. The foregoing facts show that the sources of competitive advantage in

alumina production stem from access to low-cost energy and bauxite.
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Figure 18. Consolidated Cost Distribution by Regions, 1989.
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Finally, even though CVG has access to low cost labor and energy resources, its

extremely high bauxite costs place the company above the Latin American average. This

clearly shows the necessity for improving production at the Los Pijiguaos mine as the only

viable alternative for reducing bauxite costs. Otherwise, the refinery requirements would

have to continue being covered by actual suppliers due to the dependence between mines

and refineries. Given the imperfections of the bauxite market and its tendency to shrink,

imported bauxite would be expensive and difficult to find.87

This brings us to the issue of what the CVG strategy should be, and to what extent

an alumina expansion should be considered at this point, given the many uncertainties

associated with the domestic bauxite production.

87 The World Bank, Price Prospects for MaJor Primary Commodities. 1988-2000,
(Washington D.C., The World Bank, 1989).
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Chapter 5

Organization of the Alumina Industry

This chapter examines the underlying structure of the alumina market and its

behavior, analyzes factors that affect alumina prices, and evaluates the impact of expanding

capacity in the industry. Two models: perfect competition and oligopoly are analyzed to

shed light on what is the underlying organization of the industry, and how this organization

might affect prices. The supply and demand curves derived for this purpose represent a

first approximation. The methodology used does not consider any dynamic interaction over

time. To include any dynamic relationship, sophisticated econometrics and forecasting

methods are required, which are beyond the scope of this thesis. Nevertheless, this rather

simplified approximation is very helpful in understanding alumina pricing.

5.1. Past Trends in Contract and Spot Prices.

Figure 19 shows the pattern of alumina spot and contract prices since 1976. The

prices shown are average values, except for Norway cif import prices. This figure refers to

estimated medium term, two-to-five-year contracts negotiated on an fob basis. Norway cif

prices are shown because its alumina requirements are fully covered by arm-length

transactions. Norway cif prices give a good approximation of the market response to

changes in industry conditions.

In contrast to the primary market, there is no recognized reference cycle for the

alumina free-market. At any particular period there is a wide range of contract prices which

vary according to different factors, such as duration of the contract, relative location of the

supplier, quantity contracted, and the relationship between the parties concerned.

Furthermore, there is significant variations in individual contract prices, not only between

74



those quoted by different alumina producers, but also between prices quoted by the same

alumina producer. 88

Source: Industria Venezolana de Aluminio, Venalum C.A.

Despite these qualifications, Figure 19 clearly shows a dramatic decline in alumina

contract prices since the early 1980's. After rising to nearly $245 per ton in 1980, average

fob, medium term contract prices subsequently fell to around $130-145 per ton in 1986-

1987 respectively, representing a 40% reduction in six years. This was followed by an

unexpectedly large increase in average alumina prices in the last two years when spot prices

rose, on average, to above $500 per ton at the peak in 1989, and contract prices rose to

$260 per ton of alumina fob. This was mainly caused by a tight alumina balance as result of

an increased demand for primary aluminum. 89 After a steady increase in prices from 1976

88 Venezolana de Aluminio, Venalum C.A.
89 Ibid.
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to 1981, the decline in real prices was even more pronounced, as is evident from Figure

20. Indeed, in real terms the average delivered price fell by almost 60% between 1981 and

1987.

Of special interest is the relationship between recent movements in free-market

alumina prices relative to the LME three-month price index. 90 Alumina-to-primary-

aluminum exchange ratios are essentially the inverse of prices expressed in terms of some

percentage of primary prices. Usually, the ratio specified in the contract will depend upon a

variety of arrangements, current primary aluminum prices, and in particular, whether the

alumina and metal price are determined on a cif or an fob basis.91

Figure 20. Trends in Real Alumina Prices (1989$).
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90 LME: London Metal Exchange Index. It varies depending on the duration, e.g., cash,
three-month, etc.
91 Interview with Mr. Antonio Azpurua. Venalum-International Officer.
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It is apparent in Figure 21, that apart from 1980-1982 and 1988-1989, when

alumina prices moved far out of line with primary aluminum prices, the alumina to primary

prices tended to fluctuate within 0.085 to 0.12. Finally, after rapid revival of primary prices

in 1987, the ratio increased suddenly during 1988 and 1989. In these two years, the spot

alumina to LME-three-month primary aluminum price ratio reflected the unexpected

increase in aluminum demand. Primary prices were above normal levels at approximately

1 10g/lb in 1988 and 900/lb in 1989.

5.2. Structural Changes and their Influence on Pricing Policies.

The alumina market has undergone considerable changes over the past decade.

During the 1970's the industry was characterized by high levels of refinery utilization, well

in excess of 80% throughout most of the period, strong demand growth, and a high degree

of vertical integration. 92 Also, Alcoa of Australia has been, by far, the largest supplier of

the alumina free-market. 93 Under these conditions, long term, cost-based, contracts were

commonplace and comparatively little business was conducted on a short term, 1-to-3 year

contracts or spot basis. Uncertainty about possible shortage of raw materials in the 1980's

only served to reinforce the need for securing long term supply agreements.94

By the early 1980's the basic structure of the alumina market began to change

dramatically, and was accompanied by a radical shift in pricing policies. Several factors

were responsible for these changes: overcapacity began to emerge in the 1980's, initially

the result of a sharp slow down in alumina demand during 1981 and 1982, and later

exacerbated by the introduction of new refining capacity in Australia, Latin America and

92 Shearson-Lehman-Hutton, Annual Review of the World Aluminum, (1989), pp.4 1-4 8.
93 George D. Smith, From Monopoly to Competition: the Transformation of Alcoa. 1888-
1986, (Cambridge University Press, 1988).
94 Robin Adams, "Economic Cost Analysis of the Aluminum Industry", as part of "The
Metal Bulletin's Fifth International Aluminum Conference," Caracas, Venezuela, 1988.
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Figure 21. Alumina Price to LME-3 months Price.
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Ireland.95 Over capacity in the alumina market, along with decreased demand for primary

aluminum demand and weak prices, forced independent smelters to impose considerable

pressure on alumina producers to renegotiate their supply arrangements. Consequently,

contract-time lengths became shorter, particularly for new contracts.

Although long-term supply agreements still persisted, the period between price

negotiations was often reduced significantly to avoid prices moving too far off line from the

free-market, and contract terms were renegotiated with traditional cost-based clauses,

including escalation terms based, partially or fully, on primary prices. 96 As a result, the

negotiating power balance clearly shifted towards free-market alumina buyers. The

emergence of additional free-market alumina sellers undoubtedly contributed to these

changes.

By getting assurances for their minimum quantity under existing long-term

contracts, many smelters were able to take advantage of this growing availability of free-

market alumina by increasing their spot purchases. This helped to maintain the demand

pressure on prices during the mid-1980's. More importantly perhaps, integrated transfer

prices and production policies began to reflect the extreme weakness of the alumina free-

market. The traditional cost based approach to transfer pricing policy tended to be replaced

by pricing policies which closely reflected free-market prices.

The increasing size of the alumina free market over the past decade has shifted the

alumina market to a "quasi-commodity" market behavior. 97 However, the market cannot

be considered perfectly competitive, due to the existence of market rigidities and high

concentration levels in the industry, and the maintenance of high cost refineries by major

companies such as Pechiney. These facts reflect not only the importance of optimal

economic decisions, but also the importance of strategic and institutional considerations.

9 5 Venalum C.A. data base.
96 Ibid.

97 A 'quasi-commodity" market exists when prices are expected to be ultimately governed
by competitive forces
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Technical factors also affect the speed of supply response since capacity changes

are often made in large steps to achieve minimum efficient scale. Moreover, few producers

continue to dominate the free-market and long term contracts still exist. 98 Quality

considerations, as well, can affect supply relationships although, with greater

standardization in alumina specifications, this barrier to free-market transactions has tended

to disappear.

In order to understand the structure that might prevail in the industry, it is important

to analyze the behavior of the free market. In the next section the models of a perfectly

competitive market and of an oligopolistic market are considered to explain the behavior of

the alumina market. The latter is studied, assuming the existence of a dominant firm.

5.3. The Alumina Free Market Behavior.

The aim of this section is to analyze the models of perfect competition and oligopoly

as possible explanations to the underlying alumina free-market organization. We will also

study other factors affecting prices, such as regional imbalances, primary aluminum prices,

and primary aluminum-alumina ratios.

5.3.1. The Free-Market Supply and Demand Curves.

Before studying either of the two models, it is necessary to define alumina free-

market supply and demand. 99 It can be argued that, in the short term, integrated producers

will often continue to operate their refineries simply in order to supply the alumina

requirements to their own smelting system. Production decisions made by these companies

will be influenced not only by commercial considerations, but also by strategic and

98 Mike Edwards, "Structural Change in the Alumina Market", Metals Week Aluminum
Symposium, 1988.
99 The free market is analyzed in order to have a good approximation of the market price.
The objective is to avoid considering any distortions which might have been created by
internal transfer pricing policies.
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institutional factors. Consequently, some integrated refineries may continue to operate in

the short term even though they are failing to cover their operating costs at prevailing

market prices.

Figure 22 depicts the derived free-market supply curves for 1987, 1988 and 1989.

The supply curve has shifted upwards because of changes in current operating costs due to

inflation. Shifts to the right represent increasing available capacity to the free market. It is

important to note that new capacity has always been on the flat part of the curve, which has

increased the elastic portion of the supply curve.

Source: Venozolana de Aluminio, Venalum C.A.

Supply schedules have been derived by examining available output for non-

integrated transactions. 100 A certain degree of approximation is necessary to plot such
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curves to avoid taking into account integrated supply arrangements which, for the purpose

of evaluating potential free-market supplies, should be excluded. The free-market capacity

available in 1987 was about 8.6 million tons just over 9 million tons per year in 1988, and

about 10.2 million tons per year in 1989.

Figure 23 shows the derived demands for hypothetical primary aluminum prices of

700/lb, 800/lb, 900/lb and 1100/lb using 1989 smelters' operating costs. 10 1 The free-

market demand is represented by a curve which plots smelters' willingness to pay, given

their operating costs, excluding alumina for a given primary price.

_Ww WJNW W WW WWW ('000

-D(70/lb) - D(80/lb) -D(900/lb) -D(1100/lb) s/y 1

Source: Venezolana de Aluminio, Venalum C.A.

The derived demand curves define the quantity required by non-integrated smelters

at different alumina prices. In cases where smelters obtained alumina from both integrated
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refineries and the free market, only free-market supplies are included. 102 The ability to pay

for alumina was then derived by subtracting operating cost estimates for a given aluminum

price and deducting an alumina freight cost to obtain an fob measure of smelters'

willingness to pay 10 3. Total aluminum capacity dependent on the free alumina market

accounted for about 5.2 million tons in 1989. The major buyers of free-market alumina are

producers in the Middle East, Hydro Aluminum in Norway, Alumax and the newly formed

independent smelters in the United States [U.S.]. Others include Aluar in Argentina, Albras

in Brazil, Asahan in Indonesia, and Delfzijl in Holland. 104

5.3.2. Perfectly Competitive Pricing Model.

In perfect competition, producers are price takers and price is determined where the

industry's marginal cost equals the industry's marginal revenue. Consequently, on the

basis of this rather simple model, price movements can be caused by shifts in either the

supply or the demand curve. 105 Certainly the pronounced downward shift in costs during

the 1980's helps to at least partly explain the fall in prices which occurred over this

period. 106 Indeed, between 1982 and 1987 full production costs at the marginal alumina

supplier fell by some $60 per ton in nominal terms, while contract alumina prices declined

by $40 to $50 per ton on average. 107

In a highly competitive environment with large surpluses saturating the market,

prices can be driven down to a point where the marginal supplier is only covering its

102 Those supplied under long-term agreements were excluded.
103 Freight costs were assumed constant at $10.
104 Venalum C.A. data base.
105 Robert S. Pindyck and Daniel L. Rubinfield, Microeconomics, (Macmillan, 1989).
106 Costs had a downward shift mainly as result of technology improvements and the
location of new refineries in low-cost regions.
107 Venalum C.A. data base.
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average costs, especially if complete production shutdown involves large costs10 8 and/or

withdrawal from strategically important sectors in the industry. Producers may then

continue to operate in order to supply an integrated smelting system, maintain market share,

or because they assume that weak prices will be temporary.

Figure 24 depicts the market equilibrium for different primary aluminum prices. In

this case, the supply and demand curves for 1989 derived in Figures 22 and 23 are used.

Market equilibrium is defined as the price and quantity at which marginal cost equals

marginal revenue, i.e., where the supply curve is equal to the demand curve. The

equilibrium outcome will depend on the chosen primary aluminum price. Hence, it is

important to examine the consequences of changing primary prices on the derived demand

for alumina, and see how the equilibrium result changes.

For primary aluminum prices of 800/lb, 900/lb and 1 10g/lb, the equilibrium price

is about $200 per ton of alumina fob and the equilibrium quantity, approximately 10 million

tons of alumina per year. However, alumina contract prices in 1989 were, at about $275

per ton. 10 9 This difference in price reflected the tight market and the risk of possible

supply shortage. In the case where primary price is 600/lb, equilibrium quantity is lower at

about 9.2 million tons per year. But, interestingly, the equilibrium price does not change.

This situation is similar to what happened during 1982-1987, when the market was in a

surplus position and contracts were priced at approximately competitive equilibrium levels.

One implication that arises from this non-linear situation is that there is no simple

relationship between alumina and primary prices. When primary aluminum prices increase

above 60/lb, increased alumina contract prices will not reflect the competitive equilibrium.

The final price will depend mainly on contractual agreements, the negotiation power of the

108 Not only financial costs have to be considered, but also, especially for state-owned
enterprises, social and political costs to analyze management's decision to shut down
production.

109 Venalum C.A. data base.
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Figure 24. Perfect Competitive Market Equilibrium, 1989.
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parties involved, and the ability of alumina producers to collude. 110 This accounts for the

variation in contract prices, even for prices quoted by the same refinery selling to different

smelters.1 11 In contrast, when the primary aluminum price falls from 60/lb, alumina

prices will mainly reflect competitive equilibria.

This asymmetric response to primary aluminum price arises because the cost

structure of the market is not uniform: to the left of the intersection between D(600/lb) and

the alumina supply curve, the marginal cost curve is flat, almost infinitely elastic; to the

right, the alumina cost schedule rises quite steeply over a small range of production, thus

becoming a quasi-inelastic supply. Also, above 600/lb metal prices, non-integrated alumina

demand is close to its maximum attainable level. Hence, rising primary aluminum prices,

causing the demand curve to move upwards, cannot push it beyond the maximum available

production capacity, and assuming no change in alumina supply, 112 that will increase the

supply shortage risk.

In conclusion, it is worth highlighting the following issues: a rise in the primary

aluminum price above certain level will cause a rapid escalation in alumina price as

smelters' demand rises. Because the alumina supply is a step function, small movements in

the primary price around certain critical values may result in rapid change in alumina

pricing, reflecting a high alumina price sensitivity to changes in capacity. A ceiling on the

competitive alumina price occurs at about $200 per ton, reflecting the operating cost of the

marginal supplier. As primary prices rise above 630/lb, demand for free-market alumina

remains at 10.2 million tons per year. Demand is constrained by the smelting capacity

available to purchase alumina and hence, higher primary aluminum prices will cease to

exert upward pressure on the price of alumina. Given this situation and assuming an

110 F. M. Scherer, Industrial Market Structure and Economic Performance, (Second
Edition), Rand McNally College, 1980.
111 Venalum C.A. data base.
112 This is a reasonable assumption, given the slow response due to high barriers to entry
and/or exit.
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oligopolistic behavior, above 630/lb is where the dominant firm might be in a position to

exercise market power. This behavior is discussed in the next section.

5.3.3. Oligopoly Pricing Model.

A second behavior to be considered is that driven by the oligopolistic organization

of the industry. The analysis of free-market prices has been confined to the model of

perfect competition, which takes the demand for alumina as given. While justifiable, this

approach is rather restrictive and does not reflect the underlying oligopolistic structure of

the industry. 113 Perfect competition may not always prevail in the alumina market, nor can

demand be viewed as totally independent of the price of aluminum, as shown in Figure 23.

The purpose of this section is to study the oligopolistic model so as to describe the behavior

of the alumina free market. The approach considers the derived supply and demand curves

for the alumina free market based on refineries' marginal costs and smelters' ability or

willingness to pay for alumina at a given price of primary aluminum.

The objective is to investigate the applicability model of dominant behavior to the

alumina industry and compare the outcome with the one assuming a perfect competitive

organization. The theory of the dominant firm is particularly pertinent to the alumina

market, where relatively few producers supply a large number of buyers. In these

circumstances it is conceivable that one or more producers could try to cut back production

and increase prices in order to exert market power.114

As previously stated, the supply side of the non-integrated alumina market is

characterized by a relatively small number of producers. Here the model of perfect

competition, based on the assumption of a large number of small producers, each taking

113 Alcoa has approximately 40% of the total free-market supply, according to Venalum
C.A. data base.
114 F. M. Scherer, Industrial Market Structure and Economic Performance, (Second
Edition), Rand McNally College, 1980, and Robert S. Pindyck, and Daniel L. Rubinfield,
Microeconomics, (Macmillan, 1989).
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prices as given, may not be appropriate. Rather, a model which allows producers to alter

production levels to influence price may be a more appropriate tool for analyzing the

alumina market.

The framework is that of price leadership where one producer, the price leader, sets

a price which other producers, the followers, take as given. Price is determined by the

leader's adjusting optimal production. The leader first sets a marginal revenue equal to its

marginal cost to achieve optimal production; then, for a given level of production, the price

is set along its demand curve. The obvious candidate for the role of price leadership is

Alcoa of Australia (AA), by far the largest supplier in the market. 115

Figure 25 shows the oligopolistic equilibrium, assuming the 1989 derived supply

and demand curves at a primary aluminum price of 900/lb.11 6 If AA behaves as a price

leader, its profits would be maximized by setting a price for alumina and adjusting

production to sustain this set price, given the derived demand curve and operating costs of

other producers. As Figure 25 shows, the optimal solution to the problem is for AA to set a

price just under $200 per ton of alumina. This can be sustained if AA produces

approximately four million tons per year.117

Average alumina contract prices in 1989 were about $275 per ton fob. The

difference can be explained by the fact that the equilibrium outcome lies in the kinked

areal1 8 of AA's demand [D(Alcoa)]. Therefore, prices are not going to reflect of

equilibrium outcome; but the price at which, as perceived by AA, there is no incentive for

new entrants to build new refineries, or for existing firms to expand their installed capacity.

AA's market power will then depend on how responsive the market is to increases in

115 V.Y. Suslow, "Estimating Monopoly Behavior with Competitive Recycling: An
Application to Alcoa", Rand Journal of Economics, 17 (Autumn 1986): 389-403. The
percentage data if from Venalum C.A. AA accounts for about 41% of the total free-market
supply.
116 It is assumed that the AA marginal cost curve lies between the market supply curve
and the fringe supply curve.
117 Total free-market supply is about 4.8 million tons per year.
118 Kinked area refers to the area where there is a big jump in the demand curve.

88



Figure 25. Oligopolistic Equilibrium, 1989.
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contract prices. The greater the barriers to entry into the alumina market, the higher the

price set by Alcoa will be. The capacity to increase prices also depends on how far the

optimal solution lies in the kinked area, the different contractual agreements, and the

capacity for the main alumina suppliers to collude. 1 19 Thus, the potential for boosting

profits by restricting output is highly dependent on the position of the primary aluminum

price and the alumina supply and demand balance.

On the other hand, at a low primary aluminum price, there is too much non-Alcoa

available alumina capacity which could be brought into operation if AA decided to restrict

output in an attempt to raise prices. Under a low price scenario, there is no incentive for AA

to reduce output to affect alumina prices. In this case, industry output and the price level

would be close to the perfect competitive equilibrium.

In general, the incentive for cutting back production to raise prices is greater when

primary prices are high, the smelting sector is operating close to full capacity, and the

alumina free-market balance is tight. However, if the price set by AA is perceived as an

above-normal, long-run marginal price, other competitors may see it as an incentive to

expand capacity, which would then drive prices down to competitive levels. Thus, AA's

strategy would be expected to present a mixture of low and high alumina prices, depending

on the perceived primary price and the parties concerned. This policy would enable AA to

boost its profits by maintaining the balance of the alumina market. Otherwise, new capacity

will shift the supply curve out, and prices will drop to marginal levels, which is exactly

what happened in the mid-1980's.

5.4. Other Factors Influencing Prices.

In assessing the determinants of price and producers supply response to changing

market conditions, it is important to take into account regional imbalances between alumina

119 F. M. Scherer, Industrial Market Structure and Economic Performance, (Second
Edition), Rand McNally College, 1980, (pp.169-227).
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supply and demand, the relationship between alumina and primary aluminum prices, and

primary aluminum price indices used in contractual agreements.

Regional imbalances and their impact on fob prices is especially true for Europe,

where there is a large deficit of alumina and where the region is dependent, in general,

upon supplies from Latin America and Australia. 120 Due to freight costs, it is logical that

refineries in Latin America, facing the same fob price, will supply the United States East

Coast first, long-term contracts permitting. Assuming the remaining surplus from Latin

America is not sufficient to cover Europe's requirements, supplies from Australia are

necessary. Despite the widespread use of swaps, physical deliveries from Western

Australia are required in Europe, assuming European smelters work close to full capacity.

In terms of sources of supply rather than costs, Australia can be considered the marginal

supplier to Europe.

Australian refineries will then take the market as determined by the relationship

between supply and demand as a reflection of the free-market environment in the short

term. However, to be competitive on a cif basis, producers in Australia would normally be

expected to achieve fob prices slightly lower than the next alternative supplier in Europe or

Latin America due to freight cost differentials. Indeed, assuming a typical freight cost of

$12 per ton from West Coast Australia to Western Europe, compared to $6 per ton from

Ireland, producers in Europe should be able to attain fob prices $6 per ton higher than their

Australian counterparts for the same type of contracts. Similar considerations apply to

relative prices between producers in Latin America and Australia competing for business on

the East Coast of the United States.

In reality, market imperfections rarely permit prices to be determined precisely in

the way theory would suggest. In a tight alumina market such as that experienced during

the past two years, independent European smelters have undoubtedly put pressure on

120 Shearson-Lehman-Hutton, Annual Review of the World Aluminum Industry, 1989, (pp.
41-48).
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nearby suppliers to offer fob prices comparable to those of Australia. However, it is clear

that to be competitive on a cif basis, European refineries would normally be expected to

obtain slightly higher fob prices than those offered to Australian producers. For integrated

European producers located adjacent to or near their smelters, the transfer price will bear a

much closer relationship to the delivered price, since the former reflects the true opportunity

cost to the smelter. Freight costs and regional unbalances are further factors that need to be

taken into account when considering the relationship between costs, prices and production

decisions 12 1.

Another factor that affects prices is the relationship between alumina and primary

aluminum prices. In theory there is no simple, direct relationship as far as new contracts are

concerned. The previous sections have shown that if a perfectly competitive market is

assumed, prices will be driven up/down to the level of operating costs of the marginal

supplier. However, if an oligopolistic market is assumed, prices will be set by the

dominant firm in the industry.

The mechanism by which aluminum prices affect alumina contract prices is

indirectly through shifts in the alumina-derived demand curve. In the absence of any

fundamental change in the cost structure of the primary aluminum and/or alumina

industries, higher prices will result in higher smelter output. Alumina demand is thereby

increased, reducing the amount of surplus capacity available. Consequently, shifts in the

demand for alumina brought about by movements in primary prices will change both the

position and cost of the marginal refinery. 122

Developments in the primary market can influence contract prices due to the relative

bargaining position of refineries and independent smelters. When primary prices are high,

there is less pressure on smelters to obtain the lowest alumina price possible. Smelters may

121 James F. King, "Trends in the Economics of Bauxite and Alumina", Proceedings of
Bauxite Symposium VI, 1986.
122 Ibid.
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be willing to allow the refineries to share with them above normal profits to ensure security

of supplies. In practice, minimum and maximum price limits protect both smelters and

refineries from excessive primary aluminum price movements.

Finally, events of the past years have focused attention on which primary aluminum

price should be used in contract escalation formulas. 12 3 Although primary prices have

traditionally followed essentially the same pattern, price differentials between aluminum

and alumina have changed considerably. Of particular interest to alumina refiners has been

the extreme volatility of LME prices. Certainly producers who have secured contracts based

on the three-month price have enjoyed more stable alumina prices than companies whose

prices are based on cash quotations. Also, linking the base alumina price to other indexes

would not guarantee any greater stability. In fact on a monthly basis, other price indexes

such as U.S.-Mid-Western Merchant Price Index have fluctuated more widely than either

of the LME three-month prices. 124

Since the main objective is risk avoidance, it is perhaps more important for refiners

to base their alumina contract on primary prices that closely match their realized selling

prices. Although to achieve greater stability refiners may consider using a basket of prices

index which might be less volatile than most other published market related primary

indexes, they will adopt a primary price escalator consistent with their own particular

attitudes towards risk-return and the region to which their alumina is supplied.

123 Escalation formulas refer to those formulas used to adjust prices if conditions change.
124 Venalum C.A. data base.
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Chapter 6

Alumina Refinery Valuation

The purpose of this chapter is to provide CVG with a decision-making instrument

for appraising capital investment and strategic investment planning. A simulation model

using a Net Present Value [NPV] approach is used to derive the valuation results of an

alumina refinery with the capacity of one million tons per year in Venezuela. This model

excludes option equivalents or terminal value cash flows so as to focus the analysis on the

operating sources of value from the perspective of the equity holders.

6.1. Valuation Model.

This valuation studies the underlying economics of an alumina refinery plant and

gives an approximation for its base Net Present Value [NPV]. 125 The analysis does not

consider values created by non-linearities such as: option equivalents, special financing

arrangements or subsidies, tax holidays and/or tax loss carry-forwards, or government

guarantees. A detailed valuation of an international project would have to incorporate these

non-linearities which can be modeled with option pricing techniques.126 Where the project

has a clear, positive NPV, and is mutually exclusive within a set of alternatives, an explicit

risk analysis should be performed to show not only the expected NPV outcome, but also

the NPV probability distribution. The analysis includes depreciation tax shields assuming

straight line depreciation over a 20-year period, and interest tax shields assuming a 36%

125 Most of the data is based on the assumption that the project is to be built in
Venezuela. However, the simulation model is sufficiently flexible to accommodate projects
with different characteristics.
126 Option equivalents are cash flows that respond non-linearly to changes in some
underlying cash flows or asset values. For further discussion, see Robert S. Pindyck,
Irreversibility. Uncertainty, and Investment, (Massachusetts Institute of Technology,
August, 1989), and Daniel Siegel, James L. Smith, and James L. Paddock, "Valuing Offshore
Oil Properties with Option Pricing Models", Midland Corporate Finance Journal, (5)1,
(Spring 1987).

94



corporate tax rate. 127 Even though this is a rather simplified approach, this framework

generates a first approximation solution which can be used as an effective decision-making

tool in studying the main economic variables for an alumina refinery project.

Modem finance theory provides us with a general equilibrium framework for the

valuation of capital assets under uncertainty: the Capital Asset Pricing Model [CAPM] 128.

Initially formulated in the context of perfect markets and one period projects, it has been

extended to cover multiperiod projects. 129 The CAPM gives the theoretical foundations for

the NPV investment decision rule.

For complex projects, where agents operate in imperfect, often incomplete and

segmented capital markets, investment and financing decisions are not independent,

therefore it is necessary to include in the analysis any value created by complex contractual

or financial agreements. The NPV additivity principle will permit adding to the base NPV

any value created by non-linearities in the project. The NPV approach provides present

value estimates of cash flows to the different agents depending on their contractually agreed

share of expected future cash flows. In this way, the efficiency of a contract structure and

its risk allocation should be evaluated. 130 The usefulness of the NPV approach is the

recognition of the sources of economic value accrued to various agents as a result of the

financial structure.

The alumina refinery project is considered a stand-alone project whose cash flows

are the collateral for long and short-term debt agreements. This is referred to as project

127 CVG-Planificaci6n Corporativa. Expected tax rate for new projects.
128 To review the model, see Michael C. Jensen, "Capital Markets: Theory and Evidence,"
The Bell Journal of Economics and Management Science, (3)2, (Autumn 1972): 357-398,
and David W. Mullins, "Does the Capital Assets Pricing Model Work?," Harvard Business
Review, (January-February, 1982).
129 Eugene F. Fama, "Risk-Adjusted Discount Rates and Capital Budgeting Theory under
Uncertainty," Journal of Financial Economics, 5, (August 1977): 3-24.
1 30 Contract valuation is beyond the scope of this thesis. For reference, see Charles
Blitzer, Donald R. Lessard, and James L. Paddock, "Risk Bearing and the Choice of Contract
Forms for Oil Exploration and Development," report prepared for the Corporaci6n Estatal
Petrolera Ecuatoriana, MIT, Energy Lab, 1982.
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financing , i.e. the "financing of a particular economic unit in which the lender is satisfied

to look initially to the cash flows and earnings of that economic unit as the source of funds

from which a loan will be repaid and to the assets of the economic unit as the collateral for

the loan." 13 1

The simulation model does the analysis from an equity point of view. To define

each of the cash flow components for the valuation model, Interalumina C.A.'s 1986-1988

financial statements were first analyzed. The idea was to build the pro-formas for the

project as if it were to be run by Interalumina C.A., a reasonable assumption given the

company's competitive performance since it began operating in the mid-1970's. The free

cash flows to equity are defined in Table 13.

Table 13. Free Cash Flows to Equity.

Net Income before dividends
Plus: Depreciation
Minus: Change in Working Capital

Capital Expenditures
Debt Repayment

Plus: Other income
Other non-cash items deducted in the Income Statement

Source: Paul Asquith, class notes, and James L. Paddock, class notes.

The Capital Asset Pricing Model [CAPM] was used in defining the cost of capital to

the equity components in the valuation. According to the CAPM, an appropriate risk-

adjusted discount rate must include both the riskless rate of the interest and a risk premium,

reflecting only the systematic risk of the cash flow. The discount rate therefore must

depend on the systematic risk of alumina price revenues, operating cash flows, and the

relevant portfolio of risky assets. It is assumed that CVG-AL operates internationally

whose set of risky assets is the the world capital market. Since the U.S. capital market

commands such a large proportion of the world market portfolio, the risk-free rate and the

expected excess return on the market are based on the U.S. capital market.

131 Peter K. Nevitt, "Project Financing," Euromoney Publications, (London, 1979), p. 13.
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For government participation, in this case represented by CVG-Aluminum, the

discount rate estimates provided by the CAPM also represent a good approximation to its

economic cost of equity capital. Assuming CVG-Aluminum does not have the required

technical, financial and/or managerial expertise to carry on alumina development, it is likely

they would have to sign service contracts. 13 2 Therefore, CVG-Aluminum participation, if

not invested in the project, would be invested in comparatively international funds during

the same period. Consequently, the discount rate for CVG-Aluminum's cash flow is the

marginal cost of incremental funds invested in international capital markets, reflecting the

systematic risk of the alumina project which is close to the discount rate obtained using the

CAPM.

This assumption may be too restrictive, given the availability of domestic inputs

such as energy, labor and bauxite. Energy is a non-tradeable good, which is currently

priced in dollars at its long-run marginal costs, though closely reflecting its opportunity

cost or economic price. The required labor would be rather specialized and therefore would

be assumed as a mobile factor priced at market levels, except for some exchange rate

distortions. Finally, while bauxite supplies are currently imported at $34.5 per ton, it is

expected that the Los Pijiguaos mine will cover all Venezuelan bauxite requirements. It is

beyond the scope of this thesis to analyze whether the Venezuelan bauxite can be sold

internationally. Nevertheless, this is an important fact to be considered given that the

project's bauxite cost should reflect the opportunity costs of using Los Pijiguaos's bauxite

domestically instead of exporting it. As an approximation for the bauxite opportunity costs,

the World Bank scenario of $25 per ton of bauxite in 1985 dollar terms is considered as the

base case scenario1 33 [see Figure 26]. This approximation coincides with Bauxiven's

target of pricing its bauxite at $25 per ton cif.

132 It should be remembered that technology is in the hands of the six Integrated Majors.
133 The World Bank, Price Prospects for Major Primary Commodities, (Washington D.C.,
The World Bank, 1989), p. 220.
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Figure 26. Bauxite Expected Prices. The World Bank.
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The project systematic risk is defined through its Beta before adjusted for desired

leveraged. It is this risk component in the CAPM which represents asset volatility

compared to the asset and the market covariance. In the case of an alumina project, the Beta

is around 0.95. In the simulations, a Beta of 0.92 was used, the average for the major

aluminum companies' Beta. 134 However, this average value is an unleveraged Beta,

though at any period the project's Beta was releveraged depending on the debt-equity ratio

at the end of each period. 135

The estimated risk by the Beta component represents the systematic risk of the

asset. While the fiscal risk was not explicitly considered in this study, it should

nevertheless be evaluated explicitly in the case of international investors. This will affect

the probability distribution of expected cash flows. Fiscal risk is defined as "the risk of

contractual non-performance by the host government in the form of a unilateral change in

stated fiscal terms, if excess profits are earned by the foreign investor because of price or

discovery windfalls." 136

For debt components, a 10% cost of debt is used. This approximates the nominal

interest rate of the project loan under consideration by competitive international markets

without government guarantees, 137 reflecting the appropriate nominal discount rate for

debt contracts. It also reflects the low risk that debt cash flows have due to high interest-

coverage ratios, and the customary high debt-equity ratio employed in this type of project.

The debt-equity ratio is expected to be around 70% during the initial periods.

134 Standard and Poors, Stock Reports NYSE, Jan. 1990-Feb. 1990. See also, Faiz Makdisi-
Ilyas, Financial Evaluation of a Bauxite Mining and Alumina Plant Project, Unpublished
Thesis, Sloan School of Management, 1980, pp. 35-42.
135 Leveraged Betas and the Cost of Equity, Harvard Business School Case 9-288-036,
1988.
136 Panos Cavaulacos, The Impact of Fiscal Risk on Petroleum Investments Unpublished
PhD thesis, Department of Nuclear Engineering, M.I.T., June, 1987.
137 Venalum C.A. data base.
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In reality, the correct evaluation of the present value of the project loans is very

complicated, because it must incorporate the contract's option features. In fact, interest

payments are usually not contractually fixed, since they are payable at a spread over the

chosen base rate on the outstanding principal. The valuation of project loans by option

pricing techniques would be rather interesting, however, it is not the concern of this study.

For simplicity, it is assumed that CVG has borrowed the total required external financing

through a single project-financing entity, the alumina refinery; and that interest payments

and principal repayment are payable in assuming an annuity type schedule.

Terminal values of the assets are not considered. Given that the simulation is run

for 20 years, terminal present values of the assets will have little impact on the result.

Further, if the refinery is built as a state-owned enterprise, it is unlikely to be sold or

privatized over its life.

This valuation exercise is intended to serve as a decision-making tool and can be

used not only for valuation purposes, but as a tool for risk analysis, as well as for defining

contractual efficient arrangements. Table 14 shows the parameters used in the simulation.

According to the strategic analysis developed in previous chapters, these are the most

sensitive parameters. The simulation results are explained in the following section.

6.2. Results.

The results are not intended to be deterministic. The objective is to show a range of

values which will permit the decision maker to define different scenarios and ascertain

which variables are the most sensitive. It is important to see how these variables change

and how responsive they are in order to allocate risks efficiently among the concerned

parties. Appendix A shows the tables in addition to the operating cost, capital costs and

base case parameters required to resemble the results. Appendix B contains additional
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simulation figures on different variables which have relatively low impact on the NPV

outcome.

Table 14. Base Case Simulation Parameters.

Alumina Price
Alumina Production Schedule

Inflation Rate
Investment Costs
Construction Period
Percentage Construction Completion per Year
Depreciation Period
Bauxite Costs
Caustic Soda Costs
Energy Costs
Labor Costs
Equity Participation
Debt Participation
Interest Rate on Debt
Debt Repayment Period
Pre-opening and Organization Costs
Amortization Period for Preop.&Org.Costs
Unleveraged Beta for the Project
Risk Free Rate138

Market Risk Premium1 39

275 ($/ton)
('000 ton,year)
(100,3);(650,4);(900,5);(1000,5-22)
1.04 (1+%/year)
800,000 ($'000)
3 (Years, 2<>6)
(1,20%);(2,40%);(3,40%) (%,year)
20 (Years)
25 ($/ton Bauxite)
200 ($/ton Caustic Soda)
15 ($/ton Alumina)
15 ($/ton Alumina)
30(%)
70(%)
10(%)
15 (Years)
8,200 ($'000)
5 (Years)
0.92
0.08
0.086

Figure 27 shows capital outlays during the construction period. The main

assumptions are: (1) There is no debt repayment made during this period, (2) interests

accrue until the end of the period, (3) working capital needs are determined by two months

of operating requirements, and (4) debt-holders' participation does not begin until equity-

holders have invested their 100% participation. Note the assumption that there is no

difference between interest rates on debt during construction and debt after construction.

138 Interest rate on long term US Government bonds.
139 Roger Ibbotson and Rex Sinquifield, Stocks. Bonds. Bills, and Inflation: Historical
Returns (1926-1978),, Charlottesville, VA., Financial Analysis Research Foundation,
1979.
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Figure 27. Construction Period Investment Outlays.
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Even though higher interest rates are expected during construction, for the sake of

simplicity it is better to leave everything at constant rates.

Figures 28 to 30 show the the range of possible cumulative NPV results assuming a

base case scenario, a pessimistic scenario, and an optimistic scenario. A constant real

alumina price trajectory is assumed, a uniform inflation rate of 4% per year, and a changing

nominal discount rate depending on the debt-equity ratio at the end of the period. It is clear,

given these assumptions, that the most likely NPV is always close to zero, and that the

breakeven outcome is far later in the future, always after Year 20. It is important to note the

impact of high initial capital outlays. If the project does not have a steady stream of high

cash flows, it will be impossible to make it profitable.

Figure 28 shows the sensitivity to alumina prices. Of all the variables, this is the

most volatile. The cumulative NPV outcomes range from approximately plus $200 million

to minus $200 million. This wide distribution of outcomes can be explained by high

volatility in alumina prices, the imperfections that still exist in the market, and the risks

associated with the physical nature of alumina. This is why refineries are forced to engage

in contractual agreements to guarantee the allocation and price of their output for which, if

risks are well diversified, the expected NPV outcome is zero. The zero NPV outcome for

the most likely scenario indicates that, for an average cost producer, there is no incentive to

expand capacity.

The price sensitivity to changes in available capacity analyzed in Chapter 5 also

explains the wide range in the cumulative NPV. If the refinery chooses to rely on short-

term contracts and/or the spot market, its operating cash flows will be highly volatile, as a

result of changes in industry capacity. As we saw in Chapter 5, when the market is

balanced, alumina prices do reflect market equilibrium. Usually, prices are higher than the

market equilibrium due to the premium that alumina buyers are willing to pay to avoid the

supply shortage risk. On the other hand, if there is a surplus capacity, alumina prices will

reflect the competitive equilibrium.
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Figure 28. Sensitivity to Alumina Prices ($/ton).
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Figure 29. Sensitivity to Bauxite Costs, ($/ton).
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Figure 30. Sensitivity to Investment Costs, ($/ton Alumina).

Cumulative NPV

($1000)

Years

100000

50000

0

-50000

-100000

-150000

-200000

-250000

-300000

/



Figure 29 and 30 show the sensitivity to bauxite and investment costs respectively.

These variables are not as sensitive as the alumina price, however, the range between plus

$100 million and minus $100 million is important to be considered. Bauxite sensitivity

affects the NPV outcome in a way similar to the alumina price. Its sensitivity is largely

explained because bauxite represents more than 50% of total operating costs.

In the case of investments costs, impact occurs during the construction period.

Although the NPV is not as sensitive to these costs compared to alumina prices or bauxite

costs, we consider it the most important variable of the three, because these costs are

endogenous, can be controlled internally to some extent by the firm, and because once

investment costs are committed, the final outcome is almost defined. If the cost of the

refinery is above $800 per ton, it will be almost impossible to make the project profitable.

Figures 31 and 32 show the sensitivity to the construction period. If percentage

completion is distributed proportionally over the construction period, there is a major

difference in the resultant cumulative NPV. These figures represent the NPV as a function

of different investment costs for any given bauxite and alumina price. Because non-

linearities are not included in the simulation, all relations are linear. The following

equations define the set of schedules plotted in Figures 31 and 32:

For 3-year construction period [Figure 31]:

NPV(3-yrs)=-0.40*Cap.Inv+[2.47*Alumina-6.67*Bauxite-0.16*CausticSoda-2.85*Energy-131.56]

For 5-year construction period [Figure 32]:

NPV(5-yrs.)=-27Cap.Inv+[1.66*Alumina-4.43*Bauxite-139.58]

As the construction period increases the capital investment coefficient and the

intercept decrease, if some delay occurs during construction it will be harder to turn the

project profitable. As the capital investment coefficient decreases, the project's upside

potential decreases considerably. Even though the slope changes, the spread between

curves in both sets is almost the same, showing that sensitivity to bauxite costs is

exogenous to the project.
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Figure 31. NPV for Different Investment Costs, 3-yr Construction Period.
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Figure 32. NPV for Different Investment Costs. Construction Period 5-yrs.
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Figures 33 and 34 show how insensitive the project is to changes in energy and

caustic soda prices. Although in the cost structure analysis energy exhibited a high

variability in energy costs among firms and regions, the NPV outcome is not that sensitive

to this variable. This explains the fact that refineries in India having extremely high energy

costs are operating. On the other hand, CVG's refinery, with one of the lowest energy

costs in the industry, has average operating costs due to high bauxite costs.

The results of the NPV sensitivity analysis to alumina prices, and investment,

bauxite, energy and caustic soda costs indicate that, in all cases, the base case scenario has

a zero NPV outcome and the breakeven point is far in the future. Competitive advantage in

alumina investments stems primarily from low bauxite costs and low investment costs. It is

important to note the irrelevance of changes in energy and caustic soda costs. CVG-Al's

main concern should be its high bauxite costs, thus shifting the company's focus to its

bauxite operations as the first priority.
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Figure 33. NPV for Different Energy Costs.
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Figure 34. NPV for Different Caustic Soda Prices. Alumina Price $275/ton. Construction Period 3-
yrs.
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Chapter 7

Conclusion and Recommendations

An increase in alumina capacity above its current capacity of two million tons per

year is not recommended. If increases in alumina capacity are targeting the primary

aluminum expansion program in Venezuela, 140 and CVG-Aluminum will only have

approximately 20% equity participation, what is the interest in promoting a zero-NPV

alumina project? Since CVG-Aluminum, through its subsidiary Interalumina C.A., is

currently long in aluminal 41 , and given expectations of a higher NPV for primary

aluminum investments, where should CVG-Aluminum focus its capital investment

resources?

Currently, CVG is in an inefficient position. Its alumina sector is long when the

market is expected to decline, primary expansions have been delayed, and the bauxite mine

has not yet began to produce efficiently. Given this transitory situation, the aluminum

sector should be restructured with emphasis in cost optimization policies, to respond to an

integrated strategy taking into account Venezuela's comparative advantages in aluminum

and the current economic situation.

Venezuela has clear competitive advantages in producing primary aluminum. These

advantages stem from low-cost sources of energy, a long alumina position, and an

anticipated decrease in bauxite costs. The combination of these advantages and an expected

stable primary aluminum market1 42 permit CVG-AL to take a more aggressive position in

primary aluminum, and to bear some of the risks associated with the industry, such as

alumina price volatility, and concentration levels on downstream markets. By increasing

140 The objective is to reach two million tons per year of installed capacity by the year
2000.
141 Current primary production is about 600k tons per year, requiring approximately
1,200k tons of alumina per year.
142 Shearson-Lehman-Hutton, Annual Review of the World Aluminum Industry, (1989),
pp. 41-48.
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primary aluminum capacity, the option to expand downstream by merging and/or joint

ventures provides CVG-AL with flexibility in designing an optimal investment plan. In

considering any upstream capacity expansion, CVG-AL should first exhaust all alternatives

provided by external markets for structuring a balanced portfolio of contracts and securities

to optimize its desired risk-return position.

The integration of alumina and bauxite operations does not depend on the

assumption of a particular market structure; but, rather, on certain technical and economic

arguments, such as the non-homogeneity of bauxite, the scale of production, and the

importance of freight costs. The integration of alumina and primary aluminum operations

however, does depend on the existence of a particular industry organization. This is an

important distinction, in that if vertical integration depends on technical and economic

factors, a vertical structure is recommended. The recommendation will not change unless

there is some change in technology, such as in production processes or minimum efficient

scale. But, if vertical integration depends on the organization of the industry, then optimal

organization can change from being vertically integrated to a more competitive

environment, as conditions change.

There has been a long and slow process of disintegration at the industry level as the

share of integrated producers has gradually declined. The segmentation and growth of the

alumina and primary aluminum markets have reduced the risk of not being integrated across

these markets, thus reducing the need for being vertically integrated. With the growth,

particularly of Independent Smelters and Miner/Refiners, the rules of the game have

changed to that of a quasi-competitive organization.

As a result of this disintegration process, the overall importance of the Integrated

Majors will continue to be reduced by the growth of the Independent Smelters group. In

addition, intensified rivalry among members of the Integrated group will occur as they all

seek to exploit down-stream markets, and as the industry globalization trend continues to

occur. The long process of declining integration at the industry level is expected to
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continue, and will be influenced by the economic cycle where disintegration is going to be

accelerated by economic troughs and retarded by strong economic conditions.

The alumina industry has an oligopolistic underlying structure which, if primary

prices are low, the optimal price is close or equal to its competitive equilibrium. If primary

aluminum prices are high, however, the dominant firm, Alcoa of Australia, sets an

optimum price, which is much higher than the perfect competitive price. Prices not only

depend on supply and demand balance, but on different factors and contractual agreements

such as the length of the contract, escalation formulas, freight costs, aluminum prices,

negotiation power of the parties concerned, and the ability of the producers to collude. This

situation arises because supply and demand curves are characterized by being almost

perfectly elastic at low cost ends. But, for the marginal firm, these curves change to an

inelastic condition. Therefore, at the margin the market is highly sensitive to changes in

alumina capacity.

As a result of high sensitivity to capacity changes, the alumina market experienced a

high volatility in prices. This is why it is in the interest of Second-Tier producers to serve

as catalysts in new alumina projects when the market is close to balanced. By investing in

capacity expansions, Second-Tier producers will guarantee low alumina prices and more

importantly, stable contracts for their alumina requirements. On the other hand, firms with

long alumina position, such as CVG, would be interested in maintaining a tight alumina

market.

Finally, from Venezuela's perspective, non-positive NPV projects should not be

undertaken, even if they are supported on the grounds of being catalysts for economic

development. To foster sustainable, long-term growth, Venezuela should pursue strong

projects which do not require subsidies or preferential financing arrangements to make

them profitable.
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Appendix A

This appendix contains additional tables required to obtain the

base case results. The following tables are included:

Tables 15a-15c. Income Statement.

Tables 16a-16c. Balance Sheet.

Tables 17a-17c. Loan Schedule.

Tables 18a-18c. Free-Cash Flows to Equity.
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Table 15a. Income Statement ($'000)

0 1 2 3 4 5 6 7 8 9
YearEnd 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Inflation Rate 1.00 1.04 1.08 1.12 1.17 1.22 1.27 1.32 1.37 1.42

Net Sales
Cost of Goods Sold

Gross Profit
Selling, General and Administrative
Depreciation
Amortization Preop. Exp. & Org. Cos

Total Operating Expenses
Net Operating Incom

Interest Expense @ 36%
Earnings before Taxes

Income Taxes
Net Income
Dividends

0 30,934 209,112
0 12,987 87,792
0 17,947 121,320
0 1,547 10,456
0 0 40,000
0 0 1,640
0 1,547 52,096
0 16,400 69,225

24,718 62,006 64,786
(24,718) (45,606) 4,438

0 0 1,598
(24,718) (45,606) 2,841

0 0 2.556

301,122
126,420
174,701

15,056
40,000

1,640
56,696

118,005
60,055
57,951
20,862
37,088
33.380

347,963
146,086
201,877

17,398
40,000

1,640
59,038

142,839
57,908
84,931
30,575
54,356
48.920

361,881
151,929
209,952

18,094
40,000

1,640
59,734

150,218
55,547
94,672
34,082
60,590
54.531

376,356
158,006
218,350

18,818
40,000

1,640
60,458

157,893
52,949

104,944
37,780
67,164
60.447

391,411
164,326
227,084

19,571
40,000

0
59,571

167,514
50,092

117,422
42,272
75,150
67.635



Table 15b. Income Statement ($'000) (cont.)

10 11 12 13 14 15 16 17 18 19
Year End 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Inflation Rate 1.48 1.54 1.60 1.67 1.73 1.80 1.87 1.95 2.03 2.11

Net Sales 407,067 423,350 440,284 457,895 476,211 495,259 515,070 535,673 557,100 579,384
Cost of Goods Sold 170,899 177,735 184,845 192,239 199,928 207,925 216,242 224,892 233,888 243,243

- Gross Profit 236,168 245,615 255,439 265,657 276,283 287,334 298,828 310,781 323,212 336,140
00 Selling, General and Administrative 20,353 21,167 22,014 22,895 23,811 24,763 25,753 26,784 27,855 28,969

Depreciation 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000
Amortization Preop. Exp. & Org. Cos 0 0 0 0 0 0 0 0 0 0

Total Operating Expenses 60,353 61,167 62,014 62,895 63,811 64,763 65,753 66,784 67,855 68,969
Net Operating Incorr 175,814 184,447 193,425 202,762 212,472 222,571 233,074 243,997 255,357 267,171

Interest Expense @ 36% 46,949 43,491 39,688 35,505 30,903 25,841 20,273 14,148 7,411 0
Earnings before Taxes 128,866 140,956 153,737 167,257 181,569 196,730 212,801 229,849 247,946 267,171

Income Taxes 46,392 50,744 55,345 60,212 65,365 70,823 76,608 82,746 89,261 96,182
Net Income 82,474 90,212 98,391 107,044 116,204 125,907 136,193 147,103 158,685 170,990
Dividends 74,227 81,190 88,552 96,340 104,584 113,316 122,573 132,393 142,817 153,891



Table 15c. Income Statement ($'000) (cont.)

20 21 22 23 24 25
Year End 2010 2011 2012 2013 2014 2015

Inflation Rate 2.19 2.28 2.37 2.46 2.56 2.67

Net Sales 602,559 626,661 651,728 677,797 704,909 733,105
Cost of Goods Sold 252,973 263,092 273,615 284,560 295,942 307,780

Gross Profit 349,586 363,569 378,112 393,237 408,966 425,325
Selling, General and Administrative 30,128 31,333 32,586 33,890 35,245 36,655
Depreciation 40,000 40,000 40,000 40,000 0 0
Amortization Preop. Exp. & Org. Cos 0 0 0 0 0 0

Total Operating Expenses 70,128 71,333 72,586 73,890 35,245 36,655
Net Operating Incorr 279,458 292,236 305,526 319,347 373,721 388,670

Interest Expense @ 36% 0 0 0 0 0 0
Earnings before Taxes 279,458 292,236 305,526 319,347 373,721 388,670

Income Taxes 100,605 105,205 109,989 114,965 134,539 139,921
Net Income 178,853 187,031 195,537 204,382 239,181 248,749
Dividends 160,968 168,328 175,983 183,944 215,263 223,874



Table 16a. Balance Sheet ($'000)

0 1 2 3 4 5 6 7 8
Year End 1990 1991 1992 1993 1994 1995 1996 1997 1998
Inflation Rate 1.00 1.04 1.08 1.12 1.17 1.22 1.27 1.32 1.37

Assets
Current Assets
Cash and Marketable Securities 0 0 0 0 10,450 10,920 11,412 11,925 12,462
Accounts Receivables 0 0 0 2,543 17,187 24,750 28,600 29,744 30,933
Inventories 0 0 0 4,640 31,367 45,168 52,194 54,282 56,453
Prepaid Expenses 0 0 0 309 2,091 3,011 3,480 3,619 3,764

Total Current Assets 0 0 0 7,492 61,095 83,849 95,685 99,570 103,612

Property, Plant and Equipment, net 0 160,000 480,000 800,000 760,000 720,000 680,000 640,000 600,000
Preopening Expenses & Org. Costs 8,200 8,200 8,200 8,200 6,560 4,920 3,280 1,640 0
Other Assets 0 0 0 1,856 12,547 18,067 20,878 21,713 22,581

Total Fixed Assets 8,200 168,200 488,200 810,056 779,107 742,987 704,158 663,353 622,581
Total Assets 8,200 168,200 488,200 817,548 840,202 826,837 799,843 762,923 726,194

Liabilities and Net Worth
Current Llabilities
Short Term Debt 0 0 0 0 27,802 0 0 0 0
Account Payable 0 0 0 1,449 9,412 11,525 12,585 12,659 13,165

Total Current Liabilities 0 0 0 1,449 37,214 11,525 12,585 12,659 13,165

Portion to Social Security Benefits 0 0 0 619 4,182 6,022 6,959 7,238 7,527
Long Term Debt 0 0 247,176 620,063 600,547 579,080 555,466 529,491 500,918

Total Fixed Liabilities 0 0 247,176 620,682 604,730 585,102 562,425 536,728 508,445
Total Liabilities 0 0 247,176 622,130 641,944 596,627 575,010 549,387 521,610

Net Worth 8,200 168,200 512,918 885,804 866,289 839,684 756,338
Common Stock 8,200 168,200 265,741 265,741 265,741 265,741 265,741 265,741 265,741
Retained Earnings 0 0 (24,718) (70,324) (67,483) (30,395) 23,961 84,551 151,715

Total Net Worth 8,200 168,200 241,024 195,417 198,258 230,209 224,833 213,536 204,584
Total Liabilities & Net Worth 8,200 168,200 488,200 817,548 840,202 831,974 864,712 899,679 939,066

Dividends 0 0 0 0 0 5,137 64,869 136,756 212,872
tal Liabilities & Net Worth. After Div. 8,200 168,200 488,200 817,548 840,202 826,837 799,843 762,923 726,194



Table 16b. Balance Sheet ($'000) (cont.)

9 11 12 13 14 15 16 17 18
YearEnd 1999 2001 2002 2003 2004 2005 2006 2007 2008
Inflation Rate 1.42 1.54 1.60 1.67 1.73 1.80 1.87 1.95 2.03

Assets
Current Assets
Cash and Marketable Securities 13,023 14,221 14,861 15,530 16,229 16,959 17,722 18,519 19,353
Accounts Receivables 32,171 34,796 36,188 37,635 39,141 40,706 42,335 44,028 45,789
Inventories 58,712 63,502 66,043 68,684 71,432 74,289 77,260 80,351 83,565
Prepaid Expenses 3,914 4,233 4,403 4,579 4,762 4,953 5,151 5,357 5,571

Total Current Assets 107,819 116,753 121,494 126,428 131,563 136,907 142,468 148,255 154,278

Property, Plant and Equipment, net 560,000 480,000 440,000 400,000 360,000 320,000 280,000 240,000 200,000
Preopening Expenses & Org. Costs 0 0 0 0 0 0 0 0 0
Other Assets 23,485 25,401 26,417 27,474 28,573 29,716 30,904 32,140 33,426

Total Fixed Assets 583,485 505,401 466,417 427,474 388,573 349,716 310,904 272,140 233,426
Total Assets 691,304 622,154 587,911 553,902 520,136 486,622 453,372 420,395 387,704

Liabilities and Net Worth
Current Liabilities
Short Term Debt 0 0 0 0 0 0 0 0 0
Account Payable 13,692 14,809 15,401 16,018 16,658 17,325 18,018 18,738 19,488

Total Current Liabilities 13,692 14,809 15,401 16,018 16,658 17,325 18,018 18,738 19,488

Portion to Social Security Benefits 7,828 8,467 8,806 9,158 9,524 9,905 10,301 10,713 11,142
Long Term Debt 469,487 396,883 355,050 309,033 258,414 202,733 141,485 74,111 0

Total Fixed Liabilities 477,315 405,350 363,855 318,191 267,938 212,638 151,786 84,824 11,142
Total Liabilities 491,007 420,159 379,257 334,208 284,596 229,963 169,803 103,563 30,630

Net Worth
Common Stock 265,741 265,741 265,741 265,741 265,741 265,741 265,741 265,741 265,741
Retained Earnings 226,865 399,551 497,942 604,986 721,191 847,098 983,290 1,130,393 1,289,079

Total Net Worth 200,296 201,994 208,654 219,694 235,539 256,659 283,568 316,833 357,074
Total Liabilities & Net Worth 983,614 1,085,451 1,142,940 1,204,936 1,271,528 1,342,802 1,418,835 1,499,697 1,585,450

Dividends 292,310 463,297 555,029 651,034 751,393 856,180 965,463 1,079,302 1,197,746
tal Liabilities & Net Worth. After Div. 691,304 622,154 587,911 553,902 520,136 486,622 453,372 420,395 387,704



Table 16c. Balance Sheet ($'000) (cont.)

19 20 21 22 23 24 25
YearEnd 2009 2010 2011 2012 2013 2014 2015
Inflation Rate 2.11 2.19 2.28 2.37 2.46 2.56 2.67

Assets
Current Assets
Cash and Marketable Securities 20,224 21,134 22,085 23,079 24,117 25,202 26,337
Accounts Receivables 47,621 49,525 51,506 53,567 55,709 57,938 60,255
Inventories 86,908 90,384 93,999 97,759 101,670 105,736 109,966
Prepaid Expenses 5,794 6,026 6,267 6,517 6,778 7,049 7,331

Total Current Assets 160,546 167,069 173,857 180,922 188,274 195,925 203,889

Property, Plant and Equipment, net 160,000 120,000 80,000 40,000 0 0 0
Preopening Expenses & Org. Costs 0 0 0 0 0 0 0
Other Assets 34,763 36,154 37,600 39,104 40,668 42,295 43,986

Total Fixed Assets 194,763 156,154 117,600 79,104 40,668 42,295 43,986
Total Assets 355,309 323,222 291,457 260,025 228,942 238,220 247,875

Liabilities and Net Worth
Current Liabilities
Short Term Debt 0 0 0 0 0 0 0
Account Payable 20,267 21,078 21,921 22,798 23,710 24,658 25,645

Total Current Liabilities 20,267 21,078 21,921 22,798 23,710 24,658 25,645

Portion to Social Security Benefits 11,588 12,051 12,533 13,035 13,556 14,098 14,662
Long Term Debt 0 0 0 0 0 0 0

Total Fixed Liabilities 11,588 12,051 12,533 13,035 13,556 14,098 14,662
Total Liabilities 31,855 33,129 34,454 35,833 37,266 38,756 40,307

Net Worth
Common Stock 265,741 265,741 265,741 265,741 265,741 265,741 265,741
Retained Earnings 1,460,068 1,638,921 1,825,953 2,021,489 2,225,871 2,465,053 2,713,801

Total Net Worth 323,454 290,093 257,002 224,193 191,676 199,464 207,568
Total Liabilities & Net Worth 1,757,665 1,937,792 2,126,148 2,323,063 2,528,878 2,769,550 3,019,849

Dividends 1,402,356 1,614,570 1,834,692 2,063,038 2,299,937 2,531,330 2,771,974
tal Liabilities & Net Worth. After Div. 355,309 323,222 291,457 260,025 228,942 238,220 247,875



Table 17a. Loan Schedule @ 10/6, 15yrs ($'000)

0 1 2 3 4 5 6 7 8 9
Year End 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Inflation Rate 1.00 1.04 1.08 1.12 1.17 1.22 1.27 1.32 1.37 1.42

Debt Financing
Debt Balance 0 0 0 620,063 620,063 600,547 579,080 555,466 529,491 500,918
Debt Repayment 0 0 0 0 81,522 81,522 81,522 81,522 81,522 81,522
Interest 0 0 0 0 62,006 60,055 57,908 55,547 52,949 50,092
AMT 0 0 0 0 19,516 21,467 23,614 25,975 28,573 31,430
Balance end Year 0 0 0 620,063 600,547 579,080 555,466 529,491 500,918 469,487

Total Interest 0 0 0 0 62,006 60,055 57,908 55,547 52,949 50,092
Total Amortization 0 0 0 0 19,516 21,467 23,614 25,975 28,573 31,430



Table 17b. Loan Schedule @ 10%, 15yrs ($'000) (cont.).

10 11 12 13 14 15 16 17 18 19
Year End 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Inflation Rate 1.48 1.54 1.60 1.67 1.73 1.80 1.87 1.95 2.03 2.11

Debt Financing
Debt Balance 469,487 434,914 396,883 355,050 309,033 258,414 202,733 141,485 74,111 0
Debt Repayment 81,522 81,522 81,522 81,522 81,522 81,522 81,522 81,522 81,522 0
Interest 46,949 43,491 39,688 35,505 30,903 25,841 20,273 14,148 7,411 0
AMT 34,573 38,031 41,834 46,017 50,619 55,681 61,249 67,374 74,111 0
Balance end Year 434,914 396,883 355,050 309,033 258,414 202,733 141,485 74,111 0 0

Total Interest 46,949 43,491 39,688 35,505 30,903 25,841 20,273 14,148 7,411 0
Total Amortization 34,573 38,031 41,834 46,017 50,619 55,681 61,249 67,374 74,111 0



Table 17c. Loan Schedule @ 10%, 15yrs ($'000) (cont.).

20 21 22 23 24 25
Year End 2010 2011 2012 2013 2014 2015

Inflation Rate 2.19 2.28 2.37 2.46 2.56 2.67

Debt Financing
Debt Balance 0 0 0 0 0 0
Debt Repayment 0 0 0 0 0 0
Interest 0 0 0 0 0 0
AMT 0 0 0 0 0 0
Balance end Year 0 0 0 0 0 0

Total Interest 0 0 0 0 0 0
Total Amortization 0 0 0 0 0 0



Table 18a. Free Cash Flow to Equity ($'000).

0 1 2 3 4 5 6 7 8 9
Year End 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Inflation Rate 1.00 1.04 1.08 1.12 1.17 1.22 1.27 1.32 1.37 1.42

Net Income 0 0 (24,718) (45,606) 284 3,709 5,436 6,059 6,716 7,515
Dividends 5,137 59,732 71,888 76,116 79,438
Change in Working Capital 0 0 0 (7,492) (53,603) (22,754) (11,836) (3,884) (4,042) (4,207)
Capital Expenditures (8,214) (160,000) (320,000) (320,000) 0 0 0 0 0 0
Depreciation 0 0 0 0 40,000 40,000 40,000 40,000 40,000 40,000
Extras:

Amt. Preop. & Org. Cos 0 0 0 0 0 1,640 1,640 1,640 1,640 1,640
Debt Repayment 0 0 247,176 372,887 8,286 (49,269) (23,614) (25,975) (28,573) (31,430)

FCFe (8,214) (160,000) (97,541) (211) (5,033) (21,537) 71,357 89,727 91,857 92,955
Discounted FCFe (8,214) (138,036) (68,049) (118) (2,312) (8,190) 22,442 23,383 19,883 16,763



Table 18b. Free Cash Flow to equity ($'000).

10 11 12 13 14 15 16 17 18 19
Year End 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Inflation Rate 1.48 1.54 1.60 1.67 1.73 1.80 1.87 1.95 2.03 2.11

Net Income
Dividends
Change in Working Capital
Capital Expenditures
Depreciation
Extras:

Amt. Preop. & Org. Cos
Debt Repayment

FCFe
Discounted FCFe

8,247
83,444
(4,378)

0
40,000

0

(34,573)
92,741
13,988

9,021
87,543
(4,556)

0
40,000

0
(38,031)
93,978
11,918

9,839
91,731
(4,741)

0
40,000

0
(41,834)
94,996
10,200

10,704
96,005
(4,934)

0
40,000

0
(46,017)
95,758

8,791

11,620 12,591 13,619 14,710 15,869
100,359 104,787 109,283 113,839 118,444

(5,135) (5,344) (5,561) (5,787) (6,023)
0 0 0 0 0

40,000 40,000 40,000 40,000 40,000

0
(50,619)
96,226

7,660

0
(55,681)
96,354

6,797

0
(61,249)
96,093

6,220

0

(67,374)
95,388

6,029

0
(74,111)
94,179

6,601

17,099
204,610

(6,268)
0

40,000

0
0

255,441
15,447A



Table 18c. Free Cash Flow to equity ($'000).

20 21 22 23 24 25
Year End 2010 2011 2012 2013 2014 2015

Inflation Rate 2.19 2.28 2.37 2.46 2.56 2.67

Net Income 17,885 18,703 19,554 20,438 23,918 24,875
Dividends 212,214 220,122 228,346 236,899 231,394 240,644
Change in Working Capital (6,523) (6,788) (7,065) (7,352) (7,652) (7,963)
Capital Expenditures 0 0 0 0 0 0
Depreciation 40,000 40,000 40,000 40,000 0 0
Extras:

Amt. Preop. & Org. Cos 0 0 0 0 0 0
Debt Repayment 0 0 0 0 0 0

FCFe 263,576 272,037 280,835 289,985 247,660 257,556
Discounted FCFe 13,751 12,244 10,905 9,715 7,158 6,422



Appendix B

This appendix contains additional sensitivity analysis. The following

figures are included:

Figure 35. Sensitivity to Equity Participation.

Figure 36. Sensitivity to construction Period.

Figure 37. Sensitivity to Time Delays.

Figure 38. Sensitivity to Unleveraged Beta.

Figure 39. Sensitivity to Capacity Utilization.

Figure 40. Sensitivity to Interest Rate on Debt.

Figure 41. NPV for Different Investment Costs. Alumina Price
$200/ton Construction Period 3-yrs.

Figure 42. NPV for Different Investment Costs. Alumina Price
$275/ton Construction Period 3-yrs.

Figure 43. NPV for Different Investment Costs. Alumina Price
$350/ton Construction Period 3-yrs.

Figure 44. NPV for Different Investment Costs. Alumina Price
$200/ton Construction Period 5-yrs.

Figure 45. NPV for Different Investment Costs. Alumina Price
$275/ton Construction Period 5-yrs.

Figure 46. NPV for Different Investment Costs. Alumina Price
$350/ton Construction Period 5-yrs.
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Figure 35. Sensitivity to Equity Participation.
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Figure 36. Sensitivity to Construction Period.

50000 TCumulative NPV

($'000)

0O %,E i I I

S' 5 10 15 20 Years 30

-50000 --
* 3 years

-100000 -- 4 years

+ 5 years

-150000-

-200000--

-250000



Figure 37. Sensitivity to Time Delays.
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Figure 38. Sensitivity to Unleveraged Beta.
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Figure 39. Sensitivity to Capacity Utilization.
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Figure 40. Sensitivity to interest Rate on Debt.
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Figure 41. NPV for Different Investment Costs. Alumina Price $200/ton.Construction Period 3
yrs.
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Figure 42. NPV for Different Investment Costs. Alumina Price $275/ton. Construction Period 3.
yrs.
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Figure 43. NPV for Different Bauxite Costs. Alumina Price $350/ton. Construction Period 3-yrs.
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Figure 44. NPV for Different Investment Costs. Alumina Price $200/ton. Construction Period 5
yrs.
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Figure 45. NPV for Different Investment Costs. Alumina Price $275/ton. Construction Period 5

Figure 45. NPV for Different Investment Costs. Alumina Price $275/ton. Construction Period 5.
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Figure 46. NPV for Different Investment Costs. Alumina Price $350/ton. Construction Period 5

Figure 46. NPV for Different Investment Costs. Alumina Price $350/ton. Construction Period 5.
yrs.
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