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ABSTRACT

Magnetoacoustic emission from 180 degree domain walls in magnetic materials is
investigated. The result is a theoretical model which predicts that the 180 degree domain
wall is a source of elastic radiation. This is contrary to accepted theory. The emission
from a planar moving 180 degree domain wall is modeled using a micromagnetic
approach to determine the spin distribution within the domain wall. The continuum spin
distribution within the wall has a small component in the direction of motion of the
domain wall. The component in the direction of motion is directly proportional to the
velocity of the domain wall for velocities small compared to the Walker limiting velocity.
Using the spin distribution, a continuum elastic model is developed where the motion of
domain walls couples into the crystal lattice via magnetostriction. It is shown that the 180
degree domain wall emits elastic radiation upon acceleration. This is the necessary
condition for elastic radiation, i.e., the convective derivative of the non-elastic strain is
non-zero.

A transducer is developed to measure the elastic radiation from the accelerating
180 degree domain wall. The transducer is based on a Scanning Tunneling Microscope
modified to have sensitivity to surface motion on the order of 10-12 meter with a 5 MHz
bandwidth. The tunneling transducer is used to attempt to measure small shear elastic
emission from domain walls in a SiFe picture frame single crystal. The magnitude of the
emission based on the theoretical model developed in the thesis is approximately the same
as the noise limit of the tunneling transducer. Thus no magnetoacoustic emission is
measured. Experimental modifications are discussed to enhance the ability to isolate
elastic radiation from a moving 180 degree domain wall.

Thesis Supervisor: Professor Robert M. Rose
Department of Materials Science and Engineering
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Chapter I: Introduction

1.1 Background

A ferromagnetic material emits elastic radiation during the magnetization process.

This type of emission was first theoretically proposed and subsequently measured by

Lord [1967 and 1975] and Lord et al. [1974]. Elastic radiation is a traveling stress wave

propagating in an elastic medium. In general, emission of elastic radiation in any

material, termed an acoustic emission because the frequency is typically in the audible or

ultrasonic range, is directly related to sudden changes in the internal strain distribution of

the material [Maldn and Bolin 1974]. Many possible sources of elastic radiation exist in

materials, e.g., dislocation motion [James and Carpenter 1971], and growth of cracks in

brittle materials [Evans and Linzer 1977]. For each of these possible sources there is a

local change in the internal strain field, and stress field, which emits the elastic radiation.

In a magnetic material a number of possible sources of elastic radiation exist [Higgins and

Carpenter 1978, Ono 1986, Jiles 1988, and Guyot and Cagan 1991]. Magnetic sources

of acoustic emission are discussed in this thesis with emphasis on the emission in the

initial stages of magnetization, when domain wall motion is the dominant mechanism for

the magnetization process.

1.2 Magnetoacoustic Emission: Background

Lord [1967] initiated interest in acoustic emission from ferromagnetic materials

during magnetization with his theoretical investigation of elastic radiation from an

oscillating 1800 domain wall. This theory is based on a planar 180 domain wall, a

region separating two magnetic domains in which the magnetization rotates through an

angle of 1800, whose amplitude modulates sinusoidally, while the wall remains spatially

stationary. This is really a dynamic model for creation/annihilation because of the

temporal modulation of the domain wall amplitude. Lord theorized that an oscillating, or



in his case a modulating, magnetic domain wall is a source of elastic radiation because of

the changing strain field during the oscillations. The local strain field undergoes

oscillations caused by a magnetoelastic coupling of the domain wall to the crystal lattice.

Lord et al. [1974] extended the theory, qualitatively, to include experimentally

observed acoustic emission, referred to as magnetoacoustic emission when arising from

magnetoelastic sources [Jiles 1988 and 1991], during magnetization of nickel. These

later measurements were made such that isolation of elastic radiation from a unique

source was not possible. The material geometry and microstructure did not permit the

determination of the emission source. They concluded that since the magnetization

changes discontinuously in a changing external applied magnetic field (this behavior is

called the magnetic Barkhausen effect) the accompanying magnetoacoustic emissions can

be attributed to the same discontinuous domain wall motion that is responsible for the

Barkhausen effect.

1.3 Magnetoacoustic Emission: Models for Emission

Subsequent investigations of elastic radiation produced during magnetization of

ferromagnetic materials have resulted in a number of emission models. None of these

emission models accurately describe all the phenomena associated with magnetoacoustic

emission. The main similarity among almost all models is that they disregard 180

domain walls as sources of magnetoacoustic emission.

I.3a Magnetoacoustic Emission: Magnetoelastic Energy Model

The most commonly used models are based on the work of Kusanagi et al.

[1979a] which utilizes the conclusion by Lord et al. [1974] that magnetoacoustic

emission during magnetization is caused by discontinuous domain wall motion.

Kusanagi et al. attempt to determine the net change in total elastic energy, AEei, from a



combination of magnetoelastic and elastic strain energy densities of the material before

and after the discontinuous motion of a domain wall. The dynamics of domain wall

motion are not included, only the net change in the magnetization is used. They postulate

that at least some of the net change in total elastic energy is emitted as elastic radiation.

Kusanagi et al. propose that only non- 180 domain walls, a region separating two

magnetic domains in which the magnetization rotates through an angle less than 1800, can

contribute to the magnetoacoustic emission. This is because there is a negative net

change in the total elastic energy of a magnetic material after non- 180* domain wall

motion in a material with cubic magnetocrystalline anisotropy, where as there is no net

change in the total elastic energy for 180 domain wall motion. Kusanagi et al. have

made a number of incorrect assumptions in their calculation. This work is discussed in

Chapter III.2a.

Further evidence for the dismissal of 1800 domain wall motion as a possible

source of magnetoacoustic emission is a comparison of the intensity of elastic radiation

from material with cubic magnetocrystalline anisotropy, which contain many non- 180*

domain walls, and uniaxial magnetocrystalline anisotropy, which contain very few non-

1800 domain walls. In cobalt (uniaxial), Kusanagi et al. [1979a] measure lower levels of

magnetoacoustic emission than those in iron (cubic). Since there are far fewer non-180*

domain walls in cobalt, they postulate that non- 180 domain walls must be the source of

magnetoacoustic emissions. The relative difference in the magnetoacoustic emission for

cobalt and iron or nickel is not presented by Kusanagi et al. Their general conclusion,

which is widely accepted, is that 180 domain walls cannot play a role in magnetoacoustic

emission observed during magnetization.

In addition to the type of domain wall responsible for magnetoacoustic emission

in magnetic materials, Kusanagi et al. [1979a] list a number of other predictions by their

model. These include:



1) The intensity of the magnetoacoustic emissions should be related to the

magnetoelastic constants and the number of energy emission sites n(H), where H

is the applied magnetic field.

2) The intensity of magnetoacoustic emission should depend on both applied stress

and residual stress since n(H) is dependent on these stresses.

3) The intensity of magnetoacoustic emission should depend on internal strains.

It is the relation between applied stress, internal strain and the intensity of

magnetoacoustic emission that can be tested experimentally.

I.3b Magnetoacoustic Emission: Effects of Applied Stress and Internal Strain

The effects of stress on magnetoacoustic emission are reported by Kusanagi et al.

[1979a and 1979b]. It was observed that, in general, increased applied stress, either

tensile or compression, causes a decrease in the amplitude of the magnetoacoustic

emission. Kusanagi et al. did report a maximum, or two maxima in the case of nickel, in

the region close to, but not exactly at, the zero load point. Their general results have been

verified by a number of authors [Ono and Shibata 1980 and 1981, Shibata and Ono

1981, Burkhardt et al. 1982, Kwan 1983, Ono 1986, Buttle et al. 1986, Edwards and

Palmer 1987, Kim and Kim 1989, Namkung et al. 1989 and 1991, and Ng et al. 1992a].

Edwards and Palmer determined that some of the rapid decrease in magnetoacoustic

emission could be caused by the experimental setup used to apply the external stress.

The relative degree of clamping during application of the applied stress can alter the

fundamental resonance frequency and the magnitude of resonance, thus altering the

magnetoacoustic emission measured by a piezoelectric transducer. More recently Ng et

al. have measured an increase in the magnetoacoustic emission for nickel, under tension,

for applied magnetic fields both parallel and orthogonal to the applied stress.

The observed dependence of the intensity of magnetoacoustic emission on applied

stress is explained using magnetoelastic energy [Jiles 1991, Kwan 1983, Edwards and



Palmer 1987, and Ng et al. 1992a]. For materials with positive magnetostriction the ratio

of 180 to non- 180" domain walls increases when that material is under tension. Thus

the magnetoacoustic emission should decrease. Likewise for materials with negative

magnetostriction the ratio of 180* to non-180* domain walls decreases when that material

is under tension. So here the magnetoacoustic emission should increase (possibly the

increase observed by Ng et al. [1992a]). More troubling is the effect compressive stress

should have on the magnetoacoustic emission using this type of explanation. In this

case, the change in non-180 domain walls is opposite to the case during tension, and

thus the intensity of magnetoacoustic emission of a material under compression should

change accordingly. This is not observed [Jiles 1991, Kusanagi 1979a, Ono and Shibata

1981, Burkhardt et al. 1982, Ono 1986]. The dependence of magnetoacoustic emission

on applied stress is more complicated than a simple change in the relative area of non-

180 to 1800 domain walls. In a dynamic model of magnetoacoustic emission, the effects

of the applied stress on the actual motion of domain walls is also critical. Inclusion of

domain wall motion is suggested by Namkung et al [1989 and 1991] for materials under

uniaxial stress.

The response of magnetoacoustic emission in materials under biaxial stress has

also been investigated [Buttle et al. 1990, and Ng et al. 1992b]. In a cross shaped steel

specimen, Buttle et al. report that the intensity of magnetoacoustic emission does not

appear to depend directly on the level of tensile stress applied orthogonally to the applied

magnetic field. This is inconsistent with a model in which non- 180* domain walls are the

unique source of magnetoacoustic emission at low magnetic fields. The opposite result is

observed by Ng et al. [1992b]. In a cross shaped nickel specimen, in which the majority

of domain walls are non-180* domain walls (actually either 71* or 1090), they report a

strong dependence of magnetoacoustic emission on the level of applied stress. The

difference could stem from the existence of different dominant magnetoacoustic emission

mechanism in these materials with very different domain wall configurations.



The dependence of magnetoacoustic emission on internal strain is also

contradictory to that hypothesized by Kusanagi et al. [1979a]. It has been determined

that cold working, increasing internal strain, causes a decrease in the intensity of

magnetoacoustic emission [Ono and Shibata 1981, Kwan 1983, Ono 1986, and Buttle

1986 and 1987]. On the other hand the same studies indicate that annealing increased the

intensity of magnetoacoustic emission. This is inconsistent with the concept that the

intensity of magnetoacoustic emission is directly proportional to the internal strain, and

likewise inconsistent with the concept that the increased number of active emitting sites

occurs with increased internal strain. As is shown in Chapter III.2a, Kusanagi et al. have

incorrectly accounted for the internal strain. The corrected model suggests that the

change in total elastic energy is not directly dependent on internal strain. If the volume

of material involved at each individual site is increased with decreased strain, the increase

in the intensity of magnetoacoustic emission upon annealing can be accounted for.

I.3c Magnetoacoustic Emission: Dynamic Inelastic Strain Model

In order to deal with the direct problems associated with the model proposed by

Kusanagi et al. [1979a], Ono and Shibata [1981] have attempted to look at the emission

of the elastic radiation from a dynamic point of view. This model uses an approach

formulated by Maldn and Bolin [1974] and Ono [1978] for acoustic emission by a

moving dislocation where the equations of motion for a linear elastic media are solved

after introducing an inelastic strain associated with the dislocation. Maldn and Bolin

determine that for a step change in inelastic strain, Ae*, the amplitude of elastic radiation

emitted should be proportional to Ae* and the volume associated with the change. Ono

and Shibata employ this dynamic model for the motion of the non- 180 domain wall.

They again conclude that since there is no net static Ae* after motion of a 180 domain

wall, there can be no magnetoacoustic emission from 180 domain wall. Such a



conclusion ignores any possible dynamic changes in the strain field within the 1800

domain wall. This model does not specifically give information about the magnitude or

functionality of the change in inelastic strain. Thus the observed effects of applied stress

and residual strain can not be directly addressed.

I.3d Magnetoacoustic Emission: Creation/Annihilation Model

The model of Ono and Shibata [1981] suggests a direct relation between the Ae*

and the saturation magnetostriction constants, Xs. Kwan [1983] and Kwan et al.[1984]

conclude that depending on the type of material, and the dominant mechanisms for

magnetization, the level of magnetoacoustic emission should be linear with saturation

magnetostriction )s, in a moderate applied magnetic field. Kwan and Kwan et al.

observe a linearity in nickel based alloys used in these experiments, but not in iron based

alloys.

Such a relation was not observed by Guyot et al. [1990a, 1990b and 1991]. In

the experiments performed by Guyot et al., yttrium iron garnet based ferrimagnetic

compounds were investigated. Significant amounts of magnetoacoustic emission is

reported even for a polycrystalline material with manganese substitution such that the

saturation magnetostriction constant is zero. Guyot et al. propose that domain wall

motion models cannot account for the observed emission from this material. In addition,

they point out that the shape demagnetizing effect of the sample can significantly alter the

magnetoacoustic emission. Guyot et al. [1987, 1988, 1990a, 1990b and 1991] find a

direct proportionality between magnetoacoustic emission and hysteresis loss in the ferrite,

amorphous and mu-metal samples. Thus Guyot et al. propose that a domain wall

annihilation/creation mechanism is more appropriate as a source of magnetoacoustic

emission.



Although a domain wall creation/annihilation mechanism cannot be discounted as

a contributor to the magnetoacoustic emission, the conclusion that the magnetostriction

coefficient does not play a role is not proven. Guyot et al. [1990a, 1990b and 1991]

discount the lack of magnetoacoustic emission seen by Kwan [1983] and Kwan et al.

[1984] for certain nickel-iron alloys, where X100, X111 and the saturation magnetostriction

coefficient, Xs, are all zero, as an artifact of other magnetic parameters. On the other hand

Guyot et al. use Y3Fe4 .92Mno.080 12 with a zero Xs, but non-zero X100 and X1 11 [Dionne

and Goodenough 1972]. It is unknown whether the value of ks is determined using the

standard formula for an anisotropic material [Jiles 1991] or the corrected formula for

polycrystalline aggregates [Callen and Goldberg 1965]. If a model for magnetoacoustic

emission includes a term dependent on individual magnetostriction constants, then

magnetoacoustic emission for the ferrite tested by Guyot et al. should be finite, as was

found. The determination that magnetostriction does not play any role in emission of

elastic radiation in a ferromagnet during magnetization is not proven by Guyot et al.

Another domain wall creation/annihilation has been proposed by Kim and Kim

[1989]. This model couples the creation/annihilation of the domain wall to

magnetoacoustic emission via the magnetostriction. Although the premise of the

argument is not inaccurate, the method for determination of the strain field is incorrect

(this is discussed in Chapter III). Thus the results of this model cannot be accepted.

I.3e Magnetoacoustic Emission: 1800 Domain Wall Model

Many proposed mechanisms exist for magnetoacoustic emission in a

ferromagnetic material. Other than early work by Lord [1967 and 1975], Lord et al.

[1974] and Burkhardt, et al. [1982] and a more recent review by Kuleev et al. [1986], the

possibility that 180* domain wall motion is a source of emission has been discounted.
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Such a conclusion is based on a non-dynamic and non-realistic model of the

magnetization process. A true dynamic model must include the emission by 180 domain

wall motion, along with non-180" domain wall motion and domain wall

creation/annihilation.

Experimental evidence suggest that 180" domain walls can cause measurable

magnetoacoustic emission in single crystal silicon-iron. Kwan [1983] observed

significant magnetoacoustic emission in a single crystal. She suggested that the source

might be 1800 domain walls. But later, in order to demonstrate that the observed

magnetoacoustic emission from a single crystal is consistent with her proposal of a direct

relation between the intensity of magnetoacoustic emission and saturation

magnetostriction, she concludes that this is unlikely. Gorkunov et al. [1986] also

measured large magnetoacoustic emission in silicon-iron oriented in the [100] direction.

They observed reasonable correlation between the Barkhausen effect and

magnetoacoustic emission at the early stages of magnetization. Since the majority of

Barkhausen jumps at this stage of magnetization are caused by 180' domain walls,

especially in their particular single crystal orientation, they concluded that the motion of

180" domain walls must be related directly to the motion of non-180" domain walls. This

conclusion was drawn to overcome their difficulty in explaining how 180" domain walls

could be a magnetoacoustic emission source. The claim that the 180 domain walls drag

the non-1800 domain walls along in the early stages of magnetization is also suggested by

Namkung et al. [1991].

1.4 Scope of Thesis

This thesis extends the original calculations by Lord [1967] and Kuleev et al.

[1986] to a model in which a spatially moving 180 domain wall emits elastic radiation in

a ferromagnetic material. This model shows that it is the local change in the

magnetization distribution within the domain wall which alters the strain field of the



domain wall. It is this change in the magnetization distribution within the domain wall,

which is required for motion [Landau and Lifshitz 1935, and O'Dell 1981], that produces

the magnetoacoustic emission from the 180 domain wall. The model proposed in this

thesis, in which the acceleration of a 180* domain wall is a source of elastic radiation, can

then be added to the list of mechanisms for magnetoacoustic emission.

In order to model the elastic radiation emitted from 180* domain wall motion, the

magnetization within the domain wall is needed. Chapter II discusses models of a static

180 domain wall in the cubic material. The cubic material is chosen since attempts at

experimental verification are performed on a cubic 3% SiFe single crystal. A number of

inconsistencies found in the literature describing the 180 domain wall are discussed.

Chapter III is a review of the current models and descriptions of magnetoacoustic

emission. This is background for Chapter IV, in which the static domain wall model

developed in Chapter II is extended to a simple dynamic model for the 180 domain wall.

A model for the magnetization distribution within a moving domain wall is presented.

The basis of the model follows the presentation of O'Dell [1981], but extends his

postulates to determine a self consistent solution to the Landau and Lifshitz equation of

motion including Gilbert damping [Gilbert 1955]. The magnetization distribution derived

in this thesis is shown in Appendix C to be a lower energy state than that of the Walker

solution commonly used [Dillon 1963 and Schryer and Walker 1974]. The magnetization

distribution is used to find the elastic interaction of the moving domain wall with the

magnetic crystal. This interaction produces magnetoacoustic emission if the domain wall

is accelerating.

The model presented follows the approach used by Lord [1967] and Kuleev et al.

[1986]. This literature is based on a number of assumptions about the symmetry of the

magnetic system and the elastic displacement vectors which are only approximate for

magnetic materials containing domain walls. Both papers are based on the premise that

the stress tensor is symmetric and that the rotation tensor plays no role in the magnetic



system. As pointed out by Auld [1968] and Brown [1965 and 1966], these are two of a

number of incorrect assumptions commonly made when dealing with deformable

ferromagnetic materials. Auld specifically deals with the elastic effects in ferrimagnetic

materials undergoing electron spin resonance, but does not deal with domain walls.

Since a corrected formalism has not been attempted when modeling the dynamics

of the domain wall, the accuracy of the model presented in this thesis is only

approximate. But the model is of value because it introduces a clear conceptual basis for

the elastic coupling of a 180 domain wall to the magnetic material which produces

magnetoacoustic emission. The corrections required to accurately model the

magnetoelastic coupling at the domain wall do not invalidate the conclusion made in this

thesis using the simpler model that there is magnetoacoustic emission from 180 domain

walls.

Experimental techniques for the measurement of magnetoacoustic emission are

discussed Chapter V. The standard techniques are presented. Next the design of a high

frequency tunneling acoustic emission transducer developed for this thesis is discussed.

The tunneling transducer has high sensitivity to local surface motion. The transducer can

detect surface motion of approximately 0.5A at a bandwidth of greater than 5MHz before

any signal processing or averaging. This sensitivity can be used with material geometries

to attempt to isolate magnetoacoustic emission from 1800 domain walls.

Using the tunneling transducer, the validity of the prediction that a 180 domain

wall can be the source of magnetoacoustic emission is then tested experimentally by

measurement of magnetoacoustic emission in an imperfect picture-frame single crystal of

iron with 3% silicon. If the picture frame is perfect, the geometry isolates 180* domain

walls allowing isolation of emission from other possible sources. Since the crystal is

slightly out of alignment a more complex domain structure exists which can obfuscate the

experimental results. The results of experimentation on SiFe presented in Chapter IV
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indicate that any emission in the crystal is below limit of detection of the tunneling

transducer.

In Chapter VII the consequences of the model and the experimental results are

discussed along with a presentation of future experiments that should circumvent the

experimental difficulties encountered in this thesis. These experiments are designed to

enhance the understanding of magnetoacoustic emission in ferromagnetic materials.
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Chapter II: Magnetic Domain Walls

11.1 Introduction

An investigation of the elastic interaction of a moving 180 Bloch wall in a

ferromagnetic material requires, as a foundation, a theoretical description of a static Bloch

wall. The Bloch wall is referred to simply as a domain wall; all other types of

interdomain regions are referred to by using specific names. The theoretical aspects of

this thesis employ domain wall theory, published by Landau and Lifshitz [1935], which

models the statics and dynamics of magnetization in a material, using the Landau-Lifshitz

equation. The Landau-Lifshitz equation can be used to determine both the static and

dynamic structure of a domain wall. The use of the Landau-Lifshitz equation is

discussed in greater depth in Chapter IV of this thesis.

The approach used here to model characteristics of domain walls is similar to that

of O'Dell [1981]. O'Dell's postulate is expanded upon and compared to the Walker

solutions to the Landau and Lifshitz equation [Dillon 1963 and Schryer and Walker

1974]. Although it is easier to determine the thickness of and magnetization distribution

in a domain wall using an energy argument, by using the Landau and Lifshitz approach

the dynamic characteristic of the domain wall can be found. The Landau-Lifshitz

equation is needed to develop a model for the magnetization distribution within a domain

wall to be employed in the modeling of emission of elastic radiation caused by the motion

of a 180 domain wall. Thus the groundwork for the later calculations should be

presented in this formalism.

This chapter presents the description of a 180* domain wall used in the model for

magnetoacoustic emission. The appropriate magnetization distribution is determined for

this domain wall. The magnetization distribution is found using a classical continuum

approximation to the magnetic system. In addition, some of the fundamentals of domain

wall theory are presented. This is done to elucidate a number of approximations and



assumptions made by earlier authors that are not valid. The result of these

approximations and assumptions does not significantly alter the accepted structure of the

domain wall [Landau and Lifshitz 1935, Kittel 1949, O'Dell 1981, and Chikazumi

1986], but does change the interpretation of the cause of the 180* domain wall in cubic

materials.

11.2 Overview

The defining characteristic of a 180* domain wall is that, when static, there is no

component of magnetization normal to the wall. Instead the magnetization rotates entirely

within the plane of the wall (tangential to the wall). Such a domain wall configuration is

experimentally observed in materials with either cubic or uniaxial magnetocrystalline

anisotropy. In this thesis a material is considered as having cubic magnetocrystalline

anisotropy if it has cubic crystal symmetry and thus magnetocrystalline anisotropy energy

which has cubic symmetry (i.e. iron, which has body centered cubic symmetry). A

material is considered to have uniaxial magnetocrystalline anisotropy if it does not have

cubic crystal symmetry and thus the magnetocrystalline anisotropy energy has only one

easy axis (i.e. cobalt, which has hexagonal crystal symmetry) [Chikazumi 1986].

Although cubic material is the focal point of this thesis the theoretical parts of this work

also include some discussion of uniaxial material.

Lifshitz [1944] first pointed out that the energy terms needed to form a 180*

domain wall in a cubic material differ from those required for a uniaxial case. A 180'

domain wall in a uniaxial material can be derived with only exchange and

magnetocrystalline anisotropy terms. This is not the case for the cubic crystal. The

difference stems from the fact that, since cubic material has six easy, orthogonal

directions, a rotation of the magnetization from an easy direction through 90* can leave

the magnetization pointing in a different easy direction. The uniaxial system has only two

easy directions 180 apart, so the anisotropy energy is lowest when the magnetization is
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in either of the two easy directions. Uniaxial material has only one dominant domain wall

configuration, the 180 domain wall, if only magnetocrystalline anisotropy energy is

considered. In the cubic material the magnetocrystalline anisotropy permits the

formation of either 90* or 1800 domain walls. If the same approach is used to calculate

the domain wall structure of cubic material, assuming an infinite, perfect crystal, as is

used for the uniaxial case, the 180" domain wall is not a consistent solution to the

Landau-Lifshitz equation. The only achievable solution is a 90* domain wall, with no

magnetization normal to the domain wall. Such a wall is referred to as a tangential 90*

domain wall. The configuration of magnetization in the vicinity of three types of domain

walls is shown in Figure II.la-c.

Domain
Wall

Figure la) Figure 1b) Figure 1c)

Figures II. 1a-c. The direction of magnetization (marked by the arrow) on either side of a

domain wall. la) The 180* domain wall with magnetization rotation in the plane of the

wall. 1b) The tangential 90* domain wall with magnetization rotation in the plane of the

wall. 1c) The normal 90* domain wall with a component of magnetization normal to the

plane of the wall.

Observations of real cubic materials have found both tangential 180 domain walls

and normal 90* domain walls [Chikazumi 1986, Kittel 1949, and Kittel and Galt 1956].

The observed static normal 900 domain wall has a component of magnetization normal to

the domain wall, while the observed static 180* domain wall does not have a component



of magnetization normal to the wall. It is not immediately apparent why both tangential

900 and 1800 domain walls should not exist. Details of this are presented in this chapter.

H.3 The Static Domain Wall Equilibrium Equation

A static domain wall can be modeled as an equilibrium between the total magnetic

field and the magnetization of a material on a point by point basis. This method for

determining the magnetic characteristics of a material is the basis of micromagnetics, first

developed by Brown [1963]. The equilibrium condition is given by the Landau-Lifshitz

equation for the static case,

Mx H =0, (11.1)

where appropriate magnetization M and magnetic field H for the system investigated in

this thesis are given later in this chapter. Equation (11.1) states that the magnetic torque at

any point in a medium in equilibrium must be zero. If all the appropriate contributions to

the magnetic field are included in H, the magnetization of the medium is described by the

solution of equation (11.1). An analytic solution seldom exists without approximation to

the magnetic field terms. This is typically done to permit determination of the

approximate magnetization distribution within the domain wall.

The standard calculation of the structure of the domain wall is to minimize

energies by balancing magnetic exchange and magnetocrystalline anisotropy [Landau and

Lifshitz 1935]. This approach does not use the Landau-Lifshitz equation directly. A

more accurate picture must account for six magnetic energies, or when using the Landau-

Lifshitz equations, the corresponding six magnetic field terms, which influence the

magnetic domain wall. These fields, in addition to the two already named, are the

magnetostatic self field, the magnetoelastic field, magnetic surface anisotropy, and the

externally applied field [Kittel 1949, Kittel and Galt 1956, Maugin 1979, O'Dell 1981

and Scheinfein et al. 1991]. Surface anisotropy is ignored throughout this thesis.
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The magnetic field terms, except the externally applied field, are typically

presented in terms of magnetic energies. Each magnetic field term, Hk, is related to the

appropriate magnetic energy term as follows,

Ek=-M -Hk (11.2)

In a ferromagnetic material the magnetic field terms, Hk, can be determined from each

magnetic energy term:

Hk =- k ) i, (11.3)

where Ek is expressed in cartesian coordinates, M, is the saturation magnetization, and

(Xi CX, (X3) are the three direction cosines in the coordinate system. Equation (11.3) is

valid only under the approximation that the magnetic material is rigid (no magnetic strains

are permitted). In a deformable medium an additional term is present in equation (11.3)

[How et al. 1989, Maugin and Miled 1986, and Motigi and Maugin 1984a and 1984b].

Appendix A describes three of the magnetic energy contributions: exchange energy,

magnetocrystalline anisotropy energy, and magnetoelastic energy. The applied magnetic

field, normally taken to be zero for the static wall, comes into the Landau-Lifshitz

equation directly and will not be needed until domain wall dynamics is discussed in

Chapter IV.

11.4 The Static Domain Wall

The domain wall is modeled as a transition layer which separates two large

(compared to the domain wall) uniformly magnetized regions. The simplest model,

which will be used throughout this thesis is that of an infinite material with a central x-z

planar domain wall (Figure 11.2). The normal to the domain wall is in the y-direction.

The magnetization is Ms, taken to be in the positive z-direction at y = - oo and in the



negative z-direction at y = + oo. The consequences of choosing these conditions at + oo

will be discussed later in this chapter. The magnetization, M, in the static domain wall is

assumed to rotate smoothly (a continuum model) only in the x-z plane from -z to +z. The

continuum approximation is used to simplify the modeling of the domain wall. The

dominant energy contributions in reality come from quantum mechanical spin-spin and

spin-orbit interactions. But since the domain wall extends of a large number of lattice

sites, these interactions can be approximated by continuous classical energy expression

even though their source is purely quantum mechanical (see Appendix A).

z

----- ---- --- --- -y

x

Figure 11.2 The region of magnetization rotation, where M switches from + Ms to - M,

is the domain wall. Arrows represent the magnetization vector.

The magnetization is given by Mx = M, sinO and Mz = M, cosO. There are a

number of domain wall and material geometries for which there is a component of the

magnetization in the normal direction to the static domain wall: i.e. the Ndel wall

[Malozemoff and Slonczewski 1979], at a surface where the domain wall terminates

[Krinchik and Benidze 1974, Scheinfein et al. 1989 and 1991], at a closure domain
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[Kittel 1949, and Kittel and Galt 1956]. These types of domain walls will not be dealt

with in detail in this thesis.

II.4a The Static Domain Wall: Magnetic Field Terms

Three magnetic field terms needed to calculate the static equilibrium of the

magnetization configuration, and thus domain wall structure in an infinite rigid material,

can be determined using equation (11.3) and the energy terms from Appendix A. These

are magnetic exchange, magnetocrystalline anisotropy and magnetostatic self energies.

The magnetic exchange energy for material with cubic crystal symmetry is

Eex 2A M. V2 M, (11.4)

where A is the exchange constant (this is considered a material constant) [O'Dell 1981].

This expression is a classical continuum approximation of the quantum mechanical

exchange interaction which cause ferromagnetism. The exchange constant for each of the

three types of cubic crystal structures is the same to within a constant which is dependent

on the number and configuration of nearest neighbors to any particular atom. This

expression for magnetic exchange energy is discussed in Appendix A. It should be noted

that this expression and the more typical expression for exchange energy in a continuous

medium are equivalent [Chikazumi 1986 and Kittel 1949]. The choice of this expression

is made for convenience when applying the dynamic equations for the magnetization.

From the exchange energy given above the exchange field can be calculated:

H 2A V2M. (11.5)

Although the exchange field for a non-cubic crystal structure differs from that of the cubic

crystal structure, the general form of the exchange field for the hexagonal crystal structure

(the only non-cubic being used in this thesis) is the same as (11.5), only with a different

exchange constant for each direction [Landau and Lifshitz 1982].



The magnetocrystalline anisotropy field is the second term needed to determine

the structure of the domain wall. This energy can be written as a classical continuum

approximation to a quantum mechanical spin-orbit interaction. Here there are significant

differences between expressions for the fields of the cubic crystal and no-cubic crystal

symmetries. For a cubic material the magnetocrystalline anisotropy energy to lowest

(non-constant) order in the magnetization is given by

Ea= K, [a 2 aj2 ], (11.6)

where Ki is the magnetocrystalline anisotropy constant, (ai, a 2, a 3) are the direction

cosines between the actual and easy directions of magnetization, and i + j. A material

with this type of magnetocrystalline anisotropy is called a cubic material in this thesis.

For a material with non-cubic crystal symmetry the lowest (non-constant) order term in

the magnetocrystalline anisotropy energy is given by

Ean= Kui [(X12 + X2 21, (11.7)

where Kui is the uniaxial magnetocrystalline anisotropy constant and (ai, a2) are

direction cosines between the actual and the easy directions of magnetization, which in

this case is in the 3-direction. A material with this type of magnetocrystalline anisotropy

is referred to as a uniaxial material in this thesis.

From these energy terms the anisotropy fields can be calculated using equation

(11.3). They are, assuming the wall geometry depicted in Figure 11.2,

Ha= - VK1  2 aj2]i, (11.8)

for cubic (i is the unit vector in i-direction) and

H -2 Kui [ aix +a 2 y], (I9
Han ' I Xl + (2 Y(11.9)



for uniaxial (x and y are the unit vectors in the x- and y-directions respectively). In both

these cases the anisotropy field is zero if magnetization is in an easy direction. It is

typical to write the anisotropy field such that it is parallel to the easy direction in a uniaxial

material [Chikazumi 1986, Jiles 1991]. But as pointed out by Landau and Lifshitz

[1935] and O'Dell [1981], the representation with the anisotropy field orthogonal to an

easy axis is equivalent to within a scalar constant. This representation, with Ha

orthogonal to an easy axis, is used by O'Dell.

The final energy term needed to determine the structure of the domain wall is the

magnetostatic self energy. This energy is the most difficult to deal with because it is non-

local. The expression for the magnetostatic self field can be found from the general form

of the magnetic scalar potential to be

Hst= 1 V f M dV+f M -ndS, (1.10)

where rjk is the distance between the point of integration, i, and the point, k, where Hst is

evaluated and n is the unit vector normal to the surface of integration [Jackson 1975,

O'Dell 1981]. In the standard approach, when investigating domain walls, one attempts

to choose a geometry, magnetization distribution, and surface conditions so as to

eliminate the magnetostatic self field, and thus simplify the model. Landau and Lifshitz

[1935] achieve this by closure domains and restrictions on the rotation of the direction of

magnetization within the domain wall. They then investigate the domain wall far from the

closure domains. A discussion of this is presented below for the uniaxial material.

Extension to the cubic material is also presented below.



II.4b The Static Domain Wall: Closure Domains and the Infinite Crystal

Landau and Lifshitz [1935] were the first to attempt an investigation of the

domain structure in a finite uniaxial material by postulating the existence of closure

domains at two of the surfaces of the material (Figure 1.3). The introduction of these

closure domains is an attempt to minimize the magnetic energy of the crystal by

eliminating the free poles on the surface, Ma = 0, and forcing the div(M)= 0 inside the

material. Their model covered uniaxial materials exclusively.

Closure Domain Normal to Surface

Figure 1.3 Example of closure domains at the surface of a magnetic material. The

closure domains assure that M, = 0. The cross-sectional view is that of a surface Ndel

wall of the form reported by Scheinfein et al. [1989 and 1991].

From this model Landau and Lifshitz [1935] were able to estimate domain

structure within the material as a function of the size of the material. They showed that

the width of the long domains are proportional to the square root of their length, w =

Cil1 2, where C1 is a constant, (Figure 11.3). This relationship is a result of the fact that



the closure domains in the uniaxial material have a large anisotropy energy, since they are

magnetized in a hard direction. The domain wall configuration is a trade-off between the

energy of the domain wall and the energy of the closure domains. The number of long

domains and closure domains is determined by the size of the material.

This model was extended to cubic materials by Lifshitz [1944] who postulated the

existence of cubic closure domains. The closure domains in cubic materials were

observed by Williams et al. [1949]. In the cubic material the closure domains are

magnetized in an easy direction. Thus the closure domains are energetically favorable.

Lifshitz determined that in cubic material the width of the long domains is again

proportional to the square root of their length, w = C21112, where C2 is a constant. But in

this case it is magnetoelastic energy which limits the size of the closure domains relative

to the long domains.

Lifshitz [1944] has determined that for large enough uniaxial materials a more

complicated domain structure, with domain wall branching, can occur. He determined

that in the uniaxial material Co, that this branch should occur as soon as the linear

dimension is of the order of 10-5 cm. The branching is also a result of the large

anisotropy energy associated with the closure domains. This type of complicated domain

structure is observed in uniaxial materials [Takata 1963 and Chikazumi 1986].

A thermodynamic investigation into the existence of closure domains is reported

by Privorotskii [1971 and 1976]. He claims that in a uniaxial material it is

thermodynamically unstable to form closure domains of the form postulated by Landau

and Lifshitz [1935]. Instead a more complicated branching structure similar to that

suggested by Lifshitz [1944] and Takata [1963] must be present. In either case the

magnetization distribution at the surface is such that the magnetic energy is minimized.

When the linear dimensions of the cubic material become large enough Lifshitz

[1944] postulated that branching should occur in a similar manner to that predicted for
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uniaxial materials. The magnetoelastic energy is the driving force for this branching.

Such branch should not be observed experimentally in most real cubic materials because

the relative size of the magnetoelastic energy is quite small. The predicted splitting

should occur in iron when the length of a single domain exceeds 104 cm.

So far the model does not look at the surface of the material orthogonal to the

plane of the long domain wall (a surface parallel to the y-z plane in Figure 1.3). On this

surface there will be a normal component of magnetization unless the magnetization

distribution in the domain wall is modified from that of the domain wall far from the

surface. Such a normal component has been measure in cubic materials [Krinchik and

Benidze 1974] and predicted using a micromagnetic model by Scheinfein et al. [1989 and

1991] for both uniaxial and cubic materials. Scheinfein et al. [1989 and 1991] have

demonstrated that the magnetization distribution undergoes a rearrangement at this surface

to include a surface Ndel wall to act as a microclosure, see Figure 11.3. This

configuration permits Ma to remain zero at the surface, but results in a non-zero div(M).

This contributes to the total magnetostatic self field in the magnetic material.

The infinite material approximation is used in modeling the domain wall in an

attempt to ignore the effects of the magnetostatic self field. The success of such a model

depends on what happens to closure and branching domains in the vicinity of the surfaces

as well as the surface Ndel walls as the surfaces are extended to infinity. Using Landau

and Lifshitz [1935] configuration for the uniaxial material and Lifshitz [1944] for the

cubic material the closure domains would continue to exist, although their size would be

dependent on the relationship w = Cil1/2. Even the branching domains located at the

surface [Lifshitz 1944, Takata 1963 and Privorotskii 1971 and 1976] large would

continue to exist as 1 approaches infinity. The same is true for the surface N6el walls,

although their size does not change as that surface extends to infinity [Scheinfein 1989

and 1991 and Aharoni and Jakubovics 1991]. Thus in some materials it may be



acceptable to assume the different surfaces effects do not play a significant role in the

domain wall configuration, but this is not assured. In fact the magnetostatic self field

caused by the surface effects can be ignored in modeling the uniaxial material which is

much thicker than the domain wall width [Scheinfein et al. 1989 and 1991]. But in the

cubic material the effect of the surfaces, or more exactly the magnetostatic self field, are

significant for finite materials as demonstrated by Scheinfein et al. [1989 and 1991]. As

shown in this thesis this should also be the case for infinite materials.

11.4c The Static Domain Wall: Uniaxial Material

The domain wall structure for the uniaxial material is determined by the

micromagnetic equilibrium condition (1.1). It is appropriate to assume, for the uniaxial

material, that the magnetostatic self field does not make a significant contribution to the

structure of the domain wall. For an infinite material the surfaces shown in Figure 11.3

must be pushed to infinity. Doing this does not remove the surface domain structure

[Landau and Lifshitz 1935] or the surface N6el walls. But in a large uniaxial material far

from all surfaces, magnetostatic self field has little affect on the domain wall. The same

can be concluded for the surface Nel walls. This is observed in the numerical models of

Scheinfein et al. [1991] and Aharoni and Jakubovics [1991].

The magnetization distribution in the domain wall far from the closure domains

and the surface Ndel walls can be found if it is assumed that My is zero (The only non-

trivial term in (II. 1) is MxHz - MzHx = 0, where Mx and Mz are defined in Chapter 1.4).

Hx and Hz can be found from the magnetic field expressions (11.5) and (11.9),

H =- 2Ku1 sin 0 + 2 A d (11.11)
MS MS dy2

and

Hz= 2Adcos O (I.12)MS dy2 (1.2



where, since M is only dependent on y, the Laplacian becomes a second derivative with

respect to y. Using the expressions for Mx, and My and 0 as the dependent variable, the

equilibrium differential equation is determined to be

d20 -"! sin 0 cos 0 = 0. (1.13)
dy 2  A

If the substitution dO/dy = u is made, the equation can be solved in terms of u(0). Since

the magnetization is antiparallel at y = ±oo, dO/dy can be assumed to approach zero at ±oo.

This forces the constant of integration to be zero and a simple first order differential

equation can be found

S-=(Ku 1 /2 '~ sin e. (1.14)
dy A

Solving this for y(O) yields

y = ( 1 2ln tan + C. (1.15)

Here C, the constant of integration, is zero since at y = 0, 0 = ± t/2. The general

expressions for the magnetization as a function of y can be found from (11.15) to be

Mz = - MS tanh (), (II.16)

and

M_ =+ M sech A), (1.17)

where A is domain wall width parameter (A/Kui)1/2. The solution has both a positive and

negative sign for the values of Mx. This is because the direction of rotation (clockwise or

counterclockwise) relative to the normal direction to domain wall can not be



predetermined in this geometry. Either direction is equally energetically favorable, and

both solutions are physically realizable.

II.4d The Static Domain Wall: Cubic Material

The static structure of the domain wall in an infinite cubic material will be

calculated in the same manner as is presented in Chapter 11.4c. It is assumed that the

closure domains and the surface Ndel walls are far from the region in which the domain

wall is being investigated and thus have little effect on the magnetization distribution. As

is noted in the last section these two surface effects do not disappear if one assume that a

finite material is extended to infinity [Landau and Lifshitz 1935]. For this calculation the

cubic field expressions must be used. The direction cosines (ai, a 2, a 3 ) are given by

(sin 0, 0, cos 0). Thus the magnetic field equations are

H 2 = K sin 0 cos 2 0+ d s 0, (11.18)H =MS MS dy

and

H =-2K1 se20COS+ 2A d2 cos0 (11.19)
z MS Ms dy2

These field equations can be used to find the equilibrium condition (11.1)

A2 d + [sin 3 0 cos 0 - sin 0 cos 3 0] =0. (11.20)
dy2

Using the substitution for d0/dy the resulting linear differential equation is

dy _ A-1 sin 0 cos 0. (11.21)
dy

Here the integration constant is zero if the extent of the wall is finite. This equation can

be solved to determine y(0) to within a constant,



y = A In (± tan 0)+ C. (11.22)

If the condition that the domain wall is centered at y =0 with the magnetization entirely in

the x-direction, then the constant of integration must be infinite. A closer look at the

system using the boundary conditions (y = - oo, 0 = 0) and (y = oo, that 0 = + 7r) helps

illuminate the inconsistency. At y = - oo, 0 = 0 forces the constant of integration to be

zero. The constraint at y = oo can now only be satisfied if 0 = ± 7r /2 (assuming that the

rotation does not complete more than one full cycle). In other words a 180* domain wall

is not the stable equilibrium configuration. Instead a tangential 90* domain wall with

magnetization only in the plane of the domain wall (Figure II. Ib) is formed. From a

qualitative energy argument this is expected if only the exchange and magnetocrystalline

anisotropy energies are considered, because as discussed earlier easy directions exist at

90* increments in the cubic crystal symmetry. Thus the lowest energy state which

contains a region of rotation (a domain wall) will be one that requires the least amount of

exchange energy, which is related to the amount of rotation, and falls in an easy direction

because of anisotropy energy. This is the tangential 90" domain wall, not the 180"

domain wall.

11.5 Effects of the Magnetoelastic Field on a Domain Wall in a Cubic Material

Lifshitz [1944] was the first to point out that it is impossible to model a 180*

domain wall in an infinite cubic material using only exchange and magnetocrystalline

anisotropy energies. He proposed that the observation of 1800 domain walls in real

materials is caused by additional energy terms in the formulation, suggesting the standard

magnetoelastic and elastic strain energy. The standard magnetoelastic energy is the

energy connected with the phenomenon of magnetostriction, and is based on the magnetic

anisotropy energy in a deformable medium. Lifshitz continued to assume the
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magnetostatic self energy is zero because of the infinite material approximation and thus

plays no role in the configuration of the domain wall.

Kittel [1949] later presented a qualitative description of the effect of

magnetostriction calculated by Lifshitz [1944] in a general review of the theory of

domains in ferromagnetic materials. In Kittel's discussion the magnetization is

constrained at the boundaries to be antiparallel. He contends that magnetostriction

permits the existence of a 1800 domain wall at the center of the material. Kittel then uses

the strain fields determined by Lifshitz for the infinite material to calculate the structure of

the domain wall. These strain fields are calculated using a number of invalid

approximations; e.g., all physical quantities associated with magnetization are

unidirectional, the displacement vector is related to the strain in the infinitesimal strain

approximation, and the standard magnetoelastic energy is the only coupling between

magnetic and elastic properties of the material. Thus conclusions drawn from these

approximations are suspect.

Although magnetostriction does change the domain wall structure (a non-physical

example is that of the cubic material with uniaxial anisotropy [How et al. 1989, Maugin

and Miled 1986, and Motigi and Maugin 1984a and 1984b]), its addition to field

expressions (11.18) and (11.19) does not insure by itself the existence of the 180 domain

wall in the infinite crystal. In fact the addition of magnetoelastic energy in the uniaxial

case causes the wall to contract only slightly [Maugin and Miled 1986, and Motigi and

Maugin 1984a and 1984b]. It is not immediately apparent why this is different for the

cubic case. Both Lifshitz's quantitative and Kittel's qualitative arguments assume that the

magnetoelastic energy causes a significant change in the stable domain wall configuration

for a cubic material. A review of Lifshitz's [1944] and Kittel's [1949] discussions is

presented below and the consequences of the assumption made are presented.
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I.5a Magnetostrictive Coalescence of the 1800 Domain Wall

Lifshitz [1944] has calculated the strain field in a cubic magnetic material, in order

to predict the effects magnetostriction has on a domain wall. He asserts that the strain

tensor, which describes the strain field, can only be a function of the coordinate normal to

the domain wall in the infinite material. The domain wall symmetry for this discussion is

the same as in Figure 11.2 where the y-direction is normal to the domain wall. The y

dependence comes from the symmetry of the magnetic system. Using the infinitesimal

strain approximation, where ui's are the components of the displacement vector,

ei =-T + . (1.23)

There are two standards for defining strain. The first which will be used throughout this

thesis is the tensoral strain [Segel 1977] equation (11.23). The second which is in the

classic work by Love [1944] defines the shear components of strain as twice the shear

components given in equation (1.23). Lifshitz contends that the only non-constant

components of the strain tensor are the eyj(y)'s, which are functions only of the y

coordinate. Lifshitz uses (11.23) to determine the strain tensor without any information

about the magnetic state of the material, other than the restriction that the strain be a

function of y only. By using the stress tensor, calculated from both elastic energies

involved (standard magnetoelastic and elastic strain), the force equilibrium condition, and

the requirement that the stress tensor is zero at infinity, he is able to determine that each

component of the strain tensor, eij, is a constant. The values of the constants can then be

determined by looking at the strain tensor an arbitrary distance from the domain wall.

The conclusion that the strain tensor is a constant means that for a cubic material the strain

field is independent of the existence of one or many domain walls. A complete

description of Lifshitz' calculation, along with criticism is presented in Appendix B.
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Recent experimental evidence suggests that there is a local strain field in the

vicinity of a 1800 domain wall. Mihara [1992] has observed the local strain field

associated with a 180* domain wall in iron using X-ray transmission topography. The

experiments were performed on 70 gm thick single crystals. This thickness is large

compared to that of the domain wall and thus it is reasonable to assume that this is a bulk

phenomenon. No direct measurement of deformation caused by the domain wall has

been made.

The addition of the standard magnetoelastic energy, assuming the constant strain

field determined by Lifshitz [1944], introduces an effective uniaxial anisotropy term into

the differential equation 1.18, which will be called the "magnetoelastic anisotropy". The

general form of the equation is now

A2 d .+[sin3 O cos 0 - sin 0 cos3 0 + P sin 0 cos 0]=0, (1.24)
dy2

where P is a constant parameter for the normalized contribution of the uniaxial

"magnetoelastic anisotropy" introduced by magnetoelastic effects. Solving this equation

employing the same approach used in the previous sections yields

dO = A_ [sin 2 0 cos 2 0 + P sin 2 0]1/2. (1.25)
dy

This has the solution [Gradshteyn and Ryzhik 1980]

1 - sin2 e1/2 + COS 0

y = A j In [i1 n1+12 f-+oO (11.26)
~2[1i+P]/ I[ 1 sin2Og1/ 2 -'s

1 - 1 +P - COS 0

where the integration constant is zero and the boundary conditions are satisfied. A

general expressions for the components of the magnetization are then



M = MS [(1 X' '4 s '- (11.27)
z 1sp y (1 + P)1/2)1/2j

11 + P) sih

and

M = M 1 + (1 P) sinh 2 (Y (1 + (11.28)

The magnetization distribution of the domain wall is depicted in Figures II.4a and

4b along with the magnetization distribution of a uniaxial material with the same wall

width parameter, A. Note that the midsection of the wall exhibits an elongated region of

magnetization in a direction approximately 900 to that of the domains. For Figures II.4a

and 4b the value for P = 2.4x10-3, the value for iron determined by Lifshitz [1944].

There are number of weaknesses in the model Lifshitz presents. He has proposed

that the strain and stress tensors depend only on the direction normal to the domain wall.

This requirement is made under the assumption that the magnetization does not vary in

any plane within the material which is parallel to the plane of the domain wall. This is

valid only when the volume of material being investigated is an arbitrary distance from

the surfaces which have closure domains or surface Ndel walls. Near these surfaces, or

in the infinite material at infinity, the symmetry is no longer valid, and care must be taken

when determining restrictions on either the stress or strain fields there.

Lifshitz has used the force equilibrium condition, div(Yij)= 0, and the surface

force requirement that normal component of the stress tensor at the surfaces be zero, nioij

= 0, to establish restrictions on the stress tensor. The second condition, that nioij = 0,

does not mean that aij = 0 at infinity as assumed by Lifshitz. Since the magnetization

depends on x and z at the surfaces containing the closure domains and surface Nel

walls, it is inaccurate to use the surface force restriction to determine the stress tensor at
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these surfaces (or at infinity) and then apply the restriction to the y dependent stress

tensor far form those surface effects. Only at y = ±oo is the exclusive y dependence

maintained. Thus it is possible to show, see Appendix B, that only five of the nine

components of the stress tensor in the bulk are uniquely zero, not all the components as

stated by Lifshitz [1944].
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Figure 11.4 Magnetization as a function of position relative to the center of the domain

wall. a) The z-component of the magnetization. b) The x-component of magnetization.

The solid lines are calculated for a cubic material including a uniaxial "magnetoelastic

anisotropy" with P = 2.4x10-3. The dashed lines are calculated for a pure uniaxial

material with the same value for the domain wall width parameter, A, as that of the cubic

case. The distance is normalized to A. The magnetization is normalized to the saturation

magnetization, M. Note the elongation of the domain wall width for the cubic material.
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Lifshitz has also assumed that the infinitesimal strain approximation is valid for

this system. The finite strain of a material is given by,

1 (ai aj aUk ak II129
ei = J + + (H.2)

Infinitesimal strain is approximately valid for small deformation [Landau and Lifshitz

1970 and Segel 1977]. In the infinite system deformation will cumulate and, as shown in

Appendix B, approach infinity under the infinitesimal strain approximation, invalidating

the infinitesimal strain approximation. Any conclusion using the infinitesimal strain

approximation is suspect.

Brown [1966, and 1967] has suggested that since the magnetoelastic energy

density is a first order function of strain (this is for a cubic material where B1 and B2 are

constants),

fmag = B1 [ex (X12 - + ey (X2 2 - 1)+ ez 32_

+ 2 B 2 [(Xi 2 exy + 2 (X3 eyz + (xa (X3 exz) (11.30)

and elastic strain energy density is second order function of strain,

fe= (exx2+eyy2+ezz2)+2c44(exy2+eyz2 +ez 2) (1.31)

c12 (exx eyy + ey, ezz + ezz exx),

the finite strain must be used. In the elastic energy (11.31), the lowest order terms are

second order in the derivatives of the displacement vector. Thus the second order term

of the finite strain in equation (11.30) is of the same order as the lowest order term in

(11.31). It is important to keep terms of the same order in the derivative of the

displacement vector. This would mean that any calculation of equilibrium between the

magnetoelastic and the elastic strain energy must initially involve finite strain.

The final aspect of Lifshitz work which must be discussed is his assumption that

the only magnetic energy dependent on the strain in the material which will significantly

contribute to the magnetic equilibrium of the system is the standard magnetoelastic
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energy, derived from the magnetocrystalline anisotropy energy. The exchange energy is

also dependent on the strain [Callen and Callen 1963 and 1965, Brown 1966 and 1967,

and Turov 1965]. A more complete magnetoelastic energy density can be written as

ft-mag jk m ejk[ T I ] fmag, (11.32)

where the coefficient of the magnetoelastic exchange term, bjm, can be simplified using

the symmetry of the magnetic system investigated [Brown 1966 and 1967, and Turov

1965]. In a uniformly magnetized material the exchange term, more descriptively called

the non-uniform term by Landau and Lifshitz [1986], is zero. Thus as expected the

behavior is described by the standard magnetostriction.

In a material containing domain walls, the volume of domain walls makes up a

small percentage of the total volume. Thus the bulk magnetoelastic behavior is dominated

by the properties of the domains, where the non-uniform energy term is zero. This

would also suggest that in the unsaturated magnetic material the bulk magnetoelastic

properties are accurately predicted by standard magnetoelastic energies.

Within the material, in the local region surrounding the domain wall, the

magnetization is very non-uniform. This suggests that the exchange term could be

important. Since in the domain wall the magnitude of the exchange energy is of the same

order as that of the magnetocrystalline anisotropy energy, additional contributions caused

by a local strain field modification of the exchange field could quite possibly be on the

same order as the magnetocrystalline anisotropy based magnetoelastic energy. The

inclusion of the exchange-elastic energy in investigation of domain walls is suggested by

Brown [1966].

A qualitative description of the results derived by Lifshitz [1944] has been

presented by Kittel [1949] and Kittel and Galt [1956]. Kittel's discussion, in which the

assumption of a uniform strain throughout the material is not assumed a priori, attempts

to present a description of the effects of magnetoelasticity on the formation of the 1800



domain wall. Kittel argues that if one requires that the magnetization be in opposite

directions at negative and positive infinity (presupposing the existence of a change in

magnetization direction of 1800), then minimization of the magnetic energy of the system,

using only exchange and magnetocrystalline anisotropy energy, requires the existence of

two tangential 90* domain walls separated by an infinite distance.

In Chapter 1I.4d of this chapter it is shown that the model of a domain wall using

only exchange and magnetocrystalline anisotropy energies yields a single tangential 90"

domain wall. A second wall at infinity is constructed to match the required antiparallel

magnetization. Kittel asserts that the existence of this infinite domain with magnetization

orthogonal to the two domains with opposite magnetization is impossible because this

adds a large amount of magnetoelastic energy to the magnetic system. Thus the

crystalline stresses will force the two infinitely separated tangential 90* domain walls to

coalesce into a single 180 domain wall. This model does not require any assumptions

about the strain field within the material, but does require boundary conditions at y = +

00.

The assumption that the system, without the inclusion of magnetostatic self

energy, has magnetization which is already antiparallel at ± oo, an assumption that

immediately forces the existence of a single tangential 90* domain wall to be impossible,

is not justified. This constraint means that the system is not resting in its lowest non-

uniformly magnetized energy state, assuming only exchange and magnetocrystalline

anisotropy energy, but is actually constrained to have magnetization in a particular

direction somewhere in the system. The only way to require this is to have an external

force or an additional internal magnetic force constraining the magnetization. This

additional internal magnetic force could be the result of including the effects of

magnetostatic self energy in the cubic material. This is discussed in the next section



11.6 Effects of Magnetostatic Energy on the Domain Wall in a Cubic Material

The models of the domain wall discussed so far have attempted to excluded the

magnetostatic self energy. The uniaxial material model predicts a reasonable size domain

wall for a uniaxial material. Modeling the domain wall in a cubic material by the addition

of only the magnetoelastic energy is incorrect. Magnetoelastic energy is not the dominant

energy term, rather the magnetostatic self energy is responsible for the formation of the

180" domain wall in the cubic material.

Scheinfein et al. [1989 and 1991] have pointed out that in any finite cubic material

a 1800 domain wall is stable because of magnetostatic self energy terms from the

surfaces. In this case the 180* domain wall, although a distinct region of transition, does

not have the same magnetization distribution as that of the 180" domain wall in a uniaxial

material. Scheinfein et al. [1989 and 1991] have numerically modeled the domain

structure using a discrete magnetization array. In addition, they model the infinite cubic

material by minimizing the magnetic energy of the material, including only

magnetocrystalline anisotropy and exchange energies, over a finite array subject to the

constraint that the magnetization is antiparallel on the two edges of the grid, parallel to the

domain wall [Scheinfein et al. 1991]. This model gives a pair of tangential 90 domain

walls separated by as much distance as possible in the finite array. Such a conclusion is

consistent with the description presented by Kittel [1949] and Kittel and Galt [1956]. In

this later calculation Scheinfein et al. [1991] have assumed that the contribution from

magnetostatic self energy is zero. Yet they have introduced a constraint on the

magnetization at the edges of the array. This assumption presupposes the existence of

either a 1800 domain wall or two 90" domain walls just as Kittel has done. The

presupposition that the magnetization is antiparallel at either side of the transition region is

based on the desire to model 180* domain walls which are observed experimentally.

The magnetostatic self energy plays the critical role in the formation of the 1800

domain wall in both the finite and infinite cubic material. The finite geometry is the best
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choice to illustrate the role the magnetostatic self energy plays in the formation of the 180

domain wall. Landau and Lifshitz [1935] first pointed out that in order to minimize the

total energy of a finite material with small, but finite, magnetocrystalline anisotropy,

closure domains must be present at the surfaces of the material orthogonal to the direction

of magnetization. These closure domains permit both div(M)=0 throughout the material

and Mn=O at the surface. In the model, which is presented for a uniaxial material, but

can be extended to the cubic material, they have ignored the surfaces orthogonal to the

plane of their 1800 domain wall. It is these surfaces, that contain the Ndel walls identified

by Krinchik and Benidze [1974] and Scheinfein et al. [1989 and 1991], which act as

microclosures along the 180" domain wall to minimize the magnetostatic self energy.

The extension to finite cubic material requires a re-examination of all closure

domains. For a cubical block of material containing a single tangential 90" domain wall it

is no longer possible to form closure domains on any of the surfaces. Thus if the

tangential 90* domain wall were to exist, the magnetization would arrange itself to

minimize the magnetostatic self energy. But in this case both conditions, div(M)=0 and

Mn=0, cannot be satisfied. The energy contribution from the finite magnetostatic self

energy would be significant. Scheinfein et al. [1989 and 1991] have determined, by

including magnetostatic self energy, that the type of domain wall with the lowest energy

state is the 180 domain wall, not the tangential 90" domain wall. In the finite cubic

material the magnetization is arranged such that closure domains exist at two surfaces,

and surface Ndel walls exist at two other surfaces.

The extension of the model from a finite to an infinite material is done using the

same conclusion made by Landau and Lifshitz [1935] for the uniaxial material. That

conclusion, which can be applied to the cubic material, is that when the surfaces of the

material are expanded to infinity, the closure domains are still required to minimize the

magnetostatic self energy. In other word, the closure domains and surface Ndel walls do
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not cease to exist. Since it is not possible to form closure domains in a material with a

tangential 900 domain wall, the tangential 900 domain wall configuration has a much

higher energy than that of the 180 domain wall. Thus in the infinite cubic material the

1800 domain wall exists because the magnetostatic self energy contribution to the total

energy is minimized.

The final question is whether the 180* domain wall can break up into two

tangential 90 domain walls within the bulk of a large cubic material far from either the

closure domains or the surface Ndel walls. The formation of the closure domain results

in a magnetostatic self energy which is approximately zero. Likewise the formation of

surface Ndel walls result in a small magnetostatic self energy contribution. In a region far

from the closure domains and surface Ndel walls, the magnetostatic self field is

approximately zero. In Chapter II.4d it is shown that if magnetostatic self field is not

included in the model of the domain wall that a tangential 90 domain wall forms. To

account for the constraints of antiparallel magnetization at the surfaces parallel to the plane

of the domain wall a pair of 900 domain walls form [Scheinfein et al. 1989 and 1991].

Such a configuration could be envisioned as two large antiparallel domains inclosing a

smaller domain magnetized orthogonally to the others. The triple domain configuration

could be localized in a region far from the closure domains.

For this triple domain configuration to form it must be more energetically

favorable than the 180* domain wall. This configuration is not energetically favorable

because in the region where the domain wall begins to split div(M)#0. This then

contributes to the magnetostatic self energy of the material increasing the total magnetic

energy of the material. The actual 180* domain wall must be formed to balance the

increase in magnetostatic self energy with the other constraints on the magnetization

distribution. This balance is achieved by a 1800 domain wall of a character distinct from

that of the uniaxial material. This type of 180 domain wall configuration is the most

energetically favorable domain wall in the infinite cubic material.



11.7 The Static Domain Wall: Cubic Material with Magnetostatic Self Energy

It is established in section 11.6 that the magnetostatic self energy is required to

calculate a realistic model for a 1800 domain wall in an infinite cubic material. An analytic

expression for the magnetization configuration of the 180 domain wall is still needed.

But an exact analytic expression is impossible because of the non-local nature of the

magnetostatic self field needed in the model.

Scheinfein et al. [1989 and 1991] have determined the magnetization distribution

for a thin (0.5 tm.) cubic material numerically. The 180* domain wall in this model is

slightly thicker than that of the uniaxial material, with the same domain wall thickness

parameter A. Aharoni and Jakubovics [1991] have verified this numerical calculation to

films greater than 1 gim. The magnetization also exhibits a distinct region at the center of

the wall where there is an elongation of the domain wall width in the y-direction (Figure

11.4). Such a configuration is very similar to the domain wall calculated in a cubic

material when a uniaxial "magnetoelastic anisotropy" is introduced (Figure 1.4), except

that the size of the elongated region is much less here. A second disparity from that of

the uniaxial material in the calculation by Scheinfein et al. is a slight negative

magnetization, relative to the center of the domain wall, attributed to flux looping back

along the edges of the domain wall. This effect is small and will not be dealt with in this

thesis.

Although it is not possible to obtain an analytic expression for the 180* domain

wall in a cubic material, an approximate expression can be found for which the

magnetization distribution appears to be similar to that calculated by Scheinfein et al.

[1991]. The 1800 domain wall is modeled to be two tangential 90 domain walls trying to

split but held together very closely by magnetostatic self energy. The contribution from

the magnetostatic self field is approximated by an induced effective uniaxial anisotropy

called the "magnetostatic anisotropy". The addition of this effective anisotropy to the
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cubic material results in a magnetization distribution identical to that found by Lifshitz

[1944]

p P 1/2 .n (y (1 + P)1/2
Mz = Ms ( + A(( 1/2 , (1.27)

1+ P sinh2 (Y (11 +P A

and

M = M 1 +(; ) sinh2 (Y (1 +P)1/2))/P (1.28)

with a different value of P. Figure 11.5a nd 5b is an example of the magnetization within

the domain wall assuming P = 0.1. This configuration does not differ significantly from

that calculated by Scheinfein et al. [1991], again ignoring the flux looping effect.

It is apparent from Figure 11.5 that this 180* domain wall is very similar to that of the

uniaxial material. There is a slight broadening of the domain wall at the central region. If

the domain wall width parameter, A, is doubled for the uniaxial case, it is possible to

achieve a better approximation to the cubic material 180* domain wall using the

magnetization distribution (Figures II.6a and 6b).

For the remainder of this thesis this approximation for the 180 domain wall in a

cubic material is used. This is done because of the desire to determine an analytic

expression for the interaction of the moving 180* domain wall with the elastic strain field

within an infinite cubic material. The analytic expressions for the 180* domain wall in the

uniaxial material are easier to use than are the approximate analytic expressions for the

180* domain wall in the cubic material (equations 1.27 and 11.28).
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domain wall. a) The z-component of the magnetization. b) The x-component of
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Chapter III: Elastic Radiation during Magnetization: A Review

III.1 Introduction

Magnetoacoustic emission has been attributed by most authors to the net change

in the static strain field of a magnetic material due to the magnetization process [Kusanagi

et al. 1979a, Ono 1986, Jiles 1988 and 1991]. This conclusion is made using a

macroscopic model of the magnetization process where the net difference in the strain is

determined before and after a Barkhausen jump. In using such a model it is asserted that

only non- 180 domain walls can be sources of magnetoacoustic emission [Kusanagi et al.

1979a]. This is a result of the assumption that only the static net change of

magnetostriction can produce magnetoacoustic emission; dynamic processes are ignored.

By this reasoning translation of a 1800 domain wall does not result in a static net change

in the magnetostriction of the material and thus cannot be an emission source. It is

concluded that a non- 180" domain wall can be a source of magnetoacoustic emission,

since the movement of a non- 180* domain wall causes a static net change in the

magnetostrictive state of the magnetic material.

More recently, a number of authors have suggested other possible mechanisms

for magnetoacoustic emission. Both groups [Guyot et al. 1987, 1988, 1990a, 1990,

1991, and 1993 and Kim and Kim 1989] present mechanisms which emphasize

creation/annihilation of domain walls as the source of magnetoacoustic emission. These

mechanisms are based on the assumption that the local strain field in the vicinity of the

domain wall is the source of magnetoacoustic emission. The models suggest that

creation/annihilation of a domain wall couples to the magnetic crystal elastically, resulting

in a magnetoacoustic emission. Guyot et al. do not explicitly specify how the coupling

takes place. But they contend that their data eliminates magnetostriction as a candidate.

Kim and Kim attempt to construct a magnetostrictive model of the strain field in the

vicinity of the domain wall. But their method contains several invalid assumptions.



It was postulated by Lord [1967] that a 1800 domain wall oscillating at high

frequency can emit elastic radiation, or a magnetoacoustic emission. This model is based

on the equations of motion within an elastic medium [Lord 1967, and Landau and

Lifshitz 1970]. Lord assumed that the domain wall is spatially stationary with only an

amplitude modulation, thus approximating a creation/annihilation mechanism of a Curie

point transition. Kuleev et al. [1986], using the similar approach as Lord, have

suggested that any moving 180 domain wall should be a source of magnetoacoustic

emission. In their presentation [Kuleev et al.] the equations of motion are set up but not

solved. Both Lord and Kuleev et al. have made a symmetry assumption about the elastic

nature of the cubic crystal. They have stated that the displacement vector is a spatial

function of only the normal component to the plane of the domain wall. In order to be

consistent with the required relationship between the displacement vector and the strain

tensor [Brown 1966 and Love 1944], the strain tensor must have two diagonal terms that

are equal to zero. In addition, they have assumed that the only magnetoelastic

contribution to the energy comes from the first order correction, for infinitesimal strain,

of the magnetocrystalline anisotropy energy. This assumes a symmetric stress tensor and

that the rotation tensor plays no role in the elastic magnetic material.

The possibility of a non-symmetric stress tensor and the effects of the rotation

tensor is discussed by Brown [1965] and Auld [1968]. Auld suggests that in the case of

ferrimagnetic materials, when dealing with electron spin resonance phenomena, such

assumptions are invalid. Although Auld does not directly mention ferromagnetic domain

walls, similar inaccuracies in a simple magnetoelastic model exist at the domain wall.

This is the case because within the domain wall the magnetization is rapidly varying

spatially.

A review of the models mentioned above is presented in this chapter,

concentrating on the model proposed by Kusanagi et al. [1979a] to permit an assessment

of the validity of the conclusion that 1800 domain walls cannot be emission sources. This

I



concept pervades the literature [Ono 1986, Jiles 1988 and 1991], and the Kusanagi et al.

model serves as the basis.

111.2 Previous Emission Models

The four major models for magnetoacoustic emission that have been presented in

the literature are discussed below. The strengths and weakness of each of the models are

identified.

III.2a Previous Emission Models: Magnetoelastic Energy Model

The basic model used as a starting point for most interpretations of

magnetoacoustic emission is that proposed by Kusanagi et al. [1979a]. This model looks

at the difference in static elastic energies associated with a net change in the position of a

single domain wall. The model does not deal directly with the motion, instead looking at

the static system before and after motion. Kusanagi et al. deal with the general case

where the magnetic material can be under an externally applied stress, have residual

stress, or contain no residual or externally applied stress at all. The model developed by

Kusanagi et al. is discussed below for the case where no externally applied or residual

stresses are present.

Calculation of the net change in the total elastic energy of a magnetic material

resulting from a positional change of the magnetic domain wall requires an energy

expression that accurately reflects the microscopic strain field within the material.

Kusanagi et al. [1979a] attempt to do this by modeling the strain field as the sum of two

strain terms. The first term, which accounts for the spontaneous strain associated with

magnetization and is determined by an energy minimum condition, is valid only for a

uniformly magnetized region of the material, the magnetic domain. This term does not

accurately represent the local strain field in the domain wall. The second term is



postulated as a local strain field, i.e. at pinning sites, which permits the domain wall to

move reversibly by local flexing in an externally applied magnetic field. The local strain

field is involved in the pinning of the domain wall.

Kusanagi et al. [1979a] derive the spontaneous strain field caused by

magnetostriction by determining the energy contributions from the standard

magnetoelastic and elastic strain energies. In most treatments, including the one

presented below, the contribution of exchange elastic energy is ignored because within

the domain the magnetization is essentially uniform. This is a flaw in any model that

looks at elastic effects within a domain wall, where the magnetization is non-uniform.

This fundamentally flawed approach is continued below to permit analysis of the models

in the literature. But the validity of the computed strain field in the vicinity of the domain

wall is questionable.

In a ferromagnetic material which has cubic symmetry, the standard

magnetoelastic energy density is given by

fmag = B eX (a1 2 - + eyy (a22 + ezz (a3 2 _

+ 2 B 2 [i( 1 a 2 exy + a 2 a 3 eyz + al (X3 exz'

where eij's are the components of the strain tensor, and ai's are the direction cosines of

the magnetization relative to the easy axes [Chikazumi 1986]. The elastic strain energy

density is give by

e1  (exx 2 + ey2 + ezz 2 ) + 2 c44 (exy2 + eyz2 + ezx2)
2 (III.2)

c 12 (exx eyy + eyy ezz + ezz exx)

where c11, c12 and c4 are the elastic moduli. The total elastic energy for a volume is the

volume integral of the two energy density terms,

E = f (fei + fmag) dV. (III.3)



The exchange elastic term is ignored at this time.

In the case where the magnetization is uniform, i.e. the energy density is not an

explicit function of the spatial variable, which is approximately true within the domain far

from any domain wall, minimization of energy with respect to strain is the same a

minimizing energy density with respect to strain [Brown 1966, Weinstock 1974, and

Amazigo and Rubenfeld 1980]. Thus by simply minimizing the two energy densities

with respect to the strain tensor, the strain tensor can be determined:

e -X ,(III.4a)
e sa3?, 2_-

e =3111ai a 2,

eyz= 3 X1 11 a 2 a3, (III.4b)

z= 3 X111 ai a 3,

where X100 and X111 are the magnetostriction coefficients. This implies that aij =0

throughout the material since

_ G (el + fmag) (II.5)

Kusanagi et al. [1979a] assumes that the total spontaneous strain caused by

magnetostriction within the material, including within the domain walls, is given by

equations (II.4). These expressions are calculated assuming uniform magnetization. If

the magnetization is not uniform, as in the domain wall, the energy minimization

conditions result incorrectly in the conclusion that Yij = 0, not the correct requirement that



the div(a) = 0 [Brown 1966, and Weinstock 1974]. Thus the strain tensor calculated by

Kusanagi et al. is incorrect in the vicinity of the domain wall.

A correction to the model for the uniformly magnetized material can be made by

adding the effects of the local strain field in the vicinity of the domain wall. As the

domain wall moves, this local strain field moves with the wall. If the magnetization

within the domain wall is unchanged during motion, the local domain wall strain field is

unchanged and cannot be a source of magnetoacoustic emission. Kusanagi et al.[1979a]

fail to include this local domain wall strain field.

The omission of the local strain field from the calculation present by Kusanagi et

al. [1979a] is a result of the incorrect use of the methods of variational calculus to

determine the strain field from the total magnetic energy of the material. In order to

evaluate the validity of the model presented by Kusanagi et al., it will be assumed (as is

done by Kusanagi et al.) that the effects of the local domain wall strain field are very

small and because the volume of the domain wall is much less than the volume swept out

when the wall is moving, the relative contribution of this local strain field is also small.

The approximation that the effect of the local domain wall strain field is small is in general

not valid. It is shown in this thesis that it is this contribution that accounts for

magnetoacoustic emission from 180* domain walls.

In the approach used by Kusanagi et al. [1979a], the total strain is then the sum of

the strain field determined above (111.4), and a second contribution, eiij, which accounts

for an internal strain responsible for the reversible motion of the domain wall in an

applied magnetic field, i.e. the domain wall pinning. Although irreversible domain wall

motion is not discussed directly in this model, Kusanagi et al. imply that the model is

applicable for the Barkhausen effect also. It is implicitly assumed by Kusanagi et al. that

this internal strain is small compared to the spontaneous strain, i.e. that the magnitude



and volume over which this strain exists is small. The assumption that the internal strain

is a perturbation permits one to add elij as a correction to esij. This gives a total strain of

eij= ei + ei). (.6)

In reality, if one postulates the existence of an internal strain, then the assumption that the

material is a perfect crystal is no longer valid. If the internal strain is large, then the

method for determining the spontaneous strain by minimizing the energy density with

respect to spontaneous strain only is incorrect.

Kusanagi et al. [1979a] substitute the total strain fields, etij, into the elastic strain

energy density alone (equation (111.2)). They should substitute etij into the total energy

density, both elastic strain and standard magnetoelastic. Thus their energy expression is

incorrect. Upon substitution of total strain field into the energy density it can be shown

that the energy density is given by

ft= Ai + A 2 (a14 + a 2 + a34) + A 3 (a 1
2 a2 2 + CC2 C32 + a, 2 a3 2)

+ (e X2+ e 2+ez2)+2c44(e y+eiz2+eiz)(y2 2)Y Y (111.7)

+c12(eixey +ei +eixeiz),

where A1 , A2 and A3 are constants which are related to the ci's and Xi's. This

expression is very different from that derived by Kusanagi et al., who have a first order

term in internal strain. In addition they have incorrectly assumed that the second order

terms in both X0 and X11 are small compared to their first order terms in internal

strain. In the case where a small perturbational strain is added, the energy density f(etij)

can be expanded about the spontaneous strain:

ft( ((e t) 1 2+ e [i2 t (111.8)f ~Iea)et es)+eI [aaces
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The first order term in elij must be zero because of the zero stress condition used to find

equations (111.4). As stated earlier, if the internal strain is not considered a small

perturbation, then the whole approach of minimizing the energy density with respect to

spontaneous strain only is invalid.

The availability of energy to be converted to a magnetoacoustic emission from a

positional change of the domain wall can now be examined using the corrected energy

density expression (111.7). The magnetization on either side of the domain wall is

considered to be uniform and given by Mi with direction cosines ((iX, a2, a3), and M2

with direction cosines ($1, P2, 3), where the magnitude on each side of the domain wall

is identical. Once again ignoring the microscopic effects within the domain wall, if the

domain wall is displaced such as to sweep out a volume AV, then the net effect of this

motion is to change the magnetization from M1 to M2 in a volume AV of material. Since

the magnetization is uniform over this volume and the strains are constant, the total

change in elastic energy density is given by the difference of energy densities multiplied

by the volume change, AV. The second order term in internal strain has no effect because

it is assumed to be unchanged by the motion of the domain wall. Thus the total energy

change per volume is given by

AE=A 2 ((p 11 - a14)+ (02 - a2 4)+(034 - a34))A V 2

+ A3 (( 12 -2 2_ a 22)+ (022 03 2 X22 a 32)) (1.9)

+ A3 (1 2 032 - a1
2 a3

2).

The expression for the total change in elastic energy is an even function of direction

cosines. The rotation of magnetization by 180" results in (1 1, 2, 03) = (-(Xi, -(X2, -aX3).

The net change in total elastic energy for the case where a 1800 domain wall is displaced

is zero. In this model the 180" domain wall cannot be a source of magnetoacoustic



emission. If a non- 180* domain wall is displaced, then the net change in total elastic

energy is non-zero and the possibility of a magnetoacoustic emission exists.

This expression (111.9) differs from that of Kusanagi et al. [1979a] because it has

leading terms that are second order in Xo and X11 and contains no first order term in

internal strain. One criticism of the model by Kusanagi et al. is that it predicts that

magnetoacoustic emission is zero if the internal strain becomes very small [Ono and

Shibata 1981, Kwan 1983]. As a material is annealed, the amount of magnetoacoustic

emission is observed to increase and become quite large. The model proposed by

Kusanagi et al. apparently predicts the opposite effect. The energy expression given in

equation (111.9) can account for this if the volume swept out by the domain wall increases

with annealing. Thus this model permits the existence of magnetoacoustic emission even

in well annealed materials.

The model for magnetoacoustic emission presented in equation (II.9) does have a

number of shortcomings. It does not include any direct dependence on the dynamics of

the domain wall, or the local strain field around the domain wall. Attempts to deal more

directly with these omissions have been proposed by Ono and Shibata [1981] and Kim

and Kim [1989] respectively. Ono and Shibata also predicts that the magnetoacoustic

emission is dependent on the square of the magnetostriction constants, X1oo and ;11,

which suggest a stronger coupling to magnetostriction than even Kusanagi et al. [1979a]

proposed. This is not observed and is a key argument for the creation/annihilation model

suggested by Guyot et al. [1990a,1990b, 1991].

III.2b Previous Emission Models: Dynamic Inelastic Strain Model

The weaknesses in the original model described above led to the development of a

dynamic model [Ono and Shibata 1981]. In this model the abrupt motion of a domain

wall results in a change in inelastic strain Ae*ij. If one is given Ae*ij, then by using a
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dynamic Green's function method [Maldn and Bolin 1974 and Ono 1979], it is possible

to estimate the size of the stress wave emitted. Mal6n and Bolin assume that the velocity

change in inelastic strain occurs as a step function. They do not give any specifics about

Ae*ij. They approximate the temporal step function as a Gaussian error function of

magnitude Ae*ij. The Ae*ij is assumed to be spatially uniform over the volume of

interest.

Ono and Shibata [1981] assume that the cause of the change in inelastic strain is

exactly that concluded by Kusanagi et al. [1979a] and employ the model developed by

Maldn and Bolin [1974] and Ono [1979]. Now as the domain wall moves the strain

function is a function of time. Thus this dynamic model is really an attempt to describe

how some of the energy calculated by Kusanagi et al. is converted to magnetoacoustic

emission by including its dynamic aspects. Ae*ij is not quantified but rather used as an

unknown. Ono and Shibata do assume that the change in inelastic strain must be a net

change before and after the domain wall moves. The inclusion of a Gaussian error

function time dependence is used only to permit a dynamic approach. If one assumes that

e*ij = e*ij(r,t), then acoustic emission occurs if instantaneously

D ej(r, t) (111.10)
Dt '

at any point during the motion of the domain wall, even if the net Ae*ij = 0. Equation

(111.10) uses the convective derivative which represents the rate of change of the inelastic

strain from the point of view of an observer moving with the domain wall [Lin and Segel

1974 and Melcher 1981], where the convective derivative is defined as

D e*j(r, t) eifj(r, t)
Dt t + - V)e* (r, t). (111.11)

The use of the convective derivative simplifies the evaluation of the total strain field

within the magnetic material because it allows for the assessment of the local effects in the
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vicinity of the domain wall as the domain wall moves. It is the requirement of a non-

vanishing convective derivative of inelastic strain which permits one to evaluate what

types of domain walls are possible sources of magnetoacoustic emission.

Ono and Shibata [1981] conclude that 180 domain wall cannot be a source of

magnetoacoustic emission because there is no net change in the strain field before and

after the domain wall moves. Although this assumption does not explicitly include the

local strain field associated with the domain wall, it does not ignore the local strain field

as is done by Kusanagi et al. [1979a]. This is discussed by Kwan [1983], who suggests

that the strain field around the domain wall could contribute to the change in Ae*ij. She

indicates that the 180" domain wall could be a source of magnetoacoustic emission. But

her conclusion is made without suggesting how the local strain field at the domain wall

can contribute to Ae*ij, and is later discounted in her thesis.

III.2c Previous Emission Models: Creation/Annihilation Models

Two domain wall creation/annihilation models have been proposed to describe

magnetoacoustic emission. Kim and Kim [1989] have attempted to determine the net

change in inelastic strain associated with the annihilation of a 180" domain wall. Their

calculation is invalid because they have mistakenly used the strain fields given by

equations (111.4). These strain fields are invalid in the vicinity of the domain wall

because, as discussed in chapter 11I.2a, their derivation is predicated upon the assumption

of uniform magnetization. This is not the case in the vicinity of the domain wall.

Guyot et al. [1987, 1988, 1990a, 1990b,1991 and 1993] have proposed that a

creation/annihilation mechanism is consistent with their observations of a relationship

between hysteresis loss and magnetoacoustic emission. They claim that magnetoacoustic

emission could contribute to the conversion of magnetic energy into heat and thus

hysteresis loss in magnetic materials. Their model does not explicitly describe how the

coupling between the creation/annihilation of a domain wall and magnetoacoustic



emission occurs. The model is based on experimental evidence that suggests that

magnetoacoustic emission occurs at the knee of the hysteresis loop where

creation/annihilation of domain walls exists. They draw support for their argument from

reports that acoustic emission is caused exclusively by creation/annihilation of domain

walls in ferroelectric materials [Mohamad et al. 1982 and Zammit-Mangion 1984].

Although there are some analogous behaviors between ferroelectric and ferromagnetic

materials, one area where there is a significant difference is at the domain wall. The

domain wall of the ferroelectric material is much narrower than that of the ferromagnetic

material [Kanzig 1957]. For a model based on the local strain field in the vicinity of the

domain wall, the magnitude of the local strain is important, as is the volume affected.

The results of Mohamad et al. and Zammit-Mangion only prove that no acoustic emission

is associated with ferroelectric domain wall motion at a level detectable by their

experimental equipment.

Guyot et al. [1987, 1988, 1990a, 1990b, 1991 and 1993] have measured both

magnetoacoustic emission and the Barkhausen effect in polycrystalline ferromagnetic and

ferrimagnetic materials. Their results, for different materials with a small shape

demagnetizing effect, suggest that there is little magnetoacoustic emission in the vicinity

of the coercive field, the region where most 180 domain wall activity exists. They do

observe magnetoacoustic emission throughout during the entire magnetization process in

single crystal ferrimagnetic disks [Guyot et al. 1987], but this is explained as an artifact

of the large shape demagnetizing effect associated with this geometry. Their results do

not eliminate 180* domain wall motion as a possible source, but suggest that in their

polycrystalline samples a 180" domain wall mechanism is not dominant.

The dependence of magnetoacoustic emission on magnetostriction within

ferromagnetic materials is also disputed by Guyot et al. [1990a, 1990b, 1991, and 1993].

They show that for a ferrimagnetic material, Y3Fe4 .92Mno.08012, which has zero



saturation magnetostriction but non-zero Xo and X 1i [Dionne and Goodenough 1972],

magnetoacoustic emission is non-zero. They conclude that for ferromagnetic materials

with zero saturation magnetostriction the same results are true, except for the material

discussed by Kwan et al. [1984]. According to the model presented by Ono and Shibata

[1981], the magnetoacoustic emission should be linearly related to the saturation

magnetostriction. Since Kwan [1983] and Kwan et al. [1984] observe inconsistencies in

the dependence of magnetoacoustic emission with saturation magnetostriction, they

suggest the dependence could be on the individual magnetostriction coefficients, which

are not zero for the ferrimagnet investigated by Guyot et al. If the model is based on the

dynamics of the individual domain wall, the local strain field is critical and there should

be some dependence on either X100 and X111.

Guyot et al. [1990a, 1990b, 1991, and 1993] do point out a number of

inconsistencies with their model. They predict that magnetoacoustic emission should

decrease as grain size increases. The opposite relation is observed. The hysteresis loss

and the magnetoacoustic emission do not track each other as a function of temperature.

The biggest difficulty with the creation/annihilation model presented by Guyot et al. is

that it does not give a mechanism to transfer the energy from the creation/annihilation of a

domain wall directly to elastic waves within the material, especially if the dependence on

magnetostriction is neglected.

III.2d Previous Emission Models: 1800 Domain Wall Model

Lord [1967] theoretically predicted the existence of magnetoacoustic emission

prior to any experimental measurement of the effect. His model investigates the elastic

interaction of a planar 180* domain wall within a magnetic crystal. By presupposing the

shape of the domain wall and modulating the amplitude of that domain wall Lord is able

to show that a 1800 domain wall can be a source of elastic radiation.



The approach used by Lord solves the equations of motion for the displacement

vector, U, in the magnetic material. The equations of motion for an elastic medium are

given by

a2 U
p a t2 = V- a + Fb, (111.12)

where p is the density of the material, U is the displacement vector, Fb are all external

body forces, and cY is the stress field tensor [Landau and Lifshitz 1970, Segel 1977, and

Auld 1968, 1971 and 1990]. Lord, assuming that there are no external body forces,

determines that through magnetoelastic coupling the domain wall acts as a radiation

source term in the equations of motion. He postulates that U is a function spatially in

only the normal direction to the domain wall. By modulating the domain wall by

sinusoidal function e"o, he determines the magnitude of the emitted elastic radiation using

a Green's function solution to the wave equation.

The approximation that U is a function of only one variable leads to a striking

inconsistency in the model. The strain tensor which is assumed to be given by the spatial

derivative of the displacement vector, equation (1.23) or (11.29), is non-zero for only the

three components efi, and eij, where i is the variable for the normal direction, and j is

either of the other two spatial variable. The symmetry approximation is made to simplify

the equations of motion, but by invoking it the strain configuration at the domain wall can

no longer match that of the domain.

Lord's model [1967] contains a number of other approximations which result

from a failure to correctly include elastic effects in a deformable material. Lord has used

the infinitesimal strain approximation when determining the contribution from

magnetoelastic and elastic strain energy densities. The finite strains should be used to

more accurately determine the energy of the magnetic system [Brown 1965 and 1966 and



Auld 1968]. In addition, Brown [1965] and Auld [1968] suggests that two other errors

are typically made in most models of magnetoelastic effects. These errors are: the

emission of magnetic body forces caused by nonuniform magnetization; the assumption

that the stress tensor is symmetric, or that the strain tensor can be used without inclusion

of the rotation tensor. Although Auld points out that in many cases, especially in a

uniformly magnetized material, these errors are not significant, he does suggest that the

errors can be quite large in other cases. One such instance is that of the domain wall

where body forces and body torques may be present since the magnetization is highly

non-uniform [Brown 1965].

Although the model proposed by Lord [1967] does predict magnetoacoustic

emission from a 180* domain wall that modulated in amplitude, it does not deal with the

moving domain wall. It is immediately apparent, when looking only at the region local to

the domain wall how such a configuration can be the source of elastic radiation. When

the modulation function of the domain wall, eiot, is zero, there is no magnetoelastic

coupling at all. As the amplitude of the modulation function changes the magnetoelastic

coupling changes. This is equivalent to modulating Ms. It should be note that this model

does not accurately reflect the magnetization within the domains. In order to have the

magnetization consistent across the domain wall, M, within the domain must also

modulate. Thus the picture present by Lord more accurately reflects the magnetoacoustic

emission from a magnetic material oscillating about the Curie point.

Kuleev et al. [1986] look directly at the motion of the domain wall. In their

model they assume the same symmetry as that of Lord [1967]. But they assume that the

domain wall is moving at a constant velocity. The specific work deals with the motion of

900 domain walls, but comments are also presented about 180* domain walls. Kuleev et

al. note that if there is displacement of the magnetization vector within the domain wall

from the plain of the domain wall there should be magnetoacoustic emission. Since the



magnetic moments within a moving 1800 domain wall do have a component normal to the

plane of the domain wall this requirement is satisfied. But this is not the sufficient

requirement to have magnetoacoustic emission from a moving domain wall. As is shown

in this thesis, magnetoacoustic emission can exist only when there is a change in the

inelastic strain within the magnetic material (equation II. 10)

D eg(r, t)
D t 0, (111.10)D t

This does not occur when the 180 domain wall moves at a constant velocity. But, it

does occur when the domain wall accelerates, or decelerates. Kuleev et al. do not

actually calculate the emission from the moving 180" domain wall and so they do not

predict this. It is shown in this thesis that the 1800 domain wall can be a source of a

magnetoacoustic emission only during acceleration or deceleration.

MR



Chapter IV: Elastic Radiation Emitted by a Moving 180 Domain Wall

IV.1 Introduction

A model for the emission of a moving 180* domain wall in a perfect crystalline

magnetic material with cubic symmetry is presented in this chapter, along with discussion

of the models previously proposed. The model assumes an infinite, planar 180 domain

wall similar to that derived by Lifshitz [1944]. In order to avoid complication in this

model, the region being investigated is assumed to be far from any closure domains. The

surface N6el walls are ignored because their volume is quite small relative to the volume

of a domain wall for a material with thickness much larger than the thickness of the

domain wall itself. Thus it is assumed that the elastic radiation from the strain fields

associated with the surface Ndel walls makes only a small contribution to the

magnetoacoustic emission from the entire wall.

If a microscopic picture is now considered, the effects of the actual dynamics of

the domain wall, which can couple into the strain field, must be included in a model for

magnetoacoustic emission. When the domain wall is moving, the strain field within the

crystal is also moving. In addition, as the domain wall accelerates, or decelerates, the

magnetic distribution within the domain wall changes, as does the local strain field. In

the case of the 180" domain wall, this change in local strain field can be a source of

magnetoacoustic emission. Within a real material, which has both non- 180 and 180*

domain walls, both types of domain walls are sources of magnetoacoustic emission. The

creation/annihilation of domain walls can also be an emission source. The relative

contribution of each mechanism is thus far unknown.

The model for magnetoacoustic emission from a moving 180* domain wall

presented in this chapter has a major short coming: It is based on the pre-existing models

in the literature for 1800 domain wall and magnetoelastic interactions in ferromagnets, and

thus shares all the problematic assumptions that are previously described for each model.

The model uses the same symmetry previously presented by Lord [1967] and Kuleev et
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al. [1986]. The use of this symmetry results in a model that should predict only the

approximate size and the shape of the magnetoacoustic emission from a single planar

180 domain wall. Also the model does not include corrections for the errors pointed out

by Brown [1965] or Auld [1968] for which no one has yet published corrections of the

underlying domain wall models. Still, the model presented in this thesis does suggest a

mechanism by which a 1800 domain wall can be an emission source. A more accurate

representation requires a re-examination of the nature of magnetoelastic effects within the

domain wall. This is beyond the scope of this thesis.

IV.2 Dynamic Emission Source

The original magnetoacoustic emission model presented by Lord [1967] and the

later suggestions by Kuleev et al. [1986] include the elastic coupling of the domain wall

to the crystal lattice. This domain wall effect is important to consider when modeling

magnetoacoustic emission in a material. Microscopically, the local strain field of the

domain wall, produced by an equilibrium between elastic strain and magnetoelastic

energies, does move relative to the crystal. In addition, it is shown below using a

simplified model that the strain field within the domain wall changes as the wall

accelerates. This local changing strain field can be a source of magnetoacoustic emission.

For the domain wall calculation, it is assumed that external body forces, Fb, are

zero. The stress tensor can be written as a function of free energy density of the system

(equation (111.4)). This gives, from equation (111.12), a general equation of the motion

for an elastic medium of

2 U _. (IV.1)
P a t2 - e'



The general energy density expression, ft, is given by the sum of the equations (111.1)

and (111.2). All terms in the free energy density which are independent of the strain can

be ignored for these calculations. Also any contribution from the exchange elastic energy

density (equation (11.32)) is ignored for the present calculation. The general equations of

motion for the three components of the displacement vector can then be determined:

a2U _ a[B(a2 1 )+cii exx+c12 (ey+ezz)]
pa t2 - ax (IV.2a)

a[B2 Xi 2 + c44 exy] a[B2  1 3 + c4 ej

a2U [ aBi(X22- )+ciieYY+c12(exx+ezz)

" at 2  - ay (IV.2b)

a [B2 X2 ( 1 + c4 exy] +a [B2 X2 3 + c eyz
+ x az

2 z a B1 (3 2- + ci ezz +c12 (exx + eny]
P a t2  a z (IV.2c)

a [B2 X3 ( 1 + e e + a [B2 X3 X2 + c eyz]
+ a x +a y

In each of the three equations there are terms involving cii, c4 and c12 and the

components of the strain tensor which result form the elastic strain energy density

expression (111.2). If the magnetoelastic coupling is zero, i.e. B1 = 0 and B2 = 0, then

only these terms remain. This results in the homogeneous wave equation [Auld 1971].

The derivative terms from the magnetoelastic energy are the source terms making

the wave equation inhomogeneous. Whenever their contribution to the equations of

motion is non-zero, the magnetic contribution to the system can be a source of elastic

waves. In order to determine the characteristics of the elastic radiation from a domain

wall or even verify the existence of elastic radiation a specific model for the domain wall



is needed. The model used here is that developed in Chapter II. As stated earlier the

magnetic domain configuration is two regions, infinite in extent in both the x- and z-

directions, with magnetization IMJl, the left being positive and the right being negative,

with a domain wall x-z planar separating the regions (see Figure 1.2). If the wall is

moving, it travels normal to the wall, the y-direction. The model looks at two situations:

a static wall; a wall moving with either constant velocity or undergoing a step change in

velocity.

IV.3 The Static 1800 Domain Wall

The static domain wall does not radiate elastic waves according to the dynamic

model. This is because there is no change in the inelastic strain (equation (111.10)). The

spatial dependence of the direction cosines (aci, X2, aC3) in equations (IV.2) can be

determined by looking at the magnetization throughout space. The symmetry used in this

model requires that the direction cosines be independent of the spatial variables x and z

and dependent only on y. It is assumed, as shown in Figure 1.2, that the magnetization

is initially in the positive z-direction for large negative values of y. This vector rotates

through 1800 for increasing values of y.

For a domain wall centered at y =0 the magnetization vector components are

M_ = + MS sech ,

MY = 0, (IV.3)

MX = - M. tanh ,

where M, is the saturation magnetization and A is the domain wall width parameter. As

discussed in Chapter II, the equilibrium configuration of the static 180' domain wall in a

perfect cubic material is a non-trivial calculation. Using the approximation of an effective

"magnetostatic anisotropy" permits the spatial dependence of the magnetization within the



domain wall to be determined (equations (11.27) and (11.28)). These expressions are

quite complicated. Thus in this thesis the domain wall in a cubic material is approximated

by the expression for the 1800 domain wall in the uniaxial material (equations IV.3),

where the cubic domain wall width parameter is assumed to be larger than that determined

using the standard relationship A = (A/K1)1/2, (see Figure 11.5 and Figure 11.6).

Since the magnetization (equations (IV.3)) can also be written as a function of the

direction cosine, the direction cosines can be written as a function of y,

ax =± sech ,

aY = 0, (IV.4)

ax = - tanh ().

These expression can be used to determine the contribution from the

magnetoelastic terms in the elastic equations of motion (IV.2). First the direction cosines

are only functions of y. Thus all derivatives with respect to x and z are zero. This leaves

only magnetoelastic contributions from terms including a derivative with respect to y.

These terms are (by component of the displacement vector),

[B2 (X1 X21 ,(x-component),

a [B1 (a 22 (y-component), (IV.5)

a y

a [B2 aX2 X3], (z-component).

Since a2 is always zero for the static domain wall model, the magnetoelastic contribution

is always zero. This yields the homogeneous wave equations for (IV.2). Thus, as

expected, there is no emission of elastic radiation from a stationary domain wall.

Upon further examination of the elastic equations of motion for a planar domain

wall, it is apparent that there will be no source terms for elastic radiation unless the



domain wall develops a component of magnetization in the direction of motion [Kuleev et

al. 1986]. This concept is consistent with the theoretical description of Landau and

Lifshitz [1935], Dillon [1963], Schryer and Walker [1974], and O'Dell [1981], where a

component of magnetization normal to the 180* domain wall is required in a moving

planar domain wall. It should be noted that a component of magnetization normal to the

plane of the domain wall is a necessary, but not a sufficient condition for

magnetoacoustic emission. As is shown in this chapter, within the domain wall the

relative component of magnetization normal to the plane of the domain wall must be

changing with time in order to produce magnetoacoustic emission. For the 180* case this

occurs only when the domain wall is accelerating.

IV.4 Magnetization Distribution for the Moving 180 Domain Wall

So far the static 1800 domain wall has been dealt with in depth. The investigation

of the dynamic aspects of the 1800 domain wall as a source of magnetoacoustic emission

requires a description of that moving domain wall. The simplest approach is to transform

the static domain wall into a moving domain wall by introducing a spatial translation in

equations (IV.3) such that the spatial variable y is given by

y (t)= y-f v (t) d t. (IV.6)

If it is assumed that the wall maintains its stationary configuration (equations (IV.3)), i.e.

that there is no magnetization in the direction of motion, the wall will not radiate

elastically under any condition. In addition Landau and Lifshitz [1935], Dillon [1963],

Schryer and Walker [1974], and O'Dell [1981] point out that the wall cannot remain in

the stationary configuration during motion. This argument is briefly presented below.

A dynamic description of magnetization was first developed by Landau and

Lifshitz [1935]. In order to have a time rate of change in magnetization there must be a

net torque on the magnetic moments caused by the magnetic field. Thus the equilibrium



condition used for micromagnetic calculations (equation (1.1)) is no longer valid.

Instead the Landau and Lifshitz equations of motion [Landau and Lifshitz 1935, O'Dell

1981, and Chen 1986] give the dynamic description of the magnetization. The general

form of the Landau and Lifshitz equation is

(- -- ) M=(M x H) - x [H -(H M) M .7

where y is the magneto-mechanical ratio, x is a damping coefficient and H is the total

magnetic field. The cross product term in this expression is the torque on a magnetic

moment by the magnetic field. The damping term is introduced to account for viscous

loss in real materials. It drives the magnetization such that it spirals towards H,

eventually becoming parallel to H. The damping term has been written in a slightly

different manner to better represent the viscous nature of the damping [Gilbert 1955].

The resulting equation of motion is referred to as the Landau-Lifshitz-Gilbert equation,

M~ M
-L1) a M = (M x H) - M, xI I.a

where X is the Gilbert damping parameter [Eschenfelder 1980]. This can be used in both

insulating magnetic materials where the loss mechanism is a relativistic spin-orbit effect,

and conducting magnetic materials where eddy current loss dominates.

Motion of the domain wall results from an effective 'applied' magnetic field in the

vicinity of the domain wall. The source of this additional effective 'applied' magnetic

field, HA, is not specified in this problem, but is assumed to be independent of the

magnetization. HA contributes additional terms to the magnetic field equations (1.11)

and (1.12) used in Chapter II.4c and II.4d to determine the magnetization distribution



within the domain wall. For a total effective magnetic field in the z-direction only, the

magnetic field can be written:

He = Hsx X '(IV.8)
Hz= Hz+ H0 ,

where HSi's are the static field given in equations (11.11) and (11.12). No magnetic field

is introduced in the y-direction.

This total magnetic field results in the Landau and Lifshitz equation (IV.7) with a

y-component of magnetization given by

1 tM = M Hz. (IV.9)

Here damping is ignored. Since the magnetization distribution is assumed unchanged

from that of the static case the static field terms cancel and (IV.9) gives

a t z= MzHO. (IV. 10)

This equation is inconsistent with the prior assumption that My = 0, since the right hand

side is non-zero. Thus in order to have motion of the domain wall, the wall cannot

remain in the same configuration it has when stationary. The wall must develop a

magnetization component in the direction of motion in order to move under the influence

of an applied magnetic field.

IV.4a The 1800 Domain Wall with Constant Velocity

O'Dell [1981] models the magnetization distribution within a 180* domain wall

that is moving at a constant velocity using a coordinate system in which the y-axis is the

polar axis. Using this coordinate system the components of the magnetization vector can

be written



MX = MS cos sin 0,

MY = MS sinl$, (IV.11)

Mz =M Scos $ cos 0,

where 0 is the angle of the projection of the magnetization vector in the x-z plane from the

z-axis, the same definition used in Chapter II, and $ is the angle of the magnetization

vector out of the x-z plane, see Figure IV. 1. The calculation is restricted to the case

where $ is small. This is the case when the domain wall moves much more slowly than

the Walker limiting velocity (typically O(103 m/sec), which is an estimate of the

maximum velocity of a domain wall using a model with approximation similar to those

used in the model presented in this thesis [Dillon 1963, Schryer and Walker 1974,

Eschenfelder 1980, and O'Dell 1981].

Figure IV.1 Coordinate system used for the moving domain wall. The polar axis is the

y-axis. 0 is the angle of the projection of the magnetization vector in the x-z plane from

the z-axis. $ is the cant angle of the magnetization vector out of the x-z plane
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The total magnetic field within the domain wall, ignoring damping is given by

HX = - sin + K 2 sin 0, (IV.12a)MS MS ay 2

(2K, M 2 OjA a20
Hy A (IV.12b)

H 2A cos 0 + HO. (IV. 12c)

A demagnetizing field is added to Hy to account for the non-zero magnetostatic self field

now present. It is important to note these expressions are made using the approximation

that the even in the cubic material the anisotropy can be expressed as if the material is

uniaxial, where K1 is a modified cubic magnetocrystalline anisotropy constant. O'Dell

[1981] assumes that if the domain wall is moving at a constant velocity, then the effective

applied magnetic field, HA, exactly cancels out the damping term in the Landau and

Lifshitz equation. This assumption is made because once a normal component of

magnetization is introduced, the domain wall will continue to move even without an

applied magnetic field, if damping is ignored [Chikazumi 1986]. Once moving, in the

absence of an applied magnetic field and damping, the domain wall moves at a constant

velocity.

The Landau and Lifshitz equation can be reduced to two differential equations for

the 0, and $;

a0 2Ajyj 2 a0)2) 2Ki M 2
N = L Ms 0y y -( M0 o||Cos 0 (IV. 13)

and

2$ 2A|17| 2 0 2KJy| cos0sinO. (IV.14)
= Ms a y2 M c s



81

If $ is independent of time, then the second equation is just (1.13), the equation for the

static domain wall. Such a time independent solution is postulated by Walker [Dillon

1963 and Schryer and Walker 1974]. His solution also requires $ to be spatially

constant. Although this is not a good solution at y = ± oo, there $= 0, the Walker

solution does give insight into the dependence of the domain wall velocity on the applied

magnetic field. This solution is discussed in Appendix C.

The main goal of this calculation is to obtain an expression for $. Thus a solution

is postulated that matches the boundary conditions. This is the approach used by O'Dell

[1981]. It is assumed that at the center of the domain wall $, the cant angle of

magnetization, is a maximum, $max. This angle must be zero far away from the domain

wall. In addition, the spatial derivative must have a maximum on one side of the domain

wall and a minimum on the other. To satisfy this, a solution for the spatial derivative of $

is postulated to be

= C cos 0 sin O. (IV.15)

Equation (IV. 15) can then be used to find the time derivative of $ by employing the fact

that the convective derivative of $ is zero;

(IV.16)

where the velocity vy is assumed to be constant. This can then be used with equations

(IV.15) and (IV.14) to find a simple equation for 0

A2 a2 o)
a y2 1 + vy C Ms cos 0 sin 0 = 0.2 K 1y1 

(IV.17)

= - v



Equation (IV. 17) is identical to equation (1.13), the equilibrium equation for the static

uniaxial domain wall, with a new domain wall width parameter A' which can be written

as

A' =A l+Y C ;s)* (IV.18)
2 K, l y|

Equation (IV. 17) can be solved yielding 0(y) identical to that of the uniaxial static case

except for the modified domain wall width parameter, A'.

Although O'Dell [1981] does postulate the solution (IV.15), he does not solve for

$ and text the consequences of his postulate. An expression for $ can be determined and

the constant C can be found by assuming that the maximum angular displacement in the

y-direction, $max, occurs at the center of the domain wall. From the solution of equation

(IV.17) cosO(y) and sinO(y) can be substituted into expression (IV.15), using equations

(IV.4). Thus $ can be written as

= C tanh (-L) sech (-) dy. (IV.19)

This can be integrated yielding

= C A' sech (-}) + D, (IV.20)A'

where the constant D is found to be zero by requiring the cant angle, $, to be zero at y =

+ o. At the center of the domain wall, y = 0, using the assumption that the cant angle

has a maximum value, $, equation (IV.20) reduces to a quadratic equation in C.

Assuming that the velocity of the domain wall is small compared to the Walker velocity,



and that the domain wall width parameter for the moving wall is approximately that of the

stationary domain wall, C is shown to be

C =max (IV.20a)

The constant C calculated here differs by a factor of 1/2 from that found by O'Dell [1981]

who using a general argument about the overall shape of the magnetization distribution to

approximate the spatial derivative of the cant angle. $ can be used to determine the

velocity versus applied magnetic field for the 180* domain wall. For small cant angle,

small velocity, the results are identical to that of the Walker solution (where the cant angle

is assumed to be a constant) [Dillon 1963, Schryer and Walker 1974 and How et al.

1989]. This is shown in Appendix C. In addition, it is shown in Appendix C that the

energy density is less for the solution determined in this thesis than that of the Walker

solution. Thus the solution derived in this thesis is an improved solution to the Walker

solution.

The maximum cant angle is can be expressed in terms of the Walker velocity, v,

where 2v, = Mslyl A-/go [O'Dell 1981]:

v
$max = 2 v . (IV.21)

The resultant equations for the magnetization distribution can be written as

MX = + M sech ( ,

MY = Ms 2 Y sech( ,Y, (IV.22)

Mz = -M.tanh ,' .-

The magnetization distribution in the x- and z-direction are identical for both the moving

domain wall and the static domain wall, with the exception of the translation of the y
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variable. On the other hand My is now non-zero with the same general shape as Mx,

except that the magnitude is now directly proportional to the velocity of translation of the

180 domain wall. For this first order approximation Mx2 + My2 + Mz2# M 2. This can

be easily fixed by scaling each component of M.

IV.4b The Accelerating 180 Domain Wall

If the domain wall is accelerating the modeling used in section 4a is no longer

accurate. A number of different assumptions must be used to model the magnetization

distribution in within the accelerating 180" domain wall. It is still possible to use

equation (IV.6) to express the translation of the spatial variable y. But the requirement

that the convective derivative is zero (equation (IV. 16)) is not valid. The convective

derivative is now written

Dt +%dy a$ (IV.23)D5 t It d t ay'

The case presented here is that in which the velocity function is a Heaviside function,

u(t). Thus the convective derivative is written

D = +V v t (IV.24)

Although it maybe more realistic to model the acceleration of the domain wall by

using a continuous smooth function, the use of the Heaviside function does approximate

the effect of the Barkhausen effect. In the Barkhausen effect the magnetization of the

material changes in a discontinuous and irreversible manner. One source of this effect is

the depinning of a 180 domain wall from a pinning site. Since modeling the effect by

attempting to accurately determine the magnetic fields involved local to the pinning site is

very difficult, for the purpose of magnetoacoustic emission calculation, it is sufficient to



ignore how the motion of the domain wall is produced. Instead it is assumed that the

1800 domain wall moves and the consequence of that motion is determined.

As is presented in section 4a the magnetic field within the domain wall is given by

equations (IV.12). For the 180* domain wall moving with constant velocity it is assumed

that the steady state contribution of the Gilbert damping terms in the Landau and Lifshitz

equation of motion cancel those of the effective applied magnetic field. This is no longer

the case for the accelerating domain wall, which for the step change in velocity occurs at t

= 0 in this model. In this case, the damping term in the Landau and Lifshitz equation of

motion only cancels the effective applied magnetic field contribution when t 0, since the

step occurs at t = 0. In addition, when t < 0, the domain wall is stationary and the

effective applied magnetic field is assumed to be zero.

The magnetization distribution is assumed to be the same as in equations (IV. 11),

where $ is small;

Mx = MS sin 0,

MY = MS $, (IV.25)

Mz = MS cos 0,

The total magnetic field is also the same as that in equations (IV. 12). If the spatial

function of $ is assumed to be the similar to the constant velocity case, then equation

(IV. 15) is still valid

= C cos 0 sin 0. (IV.15)

The My component of the Landau and Lifshitz equation becomes

D $ 2 A jyl a2 0 + 2 K, |y|
- +A+ vy u(t) C cos 0 sin 0D t MS a y2 M s (IV.26)

+ I (Hz sin 0 - Hx cos 0)+ D(M, H),



86

where D(M, H) represents the damping terms. It is assumed here that the during the

acceleration of the 1800 domain wall that the contribution of the convective derivative of $

approximately cancels out the net contribution of the effective applied magnetic field and

the magnetic damping. In the case of a continuous acceleration such an assumption

results in a smooth transition of the domain wall from the static configuration to the

constant velocity configuration. Such a model cannot predict how the domain wall

moves for an applied field. It instead determines the magnetization distribution for a

change in the domain wall velocity.

In the case of the step in velocity the result is a differential equation which is

similar to equation (IV. 17),

2O (2 1+ v~ u(t) CMs'
A 2  1 + Y cos 0 sin 0. (IV.27)

a y 2 2K K1| |

Again if the velocity is considered to be small the constant C is related to the maximum

cant angle. Thus $ can be written in terms of the Walker velocity;

vY u(t) y - v u(t) t (P.28)
$ = v sech A, , IV282 v, A '

where A' is given by equation (IV. 18) with the velocity equal to vyu(t). Mx and Mz are

identical to the expressions in equation (IV.22) with the velocity equal to vyu(t).

IV.5 Magnetoacoustic Emission from the Moving 1800 Domain Wall

The expression for the magnetization can now be used to determine whether

elastic radiation is emitted from a moving planar 180* domain wall. In section IV.3 it is

shown that the possibility of magnetoacoustic emission only exists, for a planar 1800

domain wall, if there is a component of magnetization normal to the plane of the domain

wall. This is the case for both the 180* domain wall moving with constant velocity and

the 180* domain wall undergoing acceleration. Kuleev et al. [1986] state that in the case



for constant velocity there is emission of elastic radiation. It is shown in the next section

that this is not true. Instead the necessary condition is that the domain wall must be

accelerating. This results from the requirement that the convective derivative of the

inelastic strain tensor must be non-zero (equation 1II.10) for magnetoacoustic emission to

be produced. When the 180* domain wall is moving at constant velocity the convective

derivative of the inelastic strain tensor is zero. On the other hand when the 180 domain

wall is undergoing acceleration the condition given in equation (111.10) is satisfied and

elastic radiation results. All calculations are done assuming a cubic ferromagnetic

material as discussed in section IV.4a.

IV.5a Green's Function Solution to the Inhomogeneous Wave Equation

The motion of the displacement vector in the ferromagnetic material is given by

equations (IV.2). As is shown in this chapter these equations can be reduced to three

inhomogeneous wave equations. By making a number of approximations to the

magnetoelastic interaction in the ferromagnet, symmetry reduces the equations to three

one-dimensional inhomogeneous wave equations. The solution to these equations can be

found by using the Green's function approach [Morse and Feshbach 1953 and Jacobsen

1960].

The Green's function approach is based on the fact that the inhomogeneous wave

equation having a source function given by a delta function has a solution called a

Green's function. This Green's function has the property that its convolution with any

source function results in the solution to a inhomogeneous wave equation for that source

function. For the one-dimensional case the inhomogeneous wave equation for the

Green's function is

- - 4 n 8(y - y_) 8 (t - t), (IV.29)
ay 2c2 a t=7( Y )(t
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[Morse and Feshbach 1953], where c is the velocity and the Green's function g is defined

as

g(y, t I yo, to) = 2 n c u [(t - to) - c .(IV.30)

The function u(y,t) is the Heaviside function.

A one-dimensional scalar wave equation with a source function q(y, t),

a 2 U(y, t) 1 a 2U(y, t) (IV.31)
ay 2  c2  at2

has a solution [Morse and Feshbach 1953] given by

U(y, t)= f d to f d yo g(y, t I yo, to) q(yo, to)

1 c dyo t = UO (yo) -g a U(yt, to) t ; E -+ 0+ (IV.32)
4 7c 2 j F_ 0 y0  a to 7)t j. E 0

The second term on the right hand side of the solution represents the initial conditions of

the system being investigated. The contribution of the initial conditions is often taken to

be zero by defining both U0 (yo) and the time derivative of UO(yo) to be zero. Thus if the

first integral can be solved in closed form, an analytic solution to the inhomogeneous

wave equation (IV.3 1) can be found.

IV.5b The Wave Equation for the Moving 1800 Domain Wall

The inhomogeneous wave equations for the displacement vector in a ferromagnet

used in this thesis are given by equations (IV.2). These equations are written in terms of

the magnetization direction cosines, og, and the strain tensor, e. It is assumed that both

the direction cosines and the displacement vectors are purely functions of the spatial

variable normal to the plane of the domain wall [Lord 1967 and Kuleev et al. 1986]. The



result is that all derivatives with respect to x and z vanish. It is apparent that for the finite

strain approximation (equation (11.23)) that two of the three diagonal components of the

strain tensor must be zero in this case. Thus equations (IV.2) can be reduced to the

following:

a2Ux a[B2 aica2 +caexy]
p = - a (IV.33a)a t2 By'

a2 U Ya 1B1(aC2 2- +ciiey
p = . 3 , (IV.33b)

a2 Uz a [B2 a 3 a2 + c4 eyz]
p a t2 - y (IV.33c)

Since the strain tensor can be written as the symmetrized gradient of the displacement

vector, assuming infinitesimal strain, equations (IV.2) can be rewritten as:

a2 U , 2 U a2 Uc Y a [B2 (i X2] (IV.34a)

Pa t2 114 2 T a-- y
a2 U a2 U a [BU (a 2

P a t2 = c + . (IV.34b)

a2 uZ C a4 ua+uy a [B2 (X (X21 (IV.34c)
a at2  a Zcy

Both equations (IV.34a) and (IV.34c) have a derivative term in Uy. Reversing the order

of differentiation results in this term being equal to zero, again it is assumed that there is

only y dependence.

The requirement that all Ws and U's be functions of y only appears to have the

same difficulties that are discussed in Chapter II and Appendix B. The strict relationship

between the displacement vector and the strain tensor severely limits the possible



functionality of the displacement vector. In order have both the strain and displacement

vector be functions of y only, ex, ezz and ex must be zero throughout the ferromagnetic

material. This appears to violate the fact that there is magnetostrictive strain within the

domains and these components of the strain tensor are non-zero there. The major

difference between the strains here and those discussed in Chapter II and Appendix B are

that these are a dynamic contribution to the static strain field. Thus the static strain field

remains the same but the components of the dynamic strain field listed above are zero.

Upon substitution for the direction cosines (IV.25) assuming a small cant angle

the resulting one-dimensional wave equations are

a2 U a2 UxB a sin 0
' a t 2 c- 4 a y= B2

a2 U a2 U a (2_1
p a t2 - c11 a y2= B y Y 3) , (IV.35)

a2 Uz a2 U  a cos 0
F at2 - 44 a = B2

The magnetization distribution calculated for the 180 domain wall moving with constant

velocity after a step from zero velocity at t=0 results in expression for 0(y, t) and $(y, t);

sin 0= sech (y - A ,u(t) t

vY u(t) y - vy u(t)t (IV.36)
$ v, sech A (.

cos 0=- tanh (y - Au(t) t)

where the contracted domain wall width parameter A' is approximated by the static

domain wall width parameter, A since the vy is small.

Upon substitution into equation (IV.35) the equations of motion can be written

__ __Mw



a2 Ux 1
a y2  ct2

a2 U Y 1
a y2 c12

a2U z
a y2

1
t 2

a2U x
a t2

a2 Uy
a t2

B 
_

2c 11 A
vy u(t))2 sech2 y - y u(t) t tanh y -vy u(t) t)

y,) A '

a2 U
a t2 -

B2 vy u(t) sech
2 c 4 v, A s

- u(t) tA) 2 -y u(t) t
( ytanh sech 3 (y - y u(t) t)

where ct and ci are the transverse and longitudinal velocities of sound in the

ferromagnetic material. In this calculation the +sin 0 is used. The three inhomogeneous

wave equations given in equations (IV.37) are solved using the Green's function

approach discussed in the last section. The terms on the right hand side are the source

functions, 4tq(y,t) used in equation (IV.32) to find Ui(y,t).

IV.5c Solution to the Wave Equation for a Moving 1800 Domain Wall

The method of solution for the inhomogeneous wave equations (IV.37) for the

three components of displacement vector is presented below. Using equation (IV.30)

and (IV.32) and the general source vector function q(y,t), the general solution for the

displacement vector is

U(y, t)= 2 n cif d tof d yo u[c (t - to)-|y - yo l] q(yo, to), (IV.38)

where ci is the appropriate velocity of sound. The limits of integration have been shifted

from to = 0 to to = - a to simplify the evaluation of the initial conditions. The initial

(IV.37a)

(IV.37b)

(IV.37c)

B2 vy u(t) 2y - vy u(t) t y- vY u(t) t
= 4 V sech2( A tanh ( A 9



conditions at - a, where a is a positive definite time, are that all Uo and DU0/ato are zero.

This results in no contribution to U from the second integral term in the equation (IV.32).

The Heaviside function in the spatial part of equation (IV.38) can be used to

restrict the spatial limits of integration. This step function defines a sound cone within

which the integrand is non-zero. These limits of integration are given by

y. = y ±ci (t - to). (IV.39)

Substituting this into equation (IV.38) results in the following general expression for the

solution to the inhomogeneous wave equations

U(y, t)= 2 7t ci d t0 f +c(t-t) d yo q(yo, to). (IV.40)
fJ y C1(t -to)

First looking at the two transverse waves Ux and Uz the source terms are given

by

B2 vy u(t) 2 ( - vy u(t) t) (y - vy u(t) t
x (yo, t 7) =+ 4 v Asech A ) tanh A(IV.41a)

B2 vy u(t)
qz (yo, to) = 8 it c v A x

sech ( y- v u(t) t) tanh2 ( y -vAu(t) t - sech3 (y -v u(t) t (IV.41b)

Using (IV.41a) Ux can be written as

UA = B2 vy et d to f t.)ct d yo (sech2 (yo v to) tanh (Yo vy to , (IV.42)

where the step functions in the integrand have been incorporated into the limits of

integration of the time function. The spatial integration results in



U =+ B2 ve t xS o (4 c44 v,

+d to (sech 2 (y + t et - et + vy) to -
(IV.43)

sech2 y-tct+et-vy)to

The time integration can also be done resulting in

B 2 Vy Ct A
4c4v,

1
Ct+vYEtanh ( vy t) - tanh y +ctt

(IV.44)

+ 1
ct-vy

Assuming that the speed of sound is much greater than the velocity of the domain wall, a

condition satisfied since vy << v, and v, ~ ci (IV.44) can be rewritten as

+ tanh (y tt)] (IV.45)

B2 vy A y-v t
+ 2 c4 vw tanh A

Using the same procedure the second transverse component of the displacement vector

can be solved;

U=- B2 vy A sech ytt)
4 c44 vw A

+ sech (y + t

(IV.46)
B 2 vyA (y -vy t
+ 2cevsech ' .+2 c44 vw A i

Each of the transverse waves have three wave components: One moving in the

positive y-direction with velocity ct, one moving in the negative y-direction with velocity

ct and a third moving in the positive y-direction with a velocity vy. The first two waves

U =+ i 2 4 e v tanhyctt

Ltanh ( A )



are elastic plane radiation emitted from the domain wall as the wall steps from zero

velocity to vy. The last wave is the elastic disturbance localized with the domain wall

resulting from the local strain field at the domain wall when the wall develops a

component of magnetization normal to the plane of the wall.

The solution to the longitudinal component of the displacement vector is of the

same form as the x-component of the displacement vector. This is because their spatial

functionality of the longitudinal source function are identical (see equations (IV.37a) and

(IV.37b)). The amplitude and the velocity of the elastic radiation does differ in the

longitudinal and transverse case. Solving equation (IV.37b) in the same manner as is

done above yields

U = Bi vy 2 A tanh y it+ tanh y+c
Y4ce11vw2l A A (IV.47)

- 2 tanh
2 c11 vw2 A

IV.5d Strain Waves Radiated from a Moving 1800 Domain Wall

The results given in equations (IV.45), (IV.46) and (IV.47) each contain elastic

radiation terms and thus demonstrate that 180* domain walls can produce

magnetoacoustic emission. The displacement vectors can be used to determine the strain

waves associated with the motion of the domain wall. These equations can be used to

estimate the amplitude of elastic radiation from a planar 180 domain wall. Since each U

is only a function of y there are only three components to the strain wave emitted; eyy,

exy, and eyz:
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e =+ B2 v' sech2 Y - Ct t + sech2 Y + ct t
4 c4 v, A A(IV.48a)

B2 VY sech2( Y)
+ 2 c4 v,

e Bi vY2  sech2 yct+ sech2y+cit)
YY 4 c11 vw2 A A

Bi vY 2 2y-vt (IV.48b)
2 sech

2

2 cii v,2 A

e =+ B2 v sech Y -ct t tanh Yet t)+ sech (y + t t tanh (y + ct t
y 44cVwv A A A A (VJ
B2 v sech tanh .-v,, tc

Each of these expressions (IV.48a - IV.48c) contains a strain term (the last in

each) that is the dynamic disturbance that moves with the domain wall. This term is not

considered radiation. The strain field associated with a moving 180 domain wall has

been modeled by How et al. [1989]. In this calculation the shear strain waves traveling

with the domain wall are determined for a general velocity. The results of How et al.

reduce to the last terms in equations IV.48a and IV.48c in the case of small velocity.

This suggests that the approximation for the magnetization distribution in the direction

normal to the domain wall is valid.

For an observation point far from the domain wall on the positive y side only the

positive moving elastic strain wave passes through that point. Figures IV.2a and IV.2b

show the shape of the normalized elastic strain wave passing through an observation

point as a function of time. The amplitude of the transverse components, called a shear

wave, and the longitudinal component, called a compressional wave, are different. Also
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since the shear wave and compressional wave travel at different velocities, the shear

velocity of sound and longitudinal velocity of sound respectively, the two types of elastic

waves reach the observation point at different times.

Shear Wave Emitted from a Domain Wall
1

0.8- _ x-y Shear Component

0.6- -- y-z Shear Component

I '

0.4 -

C 0.2-

0

-0.2--0.4
-0.6-

-0.8-

-1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Time (arbitrary units)

0.7 0.8 0.9 1

Figure IV.2a The shear components of elastic radiation emitted from a 180* domain wall

undergoing a step change in velocity at t = 0. The amplitude of the elastic waves are

normalized. The time is in arbitrary units.
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Figure IV.2b The compressional component of elastic radiation emitted from a 180
domain wall undergoing a step change in velocity at t =0. The amplitude of the elastic
wave is normalized. The time is in arbitrary units.

The elastic radiation emitted from the moving domain wall has the following

properties:

At any observation point the center of the elastic disturbance arrives exactly at the

time required for radiation from the center of the domain wall to travel that distance if the

radiation is emitted at the time the step in velocity occurs, when the domain wall's

acceleration can be expressed as a delta function. At all other times the acceleration of the

domain wall is zero.

The width of the elastic radiation field at any time is exactly that of the domain

wall. The arguments of the radiation functions in equations (IV.48) are similar to the



arguments in the function for the domain wall, equations (IV.22), with a differing only

by the spatial translation.

At a time much greater than the time taken for the peak elastic radiation field to

reach the observation point there is no additional radiation observed. At this point if

radiation were being emitted, it would be emitted from a domain wall moving at a

constant velocity. There is no observed radiation because there is no convective change

in the inelastic strain field at the 180 domain wall. The elastic radiation's displacement

vectors appear to be the convolution of the acceleration function, here a delta function,

with the domain wall strain field. Thus only an accelerating 180 domain wall can be a

source of elastic radiation.

IV.6 Estimates of the Size of Elastic Radiation from a Moving Domain Wall

The size of the elastic radiation from an accelerating 180 domain wall is

dependent on the Walker velocity, the magnetoelastic and elastic coefficients, and in the

case of the step in velocity the final velocity of the domain wall. Table IV. 1 lists the

appropriate values for these constants. Iron has a [100] easy direction, thus the model

present above is consistent. Nickel and most ferrite materials have and easy axis in the

[111] direction. This means that the magnetization vector must be rotated relative to the

crystal axes and the model must be slightly modified. The general form of the elastic

radiation does not change significantly. Thus the estimate of the size of the elastic

radiation for materials with a [111] easy direction is calculated using equation (IV.48).

The values of the elastic strain waves emitted from metals are quite small

compared to that of the ferrite materials. This is because of the velocity of the domain

wall is limited by eddy current loss and thus is very small for fields on the order of 1 Oe.

For larger field the domain wall does not remain planar [Williams et al. 1950]. This will

be discussed in Chapter VI. It would appear as if 180" domain walls should not

contribute significantly to magnetoacoustic emission in metals. In a real metal where



domain wall motion is much more complicated than this simple planar wall model

additional effects must be added to the model if 180 domain wall motion is to be

considered a significant contributor to magnetoacoustic emission.

The ferrite materials should exhibit very large elastic radiation from a step in

domain wall velocity in an applied field of 1 Oe. Thus in ferrites acceleration of 180

domain walls could be a significant source of magnetoacoustic emission.

Table IV. 1 Amplitude of emission associated with a step change in the velocity of the

domain wall in a 1 Oe applied magnetic field. The values come form the following

sources: A Chikazumi [19 86 ], B O'Dell [1981], c Williams et al. [1950], approximate

values based on iron and nickel ferrite.
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Chapter V: Technique for Measurement of Magnetoacoustic Emission

V.1 Introduction

The measurement of magnetoacoustic emission from a single moving 180

domain wall requires instrumentation that is sensitive to the level of strain determined in

Chapter IV. In addition, because the elastic radiation emitted by an accelerating domain

wall can be a transient phenomenon, high bandwidth detection is desirable. For a typical

1800 domain wall undergoing a step in velocity the elastic radiation pulse width is less

than 0.1 nanosecond. A more realistic pulse width, taking into account the finite

acceleration of a 180" domain wall, is on the order of 1 microsecond, for a velocity

risetime of approximately 1 microsecond. Thus the strain sensor should be capable of

detecting elastic disturbances at a surface in the frequency range of 100kHz to 10MHz.

The standard technique used to measure magnetoacoustic emission employs a

piezoelectric transducer as the primary sensing device. Most commercially available

piezoelectric transducers have bandwidths of 10's to 100's of kilohertz in the frequency

range of 10 kHz to order lMHz. A highly sensitive piezoelectric transducer has

maximum sensitivity on the order of lpV/pbar for longitudinal stress waves [Williams

1980]. For a wideband measurement this translates to a strain sensitivity of O(10-11),

depending on the noise level of the high impedance wideband amplification system used.

The sensitivity is diminished for shear components of emission [Spanner 1974].

There are additional limitations to the capabilities of a piezoelectric transducer.

Most transducers are used to count acoustic emission pulses and measure the size of

emission, not determine the pulse shape. This is because the transducer either integrates

or averages the acoustic signal for most types of elastic waves, further limiting the

sensitivity to transient emission. The method of operation is determined by the

orientation of the piezoelectric poling, and the geometry and size of the transducer. The

piezoelectric transducer may be adequate for detection of acoustic emission from a
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moving 1800 domain wall in the ferrite type material (see Table IV. 1), but cannot be used

for metallic ferromagnets. In order to gain sensitivity and measure the actual shape of the

acoustic wave a modified type of sensor is needed.

One type of acoustic wave transducer which is highly sensitive to transient

emission is the capacitive transducer. This type of transducer senses absolute movement

of the surface of the material under test, or in some setups the acoustic wave transfer

block. The capacitive transducer has been employed successfully to investigate step

changes in the stress field at a point, a non-plane wave analogy to the step motion in the

planar 180" domain wall [Breckenridge et al. 1975]. Because of its wideband nature and

absolute motion detection, this type transducer facilitates the deconvolution of the

absolute surface motion to determine the change in the stress field which acts as the

source of the acoustic emission for longitudinal waves [Breckenridge et al. 1975 and

Lord 1981]. The transducer is constructed from two parallel conducting plates, separated

by a distance O(1gm), which cover a small area of the surface of the material, or transfer

block. It is possible to use the surface of the material or transfer block as one of the

electrodes of the capacitor. The design of the capacitive transducer makes it highly

sensitive to normal surface displacement, but highly insensitive to transverse

displacement of the surface. In addition any local surface movement will be averaged

over the area of the capacitive plates.

In order to employ the best features of the capacitive transducer as well as

sensitivity to local surface motion and shear acoustic emission, an electron tunneling

transducer has been developed for this thesis. Such a transducer is based on the

Scanning Tunneling Microscope (STM) [Binnig and Rohrer 1982 and 1986]. The

transducer utilizes the high sensitivity to topography [Binnig and Rohrer, Chen 1993],

and to surface displacement [Brizzolara and Colton 1990 and 1992].

Electron tunneling has been used by Brizzolara and Colton [1990 and 1992] to

measure surface displacement caused by magnetostrictive magnetic materials. But this
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was done at low frequency. The detection of the surface motion caused by elastic

radiation from a moving 1800 domain wall requires a higher bandwidth than is typically

available on an STM. Thus a wideband modification has been built for a commercially

available STM that will permit operation to 5MHz. Recently an STM, modified in a

similar manner to that used in this thesis, has been used to measure periodic surface

displacement by ultrasonic waves launched into a quartz crystal [Moreau and Ketterson

1992].

V.2 The Electron Tunneling Transducer

The electron tunneling transducer, called the tunneling transducer in this thesis, is

built with a standard Scanning Tunneling Microscope (STM) with modification to permit

measurement of high frequency changes in the tunneling current. The first STM was

built by Binnig and Rohrer [1982 and 1986]. The instrument utilizes the quantum

mechanical phenomenon of tunneling to permit surface imaging of either conducting,

semiconducting, or superconducting materials.

V.2a Tunneling Background for the Tunneling Transducer

The STM uses the tunneling configuration consisting of a metal-insulator-(surface

material) electrode-counterelectrode structure. The metal electrode is the tunneling tip,

which is built into the STM itself. The insulator can be vacuum, a gas, or a liquid. In

this thesis the insulating material is air. The metal counterelectrode is the sample surface

under test. Although the STM can be used for tunneling into semiconducting and

superconducting surfaces, in addition to conducting surfaces, [Chen 1993], the work in

this thesis is limited to metallic counterelectrodes and thus the STM is discussed in that

light.

In the original publications by Binnig and Rohrer [1982 and 1986], the

phenomenon of tunneling is discussed using a (tunneling tip)-insulator-(sample surface)
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in a simple planar heterostructure. Some effects of a more accurate geometry are

presented, but the basic equation for the relationship between tunneling current density,

voltage and (tunneling-tip)-surface separation is based on the planar model. The

insulating layer in their work is vacuum. Binnig and Rohrer model the tunneling current-

voltage characteristics using the small biasing potential approximation presented by

Simmons [1963]. Simmons work is based on the "transfer Hamiltonian approach"

[Duke 1969] in which tunneling takes place from an initial eigenstate of one Hamiltonian

through a rectangular barrier to afinal eigenstate of a different Hamiltonian. The

resulting current density-voltage relationship is given by

2 s V exp [- 2ic. s], (V.1)

where r,, is the inverse decay length of the wavefunction outside the surface, s is the

sample surface to tunneling tip distance, and V is the biasing voltage [Simmons 1963,

Binnig and Rohrer 1982 and 1986]. The inverse decay length, 1o, can be written in

terms of the average work function of the tunneling tip and the sample being investigated.

Assuming tunneling through a vacuum barrier the inverse decay length is written as

2 ico (angstoms) ~ 1.025 1+'12 (V.2)

where pi's are the work functions of the tunneling tip and surface.

The model presented assumes a planar tunnel junction. The (tunneling tip)-

surface is far from planar and some measure of the lateral current distribution is needed.

Assuming equation (V.1) is reasonable for the height dependence of the tunneling

current, if the radius of curvature of the tunneling tip is much greater than the (tunneling

tip)-surface separation it can be shown [Chen 1993] that the tunneling current density is

localized around the apex of the tunneling tip. With this highly local tunneling current
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routine measurements with spatial resolution as small as 2A have been made [Chen].

Additional limitations to the model of Simmons [1963] exist because the model does not

account for the effect of image potential, and ignores the actual local density of states at

the Fermi surface at the finite temperature of both the tunneling tip and the sample

surface. Even with these omissions the predicted current density versus (tunneling tip)-

surface separation in equation (V.1) is very close to the almost purely exponential

dependence observed experimentally [Chen 1993].

The change in tunneling current associated with a change in the (tunneling tip)-

surface distance can be found from equation (V.1). If it is assumed that the lateral

dependence of the tunneling current density does not change for small relative

displacements, the ratio of tunneling currents is given by

12= exp[-2Ko(s 2-si]. (V.3)

Evaluating this for an average work function of about 5 eV, the tunneling current changes

by approximately one decade for a change in (tunneling tip)-surface separation of 1A.

This assumes that the (tunneling tip)-surface separation is on the order of 10A. Such an

exponential response is observed [Binnig and Rohrer 1982 and 1986, and Chen 1993],

where the tunneling current changes by the about one decade per angstrom. It should be

noted that the decade per 1A current response is for vacuum.

In air the tunneling barrier is a dielectric material and the effective barrier is

reduced. This leads to a reduction in sensitivity [Chen 1993, and Moreau and Ketterson

1992]. Digital Instruments, Inc., the manufacturer of the base STM for the experiments

performed in this thesis, claims that the response is reduced to a level where the tunneling

current changes by a factor of two for every 2A change in (tunneling tip)-sample

separation. Similar numbers are given by Moreau and Ketterson. Thus in air the inverse
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decay length can be found to be 2KO (A) ~ 0.35. Assuming a purely exponential

tunneling current dependence on distance [Chen],

it = C V exp [- 0.35 s], (V.4)

where C is a constant and s is in angstroms.

V.2b The Standard STM Instrumentation

The STM is constructed to permit one tunneling electrode, the tunneling tip, to be

brought controllably to within mm of the surface being scanned, which acts as the

counterelectrode. The surface being scanned cannot be insulating. The tunneling tip is

made of a fine metallic wire, typically platinum with 20% iridium, which has been

mechanically cut or electrochemically etched to a very sharp point. A radius of curvature

on the order of 10 nm is attainable [Chen 1993]. This tunneling tip is mounted on a

piezoelectric material, typically a tube, which can be deformed in all three orthogonal

directions (see Figure V.1) permitting the tip to be moved over the surface following the

surface topography.

The piezoelectric tube used in the STM can be deformed in the x- and y-direction

to permit displacement of more than 100gm. The z-direction deformation is much less,

on the order of 5gm . Thus in order to initiate tunneling, engaging the tunneling tip, the

tip must be brought close to the sample using a different mechanical system.

As the STM scans the tunneling tip in the x-y plane it must respond to the surface

topography to prevent the tip to surface distance from becoming quite large, and causing

the tunneling current to go to zero, or touching the surface (a tip crash), causing

continuous electrical contact with the surface. This is prevented by an electronic feedback

system shown in Figure V.2. This system consists of a preamplifier, with a 15kHz low

pass filter, which in one type of design monitors the current through a resistor, or in

other designs acts as a current to voltage converter directly. The frequency cutoff of
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15kHz is chosen so that the STM operates below the natural frequencies of the

piezoelectric tube, typically above 30kHz. The preamplifier is connected to the

piezoelectric controller by a feedback loop to keep the tunneling current at a

predetermined constant level by adjusting the voltage applied to the piezoelectric tube,

controlling the (tunneling tip)-surface separation.

Piezoelectric Tube

y

Tunneling Tip x

I m

Figure V.1 Piezoelectric tube and tunneling tip relative to sample being scanned. The

tunneling tip height off the surface is on the order of 1nm.

Sample
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Figure V.2 Block diagram of standard Scanning Tunneling Microscope. The

preamplifier can either measure the voltage drop across a resistor to ground produced by

the tunneling current, or can be a current to voltage converter. The preamplifier is FET

input to limit the required biasing current since the typical tunneling currents are on the

order of InAmp.

The voltages applied to the piezoelectric tube are a direct measure of the surface

topography if is the average work function of the tunneling tip and sample remains

constant. For most simple imaging applications the average work function is assumed to

be constant. Deviation from this can cause spurious imaging results.

V.2c The Tunneling Transducer Design

The standard STM has a number of limitations that require modification in order

for it to be used as a transducer to measure acoustic emission. The 15kHz low pass filter

on the preamplifier, though critical for piezoelectric control purposes, is almost three

orders of magnitude too low for meaningful measurement of acoustic emission from

domain wall motion. Thus a second tunneling current amplification system is needed to

measure the high frequency components to the tunneling current (see Figure V.3).

107
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Preamplifier

Figure V.3 Modification of a standard Scanning Tunneling Microscope to measure high

frequency magnetoacoustic emission. A second high frequency tunneling preamplifier is

added to the circuit. Also the sample is shown surrounded by an electromagnet to permit

magnetization of the sample.

The tunneling transducer uses the low frequency feedback system to keep the DC

and low frequency tunneling current constant by adjusting the absolute position of the

tunneling tip. The high frequency amplifier is able to measure the high speed absolute

deflection of the tunneling surface as long as that surface does not move enough to cause

the tip to disengage or crash into the surface. Thus the surface deflection should be less

that the separation between the tunneling tip and the surface. The resulting transducer is

highly sensitive to small motion of the surface but does not have a large dynamic range.

The design of the tunneling transducer to be used for measurement of acoustic

emission continues to use the feedback loop to control the tunneling tip to surface

distance at low frequencies. But to measure high frequency surface motion the x-y

scanning capability is not needed and is not used. Instead the tunneling tip remains fixed
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in the x-y direction and responds only to z-direction motion. Assuming no low

frequency drift of the surface in the x-y plane and small amplitude high frequency motion

in the x-y plane, the average work function remains approximately constant and the

measured change in tunneling current is directly related only to the surface deflection.

The systems used for the experiments in this thesis were built using the Digital

Instruments, Inc. (Santa Barbara, California); Nanoscope I and Nanoscope III STM and

control system. The preamplifier provided with the STM is a FET input 10OX non-

inverting amplifier which measures the voltage produced across a 1MQ resistor by the

tunneling current (see Figure V.4a). The low frequency preamplifier has a 15kHz low

pass filter. The high frequency amplifier creates a virtual ground at its input and is an

inverting current to voltage converter with gain of 107volts/amp (see Figure V.4b).

The circuit diagram for the current to voltage converter is shown in Figure V.5. It

uses a bipolar input AD5539 operational amplifier, buffered by a first stage MOSFET

input to restrict the tunneling biasing current needed to drive the circuit. The circuit has a

gain of 107volts/amp, and a frequency response of at least 10volts/amp up to almost

5MHz, with some peaking above 100kHz (Figure V.6). The limitation to the frequency

is determined by the 1MQ sensing resistor in the original Digital Instruments, Inc.

circuitry and the parasitic capacitance at the inputs of the current to voltage converter.

Ferrite beads are added to the circuit to minimize high frequency transient pickup above

50MHz. These beads are #73 material made by Amidon Associates (North Hollywood,

California).
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Figure V.4 a) The block circuit diagram of the Digital Instruments Inc. tunneling head.

The preamplifier is built with a AD7 11 FET input operational amplifier. The preamplifier

measures the tunneling current by monitoring the voltage across a 1MQ sensing resistor

that is connected between the tunneling tip and ground. b) The modified amplification

system. A high speed MOSFET input current to voltage converter is added to the setup

by tieing the 1ML2 sensing resistor to a virtual ground and measuring the current into that

virtual ground.
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Figure V.5 High frequency inverting current to voltage converting amplifier. Amplifier

has individual MOSFET's as a front end. The input of the tunneling current is the virtual

ground point shown in Figure V.4b. Ferrite beads limits high frequency, greater than

50MHz, transients. LM7808 and LM7908 voltage regulators provide ± 8 volts for the

AD5539. The circuit is built backed by a ground plane to cut down electromagnetic

transient pickup.

The design of the current to voltage converter permits the STM to operate

consistent with the original design of Digital Instruments, Inc. Normal operation of the

STM is achieved by adjusting the potentiometer in the current to voltage converter to null
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out any offset. It was found that during normal operation there is some drift in the

circuit. Thus it is necessary to readjust the null occasionally during experimentation.

Frequency Response of Current to Voltage Converter

I i I i i 1 1 1 1 i i i l i l l i I I I gi l li i

-110- 104 105

Frequency (Hz)

106 107

Figure V.6 The frequency response of the current to voltage converting amplifier shown

in Figure V.5. The output is normalized to 107volts/amp, and is given in dB. The

frequency response peaks at about 1MHz. But the gain does not drop below

l 7volts/amp until between 4 and 5MHz; 3dB bandwidth is almost 9MHz. The response

is measured using an AC signal at the converter input.

V.2d Noise Performance of the Tunneling Transducer

The high frequency tunneling transducer has a much wider bandwidth than the

STM and as a result, it experiences a much higher electrical noise level. The two main

sources of noise are the shot noise caused by the tunneling process, and the amplifier
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noise produced by the current to voltage converter. The root mean square shot noise is

given in terms of the tunneling current It:

sh'- 2 q It B, (V.5)

where q is the electron charge, 1.6x10-19 coulombs, and B is the bandwidth [Ott 1976].

For a bandwidth of 5MHz Ish = 1.27x1O- 6(It1/ 2) in amps.

The peak to peak noise of the current to voltage converter is measured at its output

with either a grounded or open front end. The measured peak to peak noise voltage can

be used to determine the equivalent current noise at the input of the current to voltage

converter. Figure V.7 is plot of the equivalent current noise introduced by the amplifier.

Input Current Noise of High Frequency Current to Voltage Converter

-1 .5 ' ' ' ' ' ' ' I I I I

0 2 4 6 8 10 12 14 16 18 21

Time (microseconds)

Figure V.7 Input current noise of current to voltage converter. Peak to peak noise level

is approximately 2 nAmps.

1
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The peak to peak current to voltage converter noise level is between 2 .0 and 2.5 nAmps.

For shot noise to reach this level the tunneling current would have to be approximately

lAmp. Thus in the current regime used in typical tunneling measurements (<

100nAmps) the dominant noise contribution is from the current to voltage converter.

The conversion of this noise level to equivalent surface deflection can be

estimated using the relation that the tunneling current changes by a factor of two for each

2A of change in (tunneling tip)-surface separation in air. Using equation (V.4) the

change in the tunneling for small changes in the (tunneling tip)-surface separation is

approximately given by

A s= AI (V.6)
0.35 It*

For a tunneling current of lOnA, the input noise of the current to voltage converter has an

equivalent surface motion of approximately 0.6A. Increase in the tunneling current will

decrease the equivalent surface motion noise floor. In addition, a number of signal

averaging techniques can be employed to further reduce the equivalent surface motion

noise floor.

V.3 Measurement of Surface Motion Using a Tunneling Transducer

The tunneling transducer can be used in a number of configurations to permit

measurement of surface deflection caused by acoustic emission. For a plane longitudinal

elastic wave reflecting off a free surface, the tunneling transducer is mounted normal to

the surface (see Figure V.8). As the surface moves towards the tunneling tip the

tunneling current is increased. As the surface moves away from the tunneling tip, the

tunneling current decreases. The sensitivity of the tunneling current to surface

displacement is exponential. Using the in air approximation for the tunneling exponential

function, the tunneling current changes by a factor of two for every 2A of displacement

of the surface.
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Figure V.8 Surface deflection relative to a stationary tunneling tip for a longitudinal plane

elastic wave traveling in the z-direction. If the surface moves 8h in the positive z-

direction the tunneling tip to surface distance decreases by Sh, causing an increase in the

tunneling current.

The tunneling transducer is insensitive to a shear wave that are incident normal to

a perfectly flat surface because the distance between the surface and the tunneling tip

remains constant. If the surface is not smooth then the normal incident shear wave will

cause topographical features to move under the tunneling tip and cause changes in the

tunneling current (see Figure V.9). The tunneling transducer can detect large tangential

surface motion in this manner. But quantification of the motion is very difficult because

the tunneling transducer is only measuring the distance between the tunneling tip and the

surface. To determine the extent of tangential surface motion the surface topography

must be known.

For small tangential surface motion 1A or less, the surface topography does not

change enough to permit detection of the shear elastic wave. For small shear waves the

tunneling transducer has the same disadvantage as the capacitive transducer, the direct

-4
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motional change due to the shear wave is smaller than the area of interaction between the

tunneling tip and the surface. Thus, for small shear waves, a different setup is needed.

Tunneling Tip --

Surface of
Sample

Tunneling Tip

Surface of
Sample

Direction of
Motion of Surface

Figure V.9 Deflection of the surface caused by a shear elastic wave incident in the z-

direction. The surface topography causes the tunneling tip to surface distance to change
during tangential surface motion.

One method of measuring very small planar shear waves is to measure on a

surface parallel to the direction of propagation of the shear wave. In this configuration

the surface of the sample is once again moving either away from or towards the tunneling

tip causing a change in the tunneling current (Figure V.10). Large shear as that shown in

Figure V.10 as well as small traveling shear waves (Figure V.11) can be detected in this

configuration. Such motion cannot be easily differentiated from Rayleigh waves [Kolsky

1963], suggesting that the tunneling transducer can also be used to detect small surface

waves.
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Figure V.10 Measurement of a shear wave on a surface parallel to the direction of

propagation of the wave and orthogonal to the shear direction. In this configuration the
surface moves in such a manner that the distance between the tunneling tip and the

surface changes causing a change in tunneling current.
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Figure V.11 Small shear wave traveling in a direction parallel to the surface being

monitored. Here the stationary tunneling transducer is sensitive to surface features

moving under the tunneling tip.
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Chapter VI: Experimentation on a 3% SiFe Picture Frame Single Crystal

VI.1 Introduction

The verification of the existence of magnetoacoustic emission from an accelerating

180 domain wall requires an experiment method to isolate a moving 180* domain wail

from all other moving domain walls. In most single crystal and polycrystalline materials

the domain configuration is complicated enough to obfuscate the source of

magnetoacoustic emission. Lord [1967] suggests that to isolate magnetoacoustic

emission for a single domain wall a single crystal of picture frame geometry can be used.

Although a picture frame single crystal made of a ferrite material is the ideal candidate to

isolate large single source magnetoacoustic emission, such samples are not readily

available, and very difficult to fabricate. On the other hand metallic picture frames are

slightly easier to fabricate. Because of the availability of one sample for experimentation

a metallic picture frame was chosen as the test sample for the thesis experimentation. The

picture frame single crystal of 3% silicon iron was provided by Dr. Robert F. Krause of

Magnetic International, Inc., Burns Harbor. Indiana.

VI.2 Picture Frame Single Crystal Background

The single crystal of picture frame geometry is ideal for experimentation which

requires isolation of motion of 180 domain wall motion. In a single crystal of cubic

magnetic material the picture frame geometry permits the formation of a very simple

domain configuration. This simple domain configuration minimizes the magnetic energy

of the material, while permitting magnetization entirely through 180* domain wall motion.

There are non- 180* domain walls in the picture frame. But these walls are immobile.

Early experimentation on picture frame geometries exhibited high maximum permeability

and low coercive field levels [Williams 1937, Williams and Shockley 1949 and Williams

et al. 1949]. The high permeability and low coercive field make the geometry ideal for

experimentation on single domain wall motion.
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A number of picture frame geometries can be fabricated. The geometry is

dependent on the type of 180 domain wall needed to be isolated, and whether the

material has an easy axis in the [100] or [111] directions (see Appendix A). For a

material with an easy axis in the [100] direction, a material with a positive cubic

anisotropy constant, the picture frame geometry which isolates 180 domain wall in the

(100) plane is shown in Figure VI. 1. Here each surface side of the picture frame is a

(100) plane.

[100] [010]

000

1800 Domain
- Wall

:Direction of
magnetization

[001]-

900 Domain Wall

Figure VI.1 A single crystal picture frame with (100) plane 180 domain walls. If the

width of a leg on the picture frame is greater than the thickness (w > t) the planes of the

1800 domain wall are orthogonal to the largest faces of the crystal, as shown above. If t

> w then the planes of the 180" domain walls are coplanar with the largest faces. The 90*

domain walls are planes at the edge of the picture frame.

For a 1800 domain wall in the (110) in a cubic material with positive anisotropy constant

the shape of the picture frame is the same as that shown in Figure VI. 1, except that the
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sides of the picture frame are the (110) planes. Other 180* domain walls exist in this type

of cubic material. But the two discussed above are the most common [Chen 1986].

If the material being investigated has an easy axis in the [111] direction, the

picture frame has a diamond shape, see Figure VI.2. Typical materials that have the

[111] easy axis are nickel and most ferrite materials. In this material the two most

common 180*

[7110] 11

180' Domain
Wall

Direction of
Magnetization

70.530 Domain
W a 3 D109.43 Domain

WWall Wall

Figure VI.2 A single crystal picture frame with (110) plane 180 domain walls. Again

depending on the size of the legs the 180 domain walls can either be (110) planar or

(112) planar [Galt 1952, Chen 1986]. The edge domain walls, which are immobile are

either 70.53* or 109.43.

domain walls are referred to as 70.53* and 109.43* domain walls, or sometimes non-

1800 domain walls. In this geometry the non-180* domain walls are immobile, where as

the 1800 domain walls are mobile.

In order to drive the 180* domain walls in the picture frame single crystal a

magnetic field is applied parallel to one the legs of the crystal [Stewart 1951]. When the

field is applied all the 1800 domain walls translate together around the crystal (see Figure
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VI.3). If the 1800 domain walls do not move in unison a large magnetostatic self field

will form along the 900 domain walls. Motion in unison minimizes magnetostatic self

field contributions. So far the description assumes that the domain wall remain planar.

% J

1800 Domain Walls

Figure VI.3 1800 domain wall motion in a picture frame single crystal. As the magnetic
field is applied in the up direction within the magnetic field source coil the domain wall

moves toward the center of the single crystal. When the magnetic field is reversed the

domain walls move toward the outer edges of the crystal.

The velocity of the 1800 domain wall is determined in Appendix C to be a linear

function of applied field. The micromagnetic calculation results in a velocity function

which is inversely proportional to the Gilbert damping coefficient [Gilbert 1955, Schryer

and Walker 1974]. This result has been experimentally verified by Williams et al.

[1950], Stewart [1951] for SiFe and Galt [1952] and Dillon and Earl [1959] in ferrites.

The velocity relation is slightly modified for a real crystal where a finite applied field is

needed to initiate domain wall motion:

vy = c (H0 - Hcr), (VI. 1)
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where Her is the critical field for domain wall displacement and c is a constant dependent

on the material and geometry of the sample [Chikazumi 1986]. In a ferrite where the

damping is caused by precessional loss the constant, c, is independent of geometry. In

metallic magnetic materials where eddy current loss dominates, c is dependent on the

sample geometry. In a high quality picture frame single crystal He is very small, thus a

1800 domain wall velocity is approximately vy = cHo.

So far the 180" domain wall model has assumed that the domain wall is planar.

This is a good approximation for very small applied magnetic fields, i.e., low domain

wall velocity. At larger fields the 1800 domain wall no longer remains planar in metallic

ferromagnets [Williams et al. 1950, Chikazumi 1986]. Instead the wall becomes curved

and in some cases cylindrical in cross-section. This is caused by the difference in local

eddy current damping, which is much larger in the center of the material than at the

surface.

VI.3 Characterization of 3% SiFe Picture Frame

The 3% SiFe single crystal picture frame provided by Dr. Robert F. Krause of

Magnetic International, Inc., Burns Harbor. Indiana, has dimensions 2cm x 2cm and a

thickness of 0.017cm. The leg width is 0.5cm. The sample is (100)[001] cut from cube

textured SiFe (See Chen [1986] for information on the metallurgy of transformer steels).

The orientation was determined by Laue x-ray diffraction and alignment of the crystal is

quoted to be better than 0.50 [Krause 1992]. The crystal was cut and mechanically

polished. Finally the crystal was electrolytically polished and annealed to remove strain

at the surfaces. The fabrication of the picture frame single crystal was done by Dr.

Krause.
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VI.3a Domain Structure

Measurements of the domain structure of the picture frame were made to

determine the quality. The domain structure of one leg of the picture frame was found

using Bitter patterning [Chikazumi 1986]. The Bitter patterning was done using a

ferrofluid provided by Ferrofluidics Corporation, Nashua, New Hampshire. The

ferrofluid is a suspension of fine ferromagnetic particles (approximately 80A) in mineral

oil.

Figures VI.4 is a photomicrograph of the Bitter pattern on one leg of the picture

frame. The domain structure does not exhibit the simple structure shown in Figure VI. 1.

Instead there are complex "tree" pattern domains [William et al. 1949 and William and

Shockley 1949]. The "tree" pattern is shown at higher magnification in Figure VI.5a.

Figure VI.4 A photomicrograph of the domain configuration of the SiFe picture frame

single crystal used for magnetoacoustic emission experiments. The leg contains six

vertical 180* domain walls. Magnetization is 6.3X.
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The "tree" domain pattern forms on a smooth strain relieved surface that is

slightly misaligned with the plane containing an easy direction. Since the surface is

slightly out of perfect alignment, there is magnetic poling on the surface (a finite

magnetostatic self energy). The "tree" domains permit redistribution of the surface poles

thus lowing the magnetostatic self energy of the crystal, Figure VI.5 [Chikazumi 1986].

William et al. determined experimentally that if the surface of a ferromagnet is between

0.50 and 1.3' out of alignment the "tree" pattern forms similar to that shown in Figure

VI.5a. Since the "tree branches" have not filled the entire space along the domain wall in

Figure VI.5a, alignment of the crystal is better than 1.

Figure VI.5a Shows a photomicrograph "tree" domains on the surface of SiFe picture

frame. Magnification is 200X.
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Direction of
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"Tree" Domains

Figures VI.5b "Tree" domain pattern on a surface slightly misaligned relative to an easy

axis. Poling and magnetization in the vicinity of the "tree" domain is depicted. Here the

branches of the "tree" pattern are separated along the 180* domain wall. This type of

pattern exists for misalignment from 0.5* to 1.3* [William and Shockley 1949]. The

separation of individual branches along the 1800 domain wall disappears as the

misalignment approaches 1.30.

The existence of "tree" domains on the surface of the picture frame results in a

non-ideal domain configuration for absolute isolation of 180* domain wall motion. When

the 1800 domain wall moves the "tree" domains move resulting in motion of the 90*

domain walls surrounding the "tree" domains. In addition in an applied magnetic field

Williams et al. [1949] observe shrinking of the "tree" structure in domains that are

oriented antiparallel to the applied magnetic field, and growth in domains parallel to the

applied magnetic field. Still measurements made on SiFe picture frames containing "tree"

domains indicate the magnetization process is dominated by the motion of the 180

domain walls [Williams and Shockley 1949]. This is because the "tree" domains

penetrate only approximately 10% of their width [Williams et al.].

A second feature of the domain structure shown in Figure VI.4 is the multiple

180* domain walls on a single leg. Multiple domain walls are again a consequence of

misalignment. The formation of two antiparallel domains and large "tree" domains is less

energetically favorable than the formation of multiple antiparallel domains with small
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"tree" domains. The reason for this is that the magnetostatic self energy caused by poling

at the surface is proportional to the size of the domains [Chikazumi 1986]. The size of

the domains is limited by the relative increase in domain wall energy for smaller domains.

Thus even ignoring the "tree" domains, isolation of a single 180" domain is impossible in

the picture frame. Instead the measurements must include six 1800 domain walls at once.

V.3b Domain Wall Velocity Measurements

The velocity of the domain wall in the picture frame can be determined directly

from magnetization measurements. The electromotive force produced in a sense coil is

given by

( D
V=-N j-t, (VI.2)

where CD is the flux through the sense coil. Assuming the simple domain configuration of

Figure VI. 1 in a picture frame the velocity of the domain wall can be written in terms of

the time derivative of the flux, see Figure VI.6

v = N- V , (VI.3)

where d is the thickness of the picture frame. The calculation assumes that aH/at is small

compared to )M/at. This is valid for fields levels required to move the domain walls in a

soft magnetic material. In the case of multiple 1800 domain walls the average velocity can

be found by dividing the single domain wall velocity found in equation (VI.3) by the

number of 180" domain walls in a leg.
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Sense Coil

------------- J L -------------

12

Figure VI.6 As the 1800 degree domain wall moves to the left, there is a magnetization

reversal of 2 M. Assuming aH/at is small, the change in flux is just the area where the

reversal takes place vyd where vy = (11 - 12)/At.

Source Coil
, Sense Coil

I4 - A - - - - - -o t a g ~e S e n s o

1800 Domain Walls

Figure VI.7 Source and sense coil configuration on SiFe picture frame. Sense coil can

be placed on any leg of the picture frame. The current source used is a pulse source with

controllable duty cycle (see Figure VI. 13).

The actual experimental setup used to measure the domain wall velocity is shown

in Figure VI.7. The sense coil is a ten turn coil on one leg of the picture frame. The

source coil is a 30 turn coil on a different leg. The output from the sense coil is similar

for placement on any of the four legs of the picture frame. H field coupling between the
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source and sense coil has been ruled out by tests on both insulating and conducting non-

magnetic samples.

Domain wall velocity is determined for magnetic field pulses produced by the

source coil. The field values range from 0.01 to 3.5 Oe. The applied field pulses have a

rise time of approximately 250ns and a controllable length. For the velocity

measurements the magnetic field is applied in one single pulse. The sense coil is attached

directly to the input of a high input impedance, low noise, Ithaco 1201 Preamplifier with

a 400kHz bandpass. The output from the preamplifier is feed directly into a Philips

PM3550 Digital Storage Oscilloscope so that the output can be transferred to a computer.

Figures VI.8a and VI.8b show typical domain wall velocity versus time curves observed

in the picture frame for two applied magnetic fields. The average velocity is calculated

assuming six domain walls, as is shown in Figure VI.4 and a saturation magnetization

for 3% SiFe of approximately 2.0 Tesla [Chen 1986]. The voltage induced in the sense

coil is assumed to be produced by 180* domain wall motion.

At the beginning and the end of the magnetic field pulse the voltage output from

the sense coil exhibits a relative positive and negative spike respectively, which is

depicted as velocity in Figures VI.8. The spiking is an order of magnitude greater than

the maximum size possible for direct coil coupling. In addition the spiking remains about

the same magnitude no matter which leg of the picture frame the sense coil is placed on.

The spiking is probably caused by the complicated motion of the "tree" domains at the

surface. Similar spiking has been observed by Dillon and Earl [1959] and Gyorgy

[1960]. Dillon and Earl and Kittel and Galt [1956] suggest that the velocity spiking at the

beginning of the field pulse is caused the depinning of the domain walls from pinning

sites at the surface. The inverse velocity spike present at the end of the field pulse is a

result of rearrangement of the domain walls to an equilibrium position.
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Figures VI.8 The domain wall velocity measured on the 3% SiFe picture frame. a) The

applied field is 3.5 Oe. The length of the field pulse is approximately 3.5ms. b) The

applied field is 0.5 Oe. The length of the field pulse is approximately 1 1ms. The large

velocity spiking at the beginning and the end of the field pulse is related to motion of the

"tree" domains.

The shape of the velocity curve is similar to those reported by Stewart [1951] and

differs significantly from the profile reported by Kittel and Galt [1956] for a ferrite

sample. The velocity curves found by Kittel and Galt show the initial and final spiking,

but are flat, i.e., the wall moves at constant velocity, at constant field levels consistent

with equation (VI.1). Since the domain walls do not appear to move with constant

velocity in the SiFe picture frame, effects other than eddy current loss must be present.

The decaying nature of the velocity profile is attributed to the interaction of the multiple
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domain structure. In a perfectly oriented material two 1800 domain walls on opposite

sides of a domain magnetized antiparallel to the applied field will annihilate each other. In

a misaligned material annihilation is opposed by the resulting increase in surface poling

energy. Thus the two 180 domain walls are compressed together, but not annihilated

until a much larger field is applied. Instead as they approach each other they repel in

order to minimize poling. When the applied magnetic field is turned off, each 180

domain wall and its associated "tree" domains repel the other causing rearrangement of

the domains in the material.

So far the discussion of the velocity curve has assumed that the domain wall

motion is responsible for the magnetization, and thus produce the observed velocity

curve. Proof that the magnetization measured by the sense coil is related to domain wall

motion can be found by using an interrupted applied magnetic field pulse [Gyorgy 1960,

1963, 1993]. Since in the SiFe, the 180" domain wall moves through a highly damped

system, when the applied field is turned off the domain wall should come to rest quickly.

Gyorgy [1960 and 1963] shows that for soft ferromagnetic materials if the applied field is

pulsed with high duty cycle and a pulse length shorter than the time required to move the

wall across the sample, the domain wall will trace the same velocity profile including the

interrupts. Figure VI.9 shows an interrupt test results from the SiFe picture frame used

in this thesis.
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Velocity of Domain Wall for an Interrupted Field Pulse

0.1 0.2 0.3 0.4 0.5 0.6

Time (arbitrary units)

0.7 0.8 0.9 1

Figure VI.9 Velocity of domain wall for an interrupted field pulse. The duty cycle is

0.87. The velocity drops quickly after the field level drops to zero. The spiking is a

result of the depinning and domain wall rearrangement processes. The velocity profile

follows a similar path to the uninterrupted pulse, excluding the interrupts.

Again the spiking is caused by depinning and rearrangement processes. Integrating the

velocity curve over time results in an effective length traveled by the domain walls. The

effective length of travel, which is calculated to be 0.13cm, for the interrupted pulses

differs from that of the uninterrupted pulse by less than 1%. Thus interruption of the

magnetic field cause a slight rearrangement seen in the spiking, in addition to net

translation of 1800 domain walls.
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An effective domain wall velocity as a function of applied magnetic field is shown

in Figure VI.10. The effective velocity is taken to be the velocity measured at the flat

portion of the velocity curve for larger applied fields (see Figures VI.8). For smaller

applied fields the velocity curve does not flatten, but does exhibit an inflection point

which is taken as the effective velocity. The resulting velocity versus applied magnetic

field relationship is linear as expected in equation (VI.1) with the constant c = 9.2cm/(sec

Oe). This value is larger than that measured by William et al. [1950], see Table IV.1, but

the picture frame in those experiments was 0.114cm thick compared to 0.017cm for the

picture frame used in this thesis. The difference in eddy current damping and possibly

the more complex domain structure of the picture frame used in this thesis account for the

differences.

40-

i 30-

E

20-

0 -
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0 1 2 3 4

Applied Magnetic Field (Oe)

Figure VI. 10 Effective domain wall velocity versus applied magnetic field. Velocity is

linear in applied magnetic field with a slope of 9.2cm/(sec Oe).
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VI.4 Tunneling Background for the SiFe Picture Frame Single Crystal

A number of types of experiments were performed on the picture frame. Surface

motion caused by low frequency magnetization of the picture frame was measured using

both a standard scanning tunneling microscope, and an atomic force microscope (For

background on atomic force microscopy see Sand [1991]). The two types of

microscopes were used to verify that no direct magnetic coupling between the sample and

the tunneling transducer exists. The magnetoacoustic emission experiments were

performed using the high frequency tunneling transducer to investigate the motion surface

of the picture frame during magnetization by a pulsed applied magnetic field.

VI.4a Experimental Setup and Apparatus for Tunneling Measurements

The fixture used to hold the tunneling transducer, and also the atomic force

microscope, is shown in Figure VI. 11. The fixture permits XY control to approximately

13 tm and Z-direction control to 1pm. X-direction control is not used in these

experiments. The tunneling transducer fixture is placed inside a styrofoam and foam

rubber acoustic shield to minimize external acoustic noise. The acoustic shield also has a

faraday cage built in to minimize tunneling transducer RF noise pickup. The tunneling tip

is manipulated into position at the picture frame by the micrometers. The tip is then

lowered externally using one micrometer while the piezoelectric feedback loop is

operational (see Chapter V). The tip is brought down at approximately 1 m/sec with the

micrometer. As the tip approaches the picture frame surface and tunneling begins (an

approximate separation of 10A), the feedback loop retracts the piezoelectric tube keeping

the tunneling current at a constant level. At this point the external mechanical engagement

ceases, and the tunneling transducer is engaged with the picture frame surface, resulting

in a tunneling current.

A magnetic field is applied to the picture frame by the source coil shown in Figure

VI.7. It was found that the source coil electrostatically couples into both the tunneling
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transducer and the SiFe picture frame itself. The coupling into the picture frame directly

causes interference since the picture frame is an electrically active part of the tunneling

circuit. To reduce this effect the source coil is enclosed within an grounded copper shield

on the picture frame (Figure VI.12).

Front View

Micrometer
Support

Tunneling Transducer or
Atomic Force Microscope

m
0A

Picture /
Frame Glass Holder

Plate

Micrometer

Brass XYZ
Stage

Stainless
Steel Offset

Tunneling
Tip

Micrometer
and Mount'

Figure VI. 11 Front and side views of tunneling transducer fixture. The triangular XYZ

stage permits control of placement of the tunneling tip to within 13km in XY plane and

1gm in the Z-direction. The glass plate is mounted on vibration isolation pedestals. The

entire setup is placed in a styrofoam and foam rubber acoustic shield to minimize external

vibrational noise and vibration isolate the tunneling apparatus.
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Figure VI. 12 Copper shield configuration on the picture frame. The grounded copper

shield is wound in a serpentine manner. The current source can either be DC, pulsed or

AC.

Several current sources were used to produce the magnetic field of the source

coil. For low frequency AC fields a Philips PM5192 Digital Function Generator in series

with a resistor was used. For pulsed fields a pulsed current source (Figure VI.13) was

designed and built. The current supplied to the source coil is controlled by Rset, where

Iout O.6Volts/Rset, with a 250ns risetime. The compliance is set by the voltage supply,

Vo which has a typical level between 20 and 30 volts to maximize the risetime of the

current pulse while reducing the introduction of ring at the leading edge of the current

pulse.
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Figure VI. 13 Pulsed current source to drive the source coil. The current is controlled by

Rset. Pulse length is controlled by a General Radio 1340 Pulse Generator.

All tunneling and atomic force microscope measurements were made using a

Digital Instruments, Inc. Nanoscope III. These measurements where made at the

Advanced Materials Laboratory, Concord, Massachusetts. For low frequency

magnetization, where measurement of magnetoacoustic emission is not the goal, the

output from the tunneling transducer and the atomic force microscope can be analyzed

directly by the instrumentation and software available with the Nanoscope III. For the

magnetoacoustic emission measurements the output from the tunneling transducer is fed

directly into a Philips PM3550 Digital Oscilloscope to then be transferred to computer for

analysis.
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VI.4b Picture Frame/Tunneling Transducer Configuration

The design of the tunneling transducer fixture permits the tunneling tip, or atomic

force microscope tip to be placed at different points on the picture frame surface. For

magnetoacoustic emission from a 180* domain wall, the shear components of the emitted

radiation are the largest. The tunneling tip configuration to be used to measure the

surface deflection of these transverse waves is discussed in Chapter V (see Figure V.11).

The best placement of the tunneling tip on the picture frame for shear wave detection is

near a corner on the narrow edge, Figure VI. 14. For plane wave emission from the

domain wall source shown in Figure VI. 14, the maximum surface displace exists near the

tunneling tip.

eyz

Tunneling Tip - Direction of Surface
Motion for Strain Wave

eyy
4004

1800 Domain Wall
Source

z

SO. y

x

Figure VI. 14 Tunneling tip placement for a transverse wave emitted from the 180*

domain wall marked as the source. Maximum shear radiation exists on the narrow face

for an accelerating planar domain wall.

The magnitude of the surface displacement is given by the product of the

amplitude of the strain waves (equations (IV.48)) and the length of the domain wall in the

corresponding direction:
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8x = ix exy,

8Y = 2 A eyy, (VI.4)

8z = lz eyz,

where lx and lz are the lengths of the domain wall in the x- and z-directions respectively

and A is the domain wall width parameter. In 3% SiFe the expected shear strain is

0(10-10), and thus the expected surface displacement for a magnetoacoustic emission

from a planar 180 domain wall 0.017 cm thick and 1cm long is 8x = O(10-12 cm) and 8z

= 0(10-10 cm). This value of 8x is below detectability, but 8z is just below the limit of

detection for the tunneling transducer as described in Chapter V. Thus the tunneling tip

placement in Figure VI. 14 maximizes the possibility of detection of the surface

displacement, 8z, caused by the passing of the shear wave under the tunneling tip. The

longitudinal wave emitted from the 1800 domain wall calculated by the model in Chapter

IV, is also below the limit of detection of the tunneling transducer.

VI.4c Surface Displacement for Low Frequency Magnetization

The surface displacement associated with low frequency magnetization was

measured using both a tunneling transducer and an Atomic Force Microscope (AFM).

The AFM was used to assure that the motion detected was related to real surface motion

not direct magnetic coupling into the tunneling transducer. The frequency of the applied

magnetic field was kept <20 Hz so that large surface motion could be tracked by either

the tunneling transducer or the AFM. The slew rate of both the tunneling transducer and

AFM are limited by the response of the piezoelectric manipulator and controller which

translate the tips for each device.
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The tunneling tip, or AFM tip, was placed at a number of points in the surface of

picture frame, Figure VI.15. At all points the surface was observed to move periodically

in phase with the applied magnetic field.

TT TT

Sensor Engagement
' 1T AFM /Points

AFM

Figure VI. 15 Depiction of points where the tunneling transducer was engaged to monitor

low frequency motion of the surface. The spots marked with TT indicate points where

the tunneling transducer was used. The spots marked AFM indicate points where the

atomic force microscope was used.

The amplitude of surface motion is dependent on the magnitude of the applied magnetic

field, and independent of the frequency of the applied field. The surface motion for 2.4

Oe peak to peak sinusoidal applied magnetic field is shown in Figures VI. 16 and VI. 17.

The measurements were made using the AFM on the side furthest from the source coil.

The AFM was raster scanned over a 100 Lm x 100pm area at a rate of 200 pm/sec and

0.4gm per line. Figure VI. 16 shows a surface plot of the surface motion for the

magnetic field at frequencies of 1, 2 , 4, 8, and 16 Hz. The relative amplitude of the

surface motion is qualitatively depicted by gray scale. Surface displacement is shown in

Figure VI. 17 for the 2 Hz applied field with vertical displacement of ~ 1000OA peak to

peak. The same order of magnitude of surface displacements was found at all other

points on the crystal investigated for a given applied magnetic field.
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Figure VI. 16 A gray scale surface plot of surface displacement of the SiFe picture frame

measured by an atomic force microscope. The plot is a raster scan 100tm x 100tm in

area. Lines are scanned at 200 m/sec, 0.4pm per scan line. The applied magnetic field

is a 2.4 Oe peak to peak sinusoidal field at 5 different frequencies. The flat portions of

the surface plot are periods with no applied magnetic field. The amplitude of oscillation

is constant for all frequency values.
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Figure VI. 17 Cross-section of surface plot in Figure VI. 16 for the 2Hz, 2.4 Oe applied

magnetic field. Surface displacement is approximately 1000 peak to peak.

Similar surface raster scans were made to look at the effect of applied magnetic

field on the surface displacement. Figure VI. 18 show a gray scale surface plot of a 5Hz

sinusoidal applied magnetic field with peak to peak amplitude between 0.47 and 4.7 Oe.

The measurements were taken with the AFM at the same place on the crystal as

previously discussed. The magnitude of the surface displacement scales with the applied

magnetic field.
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Figure VI. 18 A gray scale surface plot of surface displacement of the SiFe picture frame

measured by an atomic force microscope. The plot is a raster scan 100pm x 100 m in

area. Lines are scanned at 200pm/sec, O.4im per scan line. The applied magnetic field

ranges from 0.47 to 4.7 Oe peak to peak sinusoidal field, by 0.47 Oe. The frequency of

the applied magnetic field is 5Hz. The flat portions of the surface plot are periods with

no applied magnetic field. The amplitude of surface motion increases with increased

applied magnetic field.
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A cross-section of the amplitude of the surface displacement is shown in Figure

VI. 19 for a sinusoidal applied magnetic field of 4.7 Oe peak to peak. At this field the

surface displacement is approximately 360m peak to peak. The value of the peak to

peak surface displacement has been determined by measurement from the data shown in

Figure VI. 18. The surface displacement versus applied magnetic field is plotted in Figure

VI.20.
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Figure VI.19 Cross-sectional plot of the surface displacement shown in Figure VI.18 for

an applied magnetic field of 4.7 Oe. Surface displacement is approximately 360pm peak

to peak.
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Figure VI.20 Peak to peak surface displacement versus peak to peak applied magnetic

field for picture frame. Measurement made by atomic force microscope. The amplitude

of the surface displacement is approximately given by a second order polynomial in

applied magnetic field.

The observed surface motion is O(1000A) at all points measured on the SiFe

picture frame. For a perfect picture frame, see Figure VI. 1, there should be no

magnetostriction of the crystal. As is pointed out by Jiles [1991], there is no bulk

magnetostriction associated with 180" domain wall motion. Since only 180* domain

walls are mobile in the perfect picture frame, the surface should not move. The picture

frame used in this thesis has a much more complicated domain structure including many

"tree" domains. This could lead to magnetostriction. The order of magnitude of strain

required to produce the observed surface displacements, along the length of a leg of the

picture frame, 2cm long, and through the thickness of the crystal, 0.017cm, is estimated.

For a 1000A surface displacement the strain along the leg is O(10-5), and through the

thickness is O(10-4). Magnetostriction strains along the legs on the order of 10-5 are

possible for SiFe, (X= O(10-5)). But pure strain produced by magnetostriction cannot
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produce the surface displacement observed on the large surface of the picture frame. One

possible explanation of the observed strain could be magnetostrictive induced bending. If

there is strain mismatch on the two faces of the crystal, because of differences in the

surface domain patterns, the legs of the picture frame will bend. This will cause

significant surface motion. The maximum strain mismatch between the two faces of the

crystal needed to cause the surface motion observed is 2.5x10-6. This strain is possible

with magnetostriction.

The observed surface motion of the picture frame during low frequency

magnetization complicates the measurement of magnetoacoustic emission from 1800

domain wall motion. The tunneling transducer is highly sensitive to surface

displacement. But at high frequencies its dynamic range is limited. Once the surface of

the sample moves an appreciable distance, more than a couple of angstroms in the time

range of 1 millisecond, the piezoelectric feedback loop of the tunneling transducer

responds to that motion. This causes significant tunneling current noise. If the surface

moves such faster than the slew rate of the tunneling transducer over a distance much

greater than 10A, the picture frame surface will either touch the tunneling tip or move

sufficiently far away that tunneling ceases. In both cases the piezoelectric feedback loop

of the tunneling transducer is disturbed. Thus measurements must be made in a manner

to assure that the picture frame - tunneling tip configuration is constant except for small

high frequency transient motion.

VI.5 Magnetoacoustic Emission Measurements

Magnetoacoustic emission measurements have been made on the 3% SiFe picture

frame single crystal using the tunneling transducer described in Chapter V. To best

approximate the step change in velocity of the 1800 domain wall used in the model

presented in Chapter IV, a pulsed magnetic field was used. The time required for the
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picture frame to respond to a pulsed magnetic field with a risetime of 250ns, and exhibit a

maximum in the time rate of change of magnetization, as measured by the voltage induced

in the sense coil, is approximately 2 .Os. There is a 0.5 s delay between the start of the

current pulse in the source coil and the initial response in the sense coil. At that point a

1.5gs risetime is exhibited. As is discussed in Chapter VI.3b, the voltage induced in the

sense coil is attributed to domain wall motion. The period of time directly after the rise of

magnetic field pulse exhibits the largest average acceleration of the domain walls in the

picture frame. This period where the domain walls are accelerating should be

magnetoacousticly active. The level of emission is highly dependent on the exact

acceleration process of the domain walls. The model derived in this thesis assumes that a

1800 domain wall moves as a plane. This is only an approximation to the real motion of

domain walls in magnetic materials. Still the model is proposed as a foundation for

magnetoacoustic emission from 180" domain walls.

VI.5a Magnetoacoustic Emission Measurement: Experimental Results

Once the picture frame is placed in the tunneling transducer fixture the tunneling

transducer is placed over the point on the picture frame where the surface measurement is

to be performed. In this experiment the tunneling tip is placed such that the

measurements are made on the edge of the picture frame, see Figure VI. 14. The

tunneling bias voltage is applied directly to the picture frame at a DC level O(100mvolts)

above ground. The tunneling tip is lowered towards the picture frame until the tip

engages and tunneling initiates. The DC tunneling current and the bias voltage can be

adjusted, within the limits of the Nanoscope III, to maximize sensitivity to high speed

surface motion, and the resulting high speed fluctuation in the tunneling current expect

for magnetoacoustic emission from the 180" domain wall motion. The tunneling

transducer is used in a mode that maintains a constant DC tunneling current by

displacement of the tunneling tip with the piezoelectric control system. The high speed
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fluctuation in tunneling current is monitored by the current voltage converting amplifier

(see Figure V.5).

As a test of the tunneling transducer, the high frequency component of the

tunneling current was monitored during application of a small, low frequency applied

field (approximately 5 Oe peak to peak). No significant high frequency components to

the tunneling current where detected above the noise level shown in Figure V.7 during

this test. But surface motion was observed associated with magnetostrictive effects (see

Chapter VI.4c). The magnetoacoustic emission from the 180* domain wall is a result of

the acceleration process. A small, low frequency sinusoidal applied field may cause

significant domain wall motion. But the acceleration of the domain wall is small

compared to that required to achieve appreciable magnetoacoustic emission. Previous

reports [Kwan 1983, Gorkunov et al. 1986, and Kim and Kim 1989] show

magnetoacoustic emission in SiFe single crystals (not picture frames) is present at large

magnetic field levels.

The tunneling current set point, the tunneling current level controlled by the

piezoelectric feedback, used in the experimentation ranged from 1 to 4OnA, the limit of

the instrumentation. Since the major source of the noise at the output of the tunneling

transducer is the current to voltage converter, the noise level is insensitive to the tunneling

current set point. Thus maximum sensitivity is attained at with a DC tunneling current of

40nA (see equation (V.6)). For tunneling current set points of lOnA or less the

tunneling biasing voltage was 1OOmV. For tunneling current set points above lOnA, the

following biasing voltage - tunneling current set point relation was used: lOmV/nA.

The effect of a 5.8 Oe applied magnetic field pulse on the picture frame was

investigated. Smaller field pulses were also used, but results for the smaller fields are

similar to those shown here. Figure VI.21 shows the sense coil response to a 5.8 Oe

magnetic field pulse 5gsec in length as well as the response of tunneling current between

the picture frame and the tunneling transducer. In this test the tunneling current set point
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was lOnA. The effective surface motion as a function of measured change in tunneling

current, from equation (V.6), is 0.3A/nA. The resulting tunneling current fluctuation

shown in Figure VI.21b is similar to the background noise level of the tunneling

transducer (see Figure V.7). At a lOnA DC tunneling current any surface motion caused

by magnetoacoustic emission induced by the magnetic field pulse is below the

background noise.

The noise in the tunneling transducer can be reduced by averaging the tunneling

current response of the tunneling transducer over a large number of field pulses. The

process used to make this measurement is to pulse the source coil using the pulse current

source, then pulse the source coil with the opposite polarity current pulse. The drive

voltage for the current pulse remains the same polarity, but the magnetic field reverses

direction. The resulting tunneling current response to the magnetic field pulse is averaged

over 32 magnetic field pulses all of the same polarity. This was done for tunneling

current set points of 10, 20, and 4OnA. The assumption is that by stepping the domain

walls back and forth in the same general area of the picture frame similar shear elastic

waves of opposite signs should be produced, see equations (IV.48). The reversibility of

the magnetization process is evident from the domain wall velocity data presented in

Chapter VI.3b.

The results of the experiments described above are shown in Figures VI.22

through VI.24. In each the tunneling transducer response to a 5.8 Oe pulsed magnetic

field of approximately 3.5 microseconds in length is presented. In Figure VI.22a the

average effective surface displacement of the two different polarity magnetic field pulses

are shown. One polarity is represented by the solid line. The opposite polarity is

represented by the dotted line. For each polarity magnetic field pulse there is a ring at the

beginning and end of the pulse. The ringing is shown to be electrostatic coupling

between the source coil and the tunneling transducer. The electrostatic coupling is

independent of the polarity of the applied magnetic field pulse, but is dependent on the



149

polarity of the voltage across the source coil. The electrostatic coupling effect can be

removed from the data by subtracting the two opposite polarity magnetic field results.

Since the shear component of the elastic radiation emitted by the moving 180 domain

wall switches polarity with the polarity change in the applied magnetic field, the surface

displacement caused by this elastic radiation should add constructively. The subtracted

data is shown in Figure VI.22b . Similar results are presented in Figures VI.23a and

VI.23b for a tunneling current set point of 20nA, and Figures VI.24a and VI.24b for a

tunneling current set point of 40nA.
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Figures VI.21 Response of a 5.8 Oe magnetic field pulse on the picture frame. a) The

voltage induced on the sense coil versus time. b) The AC response of the tunneling

current to the magnetic field pulse. The tunneling current set point is 10 nA. The

effective surface motion for this tunneling current fluctuation is 0.3A/nA.

0.5



150

0.5-

0

S-0.5

S -1 I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (microseconds)

Effective Surface Displacement for a 5.8 Oe Magnetic Field Pulse

0

a 0.05 -

-0 .1 ' ' ' ' ' ' '

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (microseconds)

Figure VI.22 Average AC response of the tunneling current to 5.8 Oe magnetic field

pulse (32 averages). The magnetic field pulse length is approximate 3.5gs. The

tunneling current set point is 10 nA. a) One polarity magnetic field pulse is represented

by a solid line. The other is represented by a dotted line. The AC response from 0.5 to

1.5gs and from 3.75 to 4pts is electrostatic coupling between the source coil and the

tunneling transducer. b) Averaging of the two polarity responses in a). The electrostatic

artifact cancels. Equivalent surface motion for the background noise is <0.1A. No

magnetoacoustic emission is conclusively observed.
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Figure VI.23 Average AC response of the tunneling current to 5.8 Oe magnetic field

pulse (32 averages). The magnetic field pulse length is approximate 3.5 ts. The

tunneling current set point is 20 nA. a) One polarity magnetic field pulse is represented

by a solid line. The other is represented by a dotted line. The AC response from 0.5 to

1.5ps and from 3.75 to 4gs is electrostatic coupling between the source coil and the

tunneling transducer. b) Averaging of the two polarity responses in a). The electrostatic

artifact cancels. Equivalent surface motion for the background noise is < 0.02A. No

magnetoacoustic emission is conclusively observed.
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Figure VI.24 Average AC response of the tunneling current to 5.8 Oe magnetic field

pulse (32 averages). The magnetic field pulse length is approximate 3.5gs. The

tunneling current set point is 10 nA. a) One polarity magnetic field pulse is represented

by a solid line. The other is represented by a dotted line. The AC response from 0.5 to

1.5gs and from 3.75 to 4gs is electrostatic coupling between the source coil and the

tunneling transducer. b) Averaging of the two polarity responses in a). The electrostatic

artifact cancels. Equivalent surface motion for the background noise is < 0.01A. No

magnetoacoustic emission is conclusively observed.

The sensitivity to surface motion is better than 0.01A with the averaging and a DC

tunneling current of 40nA. This level of sensitivity is similar to that predicted by Moreau

and Kitterson [1992]. Even with this level of sensitivity there is no direct evidence of

surface motion that could be a result of magnetoacoustic emission for a moving 1800

domain wall.
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The effect of longer magnetic field pulses on the surface motion of the picture

frame was also investigated. As the magnetic field pulse length is increased motion of the

picture frame surface is detected. The surface of the picture frame either moves enough

in one direction to cause the surface of the picture frame to touch the tunneling tip or the

surface pulls away from the tunneling tip and causes the tunneling process to cease. In

either case an accurate measure of the size of the motion is impossible because of the

small dynamic range of the tunneling transducer in this bandwidth. Once the tunneling

process is interrupted, the piezoelectric feedback loop attempts to re-establish the

tunneling current set point. This process takes a number of seconds to stabilize. The

large surface motion for the longer magnetic field pulses is expected because the large

magnetostrictive effects observed for low frequency magnetic fields (see Chapter VI.4c).

VI.5b Magnetoacoustic Emission Measurements: Discussion

The 180 domain wall as a source of magnetoacoustic emission in the SiFe picture

frame has been investigated experimentally using a tunneling transducer. The evidence

found suggests that any emission from 180* domain walls is smaller than the noise level

in the tunneling transducer used as the detector. The model presented in Chapter IV

predicts that the level of emission for a planar 180' domain wall should be O(10 2 A),

which is barley detectable using the tunneling transducer. There are a number of

assumptions made in the model that exist only in the best case scenario. Relaxing these

assumptions can result in a decreased observed amplitude of magnetoacoustic emission

from a 1800 domain wall.

The assumption that is most suspect is the domain wall moving as a plane over

the whole length of crystal. In real material the domain wall interacts with the surfaces

and crystal defects. This results in discontinuous motion of small segments of the

domain wall in an applied magnetic field [Chikazumi 1986]. For the SiFe crystal the
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entire domain wall must move in unison to introduce enough shear strain to be detectable

by the tunneling transducer. As soon as the wall motion is segmented the level of

emission is reduced. In addition the elastic radiation emitted from these smaller segments

of 180 domain wall is no longer a plane wave further reducing the amplitude of the

radiation far away from the source. Since the picture frame used in the experiments is not

ideal, as evident in the complicated "tree" domains observed, the probability of moving a

single 180 domain wall as a plane is unlikely. Thus the inability to detect

magnetoacoustic emission from the single crystal for the small fields used is not

surpnsng.

In Chapter IV it is noted that SiFe is not an ideal test vehicle for the model. The

high level of damping caused by eddy currents limits the acceleration of the domain wall.

Since the model predicts that elastic radiation is emitted only during the acceleration of the

domain wall, a material in which domain walls are able to reach high velocities quickly is

a much better candidate for verification of the model.
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Chapter VII: Conclusions and Recommendations

VII.1 Conclusions

A model is presented in this thesis which predicts that accelerating 180' domain

walls are possible sources of magnetoacoustic emission. This predictions runs contrary

to the accepted theory that only non-180" domain walls and possibly domain wall

creation/annihilation can produce magnetoacoustic emission. The model is an extension,

with corrections, of earlier models where 180* domain walls were considered sources of

magnetoacoustic emission [Lord 1967, and Kuleev et al. 1986]. An experimental

methodology based on a Scanning Tunneling Microscope is developed for detection of

magnetoacoustic emission from isolated domain walls. The experimental method is

tested on a 3% SiFe picture frame single crystal where the maximum size of the predicted

elastic radiation is about the same magnitude as the equivalent surface deflection noise of

the tunneling transducer O(10-12A). In this sample no magnetoacoustic emission is

observed.

The development of the model results in the following additions to the theory of

magnetic domain walls:

1) In a material with cubic symmetry and thus cubic anisotropy the 180* domain wall

is a stable domain wall configuration because of magnetostatic self energy, not

magnetoelastic energy. This is true even in the limit of an infinite material.

2) For small domain wall velocities an approximate analytic solution to the Landau

and Lifshitz equations of motion has been developed which gives a realistic description of

the magnetization distribution within a 180" domain wall. This magnetization distribution

is energetically more favorable than the commonly used Walker solutions to the Landau

and Lifshitz equations of motion.

These two facts are used to develop the model for elastic radiation from an

accelerating 180* domain wall. Even though a number of assumptions about the 1800
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domain wall are made to facilitate an analytic expression for the elastic radiation,

relaxation of those approximations will not eliminate the 180* domain wall as a source of

magnetoacoustic emission. This is true because the model is based on the elastic

interaction of the domain wall itself with the crystal lattice.

The model predicts that insulating materials should exhibit larger amplitude

emission from 180* domain walls than metallic ferromagnets, assuming the same

magnetoelastic constants. This is a direct result of the domain wall damping mechanisms

in each class of material. For the same applied field the domain wall in an insulating

material accelerates more quickly to a significantly higher velocity than does the domain

wall in the metallic ferromagnet.

The experimental method for detection of the magnetoacoustic emission has been

developed which utilizes an electron tunneling transducer. The tunneling transducer

designed for this thesis has a equivalent surface deflection noise level of approximately

0.01A peak to peak, after signal processing. This tunneling transducer is highly sensitive

to local surface motion. The tunneling transducer should be a valuable addition to the

standard tools used to measure acoustic emission in all materials.

VII.2 Recommendation

An experimental method has been developed that can be used to test the theoretical

results of this thesis. But a different test vehicle is needed. The choice should be made

to permit isolation of 180* domain walls from non- 180* domain walls. A number of

experiments could be performed that might verify the existence of the of elastic radiation

emitted from a 180* domain wall:

1) Tests on highly oriented picture frame single crystals made of ferrite materials are

a natural extension of this thesis. The ferrite material is ideal because of the low loss.

This permits the domain walls to remain planar at higher velocities than those of metallic

ferromagnets. In addition, in most ferrite materials the velocity of the 180* domain wall
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produced by a pulsed applied magnetic field better approximates the step function used in

the theoretical calculations. The major limitation is preparation of the picture frame.

2) A test method using a geometry which is easily fabricated, but permits isolation of

a single 180* domain wall is also a good avenue. One possibility is a rectangular rod

geometry such that the difference in the time of flight of the radiation from the closure

domains and the plane wave radiation pulse from the 180* domain wall permits temporal

separation of the effects from the 180* and non- 180 domain walls.

3) Measurement on hexagonal ferrite materials. These materials offer an excellent

opportunity because they are uniaxial and thus contain mostly 180* domain walls.

Kusanagi et al. [1979a] used their results from experimentation on Co, also uniaxial, to

help conclude that 1800 domain walls do not emit elastic radiation. But Co has the same

inherent weakness as a test vehicle as other metallic ferromagnets, the eddy current loss

limits the acceleration of the domain walls, making it a poor source of 180 domain wall

produced magnetoacoustic emission.

The model developed for magnetoacoustic emission from accelerating 180*

domain walls contains a number of approximations to facilitate an analytic solution.

There are a number of modifications to the model that would improve the model for

application to real materials.

1) The model needs to be extended so that the driving magnetic field is given instead

of assuming a velocity function and ignoring the applied magnetic field.

2) Planar motion of the 180" domain wall is assumed in the model. The result is a

plane wave solution to the elastic equations of motion. In most real ferromagnetic

materials where the early stage of magnetization takes place by small discontinuous jumps

of domain walls (which are called Barkhausen jumps). A plane model is inaccurate. A

improved approach would look at the elastic radiation field from a small source. In such

a model the radiation in the near field and far field should be considered.

lot
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3) Additional terms in the magnetoelastic energy should be included. Contribution

from exchange elastic energy, and possible rotational effects should be incorporated.

4) The model should be extended to domain wall velocities up to and above the

speed of sound in a material.

5) The reciprocal response of the domain wall and elastic radiation, i.e. absorption,

should also be considered. This could enhance the understanding of the dynamics of

magnetization in a multidomain material. The existence of both domain wall emission

and absorption of elastic radiation could be used to produce a controlled cascaded

acoustic source.

Additional work is required to explore the consequences of the magnetization

distribution proposed for a moving 180* domain wall. This should include numerical

micromagnetic modeling of the magnetic system starting with the magnetization

distribution developed in this thesis. The methodology should be similar to the approach

used by Scheinfein et al. [1989 and 1991].

Finally experiments which can utilize the development of the tunneling transducer

should be pursued. One interesting experiment is the direct measurement of the local

strain field in the vicinity of the domain wall. This could be done by moving the domain

wall underneath the tip of the tunneling transducer. For a 1000A domain wall in SiFe

(assuming 1 Oe applied magnetic field) the time for traversal under the tunneling tip is

greater than 1 gs.
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Appendix A: Magnetic Energy Terms Used for Domain Wall Modeling

A.1 Introduction

The modeling in this thesis requires the use of magnetic energy in a ferromagnetic

material. This appendix present a brief review of three of these contributing terms;

exchange, magnetocrystalline anisotropy and magnetoelastic energies. A number of

reviews are referenced that contain more in depth presentations of the energies discussed

here.

A.2 Magnetic Exchange Energy

In Chapter II the exchange energy is introduced. Although this energy (equation

(11.4)) is often called the exchange energy it is more accurately referred to by Landau and

Lifshitz [1982] as the "non-uniformity energy" because it is reflects the change in the

exchange energy as magnetic moment non-uniformity is introduced into the ordered

magnetic system. Equation (11.4) is a continuous classical representation of the

Heisenberg ferromagnet [Akhiezer et al. 1968, Ashcroft and Mermin 1976, and Gubanov

et al. 1992]. The Heisenberg ferromagnet is based on the quantum mechanical

description of the non-relativistic hydrogen molecule.

For the hydrogen molecule one assumes can assume that the nuclei are fixed and a

non-relativistic Hamiltonian exists for the electron system (see Akhiezer et al.[1968] for a

good introduction applicable to the ferromagnetic system). The wave function of the

electron system must be antisymmetric under exchange on the spin variable and the

coordinates according to the Pauli principle [Schiff 1955]. Since the wave function for

the nonrelativistic Hamiltonian can be written as a product of the space and spin

functions, the symmetry of the space function restricts the symmetry of the spin system.

For the hydrogen molecule the antisymmetric spin wave function yields the lowest energy

state. In this system the exchange energy is defined as the matrix element for the electron
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electrostatic interaction under exchange of electrons between nuclei. This interaction is

short range.

The Heisenberg ferromagnet extends the hydrogen molecule to a crystal lattice,

assuming that each atom in the crystal lattice has a localized spin S. In the ferromagnet

the space function is antisymmetric. Thus the spin function must be symmetric, or the

lowest energy state is when the spins, S, are aligned. The exchange contribution to the

Hamiltonian for the entire system is given by

H=1 J (R) Sn ' Sm, (A.1)

when J(Rn) is the exchange integral [Ashcroft and Mermin 1976], Rn is the distance

between nearest neighbors which in a rigid ferromagnet is assumed to be fixed, and the

summation is over nearest neighbors because of the short range nature of the exchange

interaction. The exchange integral for the ferromagnetic system is positive. The

Heisenberg ferromagnet is isotropic. Thus the exchange energy is sometimes referred to

as isotropic exchange.

The Heisenberg ferromagnet assumes that the electrons associated with the

exchange interaction are localized at the lattice site. Such a model is a reasonable picture

for insulating ferromagnets, but entirely inaccurate in metallic ferromagnets. In the case

of the metallic ferromagnets the itinerant electrons are involved in the exchange

interaction. Attempts to use the Heisenberg ferromagnetic model to determine the

magnitude and sign of the exchange integral for metallic ferromagnets has been

unsuccessful [Gubanov et al. 1992]. But the exchange Hamiltonian can be used to

accurately describe magnetic phenomena in metallic ferromagnets if the exchange integral

is replaced by an experimentally determined exchange constant. This thesis uses the

exchange energy to calculate magnetic phenomena associated with the formation and

motion of domain walls. In such calculations the Heisenberg ferromagnetic approach is

very successful..

t
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The Heisenberg ferromagnet still requires a quantum mechanical approach to

investigate the energy states of the magnetic system. As is point out by Kittel and Galt

[1956] and Martin [1967] when dealing with a large number of lattice sites there are a

large number of energy states close to the ground state of the magnetic spin system. In

the ground state all spins are aligned. The energy states can be approximated by a

macroscopic continuum where the spin associated with each lattice site is replaced by a

continuous magnetization distribution. Here the magnetization has a constant magnitude

Ms, but can rotate continuously is space. This continuum classical approach has been

shown to be very successful in prediction of magnetic phenomenon including long

wavelength magnetic spin waves, and domain wall properties.

The replacement of the Heisenberg ferromagnet Hamiltonian (A. 1) with a

continuum model results in an exchange energy:

fex =- 2J M Mm (A.2)

where Mi is the magnetization vector at a i-th lattice site, and Jn is the exchange integral.

The summation is over nearest neighbor sites. Since M is a continuous spatial function,

Mm can be expanded in as a function of M. For a material with cubic symmetry the

summation over nearest neighbors results in and exchange energy density of

Et-ex = E - 2  M. V2 M, (A.3)

where A is the exchange constant. The constant term can be ignored because it is

independent of local changes in the direction of magnetization. Thus the resulting

exchange energy density, or the non-uniformity energy density, is written as

Eex =- M . V2 M. (A.4)
m
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A.3 Magnetocrystalline Anisotropy Energy

The magnetocrystalline anisotropy energy is a combination of a number of

different contributions all of which are dependent on the crystal symmetry and the

direction of the magnetization relative to the crystal lattice. The standard

magnetocrystalline anisotropy energy used in domain wall theory is a classical

phenomenological representation of all the anisotropic electromagnetic and quantum

mechanical contributions to the magnetic energy. The form of the magnetocrystalline

anisotropy is expressed to accurately represent the symmetry of the crystal lattice of the

material under consideration. For this reason the forms of the magnetocrystalline

anisotropy differ for cubic and uniaxial material.

A number of different sources exist for anisotropy in ferromagnetic materials.

For most materials the largest source of magnetocrystalline anisotropy energy is spin-

orbit coupling at a single ion [Kanamori 1963, van den Berg 1984, and O'Handley

1991]. As long as the crystal field is not perfectly symmetric [O'Handley] the orbital

angular momentum can interact with the crystal field and the spin couples into the crystal

symmetry via the spin-orbit interaction [Chen 1986]. Additional contributions to the

magnetocrystalline anisotropy can include dipole-dipole, quadrupole-quadrupole,

pseudipolar interactions and spin-orbit couple between different lattice sites. In most

cases these contributions are much smaller than the single ion spin-orbit coupling.

A continuum classical model for magnetocrystalline anisotropy is typically used in

domain wall calculations. In this approach the crystal symmetry restricts the form of the

anisotropy energy. The two crystal symmetries used in this thesis are the cubic and the

uniaxial. For the cubic case the anisotropy energy can be expanded in term of the

direction cosines (al, X2, a3 ) of the magnetization vector relative to the crystal axes.

Utilizing the fact that any change in sign of the magnetization, i.e. a rotation of 1800,

should leave the energy unchanged, all odd powers of the direction cosines vanish.
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Since all three direction (1, 2, 3) are equal in the cubic material the magnetocrystalline

anisotropy energy density for a cubic material can be written:

Ea = Ki[a1
2 22 + a12 32 + a22 a3

2] (A.5)
+ K2[a1

2 a22 a3 + ...,

where K1 and K2 are anisotropy constants. The dominant term is usually K1. If K1 is

positive then the [100], [010], and [001] directions are called easy directions because Ea

is a minimum when the magnetization points in these directions. If Ki is negative than

the [111] directions are called easy directions because Ea is a minimum when the

magnetization points in these directions [Chikazumi 1986].

For the uniaxial material there is only one easy axis. The expansion of the

magnetocrystalline anisotropy energy density is in terms of one angle:

Ea = K.i sin 2 0 + K.2 sin 4 0 +..., (A.6)

where Kui and Ku2 are uniaxial anisotropy constants and 0 is a measure of the direction

of the magnetization vector relative to the easy direction. Again the requirement that

rotation through 180* leaves the energy unchanged is used.

A.4 Magnetoelastic Energy

Both the exchange energy density and the anisotropy energy density are derived

assuming the crystal lattice is rigid. If this constraint is relaxed, then as the crystal lattice

is strained both of these energy contributions will change [Kittel and Galt 1956, Callen

and Callen 1973, Brown 1966 and 1967, Turov 1965]. This results in two

magnetoelastic energies which are called magnetostriction energy, referred to a

magnetoelastic energy in this thesis, and exchange elastic energy. Rotation effects

[Brown 1965 and 1966, and Auld 1968] are not included in this treatment.
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The magnetostriction energy comes from the strain modification of the crystal

field- spin orbit couple responsible for magnetocrystalline anisotropy energy [ Kanamori

1963]. If the cubic magnetocrystalline anisotropy energy is expanded to first order in

strain the resultant energy can be written

fmag-el Ea + Gij eij ak aI, (A.7)

where Ea is the anisotropy energy density and the terms in Gij are the magnetostriction

energy. The magnetostriction energy can be rewritten as

fmag = B1 rexx (a12 - 4) + eyy ( 22 - + ezz ( 32 _
+2B 33) 3(A.8)

+2 B2 [ai a2 exy + a2 a3 eyz + a, a3 exz1

where B1 and B2 are magnetoelastic constants [Kittel and Galt 1956, and Chikazumi

1986].

The exchange integral in equation (A. 1) is dependent on the separation of the

nearest neighbors, and is thus sensitive to strain in the crystal lattice. A formulation of

the effect of strain on the classical continuum model for exchange energy can be found by

expanding equation (A.4) in terms of the strain tensor [Brown 1966]:

[ a ai a ai (A.9)fex-el=b jkdm ejk I Xm.~- '~(A9

where bjklm are the exchange elastic constants, and ejk is the strain tensor. This type of

exchange elastic energy, sometime called exchange striction, is normally considered small

compared to the magnetostrictive energy, because in most cases the spatial rotation of the

magnetization vector is small. Within a domain wall the spatial rotation of the domain

wall is quite large. This results in an exchange energy density which is on the same order

of magnitude as the magnetocrystalline anisotropy energy density. Still the current work

in elastic phenomenon associated with domain wall excludes exchange elastic energy

[Maugin and Miled 1986, and How et al. 1989]. Estimate of the effect of exchange



165

striction are beyond the scope of this thesis. But inclusion of this effect in domain wall

elastic theory is needed.
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Appendix B: Magnetoelastic Strain in a Cubic Material

Lifshitz [1944] investigated the magnetic domain wall structure of cubic materials,

including the effects of magnetostriction on the total energy of the magnetic system. In

his paper, the magnetization within the domain wall is determined by minimizing the four

energy contributions: exchange, anisotropy, magnetoelastic and elastic strain. The

magnetostatic self energy is assumed to be zero and there is no external field. Lifshitz

asserts that if one postulates the existence of a planar domain wall, then the magnetization

is only a function of the normal to that plane (here the y-direction). Likewise he suggests

that the strain tensor must also depend only on that normal direction. From these

assumptions, and using the equilibrium conditions on the stress tensor, Lifshitz

concluded that the strain within the infinite material must be constant and equal to the

strain in the uniformly magnetized regions of the material.

The suggestion that the strain field is constant throughout the material

presupposes and implies that the domain wall does not influence the strain field within the

material. This appendix presents Lifshitz' argument, but carries out the complete

calculations for the strain field. It is shown below that the approximations made by

Lifshitz are invalid and lead to an actual strain field with an infinite limiting value as the

infinite boundaries are approached. In addition, a brief discussion is presented in which

an exchange magnetoelastic term is included with the energy terms.

Starting with the assumption that the domain wall is x-z planar and infinite it is

concluded that the magnetization, strain and stress fields are functions of y only. Lifshitz

has employed the infinitesimal strain approximation, the strains are all first order in the

spatial derivatives of the displacement vector,

eij= 2L (ui, j + uj, ), (B.1)
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where the use of the subscript ij implies the derivative of the i-th component with respect

to the j-th direction [Landau and Lifshitz 1970]. General functions for the diagonal

components of the strain tensor are given by

exx = fi(y),

eyy = f2(y), (B.2)

ezz = f3(y)-

Upon integration of these general strain functions using the infinitesimal strain

approximation the three components of the displacement vector are derived:

ux = fi(y) x + gi(y, z),

uY = f2fy) dy + g2 x, z), (B.3)

uz= f3(y) z + g3(x, y).

From these expressions one can calculate the off diagonal components of the strain

tensor:

2e~ a gi(y, z) d f(y) + g2(x, z)
2XY= dy +x dy + x

(B.4)
2 g3(x, y) d f3(y) a g2(x, z)

y y+z dy + dz+'

a 3(x, y) a g 1(y, z)2 exz = a x + dz '

Since the strains are only a function of y, using the expression for exz one can determine

the dependence of g1(y, z) and g3(x, y) on both x and z.

g1(y, z) = gi(y) z + hi(y) and g3(x, y) = g3(y) x + h3(y)- (B.5)
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Thus one can rewrite the strains exy and eyz as

2eXY dy

2 ey= Xd y

d h 1(y)
+ dy

d h3(y)
+ d y

d fi(y)+x dy

d f3(y)
+ d y

a 2(x, z)
+ ,

+a g2(X, Z)
+ a z '

The strains exy and eyz can only be functions of y. In order to satisfy this requirement

g2(x, z) must be written as

g2(x, z)= a x2 + $ z2+yxz+ki x+k 2 +k 3 z. (B.7)

Note that a, p, y, and ki's are unknown constants. Substituting this into the expressions

B.6 for exy and eyz it can be shown that

d fi =- 2 a,
d y

d f3 _ 2f3,
d y

dg, 
Y

dy

dg 3 -y
dy

This results in expressions for the gi and fi functions as follows:

gl(y, z)=-yy z+d, z+h 1(y)+S 1 ,

g2(x, z)= a x 2 + $ y 2 + yx z +O(x, z)) + 82,

g3(x, y)=- y y x +d3 x + h3(y)+ 83,

fi(y)= - 2 a y + 84,

f2(y)= f2(Y),

f3(y)= - 2 py + 86,

(B.8a)

(B.8b)

(B.9)

where di and 8i are constants.

(B.6)

and
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The strain tensor can now be determined to be

exx=-2ay+ci,

ey, = f2(Y),

ezz =- 2 $ y + C3,

exy = dy + C4,

exz=- 2 yy +c 5,
1 d h2(y)

eyz = 1 dy + C6,e - 2  dy

where ci are constants.

Contrary to what Lifshitz states the exx, ezz and exz are not necessarily constants.

If it is assumed that a, $, and y are zero then the conclusion by Lifshitz that ex,, ezz and

exz are cons+- is accurate. The argument used to equate a, $, and y to zero is the need

to prevent the strain from becoming infinite as y approaches ± oo. It is apparent that if a,

[, and y are non-zero then the infinitesimal strain approximation is invalid for the infinite

material. The strain tensor must be determined using finite strain theory.

There are still a number of restrictions on the strain and stress field in a material in

equilibrium. These constraints can be used to further determine the strain field within the

magnetic material. The next condition is the force equilibrium condition, aijj =0

[Landau and Lifshitz 1970]. If it is assumed that aij(y) is a function of y only. Then the

force equilibrium condition yields that aix,x + aiy,y + aiz,z= 0, or aYiy is a constant for i =

x, y, and z. This give a stress tensor with mi constant:

G= m n12 M13 ' (B.11)
Mx M23 M3z
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The final condition on the stress tensor, that does not employ a direct model for

the magnetic-elastic coupling, is the requirement that at the surfaces the normal

component of the stress tensor is zero when the materials is subject to no external forces

[Landau and Lifshitz 1970]:

aY -n, = 0. (B. 12)

Here an additional restriction on the system is imposed. As is discussed in Chapter II in

a finite material, on a surface orthogonal to the x- and z-directions, the magnetization

distribution is a function of both x and z. These surfaces contain the closure domains and

surface Ndel walls [Scheinfein et al. 1989 and 1991]. For the infinite material these

effects are still present, they are just ignored because of the assumption that the domain

wall is investigated an arbitrarily large distance from all surfaces. Thus the symmetry

assumed in the earlier stages of the model for the strain and stress fields in the material is

invalid near the closure domains and surface Ndel walls. For this reason it is valid to

assume aij(y) holds only on the two surfaces orthogonal to the y-direction. On these

surfaces, at y = ± oo, it is possible to evaluate (B.12) using the stress tensor given in

(B.11). This gives

Yxx 0 cYxz
a= 10 0 0 . (B.13)

Lxz 0 Fzz.

The dependence of axx, Txz and az cannot be determined without more restrictions on

the stress and strain tensors.

Th effect the domain wall has on the strain and stress fields within the material

can be determined by modeling the magnetic-elastic interaction in the material. The model

will assume that the only coupling is through the standard magnetoelastic energy, the

energy based on magnetocrystalline anisotropy. If this is assumed for the cubic material,

then the total energy density within the material, dependent on strain, is:



f=B1 ea( C2-) +eyy(al- -)+ezz (X -1)]

+ B2 [Xi a2 exy + a 2 (X3 ey + a1 3 exz

+11e&e2z) + + -e 44(e 2 + e2+ exl)
(B. 14)

c12(exx eyy + eyy ezz + exx ezz),

where ca are the direction cosines relative to the easy directions of magnetization in the

crystal, B1 and B2 are the magnetoelastic coefficients and ci, C12, and c44 are the elastic

moduli [Chikazumi 1986]. The relationship between the stress and strain tensor is given

by [Landau and Lifshitz 1970],

(B.15)

For the domain wall in which the magnetization is restricted to rotate only in the x-z

plane, the direction cosine a2 = 0. The stress tensor can then be determined using

(B.13), (B.14) and (B.15):

oxx=B1(a2- 1+c11exx+c12(eyy+ezz),

Gyy =0=- 3B 1 +clleyy+l2(exx+ezj,

z= B1 (c -4) + c11 ezz + c12 (exx + eyy), (B. 16

Oxy =0 = c44 exy,

yz=0= c44 eyz,

xz= B2 1a a3 + c44 exz

The conclusion from this is that exy and eyz are zero. Also solving for eyy one finds that

eY, = - (exx + ezz)+ 3 c1 1. (B.17
Siiee)+

This implies that eyy is also a linear function of y (equation (B. 10)).
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Gij
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It is apparent that components of the strain and stress tensors approach infinity in

the limit of y approaching infinity. The flaw in the argument is that an infinite material, in

which the region being investigated is far from the closure domains and surface N6el

walls, cannot be modeled using the infinitesimal strain approximation to determine the

strain tensor. It may be possible to use the infinitesimal strain approximation in the

vicinity of the domain wall. But this does not permit the extension of the conditions to

infinity.

It is apparent that Lifshitz' [1944] conclusion that all the components of the strain

tensor in a cubic material with a single planar domain wall are constants is not valid for

the magnetic material. The implication that the domain wall does not affect the strain

distribution within the magnetic material is incorrect. In order to determine the strain field

in the vicinity of the domain wall a different approach is required.

The correct method for determining the strain distribution within the material

requires that the strain tensor be determined from the local stress requirements. This is

then substituted into the total energy of the material, and that energy is minimized. Since

the actual value of the magnetoelastic energy is quite small, relative to the anisotropy and

exchange energy in the vicinity of the domain wall, it is possible to approach this using

perturbation theory. This perturbation approach is used in Chapter III of this thesis to

determine the elastic emission from a moving 180 domain wall. The actual strain

distribution in the vicinity of the domain wall is not calculated in this thesis.
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Appendix C: Magnetization Comparison with Walker Solution

The elastic radiation from a moving 180* domain wall calculated in this thesis is

determined postulating the component of magnetization normal to the direction of motion

(see Chapter IV). In addition, the applied magnetic field and damping are assumed to

exactly cancel yielding the simple differential equations (IV.17) and (IV.27). The major

difference between the results obtained in Chapter IV and the Walker solution for the

moving domain wall [Dillon 1963 and Schryer and Walker 1974] is that in this thesis the

magnetization in the direction of motion is not assumed to be constant as it is in the

Walker solution. It is shown in this appendix that for low domain wall velocity the non-

constant cant angle solution yields the same linear relationship between velocity and

applied magnetic field. In addition, the energy density is lower than that of the Walker

solution. Thus the magnetization distribution derived in this thesis is considered better

solution.

A complete set of magnetic field equations for the 180 domain wall in a cubic

material can be written as follows:

H= 2K1 sin + 2 Aa 2 sin 0 - cos0 (C.la)X M M ay 2  hi - (.1a

= 2K + MS 2A a X a $C.lb)Y MS t 0) Ms a y2 iy i

2 A a2 cos 0 +,
z Ms a y2  HLi 0 (C.l c)

where the applied field, HO, is in the z-direction. These equations use an "effective"

uniaxial anisotropy for the cubic material as discussed in Chapter II. The last term in

each field expression is an effective field to account for the Gilbert damping term [Gilbert

1955, and How et al. 1989], where X is the Gilbert damping parameter which accounts



174

for the viscous damping in the magnetic material. The behavior of M can be investigated

using the magnetic field expressions (C. 1) and the Landau Lifshitz equation of motion:

1 aM MxH. (C.2)

The y component of equation (C.2) is used to find the velocity versus applied

magnetic field relationship. The magnetization can be written in terms of the direction

cosines (equations (IV. 11)), assuming, as is done throughout this thesis, that the cant

angle is small. Thus the resulting differential equation for the time rate of change of $ is

given by

M MX ~ + 2 Ki sin 0 + sin 0 cos 0 - A2. (C.3)
2 K, IyIat 2 KIyjdt 2 K, a Y2 '(3

In Chapter IV it is postulated that the component of magnetization normal to the direction

of motion of the domain wall is not a constant, but given by

$ = $. sin 0, (C.4)

resulting in equation (IV. 14) being satisfied for the following direction cosine relations:

sin 0 = ± sech ( Y(t)

$= ,o sechLA), (C.5)
y ((t)

cos 0 =- tanh ( Y)

where Ms ly A'/o = 2 vw. Equation (C.3) can now be simplified using these solutions

yielding

X 0 H sin 0. (C.6)
I'd t 0



175

Equation (C.6) can be solved for the steady state case, y(t) = y - vyt, using

equation (C.5) where

0 sin 0, (C.7)

resulting in a linear velocity field relationship:

=_A'|y|vy=- Ho. (C. 8)

This is identical to that determined by Dillon [1963] and Schryer and Walker [1974] for

the case of a small cant angle. But in this solution the component of magnetization in the

direction normal to the direction of motion is not a constant cant angle. This linear

applied magnetic field-velocity relationship is observed experimentally [Williams et al.

1950 and Chikazumi 1986]. The two other components of equation (C.2) can be reduced

to equation (C.7) to O(vy). Thus for small velocity the solution to the Landau and

Lifshitz equation derived in this thesis is self consistent.

A comparison between the Walker solution and the model presented in this thesis

can be made by comparing the magnetic energy density for the two cases. The general

energy density expression for the system can be written [Schryer and Walker 1974] as

f= -H M + 1M12 + K1(M2+ My2)+ aM 2  (C.9)0Z2g0  S M 2 X y Ms 2 1 OFy

Since the only terms that differ between the Walker solution and equation (C.5) involve

My, all terms independent of My are identical in both models and can be ignored in the

comparison. The energy density for the Walker solutions is given by

fW= M 2 + K $02 +A( (C.10)
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$o is the constant cant angle. Using the expression for $. derived by Schryer and

Walker, the Walker solution energy density can be written as

gto H0
2

fW 2 )2
2Ki o .

m,2
(C.11)

Thus the energy density is constant. This is compared on a point by point basis to the

energy density calculated using the magnetization distribution derived in this thesis.

For the solution given in equation (C.5) the energy density is given by

vy2 [1 y(t)
v2 sech y +

2 ji4 a y A')2 seh [i
vy go 2 y(t)

K(MI , se) ,
(C.12)

+ A (M r yA2 sech2 tanh2

This can be rewritten using the expression for the velocity of the domain wall, (C.8)

f = 2 X2 sech2 (L())(1 + 2 (1 + tanh2 .)

fA is not a constant, but is a function of the spatial variable y. The maximum value of fA

exists when

tanh2( (C.14)

This can be substituted into (C. 13) yielding

f = 2 X2
(C.15)

+ 2K go

The hyperbolic secant function is not substituted since it is always less than or equal to 1.

(C.13)

I

4 K, go.

sech 2 (yt)(
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Using expression (C. 15), fA can be compared to fw given in equation (C. 11).

The comparison reveals that fA <fw for all values of y. Thus the energy density of the

magnetization distribution determined in this thesis is always less than the Walker

solution. Although a domain wall with non-constant cant angle produces in increase in

exchange energy density compared to the Walker solutions, both the anisotropy and

magnetostatic self energies densities are much smaller for the non-constant cant angle.

This results in the lower energy density. The lower energy density suggests that the

magnetization distribution derived in this thesis is more energetically favorable than the

Walker solution for small 180* domain wall velocity. In addition the distribution derived

in this thesis is consistent with the velocity versus applied magnetic field relation

observed for the domain wall.
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