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Abstract

This thesis presents the development of hardware, theory, and experi-
mental methods to enable a robotic manipulator arm to interact with
soils and estimate soil properties from interaction forces. Unlike the
majority of robotic systems interacting with soil, our objective is pa-
rameter estimation, not excavation. To this end, we design our manip-
ulator with a flat plate for easy modeling of interactions. By using a
flat plate, we take advantage of the wealth of research on the similar
problem of earth pressure on retaining walls.

There are a number of existing earth pressure models. These mod-
els typically provide estimates of force which are in uncertain relation
to the true force. A recent technique, known as numerical limit anal-
ysis, provides upper and lower bounds on the true force. Predictions
from the numerical limit analysis technique are shown to be in good
agreement with other accepted models.

Experimental methods for plate insertion, soil-tool interface friction
estimation, and control of applied forces on the soil are presented. In
addition, a novel graphical technique for inverting the soil models is
developed, which is an improvement over standard nonlinear optimiza-
tion. This graphical technique utilizes the uncertainties associated with
each set of force measurements to obtain all possible parameters which
could have produced the measured forces.

The system is tested on three cohesionless soils, two in a loose state
and one in a loose and dense state. The results are compared with
friction angles obtained from direct shear tests. The results highlight a
number of key points. Common assumptions are made in soil modeling.
Most notably, the Mohr-Coulomb failure law and perfectly plastic be-
havior. In the direct shear tests, a marked dependence of friction angle
on the normal stress at low stresses is found. This has ramifications for
any study of friction done at low stresses. In addition, gradual failures
are often observed for vertical tools and tools inclined away from the



direction of motion. After accounting for the change in friction angle
at low stresses, the results show good agreement with the direct shear
values.
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Chapter 1

Introduction

Digging is done on an everyday basis with little understanding of the
forces of interaction. This is acceptable in terrestrial systems where
torque and power considerations do not play a role and where the only
goal is simply to excavate a given region of soil. For power constrained
systems or for systems which have additional sensing goals, a detailed
analysis of interaction forces and a better understanding of the pro-
cess can lead to more robust, efficient, and precise control and sensing
strategies.

1.1 Motivation

Many people are interested in automating the digging/excavation pro-
cess. In addition to earth-based digging applications, NASA has a need
for well designed, small-scale, autonomous digging robots for Mars (and
Lunar) exploration. NASA is interested in the collection of any geo-
logical information about the Martian surface. A sample return mis-
sion is not planned until 2014 (at the earliest, 2011, on an accelerated
schedule). Therefore, any exploration of the soil must be conducted
remotely.

Previous interactions with Martian soil have been conducted using
a manipulator arm (Viking missions [71]) and also by spinning the
wheels of a rover vehicle (Pathfinder/Sojourner mission [114]) to obtain
measurements of physical soil properties. Specific results from these
missions will be discussed in the next chapter.

Future landers and rovers are increasingly being equipped with ma-
nipulator arms in order to place instruments, collect samples, conduct
experiments, and for all-purpose manipulation. An example of this

17



18 CHAPTER 1. INTRODUCTION

Figure 1.1: The FIDO rover at the Jet Propulsion Laboratory is
equipped with an instrument arm, to which we temporarily mounted
a flat plate in order to interact with the soil to see how feasible the
technology would be.

type of system is the ill-fated Polar Lander mission that was scheduled
to land on Mars in December 1999. It was equipped with a three meter
manipulator arm which was to conduct multiple tasks, one of which
was to dig a half meter trench in the soil. Another example is the
future 2003 dual-rover mission, in which two identical rovers each will
use an instrumented robotic arm to conduct a variety of tasks, possi-
bly including scraping, brushing, and close-proximity imaging of rock
samples. In addition, other interactions with soil mediums are being
examined, for geological purposes, excavation, sample collection, or for
buried object retrieval.

The FIDO Rover at the Jet Propulsion Laboratory shown in Figure
1.1 is representative of what might be expected on future systems. The
FIDO Rover is a test-bed/prototype for the rovers to be sent in the
2003 mission. I have had the privilege of working on this system for
a brief time, during which I mounted a flat plate to the end of the
instrument arm on the front of the rover. Preliminary stroking tests
in simulated soil were conducted. While no precise directed studies
were carried out, it is clear that it would be possible to use this arm to
interact with soil in this manner.

With the existence of robotic arms on future rovers and landers
(of greater dexterity and precision than the Viking missions [71]), it
is logical to examine what geological information could be obtained
through controlled interaction using these robotic arms. Thus, this
motivates the study of robot-soil interactions presented in this thesis.
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1.2 Background and Goals

From a survey of many papers on robotic excavation, there is surpris-
ingly little study of soil-tool interaction modeling for the prediction of
interaction forces and estimation of soil properties. Most researchers in
this area have focused on obstacle avoidance, reactive stroke path plan-
ning to avoid torque limiting, and planning of excavation of specified
volumes of soil. This work is typically done on large scale excavation
systems. The goal of these systems is improved excavation, not esti-
mation, and thus less focus has been given to the precise modeling of
interactions and the feasibility of parameter estimation.

On the other hand, in the Civil Engineering community, there is an
abundance of papers on the topic of active and passive earth pressure.
Active earth pressure theory examines the pressure developed on a
fixed retaining wall from the weight of a soil mass pushing against it.
Passive earth pressure theory examines the forces required to move a
wall pushing against a soil mass. Therefore, when using a flat plate
embedded in a soil mass, the force required to move the plate will be a
combination of the active and passive earth pressure components. By
using a flat plate as the means of interaction, the wealth of existing
research in this field can be applied to the analysis.

The research in robotic excavation could greatly benefit from a de-
tailed study and application of the Civil Engineering work. This thesis
proposes to serve as a bridge between the two communities, drawing
from research in both robotics and Civil Engineering.

The ultimate goal of this research is to provide all necessary tech-
niques to enable a robotic manipulator arm to accurately estimate soil
properties through interactions alone. There are four intermediate
goals which are necessary to achieve the ultimate goal: select suit-
able soil models for the prediction of interaction forces by examining
existing models and exploring novel methods ; verify the validity of
the selected models through experimentation ; develop new methods
to invert these soil models to estimate soil parameters from interaction
data ; and enhance the control of a manipulator arm for useful soil
interactions.

1.3 Outline of Thesis

Chapter 2 discusses previous work on topics related to soil-tool inter-
actions and discusses the proposed approach for this research. The
results from the studies of Martian soils from the 1975 Viking Project
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and the 1997 Pathfinder/Sojourner Mission are summarized. Various
models for earth pressure in Civil Engineering are discussed. A listing
of prior work on robotic excavation is also presented.

Chapter 3 discusses the development of the manipulator arm used
in this research. It also discusses the associated software for control
of the manipulator. A number of improvements were made to the
manipulator design to increase its strength and sensing capabilities.
The system architecture for real-time control and data collection is
also described.

Chapter 4 discusses existing soil models for the prediction of draft
force! and also details the first extensive application of a numerical
limit analysis technique to this prediction problem. In this chapter,
it is shown that the numerical limit analysis technique produces pre-
dictions which are in good agreement with other commonly referenced
models. In addition, the numerical limit analysis technique has the
added benefits of providing upper and lower bounds on the failure force
and increased versatility for modeling a variety of tool and soil config-
urations.

Chapter 5 presents the experimental procedure for data collection.
The development of a number of techniques are discussed. The manip-
ulator end-effector plate must be inserted into the soil with minimal
disruption of the soil state. After insertion, the plate must be pulled
through the soil in a controlled manner. An iterative method for the
in situ determination of soil-interface friction is also developed.

Chapter 6 presents the experimental results from interactions with
three different cohesionless soils: two in a loose state and one in both
loose and dense states. The results are compared to measurements
from direct shear tests. Discussions of the results and sources of error
are presented.

Chapter 7 discusses the development of a new parameter space
model inversion technique. The soil models are nonlinearly dependent
on four parameters. In order to determine parameter estimates from
force data, a nonlinear optimization would typically be done. Instead,
this chapter presents the development of a graphical parameter esti-
mation technique which uses both force measurements and associated
uncertainties to determine ranges of parameters which are consistent
with the observed measurements.

Finally, Chapter 8 discusses ideas for the future and applications of
this work. Chapter 9 concludes with a summary of the recommenda-
tions and contributions of this thesis.

L«draft” force — the force to pull a tool, the force to pull the plate through the
soil.



Chapter 2

Previous Work

This chapter begins with a discussion of the previous work done in
the exploration of Martian soils. This is followed by a discussion of
prior work in modeling of soil behavior and manipulator interactions
with soil. Finally, the proposed approach used in this thesis for the
development of our system is outlined.

2.1 Previous Exploration of Martian Soils

There have been two landmark missions to the Martian surface. The
first mission had two identical landers which touched down at two ge-
ographically distinct locations. These were the Viking 1 and 2 landers,
launched in 1975, which conducted surface sampling experiments from
1976 to 1978. The second mission was the Pathfinder lander, carrying
the Sojourner rover, which landed on Mars in July of 1997 (fairly close
to the Viking 1 landing site). Among their many tasks, these missions
conducted studies of soil properties.

The Viking lander experiments [70, 71] were conducted with a sur-
face sampler arm [23], which scraped the soil to dig shallow trenches
(0.04-0.06 m deep). Investigators examined the record of arm forces,
visually estimated failure wedges, and examined the slopes of the re-
sulting trench walls. From this data, they extracted estimates of the
cohesion and internal friction angles' using a model from McKyes and
Ali [69]. The soil encountered was classified into three types: drift,
crusty to cloddy, and blocky. Using a technique relating the geometry

IThe internal friction angle is the angle of friction when soil is rubbing against
soil. A friction angle, ¢, is related to a friction coefficient, u, by the relation:

1 = tan ¢.
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of the failure wedge to the internal friction angle, they obtained the
following estimates for friction angles: for drift material, 14° to 21°,
for crusty to cloddy material, 28° to 39°, and for blocky material, 27°
to 33°. Cohesion estimates were also determined: for the drift material,
1.4 to 3.0 kPa, for the crusty to cloddy material, 0.5 to 5.8 kPa, and
for the blocky material, 2.2 to 6.2 kPa.

From the Pathfinder/Sojourner mission, researchers have published
data on the observed angles of repose and the friction angles of Martian
soil [114, 113]. The angle of repose was measured using images from the
lander camera and they reported values between 30° and 38°. Friction
angles were obtained from simulated shear tests conducted by driving
one of the wheels on the rover up to 1.5 turns, while keeping the other
wheels stationary. The friction angles were found to be between 32°
and 41°. The shear tests were conducted at normal stresses typically
below 4 kPa. Two methods were used to estimate cohesion from the
shear data. In the first, the angle of friction was assumed to be equal
to the angle of repose?, and for each measurement of normal and shear
stress, a cohesion estimate was computed, resulting in values between
0.120 and 0.356 kPa. The second method uses a least squares fit to
determine friction angles and cohesion estimates. In this case, the co-
hesion estimates were found to have a wider range and were sometimes
negative. Overall, they conclude that the soil appears to show little or
no cohesion.

A third mission to reach the Martian surface, which unfortunately
did not land successfully, was the recent Polar Lander, scheduled to
land in December 1999. It was equipped with a three meter long ma-
nipulator arm. This arm was designed to dig a half-meter to meter deep
trench. As can be noted from the other missions, the greatest depth
of soil probed has only been approximately 6 cm. Future missions will
hopefully be able to uncover material at greater depth.

For the interested reader, there are also additional references about
Martian soil. There is an article about considerations for cold temper-
ature behavior of Martian and Lunar soil from Chua and Johnson [20].
This reference also provides general information about the Martian en-
vironment, summaries of the Viking and Pathfinder missions, and other
soil mechanics considerations applicable to Mars. A white paper and
large collection of references related to Mars soil from Haldemann [35]

2As noted by Terzaghi [112], the angle of repose for soils with cohesion is not a
constant value and depends on the height of the slope. For cohesionless soils, he
states that the angle of repose is approximately a constant, and independent of the
height of the slope and fairly independent of the initial density of the soil. It is
approximately equal to the angle of internal friction of the soil in its loosest state.
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can be found online. In addition to Martian data, we also have data
on Lunar Soil Simulants from Willman et al. [123, 124]. While lunar
regolith is not expected to be identical to Martian soil, it is still of
interest for any future missions to the Moon. Willman et al. compared
experimental draft forces with those predicted using four different 3-D
models of soil failure [39, 32, 69, 78], including the same model used in
the Viking analysis, but found poor agreement.

2.2 Previous Work on Modeling and Ma-
nipulators

A significant body of work exists on the topic of robotic excavation. The
work has primarily focused on planning, development and coordination
of systems, or simple rule based control schemes to avoid stalling. This
thesis is intended to fill a gap in the existing body of research. Re-
searchers have primarily focused on high level planning and have not
taken a close look at improving techniques for accurately predicting
interaction forces, attempting to classify soils from interaction data,
or developing control systems to use estimated soil parameters to en-
hance performance. The following survey of the existing body of work
is divided into those related to the modeling of soil behavior and the
control of manipulators interacting with soil.

2.2.1 Soil-Tool Interaction Models

When using a flat plate as the end-effector, the problem of predicting
the draft force for the plate is equivalent to the classical case of the
force on a retaining wall. The solution of this problem is commonly
known as active and passive earth pressure theory. There are many
papers on this topic. A few which are widely referenced or unique are
mentioned here.

Study of this problem in Civil Engineering dates back to Coulomb
(1776) [21]. It is also well known that there are limitations to the the-
ory proposed by Coulomb. For instance, for soil-tool interfaces which
exhibit friction, the larger the friction angle, the greater the predic-
tion error. To account for such limitations, additional methods have
been developed which use a logarithmic spiral failure surface near the
soil-tool interface. These methods are discussed in soil mechanics texts
like Terzaghi [112], Lambe and Whitman [62], or Jumikis [50]. These
models, which pre-assume a failure surface and compute a force equi-
librium based upon this failure surface, are commonly referred to as



24 CHAPTER 2. PREVIOUS WORK

limit equilibrium methods.

In addition to limit equilibrium methods, there are methods which
consider energy dissipation and stress equilibrium to determine upper
and lower bounds on the failure force. These techniques are commonly
referred to as limit analysis techniques. They are derived from the up-
per and lower bound theorems from Drucker [27]. Sokolovskii’s slip line
method [108] calculates a lower bound on the failure force from solving
a set of stress equilibrium differential equations over discrete points in
the soil mass using a finite difference method®. Caquot and Kerisel
[17] provide a set of tables from the results of their calculations which
are also based upon the solution of the governing equations of equi-
librium®*. Chen and Liu [18] provide an upper bound solution which
assumes a failure mechanism composed of linear and logarithmic spiral
components, but the calculation of failure force is based upon energy
calculations rather than force balance, making this prediction a limit
analysis upper bound, rather than a limit equilibrium technique. There
is also another technique, which takes advantage of the ever increasing
capability of computers, called numerical limit analysis. Sloan [107]
develops finite-element numerical methods for the computation of up-
per and lower bound solutions. Together, we refer to upper and lower
bound methods as the numerical limit analysis technique. Sloan pro-
vides examples for cases of bearing capacity of strip footings, active
earth pressure, slope stability, and buried tunnel stability. Extensive
work has also been done on the bearing capacity of foundations by
Ukritchon [118, 117] using this technique.

There is also a final set of soil models which use finite element
techniques to predict deflection and failure forces. Yong and Hanna
[126] develop a two dimensional finite element model for soil cutting
and verify their results using a 10 cm wide by 20 cm long blade at a
variety of blade inclinations. Kushwaha and Shen [58, 93] and Chi and
Kushwaha [19] develop 3-D finite element techniques using a stress-
strain model from Duncan and Chang [29]. It is also interesting to
note that Kushwaha and Zhang [60] have tried applying radial basis
function neural networks to the modeling task.

In addition to the papers which develop theoretical models, there
have been papers which study the agreement between theory and ex-

3Sloan [107] notes that Sokolovskii makes some assumptions in his calculations
which make the results neither strict upper or strict lower bounds.

40nly sometimes viewed as a lower bound. Some references, such as Chen and
Liu [18] refer to it as being, at times, viewed as a lower bound. Other references,
such as Duncan and Mokwa [30] refer to it being based upon the logarithmic spiral
theory, which would make it a limit equilibrium technique.
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perimental data. Osman [75] tests a variety of inclined and curved
blades 4” deep and 24” wide and compares the results with the predic-
tions from the logarithmic spiral model. Rowe and Peaker [87] conduct
studies with 1.5’ deep and 6’ wide wall and make interesting observa-
tions regarding progressive failure of loose and dense soils. James and
Bransby [47] study the shape of the failure surface resulting from the
rotation of a wall about its bottom tip and compare the results with
the model from Sokolovskii [108]. And very recently, there has been a
study from Duncan and Mokwa [30], who apply a load to a reinforced
concrete anchor block of dimensions 3.5 high, 6.3’ long, and 3’ thick
and study the load versus deflection curve and compare the measured
failure force against the Coulomb and logarithmic spiral models.

All of the methods discussed above, except for the 3-D finite element
method from Kushwaha et al., have been 2-D. There were a number
of 3-D models in existence which have already been mentioned briefly
related to the testing of the Lunar Soil Simulant. These models were
from Godwin and Spoor [32], Hettiaratchi and Reece [39], McKyes and
Ali [69], and Perumpral, Grisso, and Desai [78]. These are typically
more complex and not necessarily more accurate. The use of a plate
with a large width to depth ratio can enable the use of the many 2-D
models and avoid the complications and added uncertainty of the 3-D
models. However, such ratios cannot always be obtained in practice,
especially at larger depths, in which case the 3-D models would be
required.

2.2.2 Control of Manipulators for Interaction with
Soil

There has been extensive prior work in the area of robotic excavation.
The majority of these systems incorporate some form of adaptation in
the control scheme. The adaptation in these cases refers to the capa-
bility of altering the digging trajectory to avoid stalling or to avoid
obstacles, not explicit adaption to soil properties. Each group of re-
searchers in the area of robotic excavation are discussed briefly below.

Singh and others at CMU [68, 101, 102, 100] have done much work
in the area of planning excavation and constructing complete systems
capable of autonomously scooping and loading material. Originally
they had used a linear failure surface model based upon the model
from Reece [83], but they also developed a neural network learning
scheme to predict resistive forces [16]. This group is probably the most
advanced in this field. Their manipulator executes digging strokes in
pre-planned trajectory motions after the high level planner tells them
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where to dig. Their primary focus is to successfully remove a selected
volume of material through strategically planned strokes. They have
implemented their system on a Caterpillar backhoe and combined it
with laser range finders to measure the soil surface and locate dump
trucks for autonomous truck loading [109].

Shi, Wang, and Lever [96, 95, 97, 122] used fuzzy logic rules derived
from the knowledge of a skilled operator to adjust digging trajectories
incrementally to avoid obstacles and stalling. They used force sensor
measurements to trigger state changes and obstacle navigation was lim-
ited to in-plane 2-D navigation, either under or over objects. They also
performed some basic study of neural network methods.

Bradley and Seward and a variety of colleagues [11, 10, 91, 92] have
constructed a 1/5th scale hydraulic backhoe arm and have studied dig-
ging in a planar trench. Their system is not back-driveable, however,
they implement a software-based force feedback measurement system
using induced errors in desired trajectory tracking. They avoided the
use of sensitive force sensors in an inherently rough environment. Their
obstacle avoidance scheme is basically a trial and error method con-
strained to the plane of digging.

Huang and Bernold and colleagues [7, 44, 45] have studied impedance
based methods for digging control, obstacle detection via discrete con-
tacts, and made initial attempts at characterizing soil properties through
digging resistance measurements. They discuss methods for handling
obstacles by recording coordinates of impact with the obstacle, moving
slightly and attempting to check for another impact. By repeating this
procedure the spatial extent of the obstacle can be determined. Sam-
pling of multiple points happens discretely and is a somewhat lengthy
process. If the manipulator is back-driveable, a continuous method for
obstacle mapping which we have developed can also be attempted [42].

A few other sets of researchers in the field of excavator control can
also be mentioned. Koivo and Vah& and colleagues [8, 52, 56, 119] have
done work on modeling the dynamics of excavators and for conducting
simulations of excavator systems. Bullock et al. [12] studied planning
techniques to excavate a given geometrical region of soil and conducted
basic studies of varying digging depth based upon strain measurements
on their robotic arm. Bodur et al. [8] conducted simulations of a
backhoe, where the desired digging path is adjusted in increments when
the force limit is reached so that the trajectory is a bit higher at each
step until the force limit is satisfied. Forces in the simulations are
based upon equations from Vaha’s study [119]. And finally, one other
interesting direction of research was from Ostoja-Starzewski et al. [76]
who examined the use of force-feedback in a master-slave configuration
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to allow operators to have a better sense of the forces of interaction in
excavation.

2.2.3 Specific Work on Parameter Estimation

As noted, most of the work on robot-soil interaction has been con-
cerned with planning and obstacle negotiation. These have typically
been large scale systems, where researchers are not interested in pre-
cise interactions. In contrast, the goal of this research is estimation,
not excavation.

There has been a small amount of work from robotics researchers
examining the topic of property estimation. Bernold [7] mentions how
“measured forces can be used to create characteristic patterns or fin-
gerprints for various soil conditions.” Bernold’s idea was to develop a
means of classification of soils into similar categories rather than di-
rect parameter estimation. Some very initial experimental results were
provided which support his hypothesis, showing that different soils will
produce different interaction forces. Further work on categorizing soil
types from interaction data has not resulted.

There is also the work from Luengo, Singh, and Cannon [68] on
interaction force estimation. Their system uses a large hydraulic back-
hoe with a bucket scooping up soil. Estimation is done concurrently
with excavation. They estimate parameters for use in their selected
soil model to obtain reasonable predictions of interaction forces. The
accuracy of the force predictions are assessed, but the accuracy of the
parameter estimates are not. As will be seen in this thesis, a wide vari-
ety of parameter values can produce the same forces. Interaction forces
alone cannot be used for parameter estimation, additional information
is required. Thus, while they obtain force estimates to within roughly
10-60%, there is no guarantee on the accuracy of their parameter es-
timates. However, since their goal is force prediction, not parameter
estimation, they need not be concerned with this fact.

2.3 Proposed Approach

As stated throughout, the ultimate goal of this work is to develop
techniques to accurately estimate soil properties through controlled in-
teractions. For this purpose, we need to know how these properties
relate to quantities which can be measured. For robotic manipulators,
these quantities are typically force and displacement. If visual feedback
is available, then we can also estimate the failure region.
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In order to understand how the soil properties relate to the force and
displacement, a study of the various soil models for predicting failure
force is required. Since there are a variety of models in existence,
and not all necessarily in agreement, a few models are examined and
compared in Chapter 4.

These soil models will require certain conditions on the loading. In
order to compare measured forces with these models, the manipulator
must be controlled to obey the loading requirements. The development
of suitable manipulator control techniques is presented in Chapter 5.
Experimental interaction data is collected with sample soils and pre-
sented in Chapter 6.

Finally, in order to use the interaction data to obtain soil property
estimates, the soil models must be inverted. A graphical technique for
the inversion of the soil models is developed in Chapter 7 and applied
to the experimental interaction data.

Before the above techniques are presented, the details of the de-
velopment of the robotic manipulator arm used in this research are
provided first in the following chapter.



Chapter 3

Hardware and Control

This chapter discusses the evolution of the manipulator from its initial
bare-bones state to the final system for experimentation. The limita-
tions of the manipulator resulting from design choices and how those
limitations exhibit themselves in data collection are outlined. In ad-
dition to the manipulator itself, the development of the supporting
hardware for sensing, computation and control is presented. Finally,
the software architecture, manipulator control, and user interface are
discussed. Material covered in this chapter is not essential for un-
derstanding the later chapters and may be bypassed for those more
interested in soil modeling and interactions.

3.1 Manipulator Evolution

Very rarely is any piece of hardware perfected in its first incarnation,
and our system is no exception. Design is an iterative process, where
insights are gained through discovery of shortcomings. A significant
amount of time was spent completing and redesigning our manipulator
to achieve the levels of performance necessary to conduct the required
experiments. In the process, a number of critical issues were uncovered
which may be useful to future researchers.

The primary design of the manipulator used in this research was
completed by two other researchers, Katz [51] and Curtis [24]. Orig-
inally, the manipulator was designed to be a platform for the study
of nonlinear compliant transmissions. It was to be equipped with a
hybrid of two rotary and two linear compliant elements on the four
major joints. The study of the novel compliant elements themselves

29
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were completed within the framework of one degree-of-freedom (DOF)
test-beds.

These compliant elements were not integrated into the final manip-
ulator for a number of reasons. Due to time constraints, the other two
researchers were not available to modify the designs of the elements
to have the proper strength and sensing range. It was discovered that
the typical loads experienced in our experiments would be greater than
the strength and sensing range of the original designs. In addition, the
compliant elements were not fundamentally necessary for this research.
Although the compliant elements were originally envisioned as a means
for obtaining force information, for the proof-of-concept nature of this
research, an accurate force/torque sensor was used instead. This al-
lows us to separate any issues associated with obtaining accurate force
measurements through the compliant elements from issues directly re-
lated to the primary goal of property estimation through controlled
interactions.

In addition to the incorporation of the force/torque sensor, other
modifications were made to the manipulator design. In the next sec-
tions, the original design and the subsequent modifications are briefly
outlined.

3.1.1 Initial Design

The original design sought to develop an arm which could achieve ap-
proximately 5 Ibf at the end-point comfortably, had a workspace of ap-
proximately 30-40 inches, and had at least 4 DOF (6 DOF would have
been ideal). The end-effector DOF(s) should not be back-driveable to
ensure that the end-effector motor(s) do not have to work against the
other arm motors during stroking. A planar design with a base azimuth
DOF was chosen as a starting point.

The resulting manipulator design is shown in Figure 3.1. The design
has a few notable features, including a differential in the elbow for
increased torque capability in the most critical joint for stroking, and
a very compact end-effector design with a worm gear transmission.
The base and shoulder joint were intended to have rotary compliant
elements. The two motors located to the far left were to drive the
differential located in the elbow. The large space between the rear
motors and the shoulder joint was to accommodate linear compliant
elements which would be placed in-line with the cabling. As noted
previously, the compliant elements were not incorporated in the final
manipulator.
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Figure 3.1: The original manipulator design, un-cabled, before the
modifications and additions to make it fully functional. Rotary com-
pliant elements were to be placed in the base and shoulder and linear
compliant elements were to be placed in-line with the cabling in the
open space above the horizontal base platform.

3.1.2 Design Revisions

This section briefly discusses the primary revisions to the original de-
sign. These highlight issues which may be of interest for future re-
searchers designing manipulators. Figure 3.2 provides a graphic sum-
mary of the modifications.

e Stronger Cables Larger cable diameters (0.054”, 240 1bf) than
the ones originally selected (0.032”, 120 lbf) were required to
carry loads up to the desired 5 Ibf. This required a redesign of
the routing to accommodate the larger diameter cable.

e “Gear” Reduction A smaller capstan for the shoulder motor
and larger elbow pulleys were required in order to increase the
force capability. These modifications effectively doubled the force
capability of the arm and also reduced the effect of the backlash
in the motor gearheads. The new elbow pulleys also had cable
terminations so that two lengths of cable can be used instead
of one lengthy one which would be difficult to pre-tension to a
reasonable level.
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e Stiffer Links Reinforcement pieces were required to stiffen the

open rectangular channel used for the upper arm link and also to
stiffen the long base platform. Both of these would deflect under
typical operating loads.

Counterweights Counterweights made of Tungsten alloy (~
17.6 g/cc) were added to statically balance the arm (elbow: ~
2 Ibf @ 6.75”, shoulder: ~ 10 1bf @ 7.25”). All motions executed
by the arm are expected to be low velocity maneuvers and so the
increased inertia is of less concern than the force capability of
the arm. In most soil interactions, the weight of the arm would
actually be helpful (e.g. insertion and downward stroking). On
the other hand, it would complicate free-space motions, lifting,
and data processing. Also, unintended power shutdowns would
result in the manipulator falling under its own weight.

Joint Stops Joint stops were added to each joint for calibration
of the relative (incremental) encoders. A homing procedure was
implemented to locate these stops at start up.

External Encoders The motors which had been selected were
Maxon RE035 DC motors with 72.38:1 three-stage planetary gear-
heads. Each stage of the gearheads have a no-load backlash of
< 0.7°, which results in approximately 2° of backlash at the mo-
tor shaft. Due to the large backlash in the motor gearheads,
external encoders were essential on the major joints in order to
have accurate end-point sensing. The external encoders are 3600
counts-per-turn (CPT). Prior to the addition of these encoders,
the end-point sensing accuracy was approximately 0.5”, after the
addition, the accuracy is approximately 0.05” (typical insertion
depths are 17). This is still much larger than desired, but to
achieve greater accuracy would require a substantial redesign.

Sensor Co-location The end-effector was redesigned in order
to place the force/torque sensor directly behind the plate instead
of at the end of the forearm link before the end-effector motor.
Figure 3.3 shows the design before and after the modification.
This allows direct measurement of the force on the plate. A flat
plate was chosen because of the resulting simplification in the soil
interaction models. This is consistent with the goal of property
estimation rather than excavation, which would be impractical
with a manipulator of this size and strength.
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Figure 3.2: Summary of modifications from left to right, top to bot-
tom: (row 1) redesigned smaller capstan for shoulder, base reinforce-
ment, elbow counterweight and link 1 reinforcement, (row 2) shoulder
counterweight, external encoders for elbow motors, external encoder
for shoulder joint, (row 3) enlargement of elbow differential pulleys
and forearm joint stop, and end effector design utilizing a worm gear.
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Figure 3.3: The previous end-effector design had the F/T sensor located
between the end-effector and the arm (in place of the cylindrical piece
at the end of the forearm shaft). The new end-effector places the F/T
sensor directly behind the plate (wrapped in latex for protection from
sand particles).

3.1.3 Limitations, Compensation, and Lessons

There are a number of limitations which still exist with the final ma-
nipulator used in experimentation. These limitations are in strength,
position sensing accuracy, and arm flexibility.

At nominal arm extension, the arm can achieve 5 lbf at the end-
point, but there is no safety factor beyond that limit as originally hoped.
With the stronger shoulder cables, the shoulder motor becomes the
limiting factor by a small margin!. This strength limitation translates
into limits on the width and depth of insertion of the plate used in
experimentation. Although greater strength would have been preferred,
in actuality, an arm of this size being capable of exerting 5 Ibf is very
reasonable. Any rover-based manipulator arm would likely be in this
range.

As mentioned previously, the resulting end-point sensing accuracy
at nominal extension is approximately 0.05” and the backlash is ap-
proximately 0.5”. The backlash is less of a factor than the sensing

IThe motor can generate approximately 70 in Ibf continuous torque at the shaft.
The capstan is 0.75” in diameter, resulting in a force in the cable of 190 Ibf. The
new 0.054” cable has a strength of 240 Ibf.
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accuracy since during digging the motors will always be on one side of
the deadzone. The sensing accuracy, on the other hand, creates diffi-
culties in obtaining accurate insertion depths (typically 1”) and smooth
end-point displacement data. The uncertainty in insertion depth can be
compensated for with external measurements during experimentation.
The end-point displacement will contain discontinuous jumps as a re-
sult of the resolution of the external encoders. Although this is evident
in the resulting data, the control compensates for the jumps and settles
fairly rapidly. The resulting force measurement is often unaffected by
the discontinuities. Thus, the resulting poor sensing accuracy can be
overcome. Future designs can easily avoid these problems by selecting
motors with minimal backlash.

Another limitation, tied to both the strength and sensing accuracy,
is the flexibility in the arm. There exists a small amount flexibility in
the actual arm links, but the main source of flexibility lies in the cabling.
Typically, one would pre-tension the cables to at least half the expected
load. Due to the space limitations and the long runs of cable for the
elbow joint, the design does not incorporate enough space to properly
pre-tension the cables. This results in a very evident stretch in the
elbow transmission which is not sensable with the external encoders.
The stretch is typically up to 1-2 degrees at the elbow at nominal loads.
In order to compensate for this stretch, the apparent stiffness of the
arm can be measured and approximately compensated for. Appendix
A documents the flexibility compensation.

In summary, there are a number of limitations that still remain in
the system. Design revisions have been completed to compensate for
these limitations so that useful data can be obtained. In the control
and experimentation, this work has endeavored to remove any special
characteristics of this particular manipulator so that no special artifacts
can be attributed to this system. Ideally, all the data is independent
of the specific system from which it has been obtained. Experiments
conducted with another system under the same conditions are expected
to produce the same results.

3.2 Final Hardware System

Figure 3.4 shows the final manipulator, workstation, power rack, and
sandbox. The final manipulator is a five DOF arm whose evolution
has just been discussed. The first four DOF (base, shoulder, elbow,
forearm twist) are all cable-driven. The wrist uses spur gears which
drive a final worm gear. The arm has a reach of approximately 36
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Figure 3.4: Final hardware system showing the manipulator arm, work-
station, power rack, and sandbox.

inches fully extended. It can lift approximately 5 1bf at 80% extension
(the typical operating extension).

The arm is equipped with a Mini-40 6-axis force/torque (F/T) sen-
sor from ATI Industrial Automation shown in Figure 3.5. The F/T
sensor is 40 mm in diameter and 12.3 mm thick. It uses silicon strain
gauges for greater signal strength and overload protection compared to
foil gauges. The calibrated sensing range is 100 N shear force, 300 N
normal force, and 5 N-m torque with 16 bit resolution. The overload
protection has a maximum allowable shear of 1300 N, normal of 2900
N, and torque of 25 N-m. It interfaces using an ISA card in the PC
which can produce readings at rates up to 4 kHz.

This sensor was selected based upon the original manipulator design
with the sensor placed after the end-effector motor (Figure 3.3, left
image). The driving consideration was the torque sensing range. The
calibrated sensing range is quoted for loading along individual axes,
combined loading situations have reduced limits. Loads of up to 22
N (5 Ibf) at 0.2 meters were expected, resulting in 4.4 N-m at the
sensor — near the limit for combined shear/torque loading. With the
new placement of the sensor directly behind the plate, the sensor has
a larger range than necessary. Typical interactions will only use less



3.3. SYSTEM ARCHITECTURE 37

Figure 3.5: The Mini-40 6-axis force/torque sensor is shown above,
where we have used small standard brass masses to test the Z-axis
calibration.

than 1/10th of the full sensing range (up to 20 N). The calibration was
tested over the typical loading range and found to be within 1% of the
actual force.

The manipulator arm is controlled by a 200 MHz Pentium Pro com-
puter equipped with an 8-axis ServoToGo I/O card running Real-Time
Linux [5]. The I/O card provides 8 encoder input channels, 8 analog-
to-digital (A/D), 8 digital-to-analog (D/A) channels, and a number of
digital input-output (I/O) channels. The D/A channels are used to
provide inputs to the amplifiers which power the motors and the A/D
channels are used to monitor the current and voltage output of the am-
plifiers. The servo loop is programmed as an interrupt service routine
(ISR) triggered via the interrupt generated by the I/O card which can
be programmed for different rates. Currently the system is run at 500
Hz. All computations are done by the Pentium Pro processor.

The manipulator arm is powered using five Copley Controls Model
412 DC Brush Servo Amplifiers which are powered by two 48V DC
power supplies. These are all mounted within a compact custom built
rack (18” x 19” x 12”) shown in Figure 3.4. The rack also contains basic
logic circuitry for the enable lines, kill button, and break-out wiring for
the ribbon cables from the I/O card.

3.3 System Architecture

Much of the initial inspiration for the style of the architecture was
drawn from that of the Whole Arm Manipulator (WAM) system [72,
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Figure 3.6: The illustration above shows the system architecture for
manipulator control. On the left, the servo loop is run as a kernel level
process which operates in hard real-time with guaranteed bounds on
latencies. On the right, the user-level processes have lower priority,
no guarantees on timing, and are run in the time left over from the
kernel-level processes.

41]. The architecture allows for multiple control laws, trajectories,
and state sequences in a very modular fashion. This modularity facil-
itates the addition of new components in a structured manner, allows
for independent testing of individual components, and facilitates rapid
construction of new behaviors by combining existing behaviors. The
complete system is programmed in C.

Figure 3.6 shows an illustration of the system architecture. Using
the Real-Time Linux framework, the controller (servo loop) is run as
a kernel-level process having the highest priority on the system. The
terms “servo loop” and “controller” will be used interchangeably in
the following discussions and refer to the kernel-level process which
controls the manipulator. The user interface and data storage routines
are run as user-level processes (along with the rest of the standard
Linux kernel and programs). These user-level processes are run in the
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time left between periodic calls of the kernel-level process.

The controller (kernel-level process) communicates to the user-level
processes via kernel print statements (for debugging messages), shared
memory (for connecting to the user interface), and first-in-first-out
pipes (FIFOs) (for data storage). The user interface is completely in-
dependent from the controller. This independence allows for the imple-
mentation of different user interfaces which can be used interchangeably
or simultaneously, tailored for specific purposes.

This section presents general details about each of the components
of the system and manipulator control. A more detailed presentation
of the specific control of the manipulator for digging will be given in
Chapter 5.

3.3.1 Manipulator Control

The components of the servo loop are shown in the left box of the Figure
3.6. The components are called sequentially within the servo loop. The
servo loop is run in hard real-time with a guaranteed frequency of 500
Hz based upon interrupts generated by the I/O card.

The servo loop can be divided into multiple conceptual units. The
lowest level handles the basic input and output routines, such as read-
ing encoders, reading the F/T sensor data, and computing the torque
output. The next unit is the trajectory generator which produces the
sequence of desired positions to move the arm. There are multiple pos-
sible trajectories, including Cartesian and joint space motions. The
next unit is the state machine. In the state machine, more complex
logic can be programmed to execute a sequence of states (each of which
can be trajectories or other state sequences) based upon various state
transition conditions.

Underlying the trajectory generator and state machine, and tied to
the low-level control, is the arm kinematics. Before discussing each of
the units of the servo loop in turn, the derivation of the arm kinematics
is presented.

3.3.1.1 Kinematics

The full arm 5-DOF forward and inverse kinematics and Jacobian com-
putation are provided in Appendix B. Fortunately, the inverse kine-
matics can be computed directly, instead of resorting to an iterative
approach. The kinematics routines convert from the five joint values
to Cartesian x, y, z coordinates and two orientation angles n; and ns
which represent the angle of the end-effector relative to vertical and the
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plane formed from the first two links of the manipulator (the vertical
plane rotated through the base azimuth angle) respectively.

Figure 3.7 shows the coordinate frame for the arm and the orienta-
tion vectors. The end-point of the arm is located at the center bottom
tip of the plate. For the orientation vectors, the rotation is first done
about the Y axis by amount n; and then about the Z axis by amount
ns. These orientation angles were chosen so that the inverse kinematics
could be computed directly using these angles.

These kinematics routines are fundamental to the control of the ma-
nipulator and are used extensively in the post-processing conversion of
data. The forward kinematics, Jacobian, and inverse Jacobian are com-
puted during each pass through the servo loop immediately following
the low-level input routines and prior to the trajectory generation rou-
tines. If the trajectory generator is operating in Cartesian mode, then
the inverse kinematics routines are called immediately after the trajec-
tory generator in order to convert the desired Cartesian position into a
desired joint position to feed to the low-level output routines. Finally,
the low-level output routines use the Jacobian matrices to compute the
proper torque output if operating in a Cartesian based control.

3.3.1.2 Low-Level Control

The low-level control can be divided into input and output routines.
The input routines consist of reading the encoders, A /D channels, and
F/T sensor data and performing the appropriate conversions. Basic
filtering is done on the encoder inputs to smooth the signal. In addition,
due to the differential in the elbow and the coupling of the shoulder and
elbow joints, a motor/joint transformation (Appendix B) is applied to
the encoder input to convert from motor space to joint space.

For the output, there are two basic types of low-level control. A
number of other controllers are implemented as variations on these two
basic types, but are not used frequently (such as velocity control). The
two basic types are joint proportional-integral-derivative (PID) control
and Cartesian Stiffness Control (Salisbury [89]).

The joint PID control is made slightly more interesting than a stan-
dard joint PID due to the presence of the motor encoders and the ex-
ternal encoders. Using the external encoders alone, a high stiffness
cannot be obtained due to the backlash. Using the motor encoders
alone, the sensing accuracy is unacceptable. Therefore, a PID loop is
closed around the motor encoders to obtain high stiffness, and the ex-
ternal encoders are used with an integral gain for absolute positioning
accuracy. Due to the differential and the coupling, joint gain matrices
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Figure 3.7: An illustration showing the Cartesian axes for the arm kine-
matics. The XYZ coordinates are relative to the base of the mounting
plate, and N1 and N2 are orientation vectors for the end-effector. The
end-point of the arm is located at the center of the bottom of the plate.



42 CHAPTER 3. HARDWARE AND CONTROL

are used instead of gain vectors. The gain matrices are computed using
diagonal joint gain matrices multiplied by the joint/motor transforma-
tion matrix.

Tmtr = T%ttr |:<KPm” thr + KDmt'r‘ élmtr)

+ (KPemi(lemt + KIem /(leact dt>:| (31)

where (Nlmtr = Qdes — Amitr and (~lezt = Qdes — Yext-

Cartesian Stiffness Control is also implemented to allow specifica-
tion of a desired stiffness which is independent of arm configuration.
This is the primary control which is used during most of the experimen-
tation, for reasons explained in Section 5.3.1. The position dependent
Jacobian matrix is used to convert a Cartesian stiffness matrix into a
position dependent joint stiffness matrix. Since the arm is essentially
planar with a base rotation, a cylindrical stiffness is specified instead
of a Cartesian stiffness. A cylindrical stiffness matrix is obtained by
rotating a Cartesian stiffness matrix by the angle of rotation of the arm
base joint.

Tmtr = T%ttr [J(qemt)_lR(QO)_l K. R(QO)J(qeact) Armtr

+ KDmtr (letrjl (32)

The gain on the velocity term is the same as in the joint PID control.
It is unnecessary to convert this into a Cartesian frame since most of
the motions will be of low velocity and the primary force will be a
result of position error rather than damping terms. An integral term is
not used in this control mode since its presence would alter the desired
stiffness. When using the stiffness control, the external encoders are
used for accurate position sensing and to drive the desired position
in the trajectory generation, but they do not directly enter into the
control law. They are only indirectly used in the final low-level control
law through the desired position and the Jacobian matrices.

The gains of the above controllers were tuned empirically to ob-
tain high stiffness with smooth motions. More sophisticated adaptive
control was not found to be necessary for a number of reasons. The
typical motions of the arm are fairly slow. The arm is counterbalanced
for gravity compensation. The arm has high inertia, high gearing, low
stiffness, and large backlash, making fast maneuvers problematic.
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3.3.1.3 Trajectory Handler

There are multiple trajectories which are programmed to provide de-
sired position and velocity values for the arm every servo loop. These
trajectories can be classified as joint space or Cartesian space tra-
jectories. Some examples of these trajectories would be joint space
moves, Cartesian space moves, insertion trajectories, and various dig-
ging stroke methods. More details about the insertion and digging
trajectories will be provided in Chapter 5.

Only a single trajectory is active at any given moment, but a listing
of future trajectories to be executed is continuously maintained. This
trajectory list takes the form of a circular ring of pointers to trajectory
structures. As one trajectory completes, the next trajectory on the ring
is initialized and run. When a sequence of trajectories is completed
and the rest of the ring is empty, a joint or Cartesian hold is executed
according to the type of the last trajectory.

Each trajectory is self-contained in its own file and relevant variables
are passed as function arguments. Trajectories each have initialization
and exit routines. They are time based, so that they are called every
servo loop and must produce desired position coordinates for each time
step. They are either finite duration, ending automatically after com-
pletion, or infinite duration, requiring a command to end execution.

The tracking of the current active trajectory, maintenance of the cir-
cular ring of future trajectories, and handling of trajectory transitions
is all done by a trajectory handler. The modularity of the individ-
ual trajectories and the implementation of the trajectory handler allow
for easy construction of complex sequential behaviors. In order to have
non-sequential and event-driven behaviors, a finite state machine archi-
tecture was implemented which interfaces with the trajectory handler.

3.3.1.4 Finite State Machine

The finite state machine (FSM) allows for the programming of a set of
states which can be moved between in an arbitrary order, depending
upon various transition conditions. Typically, it is used to control the
flow of a linear sequence of event-driven behaviors. However, it is capa-
ble of implementing a more complex set of state dependent transitions.

In this system, a state machine “sequence” is a set of independent
states, each of which can execute a set of simple variable assignments,
start or stop data storage, or call a trajectory or even another se-
quence of states. There are specific entry and exit functions which can
be programmed for each state transition. In contrast to a trajectory,
where the driving variable is always the time, the state sequences are
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time-independent and transitions are executed based upon programmed
transition conditions which must be satisfied.

An example of a state sequence is the homing routine used to ini-
tialize the arm upon start up. For each joint, this sequence calls a
joint-space “touch” trajectory that moves a specific joint incrementally
until contact with a joint stop is detected via a large position tracking
error. Once the joint stop is detected, the trajectory ends. This trig-
gers a state transition and the “touch” trajectory is called for the next
joint. When all stops have been contacted, the home position for the
encoders is reset in the low-level input routines.

Another similar example is the wall sensing routine used to detect
the edges of a sandbox. This routine calls a sequence of Cartesian
“touch” trajectories which use the force/torque sensor to detect wall
contacts. Each contact triggers a state transition which starts the next
“touch” trajectory.

A widely used sequence, which is the primary means for data col-
lection, is the “insert-stroke-pullout” sequence. This sequence assumes
the arm is located above the soil at the desired point for stroking. The
first step in the sequence uses a Cartesian “touch” trajectory to locate
the soil surface. Next, it inserts the plate to a specified depth using
an “insert” trajectory. Then a “stroke” trajectory is called. Finally,
a Cartesian “moveto” is used to pull the plate out of the sand. Data
storage is also optionally triggered at both the “insert” and “stroke”
stages of the sequence.

A final example is the multiple-stroke sequence. This is an example
of a “meta-sequence” — a state sequence that calls other state sequences.
This meta-sequence positions the arm in multiple locations above the
soil using Cartesian “moveto” trajectories and at each location it calls
the “insert-stroke-pullout” state sequence. Using this meta-sequence,
a single command can be entered into the user interface that will cause
the arm to autonomously execute six strokes at various locations with
associated data collection to time stamped data files.

This combination of a trajectory handler and a state machine ar-
chitecture greatly simplifies the programming of the manipulator. It
allows for easy reuse of trajectory and state sequence components and
provides a simple framework for constructing complex sequences of be-
haviors.

3.3.2 User Interface

The final portion of the system architecture is the user interface. As
mentioned previously the user interface is completely independent of
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the servo loop. The servo loop runs as a kernel-level interrupt service
routine. There are only three methods by which the servo loop can
communicate with the rest of the operating system. These three meth-
ods are via kernel print statements, shared memory, and FIFOs. All
three methods are used to define an interface through which user-level
programs can monitor and control the behavior of the servo loop and
collect data.

The characteristics of each of the methods make them best suited for
certain functions. The kernel print statement method is used primarily
for debugging purposes since it is a one-way communication. While
both the FIFO and shared memory methods can be used for two-way
communication, shared memory is much more versatile. Therefore, the
user interface communicates with the servo loop through the shared
memory method. FIFOs are good for communicating streams of data
and are therefore used as a means for data collection.

When data storage is triggered in the servo loop (by a trajectory,
state sequence, or user command), a predefined structure composed
of variables of interest are output via a FIFO. Whenever the arm is in
operation, a user-level process is run which continuously checks for data
in the FIFO. When data is found, it is decoded by the user-level process
and stored to time-stamped text files. A special character sequence is
output by the servo loop to signal the start of a new data file. Thus,
data storage is done automatically and is independent of the primary
user interface.

The primary user interface operates via a command-line interface
combined with multiple graphical displays. Figure 3.8 shows the typ-
ical user interface comprised of multiple text monitor windows and a
graphical 3D monitor window. The monitor windows can be individ-
ually enabled or disabled as needed. The command line interface has
various features such as command completion and scripting capabili-
ties. Inputted commands are communicated via shared memory to the
kernel-level servo loop to start trajectories or state sequences, enable
storage, or set various parameter values.

The text monitors are programmed using simple Xlib routines.
When enabled, each monitor forks off as a separate process that obtains
the data to be displayed via user-level shared memory. A distinction
is made here between the shared memory used to communicate be-
tween the kernel-level controller and the user-level processes and the
shared memory used to communicate between various user-level pro-
cesses. The user-level shared memory is a copy of the contents of the
kernel-level shared memory that is updated at a slower rate.

The graphical 3D monitor is a stand-alone program created using
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e

Figure 3.8: The user interface for manipulator control is comprised of
multiple text monitor windows, a graphical 3D monitor window, and a
command-line interface.

a combination of C and Tcl/Tk using Togl (an OpenGL widget for
Tcl/Tk). The graphical monitor is typically run on a separate com-
puter from the arm controller to off-load the computationally intensive
rendering. The monitor is composed of two processes which commu-
nicate with each other via user-level shared memory; one renders the
arm and the other handles the network communications over TCP /IP
to the arm control computer. The rendering of the arm is generated
by exporting assemblies from I-DEAS, our CAD package, into VRML.
Since the arm was designed using I-DEAS, the rendering is identical
to the actual manipulator (to very fine detail in fact, missing only the
bolts and cabling).

The format conversion from VRML to OpenGL was accomplished
with various tools to convert to 3D Studio (I have used AccuTrans 3D?
and AC3D?). The 3D Studio files were then converted to C source code

2Commercial program  with limited time trial, available at
http://www.micromouse.ca/, other free alternatives may be available, such
as AC3D or another program called 3Dto3D.

3A feature limited trial is available for both Windows and various UNIX oper-
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containing OpenGL display lists for each of the joint assemblies (using
VIEW3DS?).

As mentioned previously, the independence of the user interface
from the servo loop control allows us to operate multiple user inter-
face programs interchangeably or simultaneously. In addition, because
all communication between the user interface(s) and the servo loop is
through shared memory, I have also added a feature which simulates
the servo loop shared memory using stored data files. The user interface
can then serve as a stand-alone data file playback device.

3.4 Summary

This chapter has discussed the evolution of the manipulator used in
this research and the lessons learned in the process. Designing with low
backlash, stiff transmissions, adequate end-point sensing precision, and
co-located sensors is recommended. This chapter has also discussed
the design of the system architecture for control of the manipulator.
An emphasis has been placed on the modularity of the system, which
has greatly increased the ease with which complex behaviors can be
implemented.

ating systems at http://www.comp.lancs.ac.uk/computing/users/andy/ac3d.html.

4A free 3D Studio to OpenGL converter written by David Farrell, which has
since disappeared from the internet, but can be found inside of another program
called GnOpenGL3ds at http://www.ifrance.com/yburgevin/.



Chapter 4

Soil Modeling

This chapter examines the different methods for the prediction of the
force required to move a flat plate embedded in soil. In order for the
plate to move, the soil must be displaced. This typically occurs with
a failure surface developing between the moving soil directly in front
of the plate and the stationary soil beyond. Therefore, the expression,
“failing” the soil, is often used. The force required for failure is also
sometimes referred to as the “draft” force — the force required to pull
a tool.

This work is solely concerned with the force required to fail the soil,
problems with elasticity or more detailed stress-strain relationships for
soil are not considered. Instead, this work focuses on the strength of
the soil, i.e. stress conditions which lead to failure. Consideration is
also limited to dry soil, since it is expected that Martian soil will be
dry and have little or no cohesion. The assumption of plane strain is
also made in all the methods considered since they are 2-D methods.

Note that this problem is identical to the classic problem of passive
and active earth pressure studied in Civil Engineering for hundreds
of years, e.g. Coulomb (1776) [21]. Therefore the classical methods
from Civil Engineering, as well as the more recent developments, will
be examined. In this work, a number of methods have been selected
which are representative of different methods popular today. These
models are two-dimensional and do not consider pre-failure stress or
deformations in the soil mass. The analyses consider soil as a continuum
medium, in contrast to a few recent developments that explicitly treat
the particulate nature of soil.

In this chapter, a total of five different methods are considered.
These include two limit equilibrium methods, another method with

48
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predictions provided in tabular format, and two limit analysis methods
— one providing an upper bound and the other providing both an upper
and lower bound. The basics of the development of each of the models
is presented. The limitations and sensitivity of the models are discussed
and the resulting predictions are compared.

4.1 Background on Methods

The various methods which are presented here were chosen to reflect
different approaches to the draft force prediction problem. These meth-
ods come in two varieties; methods based upon limit equilibrium, and
methods based upon limit analysis (Drucker [26]). There are many
other possible methods or tables which could also be included in this
comparison. The following collection is believed to be representative
of the various methods in use today and we believe they constitute a
sufficient basis for comparison.

The most basic limit equilibrium method was developed by Coulomb
(1776) [21] and assumes a planar failure surface. This model is known
to be inadequate for cases where friction develops at the soil-tool inter-
face. The next method, from Ohde (1938) [74], assumes a failure surface
composed of a logarithmic spiral section plus a planar section. In con-
trast to Coulomb’s Theory, this method accounts for soil-tool friction.
These methods are typically used as ground truths for verifying more
recently developed models — Coulomb’s Theory for its historical usage
and the logarithmic spiral due to its greater accuracy in predicting
forces for frictional wall interfaces.

Another method that is commonly used as a basis for comparison
is Caquot and Kerisel’s earth pressure tables [17]. These tables are
sometimes viewed as a lower bound on the draft force. Some references
state that the computation is based upon the logarithmic spiral method
and other references state that they are computed from equations of
equilibrium. These predictions are most easily found in tabular form.
It is clear from examination of the predictions from these tables, that
they are neither strict upper or lower bounds.

Finally, two methods are discussed for limit analysis, yielding three
predictions, two upper and one lower bound. The method proposed by
Chen and Liu [18] is an upper bound based on velocity characteristics.
The second method, using a technique from Ukritchon, Whittle, and
Sloan [118], is a numerical, finite-element-like, approach which provides
both upper and lower bounds. Examples of application of this tech-
nique to a variety of typical soil problems is given by Sloan [104]. This
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thesis extends the application of this numerical technique, providing
the first extensive set of predictions for the passive and active earth
pressure problem.

The goal of this section is to introduce the numerical limit anal-
ysis technique and show the added benefits from application of this
technique. It will be shown that the predictions from the numerical
technique compare favorably with the other accepted models which are
presented. In addition, it will be shown that the numerical technique
provides additional capabilities which make it the most versatile of all
the methods.

In the following sections, each of the methods is discussed in more
detail. Much of the discussion is drawn from three primary sources.
For a complete presentation of the limit equilibrium techniques, see
Terzaghi [112]. For a complete and rigorous presentation on the appli-
cation of limit analysis to soils, see Chen and Liu [18]. For a complete
presentation of the numerical limit analysis technique, see Sloan [104].

4.1.1 Basic Assumptions and Notation for Models

A number of assumptions are made in the following models. As stated
before, the models are two-dimensional and assume plane strain be-
havior. The soil is assumed to be isotropic and homogeneous. The
properties are assumed to be constant during loading. At failure, the
behavior is assumed to be perfectly plastic. Lastly, the shear strength
of the soil is assumed to be given by the Mohr-Coulomb Failure Law,
presented next.

4.1.1.1 Mohr-Coulomb Failure Law

The Mohr-Coulomb failure law provides an expression for the shear
strength of soil. It is given by the following equation,

s=c+otang (4.1)

where s is the shearing resistance of the soil, ¢ is the cohesion, o is
the normal stress applied on the shear surface (positive in compres-
sion), and ¢ is the angle of shearing resistance'. There exists a similar
equation for the shear along the soil-tool interface?.

IReaders may be more familiar with the concept of a coefficient of friction, ,
rather than a friction angle, ¢. The friction angle is related to the coefficient of
friction by u = tan ¢. It represents the angle of the resultant force relative to the
vector normal to the shearing plane.

2The cohesion, c, is replaced with c,, and ¢ is replaced with §. In this case, c,
is the adhesion and ¢ is referred to as the angle of wall friction.
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Figure 4.1: Illustration of the Mohr-Coulomb failure law for cohesion-
less soil.

The failure law can be visualized using a Mohr circle construction.
It is noted that the soils in this research are expected to be cohesionless.
Therefore, ¢ is zero, and the shearing resistance given by s = o tan ¢.
Figure 4.1 shows an illustration of a state of stress at failure. In this
construction, the shearing resistance given by the Mohr-Coulomb fail-
ure law can be represented as a straight line inclined at an angle of ¢.
Failure will occur when the circle of stress is tangent to the inclined
line representing the shearing resistance (as shown). A state of stress
below the inclined line will not fail.

4.1.1.2 Notation for Models

All of the models have the following common parameters.

tool angle measured relative to horizontal
soil surface angle measured relative to horizontal
vertical insertion depth of tool

internal friction angle of soil against soil
interface friction angle between soil and tool
unit weight of the soil

=2 >0 nnJISSIRS]

The parameters can be separated into two groups. The upper three
are geometric parameters which can be controlled and the lower three
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Figure 4.2: Tllustration showing the various parameters of the soil mod-
els. The draft force on the embedded plate is a combination of the the
contributions from the active and passive earth pressures.

parameters are inherent properties of the soil. These parameters are
illustrated in Figure 4.2.

4.1.1.3 Active and Passive Earth Pressure

The draft force for an embedded plate can be computed from two con-
tributions, as shown in Figure 4.2. Force is applied to the back of the
plate by the soil wanting to fall in to fill the area vacated as the plate
moves forward. Force is also applied by the plate onto the soil ahead
of the plate in order to fail the soil. The pressure the soil applies to
the back of the plate is referred to as the active earth pressure. The
pressure required to fail the soil ahead of the plate is referred to as the
passive earth pressure. The net force on the plate at failure can then
be expressed as F' = Fp — Fy, the resulting passive force minus the
active force. Because the dependence upon density and depth are well
known, the forces are often expressed in terms of earth pressure coef-
ficients. These earth pressure coefficients are dimensionless numbers
that depend upon the other geometric and soil parameters.

F = Fp— Fa= ol (Kp(0,0,0,0) ~ Ka(0,8,6,0)  (4.2)
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Thus, in the following discussions, both the active and passive earth
pressure equations will be presented.

4.1.2 Limit Equilibrium Methods

The limit equilibrium models pre-assume a shape of the failure surface
(linear, logarithmic spiral). Using this shape, they compute a force
equilibrium and optimize for the minimum force to fail the soil. Before
discussing the two limit equilibrium models, the concept of a Rankine
state of stress, which is used by both models, is presented.

4.1.2.1 Rankine State

Consider the state of stress shown in the Mohr circle diagram in Figure
4.1. A relation for the stress required for failure can be determined for
the special case when the principal stresses are vertical and horizontal.
This problem was solved for the active and passive case by Rankine
(1857) [82] (independent of Coulomb’s Theory, which preceded it) and
the solution is often termed the active and passive Rankine states. This
derivation can be found in most soil mechanics texts.

In the Mohr circle representation, assume that the vertical stress is
kept, constant and the horizontal stress is varied until failure. Again,
the case where the principal stresses are vertical and horizontal is con-
sidered. The notation of o; simply denotes the largest principal stress
and oy the smallest, which could be either vertical or horizontal. For
the active case, orrr would be decreased until failure, and for the pas-
sive case, oy would be increased until failure.

From this construction, using the properties of the Mohr circle, it
can be deduced that the plane along which failure will occur will be ori-
ented at 1 (/2 — ¢) from horizontal in the passive case, and §(7/2+ ¢)
from horizontal in the active case. Also, a relation between the hori-
zontal stress, oy, and vertical stress, o,, at failure can be determined
(from Lambe and Whitman [62]). Considering the triangle formed by
the origin, center of the circle of stress, and the point of tangency, then

(or —orr)/2  orforr—1

sin = = 4.3
¢ (or +orr1)/2  orformr+1 (43)

or  l+4sing (7 ¢\

o~ 1—sng tan <4 + 5 ) = Ny (4.4)

For the active case, oy = 0, and o777 = o, and so

Oh a2 (F_0)_ 1
Uv—tan (4 2>_N¢ (4.5)
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and for the passive case, o5 = oy, and oy = 0y, giving

Th o2 (T2 _
Uv—tan <4+2>—N¢ (4.6)

As noted above, both of these relations can be expressed in terms of
Ny, which is referred to as the flow value or flow factor. The flow value
and the terminology of a Rankine zone (or Rankine state) is used in the
simplest case of Coulomb’s Theory, as a part of the logarithmic spiral
solution, and as a part of Chen and Liu’s upper bound solution.

4.1.2.2 Coulomb’s Theory of Earth Pressure

Coulomb’s Theory (1776) [21] of passive earth pressure of ideal sand
(Terzaghi [112], p. 105) computes the horizontal force required to fail
a soil mass and then projects this force into the proper direction given
values of & and §. The method can be used for both positive and neg-
ative values of # and 4, though it is known to be increasingly incorrect
as ¢ deviates from zero.

If the simple case of a vertical wall, horizontal soil surface, and
no wall friction is considered, the soil will be in an active and passive
Rankine state. The vertical stress at depth z is given by the geostatic
stress, o, = vz. The solution for the active and passive force can then
be computed as

F /H d /H L=t (4.7)
= opdz = Y2—dz = —yH"— .
0 0 N¢ 2 N¢
H H 1
Fp = /0 opdz = /0 vzNgdz = §7H2N¢ (4.8)

In this simple case, it is found that K4 = 1/Ng and Kp = Ny. This
solution is also useful for the other models, for example, it will be used
in the logarithmic spiral model.

The solution shown above is extended to handle inclined tools and
surfaces and non-zero wall friction. Figure 4.3 shows an illustration of
the planar failure surface assumed by Coulomb’s Theory. The passive
force Fp can be computed from minimizing the value of P; given various
locations for the point ¢;. Given the point ¢; and the assumption of a
planar failure surface, by enforcing the constraint of no net moment in
the soil (the line of action of all three forces shown must intersect at a
point) the value of Py can be determined. Then, the optimal passive
force is given by Fp = min |P;|.
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Figure 4.3: Coulomb’s Theory assumes a planar failure surface to
greatly simplify the problem. The above illustration is for the pas-
sive case. The active case is similar, but with opposite signs for ¢
and ¢, resulting in forces oriented on the other side of the respective
normals. The draft force is then given by Fp = min |P;]|.

The solution can be obtained graphically, as demonstrated above, or
algebraically, as Coulomb has done, resulting in the following equation
for determining the minimum draft force,

1 Kp

Fp=—_yH>——L _ 4.9
P 27 sin v cos & (4.9)

where K, is given by
-2 _
K = sin®(a — ¢) cosd (4.10)

. Sin(9+3) sin(948) |
sin asin(a + 6) [1 — m}

To place it in the common form stated previously, the sin « cosd term
in Equation 4.9 should be incorporated into the coefficient.
The active earth pressure derivation is similar and results in the
following closed form equation,
1o K

Fp=-yH ——2 4.11
A 27 sin a4 cosd ( )

where Ky is the coefficient of active earth pressure given by

-2
K, = sin®(a4 + ¢) cosd i (4.12)

sin a4 sin(as — ) [1 n \/ sin(§+9) sin(¢—Ba)

sin(aa—6)sin(wa+B4a)
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Care must be taken to properly handle the sign and angle changes for
the active case from the passive case. For a plate inserted at angle
into a soil with a constant 3 inclination, the active equations should
use ay = m—« and B4 = —f. Also note, in the graphical construction,
the positive direction of § and ¢ are reversed from the passive case.

Before moving on, a few comments should be made regarding the
validity of this model. Although this model is commonly used as a basis
for comparison, it is primarily for its historical nature, rather than its
wide applicability. There range of applicability of this model is fairly
well known, and care should be used not to apply it to situations for
which it is known to be a poor predictor. The underlying equation
of this model is Rankine’s equation. The addition of wall friction in-
validates the assumptions and changes the shape of the failure surface
away from linear. Terzaghi states that if the wall friction § is smaller
than ¢/3, then the difference in the failure surfaces is very small, and
this model can be used.

4.1.2.3 Ohde’s Logarithmic Spiral Method

Ohde’s (1938) [74] method, as described in Terzaghi [112], improves
upon Coulomb’s theory by incorporating a more complex failure sur-
face. It is known that for simple cases the soil failure surface will either
be planar, circular (for zero internal friction angle), or logarithmic (for
non-zero friction angle). The logarithmic spiral produces a curve such
that the normal to the curve is at a constant angle relative to the line
from the origin of the spiral. When this angle is zero, then the curve
is a circle. Ohde’s method uses this property and assumes a failure
surface composed of a logarithmic portion and a planar portion.

Figure 4.4 shows an example of the failure surface assumed by
Ohde’s method. The method uses a graphical technique to obtain a
solution for P; given a value of [y, the distance from point a to the ori-
gin of the logarithmic spiral, O;. An analytical solution for this model
was not found. Thus, in order to place this in a more useful form, I
have taken the graphical method and transformed the steps into se-
quences of equations, whose derivation is outlined below. The theory
and graphical construction is directly from Terzaghi, the implementa-
tion in equation form described here is original.

The first step in the solution of the problem requires the determi-
nation of the orientation of the planes of failure in the soil, assuming
Rankine’s theory is applicable. The state of stress at a point in the
soil, b, corresponding with the tip of the tool, as shown in Figure 4.5,
is known. Figure 4.6 shows the Mohr circle of stress for this state. The
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Figure 4.4: Later steps determine the shape of the failure surface given
the input value of [.

angles a; and ay must be determined. In order to compute these an-
gles, the center of the circle and the coordinates of the pole, Pp, must
be determined.

The state of stress at the bottom tip of the tool (point b) on a
plane oriented parallel to the surface of the soil, inclined at angle 3, is
known. This point is denoted x; = (z1,y1) on the Mohr circle. It is
assumed that the strength of the soil obeys the Mohr-Coulomb failure
law, s = otan¢ (assuming no cohesion). This failure envelope will
intersect with the circle of stress at a point where the soil fails, at point
X2 = (@2,y2). The center of the circle must lie on the horizontal axis,
so it can be given coordinates (h,0). The value of x5 can be obtained
from the following quadratic equation

i +y7

- 4.13
1+ tan? ¢ (4.13)

mg — 21129 —
and then y» = zotan ¢ and h = z5(1 + tan® ¢). Next the coordinates

of Pp = (zp,yp) are found by solving another quadratic equation

o2 2h N h? —r? ~0
P 1+tan’f  1+tan’f

(4.14)

and then yp = xp tan 8. Since the coordinates of x5 and Pp are known,
the angles a; and @y can be found.
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Op

Figure 4.5: Stress state on a Figure 4.6: The first step in Ohde’s
plane oriented at angle § at a method requires us to compute the ori-
depth of z for an element in entations of the planes of failure using
an infinite medium. Mohr’s circle of stress.

The second step in the graphical method requires the determination
of the parameters of the logarithmic spiral. The value of [y is known,
it is given to us as our free variable in the optimization. The value of
ay was obtained in the first step, and so the coordinates of O; can be
computed. From there, rqg and € can be computed. The equation for
the logarithmic spiral gives us r; from

ry = rpedtan? (4.15)

Note that if ¢ = 0 then ry = ry. From rq, the coordinates of d; can be
found.

In the third step, the point of application and direction of the force
from the planar wedge of soil formed by ¢;d; f; is computed. Figure
4.7 provides an illustration for this portion of the problem. It can be
seen that 0; = 7 — a; — (7/4 + ¢/2) and using the law of sines, Hg;
can be found to be

(lop + r1)sinay

Hy = -
sin 6;

(4.16)
The point & is located 1/3 of the distance from d; to f;. Note that
O = /2 — (o + /4 + ¢/2 — B). From this, the length I35 can be
found. The magnitude of the force Py is also needed. For the special
case when d; f; is vertical, as in the case of a horizontal surface (which
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45;4}72@

Figure 4.7: The third step of the graphical solution for Ohde’s method
requires us to find the point k& and angle 04;.

is the situation for all of the testing in this research) then the force
would be the same as that discussed from Rankine’s theory.

Py = %7H§1N¢ = %yHgl tan’(7/4 + ¢/2) (4.17)
For the case of a non-vertical section d; fi, the wedge c;1d; fi can be
treated like the failure wedge from Coulomb’s theory with the assump-
tion of zero wall friction.

Next, the fourth step, the area and center of gravity for the region
abd; fi1 is computed. This gives the location and magnitude of the
weight vector Wy, from which the value of I3 can be found. Finally, if
the moments are summed about point Op, the moment of force Fj is
zero since it passes through O;, and the following relation is found for
the candidate draft force P;

1
=1

Optimize over [y to find the minimum P; and this will be the final draft
force, Fp. Note that [y can also be negative. In fact, as o approaches
—oo the curve bd; approaches a straight line, and the whole solution
approaches that predicted from Coulomb’s theory.

The logarithmic spiral passive model does not have a direct active
counterpart. For this model, the active force from one of the other
models is used to determine the complete passive minus active force for
failure.

P (W1l2 + Pd1l3) (418)
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4.1.2.4 Caquot and Kerisel’s Earth Pressure Tables

The work from Caquot and Kerisel (1948) [17] are said to be “computed
from the integration of differential equations governing the conditions of
limiting equilibrium”. In this respect, it is likely similar to Sokolovskii’s
slip line method [108] which also solves the differential equations of lim-
iting equilibrium. Although they are grouped with the limit equilibrium
techniques, they are sometimes viewed as being lower bounds. Sloan
[104] states that as a result of assumptions made in their calculations,
the values cannot be considered as strict lower bounds. Regardless,
while not representing strict upper or lower bounds, the predictions
are believed to be trustworthy and are often used as a basis for com-
parison. Their results are most easily found in tabular format [17].
These values have been input and interpolation is used to determine
intermediate values.

For the passive case, the tables provide coefficients assuming a per-
fectly rough tool interface. For surfaces with friction less than the soil
internal friction, a reduction factor, given via a second table, is mul-
tiplied with the rough coefficient to obtain a corrected passive earth
pressure coefficient. For the active case, the tables provide coefficients
for various ratios of 8/¢ and d/¢. The force applied on the wall can
then be calculated from the coefficient simply by

1
F = §7H2b (4.19)

where b is the adjusted passive earth pressure coefficient or the active
earth pressure coefficient.

4.1.3 Limit Analysis Methods

Limit analysis techniques applied to soils was introduced by Drucker
et al. (1952-1953) [27, 28, 26]. A very cursory examination of the
fundamentals of limit analysis is presented below. For a very rigorous
examination of all facets of the application of limit analysis techniques
to soils, including discussions of the assumptions, ramifications, and
applicability, the reader is directed to Chen and Liu (1990) [18].

4.1.3.1 Cursory Discussion of Limit Analysis Applied to Soils

Limit analysis techniques can be used to define upper and lower bounds
on the true failure force by applying the upper and lower bound the-
orems from Drucker. These techniques are limited to rigid-perfectly
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plastic or elastic-perfectly plastic materials (i.e. no plastic harden-
ing/softening). In fact, all of the models discussed here make the as-
sumption of perfectly plastic behavior.

The upper bound theorem states that if a velocity field can be found
which satisfies the velocity boundary conditions and the strain and ve-
locity compatibility conditions, then the loads associated with this ve-
locity field will be greater than those required for failure. The loads
are computed by equating the external rate of work to the internal
rate of energy dissipation. Such a velocity field is termed a kinemat-
ically admissible velocity field. The velocity boundary conditions are
self-explanatory. The strain and velocity compatibility conditions are
defined by a concept known as normality, or the associated flow rule.
Basically, this condition requires that the vector representing the di-
rection of the plastic strain rate be normal to the failure surface. This
condition is the basis for the computation of the internal energy dis-
sipation for a given velocity field. A discussion of the associated flow
rule is beyond the scope of this work (see Chen and Liu [18]).

The lower bound theorem states that if a stress field can be found
that satisfies the equilibrium equations, the stress boundary conditions,
and no where violates the yield criterion, then the loads associated with
this stress distribution are lower than those required for failure. Such
a stress field is termed a statically admissible stress field.

The upper bound computation is concerned only with velocity con-
ditions and energy dissipation. The lower bound computation is only
concerned with equilibrium and yield conditions. There is no require-
ment for a stress-strain relationship for the soil, only a yield criterion
and the assumption of normality (which is an idealized stress-strain
relationship). In addition, the material is idealized as perfectly plastic,
i.e. infinite strains will occur at constant stress at failure.

There are issues related to the applicability of these theorems to
soils, primarily because soils are known to be frictional, non-associated
flow materials. Chen and Liu prove the following theorem for the upper
bound case

Theorem V (Upper Bound) - Any set of loads which pro-
duces collapse for the material with associated flow rule will
produce collapse for the same material with non-associated
flow rules.

This theorem allows us to compute the upper bound solution as if the
material obeyed the associated flow rule, and the result will still be an
upper bound on the collapse load.
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For the lower bound counterpart, the theorem is more involved and
the result not as clear. This theorem requires knowledge of the yield
surface and the directions of the plastic strain rate on this yield surface,
which may not be normal to the yield surface. From this knowledge,
a new yield surface is constructed which would satisfy the normality
condition. If this new yield surface lies completely within the original
yield surface, then the lower bound theorem can be applied. If nor-
mality is obeyed, then these yield surfaces are identical. Clearly, this
result is not as compelling, nor assured, as that from Theorem V. In
actuality, the computations for considering candidate stress fields for
the lower bound case makes no use of the normality condition. While
there may be deeper dependencies on normality in the basis of the lower
bound theorem, the numerical lower bound computations used here are
independent of the normality condition.

One final assumption is made, related to the deformation of the soil
prior to failure. These limit analysis techniques assume that changes in
geometry of a soil mass at the instant of collapse is small. As a result,
the virtual work equation is applicable.

4.1.3.2 Chen and Liu’s Upper Bound

While the limit theorems provide the basis for the conclusions, cre-
ativity must be exercised to create candidate velocity and stress fields.
Chen and Liu derive equations for an upper bound solution to the earth
pressure problems assuming a three part failure mechanism from James
and Bransby (1970) [47]. The equations developed by Chen and Liu
are based on energy equilibrium rather than on force equilibrium as
employed in the limit equilibrium method.

The three zones of the failure mechanism are shown in Figure 4.8.
The first zone, Region I, is a triangular region and is assumed to be
a Rankine zone which is not influenced by the interface friction at the
wall. This is similar to the logarithmic spiral method. The second zone,
Region II, is also triangular, and is governed by the interface friction.
The third zone, Region III, is a transition zone or mixed zone, and
takes the form of a logarithmic spiral.

Using equations based upon energy dissipation using the above
mechanism, Chen and Liu derived the following coefficient of passive
earth pressure as an upper bound

cos(py — @) sin(a + vy)
sin? a cos ¢ [sin(a + &) cos(py + vy)—
cosd(tan d — tan vy, ) cos(a — py) COS Uy]

Kp =
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A Region Il

Figure 4.8: Chen’s method has three sections and uses velocity admis-
sibility conditions to determine the shape of the failure surface.

cos(ps — @)
(> + 1) cos¢

(cos(a — py) [€"¥* (beosapy + sintpy) — b +
sin(a — py) ["¥7 (bsingyy — cospy) +1]) +

cos(py — ¢)sin(a + B — py —hy) cos(a — py — 1hy)e¥s
cos(a + B+ ¢ —pr —y)

where b = 3tan¢ and v, is a value which can vary from 0 to ¢ and
relates to the normality condition, the details of which are omitted for
simplicity. For the purposes of this research, v,, = 0 is used.

In order to find the critical values of p and ), an optimization
is conducted in these two variables until the minimum Kp is found.
The corresponding critical values are denoted by py and ¢ ;. Once the
critical Kp is found, the draft force is computed from Fp = JyH?Kp.

The equation for the active earth pressure follows the same lines.
The active earth pressure coefficient is the same as the passive coeffi-
cient with ¢ replaced with —¢, v,, with —v,,, § with —¢, and b with
—b. Similar modifications to a and 8 need to be made as stated in the
section on Coulomb’s Theory, a4 =7 — « and 84 = —5.

sinpy cos(a — py) +

(4.20)

cos(py + @) sin(aa — vu)
sin® a4 cos ¢ [sin(aa — &) cos(py — vi)+
cosd(tand — tanwvy,) cos(aa — pr) oS Uy]
cos(ps + 9)
(b2 + 1) cosd
(cos(aa — py) [e7"%7 (=bceostpy + sinepy) + b] +

Ky =

sinpy cos(aa — py) +
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sin(aa — py) [e " (=bsingyy — cosyyy) +1]) +

cos(py + @) sin(aa + Ba — py —1by) cos(aa — py — pyp)e™""7
cos(ag + fa— ¢ —pr —1by)

(4.21)

An optimization is done over p and ¥ to find the critical K 4. Then the
active force is given by Fiy = s7H?K 4.

Chen and Liu conduct comparisons of this model with the zero-
extension line theory of Habibagahi and Ghahramani (1979) [34] and
with the slip-line method of Sokolovskii (1965) [108]. These all have
similar three part failure zones. The solutions were found to be in good
agreement.

4.1.3.3 Numerical Limit Analysis

While limit analysis has been applied to soil problems over the last few
decades; recently, there has been work to develop numerical methods
which use finite element meshes to compute lower and upper bound
solutions. This work was originally done by Sloan [104, 106, 107] and
further developed by Ukritchon, Whittle, and Sloan [118]. One of the
difficulties in applying limit analysis techniques has been the construc-
tion of velocity and stress fields. This method eliminates the need
for making assumptions about failure mechanisms and stress fields.
By using a numerical mesh based approach, no assumptions of failure
mechanism need be made.

This method has been applied to numerous other problems such as
bearing capacity of foundations, stability of slopes, and retaining walls
with tie-backs [116, 117]. The prior work primarily focused on cohesive,
non-frictional (¢ # 0,¢ = 0) materials, such as clays. The technique
had not been extensively applied to passive earth pressure problems
until this work.

Using programs developed by Ukritchon, Whittle, and Sloan, upper
and lower bounds for the passive and active earth pressure coefficients
can be computed. The programs combine constraints on all the nodes of
the generated meshes to form a very large linear programming problem
(for our typical problem, the number of variables is near 20,000 and
the number of constraints can be over 200,000). Most constraints are
linear, except for the Mohr-Coulomb yield criterion. If plotted with the
axes of o, — 0, and 27, the yield criterion would plot as a circle of a
radius dependent upon ¢, o,, oy and ¢. This circle is linearized using
p segments. For our meshes, we have used p = 36. The programs also
allow for velocity discontinuities between triangles in the upper bound
case and stress discontinuities the lower bound case. The solution of
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the resulting large linear programming problem is carried out through
an active set method (Sloan [105]).

The programs themselves are compiled from Fortran sources. I
have written programs for mesh generation in Matlab. The meshing
relies heavily upon Delaunay triangulation for the elements near in-
clined tools and for the non-square lower bound meshes. I provide a
bit of detail regarding the upper and lower bound meshes below.

In order to use these methods, a set of nodes and a triangular mesh
connecting these nodes must be constructed. In addition, structural el-
ements (such as our plate) which interact with the mesh must be added.
Properties of the soil medium and properties of the structure (which
is also allowed to fail, but it is typically set to very high strengths)
are input. The properties of the soil need not be homogeneous. For
the upper bound mesh, velocity boundary conditions and a displace-
ment direction for the structure are specified. Special properties for
the nodes at the structure-soil interface are specified to simulate differ-
ent soil-tool friction values. For the lower bound mesh, stress boundary
conditions around the boundary and a direction of loading for the struc-
ture must be specified. Special properties of the soil-tool interface are
also specified. For the lower bound meshes, extension elements are also
incorporated to allow the stress field to extend beyond the finite mesh.

Sample upper and lower bound meshes are shown in Figure 4.9 for
an inclined tool. The dots around the boundary indicate fixed boundary
conditions. The upper surface of the mesh is allowed to move freely.
The repeated square arrangement of four triangles is the recommended
form, though not required in the presence of the velocity discontinuities
between each of the element faces. The velocity discontinuities between
the soil elements and the structural elements are used to specify the
interface friction angle. For the lower bound mesh, two different mesh
forms are used. One form is identical to the square meshing in topology,
and the second is the radial arrangement shown with a concentration
near the point of loading. There are extension elements around the side
and bottom boundaries to extend the stress field. The nodes at the
soil surface are constrained to have zero normal and shear stress. The
structural element in the lower bound mesh is hidden by the overlapping
stress constraints which are required to specify a given interface friction
angle.

The passive and active cases independently can be solved indepen-
dently and then combined. To save computation time, the combined
meshes incorporating both the active and passive earth pressures on
an embedded plate simultaneously are solved. Figure 4.10 shows some
of the resulting data from the numerical computations for a = 80°,
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Figure 4.9: Upper and lower bound meshes prior to computation.

O zmmmssss —— ===
L RN e el
5 = ====

W

v

4

-5 0 5 10 15 20 25 30
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¢ = 40°, and § = 25°. The upper plot shows the kinematically ad-
missible velocity field computed by the upper bound program. The
shading is included to highlight the regions where the velocity exceeds
a certain value (shown here with le-5). Both the active and passive
failure regions can be seen. The lower plot shows one aspect of the re-
sulting statically admissible stress field computed by the lower bound
program. The figure shows the orientations of the principal stresses
relative to vertical. Dark regions indicate orientations close to vertical,
and the red (or lighter) regions indicate orientations close to horizon-
tal. Note that the orientations are near horizontal for the passive region
and near vertical for the active region. The programs return the loads
which correspond to the velocity field and the stress field shown.
These upper and lower bound solutions are not guaranteed to form
tight bounds on the predicted force. Refining of meshes is often needed
to obtain tighter bounds on the solution. This is where the primary
work is involved, selectively refining the granularity and topology of the
meshes to obtain tighter bounds on solutions. A number of changes are
made to the mesh to try to obtain tighter bounds. Note that the mesh
size is much finer near the plate in both cases. Tight upper bound
solutions are typically easier to obtain. The lower bound solutions are
more difficult. Both square and radial meshes were generated, and
in some cases the square mesh produces better results, while in other
cases, the radial mesh produces better results. The square and radial
predictions are compared and the tightest bounds are used in each case.
In this work, the failure force predictions are the only results used
from the models. There are additional results from these computa-
tions which may be of interest. The shape of the failure surface may
be estimated from the upper bound solution and compared with ex-
perimentally observed results. The stress distribution across the plate
computed by the lower bound solution can also be examined.

4.1.4 Summary of Models

Table 4.1 presents a summary of all the methods discussed in this chap-
ter. The equations in the table take into account the a4 and S4 changes
for the active cases, so a single @ and 3 value can be used throughout.
In addition to this summary table, a table of the resulting predictions
for each of the models for the complete range of parameters of interest
can be found in Appendix C.
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Model

Active and Passive Equations

Notes

Figures - Passive

Coulomb Fp = 27H?Kp and Fq = £vH K 4 5 Assumed linear fail-
(1776) [112] sin®(a — ¢) ure surface. Analyti-
Kp = cal equation for opti-
i i 1 values. Known to
Lo _ sin(¢+34) sin(¢+8) ma :
sin® asin(a + ) Sin(at9) sin(ath) be poor predictor as §
increases.
sin? (o — ¢)
K =
A 2
02 o s sin(¢+8) sin(¢+5)
sin® asin(a +6) |14 4 / G T5) sin(a+8)
Ohde Graphical method converted to series of equations for the computation of lengths | Assumed mixed fail-
(1938) [112] 11, lo and l3 and weight W1 and force Pj;. See relevant section of paper for ure surface with log-
1, 2 3 g 1 d1 8
full derivation. arithmic spiral por-
1 . . tion and linear por-
Fp = —(Wily + Pg113) tion. Minimize Fp by
[no active equation, using Caquot and Kerisel’s] varying Ig.
Chen and Assumed mixed fail-

Liu (1990)
[18]

1 2 1 2
Fp = 27H?Kp and Fq = £vH K 4
cos(py — &) sin(a + vaw)

Kp =
sin? o cos ¢ T:Ap + 6)cos(py + vuw)—

cos §(tan § — tan vy ) cos(a — SLSZL

cos(py — &)

sinpy cos(a — pyg) + Ty

Anomﬁp ) Tgf@n&f +sind ) — L +
sin(a = pyg) T?:?m::f |82§&+LV +

cos(ps — #)sin(a + B — ps — by)cos(a — py — b y)e’ VS
cos(a+ B+ —rpyp—tbp)

where b = 3tan¢. The active coefficient is nearly identical with ¢ replaced
with —@, vy with —vy, § with —&, and b with —b. Also use a4 = 7 — a and

Ba=—8.

ure  surface  with
linear portion, log-
arithmic spiral
portion, and linear
portion. Derived

using limit analysis
ideas based on ve-
locity characteristics.
Minimize Fp and
maximize Fy by
varying v and p.

A Region Il

Caquot and
Kerisel
(1948) [17]

Computed from solving the differential equations of limiting equilibrium. [tab-
ular data for active and passive coefficients)

Table lookup for the
proper  coefficients.
Sometimes viewed as
a lower bound.

Numerical
Limit
Analysis
(1988-1998)

Sample upper and lower bound meshes prior to computation-

Computes upper and
lower  bounds by
solving large sparse
linear programming
problems. Uses
code from Sloan
[104, 106, 107] and
Ukritchon [117, 118].

Table 4.1: Summary of models for draft force prediction.
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Symbol | Description Base Value | Variation
o Tool Angle 70° —100° 1°-5°
B Surface Angle 0° 1°-5°
1) Internal Friction Angle 40° 1°-5°
0 External Friction Angle 25° 1°-5°
5y Soil Density 1.5 g/cc n/a
z Tool Depth 1" n/a

Table 4.2: Definition of symbols and base configuration values and
variations used in the sensitivity analysis are listed. No variations are
done with the density and depth since their dependence is well known
and common to all models (oc v and o 22).

4.2 Comparison of Models

In this section, the sensitivity of each of the models to small variations
in parameters is examined. Next, a comparison of the the failure sur-
faces used in each model is shown. Then, the predictions of each of
the methods for various geometrical configurations of tool and soil are
compared. Finally, a discussion of the benefits and disadvantages of
the novel numerical limit analysis techniques is presented.

4.2.1 Sensitivity to Parameters

The sensitivity of the various models to variations in the parameters
is computed from a baseline configuration. Each of the parameters
is varied while keeping the other parameters constant. The resulting
percentage change in the draft force prediction is then compared.

The parameters for each of the models, the base configuration value,
and the symbols used in the models are shown in Table 4.2. It is
expected that this case will be fairly representative of the soils to be
encountered. The dependence of the draft force on the soil density and
the tool depth is well known and consistent across all the models, hence
the relative sensitivity to these two parameters need not be examined.
(The force is proportional to the density and proportional to the square
of the depth of the tool.) For the other four parameters, each are
varied in turn, while holding the other three parameters constant. The
percentage change of the resulting prediction is computed. The results
are shown in Table 4.3. Results for only horizontal surfaces have been
computed for the upper bound (UB) solutions. Similarly, only the
horizontal tables have been input from Caquot and Kerisel. For these
cases, variations in the surface inclination are not computed.
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at A B+ A FFA St A
A o Coul Log Caq Chen UB | Coul Log Caq Chen UB | Coul Log Caq Chen UB | Coul Log Caq Chen UB
1° 70°| 45 4.6 41 4.0 45| 57 56 xx' 51 xx'| 51 50 50 52 6.1] 3.9 4.1 3.6 3.3 3.2
80°| 5.4 43 39 41 47| 6.8 49 xx' 52 xx'| 67 64 6.5 6.5 7.8 54 42 3.6 3.7 3.6
90°| 7.5 41 3.8 42 50| 9.0 45 xx* 53 xx'| 95 7.8 80 80 98| 7.9 43 36 40 3.8
100°| 13.2 4.0 3.8 43 xx?| 151 43 xx! 54 =xx'| 161 9.5 95 9.6 12.6| 142 44 3.6 4.3 4.1
2° 70°] 9.3 9.3 84 82 9.1 11.7 11.2 xx' 104 xx'| 105 104 9.6 10.7 12.3] 81 85 7.2 6.7 6.4
80°| 11.3 8.7 7.9 83 95| 141 99 xx' 106 xx'| 140 13.3 125 13.5 15.6| 11.2 85 7.3 7.5 1T.1
90°| 159 8.3 7.8 85 10.0| 19.3 9.2 =xx' 109 =xx'| 203 16.5 154 16.8 19.7| 16.9 87 7.2 82 1.5
100°| 29.4 82 7.7 87 xx2| 33.7 87 =xx' 11.1 =xx'| 36.1 20.1 181 204 252 31.7 8.9 7.2 87 83
3° 70° | 14.3 143 129 12.6 13.7| 18.1 17.0 xx' 159 xx'| 16.3 16.1 149 16.5 18.4| 12.6 12.9 10.9 10.2 9.7
80°| 17.6 13.2 12.1 12.8 14.2| 22.1 15.0 =xx' 16.3 xx'| 221 20.8 19.6 21.1 23.4| 17.6 13.0 10.9 11.4 10.7
90°| 25.4 12.8 11.9 13.1 14.9| 30.8 13.9 =xx' 16.7 xx'| 32.6 26.1 24.3 26.5 29.5| 27.1 13.3 10.9 12.4 11.3
100° | 49.6 125 11.8 13.4 xx2| 57.1 13.3 =xx' 17.0 =xx'| 61.4 32.1 288 32,6 37.8| 53.7 13.6 10.9 13.2 12.4
4° 70° | 19.7 19.3 17.4 17.1 18.3| 24.9 228 xx' 21.7 xx'| 22.6 22.3 21.4 228 24.6]| 17.4 17.5 14.6 13.9 12.9
80°| 24.5 18.0 16.4 17.4 18.8| 30.8 20.2 xx' 222 xx'| 309 289 284 294 31.2| 245 17.6 14.6 15.5 14.3
90° | 36.1 17.3 16.2 17.8 19.7| 44.0 188 =xx' 22.8 =xx'| 46.7 36.7 36.0 37.3 39.4| 38.7 18.0 14.6 16.8 15.1
100°| 75.3 17.1 16.0 18.2 xx2| 87.1 18.0 =xx' 23.2 =xx'| 94.1 45.6 43.6 46.4 50.4| 81.9 18.4 145 17.9 16.5
5° 70° | 25.4 24.6 222 21.8 22.9| 32.3 288 xx' 27.7 xx'| 29.2 289 294 29.5 30.7| 22.5 22.3 183 17.6 16.1
80°| 32.1 22.9 20.8 22.2 23.4| 40.4 25.6 xx' 284 xx'| 405 37.9 39.8 385 39.1| 32.2 22.4 183 19.6 17.8
90°| 48.4 22.1 20.6 22.8 24.4| 59.2 239 xx' 29.1 xx'| 63.1 486 51.5 49.4 49.2| 52.0 22.8 183 21.4 18.9
100° {108.7 21.7 20.5 23.3 xx2|126.3 22,9 =xx' 297 =xx'|137.3 61.0 64.1 62.0 63.0|118.8 23.3 18.2 22.7 20.6

TSince our experiments are conducted for hor
the numerical limit analysis solutions were also only computed for horizontal case.

2The numerical limit analysis solutions are only computed up to 100°, so interpolations cannot be done beyond that.

zontal cases only, the Caquot and Kerisel tables were only input for the horizontal case and

Table 4.3: Approximate sensitivity (percentage change of prediction from the baseline value) of each of the models
to variations of each of the four parameters with the other three held constant. The order of the columns in each
parameter section is Coulomb, Logarithmic Spiral, Caquot and Kerisel, Chen, and the numerical Upper Bound. The
first batch is for a 1° change, second for 2°, and so on. Note that the Caquot and Kerisel and the UB values are
interpolated between discrete points and so may be slightly inexact, whereas the other values are computed directly
for each specific case.
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In actuality, better resolution in the tool angle and surface angle can
be achieved, since these are geometric parameters which we control.
The model sensitivity to these parameters provides an idea of what
effect inaccuracies in positioning and leveling will have on the resulting
measurement. The sensitivity to friction angle variations provides a
measure of how easy it will be to distinguish variations in actual soil
parameters.

It can be noted from the percentage variations that the models are
most sensitive to changes of equal magnitude in the internal friction
angle. In addition, the sensitivity increases as the tool angle increases.
This indicates that higher angle configurations may be more useful in
distinguishing soil friction angle properties.

4.2.2 Failure Surfaces

Figure 4.11 shows the computed failure surfaces for three of the models
for the passive case, with ¢ = 40° and 6 = 25°. The Coulomb and
logarithmic spiral failure forces are actually computed from these failure
surfaces while the Chen and Liu model is not. The Chen and Liu
model computes the failure force using energy equilibrium using the
failure mechanism shown, but a direct force balance is not computed.
It is interesting to note that while the Chen and Liu failure surface is
greater in extent than the logarithmic spiral model, the Chen and Liu
force is less. Figure 4.12 shows each of the failure surfaces plotted on
top of one another. It is also interesting to note that the angle of the
Rankine zone in both the logarithmic spiral and Chen and Liu models
agree, though they are computed by very different means.

4.2.3 Comparison of Predictions

This section compares the numerical UB and LB predictions with the
other models presented. For simplicity, consideration is limited to cases
with a horizontal soil surface. A range of tool angles of 70°-100° relative
to horizontal is considered. Plots of the passive minus active earth
pressure coefficients versus internal friction angles are shown in Figures
4.13, 4.14, and 4.15. Plots of the coeflicients versus interface friction
angle are shown in Figures 4.16, 4.17, and 4.18.

In each of the plots, the percentage difference between the upper
and lower bounds are shown. It can be observed that it is much more
difficult to obtain tight bounds for high friction angles. In the future,
additional mesh refinement may be done to try to obtain tighter lower
bounds.
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Figure 4.11: Comparison of the passive failure surfaces from three of
the models for 80° and 100° tools with ¢ = 40° and ¢ = 25°.
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Figure 4.12: View of the overlapped failure surfaces from the three
models. Clearly Coulomb’s model predicts too large a failure wedge for
walls with high interface friction, especially at larger tool angles.
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Figure 4.13: Limit equilibrium and limit analysis results for tool angles
of 70, 80, 90, and 100 degrees with a smooth tool interface, § = 0°.

For a simple case of a 90° (vertical) tool and a smooth interface
(Figure 4.13, lower left plot), all of the other model predictions over-
lap, with the numerical upper and lower bounds bracketing the other
predictions. This shows that for simple configurations, all the models
are in exact agreement.

In a few instances, there is a rather large variation between the
methods. For instance, for a tool at 70° with a smooth tool interface
(Figure 4.13, upper left plot), Caquot and Kerisel’s predictions are
much lower than the other predictions. This is an unexplained odd
behavior. Since these coefficients were provided via a table, rather
than the equations used to derive the coefficients, comments cannot
be made regarding the source of the discrepancies. The other models
are more closely grouped, so it is believed that the Caquot and Kerisel
predictions are in error in this case.

In all cases, the numerical UB predictions are either nearly identi-
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Figure 4.14: Limit equilibrium and limit analysis results for tool angles
of 70, 80, 90, and 100 degrees with § = 15°.

cal to Chen and Liu’s upper bound predictions, or the numerical UB
and LB predictions bound Chen and Liu’s predictions. Chen and Liu
have compared their model to two additional methods which were not
considered in this work, the slip-line and zero-extension line models.
They have shown good agreement with these models.

As expected, Coulomb’s model deviates from the other predictions
at large interface friction angles. This is a direct consequence of the
linear failure surface assumed by Coulomb’s Theory. The logarithmic
spiral model also tends to have this trend, but to a lesser degree. Over-
all, the logarithmic spiral either matches well or tends to over-predict
compared to the other models. There is an odd down-turn in the
Caquot and Kerisel predictions as § approaches ¢. Chen and Liu also
show this trend in their comparisons as well. The source of this ef-
fect is uncertain, but perhaps this results from approximations in their
secondary table used to compensate for non-rough interfaces.
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Figure 4.15: Limit equilibrium and limit analysis results for tool angles
of 70, 80, 90, and 100 degrees with § = 25°.

In summary, apart from the case of a smooth interface, the numer-
ical UB and LB predictions compare well with Chen and Liu’s upper
bound and with Caquot and Kerisel’s predictions. Coulomb’s predic-
tions deviate at larger interface frictions as expected. The logarithmic
spiral method is typically close to the numerical UB. The limit equilib-
rium models are expected to be closer to the numerical UB predictions.
This is consistent with the fact that limit equilibrium models are con-
sidered rough upper bounds. Large discrepancies, aside from those
noted, are not observed.

4.2.4 Benefits of the Numerical Limit Analysis Tech-
nique

It has been shown that the results from the numerical limit analyses
are in good agreement with the currently accepted models for the pre-
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Figure 4.16: Limit equilibrium and limit analysis results for tool angles
of 70, 80, 90, and 100 degrees with ¢ = 25°.

diction of earth pressures. When introducing a new prediction model,
good agreement with currently accepted models or experimental phe-
nomena should be shown and the models should provide additional
features or capabilities not found in the existing models. Therefore,
the advantages and disadvantages of the numerical limit analysis tech-
nique are discussed here.

The main advantages of the numerical limit analysis technique are
the versatility in the modeling and the provision of both upper and lower
bounds. It does not assume a pre-defined failure surface and thus is
less constrained. In addition, this method allows for the incorporation
of variations in soil parameters across the mesh unlike any of the other
methods. Rigid boundary conditions simulating buried obstacles can be
included. Complex structural elements such as curved blades or piece-
wise linear blades can be constructed. Overall, this method provides the
most versatile solution for this problem. The predictions are in good
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Figure 4.17: Limit equilibrium and limit analysis results for tool angles
of 70, 80, 90, and 100 degrees with ¢ = 35°.

agreement with currently accepted models. And it provides a lower
bound solution, in addition to the commonly available upper bound
solution.

For the disadvantages, there are a number of difficulties in imple-
menting the numerical limit analysis method. Meshing can be com-
plex. For the upper bound case, typically the square mesh produces
very good results and a finer mesh will produce better results. The
path to obtaining tighter bounds is clear. For the lower bound, there
is no obvious path for altering the topology of a mesh to obtain tighter
bounds. Simply making the mesh finer produces only small incremental
improvements. The lower bound is much more sensitive to the arrange-
ment of the mesh. Now, with finer and more complex meshes, comes
another caveat, computation time. With simpler meshes, and compu-
tations would take on the order of minutes. The finer meshes which
were used in the final computation (with thousands of nodes), compu-
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Figure 4.18: Limit equilibrium and limit analysis results for tool angles
of 70, 80, 90, and 100 degrees with ¢ = 45°.

tation times would be on the order of two hours on an AMD 1.2GHz
for each mesh. For this work, approximately 300 meshes were solved
for the UB case and 600 meshes were solved for the lower bound case
(300 square, 300 radial). This equates to roughly 2.5 months of solid
computation.

A recent development from Sloan addresses the computation time
issue. A new solution technique using nonlinear programming has been
developed, which results in an order of magnitude improvement in com-
putational efficiency. This development, in combination with the ever
increasing speed of computer processors, essentially removes any con-
cerns about the computation time. This should enable researchers
to obtain tighter bounds, explore more complex meshes, and solve a
greater number of cases, reducing the need for interpolation.
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4.3 Conclusions

Four existing models have been presented in this chapter. These exist-
ing models have been compared with the results from numerical limit
analysis technique for computing upper and lower bounds. The nu-
merical technique has previously been applied to a number of other
problems, however, this is the first presentation of comprehensive re-
sults specifically for the passive and active earth pressure problem. It
has been shown that there is good agreement with currently favored
solutions to this problem, and in addition, the numerical technique pro-
vides additional versatility for modeling more complex problems and
has the benefit of providing both upper and lower bounds on expected
forces.



Chapter 5

Experimental Methods

This chapter discusses the experimental procedure which was devel-
oped for collecting failure force data in soils. The chapter begins with
a discussion of a basic technique for plate insertion with minimal dis-
turbance of the nearby soil. Next, the control techniques implemented
to perform controlled stroking in the soil are outlined. Finally, the
processing of the resulting data to obtain meaningful failure force mea-
surements is shown.

5.1 Platform for Data Collection

The development of the manipulator for this research was discussed in
Chapter 3. In addition to the manipulator, a sandbox was constructed,
with dimensions of approximately 23”x25”x10”. These dimensions were
selected to be compatible with the raining assembly developed in the
Civil and Environmental Engineering Department (Larson [63]) for the
creation of uniform soil samples. Figure 5.1 shows the raining assembly
placed above the sandbox. The resulting rained sand has a depth of
5-6 inches. This is more than sufficient depth for our experiments
(the typical depth of insertion is one inch). The sandbox is placed on
a cart to simplify positioning underneath the raining assembly. The
manipulator arm is also affixed to the same cart to prevent relative
motion between the sandbox and manipulator.

The raining assembly is only used for one of the soils tested, Ticino
sand. The assembly was previously designed and validated using this
sand. The other soils have too fine of a grain size to be rained. In-
stead, these soils are manually re-mixed between stroking experiments.
This will introduce some variation in density between the samples in

80
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Figure 5.1: The raining assembly placed on top of sandbox for the
deposition of uniform soil samples. The sandbox and manipulator are
both mounted on a rolling cart for easy transport. The images to the
right show the holes in the upper assembly and the screens in the lower
assembly.

the experiments. Care is taken to obtain approximately identical soil
conditions from stroke to stroke. The resulting variation in sample
density can be estimated by repeated measurements to obtain a rough
uncertainty value.

The configuration of the arm during a typical digging sequence is
shown in Figure 5.2. The full forward reach of the manipulator is
approximately 36” and the downward reach is approximately -23” from
the origin of the manipulator frame of reference (center of the mounting
base). The soil surface in the sandbox will then be at a depth of
-13” in the manipulator frame. As can be seen in the images, the
typical arm configuration during digging places the upper link of the
manipulator below or near horizontal. The majority of the stroking
force is generated by the elbow joint driven by two motors through the
elbow differential. The majority of the insertion force is generated by
the shoulder joint. The insertion force reaches up to 5 1bf for our depths
and soils and the stroking force reaches up to 3 1bf. The next sections
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Figure 5.2: Front and side view of the manipulator arm executing and
completing a digging sequence in the sandbox. The origin of the ma-
nipulator coordinate frame is located directly below the shoulder joint
at the level of the table surface. The soil surface is typically located at
z = -13” in the manipulator frame. Insertion forces are primarily gener-
ated by the shoulder joint, and stroking forces are primarily generated
by the elbow joint.

describe the specific techniques for insertion and stroking.

5.2 Plate Insertion

The first step that must be taken in order to collect data is to insert the
plate into the soil. This must be done carefully so that the state of the
soil around the plate is minimally disturbed. Initial tests inserting the
plate into the sand show a large build up of lateral forces on the plate
and large deformation of the nearby soil. As a result, some form of
accommodation is necessary in order to account for small inaccuracies
in positioning and orientation of the manipulator and the resulting
response by the soil.

In order to address the lateral force build up issue, a simplified
remote center-of-compliance technique is implemented (Peshkin [79]).
Figure 5.3 shows an illustration of the end-effector plate being inserted
into soil at a given inclination. Coordinate frames are labeled and forces
acting on the plate are illustrated.

Examining the planar forces on the plate during insertion, the fol-
lowing logic to compensate for the forces and torques can be devised:



5.2. PLATE INSERTION 83

Fx:
plate

0

Figure 5.3: Cartesian coordinate frame and F/T sensor coordinate
frame and forces acting on the end-effector plate during insertion. The
desired insertion velocity is adjusted in order to accommodate for the
buildup of lateral forces.

+Ty:  —  +Z', X (+ for Opigee > 0), —04
Ty, — =Z',FX (- for Opiate > 0), +64
+Fy = +Z

—Fy - =7

+Tz — not enough DOF

—Tz  — not enough DOF

As noted, compensation can be done for forces in the Z' direction and
torques about the Y’ axis. The manipulator does not have sufficient
degrees of freedom to compensate for possible torques about the 7'
axis. These torques are expected to be inconsequential.

The logic can be reduced further. Since the force in the vertical
direction of the plate is controlled to drive the insertion, both position
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and force in this direction cannot both be specified. The only adjust-
ments possible are in the direction perpendicular to the plate, Z', and
the wrist joint, 64, which controls the plate orientation.

The logic thus far can be written in equation form. Cylindrical
notation is more convenient, and so 7’ is used in place of Z'. The
accommodation is accomplished by using 4 adjustments to correct for
Ty: and r’ adjustments to correct for Fz:. The following relation is
obtained

ilo )=l o ]ln D] o
dt | 0+ | | 0 Fkr Ty — Fxid '
where kr and kr are accommodation gains.

The plate orientation should not be allowed to change arbitrarily
(the goal is to run controlled experiments with tool angles at fixed
values). Therefore, 64 should not be modified during insertion. In
future scenarios, where the tool angle need not be a fixed value, the
final plate angle may be allowed to vary to obtain better insertions.
In such cases, the 84 portion of the accommodation relation may be
enabled. However, for the experiments presented here, the 6, portion
is left disabled. This then leaves only the first half of Equation 5.1,
or simply 7' = kr Fz . Thus, for any lateral force on the plate, the
desired end-point location of the arm is adjusted to relieve that lateral
force by moving in a direction perpendicular to the insertion direction.

To complete the derivation, the equation must be converted into the
cylindrical world frame from the end-effector frame. The orientation of
the plate in the world frame is at an angle, 8' = 61 + 6> + 6, — w, where
61, 02, and 6, are the shoulder, elbow, and wrist angles respectively.
The derivative is 8’ = 6; + 62 (with 6, = 0). The accommodation in
the world frame is then

7 cos® —r'sin@’ 7
[ z } - { —sinf  —r'cosd’ } [ g’ ] (5.2)
The final desired insertion velocity for the manipulator end-point be-
comes
]T

Vies = Vo + [ 7cosfo Fsinfy 2 0 0 (5.3)

where v is the unmodified insertion velocity and 6y is the base joint
angle used to convert from the cylindrical to Cartesian frame.

Results for the force and torque measured at the plate for insertion
with accommodation and without accommodation show the effective-
ness of this technique. Figure 5.4 and 5.5 show the results for both
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Fz Force Measurement (-) and Deadzone (—-)
2 T T T T

force (Ibf)

t (sec)

Ty Torque Measurement (-) and Deadzone (--)
T T T T

torque (Ibf-in)

Figure 5.4: Plate insertion with lateral force accommodation disabled.
The dashed horizontal lines represent the desired dead-zone for inser-
tion.

Fz Force Measurement (-) and Deadzone (--)

force (Ibf)

t (sec)

Ty Torque Measurement (-) and Deadzone (—-)
T T

torque (Ibf-in)

25

Figure 5.5: Plate insertion with lateral force accommodation enabled.
The dashed horizontal lines represent the desired dead-zone for inser-
tion.
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cases. The dashed horizontal lines, which represent the force and torque
dead-zones, are at the same values in both plots. Note that the force
is slightly outside the dead-zone in the accommodation plots. This is
because no correction occurs until the force moves outside of the dead-
zone. Thus the force is expected to be slightly outside of this band,
as is the case. Note that without accommodation, the force builds up
to approximately 1.5 Ibf, and with accommodation, the force remains
around 0.05 Ibf. The disturbance to the nearby soil is observed to be
much less for the insertion with accommodation.

5.3 Stroke Controller Design

As previously discussed in Chapter 3, the manipulator can be controlled
using joint proportional-integral-derivative (PID) control or Cartesian
Stiffness control. First, the performance of these two control methods
are examined in the context of stroking. Next, the development of
a high-level position feedback control and force feedback control are
examined. The suitability of each of these approaches is considered.

5.3.1 Effective Cartesian Stiffness of Position Con-
trollers

This section examines the effectiveness of two different position control
schemes, joint PID and Cartesian Stiffness, on the resulting stroke con-
trol. Assuming quasi-static motions, so that effects of the derivative
(velocity /damping) terms can be ignored, the effective force output of
the control methods to a given position error is examined. Although
a higher level closed-loop feedback control will be present on top of
these low-level controllers (so that eventually, the correct force output
will be achieved), it would be beneficial to have an open-loop force
output which reasonably matches the direction of the Cartesian error.
A poorly performing low-level controller will require greater correction
from the high-level controller.

Given a Cartesian position error, the computed output force from
each of the two low-level controllers can be skewed from the direction
of the position error. For the joint PID, the output force vector is
computed as

Fprp = J_TT = J_T Kpip Aq = J_T Kpip J! AX(54)

For the Cartesian Stiffness control, the resulting force vector is com-
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puted as
Fecrr = J 11 (5.5)
= JTJT Kpx J Aq (5.6)
= JTITRT Kepr RIJ! Ax (5.7)

The Jacobian is non-square because the wrist is turned off during
stroking, resulting in a 5x4 matrix. Rather than complicate the no-
tation, where inverses have been indicated in the above equations,
pseudo-inverses are intended, but for cleanness, the more convenient
inverse notation has been used. Since the Jacobian is non-square, the
Jacobian multiplied by its pseudo-inverse may not be exactly the iden-
tity matrix, therefore these terms are left in the equation and compu-
tation. The R matrices are rotation matrices of the base joint angle,
Ao, which are used to make the stiffness matrix cylindrical instead of
Cartesian.

Using Equations 5.4 and 5.7, the resulting skewing can be examined.
The Cartesian error, Ax, is specified to be a unit vector first in the
radial direction and second in the vertical direction at various arm
configurations. For each Cartesian error, the resulting directions of the
output forces are computed. The controllers will each produce an open-
loop force which may be skewed from the Cartesian error direction.

Figure 5.6 shows the results for three different arm configurations:
radial extensions of 87, 12”, and 17” at a height of -12.5”. As can
be seen, the joint PID control results in widely skewed force vectors
which are highly configuration dependent. This does not make the PID
control unusable, since the high-level controller will adjust the desired
position until the desired output force direction is achieved. However,
this configuration dependent skewing causes difficulties in the selection
of correction gains for the high-level feedback loop. This results in a
poor solution requiring large changes in desired position to obtain the
desired force direction. Instead, the Cartesian Stiffness control does as
it is expected to and compensates for arm configuration changes and
maintains good orientation of open-loop force vectors. For this reason,
the Cartesian Stiffness control is used as the low-level controller for
stroking.

5.3.2 Position Feedback versus Force Feedback Con-
trol

As just discussed, both of the low-level controllers are position-based.
In order to maintain the modularity of the system architecture and
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Figure 5.6: These figures show the resulting direction of the end-point
force output by the arm controller for a unit error in the radial and ver-
tical directions. The joint PID control results in a position dependent
skewing of the end-point force, whereas the Cartesian Stiffness Control
maintains the output force direction close to the error direction.
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reduce the overall complexity, both high-level controllers are designed
to provide position set-points for the low-level controllers. This is not
a restriction for the force feedback based control. It is always possible
for us to recast the force feedback law into a position feedback law to
obtain numerically identical output torques at the motors. Neglecting
derivative terms, a position-based control will compute torques based
upon

T=Kp (qdes - q) (58)

A force based control will compute the output torque from the desired
force using

r=J'F (5.9)

With some mathematical manipulation, an equivalent desired position
to obtain the numerically identical torques can be computed as

Qies = Kp' IT F+q (5.10)

This assumes the joint gain matrix is invertible. Typically joint gain
matrices are required to be positive definite for stability. This ensures
that the gain matrix is invertible. For this manipulator, the gain ma-
trix is diagonal (before multiplying by the joint-motor transformation
matrices) with strictly positive elements, and therefore invertible.
Therefore, in this implementation, both the position feedback and
the force feedback control provide a desired set-point position to drive
the low-level position control schemes. How the desired set-point is
computed distinguishes the two control methods, as will be shown next.

5.3.2.1 Goals of Control Schemes

Once the plate is inserted into the sand, forces must be built up on the
plate until failure occurs. How these forces are built up is critical to
the quality and usefulness of the resulting data. The numerical limit
analysis models assume a perfectly horizontal instantaneous motion for
the plate. The limit equilibrium models are more general and simply
require knowledge of the interface friction angle between the soil and
the plate. In order to be consistent with all the models, the initial plate
motion should be perfectly horizontal with a steady interface friction
angle.
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Figure 5.7: The control during a stroke is accomplished by varying the
leading and orientation of a vector within acceptable bounds (shown in
green).

5.3.2.2 Position Feedback Control

The control during a stroke is accomplished by adjusting the desired
position to lie along a vector oriented at angle 6,4; as shown in Figure
5.7. The magnitude of the difference between the desired position and
the actual position of the arm end-point is called the lead. The lead is
increased steadily until failure occurs. As the lead is increased, the ori-
entation, 6,4;, is controlled using a proportional-integral (PI) controller
on the Z error of the plate.

Oadj(t) = Odes + kp,ipor. (2(0) — 2(2))
T / (2(0) - =(t)) dt (5.11)

where 645 is the desired initial inclination angle. The integral term
corrects for large scale and steady state errors and brings the system
into the correct region. The proportional term then does the fine cor-
rections to regulate the output.

The angle of orientation is constrained to remain within reasonable
bounds. These bounds are only of importance during the first fraction
of a second of the stroke in order to keep the plate from lifting or sinking
before any appreciable force is applied on the soil. Typical bounds are
[Opiate — 0s0ir +10°, 60°] from horizontal, where 64 is the angle of the
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plate relative to vertical and d,,; is an estimate of the soil-tool friction
angle.

There are a number of problems with this position feedback ap-
proach. The first is that it relies upon the position measurements from
the external encoders, which are at the limit of their resolution, provid-
ing poor feedback. Also, in order to compensate for a Z error, motion
must have already occurred to create the error. Taking into account
the low position sensing resolution of our manipulator, a large motion
must have occurred. In contrast, the goal of the control is to increase
the force applied by the plate with little or no vertical motion of the
plate.

Vertical motion may not necessarily indicate relative motion be-
tween the soil and the plate. The environment has some stiffness, and
so0, a vertical deflection may occur without interface sliding. In order to
sense such motion, much more precise sensing accuracy is required. For
the manipulator in this work, any detected vertical motion will indicate
that the configuration of plate and soil has changed. In the absence of
an accurate force measurement, the position scheme will only be viable
if a high level of position sensing is available.

Figure 5.8 shows the data from a stroke using position feedback. In
the upper plot, the discontinuous steps in the solid line are a result of
the encoder resolution. The gap between the actual and motor position
is a result of compliance and backlash in the shoulder joint. In the lower
plot, the resulting variation in interface friction angle is shown. The
measured interface friction angle between the soil and plate, d;/;, is not
regulated and varies considerably up to the point of failure.

The uncontrolled force direction leads to an unreliable failure force
measurement. The failure force is highly dependent upon the angle of
the applied force. If the angle of force momentarily becomes smaller
than the true interface friction at a given force magnitude (which would
not typically fail the soil at the proper interface friction angle), then
the soil will prematurely fail, resulting in a low reading. If the angle of
force is excessively large for a period of time while the force magnitude
continues to increase, then when the force angle reaches a more reason-
able value, the force magnitude is already great enough to fail the soil,
resulting in a high reading. Therefore, any readings taken with large
variations in angle of force are unusable.

5.3.2.3 Force Feedback Control

Given that position feedback control is not possible for our system,
and the arm is equipped with force sensing capability, a force feedback
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Figure 5.8: Results from a stroke using position feedback. The upper
plot shows the desired and actual Z coordinates and the lower shows
the angle of the measured force.

control law is developed to solve the problem. Examining the forces
in Figure 5.7, if the net vertical force on the plate is zero, then no
vertical motion should occur. This is the premise behind the force
control method. No explicit feedback of the Z error is used. Instead,
it is assumed that the interface friction between the plate and soil can
be estimated, and that this estimate can be used as a set-point for
the force control. If the interface friction estimate is correct, and the
control can maintain the angle of force at the estimated friction angle,
then the plate should move horizontally. If the estimate is incorrect,
then there are no guarantees on the horizontal motion.

Assuming we have an accurate estimate of the true interface friction
angle, a force control law must be developed which can accurately track
this desired angle. The development of such a control law is described
in this section.

The initial basis for the stroke control comes from a basic propor-
tional force control law. For a desired force output from the arm, F 4.,
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Figure 5.9: One-dimensional conceptual model of arm flexibility and
backdrive friction for force control.

joint torques, T, are output using a proportional control law given by
T = JT Fctrl = JT [Kpf (Fdes - Fenv) + Fdes] (512)

where K, is the force gain and F.,, is the measured end-point force.
The development begins with this equation and adds modifications
to address issues which are specific to this manipulator and problem.
First, the arm is flexible and highly geared. This will change the design
of the controller in a subtle way. Second, while the above system will
regulate force, the goal in stroking is to control orientation, and to a
lesser extent magnitude. For the magnitude, it is sufficient to simply
have it increase in a steady monotonic fashion. The controller should
be able to handle orientation and magnitude separately.

The issue of arm flexibility and gearing is considered first. Figure 5.9
shows a simple one-dimensional model to help formulate a conceptual
understanding of the problem. The control force, F;, is applied to a
mass, M, resting on a frictional ground to simulate backdrive friction.
Attached to the mass is a spring representing the arm flexibility, with
stiffness kgrm- The other end of the spring is connected to the arm
mass, m, and the force/torque sensor, which in turn is connected to
the environment, with stiffness k.,,. The point where the force is
applied to the motor mass is labeled as z,,:- and the position of the
arm measured by the external encoders is labeled as zey¢-

The controller must regulate the force on the environment, as mea-
sured by the force/torque sensor. Starting with a standard proportional
force control law of a mass-spring system (Craig [22]), a force fep is
applied to the mass m given by

fctrl =1m ke_nlu kpf (fdes - fem)) + fdes (513)
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where fen, is the force measurement from the force/torque sensor and
faes is the desired force on the environment.

Now, fetr is the force to be applied to mass m. In order to apply
this force, we must specify an input to the low-level arm controller.
The low-level control is the Cartesian Stiffness previously presented. It
computes an output force according to

Four = Kpm (mdes - mmtr) (514)

where K, is the controller stiffness gain and z 4.5 is the desired position
of the motor. Let us examine how to specify z4es in this control law.

Two different cases can be considered, depending on the arm stiff-
ness. Most manipulators tend to be very stiff, however, there is an
increasing trend towards the design of compliant manipulators (Pratt
[80]).

If the manipulator stiffness is high, then kg, can be ignored. The
desired set-point can be computed as

Ldes = Kp_zlfctrl + Tntr (515)
= K;zl (m k;nlv kpf (fdes - fenv) + fdes) + Tmtr (516)

The x4 terms will cancel in the low-level control, and the resulting
output will be exactly the desired control force.

If, on the other hand, the manipulator is flexible, the force applied
to the mass m can be controlled by adjusting the deflection of the spring
karm. The desired motor position to achieve the control force can be
computed according to

karm (mdes - me:tt) = m ke_nlv kl’f (fdes - fenv) + fdes (517)
LTdes = M kz;rlm k;nlv kpf (fdes - fenv)
+ k;rlm fdes + Tegt (5-18)

In the above equation, m, keny, and kg, are unknown. The first terms
can be grouped with the force control gain kj,; which is empirically
tuned. This still leaves kg, in the second term.

Through the use of the force/torque sensor, it should be possible to
estimate kqrp using the force/torque sensor measurement, fen,, and
the motor-external displacement. One item to note when approximat-
ing kqrm, the one dimensional model helps us gain a conceptual under-
standing, but there is another component that occurs when moving to
two dimensions. In addition to the magnitude scaling, there is a possi-
ble rotation resulting from the arm stiffness matrix. For this arm, this
effect will be fairly drastic. The external encoder for the shoulder is
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mounted directly at the joint, with a large compliance between the mo-
tor and the joint. The elbow encoders, on the other hand, are mounted
to the output shafts of the motors, before the long cable transmission.
These will have a small detected compliance, and a large unmeasured
compliance in the cable transmission. The external encoders were a
later addition and were not originally intended to be used for force
control through measured compliance. As a result, between the mo-
tor and the external positions, a very flexible shoulder and stiff elbow
would be perceived (usually translating to a flexible vertical axis and
stiff radial). However, since the elbow is indeed flexible, this works to
undo the rotation that would be perceived in the motor-external de-
flection. For simplicity, it is assumed that kg, is diagonal. It is also
assumed that the stiffness is constant over the region we are stroking.

Using the desired position from Equation 5.18 in the low-level con-
trol law, the following output force is obtained

Four = sz (mdes - xmtr) (519)
= Kpm m kz;rlm ke;nlv kpf (fdes - fem))
+ Kpac ka_rlm fdes + Kpm (xeact - xmtr) (520)

= Kpm ka_rlrn ke_nlv kps (faes = fenv)

+ Ko kgty faes + Kpo kobnkarm (Teot — Tmer) (5.21)
= Kpm ka_rlm ke_nlv kpp (faes — fenv)

+ KPQU ka_rlm (fdes - fenv) (5.22)

It is interesting to note that if K,, = a kgrm, then this results in an
output force given by

Fou=a (m ke_nlv kpf + 1) (fdes - fem)) (523)

Effectively, this is simply just a single gain multiplying the force er-
ror and does not require direct estimation of k4., This equation was
originally derived from the premise that the arm was flexible and the
controller stiff. In the steady state case, this control implies that to
maintain a given force on the environment, no additional force from the
motor needs to be applied. The control adjusts the position of x,¢,
not the force. The motor positioning at x,: would automatically con-
tribute the additional force, feny = faes, at steady-state, through the
stored force in the spring, k.. In order to keep the motor positioned
at T4, there must be some force holding it there. This is an ideal-
ization in the derivation (i.e. assuming that the system is a perfect
position source).
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There is another factor which makes the idealization of the arm
as a perfect position source valid: the presence of backdrive friction.
The backdrive friction for this arm is large enough to require end-point
forces approximately 0.25 Ibf to backdrive the shoulder motor and 0.6
Ibf to backdrive the elbow motors in a typical digging configuration.
This is a significant fraction of the total forces experienced during dig-
ging. This friction would act to maintain the arm position at .

Two alternatives have been discussed: a stiff manipulator acting
as a force source, and a compliant manipulator with backdrive fric-
tion acting as a position source. These alternatives translate into two
equations: to specify the desired position to the low-level control as
Tiges = K ! fetrt + Tmir, OF 88 Zaes = K. ferrt + Tege. Both versions of
the control law are tested on our system for stroking. In each case, the
gains were tuned independently. The performance is found to be poor
when specifying the desired position relative to the motor position. The
controller performs very well when specifying the desired relative to the
external position. There is one minor difficulty with this approach. The
external encoders are known to have a low sensing resolution. Since the
control law uses the external position explicitly, it produces a discon-
tinuity in the desired position whose effect is noticeable in the data,
but the controller is sufficiently capable that the disturbance is quickly
rejected. Clearly the combination of Kp; > kqrm, low arm stiffness,
and the presence of the backdrive friction call for the use of .. in the
desired position of the controller.

In summary, the force control law, up to this point, specifies the
desired set-point for the low-level Cartesian Stiffness control according
to (reverting to vector notation)

Xdes = K;Il [Kpf (Fdes - Fenv) + Fdes] + Xext (524)

In the absence of arm flexibility and backdrive friction, X.,; can be
replaced with x4,

The second issue with our force controller relates to the impact of
the control law on orientation and magnitude. Figure 5.10 gives an
illustration of the controller correction for a desired force Fg4., and a
measured force F¢,,. The existing control structure does not allow
for separate gains on the orientation and magnitude. To obtain fast
orientation correction, a large gain must be used, but by doing so, the
magnitude varies greatly. In addition, the incorporation of an integral
correction term in a vector context may introduce unexpected orienta-
tion changes. Orientation correction is more critical than magnitude
correction. So, the control is separated into orientation and magnitude
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Figure 5.10: The direction and magnitude of the correction vectors of
the standard force control law and the orientation based control.

components. Following along the lines of the position control scheme
previously discussed, two independent, PI control laws are implemented:

Fctrl - Kpf (Fdes - Fenv) + Fdes (525)
(kpm(|Fdes| - |Fenv|) + |Fdes|)

{ cos (k 10 + kit fOth + 9des) -|
| sin (k:té + kit [ Bt + Oaes ) | (520)

where 8 = 04es—beny, the desired inclination angle minus the force/torque
sensor measured inclination. Only the radial and vertical components
are shown.

The magnitude is not of great concern, except that it should mono-
tonically increase, so the magnitude proportional control can be re-
placed with an open-loop increasing lead given by (lp + l;qtct), where
lp is the initial lead and [,4. is the rate of increase. The initial lead is
often small, but is necessary so that the stroke begins with a non-zero
force applied to the soil. This provides some initial interface friction to
keep the plate from moving in the early stages of the stroke.

The rate of increase of the leading is an important variable in con-
trolling the duration of the stroke, allowing for sufficient time for the
orientation controller to operate. It also affects how drastic the final
soil failure will be. If the force build up is fast enough at failure to
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overcome the increase in resistance due to the soil build up, then the
plate will continue its forward motion more rapidly.

After this lengthy development, the force feedback control is found
to be the same form as the position feedback control. The only differ-
ence is the error measure in the PI control is the force inclination error
instead of the Z position error. There are a number of reasons why
this method is a better approach than the previous Z error method.
By controlling the force angle directly, if the angle of the applied force
is maintained to be smaller than the true interface friction angle, then
slip cannot occur. Therefore, the plate is not moving relative to the
soil. Unlike the previous method, this approach does not require mo-
tion to occur in order to perform correction. While the force builds
up, the controller can safely regulate the friction angle. However, this
method will be susceptible to the same quality problem as the previ-
ous approach if the applied angle of force cannot be controlled within
suitable bounds prior to failure.

Through experimentation, the gains of the control loop are tuned so
that good tracking (within 1°-3°) of the desired interface friction angle
for most of the duration of the stroke can be achieved. In the resulting
data, large variations in the friction angle at early stages of the stroke
can be ignored. This portion reflects the initial convergence of the
system at very low forces and care is made to ensure that this variation
is often in the downward direction (into the soil), where small forces
will have little or no effect on the greater resistance of the underlying
soil.

Figure 5.11 shows sample data from a force control stroke. As
mentioned before, the force control relies upon a good estimate of the
interface friction angle to be used as a set-point. In this case, from
the minimal Z motion, it is noted that a good estimate of the interface
friction angle has indeed been obtained. In the lower plot, it can be
seen that the force control tracks the desired set-point to within a few
degrees. It can also be noted that there is almost no perceptible Z
motion.

5.3.3 Safe Orientations and Magnitudes

Figure 5.12 gives an illustration of safe orientations and magnitudes of
force which do not cause relative motion between the plate and soil.
The boundary can be computed using the soil models to estimate the
force required to fail the soil at various angles of applied force. There is
the added resistance to insertion when forces are applied in the down-
ward direction. The downward insertion force combined with the other
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Figure 5.11: Results from a stroke using force control. The upper plot
shows the desired and actual Z coordinates and the lower shows the
angle of the measured force.

force predictions construct a boundary for safe angles and magnitudes.
Note that with a force magnitude of Fjy,, —s,,,, an orientation angle
greater than ds,; will not cause motion. Thus if there are transients
in the stroke control, for small magnitudes, the orientation can safely
vary significantly, with larger magnitudes, it is better to err towards a
greater downward orientation to avoid premature failure.

A more detailed study and experimental verification of the depen-
dence of the failure force on angle of applied load would be quite in-
teresting. Such data could be used to plan optimal digging trajectories
through soil for a torque limited manipulator. This topic is not explored
in this work and is left as a possibility for future research.

5.4 Interface Friction Angle Estimation

The position and force feedback controller development assumed a de-
sired inclination for the applied force during stroking. This inclination
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Finsertion

Figure 5.12: There exists a range of force vectors which can be applied
to the soil without causing relative motion. Below d4,;, the actual
magnitude is uncertain, but is likely to be a combination of insertion
and earth pressure predictions up to 6 = ¢.

Failure Force vs. Orientation [Chen UB - 40,1.45]
T T T

vertical force (Ibf)

0 0.5 15 2

horizom;l force (Ibf)
Figure 5.13: Actual results using Chen and Liu’s upper bound model to
illustrate the dependence of the failure force on interface friction angle.
The predictions are shown for up to § = ¢, using ¢ = 40° and y=1.45
g/cc, with highlighted vectors at 0° and +20°.
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is the interface friction angle, d5,. A method must be developed for
estimation of the true soil-tool interface friction angle for the test soils.

Considering the stroke control once again, forces are built up on
the plate with a given orientation until the force is sufficient to fail the
soil. At this point, failure will occur (hopefully in a drastic fashion)
with a large horizontal motion of the plate. When the force is large
enough to initiate motion, the soil adjacent to the plate rises relative
to the plate, causing a force on the plate which is at the true friction
angle between the plate and soil. If the estimated friction angle used
in the force controller is different from the true value, an error in the
measured force will be observed. The force controller will not respond
instantaneously to this error. Therefore, this provides a mechanism to
verify if the friction angle estimate used for a stroke is incorrect.

This approach is expected to work if the estimated value is lower
than the true friction angle. If, instead, the estimate is too large,
then the plate drives into the soil. During failure in this case, a larger
downward force angle may be maintained (no error will be observed)
since the underlying soil will resist the force. A drop in the Z coordinate
of the plate may perhaps be observed, but this requires precise sensing.
It is likely that the deflection will not be noticeable unless there is a
large error in the estimated friction angle.

Therefore, the experimental procedure for determining the interface
friction angle is to attempt multiple strokes in the soil starting with a
known lower friction estimate and building up until a rise in the angle
of force is not seen in the data at failure. By this method the true
interface friction angle is bracketed through a few strokes.

Figure 5.14 shows the results from strokes in Ticino sand, using
friction angle estimates from 18° to 28°. Failure occurs in the last
fraction of a second of the stroke. The earlier portion of the data is
the force buildup stage. The 18° — 22° strokes show lifting, while the
24° — 28° strokes do not. From this, it is inferred that the true friction
angle is near 23°. As shown, the tracking of the estimated friction
angle is very good using the PI force controller. The jumps that occurs
midway through the strokes are an artifact of the shoulder encoder
resolution. The disturbances are rejected quickly and do not affect the
final critical portion of the stroke.

In order to verify the accuracy of this approach, sand was glued to
a flat plate. The plate was rubbed over the arm end-effector plate and
data on the maximum interface friction angle was observed. This test
is used only for ballpark verification, since the glued sand surface may
be irregular and may not accurately simulate the configuration of soil
adjacent to an inserted plate. The actual angle may be near or greater
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Delta Angle of Resistance Force :: 6es‘ =18°

Delta Angle of Resistance Force ::

Delta Angle of Resistance Force ::

40—

Figure 5.14:

time (1 grid-line = 1 sec)

Data plots for the friction angle from the F/T sensor at

various desired delta angles. The first three plots show lifting at the
end, while the rest do not.
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Measured Friction Angle using Sand Plate

Figure 5.15: Ticino sand was glued to a plate and rubbed on the end-
effector plate to validate the friction angle estimate. The plot on the
right shows a portion of the data showing peaks in the 23° — 25° range.

than the peaks observed in these tests, rather than near the mean. This
has been conducted with each of the soils used. The agreement between
this method and the experimental iterative technique has proven to be
good. Thus, it is concluded that this approach to interface friction
estimation produces valid estimates typically within 1° — 2° of the true
angle.

One final practical note about this approach: the delta estimation
should only be implemented with tool angles in the 80° — 90° range. If
a 70° tool is used, for instance, it is possible that tip effects (from the
inclined width of the bottom of the plate) will come into play, increas-
ing the apparent interface friction angle. Using a 100° degree tool is
also problematic, primarily because these strokes are more difficult to
conduct, and the motion of the soil relative to the plate is not observed
as readily.

5.5 Data Processing

Once a stroke is completed, the resulting data must be analyzed to
determine failure force. Force data from the F/T sensor (measuring
forces directly on the plate) and joint data from the arm (used to
determine the Cartesian motion of the plate) are collected for each
stroke. These are combined into a force versus displacement plot, which
is the primary means to estimate failure force.

There are some difficulties in the data processing. These arise from
two primary sources. The first is the low position sensing resolution of



104 CHAPTER 5. EXPERIMENTAL METHODS

Force vs. Displacement for Stroke
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Figure 5.16: A force versus displacement plot for a 90° tool in Ticino
sand, shown with and without flexion compensation, showing a grad-
ual failure. The discontinuities are from the limited external encoder
resolution.

the arm, due the large backlash of the motors, combined with the un-
sensed flexibility in cable transmission of the arm. The second difficulty
is from the possibility of gradual failure of the soil. Figure 5.16 shows
a force versus displacement plot for a sample stroke which illustrates
each of these difficulties. The figure also illustrates the elbow flexion
compensation discussed in Appendix A.

The encoder resolution limit, in actuality, does not create great dif-
ficulties in experimentation. The discontinuities are easily detected in
the resulting data plots and can be ignored, since the resulting distur-
bances are quickly rejected. It should be emphasized that this sensing
limitation is a shortcoming of this particular manipulator and does not
affect the validity of the techniques used.

The gradual failure of the soil is another difficulty, which is not
related to the manipulator. Ideally all strokes would exhibit drastic
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Force vs. Displacement for Stroke
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Figure 5.17: A force versus displacement plot for a 70° tool in Ticino
sand, shown with and without flexion compensation, illustrating a more
drastic definite failure.

failures, with large scale motions. This would make the failure force
clearly discernible in the resulting data plots. Figure 5.17 shows an ex-
ample of a drastic failure. The flex compensation in this plot is slightly
excessive, but the compensation is known to be an approximation and
not required or expected to be exact. The drastic failures are often
characteristic of strokes at lower tool angles.

For the larger tool angles, in which the forces are greater and the
build up of soil during motion is greater, the failure can often be gradual
in nature and therefore difficult to pick out a single point of definite
failure. In these situations, a consistent guideline in picking points of
failure is used. Two lines are fit to the early portion and later portion
of the force versus displacement curve. The breakpoint is located from
the intersection of these lines (as shown in Figure 5.16).

There are additional sources of information that can aid in the de-
termination of the onset of motion. These include a change in the Y
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coordinate of the point of application of the force on the plate, a change
in the measured friction angle of the soil, or a change in the Z end-point
coordinate. These were occasionally used as supplemental sources in
the data analysis; however, the primary and best source for estimating
the failure force is the force versus displacement plot.

5.6 Verification of Depth Dependence

As an additional verification of the methods outlined in this chapter,
tests to verify known dependencies of the force have been conducted.
The draft force required to fail soil should be linearly dependent on the
density of the soil and quadratically dependent upon the depth of the
plate. The density of our samples cannot be precisely controlled over
a range of values; however, the depth of insertion can be controlled. A
study of the dependence of the failure force on the depth of insertion
can be conducted. This is especially of concern because of the shallow
depths of insertion. If this dependence cannot be verified, then scaling
the results to larger depths of insertion is questionable. Vice versa, the
application of soil prediction models to these small insertion depths
would be questionable.

Depths from 0.5” to 1.0” at 0.1” intervals are used. Smaller inser-
tion depths are not useful and much deeper depths would be near the
maximum strength capabilities of the manipulator. Strokes at each of
the depths are conducted three times. Figure 5.18 shows the combined
median results for the three test sets. The upper plot shows failure
force versus depth of insertion and a quadratic least squares fit. The
lower plot shows the normalized force, F//H?, versus depth, H, which
ideally would result in a horizontal line.

Each of the individual test sets produced essentially the same re-
sults, with only small variations. Each set showed the proper depen-
dence within the error bounds shown. The error bounds in the figure
result from the estimated accuracy of the insertion depth. The sens-
ing accuracy of the manipulator end-point is approximately 0.05”, and
thus the insertion depth may be off by plus or minus this amount. In
the stroking experiments, manual verification of the insertion depth is
conducted. Small adjustments to the commanded depth of insertion
are made to obtain the correct depth, or the resultant force values are
scaled to the appropriate depth.

This depth verification test has also been repeated multiple times in
the other soils used, with similar results. It can be concluded that the
H? dependence on the depth holds true even at these small insertion
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Draft Force vs. Depth of Insertion (+0.05" error bars)
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Figure 5.18: Tests were conducted to measure failure force at various
depths of insertion. The upper plot shows force versus depth and a
quadratic fit. The lower plot shows the normalized force, F)/ H?, versus
depth, H.

depths. This serves as a partial validation of the methods described,
showing that this particular dependence can be observed using this
system. In the next chapter, further interaction results using the tech-
niques described in this chapter are presented.



Chapter 6

Experimental Results

This chapter presents results from interactions between the manipu-
lator and various sample soils. The chapter begins with a discussion
of soil selection and data collection procedures. Next, the data from
interactions with each of the sample soils is presented. The chapter
concludes with a presentation of independent tests for verification and
a discussion of the sources of errors.

6.1 Selection of Soils

Three different soils were selected for testing. The goal in material
selection was to span a range of friction angles and densities. As a
secondary consideration, a variety of grain sizes was sought. An ex-
haustive collection of soils was not gathered, but rather a few soils
were selected to verify our system and methods. The selected soils
are all cohesionless sands. The three soils selected were Ticino sand,
Nevada Fine sand, and glass beads (to simulate a low friction soil).

In order to obtain a dense, high friction angle sample, a raining as-
sembly was used in combination with the Ticino sand. The other sands
could not be rained because their particle size was too fine. Raining of
these other sands would create a large amount of airborne particles and
would result in separation of the finer particles from the test samples
with repeated raining. In order to obtain a lower friction angle sam-
ple, fine rounded glass impact beads were obtained to simulate sand.
The Nevada Fine sand was chosen with the expectation that it would
provide an intermediate friction angle sample.

In the following discussions, loose or unrained soil will be indicated
to distinguish it from the dense rained soil. No particular effort has

108
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Soil Deunsity (g/cc)  Particle Size (um) Desired Friction Angle
Rained Ticino  1.60 (1.43-1.69) 350-700 50°+

Ticino 1.43 (1.43-1.69) 350-700 40° — 50°
Nevada Fine  1.44 (1.35-1.57) 1801-280 30° — 40°

Glass Beads 1.46 (1.45-1.55) 90-150 20° — 30°

T°30% particles by weight instead of 10%.

Table 6.1: Measured density of the test cases and the rough measured
loose-dense range in parentheses, 10-90% particle size ranges, and the
desired friction angles of the soils used in our experiments. The loose-
dense ranges are approximate and were acquired through simple pour-
ing and raining preparations. The true ranges likely extend outward in
both directions.

been made to make the soil especially loose. These soils were in a simply
poured and shifted state, which typically placed them in the lower
portion of their density ranges. Approximate density measurements of
the soils in the same state used in each stroking experiment were done
for verification. It is expected that there will be variation in these sands
due to the lack of special preparation, but the impact is believed to be
minimal. In addition, some variation in soil density should be expected
in the real world, so it is of interest to see the impact of such variation
in testing. From our experience, repeated testing of samples prepared
in this way resulted in a maximum density variation of about 4%, with
most being within 2% of the mean.

Table 6.1 shows the range of densities, particle size distribution, and
desired friction angles for the soils selected. The range of densities are
approximate and were determined with basic procedures. The loose
case was prepared through depositing the soil into a cylinder of known
volume at low velocity using a funnel. The dense case was prepared
through gradual raining of the soil into the cylinder from a height of
approximately 6 inches. The true range of loose-dense is likely to extend
outward in both directions. The friction angles in the table are values
that were anticipated for each soil type. The Ticino sand was expected
to provide samples in the 40° — 50°+ range as quoted from Larson [63].
The glass beads, with a majority of fine round particles, were known to
have a much lower friction angle. The Nevada Fine sand was expected
to provide an intermediate value. Thus, a range of friction angles from
the twenties to the fifties would be spanned.
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Radius 17 127
Set 1 90° 70°
Set 2 80° 70°
Set 3 100° 90°
Set 4 100° 80°
Set 5 90° 100°
Set 6 80° 90°
Set 7 80° 70°
Set, 8 100° 70°

Table 6.2: Arrangement of tool angles for six-stroke batches (unrained).

6.2 Organization of Data Collection

The stroking tests in the sample soils were conducted in sets of six
strokes per batch, except for the rained cases, in which only four strokes
were completed per batch. The soil was prepared to have a surface
within one degree of horizontal, using a digital level as verification.
Care was taken in the rained cases to carefully level the soil without
disturbing or piling loose soil in regions where stroking was to be con-
ducted. As a result, only four strokes per rained batch, rather than the
typical six, were conducted. In the unrained cases, the soil was manu-
ally remixed to obtain approximately constant conditions over multiple
batches.

To verify that there is no dependence on arm configuration, multiple
batches were run with a staggered arrangement of tool angles. For the
unrained soils, the strokes were done with three strokes at one tool
angle at radius near 17” and another three strokes at another tool
angle at radius near 12”. The 70° tool angle can only occur at the 12”
radius due to the limited range of motion of the wrist joint. With this
limitation, in order to have every possible combination and an equal
number of data points for every tool angle, there are a total of eight
possible combinations, as shown in Table 6.2. At each radius, three
strokes were completed (with base angles of {—25° 0°, 25°} at 17”
and {—35° 0°, 35°} at 12”). Therefore, eight batches of three+three
strokes produce a total of 48 strokes per collection.

For the rained soil, a different staggered arrangement of tool angles
was used. Since there were four strokes per batch and there were four
tool angles of interest, strokes were conducted at each of the four tool
angles in every batch. There were three combinations of stroke arrange-
ments, and repeating each batch four times, the same 48 strokes per
collection were obtained.
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Radius 177 127

Base Angle | 15° —15° 20° —20°
Set 1 100° 90°  80° 70°
Set 2 100° 80°  90° 70°
Set 3 90° 80° 100° 90°

Table 6.3: Arrangement of tool angles for four-stroke batches (rained).

The radial variation and the angular variation ensured that the
stress fields of the strokes did not interact with each other. At depths
of 1”7, it was expected that a 5” gap was more than sufficient to leave
the soil undisturbed for the subsequent strokes.

With the staggered arrangement of stroke configurations, it was
found in our experimentation that there was no significant or consistent
variation in failure force as a result of arm configuration. This is to
be expected, yet this was achieved only as a result of the staggered
arrangement highlighting controller issues which had to be addressed.
A specific example was the skewing of forces by the joint PID control,
and the solution resulting from the analysis of the effective Cartesian
stiffness described in Section 5.3.1.

One final manipulator-dependent issue that was addressed was in-
sertion accuracy. As discussed, the arm sensing resolution is approxi-
mately 0.05”. An insertion error of up to 0.05” for a 1” insertion would
result in a maximum (1.05%2 — 1) x 100 ~ 10% error in failure force.
Ideally, greater insertion depths would be used to reduce the impact of
this error. However, greater insertion depths would likely exceed the
strength capabilities of the arm. To mitigate this effect, manual veri-
fication of insertion depth was done during testing. Adjustments were
made to the commanded insertion depth or to the resulting force esti-
mate based on external measurements of insertion depth. It is expected
that with another manipulator, greater precision can be obtained with-
out resorting to manual external measurement, or that other means of
automated verification can be utilized, such as using machine vision®.

6.3 Interface Friction Estimation

In order to conduct controlled strokes in each of the soils, the interface
friction angle must be known. For each of the soils, the iterative estima-
tion technique for interface friction determination described in Section

IThe NASA/JPL Mars rovers, which are equipped with instrument arms, are
also equipped with stereo cameras (used primarily for navigation), but which can
easily be used for visual feedback of insertion depth.
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Delta Angle of Resistance Force ::5_  =23°

1 lif

time (1 grid-line = 1 sec)

Figure 6.1: A couple strokes were conducted in the rained Ticino as
verification of the interface friction angle. There is only a mild lift at
23°, but none at 25°. Each vertical grid-line represents one second.

5.4 was conducted. The results for the Ticino sand were presented in
Figure 5.14. The interface friction was not expected to change as a
result of raining. As verification, a few additional strokes in the rained
samples were conducted. As a reminder, in these data plots, no motion
of the plate is occurring for the majority of the time shown. The force
exerted by the arm is increasing gradually until failure, which occurs
in the last fraction of a second of the stroke. Each vertical grid-line
represents one second. Figure 6.1 shows two cases at 23° and 25°. The
friction angle was previously estimated to be between 22° and 24°. The
lower plot shows that 25° was clearly high. The lifting at 23° was mild,
and therefore, for consistency, 23° was used for the rained Ticino.

The stroke results for Nevada Fine sand is shown in Figure 6.2. The
resulting estimate is approximately 27° (additional iterations placed it
in the 26° —28° range). This result was also verified by creating another
plate with the fine sand glued to the face.

Finally, for the glass beads, the interface friction was estimated to
be approximately 19°. Figure 6.3 shows four strokes in the glass beads.
The lifting effect is fairly mild at 17°—18° and the small lifting observed
in the 19° data at 1.5 seconds from the end is an encoder disturbance.

6.4 Stroke Results

The failure force data collected for each of the soils is presented in this
section in the order that the soils were tested: unrained Ticino, Nevada
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Figure 6.2: The friction angle estimation for the Nevada Fine sand
produces an estimate of approximately 27°. Each vertical grid-line
represents one second.

Fine, rained Ticino, and the glass beads. Comparisons of the resulting
experimental data with the model predictions are given in the section
following the results from all the soils.

6.4.1 Unrained Ticino Sand

The first sample tested was the unrained Ticino sand. Multiple collec-
tions were conducted in the unrained Ticino, working towards improv-
ing the data collection method, primarily for tool angles of 90° and
100°. The quality of some of the 90° and 100° strokes made it difficult
to determine a failure force. The unusable strokes resulted primarily
from gradual failure, with large-scale arm flexion triggering the end of
the stroke prior to true failure (the stroke is ended when the arm has
traveled a given distance). In cases with larger tool angles, a larger
wedge of soil must be mobilized and more soil accumulates in front of
the plate as it moves; thus, failure requires greater forces and greater
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Figure 6.3: The friction angle estimation for the glass beads produces
an estimate of approximately 19°. Each vertical grid-line represents
one second.

rate of increase in order to make the failure more discernible. A les-
son learned from these experiments was to use more shallow insertion
depths for the 100° cases, so that lower forces are required for failure.
The 100° cases in these data sets were taken at depths of 0.5”, 0.85”,
and 1”7. The later strokes were all conducted at a depth of 0.85”. A
depth of 0.5” was deemed too shallow, creating greater uncertainty.

The results for two collections of 48 strokes are shown in Table 6.4
and 6.5. The data is shown graphically above each of the tables. The
agreement for the 70° and 80° cases is fairly good. These failures are
typically easily discernible, having drastic failures similar to that shown
in Figure 5.17. The 90° and 100° show larger variation. Combined
results for the two collections are shown in Table 6.6.

As noted previously, the interface friction was estimated to be 23°.
The density, in the state in which these strokes were conducted, was
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measured and found to be 1.43 g/cc, with a coefficient of variation? of
approximately £2% over multiple trials.

The mean and standard deviation of the force measurements have
been used in the data reduction. This implicitly assumes that the data
is expected to fall in a Gaussian normal distribution, so that the best
prediction is the mean. This is a simplification. A greater number
of measurements would need to be compiled in order to find the true
distribution. The actual distribution is uncertain due to the many
contributing sources of error. These sources for error will be discussed
in more depth in the subsequent discussion section.

2The coefficient of variation is the standard deviation divided by the mean,
expressed as a percentage.
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force (Ibf)
1N

nean =0.80 1.24 1.62 2.30
stddev = 0.08 0.10 0.18 0.29
1 1 1

0.5 L
65 70 75 80 85 920 95 100 105
tool angle (deg)

Unrained Ticino — Set 1

Tool Angle 70° 80° 90° 100°

Failure Force 0.76 1.30 1.52 2.38
0.72 1.22 1.55 xxx!
0.72 1.16 1.34 2.42
0.72 1.20 xxx! 1.94
0.76 1.22 xxx! 2.54
0.73 1.07 1.45 xxx!
0.90 1.21 xxx! 1.92
0.90 1.19 1.80 2.02
0.81 1.43 1.72 2.45
0.78 1.34 1.75 xxx!
0.91 1.19 xxx! 2.78
0.91 1.34 1.81 2.30

Mean 0.80 1.24 1.62 2.30
Standard Dev. 0.08 0.10 0.18 0.29
Coef. of Var. 10.1% 7.9% 11.0% 12.8%

Units are in 1bf.
LEither incomplete stroke or indiscernible failure force.

Table 6.4: Failure force results for tests in the unrained Ticino sand —
Set 1.
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force (Ibf)
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e
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% mean =0.81 1.22 1.56 2.38
‘ ‘ ‘ ‘ st‘ddev = 0. 97 0.08 0.‘14 0.25
0'565 70 75 80 85 90 95 100 105
tool angle (deg)
Unrained Ticino — Set 2
Tool Angle 70° 80° 90° 100°
Failure Force 0.71 1.33 xxx! 2.74
0.88 1.21 1.54 2.35
0.71 1.34 1.65 2.49
0.80 1.12 1.57 2.70
0.87 1.21 1.57 1.98
0.76 1.10 1.60 xxx!
0.80 1.28 1.35 2.49
0.83 1.32 1.60 2.17
0.76 1.13 1.25 2.21
0.92 1.25 1.58 2.25
0.77 1.15 1.73 xxx!
0.89 1.19 1.72 xxx!
Mean 0.81 1.22 1.56 2.38
Standard Dev. 0.07 0.08 0.14 0.25
Coef. of Var. 8.7% 6.9% 9.2% 10.5%

Units are in Ibf.

LEither incomplete stroke or indiscernible failure force.
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Table 6.5: Failure force results for tests in the unrained Ticino sand —

Set 2.
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s mean = 0.81 1.23 1.58 2.34
‘ ‘ ‘ ‘ st‘ddev = 0. 97 0.09 0.‘16 0.27
0'565 70 75 80 85 90 95 100 105
tool angle (deg)
Tool Angle 70° 80° 90° 100°
Mean 0.81 1.23 1.58 2.34
Standard Dev. 0.07 0.09 0.16 0.27
Coef. of Var. 9.2% 7.3% 9.9% 11.4%

Table 6.6: Combined results from the two sets in the unrained Ticino
sand.
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6.4.2 Nevada Fine Sand

The next sample tested was the Nevada Fine sand. The same arrange-
ment of strokes completed in the Ticino sand were completed in the
Nevada Fine sand. Data was collected for two sets of 48 strokes. An
interface friction value of 27° was used. The density of the Nevada Fine
sand was measured to be 1.44 g/cc with a variation of approximately
+2%. The shallow insertion depths were used for the 100° case, and
the resulting force data scaled to 1”7 depth.

The agreement between the two sets is fairly good. There remained
a few strokes with indiscernible failures. The criteria for assessing the
acceptability of the data was fairly stringent. If an easily discernible
failure estimate could not be determined, that stroke was omitted. To
fill in some of the incomplete strokes from the first set, the second
set was completed. The combined results from both sets are shown in
Table 6.9.
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Nevada Fine — Set 1

Tool Angle 70° 80° 90° 100°

Failure Force 0.76 xxx! 1.80 xxX!
0.93 1.42 1.80 xxx!
0.77 1.45 1.95 xxx!
0.95 1.26 xxx! xxx!
0.82 1.40 xxx! 2.81
0.90 1.40 xxx! 2.31
0.90 1.48 1.85 3.59
0.96 1.37 2.10 3.20
0.93 1.35 1.80 2.66
0.90 1.42 xxx! 3.12
0.94 1.30 xxx! 2.89
0.90 1.27 xxx! 2.50

Mean 0.89 1.37 1.88 2.89
Standard Dev. 0.07 0.07 0.12 0.41
Coef. of Var. 7.6% 5.3% 6.4% 14.3%

Units are in 1bf.
LEither incomplete stroke or indiscernible failure force.

Table 6.7: Failure force results for tests in the Nevada Fine sand — Set
1.
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tool angle (deg)

Nevada Fine — Set 2

Tool Angle 70° 80° 90° 100°

Failure Force 0.83 1.32 1.89 2.42
0.79 1.11 1.80 2.35
0.89 1.27 1.77 2.63
0.80 1.30 1.78 2.98
0.77 1.40 1.80 2.91
0.87 1.35 1.90 2.77
0.90 1.35 1.75 xxx!
0.87 1.27 1.78 2.74
0.97 1.19 1.95 2.91
0.92 1.26 xxx! 3.11
0.90 1.26 xxx! 291
0.88 1.20 xxx! 291

Mean 0.87 1.27 1.82 2.78
Standard Dev. 0.06 0.08 0.07 0.23
Coef. of Var. 6.7% 6.3% 3.8% 8.4%

Units are in 1bf.
LEither incomplete stroke or indiscernible failure force.

Table 6.8: Failure force results for tests in the Nevada Fine sand — Set
2.



122 CHAPTER 6. EXPERIMENTAL RESULTS

O]
35 —
sl |
e
~25F 68‘ il
s | o f |
5
y w'g
151 St i ,
,»\“‘f‘\‘\\r\;\
1+ PrsLl 1
s mean = 0.88 1.32 1.85 2.83
‘ ‘ ‘ ‘ st‘ddev = 0. 96 0.09 0.‘09 0.32
0'565 70 75 80 85 90 95 100 105
tool angle (deg)
Tool Angle 70° 80° 90° 100°
Mean 0.88 1.32 1.85 2.83
Standard Dev. 0.06 0.09 0.09 0.32
Coef. of Var. 7.2% 6.9% 5.1% 11.2%

Table 6.9: Combined results from the two sets in the Nevada Fine sand.
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6.4.3 Rained Ticino Sand

Having established a viable procedure for data collection with the two
unrained samples, the next sample tested was the more involved rained
Ticino sand. The Ticino sand was rained using the raining assembly
shown in Figure 5.1. The density of the rained sand was measured to
be 1.60 g/cc with less than +0.5% coeflicient of variation. Thanks to
experience gained through the multiple trials in the unrained Ticino
and Nevada Fine sand, only a single collection was necessary in the
rained Ticino. All the 100° strokes for this sample were conducted at
an insertion depth of 0.85”.

Typically, during insertion in the loose samples, the adjacent soil is
minimally disturbed. However, for these dense rained samples, a small
(but noticeable) motion of the grains of sand up to 1.5” away from
the plate can be observed. The large grain size of this soil (up to 0.7
mm), especially relative to the width of the plate (2 mm), is likely to
produce greater shifting of the grains, loosening the rained soil in the
neighborhood of the plate. This topic will be explored more in the
subsequent discussion section.

In the data for this sand, there appear to be a few apparent outliers,
more so than in the test batches from the other sands. If these outliers
are removed, the following results are obtained:

Tool Angle 70° 80° 90° 100°
Mean 0.85 1.29 2.01 2.95
Standard Dev. 0.07 0.12 0.14 0.07
Coef. of Var. 7.9% 9.4% 6.8% 2.5%

The removal of these outliers does not significantly affect the mean, but
decreases the standard deviation significantly. The reduced standard
deviations are comparable to (or better than) those from the other soils.
It was expected that there would be less variation in the measurements
if the primary cause was density variation in sample preparation. The
rained samples should be more uniform than the manually re-mixed
samples. It would appear that either the plate insertion disturbs the
repeatability of sample preparation, or the variations result from other
factors, such as inclination of the soil surface or inaccuracies of the
manipulator.



124 CHAPTER 6. EXPERIMENTAL RESULTS

3.5

L L4
25 pA

force (Ibf)
n
T
A S
.
A Y
1N
N
[N
1

¢ P %
151 . 8
.’
.
o"
-
o L.
1+ g ’4 -
-
nean =0.88 1.32 1.97 2.94
stddev = 0.10 0.17 0.19 0.21
0.5 1 1 1 1 1 1 1
65 70 75 80 85 90 95 100 105

tool angle (deg)

Rained Ticino

Tool Angle 70° 80° 90° 100°

Failure Force 0.87 1.12 1.90 xxx!
1.12 1.20 1.90 2.92
0.98 1.27 1.87 2.92
0.87 1.07 1.95 2.81
0.82 1.40 2.20 3.05
0.82 xxx! xxx! 3.36
0.74 1.28 2.20 3.02
0.90 1.39 2.20 2.97
0.77 1.35 2.00 xxx!
0.90 1.38 1.57 2.50
0.89 1.68 2.00 2.91
0.82 1.40 1.90 2.97

Mean 0.88 1.32 1.97 2.94
Standard Dev. 0.10 0.17 0.19 0.21
Coef. of Var. 11.5%  12.5%  9.4% 7.2%

Units are in 1bf.
IEither incomplete stroke or indiscernible failure force.

Table 6.10: Failure force results for tests in the rained Ticino sand.
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6.4.4 Glass Beads

Finally, in order to test a material with a much lower friction angle,
fine glass impact beads from Potters Industries Inc.®> were obtained.
The specification from the supplier states that the beads are composed
of a minimum of 85% rounds. The density of the beads, in the state
stroked, was measured to be 1.46 g/cc with a coefficient of variation of
approximately +1%.

A single collection was completed for this sample. The failure forces
were all less than one pound. The full one inch insertion depth for all
tool angles was used. Greater depths of insertion were also tested. How-
ever, for depths greater than 1.5”, with lower tool angles, the spur gears
of the end-effector contact the soil surface. So, while the magnitude of
forces do not preclude testing at greater depths, the end-effector design
limits the depth of insertion. Future designs should carefully consider
both the range of tool angles and depths of insertion which can be
achieved with a given end-effector design.

3These are Ballotini Impact Beads, Potters Spec. AE, US Sieve 100-170. More
information can be found at http://www.pottersbeads.com/.
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tool angle (deg)

Glass Beads

Tool Angle 70° 80° 90° 100°

Failure Force 0.39 0.51 0.65 0.84
0.38 0.49 0.68 0.80
0.37 0.54 0.63 0.83
0.36 0.50 0.62 0.75
0.41 0.45 0.69 0.80
0.34 0.42 0.58 0.80
0.39 0.45 0.64 0.82
0.39 0.42 0.62 0.84
0.40 0.52 0.60 0.78
0.41 0.52 0.65 0.85
0.39 0.50 0.65 0.80
0.42 0.50 0.63 0.83

Mean 0.39 0.49 0.64 0.81
Standard Dev. 0.02 0.04 0.03 0.03
Coef. of Var. 5.8% 8.3% 4.8% 3.6%

Units are in 1bf.

Table 6.11: Failure force results for tests in the glass beads.
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6.5 Comparison with Model Predictions

At this point, mean and standard deviation values for each of the soils
have been collected. Density has been independently measured. The
interface friction angles have been determined using the iterative tech-
nique. The following plots show the experimental mean and standard
deviations superimposed on the model predictions using the interface
friction and density values (Figures 6.4, 6.5, 6.6, 6.7, 6.8, and 6.9).
The only unknown parameter for the models is the internal friction
angle. This angle is varied in the models to obtain overlap between
the experimental mean measurements and the model predictions. For
comparison, both the upper and lower bound numerical predictions are
matched in order to illustrate the effect of small friction angle variations
and provide upper and lower bounds on the friction angle prediction
(when fitting to the experimental means). It is noted that the change in
internal friction angle required to match the upper bound to the lower
bound, keeping the other parameters constant, is 1.4° — 2.4° (5%-6%).
The upper to lower bound range is typically larger than the magnitude
of the standard deviation, which would indicate that the upper/lower
bound separation from the numerical limit analysis technique is of a
reasonable magnitude for this application.

An interesting effect is observed for the loose Ticino and the Nevada
Fine sand. The 70° and 80° cases typically match well with one friction
angle (Figures 6.4 and 6.6), while the 90° and 100° cases match a lower
friction angle (Figures 6.5 and 6.7) . A change of 2.4° and 0.7° is
observed for the two soils respectively. Two possible explanations for
this effect may be proposed. The first is the dependence of friction
angle on normal stress at low stress values. The stress for the 70°
cases can typically be half the stress of the 90° and 100° (which both
have nearly the same stress when the 100° data is collected at ~0.85”
depths, as we have done). This effect is observed on a smaller scale
in the glass bead results, where the 70° result is a fraction of a degree
higher than the other angles. The second possible explanation is the
progressive failure that typically occurs in these sands with higher tool
angles. Both of these effects will be discussed in more detail in the
discussion section.

The results from the model comparisons shown in the following
figures are compiled in Table 6.12. Contrary to the anticipated soil
characteristics from the soil selection, the Nevada Fine sand proved to
be very similar in nature to the Ticino sand. Another anomaly from the
anticipated values is the low friction angle estimates from the rained
Ticino. The rained Ticino was too easily disturbed to maintain a 50°+
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Figure 6.4: Comparison of model predictions and experimental results
for the 70° and 80° strokes in unrained Ticino sand.
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Figure 6.5: Comparison of model predictions and experimental results
for the 90° and 100° strokes in unrained Ticino sand.



130 CHAPTER 6. EXPERIMENTAL RESULTS

Predicted Force and Real Data

4 T T T T T
X LE: Coulomb !
-+ LE: Log Spiral (-CK) /
© UB: Chen |
35H £ LB:Cag.&Ker. | i
</ UB:Fine Sq. Mesh
- LB: Fine Rad. Mesh
=== Real Data
8 X
’
’
= /
525 ; .
g L
(=}
= ’ A+
o i
°

N
T
<
N
\
\
W
\
‘\\;

»
»
151 ‘- |
//% -
_ e =
= ﬂ//’f
e 27
1k - 27 4
&
0.5 I I I I I I I
65 70 75 80 85 90 95 100 105
tool angle (degrees)
$=41.7° 5=27° y=1.44 glcc
Predicted Force and Real Data
4 T T T T T T
X LE: Coulomb ! !
+ LE: Log Spiral (~CK) K S
©) UB: Chen / ;
354 El LB:Caq. &Ker. / ‘o 4
|| </ UB: Fine Sq. Mesh , 7y , 4
LB: Fine Rad. Mesh / ey
=== Real Data / 7y
7/
3L i
.
.’
a5 »? .
@
o
s
&
s 2r g
151 q
e i
0.5 I I I I I I

I
65 70 75 80 85 90 95 100 105
tool angle (degrees)

$=44.1° §=27° y=1.44 glcc

Figure 6.6: Comparison of model predictions and experimental results
for the 70° and 80° strokes in Nevada Fine sand.
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Figure 6.7: Comparison of model predictions and experimental results
for the 90° and 100° strokes in Nevada Fine sand.
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Figure 6.8: Comparison of model predictions and experimental results
for strokes in rained Ticino sand.
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Fit - UB Fit - LB
70°, 80°  90°, 100° | 70°, 80° 90°, 100°
Ticino 43.0° 40.6° 45.2° 43.0°
Nevada Fine 41.7° 41.0° 44.1° 43.2°
Rained Ticino 42.1° 44.6°
Glass Beads 30.0°! 31.4°1

IThe 70° data fits 30.6° upper - 31.9° lower, but the 80° data fits 29.5° upper
- 31.2° lower. The table values fit the average of all.

Table 6.12: Results from the comparison of experimental data with nu-
merical upper and lower bound predictions. The table lists the match-
ing internal friction angles for the various mediums and tool angles.

friction angle as expected. For the dense rained Ticino sand, during
insertion, there was a noticeable shifting of the sand up to 1.5” away
from the plate. This reduced the density and tight packing of the sand.
It is difficult to maintain a local arrangement of particles in a very
dense state, especially when experimenting on small scales with such
a large grain size. The experimental forces account for the change in
density (since the forces are elevated relative to the unrained case), but
yet reflect no real substantial change in friction angle.

6.6 Direct Shear Tests

In order to have a basis for comparison for the internal friction angle
estimates, standard direct shear tests have been conducted on the soils,
with one critical modification. Figure 6.10 shows an illustration of a
shear box apparatus. The standard direct shear apparatus requires a
normal load on the order of 10 psi to be applied to the top of the soil
sample so that the friction between the soil and the walls of the upper
half of the shear box assembly is sufficient to suspend the upper half of
the shear box above the shear plane (the upper half of the shear box
weighs roughly three pounds).

In order to compare results from the stroking experiments to the di-
rect shear tests, direct shear estimates should be obtained for pressures
similar to those experienced when using the manipulator arm. The
pressure on the embedded plate is not constant, but increases from the
surface of the soil to the bottom tip of the plate. The normal stress
along the failure surface will also vary. As a first approximation, the
measured failure force can be divided by the area of the embedded
portion of the plate (typically 5 in.2) to obtain a simplified pressure
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Figure 6.10: The unmodified shear box is shown here. The upper half
of the assembly weights roughly three pounds. This weight must be
supported by the soil-wall friction, requiring a large vertical load to be
applied.

value. If a linear increase in pressure from zero to the maximum at the
tip of the plate is assumed, then the pressure at the tip of the plate
will be twice that computed from this simplification. Half of the plate
would experience a higher pressure and half a lower pressure. It is
clearly difficult to draw a direct comparison between the normal stress
applied in the direct shear test and the varied stress experienced in
the embedded plate tests. However, by simply using the approxima-
tion of uniform stress over the inserted plate as an initial guideline for
comparison purposes only, some ballpark deductions can be made.

In the stroking configuration, the inserted plate area is 5 in.? (except
for the shallow 100° cases) and the range of forces on the plate is 0.4-2.0
Ibf. Assuming a uniform distribution, a guideline stress range of 0.08-
0.40 psi is obtained. This is more than an order of magnitude lower
than typically used in direct shear tests. A pressure of this magnitude
would not be sufficient to support the weight of the upper half of the
shear box. Therefore, a special attachment to the upper half of the
shear box was used to suspend it from above so that lower confining
pressures could be used. Figure 6.11 shows the modified shear box and
test assembly. The upper half was suspended by rubber bands from a
horizontal rod placed above the assembly. Using these modifications,
the load on the soil sample was reduced to as low as 0.98 Ibf over an
area of 5.57 in.2, resulting in a pressure on the shear surface of 0.18 psi.

Using the modified assembly, tests were conducted at loads of 0.18,
0.36, 1.16, and 2.33 psi. For these low values, four tests were conducted
at each load and three were kept. Single tests were conducted at each of
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Figure 6.11: Direct shear box and test assembly used for measuring the
soil internal friction angle. This system has been modified so that the
mass of the upper half of the shear box can be suspended from above.
This allows us to test with much lower normal loads.
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Direct Shear at Various Normal Pressures (psi)
018 036 1.16 233 6.95 10.91 18.82
Ticino 41.3° 39.3° 38.5° 35.3° 31.6° 31.6° 32.0°
Nevada Fine | 38.7° 36.1° 33.5° 32.3° 32.0° 31.2° 31.6°
Rained Ticino | 47.9° 43.8° 43.0° 41.7° 39.9° 40.9° 40.8°
Glass Beads 29.9° 28.1° 26.4° 24.9° 25.2° 24.7° 24.2°

Table 6.13: Average friction angles measured with the low-stress direct
shear box apparatus.

the larger stresses of 6.95, 10.91, and 18.82 psi to estimate the friction
angle at more typical higher loads. The specific results from each of
these tests are compiled in Appendix D. The tests show a variation
of up to 2° in estimated friction angle. This agrees with Lambe and
Whitman [62] who state that the measurement of the peak friction
angle from the standard direct shear test can give rise to an error of as
much as 2°.

Table 6.13 shows the average results from the low-stress direct shear
tests. Figure 6.12 plots all the measured angles up to 6.95 psi. The
high stress values were all found to be within 1° of each other. Thus,
over the range of 7-19 psi, the assumption of a constant friction angle
in direct shear is reasonable. Comparing the measured friction angles
at high stresses to those at the lowest stress, increases of 5.2° to 9.7°
are found. Limiting our attention to the lowest two test loads, one
roughly one half of the other, a variation of measured friction angles
of 1.8° to 4.0° is found. Clearly, the measured friction angle is much
larger at lower stresses, a fact which has been known for some time and
demonstrated here experimentally.

6.6.1 Estimating Comparable Loading

In order to compare results from the direct shear tests to the stroke re-
sults, a method must be devised to find comparable load values. Figure
6.13 shows an illustration of the upper half of the Mohr circle diagrams
for three different loading paths.

Let us consider the loading paths for direct shear and passive earth
pressure scenarios. The loading in direct shear maintains a constant
vertical pressure. The motor driving the two halves of the shear box
increases the shear on the horizontal plane between the two halves of the
box until failure. Thus, the loading path is shown (top-most Mohr circle
diagram) as an arrow in the vertical direction at stress o, until failure.
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Low Stress Direct Shear Results
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Figure 6.12: Low-stress direct shear results for the tested soils, showing
clear increases at lower stresses.

For comparison with the stroking data, comparable pressures must be
computed for the failure surface in the earth pressure scenario. Since
the forces are dominated by the passive earth pressure component, the
computation focuses on the passive case.

The soil models all incorporate the assumption of a Rankine zone
in the failure wedges away from the tool. This portion of the soil will
not be affected by the interface friction at the tool. Therefore, as a low
estimate of the equivalent normal pressure on the failure surface, the
case for § = 0 (no interface friction) is considered. The vertical stress
in the soil is simply the geostatic stress, vz. This remains constant
during loading, while the horizontal stress is increased until failure.
Using o, and the estimated friction angle, an equivalent low estimate
of pressure can be computed, denoted o, (shown in the middle Mohr
circle diagram).

For the region of the soil near the tool that does experience the
interface friction, a point adjacent to the plate is considered. A vertical
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Figure 6.13: The upper half of the Mohr circle diagrams are shown for
three different loading paths. The cases for direct shear and passive
earth pressure with and without interface friction are shown.
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UB/LB| at z=1/2" (psi) at z =2/3" (psi)

avg. ¢ O  Outo Ouvo | 0L  Outo 0090
Ticino 42.9° 10.032 0.062 0.118|0.042 0.083 0.157
Nevada Fine 42.6° [0.032 0.072 0.148]0.043 0.096 0.197
Rained Ticino | 43.4° |0.032 0.066 0.144|0.047 0.088 0.191
Glass Beads 30.7° 0.034 0.051 0.097]0.046 0.068 0.129

Table 6.14: Estimated equivalent pressures for passive loading, com-
puted using the average UB/LB ¢ estimates, are shown for each of the
test cases. The low estimates depend only on depth and estimated fric-
tion angle. The high estimates also depend on failure force, so values
for 70° and 90° tools are shown.

plate is assumed in the following; for a non-vertical plate, the derivation
is the same, with the direction normal to the plate being thought of as
horizontal. Since the interface friction, §, is known, the orientation of
the force on the plate is directed at an angle of § from the normal of the
plate. Before the stroke begins, the initial horizontal stress in the soil at
rest is given by the coefficient of lateral earth pressure at rest, Ky, times
the vertical stress, yz. As the plate is loaded, the horizontal stress is
increased, and the interface friction introduces shear on the vertical face
of the element. The loading path is drawn as a line inclined at angle §
in the bottom-most Mohr circle diagram. Using the horizontal pressure
and shear on the element at failure and the estimated friction angle,
an equivalent high estimate of pressure can be computed, denoted oy.

One final item is required for obtaining the estimated pressures. A
value for z must be selected. To use the full depth of the plate would
result in high estimates which would likely only be true very close to
the tip of the plate. An approximate average value is preferred. Using
z = 1/2" or z = 2/3" would likely provide suitable average values.
Table 6.14 shows the results from computations at both depths using
the average estimated UB/LB friction angles. It should be noted that
the lowest direct shear measurement was taken at 0.18 psi. Therefore,
except for two of the cases, extrapolation of the direct shear data is
required.

6.6.2 Comparisons

Once the low and high estimates of equivalent pressure are computed,
the values from the direct shear tests must be interpolated or extrapo-
lated to obtain estimates of friction angles for comparison. For the sets
of data from the four low-stress cases, an exponential curve can be fit.
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Low Stress Direct Shear Results
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Figure 6.14: A straight line is fit to the direct shear data when plotted
on a log-log scale.

Figure 6.14 shows the direct shear data plotted on a log-log scale, with
a linear fit superimposed on the data. Figure 6.15 shows the direct
shear data and the resulting fits plotted with normal axes.

As noted, the majority of the equivalent pressures are found to be
outside of the range which could be measured in direct shear. Thus
extrapolation, rather than interpolation, is being done. Extrapolation
is less trustworthy, and therefore the resulting friction angle estimates
must be taken with a grain of salt. Nevertheless, the resulting values
are likely in the correct ballpark*.

Another item of note, the average UB/LB estimated friction angles
are used in the calculations of equivalent pressure. These are estimates
with associated uncertainties which would impact the pressures com-
puted by small amounts, however, the direct shear friction angle curves
are steep in this region. Nevertheless, some approximations must be

4 Although the fit is shown to increase exponentially at low pressures, it is ex-
pected that the curve will level off at some low value.
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Low Stress Direct Shear Results
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Figure 6.15: The direct shear data in the low-stress range is fit using
an exponential curve.

done in order to obtain values for comparison. The sources of variation
discussed in this paragraph should be kept in mind when examining
the final results.

Table 6.15 shows the resulting friction angle estimates using the
computed equivalent pressures. The mean UB and LB friction angle
fits are shown for comparison. The agreement is good, except for the
dense Ticino, which will be discussed in more detail in the following
discussion section. A more complete comparison of the direct shear and
stroke results is given in the next chapter, where the model inversion
technique for parameter estimation is discussed.

6.7 Discussion
In this closing section, the difficulty in obtaining verification of the

friction angles estimated through our experiments with friction angles
obtained by other means is discussed first. A few anomalies in our
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Mean Mean z=1/2" z=2/3"
LB YuB | ¢ dum Puso| P Puro Puso
Ticino 44.1° 41.8°|45.4° 43.7° 42.3°(44.7° 43.1° 41.6°

Nevada Fine |43.7° 41.4°[43.3° 40.9° 38.9°|42.5° 40.1° 38.1°
Rained Ticino | 44.6° 42.1° [ 51.2° 49.3° 47.1°|50.3° 48.5° 46.4°
Glass Beads |31.4° 30.0°|33.2° 32.3° 31.0°|32.6° 31.7° 30.4°

Table 6.15: Friction angles obtained from the fits to the direct shear
data using the estimated equivalent pressures.

data are discussed. Issues to note when applying the estimated friction
angles from this work to other loading scenarios are also presented.
Finally, the various sources of error in the measurements and the con-
clusions reached from these experiments are presented.

6.7.1 On the Great Variety of Friction Angles

The linear approximation of shear strength, known as the Mohr-Coulomb
failure law, given as s = ¢ + o tan ¢, is known to apply only over re-
gions of normal stress, o. A single friction angle, ¢, is not sufficient to
capture the variations over a wide range of stress, particularly at very
low stress, for which the friction angle required for this equation to
match the observations varies considerably. In order for us to compare
the estimated friction angles to any other measured angles, there are
a number of considerations which must be made regarding the magni-
tude of stress, loading conditions, and soil conditions. Therefore, the
theories on the shear strengths of soils must be examined.

Lee and Seed [64] quantify the measured shear strength of cohesion-
less soils as the contribution of three components

Measured shear strength = strength due to sliding friction
+ dilatancy effects
+ crushing and rearranging effects

Figure 6.16 is a reproduction of the schematic illustration from Lee
and Seed. The strength due to sliding friction is assumed to be con-
stant over various confining pressures. This friction angle is typically
denoted ¢, and represents the sliding friction between individual parti-
cles. It depends on the composition of the particles and the roughness
(and as shown by Rowe, on the load per particle, though Lee and Seed
propose that this effect cancels in typical loading). At larger stresses,
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Figure 6.16: Schematic illustration of factors contributing to the mea-
sured shear strength of cohesionless soils. Reproduced from Lee and
Seed, 1967 [64].

the relative significance of the dilatancy and the crushing and rear-
ranging are dependent upon the type of sand, particle size, and initial
void ratio. At low stresses, the crushing and rearranging effects will
be minimal and the primary increase in apparent friction angle is a re-
sult of the dilatancy effects. The dilatancy effect is clearly seen in the
direct shear results in Appendix D. The samples were approximately
the same height. As expected, the magnitude of the dilation is more
pronounced for the large grain size sands (Ticino) and smallest for the
finest material (glass beads) and it is more pronounced for the dense
sand (dense Ticino).

Given the dependence of friction angle on a number of factors, it
would seem best to conduct tests with identical loading conditions us-
ing another apparatus for verification. Our use of direct shear tests
required the computation of equivalent friction angles that were rough
and fraught with approximations. Future researchers may prefer to
conduct independent passive plane strain tests at similar stress levels.
No other plane strain apparatus was available for this work. Triaxial
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tests would be of no benefit since they exhibit a wide variety of mea-
sured friction angles depending upon loading path. In addition, no
apparatus was available to conduct tests at such low confining pres-
sures. Another possible solution would be to have a manipulator which
can exert greater forces at greater depths and span a range of stresses.
Using measurements over a range of stresses, work can be done to re-
late the observed trends directly to the observed trends in direct shear
or triaxial tests for verification and construct a specialized dilatancy
correction directly for earth pressure scenarios.

6.7.2 Low Forces and Dense Samples

For the loose Ticino and Nevada sands, lower forces than expected
were found for the 90° and 100° tool angles. One possible cause for
the variation is the change in the dependence of the friction angle on
normal stress. A change of almost 2° is seen to result from the friction
angles using the estimated equivalent pressures from the 70° to the 90°
case. This effect is clearly possible, as seen in our direct shear tests,
but it may not be the only cause.

Another highly likely cause results from the gradual nature of fail-
ure more typical in the 90° and 100° strokes in the higher friction angle
soils. As noted by Rowe and Peaker [87], the full mobilization of in-
ternal friction in the passive case does not occur until after significant
deformation has occurred (up to 16-26% of the insertion depth for loose
sands). They give the following example to illustrate this concept: if
the failure region in the soil is imagined to be composed of wedges on a
frictional surface with springs between the wedges, in order for the force
from the wall to be fully transmitted to all the blocks representing the
full failure region, the springs must be compressed in turn. In these
cases, it is likely that our break-point computation used to estimate
the failure force will produce failure force estimates before the internal
friction has been fully mobilized, resulting in lower estimated friction
angles.

Another anomaly in our data was the low friction angle estimates for
the rained Ticino. Another insight from Rowe and Peaker relates to this
issue as well. In their experiments, the typical failure for dense sands
exhibit a peak in the failure force at horizontal displacements within
the first 4-5% of the wall height. The data then shows a measurable
decrease. The failures for the dense soil tested here do not exhibit this
behavior. In the direct shear tests, a peak is also observed; however,
after dilation has occurred, the measured shear strength is reduced
significantly from the peak. Given the observed motions at the surface



146 CHAPTER 6. EXPERIMENTAL RESULTS

of the soil, it is likely that the region affected by insertion extends over
17 away from the plate. Thus, the additional strength attributed to
dilation is gone after insertion, resulting in a condition in the soil similar
to the loose configuration. This would agree with our observations.

6.7.3 Application of Estimated Friction Angle

There is an extensive amount of literature examining the dependence
of apparent friction angle on loading path, relative density (void ratio)
of the soil, magnitude of confining pressure, magnitude of the dila-
tancy, and other factors. In light of the amount of work compiled on
computing friction angles that would fit within the framework of the
Mohr-Coulomb failure law, a friction angle cannot be stated without
specifying many accompanying factors to qualify it. One thing that
can be said with confidence as a result of this investigation is that the
Mohr-Coulomb failure law is a simplified approximation to the true
behavior at low stress. A particulate model of soil behavior, instead of
the continuum model used here, may produce better results, but would
be very complex to implement, and is left for future researchers.

If the results from this work are to be applied for high stress sce-
narios, such as bearing capacity (e.g. lander stability) or retaining wall
stability (e.g. building Martian or Lunar structures), then the relation-
ship between the friction angles at low stresses, which can be measured
with our system, and the friction angles at high stresses must be known.
Currently, a shift of roughly 5° — 9° from high stress friction angles to
the low-stress friction angles in direct shear is observed. As it currently
stands, additional testing in either direct shear or triaxial tests would
be required to use the above equations to extrapolate the manipula-
tor results to other loading conditions. If the manipulator could span
a greater range of forces, it is likely that an independent correction
equation can be developed to extrapolate the results to other loading
conditions.

Regardless of the means of compensation, it is clear that the de-
pendence of friction angle on the various factors (normal stress, load-
ing path, etc.) must be kept in mind. Otherwise, blind application of
estimated friction angles from this work (at low stress, passive plane
strain loading) may lead to gross over-estimation of the failure forces
in other loading scenarios.
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6.7.4 Sources of Error

In this section, the variance in the individual measurements are exam-
ined. There are sources of error, sources of variability, and procedural
sources. The sources of error are manipulator dependent and result
from imperfect control and sensing. The sources of variability are soil
dependent effects and result from soil variations from stroke to stroke.
The impact of each of these sources on the measured force are inter-
preted based upon the sensitivity analysis presented in Table 4.3 using
Chen and Liu’s upper bound model as an example. Comparisons are
done relative to a baseline reference case: 40° friction angle, 25° inter-
face friction angle, 1.5 g/cc density, and a horizontal soil surface.

The manipulator dependent effects relate to the interface friction
angle, tool angle, and insertion depth. The arm can track the desired
interface friction angle to within 1-2 degrees. A 1-2 degree error in
tracking of the desired interface friction angle will result in 3%-9% er-
ror in force from the baseline case. An error in the tool angle of one
degree will result in approximately 4% error in force. As previously
mentioned, the insertion depth accuracy using the external encoders
alone would contribute up to 10% error, but with the manual verifica-
tion of insertion depth, this is likely reduced to within 5%. One final
item, the independent tests on the force/torque sensor yielded an un-
certainty of 1% in the range of forces encountered. The combination of
these manipulator dependent effects could produce errors of 7-11%.

The soil dependent effects relate to the sample preparation and are
independent of the specific limitations of the manipulator. An error
of one degree in soil surface angle (to which each of the samples was
prepared) can result in approximately 5% error. A variation in density
of the soil across strokes will result in an equal percentage variation
in force. Repeated preparation of samples resulted in a maximum 4%
variation in density. Thus, the soil dependent variability alone could
cause up to 6% error.

Combining the sources of error and variability, errors of 10-13% are
possible. This agrees with the largest coefficients of variation which
were observed for any set of measurements.

Apart from the manipulator and soil dependent sources, there are
also errors introduced as a result of the procedure and assumptions.
These are more difficult to quantify. The procedure for the estimation
of failure force for gradual failures introduces a bias into the measure-
ments. The magnitude of the bias may be in the 5-10% range. This
number is estimated from the slope of the failure portion of the force
versus displacement plot. Rowe and Peaker [87] have studied progres-
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sive failure for a vertical wall and state that for loose soils, the internal
friction is fully mobilized after displacements of 16-26% of the height
of the wall. Their experiments are different from this work in that the
interface friction is also not mobilized initially, whereas we reach and
track the interface friction angle early in the stroke. Using a 16-26%
guideline, a rough estimate of the impact on the estimated failure force
gives the 5-10% bias. The consideration of progressive failure applies
only to roughly half of the 90° and most of the 100° tool angle strokes.
The lower tool angles have more definite failures. Assumptions have
also been made that the material is homogeneous and that the prop-
erties do not vary during a stroke. These assumptions break down in
the presence of gradual failures, where compaction must occur prior to
failure. In addition, since the friction angle is known to vary depend-
ing upon normal stress, and the normal stress varies along the failure
surface, the friction angle cannot be a single constant value for a given
failure. Therefore, it is an approximation to assign a single friction
angle value to a given stroke. This is necessary until a more accurate
model is developed.

The above percentages reflect the maximum possible error. None
of these sources have a definite known bias, except the estimation tech-
nique used for gradual failures. In the absence of further knowledge
regarding the distribution of the other sources of error, a simple Gaus-
sian distribution is assumed®. Thus, the mean and standard deviation
measures were used in the data reduction. Corrections to the gradual
failure cases can be applied independently. To reduce the impact of
these sources of error, repeated tests were conducted at each tool angle
to obtain an average over a collection of measurements. The magni-
tude of the resulting standard deviations indicate that these individual
sources are not consistently additive.

The sources of error from the manipulator can be reduced with
greater sensing precision, reduced backlash in the motors, and greater
force capabilities. The sources of error from the procedure can be
reduced after more experience has been gained and the methods im-
proved. The sources of variance in the soils are to be expected in soils
that will be encountered in the field and cannot be reduced. Variations
in measurements as a result of these sources of sample variability are a
positive indication that the manipulator is sensitive to such variations
in the soil. Data which reflects these variations are desirable.

51nitial examination of the collected data has been done. While the quantity is
insufficient to make a definite conclusion, the data often appears to be approaching
a Gaussian distribution.
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6.8 Conclusions

This chapter has presented the results from measurements using the
manipulator arm to interact with three different soils. The measure-
ments typically showed a standard deviation of 10%. The maximum
variance as a result of variations in soil conditions alone, independent
of the manipulator and procedure, was shown to be about 6%. The
results have shown that this system is sufficiently accurate for measur-
ing interaction forces in loose soils. For dense soils, disruption of the
soil resulting from insertion prohibits interactions with the soil in an
undisturbed state. Greater insertion depths may overcome this barrier.

The comparisons of the estimated friction angles with independently
measured direct shear values have shown good agreement. Additional
testing on a greater variety of soils is necessary to fully validate the
system. Many of the issues raised in the analysis of the resulting data
do not undermine the method, but rather raise additional questions
about the details of modeling soil behavior at low stress and for gradual
failures.



Chapter 7

Parameter Estimation

In the previous chapter, knowledge of the interface friction and den-
sity of the samples was used to estimate the internal friction angle by
manually matching the force versus tool angle curve to those predicted
from the models. In this chapter, a general technique that automat-
ically computes the valid regions of parameter space that could have
possibly generated the observed measurements within the measured
uncertainties is presented. This technique is applied to the experimen-
tal data from the previous chapter to produce complete bounds on the
corresponding parameter estimates.

7.1 Defining the Problem

From the experimental interactions with soil using the manipulator
arm, it is possible to collect a set of forces required to fail the soil in
different configurations. The depth of insertion and the angle of the tool
can be directly controlled. Of these two, the angle of the tool is more
useful. The depth of insertion is not critical (aside from affecting the
uncertainty associated with the measurement) for tests in cohesionless
soils. The H? dependence on insertion depth is well known, and so, all
the force data is normalized by dividing by the square of the insertion
depth. Therefore, the primary control variable in the collection of data
is the tool angle. The surface angle of the soil can also be controlled,
however, the process would be complicated (not to mention unrealistic
for tests on Mars) and approximate. In the interests of simplicity and
speed of data collection, a horizontal soil surface was used throughout
these tests.

150
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Thus, each set of manipulator strokes produces a set of forces re-
quired to fail the soil for different tool angles, normalized to a unit depth
of insertion. The problem statement then becomes: find estimates of
the physical soil properties given these failure force measurements. This
chapter examines if this problem is solvable, and if so, what is involved
in the solution of the problem.

The soil models under consideration all have the same set of vari-
ables. These variables can be grouped into soil parameters and geomet-
ric parameters. The soil parameters are internal friction (¢), interface
friction (0), density (), and cohesion (¢). The geometric parameters
are tool angle (a), tool depth (H), surface angle (), and surcharge
pressure (g). In our tests, the soils are cohesionless, ¢ = 0, and there is
no surcharge, ¢ = 0.

As described above, only the tool angle is varied for a set of measure-
ments, and the resulting resistance forces are collected. This produces
sets of data pairs {ay,, F},} where a,, is the tool angle for the nth mea-
surement and F}, is the force required to move the embedded plate and
fail the soil, normalized to unit depth. Using these data pairs, the goal
is then to invert the soil models to determine the estimates ngS, ) , and ¥
which would account for these measurements.

7.2 Difficulties in Model Inversion

A standard method for determining estimates for parameters in a model
that best fit measured data would be to use a nonlinear optimization
technique that searches the parameter space to find the solution with
the minimum sum-squared error (SSE) (or other error measure) be-
tween predictions and measurements. There are two issues which may
complicate the implementation of a standard nonlinear optimization
technique to this problem.

The first issue is a result of the nature of each of the soil models.
Nearly all the models require optimizations in one or two variables to
obtain solutions, or, they are tabular in nature. Both of these types
of models, in actuality, present small barriers to implementation in
a standard optimization framework. Since each function evaluation
will itself require an optimization, this will increase the computation
time. However, this is not a significant barrier. Nonlinear optimization
techniques have been implemented in C (rather than Matlab) for speed,
and typical runs require a fraction of a minute. The tabulated models
will require an interpolation scheme, however, the models are locally
smooth and interpolation schemes are easy to implement.
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Figure 7.1: Example of the low sensitivity to parameter variation. Note
the flat region in the SSE surface shown in the upper plot. The resulting
contour plots for the SSE surface are shown in the lower plot with
solutions marked.
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The second issue is the non-unique mapping of parameters to forces.
In the soil models, an infinite combination of parameters may produce
the same force. In a standard nonlinear optimization, this would likely
result in many local minima, or flat regions in the error surfaces. Con-
sequently, solutions obtained from standard optimization techniques
may lie far from the actual solution. Figure 7.1 shows the error surface
and contour curves for an example case. Here, a set of measurements
with random noise of +£5% has been used. The error surface is gener-
ated by computing a table of the sum-squared error at discrete points
in the parameter space. In the lower portion of the figure, the contour
curves for the computed SSE surface are plotted. The minimum value
from the computed SSE table (used to generate the surface), the solu-
tion found from the nonlinear optimization, and the actual solution are
marked. In this case, the nonlinear optimization has done a good job in
locating the minimum of the error surface. However, neither computed
solutions are close to the actual solution. This is a characteristic short-
coming of the nonlinear optimization method: it yields only a single
point solution and does not utilize the uncertainty information in the
measurements.

To address these difficulties, a novel parameter space intersection
method is developed in this chapter. This method uses pre-computed
tabulated model predictions and determines regions in parameter space
which are consistent with a given set of measurements with associated
uncertainties. The intersection of these regions for multiple measure-
ments represents the collection of all possible parameters which could
have possibly generated the given set of measurements.

7.3 Parameter Space Intersection Method

The development of the new parameter space intersection method for
model inversion begins with an illustration of the tabulated data result-
ing from a typical soil model. Figure 7.2 shows a cube of the prediction
values for a 70° tool, where the axes are the internal friction (¢), den-
sity (), and interface friction (4). The shading of each block represents
the magnitude of the predicted failure force. Similar cubes can be gen-
erated for other tool angles. The empty blocks in the upper left corner
reflect the fact that the interface friction angle cannot be greater than
the internal friction angle. Again, note that there are many differ-
ent possible combinations of parameters which produce the same force
value (imagine a surface connecting all blocks with the same shading —
this surface would span a wide range in each of the axes). The model
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Passive Earth Pressure Force Estimates (1bf) for 70° Tool
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Figure 7.2: Sample force prediction data for a 70° tool shown in two
formats, a colored cube (left) and a collection of surfaces at discrete §
values (right).

prediction values can also be depicted in another more useful form.
Consider horizontal slices of the cube at constant § values. If each of
these slices are plotted with failure force on the vertical axis, the figure
on the right is obtained, which plots F' vs. ¢ and ~ for constant §.

7.3.1 Computing Contour Line Intersections

Let us assume that we have perfect measurement data. Figure 7.3
graphically illustrates the next steps in the development. A force mea-
surement, from the manipulator arm can be depicted as a horizontal
surface intersecting all the F' vs. ¢ and y surfaces (1). This produces a
set of contour curves, each curve associated with a different ¢ value (2).
If this process is repeated for a second measurement at another tool
angle, another set of contour curves is obtained, shown superimposed
in (3). And again for a third (4) and fourth (5) measurement. Ex-
amining the intersections between these sets of contour curves, a trend
can be observed. Each of the intersection points represents the agree-
ment between two of the measurements. If multiple measurements are
consistent with each other, then the locus of the intersections between
the sets of contour curves will converge on the correct parameters (5).
Ellipses are used to enclose the points of intersection. If the measure-
ments are noisy or mildly inconsistent, then the ellipses will remain
large (6). Appropriate parameter estimates may still be deduced by
finding the smallest ellipse; however, this method is approximate and
does not utilize the uncertainty information associated with the mea-
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Figure 7.3: Initial steps in the graphical method for computing contour
curves for each measurement and the resulting intersections. The de-
velopment flows from (1)-(5) assuming ideal data. (6) shows the results
with noisy data.
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surement data.

7.3.2 Computing Contour Band Intersections

To further develop this method in the presence of noisy measurements,
let us consider how to incorporate the uncertainty information avail-
able with each measurement. Figure 7.4 graphically illustrates the next
steps. An arbitrary random £2% noise is added to the measurement
data in this example. For each measurement, two sets of contour curves
are computed, one for the upper limit (measurement+uncertainty) and
another for the lower limit (measurement-uncertainty). This produces
a set of contour bands (the regions between the two sets of contour
curves). Repeating the process for a second measurement, two sets
of bands are obtained (1). The intersection between these two sets
of bands represents regions of the parameter space that are consistent
with both measurements. Next, adding a third measurement, another
set of bands is obtained, and the resulting computation of the intersect-
ing regions produces a smaller consistent space (2). Adding a fourth
measurements again decreases the final intersection regions (3). These
final highlighted intersections denote regions of parameter space which
could have generated the observed measurements within the given un-
certainty bounds.

7.3.3 Utilizing Interface Friction Estimates

Now, from the stroking experiments, the interface friction can be inde-
pendently determined. This information can be utilized in the inver-
sion method developed here. In the contour band example, for a given
measurement, the sets of bands represent sets of intersections with the
multiple constant § surfaces. In the case where the interface friction
value is known, only the band corresponding to the known 4 surface
need be plotted, as shown in (4). Zooming in on the resulting intersec-
tion region (5), the resulting region of consistent parameters is seen to
be greatly reduced.

7.3.4 Additional Notes

The parameter space intersection method produces the full range of
parameters that are consistent with the measurements and associated
uncertainties. If a single estimate of parameters is required, different
techniques can be used to select such an estimate. Once the final inter-
section region is obtained, in the simplest case, the center of the region



7.3. PARAMETER SPACE INTERSECTION METHOD

Intersection Regions of Consistent Parameters

S

0.78) Ibf: = 70.0
1.18) Iof: = 80.0

gamma (glcc)
5 2 b > 3B B

S

11E

E3 40
phi (degrees)
Intersection Regions of Consistent Parameters

0.82,0.78) Ibf: c= 70.0°
1.18) Iof: = 80.0

5

gamma (glcc)
N b h @

E3 40
phi (degrees)

Intersection Regions of Consistent Parameters

gamma (glce)
3

a2 425
phi (degrees)

gamma (glcc)

gamma (glcc)

Intersection Regions of Consistent Parameters

170

5

&

a

®

S

E3 40
phi (degrees)

Intersection Regions of Consistent Parameters

86,1.78) Iof: = 9
=(2.86,2.74) Iof: a=10

157

E3 40
phi (degrees)

Figure 7.4: Next steps in the graphical method, utilizing measurements
with uncertainty information. (1)-(3) show the superimposed contour
bands from multiple measurements. (4) incorporates knowledge of ¢ to
isolate one set of bands. (5) zooms in on the final consistent region.
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can be selected as the estimate and uncertainty bands in ¢ and v can
be specified to encompass the whole consistent region. Another alter-
native is to compute the SSE over the final consistent region (which is
a small subset of the whole parameter space) and select the minimum.

Obviously, the final intersection region should be as small as pos-
sible in order to get very precise parameter estimates. There are two
mechanisms by which additional measurements can reduce the inter-
section region. Additional measurements at the same tool angle can
reduce the uncertainty in a given measurement, which in turn thins
each of the bands. Additional measurements at different tool angles
are often more effective, as they generate a new set of bands that can
potentially significantly reduce the final intersection region.

Note that the method outlined so far uses plots of ¢ versus 7. The
same operations have also been done using plots of v versus § or ¢
versus d. The plots of ¢ versus v were used as a illustration so that
knowledge of ¢ could be easily integrated. There is no barrier to using
the other plots as well. The true consistent region of parameters is
a 3-D volume in parameter space. These 2-D plots are projections of
the 3-D volume. They each simply provide another view of the data.
Which one is used depends on the goals of the parameter estimation.
The variable that is not chosen as one of the axes will be represented
in a discretized form (by the sets of bands), while the other variables
on the axes will be continuous.

7.4 Comparison with Nonlinear Optimiza-
tion

Now that the parameter space intersection method has been presented,
it is of interest to see how it compares with a standard nonlinear opti-
mization technique. Simulations have shown that the solution resulting
from the graphical parameter space intersection method produces con-
sistent intersection regions which typically enclose the local minima
of the weighted sum-squared-error surface (Figure 7.5). The weighted
sum-squared error is defined as

F, _Fpred(an:¢7776)>2 (71)

WssB(6.6) = 1 ( o

n

This weighted form is used since it is expected that the errors would
be larger in magnitude for the larger measurements. It can be seen
from the left hand plots that there are multiple local minima. The
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Figure 7.5: The left plots show the error surface computed at discrete
points in parameter space. The contour curves from these surfaces are
overlaid onto the results from our graphical method in the plots on the
right. The graphical intersection regions are found to typically overlap
the minimum error regions.

nonlinear optimization, based upon the WSSE, produces parameter
estimates which fall into one of these minima and yield a single point
solution. From the error surfaces, it is clear that the actual solution
in this case is fairly distant from the minimum found using this error
measure. On the other hand, the graphical procedure does not rely
upon the selection of error measure for its construction. Some error
measure may be utilized in the final stage to select a point from within
the consistent intersection region, but the region itself is based solely
on the measurements and the associated errors. As long as the given
uncertainties fully represent the associated measurement errors, the
actual solution is guaranteed to be found within the final intersection
region. Instead of yielding a single point in parameter space, which is
in uncertain relation to the actual parameters, sets of all parameters
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which are consistent with the measurements are obtained, enclosing the
actual solution.

Time required for the two methods are comparable and are on the
order of seconds. The graphical method is currently coded within Mat-
lab, and takes fractionally longer. The nonlinear optimization is pro-
grammed in C using the downhill simplex method as described in Nu-
merical Recipes [81]. The graphical method relies heavily upon Matlab
functions for computing contours and polygon intersections and would
be difficult to port to C. If this is done, the graphical method should
be able to run an order of magnitude faster. Since we have no need for
speed in these analyses, a difference of a second or two is not significant.

A key insight can be drawn from the results shown in Figure 7.5.
The resulting region of consistent parameters shown in the plots on the
right is extremely large. Only +5% uncertainty in the measurements
was used in this example (typical real measurements from the previous
chapter had £10% uncertainty), yet the range of consistent parame-
ters is so large as to be nearly useless. This indicates that parame-
ter estimation cannot be done using failure force measurements alone.
Another independent source of information is required to reduce the
problem. Application of a standard nonlinear optimization technique
would give no indication of this grave difficulty. Fortunately, indepen-
dent measurements of the interface friction, 4, are indeed available.
These measurements will be shown to enable us to obtain reasonably
good parameter estimates.

7.5 Results from Experimentation

Using the mean and standard deviation values from the experimental
results in the previous chapter, parameter estimation has been accom-
plished using the estimated interface friction values for each soil. The
following figures show estimation results using the upper bound (UB)
and lower bound (LB) numerical soil models. In order to be abso-
lutely thorough, the full range of uncertainty in the interface friction
estimates and the density measurements must be incorporated into the
parameter estimation.

The iterative technique for the estimation of interface friction an-
gle (Section 5.4) produces estimates with an uncertainty of £1°. This
information is used to limit the graphical method to the construction
of three sets of contour bands, at § and § + 1°. Although only three
discrete sets of bands are drawn in the figures, ¢ is a continuous vari-
able, and the intermediate values would lie between the bands drawn.
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Thus, the complete consistent region would include the small triangu-
lar regions between the tips of the intersection polygons in the figures,
corresponding to non-integer ¢ values.

It can be seen that even with the use of the interface friction esti-
mates, the final consistent region remains large. Thinning of the bands
would not be helpful. Thus, the other means of reducing the final con-
sistent region would be to add additional measurements at different tool
angles. The current manipulator is limited to a lowest tool angle of 70°.
In the subsequent discussion, it will be shown that additional strokes
at low tool angles would provide the necessary information to reduce
the final consistent region. However, in place of such information, we
have used the available independent density measurements which were
obtained in the previous chapter. The density measurements over re-
peated sample preparations was found to have a maximum variation of
up to 4%. Therefore, a horizontal band of width +4% of the density
measurement is drawn in each figure (dash-dot lines). The final consis-
tent region of parameter space would be the intersection of the contour
bands (the light-shaded region) with the horizontal band resulting from
the independent density measurement £ the density uncertainty.

Table 7.1 provides a listing of the full density and friction angle
ranges predicted from the graphical method using the UB and LB
models without the independent density measurements. In practice,
these direct densities measurements would not be available. It can be
seen that the range of estimates are fairly large if the density measure-
ments are not used. It is clear that strokes at low tool angles would be
necessary to reduce the final consistent region. Alternatively, indepen-
dent sensing means might also be developed to estimate density (either
from determining the composition from spectroscopy and estimating
the void ratio, or using a vision system to estimate volume and the
manipulator to weigh samples).

Table 7.2 provides a listing of the friction angle ranges from the
graphical method utilizing the externally measured density values. The
ranges using the Chen and Caquot and Kerisel models are shown for
comparison. The Chen model does not predict a valid set of friction
angles for the Ticino sand data at the specified density and interface
friction. These measurements exhibited the most drastic change from
low tool angles to higher tool angles. It was conjectured that this effect
was a result of the stress-dependence of the friction angle combined
with the progressive failure of the soil. The parameter estimate results
in this case indicate that, at least for this particular model, no single
friction angle could have generated the measurements with the asso-
ciated uncertainties. The other models have valid intersections, but
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Figure 7.6: Parameter estimation for unrained Ticino results with a 23°
interface friction angle using the UB (top) and LB (bottom) models.
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Intersection Regions of Consistent Parameters :: Numerical LB (= 7.2% 6.9% 5.1% 11.2%)
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Figure 7.7: Parameter estimation for Nevada Fine sand results with a
27° interface friction angle using the UB (top) and LB (bottom) models.
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Figure 7.8: Parameter estimation for dense Ticino results with a 23°
interface friction angle using the UB (top) and LB (bottom) models.
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Figure 7.9: Parameter estimation for glass bead results with a 19°
interface friction angle using the UB (top) and LB (bottom) models.
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Density (g/cc), v Internal Friction, ¢
UB LB UB LB
Ticino 1.33-2.10+ 1.30-2.10+ | 36° —43° 38° — 46°

Nevada Fine 1.20-2.10+ 1.20-2.10+ | 36° — 44° 38° — 46°
Rained Ticino | 1.20-1.90 1.15-1.81 | 41° —45° 43° — 48°
Glass Beads 1.25-1.88 1.20-1.90 | 26° — 32° 27° — 34°

Table 7.1: Full range of possible density and friction angle values for
the experimental data using the UB and LB models. These values
represent the complete range spanned by the intersection of the contour
bands. They do not use the independently measured density values (the
horizontal dashed lines) to narrow down the estimated friction angle
ranges.

UB LB Chen Caquot

Ticino 41.4° —44.4° 43.0° —46.8° noint.  40.8° —42.9°
Nevada Fine |40.9° —44.0° 42.7° — 46.1° 39.9° — 42.2° 39.7° — 42.8°
Rained Ticino|41.4° — 43.8° 43.6° — 46.1° 40.8° — 43.2° 41.2° — 43.6°
Glass Beads |28.0° — 30.8° 29.3° — 32.5° 26.5° — 29.8° 28.0° — 30.7°

Table 7.2: Table of parameter estimation results from experimental
data utilizing the measured densities with 4% uncertainty. The Chen
and Caquot and Kerisel models are included for comparison.

they are very near to the tips of the consistent region. This highlights
another benefit of the graphical parameter estimation technique, it can
be used to assess the consistency of the measured data.

7.5.1 Accounting for High Tool Angle Effects

The above parameter estimation was run on unmodified measurement
data. However, it is known that the 90° and 100° tool angle measure-
ments for the loose Ticino and for the Nevada Fine sand were affected
by a combination of the progressive failure effect and the lower friction
angles exhibited at higher stresses. While exact correction for the pro-
gressive failure is not possible, using the guideline of a motion of 20%
of the tool height for full mobilization of friction gives a very rough
correction of 10%. In order to present more complete parameter esti-
mation results, the technique has been computed for the loose Ticino
and Nevada Fine cases using adjusted measurements for the high tool
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z2=1/2" z=2/3"
UB LB OU90 — 0L  Oymo0 — OL
Ticino 41.1° — 44.4° 43.0° — 46.8°|42.3° — 45.4° 41.6° — 44.7°
Nevada Fine [40.9° —44.0° 42.7° — 46.1°|38.9° — 43.3° 38.1° — 42.5°
Rained Ticino(41.4° — 43.8° 43.6° — 46.1°|47.1° — 51.2° 46.4° — 50.3°
Glass Beads [28.0° — 30.8° 29.3° — 32.5°|31.0° — 33.2° 30.4° — 32.6°

Table 7.3: Table of UB/LB parameter estimation and direct shear re-
sults. The extreme bounds of the UB/LB predictions vary from +2.25°
to £2.85°. The UB/LB bounds are found to overlap the direct shear
ranges, except for the rained Ticino case.

angles.

Figures 7.10 and 7.11 show the UB and LB results for the adjusted
cases. The correction acts to widen and marginally increase the esti-
mated friction angles. For the unrained Ticino, the ranges become UB:
41.1° — 44.4° and LB: 43.0° — 46.8°. For the Nevada Fine, the ranges
become UB: 40.9° — 44.0° and LB: 42.7° — 46.1°. It is interesting that
although the bands are thickened, the UB/LB friction angle estimation
ranges (using the measured density) are essentially unaffected.

7.5.2 Comparison with Direct Shear Results

Table 7.3 and Figure 7.12 compare the UB /LB friction angle estimation
bounds with the direct shear friction angles computed in Section 6.6.2.
The extreme bounds of the UB/LB predictions vary from +2.25° to
+2.85°. The direct shear bounds, computed from equivalent pressures
at depths of z=1/2” and z=2/3", are found to overlap the UB/LB
bounds, except in the case of the dense rained Ticino. This discrepancy
has been discussed in detail at the end of the previous chapter.

For the other soils, the agreement is good. The separation between
the center of the UB/LB ranges and the center of the direct shear
bounds vary from 0.1°-2.4° (using z = 1/2”), or 0.8°-3.2° (using z =
2/3”). The Nevada Fine sand shows the largest discrepancy. The cause
may be related to the very fine particle size of this soil, which can allow
the sand to compact more easily during stroking, effectively increasing
the measured friction angle. While the glass beads have an even finer
particle size, the particles are predominantly round, and the effect of
the compaction would be less significant.

Overall, it is concluded that the parameter estimation technique has
produced estimates of the internal friction angle with an average uncer-
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Intersection Regions of Consistent Parameters :: Numerical UB (= 9.2% 7.3% 9.9% 11.4%)
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Intersection Regions of Consistent Parameters :: Numerical LB (= 9.2% 7.3% 9.9% 11.4%)
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Figure 7.10: Parameter estimation for adjusted unrained Ticino mea-
surements using the UB (top) and LB (bottom) models.
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Intersection Regions of Consistent Parameters :: Numerical LB (= 7.2% 6.9% 5.1% 11.2%)
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Figure 7.11: Parameter estimation for adjusted Nevada Fine measure-
ments using the UB (top) and LB (bottom) models.
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Summary of Parameter Estimation
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Figure 7.12: Graphical comparison of the full UB/LB friction angle
estimates and the equivalent direct shear friction angles, computed from
equivalent pressure ranges at z = 1/2” (upper) and z = 2/3” (lower).
The blocks represent UB and LB parameter ranges and the brackets
represent the [0y 90, 01 ] direct shear ranges.
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tainty of £2.5° for these soils. The estimated values are in agreement
with the direct shear results to within approximately 3°.

7.6 Discussion

An intuitive graphical parameter space intersection method for model
inversion has been developed in this section that has been shown to
produce more rich information than a standard nonlinear optimization
method. It accomplishes this by using knowledge of the available uncer-
tainty in the measurements to segment the parameter space into con-
sistent and inconsistent regions. If a single “best” parameter estimate
is required, as might be provided by a standard nonlinear optimization
technique, then, we can compute an error measure over a smaller set
of candidates (the consistent region of parameter space) and obtain
comparable solutions to an exhaustive search. While a nonlinear op-
timization would only provide a single point solution, the intersection
method essentially converts uncertainty bounds in the measurement
data to uncertainty bounds in the parameter estimates.

In addition, the intersection method has allowed us to gain key in-
sights about the estimation problem. It has been shown that good
parameter estimates cannot be obtained using failure force measure-
ments alone. For measurements with an uncertainty of only +5%, it
was shown that the consistent region of parameter space remained quite
large. It was concluded that additional independent measurements were
required to reduce the estimation problem. These independent mea-
surements were provided by the interface friction estimation technique
discussed in Section 5.4.

The intersection method also allowed us to clearly visualize the
impact of additional measurements on the resulting consistent set of
parameter estimates. This can be used to guide future interactions.
For instance, it has been shown that higher tool angles provide bet-
ter friction angle discrimination and lower tool angles provide better
density estimation. In this chapter, since the manipulator end-effector
was not able to reach lower than a 70° tool angle, we have used inde-
pendent density measurements to complete the parameter estimation.
However, it can be shown that strokes at 40° tool angles can be used in
place of the density measurements, so that it would indeed be possible
to obtain complete parameter estimation results using data collected
by the manipulator alone. Figure 7.13 shows an example where we
have added an additional simulated stroke at 40° to a typical collec-
tion of contour bands from 70° — 100° strokes. The resulting consistent
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Intersection Regions of Consistent Parameters Including 40" Tool Angle
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Figure 7.13: The above plot shows the results of the addition of a
stroke at a 40° tool angle on the final parameter region, showing better
density discrimination.

parameter region spans roughly £1.3° in ¢ and £1.1 g/cc in 7.

Finally, assuming that the measurement uncertainty information
and the underlying soil model are correct, then the actual solution
is guaranteed to lie within the final consistent intersection region. If
no valid region is produced, then this is an indication that we must
reevaluate the choice of soil model or the accuracy of the measurements
and/or assumptions.



Chapter 8

Ideas for Future Work

This chapter begins with a discussion of ideas for the future that are
immediate extensions of this work. Afterwards, more distant applica-
tions and possibilities are discussed. Finally, possible applications of
this work to the exploration of Mars are presented.

8.1 Related Unexplored Areas

The system in this work is a first generation system, however, it shows
great promise for future generations. A number of enhancements to
the hardware and techniques will provide greater reliability and utility
for studying a variety of the interesting issues raised in the course of
this work.

The manipulator design can be improved to have greater freedom
in tool angle orientation for greater discrimination of soil density (e.g.
using a 40° tool angle) as discovered by the parameter estimation tech-
nique. It should also be possible to achieve greater strength and in-
sertion depths so that a wider range of applied stress can be tested in
order to map dependencies of friction angle on the applied stress. The
addition of comprehensive sensing of the arm compliance would en-
able the modeling of the progressive failure effect and enable the closer
examination of the mobilization of friction along the failure surface.

A number of items related to soil modeling provide additional in-
teresting avenues of research. All testing done here assumes horizontal
cohesionless soil, but the models can support both inclined surfaces
and cohesion. In addition, no use of the shape of the failure surface
predicted from models has been made. This could be tested experi-
mentally and then used as an added measurement for model inversion
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and would prove useful for soil simulation. Application of the numer-
ical limit analysis techniques can be extended to non-flat tools, such
as curved bulldozer blades or piece-wise linear surfaces (buckets). In
addition, the models can be extended to account for increased forces
due to buried obstacles, which could be used for non-contact buried
obstacle detection.

Closer examination of the stress level dependence of the friction
angle should be studied. Multiple strokes can be conducted at a greater
variety of depths, providing data at a variety of stress levels. Thus
the stress dependence over a wider range can be studied. Our depth
verification tests in this work could not span a wide range of depths,
however, the data typically showed higher forces at the lower insertion
depths. This was attributed to insertion depth uncertainty, but this
could also indicate higher friction angles at very low confining stresses.

Another topic which may be of interest to future researchers would
be to verify the force versus inclination angle “friction-cone” predictions
as in Figure 5.13. The exact nature of the safe force magnitudes below
the case of a perfectly rough interface (6 = ¢) could be explored. The
resulting detailed force versus inclination curve could then be used to
plan optimal digging trajectories. For instance, if the arm motors have
an optimal operating force, the desired path of the end-effector can be
planned to dig with as large an inclination as possible using the optimal
operating force value.

One final idea would be to combine our system with a terrain map-
ping mechanism (e.g. laser range scanning or stereo vision). This
would enable the examination of the extent of the failure region and
the resulting accumulation of soil ahead of the plate after failure. This
information could be used to validate the extent of the failure wedges
predicted from the soil models. It could also be used to aid in the
construction of a realistic virtual physically-based simulation of soil
behavior.

8.2 Virtual Reality Simulation

One of the initial goals of this research was the development of a vir-
tual reality simulation populated with the soil models from this work,
using the soil properties determined by the manipulator. After the de-
velopment of the graphical 3-D rendering of the manipulator, which
was used primarily for debugging during system development, the idea
of enhancing the system to become a full virtual reality system with
haptic feedback came to mind. Due to time constraints, this topic was
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t=2.500000, vol = 50.043926
T

Figure 8.1: Results from a 2-D simulation of constant volume dynamic
soil settling. The smooth solid line represents an initial state of the soil.
The circles represent the evolving state of the soil surface. The jagged
line near the bottom represents the activity, where larger magnitudes
represent larger masses of soil moving at this location.

not explored.

There are a number of components which would need to be devel-
oped in order to create such a system. An accurate physically-based
simulation of soil settling and deformation behavior would be required.
A more complete manipulator model with dynamics and collision de-
tection would need to be developed. And models for soil-manipulator
interaction forces would need to be integrated with the control of a
force-feedback device. A few references related to this type of work are
[4, 15, 25, 40, 76, 125].

Currently, there appears to be very little research in the area of
physically-based soil simulations. There is work in computer graphics
to visually simulate soil deformation [110], but these are not intended to
be physically accurate. Looking specifically at physical soil simulation,
only papers from Li and Moshell [66, 67] are found. They develop a
real-time physically-based model of soil being operated upon (digging,
cutting, piling) and settling under gravity. They present two- and three-
dimensional models. The three-dimensional (3-D) version is essentially
a lattice of two-dimensional (2-D) versions arranged to cover a 3-D
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Figure 8.2: OpenGL model of the manipulator arm and soil surface.
The model is capable of receiving manipulator position information
over the network and displaying this information in real-time.

area. Figure 8.1 shows an example of the 2-D dynamic soil settling
behavior. The solid line is an initial soil profile. The circles represent
the soil surface after settling under the influence of gravity. How this
work scales with increased number of nodes needs to be examined. A
new 3-D model, which is more advanced than a combination of multiple
2-D models, should also be developed. We have only briefly played with
the idea of using gradient fields instead of a lattice of 2-D models.

Assuming that a suitable real-time model for soil settling is avail-
able, a complete dynamic model for the manipulator arm is required. A
basic model of our manipulator has been constructed, which accounts
for the geometry of the arm, but not the dynamics (such as mass, in-
ertia, friction, etc). Figure 8.2 shows a rendering of the arm resting on
a block over a flat ground. Development of a graphical model is fairly
simple; the difficulty lies in adding the dynamics, collision detection,
and force interaction with the environment.

Once the dynamics of the arm and the capability to interact with
the soil is implemented, a haptic device can be coupled to the simulation
to provide real-time force feedback. This would enable users to interact
with the soil, experiencing realistic forces generated from soil models,
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using soil parameter estimates determined by the manipulator for the
specific soil of interest.

8.3 Applications of Work to Mars Explo-
ration

Soil parameter estimates alone are interesting in the context of geolog-
ical discovery. However, in addition, the estimates from this research
can be used for making predictions for various interactions with soil,
taking care to use appropriate friction angles for each loading condition.
Most of these interactions are the standard applications of physical soil
properties for stability calculations.

For instance, for a rover moving up an inclined slope, calculations
can be done to see if the slope is stable or near failure. Calculations
can be done to discover the maximum inclination slope that would be
able to maintain the weight of the rover. Similar calculations can be
done for the stability of a lander on an inclined slope.

Measurements of stratification of the soil can be made if deeper
depths of soil can be uncovered. For instance, with a lander-based ma-
nipulator conducting the gross excavation, a rover-based manipulator
can conduct finer estimation as new layers are uncovered. Using this
dual arm approach, the lander-based manipulator can be highly geared,
with minimal precise sensing capabilities, and the rover-based manip-
ulator can be designed for precise sensing without requiring large force
capability.

One final possible application is the study of geographic variation of
soil properties. Sampling of soil properties can be conducted at many
different locations. If there are significant physical property variations,
independent of composition, perhaps deductions can be made about
the historical cause of such variations.



Chapter 9

Conclusion

This thesis documented work to develop methods to enable a robot
manipulator to estimate soil properties from interactions. In the course
of this work, various topics were examined.

In the area of soil modeling, this thesis presented the application
of numerical limit analysis to the modeling of earth pressure. The
predictions from this technique were shown to be in good agreement
with currently accepted models. In addition, this technique provides
greater versatility than the existing models. It provides both upper
and lower bounds and can easily accommodate a variety of loading
and boundary conditions. No assumptions on the failure surface are
made, allowing for arbitrary elements to be added to the meshes. For
instance, different tool shapes, such as curved blades of bulldozers or
the piecewise linear buckets of excavators can be modeled. Also, buried
obstacles can easily be incorporated into the meshes. The benefits of
this aspect of this work is not limited to robot interactions with soil.
This portion also has the potential to benefit all researchers working
on earth pressure problems by demonstrating and verifying a widely
applicable modeling technique.

The design of a robotic manipulator arm for interactions with soil
was documented. A flat plate was used to more accurately model in-
teractions and to enable the application of the wealth of research in the
area of earth pressure theory. From the experience gained in this work,
a few design recommendations can be made for future researchers. Use
a flat plate if possible, with a large width to depth ratio, near 5:1 or
greater. The end-effector design should be carefully thought out to as-
sure a suitable range of motion for plate orientation and it should not
be backdriveable. For the other joints, design them to be backdrive-
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able if you intend to use motors to obtain force measurements. Have
end-point, position sensing accuracy to less than one percent of typical
insertion depths, or use external feedback to verify insertion depths. If
there is compliance, make sure it is fully sensable, so that the actual
displacement of the soil is easily separable from the measured displace-
ment. This will enable study of the progressive failure of soils. If good
force sensing is available, control the angle of the applied force on the
plate during stroking. If not tracked well, it can result in widely varied
measurements. The control of the angle of force has been shown to
enable the in situ estimation of soil-tool interface friction. This was
shown to be key in the property estimation technique.

This work also represents the first set of experimental results of its
kind. The experimental results in this work have highlighted a few
issues in soil modeling which must be considered by any researcher
working on a similar problem. Common assumptions are made in soil
modeling about the behavior of soils. Most notably, the assumption
of the Mohr-Coulomb failure law and the perfectly plastic behavior of
soils. The results of this work were in wide disagreement with direct
shear tests conducted at high normal stresses (> 7 psi). Upon closer ex-
amination, a study of friction angle dependence on stress at low stresses
was conducted, showing a significant change in measured friction angle
(up to 10° from a normal stress of 7 psi down to 0.2 psi). This has
ramifications for any study of friction angles and cohesion done at low
stresses. If these elevated values are applied to stability calculations
under higher stresses, drastic over-estimation of the shear strength of
the soil will result. The soil models have also assumed perfectly plastic
failure of soils. For a large fraction of the failures at vertical tools and
tools inclined away from the direction of motion, the failure was grad-
ual. It is clear that progressive failure occurred. This complicated the
estimation of failure force for these strokes. Unfortunately, a detailed
study of this effect was not possible using the manipulator in this thesis
and must be left for future researchers.

Finally, this thesis has presented a parameter space intersection
technique for model inversion that operates on tabulated model pre-
dictions. This method utilized the associated uncertainties of the mea-
surements to produce a set of parameters which were consistent with
the observations. The main conclusion from the graphical technique
was that independent measurements of one or more of the variables
were required for doing parameter estimation. The problem was shown
to be very difficult since a large region of parameter space was found
to be consistent with measurements with only +£5% error. To narrow
down the set of consistent parameters, independent measurements must
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be utilized. Fortunately, the development of manipulator stroke control
techniques provided a method for estimating the soil-tool interface fric-
tion independently. This reduced the region of consistent parameters
considerably; however, precise parameter estimates of both density and
internal friction were still not quite achievable. A final conclusion from
the graphical technique has shown that strokes at lower tool angles can
discriminate densities better (and narrow down internal friction angle
estimates at the same time). Higher tool angles are typically better
for discriminating internal friction angle. Since higher tool angles are
prone to gradual failure which introduces additional complications, and
lower tool angles have more drastic, easily discernible failures, future
researchers should use a range of tool angles from 40°—80°. This would
provide better density discrimination, good friction angle discrimina-
tion, and definite failure force estimates. Strokes at lower tool angles,
combined with the independent interface friction estimation technique,
provide a basis for enabling precise estimation of density and internal
friction using interaction force measurements.

In conclusion, this thesis has presented the development of a com-
plete system for studying robot-soil interactions. The ultimate goal of
this work was to enable a manipulator arm to estimate soil properties
in situ. This thesis has successfully shown that it is indeed possible
to estimate physical properties of cohesionless soils using the manipu-
lator alone. This thesis has documented the hardware, software, soil
modeling, and estimation techniques involved in reaching this goal. Ex-
perimental results in multiple soils have been conducted to validate the
methods described. Finally, recommendations have been made for fu-
ture researchers, to enable them to develop systems that build upon
this work. This hopefully will lead to systems which can estimate soil
properties with greater precision and further explore the interesting
issues raised by this work.



Appendix A

Arm Flexibility
Compensation

A.1 Nature of the Problem

Although we have mounted external encoders to account for the back-
lash in the motor gearheads, there is still some imprecision in the mea-
surement, of the end-point of the manipulator resulting primarily from
cable stretch and to a small extent link flexion and motor gearhead com-
pliance. The external encoder on the shoulder is mounted directly to
the shoulder joint, so that measurement is independent of cable stretch.
On the other hand, the elbow joint has external encoders mounted to
motor output shafts since we could not mount them on the elbow due
to the differential. In addition, there are very long runs of cable with
minimal distance for pre-tensioning those cables properly. Therefore,
we will experience a significant flexion in the elbow joint from the cable
stretch during high loads.

A.2 Flexion Estimation

In order to estimate the arm flexion, we immobilized the end of the
manipulator and drove the motors to a specified position within the
obstruction. We know that the actual manipulator end-point has not
changed significantly but the manipulator end-point derived from the
external encoder measurements will reflect some motion. We repeat
this at different locations and we can back out the approximate stiffness
of each of the joints.
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Figure A.1: External encoders for the shoulder and elbow motors. The
shoulder encoder is mounted directly on the joint, whereas the elbow
encoders are at the motor output shafts.

Figure A.2: In order to estimate arm flexion, the end of the arm is
immobilized while the motors drive the arm into the obstruction.
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So we can relate the measured force, F,cqs, and the measured ap-
parent displacement, AX,cqs

Fricas = JiTKstiffJilemeas (A]')

and convert this into torque and joint displacements, replacing the
stiffness matrix with individual matrix elements, and using 7 = JTF
and Ax ~ JAf

[k ke
Tmeas - { k3 k4 } Aomeas (A'2)

A.3 Flexion Compensation

We compensate for the flexion in the elbow joint only since the shoulder
joint is much more stiff in comparison. We do the compensation by
estimating the amount of stretch in the cable for a given torque at the
elbow. The torque at the elbow is computed using the force from the
F/T sensor and orientation of the wrist to compute the tangential force
and distance from the elbow joint. As mentioned before, we make a very
simple assumption of a linear stiffness. Therefore we can compute the
adjustment to the elbow measurement by simply dividing the estimated
torque at the elbow by the estimated elbow stiffness.

_ |F|rcos(84 — 0)

of fset —

6> (A.3)

kelbow

where |F| is the magnitude and ¢ is the angle of the force as measured
by the F/T sensor. The point of application of the force on the plate,
at distance r from the elbow joint, is computed from the F/T sensor
data. The stiffness value kejpow is k4 from equation A.2. The shoulder
is known to be stiff with sensing located directly on the joint axis. In
our tests, we found that the contribution to 6_,, ., from the shoulder
torque was minimal, and thus, we use kejpow = k4.

In practice, we have found that this compensation can overpredict
and underpredict depending upon the arm configuration. We have
made assumptions that the stiffness of the elbow is configuration in-
dependent and also linear. Both of these assumptions are probably
inaccurate to some degree. But nevertheless, the resulting compensa-
tion, which can be up to 1-2 degrees during a stroke, places us closer
to the true elbow joint value than if we ignored the flexibility.
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Figure A.3: To compensate for the elbow flexion, we compute the tan-
gential end-point force to find the torque at the elbow.



Appendix B

Arm Kinematics

This section documents the derivation of the full 5-DOF forward kine-
matics, Jacobian, inverse kinematics, and joint to motor transforma-
tions for the manipulator arm. The joint angles are labeled from 6y to
04 and corresponding link lengths are Iy to 4.

B.1 Forward Kinematics

Let the end point of the base 3-DOF of the arm be labeled X 4. This
is the point just before the end-effector links. The coordinates of point
X 4 are then given by

(ll sin 01 + l2 sin(01 + 02) COS 90
XA = (ll sin 01 + l2 sin(01 + 02) sin 00 (B].)
lo + 1y cos by + I3 cos(61 + 6)

The last 2-DOF (forearm and end-effector wrist) results in a unit vector
along the following orientation

(sin B4 cos B3 cos(6; + 02) + cos By sin(fy + 62)) cos Og—
(sin 4 sin 63) sin Oy
u, = | (sinfycosfscos(fy + 62) + cosfysin(f; + 62)) sinbp+
(sin @4 sin 63) cos By
—sinf4 cosfssin(f; + 62) + cos by sin(f; + 62)

(B.2)

The Cartesian position of the end-point can then be computed from

Xp =X+ lu, (B.3)
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Figure B.1: Geometry for determination of transformation of end-
effector orientation vector angles.

Two additional orientation variables are available for specifying the
Cartesian orientation. These variables need to be sufficient to deter-
mine u, without knowledge of the joint angles for the inverse kinematics
to solvable. Figure B.1 shows a diagram of the end-effector orientation
vector and associated joint angles. The following trigonometric rela-
tions can be defined.

cosfs = é cosfy = % costp, = £ cosl; = %
sinfl; = % sinfy = 3> sinf, =7 sinf] = E (B.4)
tanfls = ¢ tanf, = %l tanf, = g tanf; = g

Combining a select few of the above equations leads to the following
two relations

tanf, = tané,cosfs (B.5)
sinf; = sinf,sinfs (B.6)

This gives us a means for specifying the last two orientation variables
which are sufficient for solving the inverse kinematics problem.

ng = 6+ 6+ tan"!(tan b, cosbs) (B.7)

ns = sin '(sinfysinés) (B.8)
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This gives the 5-DOF Cartesian position vector, the first three are
x,y,z and the last two components, n; and ny, represent the angle of
the end-effector with respect to vertical and the angle “out-of-plane”
relative to 8. In typical operation, ny is usually zero, otherwise, the
lower edge of the end-effector plate would be inclined relative to hori-
zontal in the world frame.

B.2 Jacobian

We obtain the Jacobian matrix by computing
[ 0z Ox Ox Ox Oz ]
a0, 06, 00, 003

() 1 2 5 004
Oy oy Oy Oy Oy
00, 00, 06, 06; 08,
J= 0z 0z 0z 0z 0z (B.9)
~— | 960 06, 00, 0F; 00, :
on; On 0 0 on

1 T LA 1
9 06, 06, 036 06,
8n2 UP] 8n2 8n2 8n2
0 06, 00, 003 00,

The first row of partial derivatives of x are

0
8733 = —(1181 +l2812)80 +l4 (— (8403012 +C4812)80—

0

(s4s3)co) (B.10)

0
8—;1 = (l101 + l2C12) Co + l4 (— (8403812 — 04612) Co) (B].].)
ox
8_02 = (lzclz) Co + l4 (— (8463812 — 64612) Co) (B12)
ox
— = 14 (—(s483¢12) co — (s4¢3) So) (B.13)
003
ox
8_04 = l4 ((0403012 — 84812) Co — (0483) 80) (B14)

where sg = sinfy, ¢p = cosby, and s;2 = sin(f; + 6-) and so on. The
second row of partial derivatives of y are

(;9_02/0 = (181 + l2812) co + l4 ((s4c3c12 + C4812) Co—

(sas3) s0) (B.15)
5(39_;/1 = (lic1 +12¢12) s + 1s (— (s4c3812 — cac12) So) (B.16)
9y

= (l2012) S0 + l4 (— (8403812 — 04012) 80) (Bl?)
00,
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= 4 (— (sas3€12) S0 + (84C3) C0)

= s ((cacscra — sas12) S0 + (cas3) o)

The third row of partial derivatives of z are

0z
06,
0z
06,
0z
06,
0z
06
0z
06,

= 0

= —(l151 +I2512) + 14 (—s4c3C12 — C4512)
= —(l2s12) + ls (—sac3c12 — C4512)

= 14 (5453512)

= I (—0403812 - 84012)

The fourth row of partial derivatives of n; are

(9n1
86y
on
96,
on
86>
(9n1
A
(9n1
EIA

where t4 = tanf,. The last row of partial derivatives of no are

8n2
86y
8n2
86,
ons
86>
Ono
963
8n2
8604

=0

= 1

= 1

= 1 —:igcg orzeroif ey =0
1

= ——— or zeroif cg =0 oroneif ¢, =0

5 2.2
cy + 83C3

= 0
= 0
= 0
V1 —s3s2
Cq

= — = or zero if s3 =0
1—s%s?

(B.18)

(B.19)

(B.20)
(B.21)
(B.22)
(B.23)

(B.24)

(B.25)
(B.26)
(B.27)
(B.28)

(B.29)

(B.30)
(B.31)
(B.32)

(B.33)

(B.34)
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Figure B.2: The orientation of the end effector can be found from
ny :91 +02+0p and N9 :02

B.3 Inverse Kinematics

First, we need to determine u, in the world frame so that we can find
X4 from Xpg. In order to do this, we first need to compute the base
joint angle #y. This follows a couple steps, first we find ul, the end-
point vector in the base-rotated frame.

CnsSny

u, = | sp, (B.35)
CnyCny

where ¢, = cosn; and s,, = sinng, etc.. Next, we need the length

and angle to the end-point X 4, and the length of the end-point vector
in the zy plane.

rx, = Vaz2+y? fx, =tan ! % (B.36)
re = lyy/c2, 8% + 82, (B.37)

Finally, we project ny into the zy plane and use the law of sines to
ultimately find the base angle 6.

-1 tn2

(B.38)

0’ = tan
n
2 S,

'
90” = sin~! <7“:(e sin0;2> (B39)
A
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Figure B.3: Given the values for rx,, 0x,, and r¢, the value of 0,
can be found using the law of sines.

then we have §p = 0x, + 0,7¢. From this, we compute the end-point
vector in the world frame as

an Snl Co — Snz So
Ue = | CnySny So + SnyCo (B.40)

CnyCny

Thus we can find the coordinates of X 4 in the world frame.
The problem then reduces to a simple 3-DOF manipulator with a
given end-point position. Let us label the coordinates of X 4 as x4, ya4,

and z4 and let 74 = /2% +y% and ua = /1% + z%. The solution for

the joint angles is then

2 g2 g2

6, = cos* <%> (B.41)
T _1 [ za . 1 [l2sinfy

i = - —tan — | —sin — (B.42)
2 A uA

p = tan~' <i—i> (B.43)

Now that we know the first three joint values, we can compute the
last two orientation joint values from 6, = ny — 6; — 6> and 0, = no.

FY;
f; = tan ! <ﬂ> (B.44)

T
cos @} sin 6,
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\/ sin? @) + cos? 0} sin” 8,

!
cos 0} cos @),

6, = tan ' (B.45)

Additional range and sign checks need to be done. If 6, < 0 then
6y = —04 and if 8, < 0 and f3 > 0 then ;3 = 03 — m otherwise
93 = 03 - T.

B.4 Arm Transformations

Transformation matrices must be used to convert from joint space to
motor space and vice versa. These matrices account for joint signs,
the elbow differential, and the coupling between the elbow and shoul-
der joint as a result of the routing of the elbow coupling through the
shoulder pulleys. The transformation from joint to motor values is

50 0 0 0 0
, 0 s1 0 0 0
T =| 0 —sore  s2 Lrgss 0 (B.46)
0 SoTre: —So —%rd33 0
0 0 0 0 s4

and the inverse transformation from motor to joint values is

[ so 0 0 0 O
0 S1 0 0 O
T =| 0 sare %ssf —%;’33 0 (B.47)
0 0 -7 T 0
0 0 0 0 s4

The s through s4 are either +1 or -1 and represent the joint sign for
each, 7. is the coupling ratio between the elbow and shoulder, and rg4
is the gear ratio of the differential. For the final arm configuration,
r. = 0.58 and r4 = 2.0.



Appendix C

Model Prediction Tables

In this Appendix, we provide a listing of the predictions from the vari-
ous models we have used. They are tabulated for the discrete values at
which the numerical UB/LB solutions were computed. All predictions
are computed directly, with the exception of the model from Caquot
and Kerisel, which was interpolated from their tabulated values. A

reminder of the notation used here:
a tool angle

¢ internal friction angle

0 interface friction angle
Tabulated values are passive - active earth pressure coefficients,

2
KP_KA:W(FP_FA) (C].)

The logarithmic spiral model does not have an explicit active earth
pressure counterparts, therefore we have used the active from Caquot
and Kerisel since it is likely closest in form. The choice of active model
is somewhat minor. The contribution of the active portion is can reach
up to around 15%, typically much lower.
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Table C.1: Earth Pressure Coefficient Predictions for ¢ = 70°

¢ 4 | Coulomb Log Spiral Chen UB Ca.quot| Num. UB  Num. LB
25°  0° 1.504 1.552 1.502 1.333 1.677 1.450
5° 1.697 1.702 1.693 1.600 1.842 1.652
10° 1.908 1.891 1.900 1.870 2.021 1.854
15° 2.147 2.137 2.132 2.162 2.217 2.075
20° 2.425 2.456 2.377 2.428 2.460 2.292
25° 2.759 2.876 2.624 2.557 2.692 2.520
30° 0° 1.821 1.895 1.820 1.568 2.027 1.760
5° 2.055 2.077 2.054 1.912 2.225 2.009
10° 2.321 2.311 2.316 2.262 2.441 2.258
15° 2.633 2.619 2.623 2.645 2.703 2.552
20° 3.007 3.038 2.970 3.066 3.048 2.868
25° 3.469 3.593 3.346 3.427 3.431 3.191
30° 4.055 4.231 3.737 3.610 3.792 3.544
35° 0° 2.171 2.283 2.172 1.796 2.404 2.101
5° 2.462 2.509 2.463 2.229 2.636 2.414
10° 2.804 2.804 2.801 2.691 2.911 2.727
15° 3.214 3.200 3.208 3.210 3.275 3.117
20° 3.722 3.749 3.692 3.784 3.772 3.558
25° 4.368 4.505 4.245 4.418 4.363 4.021
30° 5.214 5.393 4.863 4.979 4.945 4.569
40° 0° 2.571 2.737 2.573 2.012 2.799 2.485
5° 2.939 3.024 2.943 2.570 3.086 2.885
10° 3.383 3.403 3.384 3.187 3.466 3.285
15° 3.933 3.920 3.928 3.890 3.985 3.816
20° 4.633 4.658 4.607 4.685 4.726 4.425
25° 5.552 5.705 5.419 5.618 5.615 5.106
30° 6.802 6.977 6.372 6.644 6.519 5.861
45°  0° 3.041 3.285 3.044 2.227 3.222 2.930
5° 3.514 3.654 3.520 2.929 3.615 3.449
10° 4.101 4.151 4.105 3.761 4.152 3.969
15° 4.850 4.842 4.847 4.739 4.920 4.690
20° 5.834 5.858 5.812 5.905 6.051 5.548
25° 7.175 7.351 7.019 7.270 7.339 6.552
30° 9.083 9.238 8.505 8.896 8.763 7.712
50° 0° 3.608 3.972 3.612 2.413 3.728 3.447
5° 4.228 4.457 4.237 3.281 4.274 4.139
10° 5.019 5.120 5.027 4.415 5.063 4.830
15° 6.060 6.066 6.060 5.789 6.268 5.820
20° 7.482 7.506 7.464 7.501 7.923 7.056
25° 9.509 9.719 9.308 9.574 9.857 8.564
30° 12.563 12.640 11.698 12.153 12.146 10.388
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Table C.2: Earth Pressure Coefficient Predictions for ¢ = 75°

¢ 4 | Coulomb Log Spiral Chen UB Ca.quot| Num. UB Num. LB

25° 0° 1.626 1.661 1.626 1.502 1.818 1.587
5° 1.857 1.852 1.853 1.803 2.015 1.828
10° 2.113 2.099 2.106 2.107 2.234 2.069
15° 2.410 2.427 2.383 2.436 2.496 2.327
20° 2.763 2.853 2.676 2.736 2.782 2.590
25° 3.195 3.334 2.971 2.881 3.053 2.851
30° 0° 2.000 2.054 2.000 1.800 2.222 1.959
5° 2.285 2.291 2.283 2.195 2.460 2.264
10° 2.616 2.602 2.611 2.597 2.749 2.569
15° 3.011 3.024 2.990 3.037 3.121 2.920
20° 3.496 3.596 3.411 3.522 3.549 3.298
25° 4.110 4.254 3.871 3.937 3.994 3.700
30° 4.912 4.989 4.350 4.147 4.431 4.118
35° 0° 2.424 2.507 2.426 2.125 2.652 2.382
5° 2.786 2.807 2.786 2.637 2.960 2.775
10° 3.218 3.207 3.214 3.184 3.358 3.167
15° 3.751 3.763 3.734 3.798 3.894 3.648
20° 4.427 4.537 4.339 4.479 4.522 4.179
25° 5.312 5.462 5.032 5.228 5.213 4.777
30° 6.512 6.525 5.806 5.893 5.947 5.460
40° 0° 2.921 3.046 2.924 2.458 3.136 2.875
5° 3.387 3.431 3.390 3.139 3.551 3.390
10° 3.964 3.957 3.961 3.894 4.132 3.906
15° 4.696 4.707 4.681 4.753 4.914 4.576
20° 5.656 5.781 5.555 5.726 5.839 5.340
25° 6.961 7.109 6.602 6.866 6.900 6.211
30° 8.816 8.695 7.833 8.121 8.079 7.244
45°  0° 3.519 3.707 3.524 2.815 3.706 3.469
5° 4.133 4.213 4.138 3.703 4.307 4.159
10° 4.915 4.919 4.914 4.755 5.187 4.849
15° 5.943 5.955 5.930 5.992 6.306 5.792
20° 7.343 7.493 7.220 7.466 7.714 6.908
25° 9.337 9.465 8.833 9.193 9.348 8.223
30° 12.337 11.920 10.824 11.251 11.286 9.750
50° 0° 4.261 4.547 4.268 3.202 4.437 4.197
5° 5.087 5.226 5.096 4.355 5.352 5.144
10° 6.174 6.195 6.176 5.859 6.646 6.092
15° 7.658 7.670 7.647 7.684 8.326 7.432
20° 9.774 9.958 9.608 9.956 10.470 9.115
25° 12.966 13.022 12.185 12.709 13.094 11.182
30° 18.149 17.016 15.532 16.134 16.417 13.785
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Table C.3: Earth Pressure Coefficient Predictions for e« = 80°

¢ 4 | Coulomb Log Spiral Chen UB Ca.quot| Num. UB  Num. LB
25°  0° 1.757 1.778 1.757 1.673 1.937 1.707
5° 2.031 2.022 2.028 2.007 2.166 1.986
10° 2.343 2.347 2.332 2.345 2.425 2.265
15° 2.711 2.780 2.658 2.711 2.754 2.559
20° 3.160 3.272 3.004 3.044 3.082 2.867
25° 3.725 3.812 3.355 3.204 3.391 3.158
30° 0° 2.197 2.229 2.198 2.061 2.393 2.141
5° 2.544 2.538 2.542 2.512 2.671 2.500
10° 2.955 2.957 2.945 2.971 3.035 2.860
15° 3.457 3.531 3.403 3.474 3.520 3.268
20° 4.091 4.212 3.914 4.028 4.030 3.706
25° 4.918 4.976 4.472 4.503 4.535 4.187
30° 6.035 5.825 5.054 4.743 5.047 4.668
35° 0° 2.709 2.758 2.711 2.498 2.874 2.644
5° 3.159 3.157 3.157 3.100 3.257 3.117
10° 3.710 3.712 3.702 3.743 3.783 3.590
15° 4.407 4.491 4.347 4.465 4.497 4.160
20° 5.318 5.442 5.099 5.266 5.259 4.781
25° 6.554 6.555 5.962 6.147 6.045 5.515
30° 8.305 7.827 6.926 6.929 6.933 6.332
40° 0° 3.325 3.401 3.329 2.988 3.446 3.247
5° 3.920 3.927 3.920 3.816 3.994 3.880
10° 4.675 4.677 4.668 4.734 4.784 4.513
15° 5.662 5.763 5.590 5.777 5.839 5.322
20° 7.005 7.128 6.710 6.959 6.949 6.242
25° 8.913 8.788 8.055 8.345 8.178 7.305
30° 11.781 10.757 9.636 9.870 9.635 8.624
45°  0° 4.088 4.204 4.094 3.573 4.165 3.993
5° 4.894 4.912 4.895 4.700 4.983 4.857
10° 5.950 5.953 5.944 6.035 6.222 5.722
15° 7.390 7.514 7.296 7.605 7.705 6.890
20° 9.440 9.546 9.008 9.477 9.391 8.269
25° 12.527 12.114 11.158 11.669 11.372 9.900
30° 17.535 15.294 13.812 14.281 13.840 11.800
50° 0° 5.064 5.246 5.073 4.252 5.130 4.939
5° 6.182 6.223 6.185 5.783 6.432 6.149
10° 7.706 7.709 7.701 7.781 8.257 7.359
15° 9.882 10.040 9.748 10.204 10.425 9.058
20° 13.166 13.205 12.470 13.222 13.065 11.201
25° 18.504 17.392 16.061 16.878 16.396 13.841
30° 28.137 22.826 20.732 21.426 20.790 17.250
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Table C.4: Earth Pressure Coefficient Predictions for ¢ = 85°

¢ 4 | Coulomb Log Spiral Chen UB Ca.quot| Num. UB Num. LB

25° 0° 1.900 1.906 1.900 1.861 2.078 1.805
5° 2.226 2.222 2.223 2.231 2.361 2.151
10° 2.606 2.650 2.577 2.606 2.700 2.497
15° 3.066 3.155 2.961 3.011 3.080 2.847
20° 3.641 3.712 3.368 3.380 3.457 3.206
25° 4.387 4.317 3.782 3.558 3.818 3.547
30° 0° 2.416 2.427 2.417 2.349 2.605 2.289
5° 2.840 2.837 2.837 2.862 2.987 2.747
10° 3.354 3.405 3.322 3.384 3.477 3.205
15° 3.999 4.093 3.872 3.956 4.040 3.707
20° 4.838 4.887 4.487 4.586 4.627 4.243
25° 5.972 5.773 5.161 5.125 5.241 4.819
30° 7.573 6.753 5.864 5.397 5.840 5.389
35° 0° 3.036 3.053 3.037 2.930 3.215 2.863
5° 3.599 3.596 3.597 3.633 3.775 3.477
10° 4.308 4.370 4.270 4.386 4.486 4.091
15° 5.232 5.332 5.065 5.231 5.309 4.817
20° 6.485 6.477 5.996 6.168 6.208 5.612
25° 8.259 7.812 7.066 7.200 7.202 6.525
30° 10.920 9.332 8.261 8.115 8.270 7.520
40° 0° 3.803 3.829 3.805 3.613 3.994 3.563
5° 4.569 4.567 4.567 4.613 4.828 4.400
10° 5.571 5.650 5.522 5.721 5.856 5.237
15° 6.932 7.033 6.695 6.982 7.086 6.300
20° 8.865 8.738 8.126 8.410 8.468 7.509
25° 11.771 10.801 9.846 10.084 10.095 8.920
30° 16.476 13.241 11.868 11.927 11.955 10.581
45°  0° 4.783 4.824 4.786 4.503 5.076 4.443
5° 5.854 5.852 5.853 5.922 6.287 5.609
10° 7.312 7.414 7.243 7.603 7.828 6.774
15° 9.388 9.476 9.026 9.580 9.678 8.360
20° 12.517 12.118 11.296 11.937 11.897 10.232
25° 17.596 15.445 14.150 14.698 14.640 12.498
30° 26.750 19.550 17.674 17.986 18.056 15.202
50° 0° 6.082 6.150 6.087 5.637 6.613 5.577
5° 7.625 7.624 7.624 7.664 8.403 7.251
10° 9.828 9.963 9.724 10.310 10.739 8.924
15° 13.155 13.182 12.546 13.520 13.653 11.348
20° 18.568 17.498 16.320 17.518 17.409 14.351
25° 28.351 23.194 21.314 22.360 22.372 18.160
30° 49.094 30.564 27.807 28.384 28.038 23.015
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Table C.5: Earth Pressure Coefficient Predictions for ¢ = 90°

¢ 4 | Coulomb Log Spiral Chen UB Ca.quot| Num. UB  Num. LB
25°  0° 2.058 2.058 2.058 2.056 2.190 1.876
5° 2.447 2.472 2.434 2.464 2.525 2.286
10° 2.913 2.977 2.846 2.875 2.941 2.696
15° 3.492 3.549 3.294 3.321 3.367 3.099
20° 4.239 4.177 3.771 3.727 3.790 3.504
25° 5.244 4.857 4.258 3.923 4.197 3.892
30° 0° 2.667 2.667 2.667 2.665 2.782 2.405
5° 3.186 3.219 3.170 3.245 3.265 2.957
10° 3.835 3.906 3.748 3.835 3.878 3.509
15° 4.675 4.709 4.405 4.481 4.512 4.100
20° 5.808 5.631 5.144 5.193 5.169 4.729
25° 7.408 6.658 5.953 5.804 5.886 5.394
30° 9.798 7.793 6.800 6.112 6.565 6.047
35° 0° 3.419 3.419 3.419 3.421 3.516 3.042
5° 4.131 4.175 4.109 4.241 4.249 3.793
10° 5.056 5.135 4.933 5.118 5.141 4.543
15° 6.307 6.292 5.912 6.102 6.062 5.419
20° 8.079 7.665 7.059 7.193 7.088 6.379
25° 10.735 9.261 8.380 8.395 8.281 7.463
30° 15.027 11.077 9.855 9.462 9.517 8.625
40° 0° 4.381 4.382 4.381 4.368 4.495 3.832
5° 5.383 5.443 5.352 5.574 5.612 4.866
10° 6.742 6.825 6.557 6.911 6.867 5.900
15° 8.671 8.548 8.047 8.432 8.260 7.210
20° 11.572 10.667 9.869 10.154 9.901 8.696
25° 16.273 13.223 12.061 12.174 11.911 10.444
30° 24.731 16.241 14.636 14.397 14.159 12.432
45°  0° 5.657 5.656 5.657 5.657 5.934 4.837
5° 7.112 7.193 7.064 7.438 7.532 6.294
10° 9.183 9.256 8.886 9.546 9.360 7.751
15° 12.306 11.931 11.235 12.026 11.559 9.744
20° 17.379 15.350 14.237 14.983 14.293 12.095
25° 26.536 19.646 18.017 18.447 17.777 14.980
30° 45.925 24.933 22.678 22.572 22.119 18.469
50° 0° 7.416 7.416 7.416 7.446 8.038 6.148
5° 9.613 9.726 9.535 10.121 10.303 8.272
10° 12.933 12.951 12.410 13.613 13.129 10.397
15° 18.340 17.329 16.303 17.849 16.766 13.529
20° 28.124 23.196 21.532 23.125 21.613 17.371
25° 48.899 30.923 28.458 29.515 28.180 22.326
30° 107.223 40.891 37.456 37.465 35.068 28.596
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Table C.7: Earth Pressure Coefficient Predictions for e« = 100°

¢ 4 | Coulomb Log Spiral Chen UB Ca.quot| Num. UB  Num. LB
25°  0° 2.443 2.474 2.425 2.501 2.612 2.133
5° 3.010 3.038 2.919 2.988 3.076 2.660
10° 3.731 3.681 3.469 3.481 3.560 3.186
15° 4.695 4.406 4.072 4.015 4.079 3.700
20° 6.045 5.199 4.720 4.503 4.611 4.225
25° 8.052 6.059 5.385 4.737 5.121 4.747
30° 0° 3.305 3.345 3.273 3.417 3.507 2.819
5° 4.115 4.130 3.972 4.153 4.167 3.567
10° 5.200 5.057 4.783 4.901 4.894 4.314
15° 6.726 6.135 5.716 5.721 5.708 5.098
20° 9.006 7.369 6.769 6.625 6.608 5.944
25° 12.678 8.742 7.924 7.400 7.563 6.833
30° 19.247 10.264 9.133 7.792 8.539 7.718
35° 0° 4.450 4.499 4.394 4.660 4.706 3.692
5° 5.646 5.629 5.409 5.766 5.670 4.770
10° 7.336 7.005 6.636 6.950 6.765 5.848
15° 9.868 8.660 8.104 8.279 8.064 7.054
20° 13.962 10.617 9.834 9.753 9.564 8.406
25° 21.317 12.887 11.827 11.378 11.302 9.929
30° 36.826 15.470 14.048 12.821 13.139 11.539
40° 0° 6.035 6.091 5.936 6.399 6.353 4.841
5° 7.873 7.773 7.459 8.155 7.789 6.417
10° 10.637 9.897 9.375 10.101 9.510 7.993
15° 15.120 12.542 11.762 12.316 11.664 9.898
20° 23.203 15.783 14.694 14.824 14.254 12.104
25° 40.313 19.680 18.222 17.765 17.415 14.692
30° 88.186 24.275 22.356 21.004 21.010 16.451
45°  0° 8.338 8.388 8.156 8.970 8.729 6.407
5° 11.311 11.003 10.537 11.780 10.967 8.769
10° 16.148 14.440 13.664 15.108 13.793 11.131
15° 24.896 18.896 17.734 19.023 17.529 14.233
20° 43.475 24.578 22.954 23.691 22.322 17.969
25° 95.645 31.685 29.525 29.158 28.389 22.508
30° 372.252 40.405 37.605 35.671 35.685 27.478
50° 0° 11.887 11.897 11.530 13.068 12.366 8.632
5° 17.040 16.191 15.459 17.747 16.038 12.295
10° 26.386 22.112 20.880 23.857 20.962 15.957
15° 46.291 30.170 28.291 31.266 27.986 21.190
20° 102.360 40.946 38.281 40.496 38.047 27.805
25° 400.660 55.068 51.506 51.675 51.698 35.147
30° 68.639 65.584 70.082 42.676




Appendix D

Direct Shear Results

In this Appendix, we include the results from our low stress direct shear
tests and a few tests at higher, more typical loads. For each soil we
have tested at 0.4473, 0.921, 2.921, and 5.891 kg using the low stress
assembly and at 17.545, 27.545, and 47.545 kg at high stress. The area
over which these loads are applied is 35.6 cm? (5.5 in?). The load cell
has a sensing range of 0-500 lbs and a small bias which was removed.
At low readings, there is some noise present in the measurements. For
the low stress cases, a windowed average over three data points is used
to filter out the noise. The displacement is generated via a motor,
maintaining a constant strain rate of 0.0021 cm/sec.

There is some friction inherent in the system. Typically, the small
contribution to measured shear force is negligible when using large
loads. For the low stress measurements, this friction becomes more
significant. The system is run without any soil in the shear box in both
the forward and reverse direction to obtain a friction hysteresis loop.
Figure D.1 shows the measured force versus displacement. Half of the
magnitude of this loop is subtracted from the subsequent experimen-
tal data. This typically results in a reduction of the estimated friction
angle of roughly half to a full degree in the lowest stress case.

In the following figures, the estimated friction angle and the dilation
of the soil are plotted against the horizontal displacement. The peak
angle for each test is used as the measured friction angle. Four tests are
conducted for each of the low stress cases and the closest three are kept
and plotted. For the higher loads, only a single run is done for each.
The average densities and standard deviations in g/cc for the samples
tested were: loose Ticino - 1.450, 0.026, Nevada Fine - 1.456, 0.022,
dense Ticino - 1.521, 0.012, and glass beads - 1.451, 0.013. The dense
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Suspended Shear Box Test w/ No Sand
T T T T
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0.48
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Figure D.1: Direct shear results with no sand, showing the friction
hysteresis loop of the test assembly. Half the magnitude is subtracted
from subsequent tests.

Ticino was prepared using simple tamping, since no other means was
readily available. For denser samples, we would expect the measured
friction angles to be higher.
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Loose Ticino Shear Box Results
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Figure D.2: Direct shear results for three trials of loose Ticino with
0.4473 kg load.

Loose Ticino Shear Box Results

friction angle (degrees)
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Figure D.3: Direct shear results for three trials of loose Ticino with
0.921 kg load.
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Loose Ticino Shear Box Results

friction angle (degrees)
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Figure D.4: Direct shear results for three trials of loose Ticino with
2.921 kg load.

Loose Ticino Shear Box Results
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Figure D.5: Direct shear results for three trials of loose Ticino with
5.891 kg load.
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dilation (cm)

friction angle (degrees)
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Loose Ticino Shear Box Results
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Figure D.6: Direct shear results for three trials of loose Ticino with
high loads.
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Summary: Loose Ticino Shear Results
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Nevada Fine Shear Box Results
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Figure D.8: Direct shear results for three trials of loose Nevada with
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Nevada Fine Shear Box Results
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Figure D.10: Direct shear results for three trials of loose Nevada with
2.921 kg load.

Nevada Fine Shear Box Results

"“‘_“A“__:i‘/:’_—f";j\‘_%:*i'//”:7*‘
30+ T
=
.
25 .

I /
¢ N
201 !
3
o !
215 |
© 1
s |
S I
S1of ]
h I

s | — 5.891 kg —— Trial 1 —— 32.37

/" 5.891 kg —— Trial 2 — 32.27
, ~ ~ 5.891 kg —- Trial 3 —— 32.16
0= L Il L L T T
0 0.1 0.2 0.3 0.4 0.5 06
displacement (cm)
B == T e
g =
=
S
8
5 M
L L
0.6

0.3 0.4 0.5
displacement (cm)

Figure D.11: Direct shear results for three trials of loose Nevada with

5.891 kg load.



207

Nevada Fine Shear Box Results
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Dense Ticino Shear Box Results
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Figure D.14: Direct shear results for three trials of dense Ticino with
0.4473 kg load.
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Glass Beads Shear Box Results
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Figure D.21: Direct shear results for three trials of dense Ticino with
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Glass Beads Shear Box Results
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