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ABSTRACT

Arid regions are characterized by high variability in the arrival of rainfall, and
species found in these areas have adapted mechanisms to ensure the
capture of this scarce resource. In particular, the rooting strategies employed
by vegetation can be critical to their survival. However, land surface models
currently prescribe rooting profiles as a function of only the plant functional
type of interest with no consideration for the soil texture or rainfall regime of
the region being modeled. Additionally, these models do not incorporate the
ability of vegetation to dynamically alter their rooting strategies in response
to transient changes in environmental forcings or competition from other
plant species, and therefore tend to underestimate the resilience of these
ecosystems.

To address the simplicity of the current representation of roots in land
surface models, a new dynamic rooting scheme was incorporated into the
framework of the distributed ecohydrologic model tRIBS+VEGGIE. The new
scheme optimizes the allocation of carbon to the root zone to reduce the
perceived stress of the vegetation, so that root profiles evolve based upon
local climate and soil conditions. The strength of this scheme lies in its
ability to optimize the rooting profile in a computationally-efficient manner,
without requiring additional parameterization by the model user.

The ability of the new scheme to capture the complex dynamics of natural
systems was evaluated by comparisons to hourly-timescale energy flux, soil
moisture and vegetation growth observations from the Walnut Gulch
Experimental Watershed, Arizona. Very good agreement was found between
the model and observations, providing confidence that the improved model is
able to capture the multidirectional interactions between climate, soil and
vegetation at this site. The power of the new scheme was demonstrated
through simulation of observed forms of within-hillslope vegetation
patterning and the model's ability to represent competition-colonization
dynamics between different plant functional types under non-equilibrium
conditions.

Thesis Supervisor: Rafael L. Bras

Professor of Civil and Environmental Engineering
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Chapter 1

Introduction
"Things are similar - this makes science possible.

Things are different - this makes science

necessary."

- Richard Levins and Richard Lewontin (1985)

1.1 Motivation

Drylands can be broadly described as regions where rainfall does not meet

evaporative demand. These regions include the arid, semiarid and dry subtropics of

the globe and cover approximately 40% of land surface (Reynolds, et al. 2007).

The vegetation communities associated with these drylands (i.e. grasslands,

savannas, xerophytic woodlands and deserts) account for approximately 30% of the

world's above and below ground biomass (Puigdefebregas 1998). In the past few

decades, climatic shifts and increased anthropogenic stresses have resulted in 10-

20% of these drylands being degraded, resulting in desertification. Efforts to

protect and rehabilitate degraded systems can be expensive and require long-term

management plans and practices. The ability to identify vulnerable systems and

predict the potential impact of both disturbance and recovery is therefore a highly

valuable tool for the allocation of resources (Reynolds, et al. 2007).

Coupled eco-hydrologic models allow us to explore the interplay between soils,

vegetation and climate. Such models can be used to predict the impact of climate

variability on a grassland or to estimate the length of time and manner in which a

system may recover from over-grazing. However, in order to capture the dynamic
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nature of dryland systems and their responses to perturbations, eco-hydrologic

models need to allow for the fully dynamic representation of multiple plant

functional types (PFTs) and their patch-scale interactions both above and below

ground.

Patch-scale interactions, in particular rooting strategies, play an important role in

buffering ecosystems against disturbances and contribute significantly to their

resilience and recovery processes. Plant-specific rooting strategies play an integral

role in the outcomes of local competition between species and are believed to

explain some of the spatial heterogeneity in vegetation observed in natural

landscapes.

This thesis will explore how plant-specific rooting strategies are mediated by the

influences of soil type, topography and climatic forcings and their role in stability,
resilience and the generation of spatially heterogeneous landscapes.

Chapter 2 introduces the concept of eco-hydrologic modeling, outlines the model

that was used in this thesis, and describes modifications made to improve the

hydrologic model.

Chapter 3 explores the interaction between spatially- and temporally-invariant root

profiles and the energy and water balances. This chapter begins with a detailed

description of roots, and in particular observations of plasticity in rooting

architecture. The chapter endeavors to highlight the need to consider soil texture,
climatic regime and plant functional type when determining root parameters. A
brute force method was applied along with the evolutionary principle - that states

vegetation co-evolve with local conditions to make optimal use of available

resources - to determine optimal rooting parameters for two climate regimes, five

soil textures and two plant functional types.

Chapter 4 introduces an alternative to the standard static profiles described in
Chapter 3. This chapter outlines the development of a new dynamic rooting scheme

-18-



built on the idea that plants respond to gradients in soil moisture by allocating root

carbon in a manner that maximizes the net benefit to the plant. A linear

optimization scheme is used to determine the optimal allocation strategy based on

the maximization of the transpiration efficiency (used as a proxy for productivity),

subject to appropriate constraints. The chapter then tests this new scheme

qualitatively by running a series of experiments to observe how the scheme

responds to soil texture and variability in climate. A series of climate perturbation

experiments are also conducted. Using the methodology outlined in Chapter 3 to

determine the optimal static rooting profile, the vegetation response and water

balance from a static profile are compared to the results obtained from the new

dynamic scheme. The chapter ends with a set of simple hillslope simulations to

assess the influence that the static and dynamic rooting profiles have on the spatial

heterogeneity observed on natural hillslopes.

Chapter 5 is a quantitative evaluation of the capabilities of tRIBS+VEGGIE. The

performance of the model is tested against in-situ and remote sensing observations

of the components of the water and energy balances. This chapter utilizes the new

dynamic scheme as a method of coping with the high degree of inter-annual

variability over the evaluation period.

Chapter 6 incorporates a competition-colonization model into the tRIBS+VEGGIE

framework. The added model increases the capabilities of VEGGIE to simulate the

above and below ground dynamics of multiple plant functional types within one

computational element. The influence of soil and aspect are tested with this new

competition-colonization model. The competition-colonization model allows for the

modeling of non-equilibrium vegetation dynamics, which can be utilized to examine

the impact of climate change on the compositions and distribution of grasses and

shrubs in semiarid regions.
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Chapter 2

Model Development
"The role of ecologic theory is not to make

accurate predictions, as in astronomy or physics.

Rather it attempts to separate the expected from

the unexpected, the possible from the impossible

and the surprising from the unsurprising."

- Michael J Crawley 1985

This chapter will introduce the concept of eco-hydrologic modeling, outline the

model that was used in this study, and describe the modifications to the hydrologic

model that were made prior to commencing the main body of work on rooting

profiles and competition dynamics.

2.1 Introduction

Noy-Meir (1973), Charney et al. (1975), Idso et al.(1975) and Eagleson (1978) are

among those who pioneered the idea that the hydrologic, ecologic and atmospheric

systems are not isolated but rather part of a more complex series of

multidirectional interactions. Land surface attributes, such as soil type, vegetation

cover and topography, characterize the physical properties and parameters that

control these interactions and govern the exchange of water and energy between

the surface and atmosphere above it (Charney, et al. 1975, Eagleson 1978a,

Eagleson 1978b, Eagleson 1978c, Eagleson 1978d, Eagleson 1978e, Eagleson

1978f, Eagleson 1978g, Idso, et al. 1975, Noy-Meir 1973, Pielke 2001). The key

properties that influence these interactions are the surface temperature, vegetation
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type and cover, surface albedo and soil moisture. Surface albedo provides a clear

demonstration of the highly nonlinear nature of these interactions: albedo is a

function of soil moisture, which varies with evaporation, which in turn is driven by

absorbed radiation, which finally is a function of albedo. With these complex

interactions in mind, several studies have shown how vegetation state (Chase, et

al. 2000, Pielke 2001), root zone available moisture (Koster and Suarez 1996, Milly

and Dunne 1994), soil moisture (Porporato, et al. 2004, Yeh, et al. 1984) and

albedo (Charney, et al. 1975) all greatly impact the modeled atmospheric system

(Eltahir 1996, Eltahir 1998).

When modeling the interaction between hydrology and ecology, water-limiting

environments are of particular interest as soil moisture is assumed to be the

limiting resource for primary production, which results in a strong coupling between

the hydrologic and ecologic processes. Traditionally, hydrology and ecology models

have been deficient in accurately characterizing the interplay between the climate,

soil and vegetation drivers of a system, with hydrologists ignoring the spatial and

temporal dynamics of vegetation and ecologists ignoring the spatial and temporal

dynamics of hydrological processes (Ivanov, et al. 2008a, Ivanov, et al. 2008b)).
This thesis will argue that the dynamics of both systems are necessary to

adequately represent land-atmosphere interactions.

2.1.1 The Role of Soil Moisture

When examining the energy and water balances for the land-atmosphere system,

evapotranspiration is common to both. Evapotranspiration is a function of the

spatial and temporal dynamics of soil moisture. D'Odorico (2007) describes the role

of soil moisture as 'the environmental variable synthesizing the effect of climate,

soil and vegetation on the dynamics of water-limited systems'. Hydrologically, soil

moisture content influences infiltration rates, lateral redistribution, deep percolation

below the root zone as well as surface runoff. Atmospherically, soil moisture in the

near surface influences the partitioning of incoming energy into fluxes of sensible

heat, latent heat and ground heat. Ecologically, soil moisture content dictates the

amount of moisture available to vegetation for primary productivity, which through
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transpiration also influences processes in the lower atmosphere (Avissar 1998, Kurc

and Small 2004, Small and Kurc 2003).

Soil moisture is commonly referred to as the land surface's memory as it retains

information regarding past climatic conditions (e.g. precipitation events, incoming

radiation etc). These antecedent soil moisture conditions have been shown to

amplify hydroclimatic variability. Studies show that a positive feedback may exist

between soil moisture and precipitation, suggesting that high soil moisture

conditions tend to increase the probability of a wetter future climate, and drier soil

conditions tend to increase the probability of prolonged drought conditions (Eltahir

1998, Entekhabi, et al. 1992, Small and Kurc 2003). Studies undertaken by

Brubaker and Entekhabi (1995, 1996) and Entekhabi and Brubaker (1995) applied

an analytical approach to modeling the land-atmosphere interactions to illustrate

the feedback mechanisms inherent between soil moisture and energy fluxes at the

surface. Quinn et al. (1995) coupled a planetary boundary layer model with a one

dimensional bucket model, TOPMODEL (Beven and Kirkby 1979). The result of the

coupled model was elucidation of the sensitivity of the planetary boundary layer to

antecedent soil moisture conditions.

2.1.2 The Role of Topography

Topography is a key element in the land-atmosphere system as it influences both

the water and energy balances. Topography redistributes precipitation, either above

ground as surface runoff or in the subsurface via lateral soil moisture flow

(Florinsky and Kuryakova 1996). This redistribution of moisture occurs at various

scales, from the scale of runon and re-infiltration between a bare patch and an

individual plant to the convergences of rivers within a catchment. It is these

interactions that result in the spatial distribution of soil moisture (Ivanov 2006a).

Through geometry, slope and aspect, topography influences the amount of net

radiation incident on the land surface. This alters surface energy fluxes and results

in niche environments being created on opposing hillslopes (north versus south)

(Ivanov, et al. 2008b).
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Topography's influence on the spatial distribution of vegetation is also very strong.

In the southwestern United States, the differences in soil moisture and radiative

forcings between north- and south-facing slopes have resulted in different

vegetation species dominating opposing slopes (Ivanov, et al. 2008b).

2.1.3 The Role of Vegetation

In arid and semi arid ecosystems, vegetation can be thought of as the integrated

response of the hydrologic interactions between the terrestrial and atmospheric

systems. It is at the interface of these systems, the land surface, where vegetation

exerts its influence by impacting the energy and water balances, resulting in a

complex multidirectional relationship between soils, climate and vegetation

(Eagleson 1978a, Eagleson 1978b, Eagleson 1978c, Eagleson 1978d, Eagleson

1978e, Eagleson 1978f, Eagleson 1978g, Ivanov, et al. 2008a, Ivanov, et al.

2008b).

Shuttleworth (1991) identified the need for models to simulate the spatial and

temporal dynamics of hydrological processes coupled with vegetation dynamics in

order to accurately capture the latent heat fluxes to the atmosphere. In recent

years, enormous effort has been directed towards improving our understanding of

land-atmosphere interactions, not only through model development but also

through sensitivity analysis of coupled models (Betts, et al. 1996, Henderson-

Sellers 1993, Liu, et al. 2004, Margulis and Entekhabi 2001). Through these studies

it has become clear that vegetation dynamics plays a fundamental role in the
exchange of heat and moisture over the land surface over a range of spatial-

temporal scales, for example by altering surface roughness, albedo, soil

aggregation and macroporosity, and enhancing evaporation via rainfall interception.

2.1.4 Modeling Vegetation Dynamics

Starting with the pioneering work of Eagleson (1978a), several studies have utilized

stochastic climate forcings to drive point-scale representations of the water balance

and associated interactions with vegetation. These studies include the response of

plants to soil moisture deficit (Porporato, et al. 2001); plant suitability to climate
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and soil conditions (Laio, et al. 2001, Porporato, et al. 2003); and coexistence of

different species and functional types (Fernandez-Illescas and Rodriguez-Iturbe

2004, van Wijk and Rodriguez-Iturbe 2002).

Fully distributed models have been utilized to incorporate the spatially variable

characteristics of the natural landscape. This modeling framework can be used to

represent both spatial and temporal heterogeneities that are observed in the

processes that govern infiltration rates, lateral redistribution of soil moisture,

surface runoff-runon, partitioning of energy fluxes and the seasonal dynamics of

vegetation over complex terrains and under various climatic forcings, at seasonal

and interannual timescales. The Distributed Hydrology Soil Vegetation Model

(DHSVM) developed by Wigmosta et al. (1994) was a significant inroad into this

approach, although it did not fully incorporate the dynamics of vegetation.

The land surface schemes of regional and global climate models, such as the

Biosphere-Atmosphere Transfer Scheme (BATS) (Dickinson, et al. 1993) and the

Integrated Biosphere Simulator (IBIS) (Foley, et al. 1996), incorporate better the

influence of vegetation and the land surface on the circulation of the atmosphere.

However, modeling the effect of topography in regional and global atmospheric

models has been relatively slow. The lack of explicit representation of topography in

most land surface schemes is believed to be responsible for the underestimation of

the variability of soil water state and therefore vegetation cover (Ivanov, et al.

2008a, Ivanov, et al. 2008b, Ivanov, et al. 2004a). Ivanov et al. (2004; 2008a; b)

quantitatively showed the interplay between seasonal dynamic vegetation and

topography over an entire basin through the local mechanisms of radiation and soil

moisture redistribution. The results of this spatially explicit model are in agreement

with the earlier findings from point-scale studies.

2.1.5 Summary

Studies conducted thus far indicate the importance of the coupling between

vegetation, soils and the lower atmosphere, and crucially the temporal and spatial

dynamics of that coupling. However, while distributed land surface models have
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developed great complexity in representing the above-ground dynamics of

vegetation, the level of sophistication in representing the below-ground component

of vegetation and its influence on soil moisture has not benefitted from such

development. In particular, the role of vegetation's rooting architecture has been

simplified thus far. This issue and its implications for land-atmosphere interactions

will be further discussed in later chapters.

2.2 Model Description

This section briefly describes both the hydrology and ecology models used in this

study and details the alterations made to the hydrologic model. Alterations to the

vegetation model will be dealt with in later chapters.

2.2.1 Hydrology Model - tRIBS

The Triangulated Irregular Network (TIN) based Real-Time Integrated Basin

Simulator (tRIBS) is a physically-based distributed hydrologic model (Ivanov, et al.

2004a). This modeling framework allows for the continuous simulation of spatially

varying hydrologic processes forced by distributed rainfall observations or

stochastic climate forcing over complex terrain. The use of TINs allows for the

generation of an irregular domain, thereby increasing computational efficiency while

explicitly accounting for the role of topography on the water and energy balances.

tRIBS is capable of using spatial data sets such as digital elevation maps, soil type,
plant function type and land cover as well as point data such as meteorological

station data for climate forcing and rain gauges (Garrote and Bras 1995, Ivanov, et

al. 2008a, Ivanov, et al. 2008b, Ivanov, et al. 2004a, Ivanov, et al. 2004b, Tucker,
et al. 2001).

The basic hydrologic processes modeled by tRIBS are (Figure 2-1):

(i) Surface energy balance: Long-wave and short-wave radiation can be

simulated taking into account the slope and aspect of each individual

voronoi cell. Latent heat, sensible heat and ground heat fluxes are all

calculated at the surface using the soil moisture conditions and

climatic forcings.
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(ii) Precipitation: tRIBS has the ability to be forced stochastically or

through distributed observations of rainfall. Each voronoi cell couples

the surface and subsurface response to rainfall by tracking the

infiltration moisture fronts and lateral overland and subsurface

exchanges between cells.

(iii) Interception: Plant canopy interception is accounted for and

partitioned into throughfall, drainage, storage and canopy evaporation

based upon the specified plant function type.

(iv) Evaporation and Transpiration: Latent heat energy is divided into bare

soil evaporation, evaporation from the canopy, and transpiration from

vegetation. The volume of water that is evaporated from the soil or

transpired is a function of the soil moisture, rooting profile and climatic

conditions.

(v) Infiltration: tRIBS calculates the vertical moisture profiles of each

voronoi cell by solving a one-dimensional finite element form of the

Richards equation. By doing so on a continuous basis, long term

simulations take into account the wetting of the soil during

precipitation events and the drying of the soil that occurs during inter-

storm periods. This ensures realistic evapotranspiration and runoff

generation.

(vi) Subsurface Moisture Fluxes: Infiltrated rainfall is distributed based

upon the finite element solution to the one-dimensional Richards

equation. The model allows for the unsaturated lateral redistribution of

moisture along the path of as well as recharge to a saturated

groundwater table.

(vii) Runoff - Runon production: Runoff generated at a voronoi cell is then

routed along the path of steepest decent. Runon processes

incorporated into the model then allow for the re-infiltration of surface

runoff if receiving cells are capable of doing so. tRIBS has the

capability to simulate four mechanisms of runoff:

i. Infiltration excess runoff (Hortonian runoff);

ii. Saturation excess runoff;
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(viii)

iii. Subsurface stormflow; and

iv. Baseflow.

Overland and channel flow: A hydrologic routing scheme is utilized to
calculate the contribution of overland flow to streams. A kinematic
wave routing scheme is used to model the transport of water from
these streams to the channel outlet.

Canopy
Inltercep.ton transpiraian

C hannel~
r'ow

Figure 2-1: A schematic of the distributed hydrologic processes in the tRIBS model. The

overlying grid illustrates one of the forms of spatial rainfall forcing: a field of rainfall

intensity estimated from radar reflectivity (Ivanov 2002).

The focus of this study is to explore the interaction of vegetation with the soil
column water balance; consequently limited detail on the biochemical processes will
be presented here. For complete details on the vegetation-energy-water interaction
refer to Ivanov (2008a). The remainder of this section will describe how vegetation
and water interact within the model.

Evaporation and Transpiration

The calculation of evaporation and transpiration in tRIBS+VEGGIE is based on the
resistivity formulations of Shuttleworth (1979). The model first divides the
computational element into vegetated and bare fractions and then applies different
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resistivities based on the land surface, canopy and atmospheric properties (Bras

1990, Ivanov, et al. 2008a). Over the bare fraction, evaporation is obtained by:

E bare Patm C, (eat - e* (Tg )h,.i)
Ay rw+ rr, )

Where Ebare [kg m-2 s-1] is the evaporation rate over the bare soil, Patm [kg m- 3] is

the density of moist air, C, [J kg-1 K-1] is the air heat capacity, A [J kg-'] is the

latent heat of vaporization, y [hPa K-1] is the psychrometric constant, eatm [hPa] is

the atmospheric vapor pressure, Tg [K] is the ground temperature, e* [hPa] is the

saturated vapor pressure at the soil surface, raw [S m-1] is the bulk resistance to

water vapor fluxes between the ground surface and the atmosphere, rsrf [s m-'] is

the soil surface resistance, and h 01 [-] is the relative humidity of the soil pore

space.

The surface resistance, rsrf [s m-'], follows Sellers et al. (1996):

rsrf = exp( 8.206 - 4.25 5 Ipe)

Where P follows Bonan (1996):

61 - B-r
fe= a'1s - or

Where 01 [mm 3 mm~3] is the soil moisture content of the surface soil layer, 0r [mm 3

mm-3] and 0s [mm 3 mm-3] are the residual and saturated soil moisture water

content, respectively, and a' is assumed to be 0.75.

For the vegetated fraction of the computational element, the evaporative flux is

divided into evaporation from below the canopy, Eg*ve [kg m2 s-], and

evapotranspiration from the canopy itself, EETve [kg m-2 -1]. These fluxes are

computed by altering the formulation above to represent the two surfaces over

-29-



which the flux will occur. This impacts the vapor pressure gradient and bulk

resistances:

E veg - Pam C, (eat, - e* (T )h,j)

veg Patm Cp (es e*(Tc
EET ~~ 

rI27 rw

Where rs" [s m-1] is bulk resistance to flux between the ground surface and the

atmosphere, rv" [s m-'] is bulk resistance to flux between the canopy surface and

the atmosphere, Tc [K] is the canopy temperature, and es [hPa] is the vapor

pressure of the canopy.

Evapotranspiration from the canopy can be separated into evaporation from

intercepted precipitation, E cv* [kg m-2 s-'], and transpiration, ETve [kg M-2 -1] by:

w

Ev** = Eff Ce

Eeg = EjvT -f C1
Ce +C

Where cew [m s'] and ctw [m s-'] are conductances. The formulations for the bulk
resistivities and conductances within the canopy are not presented here but are
detailed in Ivanov (2008a).

Precipitation Partitioning

tRIBS estimates interception over the vegetated fraction of the element using the

Rutter et al. (1972, 1975) and Eltahir and Bras (1993) canopy water balance

equation:

-30-



dC C
dt 

SC

Where C [mm] is the canopy storage, p [-] is the free throughfall coefficient and is

a property of the PFT and the leaf and stem area, R [mm hr 1] is the precipitation

rate, Dc [mm hr-1] is the canopy drainage rate, Sc [mm] is the canopy capacity

coefficient, and E cv* [mm hr-'] is the evaporation rate from the wet canopy, also

defined as the interception loss. This form of the canopy water balance allows for

continuous drainage with the drainage rate given by:

Dc =K e g (C S)

Where Kc [mm hr-'] is the drainage rate coefficient and gc [mm-1 ] is the exponential

decay parameter (Ivanov, et al. 2008a, Rutter, et al. 1972, Rutter, et al. 1975).

The total throughfall reaching the land surface can be expressed as:

qthrughfa1 1 =(1 f )* R +Vf *(pR +Dc)

Where qthroughfall [mm hr-1] is the total moisture reaching the land surface and Vf [-]

is the vegetated fraction of the computational element. Therefore the amount of

moisture reaching the surface is determined by the amount of throughfall and

drainage scaled by the area of each PFT and the amount of precipitation that falls

directly on the bare soil:

N, N,

NR kR+D)f,,+ 1- fk R
kk

where qNR [mm hr'] is the moisture that reaches the surface, N, [-] is the number

of PFTs in the element and f [-] is the fractional area of element covered by the kth

PFT.
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The total moisture received at the ground surface of each cell is simply expressed

as:

qinf I : NR + runon

where qinn [mm] is the available moisture for infiltration and grunon [mm] is the

surface runon received from the upslope contributing cell.

Infiltration and Surface Runoff

The amount of throughfall and runon that infiltrates into the soil is determined by:

qinf I m in(qNR + qrunon qinfl1 max)

Where qinfl [mm hr-1] is the infiltration rate and is the minimum of the throughfall

and the infiltration capacity, qinf,max [mm hr'], which is given by:

qinfmax =Ksat1zO [ba (SI 100 -1)+I]

Where Ksatlz=o [mm hr-'] is the saturated hydraulic conductivity of the surface soil

layer, b [-] is the slope of the soil water retention curve, L4sat [mm] is the air entry

potential, Az [mm] is the thickness over which to calculate the soil moisture

gradient and is set at 100 mm, Sj|= 100 [-] is the relative moisture content of the top

100 mm of the soil column (Abramopoulos, et al. 1988, Decharme, et al. 2009,
Entekhabi and Eagleson 1989).

If qthroughfall is greater than qinfmax then surface runoff will be generated and can be

expressed as:

qrunoff = max( 0, qinf I - qinfimax)

-32-



Soil moisture

tRIBS uses a finite-element, backward Euler time-stepping numerical approximation
to solve the Richards equation. Ivanov (2006) adapted the Richards equation in
order to numerically account for different cell geometries, differences in surface and
subsurface lateral moisture fluxes, and variable evapotranspiration sinks. The
solution of the numerical approximation allows lateral surface and subsurface
moisture fluxes down slope in the steepest direction. The numerical solution uses a
variable mesh to solve the moisture profile within the soil column (Figure 2-2).
Using a variable mesh allows for surface processes to be simulated at a higher
resolution while achieving computational efficiency by using a coarser resolution
deeper in the soil column. By calculating the soil moisture profile at many layers,
evapotranspiration sinks can be removed from specific layers determined by the
rooting profile of the vegetation within the cell.

Finite Element Mesh
0 -:: -- Z =

200 ---

40 ---

600

800 -
E

i 100C

120 ------- - --

140C--

160C-------

180C

200C

Figure 2-2: Richards equation finite-element mesh. Dashed lines correspond to mesh nodes.

tRIBS+VEGGIE utilizes a finite element solution to the 1-D Richards equation for
flow within the vadose zone:
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ao- aD()a9-K()cosa
at az az V

Where 8 [mm 3 mm-3] is the soil moisture content, D(6) [mm 2 h-1] is the

unsaturated diffusivity, K(O) [mm h-'] is the unsaturated hydraulic conductivity, av

[radians] is the slope of the soil surface, t [h] is time, and z [mm] denotes the

coordinate normal to the soil's surface.

The unsaturated hydraulic conductivity can be expressed in terms of soil moisture

content:

2+3A

K = Ksat(a - Or
Os - Or)

Where 6r [mm 3 mm-3] and 6s [mm 3 mm-3] are the residual and saturated soil

moisture water content, respectively, and X [-] is the pore-size distribution index.

Similarly, the unsaturated diffusivity can be written as:

1
-Vb 0 - 0r 2+X

D(6) = Ksat( 6 b)( rD (0 = satX(Os - 0 r) (Os - Or

Where Pb [mm] is the air entry bubbling pressure.

The Richards solution incorporates transpiration, infiltration and evaporation as

sources and sinks distributed within the soil moisture profile (Ivanov 2006a).
Infiltration is treated as a source of moisture to the top layer of the soil column,
evaporation as a sink extracted from the top soil layer of the soil column, and
transpiration as a sink distributed by:

T = Ev"g B frooti
i T BT V
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Where Ti [mm] is the transpiration from layer i, Bi [-] is the transpiration efficiency

of layer i, froot,i [-] is fraction of roots in layer i, and BT [-] is the root fraction-

weighted transpiration efficiency of the root zone. The transpiration efficiency for

each layer of the soil column and the root fraction-weighted transpiration for the

root zone are expressed as:

B, = max 10, min (1,) ' 0.

N

BT= L Br,
i=1

Where e1 [mm 3 mm- 3] is the soil moisture content of layer i, Ow [mm 3 mm-3 ] is the

wilting point of the PFT and e* [mm3 mm-3 ] is the soil moisture content below which

moisture stress begins to cause stomatal closure.

2.2.2 Ecology Model - VEGGIE

The Vegetation Generation for Interactive Evolution (VEGGIE) is a dynamic ecology

model that simulates the coupled spatial and temporal interactions between

hydrologic and ecologic processes (Ivanov, et al. 2008a, Ivanov, et al. 2008b). The

functions of the VEGGIE model are built on existing schemes in models such as the

Lund-Potsdam-Jena model (Sitch, et al. 2003), the Community Land Model (Levis,
et al. 2004), the Canadian Terrestrial Ecosystem Model (Arora and Boer 2005),
Hybrid v3.0 (Friend, et al. 1997), IBIS (Foley, et al. 1996) and BIOME3 (Haxeltine

and Prentice 1996). The ecologic processes modeled by VEGGIE include:

(i) Biophysical energy processes: the model accounts for the role of

vegetation in the absorption, reflection and transmittance of solar

shortwave radiation; and the absorption, reflection and emission of

longwave radiation. The partitioning of energy fluxes into latent,

sensible and ground heat are also altered due to the vegetation's

influence on evapotranspiration.
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(ii) Biophysical hydrology processes: the presence of vegetation impacts

the amount of moisture available for infiltration via processes such as

interception, throughfall and stem flow. In the subsurface, vegetation

rooting profiles extract moisture from various layers of the soil column

and thereby influence the vertical and lateral distribution of soil

moisture.

(iii) Biochemical processes: primary production and the accumulation of

biomass in a model cell is calculated by simulating processes such as

photosynthesis, respiration, carbon allocation to roots, shoots and

leaves, tissue turnover as a result of age, moisture and temperature,

and plant recruitment and establishment.

VEGGIE can simulate a number of plant functional types (PFT), e.g.

deciduous/coniferous trees, C3/C4 grasses, and shrubs. These are represented

simultaneously via fractional weighting of the individual plant types. Each PFT is

quasi-uniformly distributed in a model element, within which all vegetation types

are subjected to identical climate forcing and soil conditions but respond differently

as the water use strategy and tolerance to soil moisture deficit vary between

vegetation types. Carbon pools of leaves, stems and roots are simulated for each

vegetation type within a model element. Canopy of represented vegetation types is

treated as two "big-leaves" (sunlit and shaded).

The complexity of a vegetation model is often dictated by the spatio-temporal scale

of the question being asked. The VEGGIE model can be utilized at different levels of

complexity, the simplest of which is an annually or seasonally static vegetation

cover. The more complex use of VEGGIE is a fully dynamic representation, which

takes advantage of the strong interaction between the water and energy balances

in the coupling of the tRIBS+VEGGIE eco-hydrological model.
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2.3 Model Modifications and Testing

This section describes a major correction made to the existing hydrologic model.

Prior to this work, the previous evaluation of tRIBS+VEGGIE was conducted by

Ivanov (2006b) under idealized homogenous climate forcing and soil textures.

Through an evalutation effort, of which the details are presented in Chapter 5, it

became evident that the introduction of spatial heterogeneity in precipitation was

resulting in a non-physical redistribution of soil moisture. The following section

details the problem identified as well as the modifications applied to solve the issue.

2.3.1 Subsurface Lateral Redistribution of Soil Moisture

In order to reduce computational effort, tRIBS simplified the lateral redistribution of

soil moisture by aggregating the entire subsurface flux from the soil column of a

contributing cell and then redistributing this flux to the receiving cell based upon

the unsaturated hydraulic conductivity of the receiving cells soil layers. The

unsaturated hydraulic conductivity is calculated using the Brooks-Corey (1964)

relationship and is a non-linear function of the soil moisture.

Under homogeneous climate forcings and homogeneous soil types, this

approximation is valid because the soil moisture profile of the contributing cell is

very similar to that of the receiving cell. However, if the contributing and receiving

cells differ in either physical characteristics (e.g. slope, aspect or soil texture) or

climatic forcings (e.g. spatially distributed rainfall), resulting in different soil

moisture profiles, then errors will propagate during the redistribution process as a

result of the receiving cell having a significantly different soil moisture profile

(Figure 2-3).
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Figure 2-3: Lumped redistribution of lateral soil moisture flux.

To limit the potential of this error to propagate, layer-to-layer lateral redistribution

was implemented (Figure 2-4). Implementation involved tracking each individual

layer's lateral moisture flux so that it may be transported to the appropriate down

slope receiving layer. Although this scheme requires more computational effort, due

to the need to store every layer's lateral flux rather than just the sum, it does

ensure that no numerical errors and physical inconsistencies will occur in the

redistribution of soil moisture.
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Figure 2-4: Layer to layer lateral soil moisture flux

2.3.2 Testing of Modifications to the Hydrologic Model

In order to test the modifications made to tRIBS, a series of experiments were

conducted on a simplified domain (Figure 2-5). The domain consists of a ten cell

planar hillslope with a ten percent slope, 25 vertical layers with no vegetation. The

model was initialized with saturated conditions and then allowed to dry down for 10
days. Three rainfall pulses were introduced at an interval of 5 days. Only the ridge

(i.e. furthest upslope) computational element received rainfall thereby creating

heterogeneity within the soil column.
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Figure 2-5: Model modification test domain.

Figure 2-6 illustrates the comparison between the new and old lateral redistribution

schemes. For the first 200 hours, the hillslope is draining from its initialized

saturated condition. During this period it is evident that the upslope (ridge)

computational element dries faster as it has no elements contributing moisture to

it. The new and old lateral schemes perform almost identically since the soil

moisture profile of the receiving cell is very similar to that of the contributing cell.

The top panel in Figure 2-6 clearly illustrates the arrival of the rainfall pulse and the

corresponding soil moisture response in the upslope cell receiving the rainfall. Also

upon the arrival of the rainfall pulse, the surface soil moisture of the old (blue line)

and new (black line) schemes begin to diverge. The old scheme receives no lateral

transport in the surface layer, but when examining the deeper layers there is a

response at depth. This response is due to the incorrect routing from the

contributing cell brought on by the old scheme. Prior to the arrival of the rainfall

pulse, the soil moisture profile of the receiving cell can be seen in Figure 2-7: the

profile is dry at the surface and wetter at depth. Once the rainfall event occurs, the

lateral flux of water from the contributing element is redistributed based on the soil
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moisture profile of the receiving element prior to the rainfall event. For this reason
there is little or no change in the receiving cell soil moisture profile 24 hours after
the rainfall event.

The new layer-to-layer scheme responds in a more realistic manner to the lateral
redistribution. Figure 2-6 shows how the surface layer of the new scheme receives
moisture from the contributing cell. Figure 2-7 further validates the new scheme,
illustrating how the laterally redistributed moisture at the surface of the receiving
cell percolates downward, which results in a more realistic transport of moisture
within the subsurface.
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Figure 2-6: Illustration of lateral redistribution modification. Top panel: surface volumetric

soil moisture for an upslope cell (red) and its adjacent downslope cell (blue and black);

Middle panel: mid column volumetric soil moisture at a depth of 500 mm; Bottom panel:

volumetric soil moisture at the bottom of the soil column.
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Figure 2-7: Volumetric soil moisture profiles. Left: Old lateral redistribution scheme; Right:

New lateral redistribution scheme. Upslope cell (red) and downslope cell (blue) 1 hour
(solid) and 24 hours (dashed) after a rain event.

2.3.3 Summary of Modifications to the Hydrologic Model

The new layer-to-layer lateral transport scheme corrects the original redistribution

process that was in tRIBS. In previous applications of this model, which tended to

use homogeneous vegetation, soil and climate forcings, this error was not evident.

However, this correction was critical to the spatially distributed modeling

undertaken in chapter 5, which utilizes heterogeneous soil conditions and spatially

and temporally variable vegetation growth.
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Chapter 3

Spatially and Temporally

Invariant Root Distributions

3.1 Introduction - the role of roots on the water balance

If we simplify the role of vegetation to that of a pump that returns moisture from

the land back to the atmosphere, the efficiency of this pump is determined by the

amount of water available within the soil column, the type of vegetation present at

the land surface and the atmospheric demand for moisture. The amount of water

available to the pump is strongly controlled by topography, soil texture and climate.

In the absence of vegetation, these factors determine the partitioning of water into

surface runoff, evaporation and deep drainage. The presence of vegetation

complicates this partitioning by adding transpiration and canopy interception as

additional terms to the water balance and impacting the soil evaporation (through

shading) and deep drainage (through plant water extraction).

Each plant functional type has specific traits that impact the efficiency at which

water is pumped (transpired) back to the atmosphere. Arguably the most important

of these traits is the plant's rooting architecture. Observations show that there is

considerable natural variability in rooting architecture, both between species and

within a given species depending on local abiotic conditions. This variability is

described in detail below. However, to the best of this author's knowledge, there

are currently no distributed hydrologic models that capture this temporal and
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spatial variability in rooting architecture. Therefore it is likely that current

hydrologic models cannot capture the observed natural variability in transpiration.

This chapter will explore the impact of different rooting distributions on the water

balance, in particular the effects on transpiration. The goal of this work is to identify

the long-term optimal (i.e. achieving maximum mean annual transpiration)

temporally- and spatially-invariant rooting profiles for two plant functional types

across five soil textures and under different precipitation regimes. The work will

illustrate that the optimal rooting structure is highly dependent on the type of plant

and the environmental conditions experienced by that plant. While an optimal

rooting architecture can be obtained for each combination of plant type and soil
texture, with significant computational effort, that optimal solution will be unique to

a specific climatic regime and therefore will only be valid if the climate is stationary.

This chapter will therefore argue that the prevailing methodology, which applies a
single and constant rooting structure to all vegetation under all conditions, is
insufficient.

3.2 Literature Review

3.2.1 Phenotypic Plasticity

A plant's genotype is its genetic makeup, which dictates its potential to behave in a
particular way or exhibit a particular feature. The ability of a plant to adapt to its
surroundings, called plasticity, is a genotypic trait. A plant's phenotype is the
appearance that a plant takes as a result of interactions between the plant's
genotype and its environment. Hence phenotypic plasticity is the ability (genotypic
trait) of a plant species to produce different phenotypes in response to different
environmental conditions (Bradshaw 1965, Callaway, et al. 2003, Schlichting 1986,
Sultan 1987, Sultan 2000). Generally plants are highly plastic (Sultan 1987, 2000),
with individuals within a species observed to vary by orders of magnitude in size,
growth rates, root:shoot:leaf ratios, reproduction, and chemical constituency.
Plants display plastic responses to a wide variety of stressors, including variation in
the abiotic environment, disturbance, herbivory, parasitism, and the presence,
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absence, or identity of neighbors. These plastic responses may be permanent once

induced, relatively fixed for a given growing season, or may be dynamic on a scale

of hours, as in the case of light effects on photosynthetic chemistry (Baldwin 1999,

Pearcy 1999).

We can consider species on a spectrum ranging from highly specialized (low

plasticity) to highly plastic. Specialization enables a plant to be extremely efficient

at extracting resources under certain conditions, but with the consequence that any

shift away from those conditions will cause severe stress to the plant. Specialization

is therefore most favorable in environments with constant (or very regular)

resource inputs, such as in tropical forests. Plasticity comes with a tradeoff between

being able to function across a wide range of environmental conditions but at the

cost of being less efficient than a specialist for a particular situation. Phenotypic

plasticity therefore allows plants to adapt to spatial and temporal variability in

resources and offers a mechanism through which an individual may optimize the

acquisition and utilization of scarce resources (Bradshaw 1965, Collins and Bras

2007, Debat and David 2001, Grime, et al. 1986, Robinson and Rorison 1988,
Schlichting 1986, Stearns 1989, Sultan 1987). This provides plastic plants with a

competitive advantage in highly variable environments, such as in semiarid regions

where rainfall can be unreliable and sporadic.

3.2.2 Observations of Root Phenotypic Plasticity

Fitter (1991) divided the role of root systems into two primary functions:

acquisition of soil-based resources (water and nutrients) and anchorage, and

attributes the diversity of root systems of modern plants to optimizing the efficiency

of these primary functions. Plasticity in the rooting strategies of various vegetation

species has been observed for many decades and is known to be strongly

influenced by historical and current environmental conditions (Smucker 1993).

Much of the early work on rooting structures was conducted in the context of

understanding the belowground dynamics for large-scale agricultural applications

(Cannon 1911, Weaver 1919, Weaver 1926).
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Weaver (1926), through a series of laboratory and field observations, clearly
illustrated the range of variability in rooting strategy, in particular quantifying the
seasonal growth rates of root systems (Figure 3-1) and the influences of soil
texture (Figure 3-2) and rainfall (Figure 3-3) on the root system distribution. The
left panel of Figure 3-2 highlights the ability of individual plants within the same
species to alter the allocation of carbon to roots, shoots and leaves in response to
environmental pressures. The right panel of Figure 3-2 illustrates the ability to alter
root distribution based on the vertical heterogeneities within the soil column,
illustrating a high level of dynamic plasticity. Other studies of root plasticity have
indicated significant differences between individuals of the same species in total

root surface area, the timing of root growth, the preferential root allocation to
resource-rich microsites, root:shoot ratios and root densities (Biswell 1935,
Callaway 1990, Drew and Saker 1975, Fitter 1986, Jackson and Caldwell 1989,
Jackson, et al. 1990, Muller 1946).

30 days 40 days 55 days 70 days

Figure 3-1: Observations of the seasonal growth of winter wheat. Images from Weaver
(1926). Root elongation reaches 80 cm over 40 days (2 cm day-1 ).
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Figure 3-2: Observations of the influence of soil texture on rooting strategy. Left: false

Solomon's seal (Smilacina stellata) excavated from sandy and clay soils; Right: false

Solomon's seal (Smilacina stellata) grown in the labratory in a soil column of alternating

soil textures. Images from Weaver (1926).

PRECIPITATION
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Figure 3-3: Observations of precipitation influence on the rooting strategy of Winter Wheat.

Images from Weaver (1926).
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Richards (1986) examined the preferential development of lateral roots against

deep tap roots for phreatophytic species (deep-rooted plants that obtain a

significant fraction of their water from the saturated zone) and found that depth to

the groundwater table was the key environmental factor in determining the rooting

architecture. Richards (1986) showed that a shallow depth to groundwater favored

a rooting architecture with extensive lateral roots, while deep groundwater favored

a deep tap root with little development of shallow roots. This form of plasticity has

significant implications for moisture fluxes. In the case of lateral shallow rooting,
transpiration fluxes will be closely correlated to the arrival and volume of

precipitation. In the case where the plant can reach the groundwater table, the

atmospheric fluxes would decouple from the arrival of rainfall and instead follow

fluctuations in the groundwater table and processes that govern recharge.

Studies of Quercus doug/asii (blue oak) provide a good case study on the potential

impact that rooting plasticity may have on the water balance (Callaway, et al.

1991). Quercus douglasii can be found extensively throughout California from

grassland to mountain ecosystems. Field studies of predawn water stress and stable

isotope analyses have indicated that individuals of Q. douglasii can vary at the scale

of meters with regard to utilization of the groundwater table. Measurements of the

vertical distribution of fine roots found two dominant architectures. One set of

individuals has high water potentials at the end of the dry season (21.5 to

23.0 MPa) and low biomass of fine roots in the top 50 cm of the soil column,

whereas the other set has lower water potentials (23.5 to 24.5 MPa) and five times

more fine root biomass in the surface soil layers. These studies suggest that some

individuals are accessing the majority of their water from the unsaturated zone,

while others are tapping into deeper stores of moisture. Laboratory experiments

were conducted with Q. doug/asii seedlings to confirm this plasticity. Two

experimental setups were tested: (i) moist surface soil layer above a dry substrate;

and (ii) a soil column of even moisture distribution. Individuals grown in

experiments with the dry substrate lower layer expressed 80% more lateral root

growth than those on the uniform moisture case.
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Callaway et al. (1991) also showed that in water-limited settings, the rooting

strategy of Q. douglasii impacted the biomass of the herbaceous understory. In

cases where Q. douglasii was accessing deep groundwater, a facilitation effect due

to added nutrients from litter fall resulted in increased biomass in the understory,

suggesting niche separation in the root zone and no competition for water.

Alternatively, in cases where Q. douglasii was found to be rooting in the surface

layers, biomass of herbaceous species was 50% less than in open grassland,

indicating a strong subsurface competition for water and nutrients. The impact of

rooting plasticity on subsurface competition for moisture will be further addressed

in Chapter 6.

3.2.3 Global Data Sets of Rooting Depth

The Terrestrial Observation Panel for Climate of the Global Climate Observation

System identified the need to improve on the representation of the subsurface

components of terrestrial biosphere models. In a report released in 1997, the panel

argued for increased knowledge of how rooting structures vary with climate and soil

texture, in order to better understand how these factors may influence the surface

energy and water balances (Terrestrial Observation Panel for Climate 1997).

(Kleidon 2003, Terrestrial Observation Panel for Climate 1997). In response to this

report, a metastudy of existing root depth observations was compiled from the

literature in order to construct a map of global ecosystem rooting depths (Schenk

and Jackson 2002, Schenk and Jackson 2009). Schenk and Jackson (2002) fitted a

two parameter logistic expression to the observed data. The two parameters used

were the depth above which 50% of roots are located (D50) and the depth above

which 95% of the roots are found (D95) (Figure 3-4 and Figure 3-5).
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Figure 3-4: ISLSCP II Ecosystem Root Depths - Mean D50 ecosystem rooting depths

(Schenk and Jackson 2009).

ISLSCP If Ecosystem Rooting Depths - D95
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Figure 3-5: ISLSCP II Ecosystem Rooting Depths - Mean D95 ecosystem rooting depth

(Schenk and Jackson 2009).
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The authors conclude that with respect to water-limited ecosystems, vertical root

distributions may be poorly correlated with long-term mean precipitation because of

the significant inter-annual variability in precipitation characteristics (Ehleringer, et

al. 1991, Schenk and Jackson 2002). Therefore these observations suggest rooting

structures that are highly mobile, responding to each individual growing season.

3.2.4 Roots in Terrestrial Biosphere models

The depth and distribution of roots within the soil column controls the extent to

which soil moisture can be extracted for transpiration. During interstorm periods,

once the soil has begun to dry, it is access to soil moisture through the root

architecture that allows vegetation to maintain transpiration. This transpiration flux

has the ability to significantly alter the water and energy balance by tapping into

water from depths out of the reach of surface evaporation. Temporal variability in

vegetation cover (Chase, et al. 2000, Pielke 2001), root zone available moisture

(Koster and Suarez 1996, Milly and Dunne 1994), total soil moisture (Porporato, et

al. 2004, Yeh, et al. 1984) and surface albedo (Charney, et al. 1975) have all been

shown to greatly impact the land-atmosphere system in modeling studies.

However, much of this work was undertaken assuming a static and overly simplistic

belowground vegetation response.

The manner in which vegetation dynamics has been incorporated into modeling

studies to date has been through the coupling of plant soil water stress to

transpiration fluxes and carbon assimilation (Bonan 1996). In such models, the

plant water uptake (i.e. transpiration) is treated as a sink of soil moisture. The

manner by which this sink is extracted from the soil profile can be undertaken at

various levels of sophistication. In the simplest land surface models, bucket models,

the subsurface is represented as a single layer, with the transpiration sink being

evenly extracted throughout the soil column. In models that represent the

subsurface with multiple soil layers, the rooting architecture of vegetation is

described with a root depth and/or root shape parameter that is dictated by the

type of vegetation being modeled. These models distribute the transpiration sink
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based on the weighted root mass that resides in each soillayer within the root zone.

Table 3-1 outlines the various model treatments of root distribution. Models such as

BIOME-BGC (Running and Hunt 1993), DOLY (Woodward, et al. 1995), CEVSA (Cao

and Woodward 1998), which do not explicitly account for roots, have been omitted

from the table (Jackson, et al. 2000).
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Table 3-1: Root profile and functioning representation in ecological models and land surface

parameterization schemes. re - canopy resistance; B - soil moisture availability function; W

- Volumetric soil water content; y - soil water potential; LBM - leaf biomass; LAI - Leaf

area index; D - Demand function; S - Supply function. Adapted from Jackson et al. (2000).

Model Root Root Depth (m) Root # Root # Soil Soil Transpiration
(Source) Distribution Trees (T) attributes layers layers Water Model

Shrubs (S) specific to: Uptake
Grass (G)

MEDALUS Exponential T: NA Species Variable Variable rc= f(y) f (re)
(Kirkby, et al. 1996) S: 0-1.0

G: 0-0.3
A-ZED Uniform T: NA Species 2 2 S = f (W) No

(Sparrow, et al. S: 0-1.0
1997) G: 0-0.5

TEM 4 Uniform T: 0-2.5 Site 1 1 S = f (W) No
(McGuire, et al. S: 0-1.67 soil texture

1997) G: 0-1.25 dependent

MAPSS Uniform T: 0-1.5 Species 2 3 rc = f (W) f (rc, LAI)
(Neilson 1995) S: 0-1.5

G: 0-0.5

BIOME3 Uniform T: 0-2.0 Species 2 2 S = f (W) D = f (re)
(Haxeltine and S: 0-1.5
Prentice 1996) G: 0-1.5

IBIS Asymptotical T: 0-1.5 Species Variable 6 rc= f (y) f(re)
(Foley, et al. 1996) decay S: 0-1.5

(Y = 1-pdepth) G: 0-1.5

BATS Uniform T: 0-2.0 Site 2 3 rc= f (y) f (re)
(Dickinson, et al. S: 0-1.0

1993) G: 0-1.0

SiB2 Uniform T: 0.02-1.5 Site 1 3 rc = f (V) f (re)
(Sellers, et al. 1996) S: 0.02-1.0

G:0.02-1.0

PLACE Uniform T: 0-1.5 Site 2 5 S = f (W) D = f (re)
(Wetzel and Boone S:0-1.0

1995) G:0-1.0

ISBA Uniform T:0-1.5 Site 1 1 rc= f (y) f (rc, LAI)
(Douville 1998) S:0-1.0

G:0-1.0

LSM Asymptotical T: p =0.94 Species Variable Variable rc= f(y) f (re)
(Bonan 1996) decay S: p =0.97

(Y = 1-depth) G: p =0.97

CASA Uniform T:0-2.0 Site 2 3 S = f (W) No
(Potter, et al. 1997) S:0-1.0

G:0-1.0

CENTURY Uniform T: Variable Site Variable Variable B = f (W) f(LBM)
(Parton, et al. 1993) S:Variable

G:Variable
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Current model representations of vegetation allow aboveground biomass to grow in

height and increase in lateral extent, however belowground root profiles are

invariant in time and space. This invariance has several implications. For example,
at the start of the growing season it is assumed that the vegetation's rooting

architecture extends to the maximum rooting depth predetermined by the

vegetation parameter set: the models do not account for the time needed for the

roots to develop. This can lead to overestimation of transpiration early in the

growing season. Quite frequently the maximum rooting depth parameter is

independent of soil texture and climatic region, thus not taking into account the

strong influence that soils and variability in climatic forcings have on the

partitioning of precipitation at the surface and the flow of moisture through the root

zone.

For a stationary climate, an optimum invariant rooting profile could be determined

for a given plant function type on a specific soil texture that will represent the mean

behavior of vegetation under these conditions. But identification of this soil-specific,

climate-specific optimum root profile is currently not undertaken. This problem is

further exacerbated when looking at non-stationary climatic conditions, where even

if an optimum static profile has been identified, forcing the vegetation to retain this

profile under a changing climate may prohibit adaptation and artificially limits the

resilience of the system. Conclusions drawn from such modeling exercises are

heavily biased by these assumptions and do not capture the dynamic interactions

between soils, vegetation and climate.

To get around the parameterization of large areas consisting of heterogeneous soil

and climatic conditions, some studies have applied the evolutionary principle. This

principle states that environmental and competitive pressures have resulted in

vegetation adapting to the local conditions by expressing traits that maximize the

benefit to the plant and improve the probability of success of the individual (Kleidon

and Heimann 1998). Kleidon and Heimann (1998) applied this philosophy to rooting

depths by optimizing the rooting depths for different vegetation classes with a

simple terrestrial biosphere model forced with climate data and soil texture
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information. The purpose of this study was to examine the change in aboveground

net primary productivity as a result of using an optimized root depth parameter

rather than the model default values. The authors reported a 16% increase in the

mean global aboveground net primary productivity, which was accompanied by a

similar increase in transpiration. The authors of the study were very cautious in

drawing conclusions from these results citing the weaknesses of the ecological

model, which included no representation of phenology, carbon allocation, stomatal

control, or photosynthetic processes, coupled with the primary weakness of the

hydrological model, which was a single layer bucket model with no representation

of the vertical distribution of soil moisture.

The approach taken by Kleidon and Heimann (1998) could be considered the first

step within the modeling community towards incorporating rooting strategies of

vegetation into large scale modeling. Recently, several authors have explored the

role of rooting depths and distributions on ecological response (Collins and Bras

2007, Guswa 2008, Hildebrandt 2005, Hilderbrandt 2005, Hwang, et al. 2009, Lai

and Katul 2000, Schenk 2008, Schymanski, et al. 2008, Schymanski, et al. 2009).

Collins and Bras (2007) explored the rooting strategies of plants in water-limited

environments by applying the evolutionary principle that vegetation has the

capability to optimize its phenological response to maximize benefit to itself. This

study utilized a multi-layer numerical solution to the Richards equation, taking into

account the vertical distribution of moisture within the soil column, as well as a

model of the impact of soil moisture stress on stomatal openings. The key

assumptions of this study were that vegetation leaf area index was held constant

(LAI = 1) and that stochastic precipitation was applied as an instantaneous pulse.

Seasonal variation in precipitation intensity, interstorm period and duration were

not taken into account, but rather artificially imposed by setting a wet season and

dry season and partitioning the mean annual precipitation between the two. A

vertical rooting distribution was used following the logistic dose-response curve

model that Schenk and Jackson (2002) had fitted to global observations of root

profiles. A series of simulations were then conducted varying the two rooting

-55-



parameters that control the shape and depth of the rooting distribution. Collins and

Bras (2007) varied mean annual precipitation and the potential evapotranspiration

rate to simulate different climatic conditions, and documented how the optimal

rooting profile altered across different soil textures. Reasonable agreement was

obtained between simulated rooting optima and field observations made within the

climates simulated (Table 3-2).

Table 3-2: Comparison between Schenk and Jackson (2002) observations and the Collins

and Bras (2007) optimization simulations.

Study D50 [m] D95 [m]

Schenk and Jackson (2002) - Prairie 0.1 - 0.2 0.6 - 1.2

Schenk and Jackson (2002) - Shrub 0.2 - 0.3 0.9 - 1.4

Collins and Bras (2007) - Grass 0.05 -1.0 0.2 - 3.0

The work by Collins and Bras (2007) was another step forward towards improving

the representation of subsurface redistribution of soil moisture and its potential

impact on the water balance within a distributed hydrologic model. However, due to

the simplifying assumptions made with respect to the applied rainfall and LAI, the

work did not capture natural variability in climatic forcings and hence the

vegetation response to this variability was not represented.

3.3 Using tRIBS+VEGGIE to Identify Optimal Rooting

Profiles

A modeling investigation was undertaken using tRIBS+VEGGIE to identify the long-

term optimal (i.e. achieving maximum mean annual transpiration) temporally- and

spatially-invariant rooting profiles for two plant functional types across five soil

textures and under different precipitation regimes. The methodology is modeled on

the work of Collins and Bras (2007), but relaxes the assumptions made to hold

interannual rainfall and vegetation constant. Therefore this new work elucidates the

variability of optimal rooting profiles under realistic climatic and soil conditions and

with consideration for the dynamism of vegetation.
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3.3.1 Study Sites

Two locations were chosen for this study: the Walnut Gulch Experimental

Watershed in Arizona and Loma Ridge in California. Both sites are characterized as

semiarid environments with grassland and shrubland vegetation cover.

The Walnut Gulch Experimental Watershed is maintained by the United States

Department of Agriculture (USDA) - Agricultural Research Service (ARS). The

watershed is part of the San Pedro River Basin and is located near Tombstone,

Arizona. The watershed is approximately 150 km2 with elevation ranging from

1200 m in the west to 1950 m in the northeast (Figure 5-1). Instrumentation began

at the watershed in 1953 focusing on the measurement of precipitation and

streamflow. Today the watershed has a network of over 100 rain gauges, 2 eddy

flux towers and approximately 20 soil moisture measurement locations. In addition

to the instrumentation, extensive soil and vegetation surveys have been

undertaken. Due to the volume of hydrologic data available at this location, as well

as the length of these data records, the watershed has been the focus of several

hydrologic studies, some of which were featured in a special issue of Water

Resource Research (vol 44, 2008) dedicated to work conducted at this watershed

(Emmerich and Verdugo 2008, Goodrich, et al. 2008, Heilman, et al. 2008, King, et

al. 2008a, Osterkamp, et al. 2008, Skirvin, et al. 2008). Further details on the

Walnut Gulch Experimental Watershed are provided in Chapter 5.

Loma Ridge, located north east of the City of Irvine, California is the first set of

foothills leading up to the Santa Ana Mountains. The vegetation communities in this

region are characterized by C3 grasses, shady woodland and coastal sage scrub.

Several studies have been underway at the field station, which is managed by the

University of California, Irvine, however unlike the Walnut Gulch site, the region

has not been as intensely surveyed.

Although both sites have semiarid climates, they are useful as comparison study

sites because they have very different seasonal cycles of precipitation and

vegetation growth. Figure 3-6 and Figure 3-7 use the MODIS Leaf Area Index 8-day
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composite 1 km x 1 km product and data from rain gauges within the Walnut Gulch
Experimental Watershed to show how the onset of the growing season coincides

with the first significant rainfall events. The onset of the rainy season tends to occur

in June/July with the peak LAI lagging the rainfall peak by one month to occur in
August. These figures also highlight that the growing season at this watershed is

during the summer months.

Figure 3-8 and Figure 3-9 show the same information about rainfall and vegetation

growth for the Loma Ridge site. At this location, precipitation is mostly during the

winter months with the monthly average peak precipitation occurring around
February. The figures show that the onset of the growing season at Loma Ridge still

responds to the first significant rainfall events. However, the rate of growth is
significantly slower that at Walnut Gulch and the peak LAI is recorded during
March/April with a 2-month lag to the peak rainfall, which is consistent with the
reduced radiation available for photosynthesis during this time of year.
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Figure 3-6: Hourly time series of rainfall from 1997 to 2010 (blue) and MODIS 1 km x 1 km

Leaf Area Index 8-day composite product from 2000 to 2010 (red) for a grassland at

Walnut Gulch Experimental Watershed, Arizona.
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Figure 3-7: Monthly mean rainfall (blue) and monthly mean MODIS 1 km x 1 km Leaf Area

Index at Walnut Gulch Experimental Watershed, Arizona.
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Figure 3-8: Hourly time series of rainfall from 1997 to 2010 (blue) and MODIS 1 km x 1 km

Leaf Area Index 8-day composite product from 2000 to 2010 (red) for a grassland at Loma

Ridge, California.
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Figure 3-9: Monthly mean rainfall (blue) and monthly mean MODIS 1 km x 1 km Leaf Area

Index at Loma Ridge, California.

3.3.2 Climate Forcings

The tRIBS+VEGGIE model needs to be forced by a precipitation dataset, created

either stochastically or through distributed observations of rainfall. Starting with the

pioneering work of Eagleson (1978a), several studies have utilized stochastic

climate forcings to drive point-scale representations of the water balance and

associated interactions with vegetation. These studies have included investigation

of the response of plants to soil moisture deficit (Porporato, et al. 2001); plant

suitability to climate and soil conditions (Laio, et al. 2001, Porporato, et al. 2003);
and coexistence of different species and functional types (Fernandez-Illescas and

Rodriguez-Iturbe 2004, van Wijk and Rodriguez-Iturbe 2002). A similar stochastic

approach was used for this study.

Precipitation

Grasses and shrubs in semi arid regions are strongly correlated to rainfall on short

timescales. For this reason it was critical that the climate forcings used to drive

tRIBS+VEGGIE were representative, not only of macroscopic statistics such as

monthly and annual rainfall volumes, but also of the intraseasonal rainfall statistics
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such as inter-storm period, storm duration, number of wet days and average storm

volumes. For this study, a stochastic weather generator that has already been
validated for the semi-arid region of the southwest of the United States (Ivanov and

Bras 2007) was used to force the tRIBS+VEGGIE model at Walnut Gulch

Experimental Watershed, Arizona, and Loma Ridge, California.

To create the appropriate stochastic inputs, hourly rainfall for the period 1956 to
2008 from six rain gauges (rain gauge 4, 13, 42, 44, 60 and 68, see Figure 3-10)
at the Walnut Gulch Experimental Watershed (WGEW) in Arizona were used to

derive rainfall statistics representative of a semi-arid environment. The observed
mean annual rainfall over this period was 331 mm, with a summer monsoon
average (July, August and September) of 188 mm. The maximum and minimum

annual accumulations over this period were 528 mm and 162 mm. These rainfall

statistics from WGEW were used to parameterize the stochastic weather generator,

which was then run for a 250-year period. The generated rainfall time series

returned a mean annual rainfall of 336 mm with a summer monsoon average of

198 mm. The wettest and driest years were 565 mm and 145 mm respectively,
confirming that the stochastic rainfall data matched well to the observed statistics.

Most critically, the intraseasonal statistics of rainfall were reproduced well (Figure

3-11).
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Figure 3-10: Rain gauge locations (numbered black circles) within the Walnut Gulch
Experimental Watershed (Image from USDA ARS).

A similar effort was undertaken for Loma Ridge, however only one rain gauge with
a record of 23 years (1987 - 2010) was used to parameterize the stochastic
weather generator. Rainfall at Loma Ridge is characterized by events of long
duration and lower intensity. The mean annual rainfall is 354 mm with the bulk of
this precipitation falling in winter months(243 mm).

Figure 3-11 and Figure 3-12 illustrate the differences in the rainfall characteristics
of these two sites. The different timing of the maximum seasonal rainfall is
particularly striking. These figures also show the stochastic model rainfall statistics
generated from a 250-year realization. This synthetic climate time series was used
to drive the modeling experiments in this thesis.

-62-



Storm Duration
5[

4

3

0 L J F MA MJ J A SON D
Month

Interstorm Period
400-

300

E200

100.

0 F M A J J AS
Month

Storm Intensity
8

6

4,

2f7
0

J F M AM J J A SON D
Month

Mean Monthly Rainfall
20

0

80

60.

40

J FMAMJ A S O N D
Month

NOD

Figure 3-11: Observed rainfall statistics derived from a 56-year data record from Walnut

Gulch Experimental Watershed, Arizona (red). Stochastically-generated rainfall time series

(blue). Error bars indicate the 25% and 75% quartile ranges; the squares show the mean

value.
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Figure 3-12: Observed rainfall statistics derived from a 23-year data record from Loma

Ridge, California (red). Stochastically-generated rainfall time series (blue). Error bars

indicate the 25% and 75% quartile ranges; the squares show the mean value.
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3.3.3 Soil Texture

To understand the role that soil texture has on rainfall partitioning and vegetation

growth, five generic soil textures were used to represent the expansive variability in

natural soils. A sandy soil was used to represent the high conductivity end of the

soil texture spectrum and a clayey soil with very low conductivity was used to

represent the lower end. The parameters associated with these soil textures were

obtained from Rawls et al (1982) and are presented in Table 3-3.

Table 3-3: Soil hydraulic, heat transfer and albedo parameters following Rawls et al (1982).

K5n [mm hr'] is the saturated hydraulic conductivity normal to the soil's surface, 8, [mm 3

mm 3] is the saturation moisture content, Or [mm 3 mm- 3 ] is the residual moisture content,

A0 [] is the pore-size distribution index and tPb [mm] is the air entry bubbling pressure,

k,, dry.

Soil Texture K,,n e, Or A0  tPb

Sand 210 0.437 0.02 0.592 -72.6

Loamy Sand 26 0.453 0.04 0.322 -147.0

Loam 13 0.463 0.06 0.220 -111.5

Clay Loam 3 0.464 0.05 0.194 -259.0

Clay 1 0.475 0.15 0.131 -373.0

3.3.4 Plant Functional Types

The two sites chosen for this study are broadly classified as containing mixed grass

and shrub communities. At Walnut Gulch Experimental Watershed, the grasses are

broadly classified as C4 perennials and the shrubs utilize a C3 photosynthetic

pathway. At Loma Ridge, the grasses and shrubs are both C3 and perennial. The

vegetation parameters needed for the VEGGIE model were taken from available

literature (Ivanov, et al. 2008a, Ivanov, et al. 2008b, Sellers, et al. 1996) and are

shown in Table 3-4, Table 3-5, Table 3-6 and Table 3-7.
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Table 3-4: Vegetation biophysical parameters for the VEGGIE model. Y [-] is the departure

of leaf angles from a random distribution (+1 for horizontal orientation, 0 for random and

-1 for vertical orientation), a [-] and T [-] are the reflectance and transmittance

respectively, VIS and NIR are used to denote the visible and near infra red spectral bands,

Ke [mm hr-1] is the canopy drainage rate coefficient and ge is the exponential decay

parameter for canopy water drainage.

WGEW, Arizona Loma Ridge, California

Parameter Shrub C4 Grass Shrub C3 Grass

XL 0.25 -0.3 0.25 -0.3

leaf _ oS 0.1 0.11 0.1 0.11

leaf - NIR 0.45 0.58 0.45 0.58

astern VIS 0.16 0.36 0.16 0.36

astem _ NIR 0.39 0.58 0.39 0.58
aA
rleaf VIS 0.05 0.07 0.05 0.07

raa - NIR 0.25 0.25 0.25 0.25

As
t em _ VIS 0.001 0.22 0.001 0.22

stem - NIR 0.001 0.38 0.001 0.38

K, 0.13 0.1 0.13 0.1

ge 3.9 3.2 3.9 3.2

Table 3-5: Vegetation photosynthesis parameters for the VEGGIE model. Vmax 25 [Imol CO2

m-2 s1] is the maximum catalytic capacity of Rubisco at 250C, k [-] is the PAR extinction

coefficient used to parameterize the decay of nitrogen through the canopy, m [-] is an

empirical slope factor in the stomatal resistance model, b [pmol CO2 m-2 s~1] is the minimum

stomatal conductance, E3 ,4 [pmol CO2 smol- 1 photons] is the intrinsic quantum efficiency for

C0 2 uptake and SLA [m2 leaf area kg C-1] is the specific leaf area.

WGEW, Arizona Loma Ridge, California

Parameter Shrub C4 Grass Shrub C3 Grass

Vmax 2s 55 25 60 35

k 0.5 0.5 0.5 0.5

m 9 4 9 9

b 10,000 40,000 10,000 10,000

E3 ,4 0.08 0.053 0.08 0.08

SLA 0.03 0.02 0.03 0.02
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Table 3-6: Vegetation respiration and turnover parameters for the VEGGIE model.

r [g C g C1 s-1 ] is the sapwood and leaf respiration rates at 100C, (Ogrw [-] is the fraction of

assimilated carbon allocated for growth of new tissue and d [yr-1] is the leaf, stem and root

carbon turnover rates.

WGEW, Arizona Loma Ridge, California

Parameter Shrub C4 Grass Shrub C3 Grass

Respiration Parameters

rsapw 9.61 x 10-10 - 9.61 x 10-10

rroot 109 x 10-10 250 x 10~10 109 x 10-10 250 x 10-10

OhrW 0.25 0.25 0.25 0.25

Turnover Parameters

deaf 1 1 0.5 0.5

dsapw 5 1 5 1

droot 1 1 0.5 0.5
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Table 3-7: Vegetation allocation, phenology and water uptake parameters for the VEGGIE

model. Yw max and Yc max [day-1 ] are the maximum drought and cold-induced foliage loss

rates, bw and bc [-] are the shape parameters reflecting the sensitivity of canopy to

drought and cold, Tcold [*C] is the temperature threshold below which cold-induced leaf loss

begins, e [-] is the base allocation fraction for canopy, sapwood and roots, io [-] is the

sensitivity parameter of allocation fractions to changes in light and soil water availability,

Es and F [-] are the constant and exponent in the calculation of minimum leaf to stem and

root ratio, Tsoil [*C] and DCLH [hr] are the mean daily soil temperature and day length that

have to be exceeded for the vegetation growing season to start, ATmin,Fav [day] is the

minimum duration for which the conditions of transition from/to the dormant season have

to be continuously met, W* and W. [MPa] are the soil matric potentials at which stomatal

closure and plant wilting begins.

WGEW, Arizona Loma Ridge, California

Parameter Shrub C4 Grass Shrub C3 Grass

Stress Induced Foliage Loss Parameters

Yw max 1/20 1/20 1/15 1/15

bw 3 3 3 4

Yc max 1/5 1/5 1/5 1/5

bc 3 3 3 3

Tcoid 7 6 2 2

Allocation Parameters

eleaf 0.45 0.35 0.3 0.35

esapw 0.1 - 0.05 -

eroot 0.45 0.65 0.65 0.65

F-> 0.8 0.8 0.8 0.8

es 15 1.25 15 1.25

4 1.6 1.0 1.6 1.0

Phenology Parameters

Tsou 5 5 5 5

DfH 3 3 3 3

ATmin,Fav 5 2 5 2

Water Uptake Parameters

T* -0.3 -0.1 -0.3 -0.1

Tw -4.0 -4.0 -4.0 -4.0
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3.3.5 Experimental Setup

Numerical experiments were conducted testing two forms of spatially- and

temporally-invariant rooting profiles: uniform and logistic. For each type of rooting

profile, two plant functional types, five soil textures and two climatic regimes were

used for a total of 20 environmental conditions per rooting profile. The

characteristics of the simulations are summarized in Table 3-8.

Experiments were conducted to test the parameter space for each of the rooting

profiles. For the uniform profile, the parameter space consisted of 50 different

maximum rooting depths from 0.1-5.0 m. For the logistic profile, the parameter

space consisted of 114 different combinations of the depth of 50% of the root mass

and depth of 95% of the root mass. For each point within the parameter space for

each rooting profile, 20 simulations were performed representing each of the

environmental conditions. Each simulation was run for 100 years to provide spinup

and then a further 100 years of simulation was used for analysis.

The 100-year mean values for each component of the surface water balance were

calculated from every simulation. For each of the 20 environmental conditions and

for each rooting profile, the point within the parameter space that returned the

maximum value of the mean transpiration (as a proxy for maximum vegetation

growth) was chosen as the optimal rooting profile under those conditions.

Table 3-8: Characteristics of the simulations conducted using both the uniform and logistic

profiles.

Site Climate Soil Plant Simulation
Regime Textures Functional Length

Types

Walnut Gulch Summer Sand, Sandy C4 Grass 100 year
Experiments Rainfall Loam, Loam, Shrubs spinup
Watershed, Clay Loam, 100 year

Arizona Clay simulation

Loma Ridge, Winter Sand, Sandy C3 Grass 100 year
California Rainfall Loam, Loam, Shrubs spinup

Clay Loam, 100 year
Clay simulation
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Uniform Root Distribution

Uniform root profiles can be considered the simplest representation of root

distribution within the soil column. The root distribution is controlled only by the

maximum root depth parameter, which is invariant in time and space for each

simulation. Several terrestrial models still utilize this simplistic representation

(Table 3-1), hence it was desirable to quantify the sensitivity of the water balance

to this type of rooting profile. A series of experiments were conducted with rooting

depths ranging from 0.1 m to 5.0 m in 0.1 m increments. Examples of these

profiles are shown in Figure 3-13.
Uniform Root Distribution

0
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Figure 3-13: Examples of uniform root profiles.

Logistic Root Distribution

Assimilated carbon allocated to the root zone by the VEGGIE model is done so

based on a logistic profile. Through a meta-study of field studies measuring the root

distribution of vegetation, Schenk and Jackson (2002) found that the shape and

distribution of the root profiles could be represented best using the Logistic Dose-

Response Curve (LDR) (Schenk and Jackson 2002):
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1
Froot(z) = z c

Where Froot(Z) [] is the cumulative root fraction from the surface to a depth z [m],

D50 [M] is the depth above which 50% of the root mass is located and c [] is the

shape parameter, which can be related to the D50 and the maximum root depth by

(Collins and Bras 2007):

2.94

=n (DsO
D9s)

Where D95 [M] is the depth above which 95% of the root mass is located.

The root fraction, froot,i, of an individual layer, i, can be calculated by:

froot,i Froot(zi) - Froot(zii)

Where zi is the depth of the layer of interest, and zi. 1 is the depth of the layer above

it.

Simulations were conducted to quantify the sensitivity of the water balance to

different combinations of the D50 and D95 root distribution parameters used in the

logistic profile. Figure 3-14 illustrates the parameter state space that was explored

and provides examples of logistic root profiles. It is important to note that even

though the D50 parameter was tested to a depth of 1 m and the D95 parameter to

a depth of 5 m, these ranges are higher than the observed values for water-limited

ecosystems and were used to provide an upper bound to the parameter space.
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Figure 3-14: Left: D50 and D95 parameter state space; Right: examples of the vertical root

profile corresponding to the colored circles in the left panel.

3.4 Results and Discussion

3.4.1 Uniform Profiles

Figure 3-14 shows the 100-year mean values of the water balance components for
each of the 20 environmental conditions for the uniform rooting profile. Each panel
of the figure is composed of the results obtained for each of the 50 values of the
parameter space. Red lines indicate the depth of the optimal rooting profile for each
of the 20 conditions, chosen as the parameter value that creates the maximum
mean transpiration.

In examining the results of these simulations it is instructive to consider the

tradeoffs between the various components of the annual water balance as well as

the implied life strategy of the plant functional type being simulated. Figure 3-15 is

a conceptual diagram of the water balance equation. The focus of this section is to

examine how different rooting architectures influence the partitioning of the
stochastically-generated rainfall time series. Conceptually, the impact of the rooting
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profile is to alter where within the soil column transpiration is extracted. The profile

shape also determines when moisture is extracted in relation to when the rainfall

event occurs.

R = I + Qsrf + E + T + D

Where R [mm] is the stochastically-generated rainfall, I [mm] is the volume of

water that is intercepted and evaporated back into the atmosphere (interception

loss), Qsr [mm] is the surface runoff, E [mm] is the bare soil evaporation, T [mm]

is the transpiration flux from the vegetation and D [mm] is percolation of moisture

out of the root zone (deep drainage).

Stochastically
Generated

Rainfall

Interception

Net Precipitation
' Runoff

' Evaporation

Transpiration

IlDrainage

Figure 3-15: Conceptual diagram of the partitioning of precipitation.

Soil texture has a significant role in the partitioning of precipitation at the surface

as well as the movement of moisture through the soil column. One of the largest

controls on evaporation, drainage and generation of surface runoff is the

permeability of the soil. Well-drained, high-conductivity soils (sands) allow large

volumes of water to infiltrate to depth. This results in moisture moving quickly

away from the soil surface, thus reducing the soil evaporation. This high
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conductivity also results in the soil being able to infiltrate storms of high intensity

and volume, consequently producing little surface runoff and significant deep

drainage. Poorly-drained soils (clays) retain moisture in the surface layers due to a

very low hydraulic conductivity decreasing the infiltration of received rainfall. This

results in a significantly larger fraction of evaporation being produced and reduces

deep drainage. The low conductivity also results in the surface layer quickly

becoming saturated within storm events, generating significant fractions of surface

runoff.

From the perspective of plant water availability, differences in the partitioning of

water have direct implications for the optimum rooting depth. In the near surface

layers, the two sinks competing for infiltrated moisture are evaporation and

transpiration. In highly conductive soils, the infiltrated water moves rapidly through

the evaporative zone, quickly reaching a depth at which evaporation no longer has

the ability to extract water. Therefore from the plant's perspective, highly

conductive soils result in minimal losses to the atmosphere and thus the greatest

volume of water entering the root zone. However, the high conductivity also acts to

drain the root zone, resulting in a short residence time for moisture within the root

zone. Therefore on highly conductive soils, it is advantageous for plants to exhibit

deep rooting profiles in order to catch as much moisture as possible before it drains

through the column.

By contrast, low conductivity soils such as clays lose large volumes of water to

surface runoff during rainfall events. Because of their slow drainage rates, moisture

remains near the surface and available to the atmosphere to satisfy evaporative

demand for a longer period than in highly conductive soils. The surface soil layers

also have the highest dynamic range of soil moisture, with highs close to saturation

and lows near the residual soil moisture content. This high variability creates

considerable stress to the plant. Once moisture has managed to infiltrate below the

evaporative zone, moisture in the root zone has a much longer residence time and

the dynamic range of soil moisture reduces. The deeper soil layers have less

moisture than the surface layers but also experience less variability, creating less
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stress for the plant. Therefore on low conductivity soils the plants face a tradeoff:

root close to the surface where there is moisture but face stress and compete with

the evaporative demand, or root deeper in the soil column and experience less

stress but have less access to moisture.

Figure 3-15 clearly illustrates the effects of soil texture. Across both plant types and

both study sites, the optimal rooting depth increases with increasing conductivity.

The results also show that the magnitude of transpiration is higher for sands than

for clays, such that the deeper rooting profile also correlates to more transpiration,
since the high conductivity soils lead to a higher volume of available moisture. This

result is consistent with the inverse texture hypothesis, which states that in

semiarid regions, sandy soils are more productive than clayey soils because of the

greater volume of infiltration.

A common trend across all soil textures and plant functional types is that as

maximum rooting depth increases, the fraction of evaporation also increases. This

can be considered a direct result of representing the root profile with a uniform

distribution. As the maximum root depth increases, a smaller proportion of the

plants roots are in each soil layer (Figure 3-13). As the root density decreases, the

plant's ability to extract water from that particular layer also diminishes. The

increase in evaporation as roots get deeper is a consequence of a lower root density

in the near surface soils layers. This reduction in density results in a less moisture

lost to transpiration from the surface layers, thereby increasing the volume of water

available to the atmosphere for evaporation.

The influence of rainfall timing can be seen when contrasting the simulations under

an Arizona climate at Walnut Gulch Experimental Watershed to California at Loma

Ridge. With rainfall and the growing season both occurring during the summer

months at Walnut Gulch, there is a 'use it or lose it' strategy being employed by the

vegetation due to the high evaporative demand. This results in shallow rooting

profiles across all soil textures and both plant functional types at Walnut Gulch.

However, at Loma Ridge, which experiences winter rain followed by a spring
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growing season, deeper rooting profiles are favored to access 'older' precipitation

that has infiltrated further into the soil column by the time the growing season

starts, as well as to avoid the stress of dry surface layers.
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Figure 3-16: Mean annual water balance over a 100-year simulation for five soil textures
(sand, sandy loam, loam, clay loam and clay), two climatic forcings (Walnut Gulch
Experimental Watershed (WGEW), Arizona and Loma Ridge, (Loma) California) and two
plant functional types (grasses and shrubs). Evap = evaporation from soil surface, Trans =
transpiration, Drain = deep drainage to groundwater, Srf = surface runoff, Intc = canopy
interception loss. Red lines identify the value of the maximum rooting depth parameter
corresponding to the maximum mean transpiration over the simulation period.
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3.4.2 Logistic Profiles

Simulations using a logistic profile involved more than twice the number of
realizations than for the uniform profile because of the extra dimension in the
parameter space. Therefore, for brevity, only results for the transpiration
component of the water balance are shown here since transpiration is considered a
proxy for plant productivity. Results for additional components of the water balance
can be found in Appendix A.

Figure 3-17 to 3-20 show the mean annual transpiration over the 100-year
simulation period for the different plant functional types at the two sites of interests
for the five soil textures. Each black circle on these figures represents one
simulation using the associated D50 (x-axis) and D95 (y-axis) rooting parameter
values. The rooting profile that maximizes the mean annual transpiration (white
circle) will be referred to as the optimum rooting profile.

Similar to the previous results for the uniform profiles, the influence of soil texture
on the logistic rooting profiles is clearly evident in Figure 3-17. Moving from the
sand (left panel) to the clay (right panel) soil textures, i.e. high conductivity to low
conductivity, the mean annual transpiration alters significantly from 200+ mm on a
sand to 50 mm for clay soils. These differences can be explained as the result of
the different partitioning of precipitation at the surface. In high conductivity soils,
rainfall events are quickly infiltrated to a depth below the evaporative zone,
providing a large moisture resource for the roots. There is no need to compete with
evaporation at the surface due to the low residence time of soil moisture in these

layers. It is more beneficial to the plant to limit the amount of moisture lost below
the root zone as a result of percolation. Consequently we see deep optimal rooting
profiles in such soils.

By contrast, the D50 and D95 root parameters are shallow on the clay soils. On low

conductivity soils a significant fraction of rainfall is lost to runoff, creating less
available moisture for infiltration. In the case of clayey soils, if the vegetation were
to employ the same strategy as plants on sandy soils, the number of events that
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would reach their root zone would be few and far between. The moisture stays
within the evaporative zone for longer, requiring the plants to compete with
evaporative demand (Figure 3-17). Because evaporation rates are much higher
than transpiration rates in semi-arid regions, much less moisture is available for the
plant activity. Consequently, vegetation found on such soil textures distribute their
roots in order to capture the soil moisture from the near surface layers before
evaporation can extract it.

Another observation from Figure 3-17 is that even on the sandy soils, below a
certain depth (approximately 2.5 m) transpiration begins to decrease. The deeper a
root system, the larger the volume of soil it occupies. With this larger soil volume
comes a larger store of soil moisture and hence larger potential resource for the
plant. However, at some point the cost of maintaining such a large root network
outweighs the benefit of having access to that additional store of water.

Mean Annual Transpiration - Grass

E

Sand i. r Sandy Loam Loam Clay Loam Clay
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Figure 3-17: Mean annual transpiration for a grass on five soil textures over a 100 year
simulation for Walnut Gulch Experimental Catchment, Arizona. Black filled circles indicate
parameter combinations simulated; White filled circle is the D50 and D95 parameter
combination that resulted in the maximum mean transpiration, i.e. the white circle
indicates the location of the optimal rooting profile.
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Figure 3-18 illustrates the mean annual transpiration for the shrub plant functional

type at Walnut Gulch Experimental Watershed. A similar trend across the soil

texture classes can be observed for shrubs as was observed for grasses. The shrub

plant functional type has the ability to root deeper than the grass. This is a direct

result of the different life strategies of these two plant functional types. Shrubs

allocate the majority of their assimilated carbon to the maintenance of root and

stem 'infrastructure'; leaf and seed production is not prioritized as is the case with

grasses. Examination of the plots in Figure 3-18 shows that this plant functional

type favors a combination of a shallow D50, allowing for the extraction of moisture

from the surface soil layers when available, and a deep D95 allowing for the ability

to avoid wilting conditions by utilizing what soil moisture manages to percolate to

deeper layers. This strategy creates greater resilience for this plant functional type

compared to the grass.
Mean Annual Transpiration - Shrub
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Figure 3-18: Mean annual transpiration for a shrub on five soil textures over a 100 year

simulation for Walnut Gulch Experimental Catchment, Arizona. Black filled circles indicate

parameter combinations simulated; White filled circle is the D50 and D95 parameter

combination that resulted in the maximum mean transpiration, i.e. the white circle

indicates the location of the optimal rooting profile.

Figure 3-19 and Figure 3-20 illustrate the mean annual transpiration for grasses

and shrubs at Loma Ridge, California. While there are some similarities between the

sites with respect to the influence of soil texture, the differences between Loma
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Ridge and Walnut Gulch are immediately evident. The majority of the precipitation

at Loma Ridge occurs during the winter months when radiative forcing, and

therefore evaporation and transpiration, are very low. Therefore, in comparison to

the Walnut Gulch site, less water is lost to evaporation and rainfall can percolate to

significant depths due to the very small transpiration losses during the wet season

if the soil conductivity permits. Hence during the summer months when increased

radiation starts the vegetation growing season, a large fraction of the available soil

moisture is in the deeper layers on the sandy soils. On the clayey soils, the low

conductivity prohibits deep percolation so the soil moisture remains in the surface

layers.

The impact of this percolation is evident in the location of the optimal rooting

profiles, with both the D50 and D95 parameters extending deep into the soil

column on the sandy soils to make use of the antecedent condition rather than

intercepting rainfall that might still fall. On the clayey soils, a similar rooting depth

is obtained to that shown above for Walnut Gulch.

It is important to note that even though these experiments were conducted over a

large D50 and D95 parameter space, a profile of D50 = 1.0 m and a D95 = 5.0 m

(such as the optimal profile for the sandy soil in Figure 3-19) is unrealistic. The

reasoning for this is explored in the next section. If we constrain the model

simulation to the maximum D50 and D95 parameters observed in field studies, we

would not expect the D95 for grasses to extend farther than 2 m and for shrubs no

farther than 4 m. With this constraint in place, the maximum transpiration for a

grass at Loma Ridge is approximately 200 mm on a sandy soil, which is almost the

same as the maximum transpiration for the loamy soil and about the same the

maximum transpiration shown for the grass on sandy soil at Walnut Gulch.
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Figure 3-19: Mean annual transpiration for a grass on five soil textures over a 100 year
simulation for Loma Ridge, California. Black filled circles indicate parameter combinations
simulated; White filled circle is the D50 and D95 parameter combination that resulted in the
maximum mean transpiration, i.e. the white circle indicates the location of the optimal
rooting profile.
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Figure 3-20: Mean annual transpiration for a shrub on five soil textures over a 100 year
simulation for Loma Ridge, California. Black filled circles indicate parameter combinations
simulated; White filled circle is the D50 and D95 parameter combination that resulted in the
maximum mean transpiration, i.e. white circles indicate the location of the optimal rooting
profile.
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MODIS Leaf Area Index Correlation with Precipitation

To examine the validity of the optimal rooting depths found using the above

approach, a simple correlation exercise was undertaken to determine the impact

that rooting depth may have on the 'age' of moisture being transpired to the

atmosphere. To achieve this, 10 years of MODIS leaf area index data were used as

a proxy for annual productivity and were correlated with accumulated seasonal

rainfall from nearby rain gauges. With only 10 years of MODIS data, the outcomes

of this analysis are not definitive, but rather illustrative of the expected correlation

between rainfall and vegetation growth in semiarid regions.

Four grass and four shrub locations were selected from within Walnut Gulch

Experimental Watershed (Figure 3-21). These locations were chosen to ensure the

corresponding MODIS pixel only consisted of the same vegetation type and a rain

gauge could be found within the pixel area for analysis. A similar analysis was

carried out for Loma Ridge, but due to the built up urban environment surrounding

that field site and the lack of a network of rain gauges, only one site was chosen for

grass and shrubs. A pine forest pixel was also included at Loma Ridge to represent

very deeply rooted vegetation.
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Figure 3-21: Vegetation Map of Walnut Gulch Experimental Watershed. Red filled circles

(shrub lands) and blue filled circles (grass lands) indicate rain gauges used in conjunction

with MODIS Leaf Area Index to examine correlation of vegetation growth and seasonal

rainfall (Image from USDA ARS).

Table 3-9 illustrates the results of the correlation analysis between seasonal rainfall

and MODIS leaf area index with a lag of 0 years and 1 year between rainfall and

vegetation growth. The results suggest that all grass and shrub sites show

correlation to the present season's rainfall. However, only one of the eight sites

chosen at Walnut Gulch showed a significant correlation between a one-year lagged

rainfall and the present year's vegetation. Also of interest is the pine pixel used in

California, which showed no correlation to the present season's rainfall or to the

season prior, suggesting that variability in the dynamics of this vegetation is

hydrologically connected to a different source of water (presumably groundwater).

Even though this analysis has been conducted with a sparse data set, some

conclusions can be drawn with respect to the 'age' of water utilized by grasses and

shrubs at both these sites. It is clear that vegetation is hydrologically linked to the

present season's rainfall accumulation, and that the storage available to the plants

at these sites is not sufficient to have an impact at a lag of one year.
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Table 3-9: Correlation results between MODIS LAI and seasonal rainfall at eight Walnut
Gulch location and three Loma Ridge locations. Bold numbers indicate statistically
significant correlations.

Site Dominant Seasonal Rainfall vs Mean Lagged 1 year Seasonal
(Rain Gage) Vegetation Annual LAI Rainfall vs Mean Annual LAI

Correlation p value Correlation p value
Coefficient Coefficient

WGEW (82 Grass (C4) 0.7729 0.0088 0.1077 0.7671
Kendall)

WGEW (41) Grass (C4) 0.8161 0.0040 0.0980 0.7878

WGEW (66) Grass (C4) 0.7910 0.0064 0.2951 0.4079

WGEW (68) Grass (C4) 0.8121 0.0043 0.4486 0.1934

WGEW (83 Lucky Shrub 0.8942 0.0005 0.6483 0.0426
Hills)

WGEW (16) Shrub 0.8965 0.0004 0.1078 0.7669

WGEW (26) Shrub 0.7999 0.0055 0.1816 0.6155

WGEW (33) Shrub 0.8488 0.0019 0.2880 0.4198
Loma Ridge Grass 0.6577 0.0387 -0.4156 0.2322

Loma Ridge Shrub 0.7677 0.0095 -0.0950 0.7941

Loma Ridge Pine 0.0167 0.9636 0.0284 0.9379
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The correlation between transpiration and seasonal rainfall was also examined

within the modeling framework outlined in the previous section. In particular, the

influence of the root parameters on the correlation characteristics of uniform and

logistic profiles was examined. Results presented below are only for grasses at

Walnut Gulch. Results for shrubs and for vegetation at Loma Ridge are not

presented as the results were very similar.

Figure 3-22 shows the correlation between modeled transpiration and model-forced

seasonal rainfall for the uniform rooting profiles. Shallow root profiles with

maximum depths of less than 1 m achieve statistically significant correlation

coefficients greater than 0.6, indicating a tight relationship between the current

season's rainfall and shallowly rooted grasses.

Correlation between Annual Rainfall and Annual Transpiration

-Sand
- Sandy Loam
-- Loam
- Clay Loam
- Clay

L _p>0.05

-0.2k

.1. A__ 4-., 1- ---
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Rooting Depth (m

Figure 3-22: Correlation between rainfall and modeled grass transpiration using different

maximum root depths with a uniform root profile at Walnut Gulch Experimental Watershed.

Figure 3-23 illustrates the 1-year lagged correlation between transpiration and

rainfall. Profiles with maximum rooting depths between 1.5 m and 4 m show

significant correlations to the lagged rainfall. However, this lagged correlation was
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not detected in the analysis of the MODIS and rain gauge data. Hence this
correlation must be considered a result of the uniform rooting scheme and not
realistic.

Correlation between 1 year Lagged Annual Rainfall and Annual Transpiration

-0.1L 1 1 ~ 1 ~ -~ I_ I I. __ I
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Rooting Depth [m]

Figure 3-23: Correlation between 1-year lagged rainfall and modeled grass transpiration
using different maximum root depths with a uniform root profile at Walnut Gulch
Experimental Watershed.

Figure 3-24 examines the lag 0, 1 and 2 year correlations between the rainfall and
simulated transpiration using the logistic rooting profile. As expected, shallow
profiles with D95 values of less than 2.5 m show good correlation to the current
year's rainfall. Profiles deeper than 2.5 m show stronger correlation to the rainfall
lagged by I or 2 years. Deeper D50 root depths also show stronger correlation to
'older' rainfall. But again, since the observational data from MODIS and the rain
gauges did not show a significant correlation with a lag of 1 year, these results
must be considered an artifact of the model's rooting scheme and not a realistic
result.
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Figure 3-24: Correlation between annual transpiration and annual precipitation for five soil

textures (left to right; sand, sandy loam, loamn, clayey loami, clay) for a grass at WGEW over
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a 100-year simulation using various combinations of the D50 and D95 parameters for the

logistic root profile. Top row: Lag 0 year correlation of precipitation and transpiration,

Middle row: Lag 1 year correlation; Bottom row: Lag 2 year correlation.

In summary this analysis highlights the influence rooting parameters can have on

the transpiration flux. In the extreme case, a poorly chosen static rooting profile

can result in the modeled transpiration flux to hydrologically link to last year's

rainfall rather than the observed tight relationship between this year's rainfall and

vegetation productivity as observed from the MODIS data.

3.5 Summary

The use of temporally- and spatially-invariant root parameters is standard practice

in land surface models (Table 3-1). This study illustrates the need to consider the

interaction between soil texture and climate when determining a plant functional

type's rooting parameters. Through the application of the evolutionary principle, an

optimal profile can be determined for a given location that represents the rooting

architecture that allows for maximum productivity over the long term.

The optimal rooting profiles obtained by this method for grasses and shrubs match

well with field observations and previous studies conducted at Walnut Gulch. This

agreement can be attributed to tRIBS+VEGGIE's detailed treatment of soil moisture

movement through the soil column and vegetation response to soil moisture stress.

Because of the overlap in the arrival of rainfall, peak radiation and the growing

season, there is little doubt that the soil-plant-climate interactions at this site are

dominated by the availability of soil moisture.

The Loma Ridge profiles are significantly deeper than those at Walnut Gulch, and

because of the offset between the arrival of rainfall (winter) and peak radiation and

the growing season (spring), the question of whether water is the controlling

resource for growth must be considered. Nutrients tend to be concentrated in

surface soil layers and decay with depth. Therefore in the case of Loma Ridge,

vegetation rooting strategies may be determined by the acquisition of nutrients

rather than soil moisture.
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A comparison of the rooting strategies at these two sites illustrates the influence of
different rainfall partitioning on vegetation. At Walnut Gulch, plants must compete

for surface moisture with the large evaporative demand and deep drainage through
high conductivity soils. This tradeoff results in a strategy that is shallow enough so
as not to lose too much moisture to evaporation, but also deep enough to ensure
no water is lost to deep drainage. In contrast the strategy at Loma Ridge is to
minimize drainage, and this is achieved by extending roots as deep as possible to
extract moisture that fell during the winter months and has already percolated to
below the evaporation zone.

One clear weakness of the invariance in the rooting profiles is that the modeled
plant functional type is always required to extract plant water from the same soil
volume, irrespective of the antecedent moisture conditions. This does not allow the

plant any flexibility to respond to variability in climatic forcings. Semiarid regions
are characterized by high variability in rainfall, and using a static rooting profile
can, at best, only reproduce the long-term mean transpiration fluxes. A static

profile will not be able to capture the observed variability of these systems.

The role of land surface models in regional climate and weather models is to receive

rainfall and energy, partition these inputs, and return moisture and energy back to
the atmosphere. Vegetation roots have a strong control over this partitioning, and

assuming a static root profile pre-determines the manner in which this partitioning

is undertaken. The need for a more dynamic rooting scheme is evident in order to
capture not only the variability in long term rooting strategies between soil textures

and plant functional types, but also the seasonal and interannual differences caused

by variability in climate.
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Chapter 4

Dynamic Root Profiles
"Seek simplicity, and distrust it."

-Alfred North Whitehead

4.1 Introduction

Arid and semi-arid vegetation have developed soil moisture foraging strategies to
cope with the highly variable distribution of moisture (Wilcox, et al. 2004).

Vegetation in these regions have adapted to not only deal with long periods of

drought, but to also cope with the variability in the manner (intensity and duration)

by which moisture is delivered to the land surface.

Foraging in plants has been defined as the allocation of resources (carbon) to

enhance the acquisition of a limited resource (de Kroon and Hutchings 1995).
Although the focus of the literature has been in understanding the nutrient foraging

mechanisms of individuals (Farley and Fitter 1999, Fransen, et al. 1999), the same

philosophy can be applied to the acquisition of water.

As described in the previous chapter, observations of root plasticity are well-

documented in the literature. In this chapter we relax the constraint of temporally-

and spatially-invariant root profiles by allowing the allocation of assimilated carbon

to be undertaken in such a manner as to maximize benefit to the plant as its

perceived stress evolves with time. This optimal allocation approach forms the basis

of a more realistic dynamic rooting scheme that responds to current local abiotic

conditions rather than mean conditions as is currently the standard representation.
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The dynamic rooting scheme builds on the VEGGIE dynamic vegetation framework.

No changes were made to the manner in which VEGGIE assimilates carbon or to the

allocation of this carbon to the leaf, stem and root carbon pools. However, the

manner in which carbon that is assigned to the root pool is distributed within the

soil column is significantly altered. This chapter will not repeat the work of Ivanov

(2008) but rather describe additions to the model.

4.2 Model Development

The coupling between soil moisture and vegetation is very strong in arid regions.

This is represented in multiple ways within the VEGGIE model by impacting:

(i) the maximum catalytic capacity of the Rubisco enzyme, which controls

the rate of photosynthesis and assimilation of carbon;

(ii) the potential transpiration of the plant through increases in stomatal

resistance;

(iii) the stress-induced turnover rates; and

(iv) the stress-induced allocation rates.

Therefore the ability to avoid or minimize stress is advantageous to the vegetation

being modeled in multiple ways.

At present, VEGGIE allocates root carbon based on the existing root profile, which is

characterized by either the logistic or uniform scheme. Even though the root carbon

pool does vary temporally, due to this constant allocation procedure there is no net

change to the root fraction within each soil layer. Soil water uptake is undertaken

based on the root fraction profile and consequently the influence of roots on soil

moisture is invariant in time.

Under the static uniform and logistic rooting schemes, the stress felt by the

vegetation is controlled completely by the hydrology and there are no mechanisms

for the plant to adapt to these conditions. For example, directly after a rainfall

event, surface soil layers are wet and the integrated root zone stress of the plant is

low. This results in the assimilation and allocation of carbon. At some point, as a
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result of transpiration, evaporation and drainage, the moisture levels in the root
zone begin to decay, and eventually the plant begins to experience soil moisture
stress. This impacts the assimilation, allocation and turnover of carbon as well as
the flux of water to the atmosphere.

This is when the dynamic scheme will have a significant impact. Whereas the static
scheme passively responds to the increasing stress, with detrimental effects on
vegetation growth, the dynamic scheme can begin to allocate assimilated carbon to
soil layers within the root zone that will result in increased benefit to the plant. In
the example above, this would mean less carbon would be allocated to the dry
surface soil layers and the focus of new root carbon would be within deeper
(wetter) layers within the root zone. This small change in allocation strategy results
in the plant experiencing lower overall stress and allows the plant to actively
interact with the local hydrology.

Protopapas and Bras (1987) incorporated a dynamic root scheme within a crop
model to allow vegetation to adapt to local salinity and irrigation practices. This
incorporation allowed for the numerical simulation of several observed root
systems. The model outlined in this section builds on this pioneering work.

4.2.1 Root Carbon Allocation Method

The VEGGIE model applies a photosynthesis and stomatal resistance model on an
hourly time step to two 'big leaves', one sunlit and one shaded. The assimilation of
carbon by these leaves is dictated by the plant functional type-specific parameters
and the environmental conditions (wind, photosynthetically active radiation (PAR),
soil moisture content in the root zone, air temperature and relative humidity)
(Collatz, et al. 1991, Collatz, et al. 1992, Ivanov 2006b). The eventual outcome of
the photosynthesis and resistance model is net primary productivity (NPP) [gC m2

hour-'].

NPP = GPP - R
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Where GPP [gC m-2 hour 1 ] is the gross primary production and R [gC m- 2 hour'] is

the vegetation's autotrophic respiration. For details on how NPP, GPP and R are

calculated, refer to Ivanov (2006b).

NPP, which is usually positive during the day when conditions are favorable for

photosynthesis (unless there is excessive wilting stress) and negative at night due

to respiration, is summed over the day and allocated or de-allocated (if NPP is

negative) to the three different carbon pools (leaf, root and stem). The fraction that

goes to each carbon pool is controlled by plant-specific parameters that determine

the phenology of the vegetation being modeled. VEGGIE also allows this allocation

to alter based on stress conditions (light and water).

VEGGIE uses Bonan's (1996) representation of how soil moisture impacts the

vegetation by reducing the maximum transpiration efficiency. The transpiration

efficiency factor for a single soil layer (#3;) can be written in terms of the local soil

moisture content (e;), plant-specific parameters that relate soil moisture content to

the onset of stress (e*), also known as the point of incipient stress, and the wilting

point (e,) of the vegetation:

1 0*- O4#= max 0,min (zi) -

The root zone (Zr) transpiration factor (PT) is calculated by summing the individual

layer transpiration factors weighted by the root fraction in each layer (ri):

Zr

maximize PT = i ri
~=1

The root fraction in each layer is simply calculated by dividing the root carbon in

layer i (Ci,root) by the total root carbon pool:

C iroot
r = Ci,root
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The allocation to each layer of the newly assimilated carbon to the roots (ACroot)
can be written as:

ri = Ci,root + ajACroot
ACroot + ir oo

Where al is the fraction of ACroot to be allocated to layer i. The static and dynamic
root schemes vary in the way in which the set of ai values are determined.

In the static case, al is set equal to ri, such that the allocation of new root carbon is
based on the existing root fraction within each layer. This method results in no net
change to the root fraction: although the total root carbon pool does change with
time, the fraction of the root profile within each layer remains constant.

With the new dynamic scheme proposed here, the value of al is
layer each day in a way that maximize the benefit to the plant,
the existing root fraction. To identify this optimal set of ai
optimization scheme, the Simplex Method, was applied (Press, et
of the Simplex Method are outlined in Appendix B.

selected for each

unconstrained by
values, a linear

al. 1992). Details

In general, linear optimization is concerned with maximizing an objective function,
subject to various constraints. The objective function for this problem can be
written in terms of maximizing the transpiration function:

Zr

maximize PT = f- ri
i=1

And by incorporating the above expression for the root carbon in each layer, we
obtain the objective function:
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maximize fr = r Ci,root + aiACroot

i= # ,LCiroot

From the objective function, we can see that the total root zone transpiration

function is influenced by each ai, the fraction of new root carbon that is allocated to

each layer. Under static conditions, with each ai dependent on the existing root

fraction, new root carbon may be allocated to a layer that has low soil moisture,

which would decrease the total transpiration factor. But in the dynamic case, the

new root carbon can be allocated specifically to the layers that have high soil

moisture, increasing the root zone transpiration factor and decreasing plant stress.

The optimization also requires constraints to bound the routine's search for the

optimal allocation strategy. The goal of this rooting scheme was to maintain

simplicity while still representing observable dynamic rooting responses. For this

reason the only constraints imposed were to ensure that each layer's root carbon

does not exceed the maximum root density, limited by the available pore space,

and that the allocation of roots does not result in an individual layer increasing its

root carbon too rapidly:

Ciroot Prootdzi

Ct-1 > ataCtroot
Ct'root - 2

Where ACt is assimilated root carbon over time step t, Proot is the maximum root

density, which is a function of the porosity, dz, is the thickness of layer i.

4.3 Model Testing

A series of point-scale simulations were conducted to test whether the dynamically-

evolved rooting profiles could capture the natural response of vegetation to

observed climate and soil gradients. The tests used a C4 grass as the plant

functional type, a loam soil and the climate of the Walnut Gulch Experimental
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Watershed. The purpose of this section is not to quantify the dynamic rooting

scheme's root distribution (this will be carried out in Chapter 5), but rather

demonstrate the flexibility of this scheme and qualitatively examine the behavior of

the scheme against laboratory experiments and field observations. Therefore it was

not considered necessary to run tests using all plant functional types and climate

regimes. A grass was chosen for the tests, rather than a shrub, since grass

responds rapidly to changes in environmental conditions and would provide the best

illustration of the new scheme. Loam was chosen as the soil type since it is typical

for the Walnut Gulch Experimental Watershed.

4.3.1 Influence of Precipitation

A mean climate with annual rainfall of 310 mm was generated with the stochastic

climate generator calibrated for Walnut Gulch Experimental Watershed, in the same

manner as described previously in Chapter 3. Three 100-year simulations were

carried out to test the model's behavior under variable annual rainfall. The storm

intensity and duration were altered to create a wet climate (mean annual rainfall of

620 mm) and a dry climate (110 mm) to examine the rooting behavior under these

different precipitation regimes compared to the existing mean climate.

Figure 4-1 illustrates the mean root profile over the 100-year simulation (blue lines)

evolved by the dynamic scheme for all three climates. The green space around the

blue line on each panel represents the mean annual root profile for each of the 100

years of simulation under each climate. The root profiles behave similarly to the

laboratory experiments undertaken by Weaver (1926), described previously in

Figure 3-3, in which rooting depth was shown to increase with increasing

precipitation.

The ability of this rooting scheme to evolve three very different mean rooting

profiles under different climates, implying three different life strategies, illustrates

the strength of this scheme. To indentify a static rooting profile that achieves the

same outcome would require, as demonstrated in Chapter 3, a series of simulations

to be undertaken to determine the appropriate rooting parameters for each climate.
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Figure 4-1: Dynamic rooting scheme response to three different mean rainfall regimes: a
wet climate of 620 mm yr-1; the mean climate of Walnut Gulch Experimental Watershed
310 mm yr~1; and a dry climate of 110 mm yr~1. Mean root profile over a 100-year simulation
(blue) and each individual year's mean root profile (green). Inset: laboratory observations
of root response to changes in precipitation regime (Weaver 1926).

As evidenced by the variability in the mean annual root profiles over the 100-year

simulation period (Figure 4-1), the dynamic scheme does not produce the same

root profile for each year but rather responds to interannual variability. This ability

to adjust the rooting profile to account for different antecedent conditions and the

natural variability in rainfall characteristics (intensity, duration and interstorm

period) is another strength of this scheme.

Figure 4-2 illustrates the dynamic rooting scheme's ability to capture the variability

in precipitation characteristics on shorter timescales. Each panel represents a single

year taken from the 100-year simulation using the existing mean climate (mean

annual rainfall of 310 mm). The blue lines show the annual mean profile for a

wetter-than-average (447 mm), mean (310 mm) and drier-than-average (222 mm)

year. The green space around each blue line shows the mean daily root profiles for
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every day within those years. For a wetter-than-average rainfall year, due to the

greater depth of infiltration, the dynamic scheme allows the roots to grow deeper

into the soil column, whereas for a dry year the rooting strategy employed is to

allocate roots in the near surface layers to compete with evaporation. This is a

demonstration of the dynamic rooting scheme's ability to rapidly adjust to present

conditions and allows for the modeling of phenotypic plasticity.
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Figure 4-2: Dynamic rooting scheme response to inter-annual variability, with a wet year of

447 mm; the mean rainfall year 310 mm; and a dry year of 222 mm. Mean annual root

profile (blue) and daily time series of roots evolution (green).

To examine how the dynamic model copes with non-stationary changes in climate,
a simple experiment was undertaken. The simulation began with a 12-year period

of mean annual rainfall of 354 mm, then an abrupt climate shift was imposed

resulting in the next 12 years having a mean annual rainfall of 143 mm. After this

abrupt change the stochastic climate generator was allowed to return to the original

climate regime, which resulted in a mean annual rainfall of 285 mm for the final 9

years.
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Figure 4-3 shows the simulated rainfall series and the response of the dynamic

rooting scheme. The D50 and D95 rooting depths (as described in Chapter 3) were

calculated for the mean annual dynamic rooting profiles evolved by the model. The

simulation illustrates the ability of the dynamic rooting scheme to adapt to the
sudden change in climate regime. The D50 and D95 parameters become shallower
over the dry period in response to shallower infiltration of precipitation but then
return to deeper layers once the higher rainfall returns. This adaptation to the new
condition is a demonstration of capturing the phenotypic plasticity in vegetation and
would allow the model to represent the resilience of such vegetation under the
pressure of moderate climatic changes.

354mm/yr 143mm/yr 285mm/yr

Time [yrs]

Figure 4-3: Simulation of dynamic rooting response to a shift in the medium-term rainfall
accumulation. The associated D50 (blue) and D95 (red) root parameters were calculated
based on the mean annual dynamic rooting profile.

4.3.2 Influence of Soil Texture

The dynamic rooting scheme allows vegetation to respond to heterogeneity in the
distribution of soil moisture. This variability is created not only by the variability in
climate, but also by abiotic conditions that alter the infiltration of precipitation (such
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as aspect, slope and soil texture). To ensure that the dynamic rooting scheme

responds appropriately to changes in soil texture, three 100-year simulations were

conducted. These used the same C4 grass and existing mean climate as described

previously but varied the soil texture between sand, loam and clay.

Figure 4-4 illustrates the dynamic rooting scheme's response to these different soil

textures. Again, the root profiles behave similarly to the field observations made by

Weaver (1926). Both the sand and loam soils illustrate deeper mean profiles than

the clay soils, reflecting the influence of the depth of rainfall infiltration. Clay soils

have the majority of the roots allocated in the near surface, suggesting very few

events produce significant recharge to lower soil layers. The clay soil also has a

lower density of roots overall than the other two soil types. Total vegetation growth

on clay soils is lower because of the high stress placed on the plant as a result of

the large evaporative fraction on these soils. This result is consistent with those

obtained by the optimized static profiles for different soil textures in Chapter 3.
Sard Loam Clay
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Figure 4-4: Dynamic rooting scheme response to three different soil textures: sand, loam

and clay. Mean root profile over a 100-year simulation (blue) and each individual year's

mean root profile (green). Inset: field observation of root response to changes in soil

texture (Weaver 1926).
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4.4 Comparison of Dynamic Scheme to Static Logistic

Profile

To examine the performance of the dynamic rooting scheme against the static

logistic rooting scheme, a series of synthetic climate scenarios was created. The

base climate used for this experiment is that of the Walnut Gulch Experimental

Watershed, Arizona. The stochastic climate generator was parameterized based on

observations made at the watershed and details can be found in Chapter 3.

One simulation was conducted for the dynamic rooting scheme, while for the

logistic rooting scheme, as in chapter 3, a series of experiments were conducted

varying the D50 and D95 rooting depths. This was carried out for each of the

scenarios outlined in Table 4-1. For the purposes of this study a loamy soil was

simulated (as it is the dominant soil texture at Walnut Gulch) and the plant

functional type of interest was a C4 grass. All simulations were run for 200 years,
with the first 100 years ignored to allow for spin up. Results represent analysis of

the last 100 years of the simulation.

The experiments outlined in Table 4-1 test the sensitivity of the optimal logistic

rooting profile, as calculated using the methodology outlined in chapter 3, and the

dynamic rooting scheme to perturbations in the characteristics of the stochastic

climate generator. The purpose of these experiments was to evaluate how

individual rainfall characteristics alter the rooting strategy of the vegetation and

consequently the partitioning of rainfall. The following is a brief explanation of each

scenario:

(i) Current Conditions - serves as a benchmark to compare changes in

vegetation response for the other scenarios;

(ii) Higher Intensity - doubles the mean intensity (r) of precipitation

events. To ensure no increase in the mean annual precipitation (Pa),
the interstorm period (tr) was also doubled;
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(iii) Longer Duration - doubles the storm duration (ts). To ensure no

increase in the mean annual precipitation (Pa), the interstorm period

(t) was also doubled;

(iv) Seasonal Late Shift - delays the timing of the wet season by one

month from July/August /September to August/September/October;

(v) Seasonal Early Shift - advances the timing of the wet season by one

month from July/August /September to June/July/August;

(vi) Increased Annual Precipitation (1) - Increases the mean annual

precipitation by 25%. This is achieved by increasing both the intensity

and duration by the same factor to achieve a total Pa increase of 25%.

(vii) Decreased Annual Precipitation (1) - Decreases the mean annual

precipitation by 25%. This is achieved by decreasing both the intensity

and duration by the same factor to achieve a total Pa decrease of 25%.

(viii) Increased Annual Precipitation (2) - Increases the mean annual

precipitation by 50%. This is achieved by increasing both the intensity

and duration by the same factor to achieve a total Pa increase of 50%.

(ix) Decreased Annual Precipitation (2) - Decreases the mean annual

precipitation by 50%. This is achieved by decreasing both the intensity

and duration by the same factor to achieve a total Pa decrease of 50%.
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Table 4-1: A series of experiments conducted to examine the influence that changes in
climate may have on the water balance. P. [mm] -annual mean precipitation; tr [hrs] -
monthly mean interstorm period; t, [hrs] -monthly mean storm duration; r [mm hr-1] -

monthly mean storm intensity. Shaded boxes signify experiments that differ from the base
case. The interstorm period, storm duration and storm intensity parameters vary on a

month-to-month basis.

Scenario Annual Return Storm Storm Wet
Precipitation Period Duration Intensity Season

Current Conditions Pa tr ts r JAS

Higher Intensity Pa 2 * tr ts 2 * r JAS

Longer Duration Pa 2 * tr 2 * ts r JAS

Decreased Annual (-50%) Pa * 0.5 tr 0.512 tS 0.51/2 * r JAS

Decreased Annual (-25%) Pa * 0.75 tr 0.75*1/2 ts 0.75*1/2 r JAS

Increased Annual (+25%) Pa * 1.25 tr 1.251/2 * t 1.251/2* r JAS

Increased Annual (+50%) Pa* 1.5 tr 1.51/2* ts 1.51/2 r JAS

Seasonal Late Shift Pa tr t r ASO

Seasonal Early Shift Pa tr t _r JJA

4.4.1 Results and Discussion

Presentation of the results in this section focuses on comparison of the optimal

logistic profile and the dynamic root profile for a grass on a loamy soil. The optimal

logistic profiles were identified using the methodology outlined in Chapter 3 and are

presented in Table 4-2.

The optimal profiles respond to the climate scenarios as expected: increases in

rainfall intensity and duration result in deeper rooting profiles due to deeper

infiltration as a consequence of larger volumes per event. For the scenarios that

altered the mean annual precipitation, the D50 and D95 respond as expected with

the shallowest roots for the driest climate regime of -50% and the deepest for the

wettest regime of +50%. The early and late rainfall seasons had only a minor

impact on the optimal rooting profile.
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Table 4-2: Optimal D50 and D95 rooting depths for the logistic rooting scheme under the
different climate scenarios.

Scenario D50 [mm] D95 [mm]

Current Conditions 200 1,400

High Intensity 300 3,000

Longer Duration 300 2,500

Decreased Annual (-50%) 150 600

Decreased Annual (-25%) 150 900

Increased Annual (+25%) 200 2,000

Increased Annual (+50%) 300 3,000

Seasonal Late Shift 200 1,600

Seasonal Early Shift 200 1,600

Figure 4-5 shows of the long-term mean dynamic rooting profile for a grass on a
sand for the current conditions scenario compared to the optimal static logistic
profile. The results show that the dynamic profile on average has less root carbon in
the very near surface and more root carbon at deeper layers. Results of the long-
term mean dynamic rooting profile compared to the optimal logistic profile for the
remainder of the scenarios are not shown here for brevity but are provided in
Appendix C. In general, the other scenarios show similar qualitative differences
between the profiles to the base case. This difference can be attributed to the effect
of the reasonably high conductivity rate of the loam soil, which allows a moderate
amount of rainfall to infiltrate to depth. This provides incentive for the dynamic
roots to move away from the surface evaporative stress and capture the infiltrated
moisture lower down in the soil column.
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Figure 4-5: Rooting profiles for optimal logistic scheme (red) and dynamic rooting scheme

(blue) for a grass on a sand over a 100 year simulation for Walnut Gulch Experimental

Catchment, Arizona.

Figure 4-6 illustrates the mean annual transpiration flux over the 100 years of

simulation for both the optimal logistic profile and the dynamic rooting profile for all

the climate scenarios. For most of the scenarios, the dynamic profile results in

similar mean transpirations as the logistic profiles, however the interannual

variability in the dynamic profile is higher. This difference can be attributed to a

weakness of the static rooting scheme. Due to the temporal invariance of the static

profile, the plant has the same ability to extract transpiration flux irrespective of the

rainfall timing. The dynamic scheme on the other hand has the ability to 'chase'

water throughout the rainy season.

For example, if a large event falls early in the season, the static root profile can

only extract water as it moves past the roots on its way through the soil column.

The dynamic scheme on the other hand will tend to follow the pulse of moisture as

it moves through the root zone, allocating more roots to layers at depth. The

impact of this ability to 'follow' the moisture can be seen when examining the deep
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drainage from the dynamic rooting profile (Figure 4-8). In the scenarios where the
rainfall intensity is increased, the static profiles result in a flux of moisture below
the root zone. In comparison none of the dynamic rooting profiles result in deep
drainage. The dynamic scheme can also respond to drying out of the soil column.
Once the rainfall event has passed through the root zone, the static scheme is
again constrained to continue drawing moisture from layers that are drying out,
while the dynamic scheme is able to shift the allocation of new root carbon to layers
that still retain moisture.

The scenarios that result in differences in mean transpiration between the static
and dynamic rooting schemes include the high intensity rainfall scenario and the
two scenarios with decreases in mean annual precipitation. In these cases the
dynamic scheme produces more transpiration flux than the static scheme. For the
higher intensity scenario, the difference is explained by the drainage flux (Figure
4-8). The dynamic scheme allows no deep drainage whereas the static scheme
produces a significant volume of deep drainage. This effect is a result of the
dynamic scheme being able to follow the moisture through the soil column, as
described above. Doubling the mean intensity of rainfall resulted in large volumes
of water percolating through the root zone, which the static profile is unable to
capture.

For the two scenarios with reduced mean annual precipitation, the optimal logistic
profile D50 is 150 mm, which means that 50% of the plant's roots mass is between
the surface and a depth of 150 mm. This places the majority of the roots within the

evaporation zone of the soil, resulting in significant stress to the plant as the near
surface layers tend to reach soil moisture values near the residual point. The ability
of the dynamic rooting profile to change the allocation of new root carbon from the
near surface layers just after rainfall events to deeper in the soil column creates
significantly more resilience for the plant and reduces the mean stress the plant
experiences over the growing season. The reduction in plant stress and increase in
transpiration that comes from the dynamic profile also leads to less bare soil
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evaporation in those low-rainfall scenarios, since the plants can utilize the soil
moisture more effectively.

These experiments demonstrate the strength of the dynamic rooting scheme in
capturing variability in vegetation growth in response to changes in climatic
conditions. The performance of the scheme against observations will be
quantitatively assessed in Chapter 5.
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Figure 4-6: Mean annual transpiration for dynamic (green) and optimal logistic (blue)
rooting profiles over 100 year simulation for different climate scenarios. Red bars indicate
standard deviation.
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4.5 Dynamic Roots on a Hillslope

At the hillslope scale, several processes that are not present at the point scale

become important. The geometry of the hillslope results in different slopes and

aspects (i.e. direction that the hillslope faces), which influences the radiation

exposure. Topography plays an integral role in the redistribution of precipitation

and the spatial variability of soil moisture conditions, both along the surface and in

the subsurface (Ridolfi, et al. 2003, Western, et al. 1999). This redistribution results

in micro-climates within a hillslope that may be advantageous to vegetation

(Hwang, et al. 2009). Superimposed on these features is natural variability in soil

texture along the hillslope.

To determine how a static rooting profile responds to this spatial variability along a

hillslope, a 100-year simulation was conducted using a logistic profile with constant

parameters of D50 = 0.2 m and D95 = 1.5 m. Two planar slopes were constructed,

each with a 10 percent slope, with one aspect facing north and the other south.

Each slope is 300 m from ridge to valley, consisting of 10 elements each 30 m long

and 30 m wide. For simplicity, spatially homogenous soil texture (loam) and

stochastic climate forcings (parameterized for the existing Walnut Gulch

Experimental Watershed climate) were applied. The results for the response of C4

grasses will be presented in this section.

Figure 4-9 illustrates the mean vegetation response for the static logistic profile.

The impact of lateral redistribution of moisture on leaf area index can be seen at

the two ridges. The ridge contains the least leaf area index for each slope because

these two elements dry the fastest since they have the smallest contributing area

(i.e. least number of cells contributing water to them). Using the same reasoning,

the valley element has the highest leaf area index as it has the largest contributing

area (both slopes).

The impact of aspect can also be seen, with the north facing slope supporting more

vegetation over the 100 years than the south facing slope. This is a direct result of
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the differences in radiation at the surface and consequently differences in
evaporation rates.

With the exception of the ridge and valley elements, the response of each hillslope
is essentially homogenous. Some variability within the hillslope would be expected
since the contributing area increases from ridge to valley. Hence there is an
accumulation of moisture going down the slope, which should lead to heterogeneity
in vegetation growth. However, the uniform rooting behavior does not allow the
vegetation to take advantage of variability in soil moisture, which results in a
vegetation response that is uniform in space.

The vegetation response does show variability in time. Figure 4-10 illustrates the
time evolution of the transpiration fraction over the 100 year simulation period. The
hillslopes respond to interannual variability in rainfall, but with the exception of the
ridges and valley elements, the hillslopes behave in unison to that variability.
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Figure 4-9: Vegetation response over 100 year period using a logistic profile on two planar
slopes. Top: mean annual leaf area index; Middle: mean root density profile; and Bottom:
mean soil moisture profile. Dashed black line represents the valley element.
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Figure 4-10: Time series of the ratio of annual transpiration to annual evapotranspiration

over 100 years using a logistic profile on two planar slopes. Dashed black line represents

the valley element.

The point-scale dynamic rooting scheme was extended and applied to the same two

planar hillslopes, using the same experimental setup as described above for the

static profile. The application of the dynamic scheme allows vegetation to adapt to

variability in the subsurface, in this case the changes in soil moisture as a result of

differences in contributing area. Figure 4-11 shows the mean vegetation response

over the 100 year simulation period.

The top panel of Figure 4-11 shares many of the same characteristics as the results

from the logistic profile, with more vegetation on the north facing slope and dry

ridge and wet valley elements. However, in the dynamic case the mid-slope

elements also exhibit some variability in mean vegetation response and root

density.
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Examination of the root density profile shows a slightly higher distribution of roots
in the near surface for the south facing elements. This is in direct response to the
higher incoming radiation on this slope creating more evaporation and consequently
reduced depth of infiltration. The long-term mean root density also shows some
within-slope patterning on both the north and south slopes, with alternating
patches of higher and lower root density.

This patterning becomes more noticeable when looking at the time series of the
ratio of annual transpiration to annual evapotranspiration (Figure 4-12). For
example, years 15-25 on the south-facing slope show the elements alternating
between high and low ratios of transpiration to total evapotranspiration. The results
are in stark contrast with the logistic simulation (Figure 4-10), which only exhibited
inter-annual variability. This repeating pattern has been observed in many dryland
regions, with some sections on a hillslope acting as a catchment of moisture to
vegetated patches further down the hillslope (Rietkerk 2004, Rietkerk, et al. 2002).
One well-known example of this patterning is in observations of tiger bush in
western Africa.

The observed patterns are a clear illustration of how allowing vegetation to interact
with soil moisture, rather than passively respond as in the static cases, allows
vegetation higher on the hillslope to influence the amount of lateral redistribution
that is passed to elements further down the slope. The resulting patterns not only
influence the current season's interaction with the atmosphere via transpiration
flux, but also leave a legacy for the following year by altering the antecedent
conditions.
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Figure 4-11: Vegetation response over 100 year period using the dynamic scheme on two
planar slopes. Top: mean annual leaf area index; Middle: mean root density profile; and
Bottom: mean soil moisture profile. Dashed black line represents the valley element.
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Figure 4-12: Time series of the ratio of annual transpiration to annual evapotranspiration
over 100 years using the dynamic scheme on two planar slopes. Dashed black line
represents the valley element.
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4.6 Summary

This chapter introduced a new method to represent the growth and distribution of
roots in the subsurface. This method has not only added more realism to the
treatment of vegetation roots but also addressed the discrepancy in the level of
sophistication with which above and below ground vegetation is represented in
hydrologic models.

The motivation behind this work was to achieve a realistic root profile given local
conditions. Chapter 3 applied a brute force method for achieving this task but was
not satisfactory as the optimal rooting profile, though appropriate for local mean
conditions, did not have the ability to adapt to interannual variability or cope with
potential non-stationary climatic shifts.

This chapter has shown that the dynamic scheme can cope with grasses and
shrubs, different soil textures, different mean climate conditions, interannual
variability and large non-stationary climatic shifts. It is important to acknowledge
that the objective function used to optimize the allocation of new root carbon is
only a function of soil moisture and therefore the rooting strategies that evolve are
designed for the uptake of plant water.

Fitter (1991) mentions two other primary functions for roots: the acquisition of
nutrients and anchorage. The application of this work was focused on semi-arid
regions, where vegetation growth is limited by soil moisture availability, and for this
reason these other two primary functions could be ignored. However, the
framework of this dynamic scheme could be easily applied, through the creation of
a multiple objective function and appropriate constraints, to evolve rooting profiles
that maximize not only the water uptake but the overall health of the plant.

Additional benefits of the dynamic scheme are that it is very computationally
efficient and requires no additional vegetation parameters, since the ability to
dynamically root is strongly controlled by the traits of the plant functional type.
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Chapter 5

Walnut Gulch Experimental

Catchment

This chapter focuses on the application of tRIBS+VEGGIE to the Walnut Gulch
Experimental Catchment in Arizona. In particular, this work examines the
application of the dynamic rooting scheme and its impact on capturing the observed
energy balance, soil moisture dynamics and vegetation response.

5.1 Site Description

Walnut Gulch Experimental Watershed is maintained by the United States
Department of Agriculture (USDA) - Agricultural Research Service (ARS). The
watershed is part of the San Pedro River Basin and is located near Tombstone,
Arizona. The watershed is approximately 150 km2 with elevation ranging from
1200 m in the west to 1950 m in the northeast (Figure 5-1). Instrumentation began
at the watershed in 1953 focusing on the measurement of precipitation and
streamflow. Today the watershed has a network of over 100 rain gauges, 2 eddy
flux towers and approximately 20 soil moisture measurement locations. In addition
to the instrumentation, extensive soil and vegetation surveys have been
undertaken. Due to the volume of hydrologic data available at this location, as well
as the length of these data records, the watershed has been the focus of several
hydrologic studies, some of which were featured in a special issue of Water
Resource Research (vol 44, 2008) dedicated to work conducted at this watershed
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(Emmerich and Verdugo 2008, Goodrich, et al. 2008, Heilman, et al. 2008, King, et

al. 2008a, Osterkamp, et al. 2008, Skirvin, et al. 2008).

Lucky Hills and Kendall are two sub-basins within the watershed (each with and

area of less than 0.1 km2). They are representative of the two main vegetation

cover types - shrubs at Lucky Hills and grasses in Kendall - and have been the

focus of intensive instrumentation and study (Figure 5-2). The two eddy flux towers

within Walnut Gulch are located at these two sub-basins. The Lucky Hills site is

located at 110 03'5"W 31044'37" N with an elevation of 1372 m. The dominant

species present at the site are creosotebush (Larrea tridentata), hitethorn Acacia

(Acacia constricta), tarbush (Flourensia Cernua), and desert zinnia (Zinnia pumila),

with some mariola (Parthenium incanum) and little leaf sumac (Rhus microphylla)

(King, et al. 2008a). The soil at this site is Lucky Hills series (coarse-loamy, mixed,

thermic Ustochreptic Calciorthids) with 3 - 8% slopes (Heilman, et al. 2008). The

Kendall site is located at 109 056'28"W 31044'10"N with an elevation of 1526 m.

Dominant grasses are sideoats grama (Bouteloua curtipendula), black grama

(Bouteloua eriopoda), three-awn (Aristida sp.) and cane beard grass (Bothriochloa

barbinodis) (King, et al. 2008b). The soils at the site are a complex of Stronghold

(coarse-loamy, mixed, thermic Ustollic Calciorthids) with 4-9% slopes (Heilman, et

al. 2008).
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Figure 5-1: Digital Elevation Map of Walnut Gulch Experimental Watershed.
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Figure 5-2: Grass Dominated Kendall sub-basin (left) and Shrub Dominated Lucky Hills sub-

basin (right).

5.2 Evaluation Data Sets

Evaluation of the model's performance was undertaken using a combination of in-

situ and remotely sensed data. The model's performance was compared with

observations made for the 4 components of the energy balance (latent heat flux,
sensible heat flux, ground heat flux and net radiation), soil moisture distribution

with depth and leaf area index of the vegetation.

It is important to consider the scales of the observations when comparing them to

the model results (Table 5-1). With respect to the energy balance measurements,
the turbulent flux observations have a spatial scale that is determined by the height

of the instrument and consequently its fetch. The data can therefore be considered

to cover a mix of bare soil and vegetated patches. The ground heat flux plates are

point measurements and consequently may be influenced by local soil texture and

nearby vegetation. The radiometers have a significant field of view, consequently

measurements taken are representative of a large area. Temporally, the energy

balance measurements are typically recorded at very high resolutions and then

averaged over an hour.

The watershed's extensive rain gauge network permitted studies of the spatial and
temporal variability in rainfall, which emphasize the temporal and spatial variability

of this environment (Goodrich, et al. 2008). There is a difference of over 9 orders of
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magnitude between the spatial scale at which the measurement is taken (the

diameter of a rain gauge) and the area over which it is assumed to be applied in

land surface models. It is also important to note that the model utilizes hourly

rainfall data, so variability below this scale will be aggregated and smoothed.

Soil moisture suffers from much the same spatial scale issues as precipitation,

complicated further by the large natural variability in soil texture. It is important to

note that soil moisture measurements can vary significantly over very short

distances and may be influenced by vegetation roots.

The Moderate-resolution Imaging Spectroradiometer (MODIS) is an instrument

mounted to the Terra and Aqua satellites each with approximately 2 overpasses per

day. The leaf area index product is very sensitive to cloud cover, consequently only

clear sky overpasses can be used to produce the product. For this reason the 8 day

composite product, which averages the clear images over an 8 day window, was

used for this study. The finest spatial resolution available for this product is 1 km x

1 km.

As a consequence of the spatial and temporal scale differences between the

modeled and observed variables, scaling of variables in order to make comparisons

is required. For the Kendall and Lucky Hill evaluations presented below, the nearest

computational element within the model to the location where the observation was

taken was used. With respect to soil moisture, the soil layer within the model

(which represents a volume not a point) closest to the depth of the observation was

used for comparison. Soil moisture measurements were taken at the same location

as the eddy flux tower in each of the Kendall and Lucky Hills sub-basins.
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Table 5-1: Temporal and spatial scales and period of record available for evaluation data

sets.

Variable of Observation Temporal Scale Spatial Scale Period of Record
Interest Method

Energy Balance

Latent Heat Open Path Gas Hourly (average from 0.25 km2  1997 - 2008
Flux Analyzer + Sonic 10-60Hz raw data)

Anemometer

Sensible Open Path Gas Hourly (average from 0.25 km 2  1997 - 2008
Heat Flux Analyzer + Sonic 10-60Hz raw data)

Anemometer

Ground Heat Ground heat flux Hourly Point 1997 - 2008
Flux plates (~ 5 mm)

Net 4 component Hourly ~1 km 2  1997 - 2008
Radiation radiometer

Water Balance

Precipitation Rain gauge Hourly ~0.03 m2  1997 - 2008

Soil Time-domain Hourly Point 5 cm:2002 -2008
Moisture reflectometery (TDR) (~ 5-10 cm) 15 cm: 2002-2008

30 cm: 2002-2006

Vegetation Dynamics

Moderate-resolution
Imaging

Spectroradiometer

8 day composite
(average of cloud free

images over 8 day
period)

5.3 Model Setup

The Walnut Gulch Experimental Watershed was discretized into 19,443 computation
elements each with 25 soil layers (Figure 5-3). tRIBS+VEGGIE utilizes a triangular
irregular network (TIN) that allows individual computational elements within the
domain to vary in size. This flexibility is utilized to finely resolve regions within the
domain that have steep slopes and save computational effort by reducing resolution
in flatter regions. The area of the computational elements with the domain varies
from 0.001 km2 to 0.01 km2.
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Figure 5-3: Walnut Gulch Domain Discretization

The forcings required for tRIBS+VEGGIE were obtained from two micro-

meteorological stations located at Lucky Hills and Kendall sub-basins spanning an

11 year period from 1997 to 2008 (Figure 5-4). The environmental variables

required are hourly measurements of:

(i) Air temperature;
(ii) Incoming solar radiation;

(iii) Wind speed and direction;

(iv) Relative humidity; and

(v) Atmospheric pressure.
Hourly precipitation forcings were obtained using a subset of nine rain gauges from

the Walnut Gulch Experimental Watershed Precipitation Network (Figure 5-5).
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Figure 5-4 Thiessen polygons for the two meteorological forcings measured

Lucky Hills micrometeorological stations; air temperature, relative humidity,

radiation, wind speed and atmospheric pressure.
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Figure 5-5: Thiessen polygons derived from nine rain gauges used for precipitation forcing.

The soil map used for this study was based upon the Soil Survey Geographic

Database (SSURGO) maintained by the Natural Resource Conservation Service

(NRCS). The original soil map consisted of over 40 soil textures (Breckenfeld 1994),
which was simplified to 7 soil textures for this study (Figure 5-6 and Table 5-2).
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Figure 5-6: Simplified soil distribution map for Walnut Gulch Experimental Watershed.

Table 5-2: Soil hydraulic parameters for Walnut Gulch Experimental Watershed
(Breckenfeld 1994). K.,n [mm hr- 1] is the saturated hydraulic conductivity normal to the
soil's surface, 0, [mm3 mm- 3] is the saturation moisture content, or [mm 3 mm- 3] is the
residual moisture content, A0 [] is the pore-size distribution index and qib [mm] is the air
entry bubbling pressure.

Parameter K,n , O, AO eb

Clay 3.0 0.385 0.02 0.165 -400

Clay Loam 4.5 0.39 0.075 0.242 -260

Silt Clay Loam 5.7 0.423 0.056 0.15 -340

Silty Loam 6.8 0.486 0.015 0.234 -210

Loam 13.2 0.434 0.027 0.553 -110

Sandy Loam 48.0 0.412 0.041 0.755 -140

Loamy Sand 85.0 0.401 0.035 0.553 -90

A simplified vegetation

dominated regions was

map dividing the watershed into grass- a

derived from Skirvin et al (2008) (Figure

nd shrub-

5-7). The
distinction of vegetation dominance was undertaken using the definition of Skirvin

et al (2008): sites with greater than 20% shrub cover are designated shrub-

dominated and sites with less than 20% shrub cover are grass-dominated.
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Vegetation Map
Grass

0 km

Shrub

Figure 5-7: Vegetation map derived from the USDA Agricultural Research Service defining

regions that are dominated by shrubs (shrub fraction > 20%) and regions that are grass

dominated (shrub fraction < 20%) (Skirvin, et al. 2008)

5.4 Results and Discussion

Evaluation of the tRIBS+VEGGIE was undertaken using three rooting schemes:

1) Uniform rooting scheme with a rooting depth of:

a) Grasses: 1m;

b) Shrubs: 1m;

2) Logistic rooting scheme with rooting parameters:

a) Grasses: D50 = 0.2m and D95 = 1.0;

b) Grasses: D50 = 0.3m and D95 = 1.0;

3) Dynamic rooting scheme.

Simulations were run for the entire domain and the focus of the evaluation will be

at the two sub-basins Kendall and Lucky Hills. The following section will focus on

evaluation of the results generated from the dynamic root scheme simulations and

comparisons to the temporally and spatially invariant rooting schemes. For

completeness the same analysis performed in this chapter for dynamic roots has

also been performed for the uniform and logistic simulations and is presented in

Appendix D. The following section will first undertake an evaluation of the grass-
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dominated site at Kendall and then carry out the same analysis for the shrub-

dominated site at Lucky Hills.

5.4.1 Kendall Evaluation

Energy Balance

Hourly error histograms (Figure 5-8) were constructed by comparing the hourly

time series of the observations made at the eddy flux tower at Kendall with the

closest computational element to the tower within the simulation period 1997 to

2008. The hourly error histogram and the mean monthly fluxes (Figure 5-9) for the

four components of the energy balance illustrate the good agreement between the

observations and the dynamic rooting scheme model results. Considering this error

analysis was carried out over an eight year period and at an hourly time step,
achieving biases of less than 10 Wm-2 for all components of the energy balance is a

robust result. With respect to the turbulent fluxes, studies have shown

measurement uncertainty ranging from 10 to 50 Wm-2 (Hollinger and Richardson

2005). With this in mind, the RMSE of the latent and sensible heat fluxes are close

to the measurement error of the observation data.
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Figure 5-8: Energy Balance Hourly Error Histograms for Kendall using a dynamic rooting

scheme from 1997 to 2008. a) Net Radiation; b) Latent Heat Flux; c) Ground Heat Flux; and

d) Sensible Heat Flux. #Pts corresponds to the number of hourly data points used to

construct the histogram.
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Figure 5-9: Comparison of observed and modeled mean monthly energy balance
components for Kendall using a dynamic rooting scheme from 1997 to 2008. a) Net
Radiation; b) Sensible Heat Flux; c) Ground Heat Flux; and d) Latent Heat Flux and
Precipitation.

One key motivator for the incorporation of a dynamic rooting scheme is to ensure

that fluxes from the land surface to the atmosphere are not only correct in terms of

magnitude but also timing. Using a static root profile, it was particularly difficult to

capture the decay of latent heat after precipitation events (Appendix D). To
examine the event-based response of the four components of the energy balance,

three month-long time series for 2005, 2006 and 2007 were examined (Figure

5-10, Figure 5-11 and Figure 5-12). The month examined below is August as it is

the peak of the growing season and consequently the period over which vegetation

has the greatest potential impact on the partitioning of energy. Climatologically,
precipitation in 2005 was low at 161 mm (compared to a long term mean of

330 mm), with rainfall returning closer to the long term mean for 2006 (294 mm)

and 2007 (313 mm).
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The model captures both low latent heat fluxes associated with a dry year (Figure

5-10, day 10-15) as well as high latent fluxes associated with a typical rainfall

season (Figure 5-11, days 8-15). Over all three years, the model shows an

excellent ability to track the decay of latent heat after a rainfall event (for example

the rainfall event on day 4 and 5 in 2005 and days 10-12 in 2006).

Aug, 2005

,000 -Mode - obs

20 AAAAFALAAAAAAAAMAAA 1AAA.
0

200
0 5 10 Is 20 25 30

DeyS

Figure 5-10: Time series comparison of modeled (blue) and observed (red) energy balance

components for August 2005 at Kendall using the dynamic rooting scheme.
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Figure 5-11: Time series comparison of modeled (blue) and observed (red) energy balance

components for August 2006 at Kendall using the dynamic rooting scheme.

Aug, 2007
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Figure 5-12: Time series comparison of modeled (blue) and observed (red) energy balance

components for August 2007 at Kendall using the dynamic rooting scheme.
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A comparison of the hourly error statistic of the three different rooting schemes is

presented in Table 5-3. The dynamic scheme performs significantly better with

respect to sensible heat flux and net radiation. This may be attributed to the ability

of the dynamic rooting scheme to capture the above ground vegetation dynamics
more accurately. Latent heat flux doesn't change significantly between these three
rooting schemes since the dynamic changes in the root profile occur primarily in the
near surface soil layers. In these layer, the roots are competing with evaporation

for water - if the plant doesn't take up the surface moisture, it will be lost to
evaporation. Hence the total amount of water lost from the surface soil layer
remains almost constant as the fraction of roots in that surface layer changes, and
total latent heat flux from the surface stays relatively constant - only the
partitioning of vapor flux between transpiration and evaporation changes.
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Table 5-3: Energy Balance Hourly Error statistics for Kendall using
dynamic rooting schemes.

uniform, logistic and

Uniform Rooting Logistic Rooting Dynamic Rooting
Scheme Scheme Scheme

Net Radiation

Bias -18.53 -18.41 -3.68

RMSE [Wm-2] 53.48 53.83 41.75

R2  0.98 0.98 0.99

N - Sample Size 86508 86508 86508

Latent Heat Flux

Bias -6.52 -6.77 -7.27

RMSE [Wm-2] 29.91 29.40 29.47

R 0.82 0.83 0.83

N - Sample Size 75965 75966 75962

Ground Heat Flux
Bias -0.25 -0.22 -0.94

RMSE [Wm-2] 42.79 42.14 33.43

R 0.91 0.91 0.89

N - Sample Size 87480 87480 87480

Sensible Heat Flux
Bias -11.93 -11.63 5.14

RMSE [Wm-2] 67.41 67.18 48.58

R 0.92 0.92 0.95

N - Sample Size 76106 76106 76106

Vegetation Evaluation

To evaluate the vegetation dynamics of the model, MODIS Leaf Area Index 8-day
composite data was utilized. The MODIS pixel that encompassed the Kendall sub-
basin was compared to the closest computational element to the Kendall sub-basin.
When comparing the model using the uniform (Figure 5-13) and logistic (Figure
5-14) root schemes to the observed response, the general trend of seasonal change
in LAI is captured. However, these static schemes tend to result in excessive stress
for the years 2003 and 2005, which can be characterized as very dry years (187
mm and 161 mm respectively), resulting in underestimation of the peak LAI for
each season. The poor performance of both schemes in 2006 can be attributed to
the very dry spring prior to the 2006 growing season, which resulted in dry
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antecedent moisture conditions within the model. Consequently, once vegetation

growth is triggered, the modeled plant functional type will be under stress very

quickly as the tail of the root profile will be in a very dry soil environment. This

leads the model to under predict the potential for plant growth during the growing

season.

When examining the model's performance during the winter months, it is important

to note that the observations show a persistent leaf area index of approximately

0.2. This background signal may be attributed to standing dead biomass as latent

heat measurements and field visits during this period confirm almost no

evapotranspiration or photosynthetic activity (tRIBS+VEGGIE does not account for

standing dead biomass).

-- tRIBS+VEGGIE
oMODIS Obs

1.2

0.8

0.6L

0.4

2%00 2001 2002 2003 2004 2005 2006 2007 2008
Year

Figure 5-13: Comparison of modeled (blue) and MODIS 8 day composite 1 km x 1 km (red)

Leaf Area Index at Kendall using the uniform rooting scheme.
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Figure 5-14: Comparison of modeled (blue) and MODIS 8 day composite 1 km x 1 km (red)

Leaf Area Index at Kendall using the logistic rooting scheme.

The dynamic root scheme simulation performs very well over all years (Figure 5-15
and Figure 5-16) and significantly better than the static root schemes. Crucially, the

dynamic scheme is able to represent the peak LAI for each growing season. An

RMSE of 0.11 is acceptable considering the error associated with the satellite

observation, and in particular considering the MODIS data product is reported in
increments of 0.1. The dynamic scheme's ability to capture the observed leaf area
index of 2006 can be attributed to the ability of the dynamic model to distribute a
larger portion of the root biomass to the near surface layers in response to the dry

spring and consequently dry soil column, allowing the vegetation to respond to the

following growing season despite dry antecedent conditions. Figure 5-17 illustrates

this change in near surface root fraction and demonstrates the model's ability to

alter the root profile both within a season (depicted by the shaded green region)
and interannually in response to the rainfall characteristics.
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Figure 5-15: Comparison of modeled (blue) and MODIS 8 day composite 1 km x 1 km (red)

Leaf Area Index at Kendall using the dynamic rooting scheme.
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Figure 5-16: Comparison of the MODIS pixel corresponding to Kendall sub-basing and the

nearest computational element's leaf area index. #Pts represents the 8 day MODIS time

series data points from 2000 to 2008.
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Figure 5-17: Growing season root profiles for the grass dominated computational element
at Kendall. Mean season root profile (blue), seasonal variability of root profile (green).
Static profiles are included for comparison.

Figure 5-18 and Figure 5-19 extend the vegetation analysis to compare the mean
behavior of all grass-dominated computational elements within Walnut Gulch
Experimental Watershed and the mean of the corresponding MODIS pixels. The
under prediction of winter leaf area index by the model can be attributed to the
MODIS satellite detecting standing dead biomass and consequently positively
biasing the observed measurements, while tRIBS+VEGGIE does not account for
standing dead biomass. Figure 5-19 illustrates good agreement of observations and
models results with an RMSE of 0.08 and high R2 of 0.9 indicating good agreement
in the seasonal dynamics of the vegetation.
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Figure 5-18: Grass dominated domain average leaf area index. Modeled leaf area index

(black line), modeled standard deviation (shaded grey), MODIS standard deviation (shaded

red).
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Figure 5-19: Comparison of the spatial average leaf area index of all grass-dominated

MODIS pixels and computational elements at Walnut Gulch Experimental Watershed. #Pts

represents the 8 day MODIS time series data points from 2000 to 2008.

Figure 5-20 and Figure 5-21 illustrate the spatial variability of the dynamic rooting

scheme across the entire watershed. Figure 5-22 shows the distribution of D50 and

D95 rooting depths for the grass-dominated sites. These figures demonstrate the

wide range of rooting strategies that arise within the same plant functional type due

to differences in local abiotic conditions. For example, grasses located on a ribbon

-137-



of silt-clay soils in the northeastern part of the domain exhibit rooting profiles that
are about three times as deep as grasses located on loamy sand in the northern

part of the domain.

Mean D50 over 11 years
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Figure 5-20: Mean D50 [mm] simulated by model over 11 year period. (a) Vegetation map
and (b) soil map.
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Figure 5-21: Mean D95 [mm] simulated by model over 11 year period. (a) Vegetation map

and (b) soil map.
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Figure 5-22: Histogram of the mean D50 and D95 rooting depths for grasses over the 11

year simulation.
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Soil Moisture Evaluation

Evaluation of soil moisture was conducted by comparing the daily maximum soil

moisture for the closest computational element within the model to the location of

the soil moisture pit at Kendall. The evaluation was conducted over three depths

(5 cm, 15 cm and 30 cm) and the data record used for this evaluation spanned a

period from 2002 to 2008 (the 30 cm measurement went offline in mid 2006)
(Figure 5-23 and Figure 5-24). The model captures the soil moisture dynamics
across all depths. Being a point measurement in a spatially variable media, it is
difficult to capture perfectly the dynamics of soil moisture. When examining the
time series of the 30 cm depth there are some observed events that the model

does not capture. However, the model does capture the mean of the soil moisture
in this layer indicating that sinks within this layer from transpiration as well as
percolation to depth are being accurately captured.
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Figure 5-23: Comparison of modeled and observed soil moisture at Kendall using the
dynamic rooting scheme. a) Rainfall [mm]; b) 5 cm volumetric soil moisture [-]; c) 15 cm
volumetric soil moisture [-] ; and d) 30 cm volumetric soil moisture [-].
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Figure 5-24: Comparison of daily maximum modeled and observed volumetric soil moisture

at a) 5 cm; b) 15 cm ; and c) 30 cm at Kendall using the dynamic rooting profile.

5.4.2 Lucky Hills Evaluation

Energy Evaluation

Hourly error histograms (Figure 5-25) were constructed by comparing the hourly

time series of the observations made at the eddy flux tower at Lucky Hills with the

closest computational element within the simulation to the tower over the period

1997 to 2008. The hourly error histogram and the mean monthly fluxes (Figure

5-26) for the four components of the energy balance illustrate the good agreement

between the observations and the dynamic rooting scheme model results. Because

the vegetation fractional cover for the shrub-dominated sites is much smaller than

that of grass-dominated sites, the energy balance tends to be dominated by the

bare soil fraction of the computational element.
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Figure 5-25: Energy Balance Hourly Error Histograms for Lucky Hills using a dynamic

rooting scheme. a) Net Radiation; b) Latent Heat Flux; c) Ground Heat Flux; and d) Sensible

Heat Flux. #Pts corresponds to the number of hourly data points used to construct the

histogram.
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Figure 5-26: Comparison of observed and modeled mean monthly energy balance

components for Lucky Hills using a dynamic rooting scheme. a) Net Radiation; b) Sensible

Heat Flux; c) Ground Heat Flux; and d) Latent Heat Flux and Precipitation.

Evaluation of the August time series for 2005, 2006 and 2007 (Figure 5-27, Figure

5-28 and Figure 5-29) illustrates good agreement between the measured and

modeled energy fluxes. There is some under prediction of latent heat, which is

compensated by an over prediction of sensible heat on days 12 to 18 in August

2005 (Figure 5-27). The sudden step down in the modeled latent heat is a result of

the surface soil layers drying out and effectively limiting evaporation. This limit is

controlled by the soil parameterization and may be the reason for the mismatch in

latent head during this period.

There is also some over prediction of latent heat on days 20 to 25 in August 2006

(Figure 5-28). This over prediction may be the result of too much infiltration to

deep layers during the start of the month, as evidenced by the under prediction of

latent heat during the 4 to 12, consequently suitable transpiration conditions persist

longer than observed.
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Figure 5-27: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2005 at Lucky Hills using the dynamic rooting scheme.
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Figure 5-28: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2006 at Lucky Hills using the dynamic rooting scheme.
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Figure 5-29: Time series comparison of modeled (blue) and observed (red) energy balance

components for August 2007 at Lucky Hills using the dynamic rooting scheme.

A comparison of the hourly error statistics for Lucky Hills of the three different

rooting schemes is presented in Table 5-4. There is no significant improvement as a

result of the dynamic rooting scheme. This may be a consequence of the low leaf

area index and vegetation cover of the shrub-dominated site, such that the

partitioning of energy is dominated by the bare soil fraction of the computational

element and changes to the rooting profile have minimal impact on the element's

energy balance.

The dynamic rooting scheme leads to a small increase in the net radiation and

sensible heat flux biases, similarly to that shown previously for the Kendall site

although with a smaller magnitude at Lucky Hills. This suggests that the dynamic

rooting scheme has had a similar effect at the Lucky Hills site, whereby a change in

the surface rooting fraction has decreased the amount of moisture lost to

evaporation from the near surface soil layer and therefore resulted in a

compensating increase in sensible heat flux to remove the surface heat. Because
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the Lucky Hills site is dominated by bare soil, the changes due to differences in the

surface root fraction are smaller than at Kendall.

As before, implementation of the dynamic rooting scheme did not substantially

change the latent heat flux. This result could be caused by a trade-off between

transpiration and evaporation, as discussed previously at Kendall. At Lucky Hills, it

is also likely that the latent heat flux is dominated by the bare soil evaporation,

such that the change in partitioning between transpiration and evaporation due to

vegetation is relatively small.

Table 5-4: Energy Balance Hourly Error statistics for Lucky Hills
and dynamic rooting schemes.

using a uniform, logistic

Uniform Rooting Logistic Rooting Dynamic Rooting
Scheme Scheme Scheme

Net Radiation [WM- 2]
Bias -1.06 -0.81 1.98

RMSE 34.48 34.87 32.36

R2 0.99 0.99 0.99

N - Sample Size 87107 87107 87107

Latent Heat Flux [WM- 2]
Bias -6.12 -6.29 -7.55

RMSE 29.68 29.42 28.96

R 0.79 0.79 0.8

N - Sample Size 82115 82115 82115

Ground Heat Flux [WM- 2]

Bias -2.11 -2.09 -2.33

RMSE 29.36 29.46 28.99

R 0.92 0.92 0.92

N - Sample Size 87510 87510 87510

Sensible Heat Flux [WM- 2]

Bias 7.07 7.46 11.78

RMSE 44.21 43.49 42.50

R 0.95 0.95 0.96

N - Sample Size 81820 81820 81820
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Vegetation Evaluation

To evaluate the vegetation dynamics of the model, MODIS Leaf Area Index 8-day

composite data was utilized. The MODIS pixel that encompassed the Lucky Hills

sub-basin was compared to the closest computational element to the Lucky Hills

sub-basin. When comparing the model with the observed response for the uniform

(Figure 5-30) and logistic (Figure 5-31) root schemes, it is evident that although

the seasonality is captured there is poor agreement between the modeled and

observed maximum leaf area index for each season.
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Figure 5-30: Comparison of modeled (blue) and MODIS 8 day composite 1 km x 1 km (red)

Leaf Area Index at Lucky Hills using the uniform rooting scheme.
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Figure 5-31: Comparison of modeled (blue) and MODIS 8 day composite 1 km x 1 km (red)

Leaf Area Index at Lucky Hills using the logistic rooting scheme.

The dynamic root scheme simulation performs very well over all years (Figure 5-32
and Figure 5-33). The dynamic root scheme accurately captures the moisture

stress and consequently the environmental cues for vegetation growth. The RMSE

of 0.06 and an R2 of 0.85 also indicate excellent agreement between the
observations and model results. Figure 5-34 further illustrates the life strategy of
shrubs being simulated. The dynamic rooting scheme only results in small within

season variation in the root profile as well as slight variability across seasons.

Although the dynamic rooting scheme does not seem to be overly 'dynamic' in the

allocation of roots, the scheme has evolved a suitable profile for the local conditions
that allows the vegetation to survive and extract resources when they become

available. Of particular note is the very shallow profile obtained by the dynamic

modeling scheme, even more heavily weighted towards the near surface than the

logistic profile, which is a direct response to the soil texture parameters located at
Lucky Hills.
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Figure 5-32: Comparison
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Figure 5-33: Comparison of the MODIS pixel corresponding to Lucky Hills sub-basing and

the nearest computational element's leaf area index. #Pts represents the 8 day MODIS time

series data points from 2000 to 2008.
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Figure 5-34: Growing season root profiles for the grass-dominated

at Lucky Hills. Mean season root profile (blue), seasonal variability

Static profiles are included for comparison.
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Figure 5-35 and Figure 5-36 extend the vegetation analysis to include all shrub-

dominated sites within Walnut Gulch Experimental Watershed. A comparison of the

mean behavior of the model in comparison to observations yields a RMSE of 0.07
and high R2 of 0.87 indicating good agreement in the seasonal dynamics of the

vegetation.
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Figure 5-35: Shrub-dominated domain average leaf area index. Modeled leaf area index

(black line), modeled standard deviation (shaded grey), MODIS standard deviation (shaded

red).
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Figure 5-36: Comparison of the spatial average leaf area index of all shrub-dominated

MODIS pixels and computational elements at Walnut Gulch Experimental Watershed. #Pts

represents the 8 day MODIS time series data points from 2000 to 2008.

With shrubs dominating over 7 5%/ of the watershed, the rooting behavior across

the domain is of interest. Figure 5-37 illustrates the distribution of the temporal
mean of the D50 and D95 rooting depths for the watershed over the 11 year

period. The D50 rooting depth varies over a range of 150 mm to 650 mm, however

the D95 rooting depth has a strong bimodal characteristic suggesting two distinctly
different rooting strategies. An examination of Figure 5-38 and Figure 5-39

highlights the spatial correlation between the D50 and D95 rooting depths and the

soil texture the shrub is located on. The trend suggests that deeper rooting profiles

are preferred on the clayey soils. For example, shrubs located on clay soils in the

southern part of the domain exhibit rooting profiles that are about twice as deep as
shrubs located on loamy soils in the northern part of the domain.
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Distribution of mean D50 for Shrubs over 11 years
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Figure 5-38: Mean D50 [mm] simulated by model over 11 year period. (a) vegetation map,

(b) soil map.
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Figure 5-39: Mean D95 [mm] simulated by model over 11 year period. (a) vegetation map,

(b) soil map.

Soil Moisture Evaluation

Evaluation of soil moisture was conducted by comparing the daily maximum soil

moisture at the closest computational element within the model to the location of

the soil moisture pit at Lucky Hills. The evaluation was conducted over three depths

(5 cm, 15 cm and 30 cm) and the results displayed in Figure 5-40 and Figure 5-41.

The model captures the soil moisture dynamics across all depths, doing particularly

well at the surface suggesting the evaporation flux is being accurately simulated. As

with Kendall, there are some events at 30 cm that the model does not capture. But

in general, the agreement in the rate of decay of the model and observed soil

moisture at the 15 cm and 30 cm depths indicates that the sources and sinks to

these soil layers are accurately represented, adding confidence to the transpiration

sink.
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Figure 5-40: Comparison of modeled and observed soil moisture at Lucky Hills using the
dynamic rooting scheme. a) Rainfall [mm]; b) 5 cm volumetric soil moisture [-]; c) 15 cm
volumetric soil moisture [-] ; and d) 30 cm volumetric soil moisture [-].
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Figure 5-41: Comparison of hourly modeled and observed volumetric soil moisture at a) 5
cm; b) 15 cm; and c) 30 cm at Lucky Hills using the dynamic rooting profile.

5.5 Summary and Conclusion

Semi arid regions are characterized by their highly variable rainfall patterns and
vegetation that have evolved strategies to cope with this variability. Considering
water is the limiting resource to growth in this region, a dynamic rooting scheme
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that allows vegetation freedom in the allocation of root carbon within the root zone

was incorporated into tRIBS+VEGGIE.

The ability of this new scheme to capture the hourly energy flux dynamics, the

distribution of soil moisture through the soil column as well as the aboveground

dynamics of the vegetation illustrates the strength of the improved tRIBS+VEGGIE.

This evaluation provides confidence that the model is able to capture the

multidirectional interactions between climate, soil and vegetation at this site.

Another outcome of this model is the ability of the dynamic scheme to find the

appropriate rooting profile for the soil texture of the computational element without

parameterization or calibration by the user. Although an optimal static rooting

profile could be identified by the user with some effort, that optimum changes both

temporally and spatially. The strength of the dynamic scheme is its ability to find

this time-sensitive optimum independent of the model user. The dynamics rooting

scheme's ability to evolve the root profile over the 11 year period at both Kendall

and Lucky Hills and still maintain good agreement with the energy balance, soil

moisture and vegetation observations creates confidence in the new rooting

scheme. This does need further validation through excavation of vegetation across

all soil types at Walnut Gulch Experimental Watershed, but as can be seen through

the spatial distribution of the D50 and D95 rooting depths, the new scheme

removes the need to arbitrarily set root profiles.

If eco-hydrological models are to be used to predict future changes to the

partitioning of energy and water at the land surface, it is critical that such models

have the ability to accurately capture the belowground dynamics of the vegetation

found in semi arid systems. This section illustrates that through the incorporation of

belowground rooting freedom, plant strategies emerge to cope with local abiotic

conditions and variability in environmental forcings.
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Chapter 6

Dynamics of Plant Communities

6.1 Introduction

The previous chapters of this thesis focused strongly on modeling equilibrium

vegetation systems - systems that are in a dynamic equilibrium with their local

conditions. When considering longer term simulations, and potential shifts in

climatic forcings, a vegetation model that allows for the transition of landscapes

from one equilibrium to the next is necessary. To achieve this requires the ability to

simulate the co-existence and interaction of multiple plant functional types (PFTs).

This chapter will first outline and test the inclusion of a competition-colonization

module into VEGGIE and then explore the impact of abiotic processes on the

competition between PFTs. To undertake this work, the capabilities of VEGGIE were

expanded significantly in order to model the dynamics of more than one PFT within

a computational element. The experiments in this section illustrate the new

capabilities of the model by examining the impact of competition between grasses

and shrubs both at the point scale and along a hillslope.

6.2 Model Modifications

6.2.1 Multiple Plant Function Types in One Computational

Element

At present, VEGGIE only allows one PFT to occupy each computational element.

Allowing for the dynamics of multiple PFTs within one element greatly increases the
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utility of the VEGGIE model. In particular, the abiotic and biotic drivers that

determine the composition of vegetation across a landscape can be explored.

Allowing the evolution of two PFTs to take place within the same element results in

those PFTs having access to the same resource pools. Therefore the model can
examine several modes of competition within the framework of any abiotic

environment. Figure 6-1 conceptualizes the competitive interactions of interest in

this study: a) for aboveground space; b) for water resources; and c) for subsurface

space. Examination of the competitive outcome can be examined under:

i) Changing climatic forcings;

ii) Different soil textures; and
iii) Different topographical settings (aspect and slope).

C

Figure 6-1: Schematic of the different modes of competition: a) competition for
aboveground space, b) competition for shared soil moisture resources, and c) competition
for root space.

The advantage of using a competition-colonization model that is consistent with the

process-based framework of tRIBS+VEGGIE is that it allows for examination of
small-timescale influences on long-term equilibrium vegetation response. Since

tRIBS+VEGGIE is run at a sub-hourly time step, the influence of sub-hourly

processes on the decadal vegetation competition outcomes can be explicitly
represented.

-158-



Original Dynamics of Fractional Vegetation Cover

The vegetation fraction within the model is defined as the fractional area of a
computational element occupied by the PFT of interest. Within these fractional

areas, VEGGIE tracks the allocation and turnover of biomass from the root, stem
and leaf carbon pools. Changes in the biomass of these components are reflected in
the structural attributes of the PFT and directly impact the energy and water
balance calculations. Hence accurate simulation of the vegetation fraction is critical.
In the existing model, the vegetation fraction of a computational element refers to
the space occupied by a single PFT.

Calculation of the vegetation fraction in VEGGIE is based on work by Sitch et al.
(2003), who used the theory of allometry to calculate plant area as a function of
the amount of assimilated carbon. Allometry relates the size of an organism to its
anatomy and physiology. In the case of a plant, allometry can be used to scale the
mass of carbon within the leaves, created through photosynthesis based on
variables like incoming radiation and soil moisture, to the leaf cover required to
hold that carbon mass. While this scaling applies to an individual plant, Sitch et al.
(2003) extended the approach to calculate the average plant characteristics within
a computational element.

Using this approach, VEGGIE calculates the leaf area index for the PFT within each
element, LmF- [M 2 leaf area m-2 PFT area], as follows:

LPFT = CieafSLA

Where SLA [M 2 leaf area g C-'] is the specific leaf area, a constant parameter that
varies by PFT and represents the average density of carbon within the leaves of a
particular PFT, and Cieaf [g C m- 2 PFT area] is the leaf carbon pool.

The projected foliage cover of an individual plant, fv, ind [M 2 FPC area m- 2 PFT area],
defined as the area of ground covered by the foliage directly above it, is
parameterized according to the Lambert-Beer law (Monsi and Saeki 2005):

fvwina= 1 - exp(-.5(Lind + Sind))
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Where Sind [M2 stem area M- 2 PFT area] is the stem area index of an individual and

is assumed to be 25% of the individual leaf area index, Lind, for woody species and

5% for grasses (Levis, et al. 2004).

Using Sitch et al.'s (2003) approach, the fractional cover of a PFT within a

computational element is then:

f, = 1 - exp(-0.5(LPFT + SPFT))

Where fv [M2 FPC area m~2 element area] is the vegetation fraction of a given PFT

within a computational element and SPm- [M 2 stem area m- 2 PFT area] is assumed

to be 25% of LpF for a woody species and 5% for grasses. The vegetation fraction

is therefore a function only of the LAI of the PFT of interest, with no consideration

for the root and stem carbon pools of woody vegetation.

This approach may be appropriate for PFTs with LAIs that are constant or have a

small amount of seasonal or inter-annual variability, such as lush tropical forests.

But in deciduous systems, where the LAI values can be very low at the end of the

growth season, this approach results in the vegetation fractional cover being 'reset'

at the end of every season: when the LAI drops to nearly zero, the space occupied

by the vegetation in the model also falls to nearly zero. However, even though the

LAI of a deciduous plant may be zero, stem and root structures remain on the

landscape between growing seasons and effectively 'reserve' that fraction of the

land surface for next season, prohibiting other plants from moving in and occupying

the space The current approach for calculating vegetative area in VEGGIE

disregards this memory such that the vegetation fraction becomes only a function

of the current season's climatic conditions, which will always favor PFTs with the

fastest growth rates.

The existing modeling framework is sufficient for simulating monocultures (one PFT

per computational element) and will produce reasonable results for those cases
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since the re-colonization each growing season will be by the same PFT, as long as

the climate remains stationary. However, if we wish to understand how vegetation

changes under a changing climate, or if we are interested in the competition

between two PFTs with distinctly different life strategies, a method to account for

the memory of the vegetation fractional cover and the presence of non-

photosynthesizing plant matter is required.

6.2.3 The Need for Memory of the Vegetation Fractional Area

Simulating the dynamics of multiple PFTs within a computational element requires

one new constraint to be included in tRIBS+VEGGIE, which ensures the total

vegetation cover does not exceed the size of the element:

N

fB + fa
a=1

Where N is the number of PFTs represented in a computational element, f, is

fractional cover of PFT a and fB is the bare ground fraction.

But this new constraint by itself is not sufficient to accurately represent multiple

PFTs within a single element because of the existing limitations regarding how

vegetation fraction is calculated. Under the current formulation of vegetation cover,
the competition for above ground space is solely controlled by the rate at which

carbon is assimilated and allocated to the leaf carbon pool. Each PFT has no

knowledge of the space that other PFTs occupy, or have previously occupied, within

the computational element until the above constraint is reached. At that point no

further carbon can be distributed to the leaf carbon pool without the sum of

vegetation fractions exceeding unity. This abrupt constraint is unrealistic and

strongly favors fast growing species that invest heavily in leaf production (grasses),
since it only accounts for current growth. It does not take into account species that

utilize a longer term life strategy of maintaining large above and below ground

woody carbon pools (i.e. shrubs and trees).
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time= t + At

Figure 6-2: Conceptualization of how vegetation fraction (shades of green) varies through
the season within one computational element using the existing calculation that is only a
function of LAI. No memory of each PFT's growth is retained in the current formulation.

To incorporate vegetation fractional cover memory, a new method was required to
decouple the vegetation fractional cover from the leaf carbon biomass and link it to
net primary productivity. This method is common in dynamic global vegetation
models and ties fractional vegetation cover to historical total productivity, thereby
accounting for the presence of woody biomass and incorporating a vegetation
memory into the system (Figure 6-3).

time= t + At time=t + 2At

Figure 6-3: Conceptualization of new scheme that allocates a maximum fraction of the
computation element that each PFT can occupy within a season (red line). The temporal
dynamics of the maximum fraction retains a memory of the PFT and is updated annually.
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Tracking the Dynamics of Fractional Vegetation Cover

In order to decouple the fractional vegetation cover from the leaf area index within

the VEGGIE model, the methodology described by Arora and Boer (2006) for the

addition of a competition-colonization model into the Canadian Terrestrial

Ecosystem Model (CTEM) was followed.

The vegetation simulated within a computational element represents the average

physiology and behavior of several individuals of the PFTs of interest. These

individuals can be grouped into crown area classes reflecting differences in age and

disturbance regimes. The total number of individuals of a given PFT within a

computational element can be expressed as:

A

n = f n(a)da

Where n is the total number of individuals, n(a) is the number of individuals in each

crown area class, a [M 2] is the crown area of individuals within each class and A

[M 2 ] is the area of the computational element.

The total vegetated area, a [m2 ], of the element can then be represented by:

a= f 0 An(a) ada

The vegetation fraction of each PFT can be calculated by:

1A

f = n(a)a da

Changes in the vegetation fraction of each PFT are dictated by the manner in which

the number of individuals within each crown area alters. The number density of

individuals can be increased through the colonization of bare ground or the invasion
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of subordinate PFTs and can be decreased through invasion by dominant PFTs, self-

thinning and mortality. These changes in vegetation fraction can be expressed as:

df 1 Adn(a)

dt A J0  dt ada

If we consider only mortality for now, which is proportional to the number of

individuals of the PFT, we can rewrite the above expression for mortality only in

terms of a PFT mortality rate, m:

df I 1 dn(a)

dt mort A Jdt ad

df 1i- oc -- I n(a)ada
dt mort A

df
- = -mf

dt mort

The mortality rate of each PFT can be separated into the sum of different processes

that result in the reduction of fractional cover:

m = ma + mg + md

4.605
ma = 1 - exp (

max

0.01
= 1 + 0.3 (max(0, AC)

Where ma represents the age-related mortality, mg is a stress-induced mortality

that is obtainable directly from VEGGIE and md is an exogenous disturbance rate

(e.g. grazing or fire). For the purposes of this study, disturbance is not considered,

however inclusion of disturbance regimes would be the next logical step in

expanding the functionality of VEGGIE.
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If we now consider a computational element with N PFTs, as previously indicated,

the sum of the N fractional areas plus the bare ground fraction is:

N

fB + fa=1
a=1

We can now rewrite the general change in fractional cover in terms of each PFT of
interest, a:

dfa = 1 da da
dt A., dtad

Now separating the change in number density into two terms, a mortality term and

a colonization-competition term (cc), yields:

a 1 ( dna
dt Af dt cc

Finally then we can represent the competition-colonization term as a function g,
which represents the interaction between the fractional cover of the PFT of interest

fa and the other PFTs present in the computational element fp:

dfa
= g(fafp) - mafa

fg = [fif 2 , ... ,fN+1]; # # a

One assumption required to further simply this expression is that a hierarchy of

dominance exists between different PFTs. This is required in order to determine

what parts of the computational element a given PFT can colonize or invade. For

example, in this study a tree would be dominant over a shrub, which in turn would

be dominant over a grass. This successional dominance is covered in detail in the

literature (Siemann and Rogers 2003).
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With the dominance hierarchy set up, we can calculate the change in fractional

cover for PFT f, in terms of the species it is dominant over, and can therefore

colonize, and the species that it is subordinate to, which can colonize it:

dfa - fb(Ca,a+1fa+1 + Ca,a+2fa+2 + + Ca,BfB) - fa(C1,afib + C2 ,af2b + + Ca-1,afa-1)
dt -a

-mafa ;a=1,2,..,N

Where the exponent b represents an empirical parameter that determines the rate

at which PFTs invade subordinate PFTs in comparison to the rate of colonization of

bare ground, and ce, is the PFT-dependent colonization rate of dominant PFT a into

subordinate PFT p. The individual colonization rates, c,, can be expressed in terms

of daily net primary productivity NPP [ kg C m-2 day~']:

Ca = faAaNPPa

Where 4 is the inverse seedling density [M 2 kg C-1], which can be obtained from

literature values, and A is the fraction of NPP allocated to colonization and can be

expressed in terms of leaf area index:

0 ; LAIa ; LAImin,a

Aa= LAIa-LAImi~ L
Aa = LAIa - LAImin,a Amax; LAmin,a < LAIa < LAImax,a

LAmax,a - Amin,a
Amax ; LAIa > LAlmax,a

Where LAI is obtained directly from VEGGIE and the associated LAImin, LAImax and

Ama, can be obtained from the phenological data on the PFTs of interest.

The dynamics of the colonization of bare soil are governed by the rate at which new

bare patches are created, which is represented by the sum of the mortality of each

PFT and the sum of the rates by which each PFT colonizes the bare ground. The

change in the bare fraction can therefore be written as:
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N
d fjdtB Z (mpfp - CfYBf f)

fl=1

The colonization rate, c,,p, of subordinate PFT f p by a superior PFT, f,, can be

expanded to:

Cp6,B flfB = Ca 0f p =' CaEpffc'f

The competition-colonization process is controlled by the PFT-dependent

colonization rate ca,p and the product of their current fractional covers. An efficiency

of colonization parameter , is also introduced into the above expression to account

for the differences between species life strategies.

Incorporating these new expressions for colonization rates, we can write the change

in fractional cover of PFT a:

N
dfada (Ca Eapffp - faCpEpaf ) -mafa; a = 1,2,.., N
dt

pl=1

This formulation replaces the existing formulation for fractional cover in VEGGIE,

based on the work of Sitch et al. (2003). The new parameters required for this

formulation can be obtained either from VEGGIE or from the literature. The

advantage of incorporating this competition-colonization model into the framework

of tRIBS+VEGGIE is that key processes, governing the growth of each PFT and the

interactions between PFTs, can be examined using the biochemical and phenological

processes already simulated by the model.

The inclusion of the efficiency parameter , and the exponent b creates flexibility in

the competition-colonization model. Selecting b= , = 1 results in the equations

taking the familiar form of the Lokta-Voltera equations (Arora and Boer 2006). A
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common weakness of the Lotka-Voltera equations is their inability to simulate

coexistence of PFTs in the absence of strong and frequent disturbances. However, it

has been showed that selecting an exponent b<1 allows for coexistence. Arora and

Boer (2006) explore the influence of different b and , parameter values. For this

study b=0 and F =1 were chosen, this can be interpreted as a infinite seed pool

within the computational element (i.e. any PFT can grow at any time) and the

selection of b=0 means that colonization can occur anywhere with the cell.

6.3 Competition-Colonization Model Testing

To test the utility of the new competition model, a simple set of experiments were

carried out examining the interaction between C4 grasses and shrubs in semi-arid

regions. Climate forcings for these experiments were generated using the stochastic

climate generator parameterized for present day Walnut Gulch Experimental

Watershed conditions.

The overarching goal of this section is to explore the role that rooting strategies

may have on the outcome of competitive interactions. The following experiments

will be done firstly at the point-scale and then on an idealized hillslope. The point-

scale simulations were conducted to examine how the choice of rooting scheme

(static or dynamic) may influence the co-evolution of vegetation. The hillslope

experiments take this analysis further, examining the differences between the two

schemes and the influence that soil heterogeneity has on the outcome of

competitive interactions.

6.3.1 Point-Scale Simulations

Static Profiles

The static rooting scheme, as detailed in Chapter 3, requires the model user to

determine the rooting profile through the choice of rooting parameters. In Chapter

3 we saw that this choice had the potential to significantly alter the energy and

water balances. An optimality approach was applied assuming that vegetation seeks

to maximize the uptake of soil water and primary productivity. In the context of

competition, the choice of root profile parameters is further complicated because
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the optimization requires consideration for the manner in which root profiles of

different PFTs will interact with each other. As in Chapter 3, a brute force approach

could be applied to determine the root profiles of the PFTs being simulated, in order

to find the combination of rooting parameters that result in optimization of one PFT

in the presence of the other. This, however, defeats the purpose of a competition

model, since the selection of rooting parameters will pre-determine the outcome of

the interactions of the simulated PFTs.

To test the sensitivity of the competition-colonization model to the selection of

static root profiles, three point-scale simulations were undertaken on a loamy soil

with Walnut Gulch stochastic climate, parameterizing the root profile such that

(Figure 6-4):

(i) the grass overlaps the shrub (D50 = 0.2 m and D95 = 1.0 m);

(ii) the grass is above the shrub (Grass D50 = 0.1 m and D95 = 0.6 m;

Shrub D50 = 0.3 m and D95 = 1.5 m); and

(iii) the shrub is above the grass (Shrub D50 = 0.1 m and D95 = 0.6 m;

Grass D50 = 0.3 m and D95 = 1.5 m).

Grass overlaps Shrub Grass over Shrub Shrub over Grass
0

-500-

E

-1000

-Shrub
--- Grass

-1500 - -- -
0 1 2 3 0 2 4 6 0 2 4 6

Root Density [gC/cm3h x 10 Root Density [gC/cm3 x 10 Root Density [gC/cm 3x 10-

Figure 6-4: Three configurations of root profiles for grass (red) and shrub (blue)

competition on a loamy soil.
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The outcomes of these choices of root profile configuration are displayed in Figure
6-5. The cases with overlapping profiles and grass roots above shrub perform

similarly. When the computational element is bare at the beginning of the

simulation, grasses exhibit their fast-growing strategy and initially occupy a greater

fraction of the element. But the slow-growing shrubs gradually establish themselves

and eventually, after about 10 years, colonize and out compete the grass PFT. A
dynamic equilibrium between both PFTs is established, with shrubs clearly the

dominant species.

The case where the root profile of the shrub PFT was placed above the grass PFT
results in a significantly different competitive outcome. In this case, grasses
dominate the landscape initially due to their fast-growing strategy, but after 20
years the two PFTs establish a dynamic equilibrium with no clear dominant PFT.
Under this rooting configuration, the shrub is forced to compete with evaporation at
the near surface, resulting in high levels of moisture stress. This stress is sufficient

to limit the primary productivity of the shrub PFT and therefore limit the
competition-colonization rate of the shrub PFT. This permits grasses to co-exist in

the same computational element in a way that they weren't able to when the
shrubs were not placed under such stress.
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Static Profiles - Grass and Shrub Competition

- Shrub - overlap

0.9 Grass - overlap
--- Shrub- GoverS
- - - Grass - G over S

0.8 -+- Shrub-SoverG
---- Grass - S over G

0.7-

0.6-

0.5-

0.2-

0 10 20 30 40 50 60 70 80 90 100
Time [yrs]

Figure 6-5: Time series of the co-evolution of the vegetation fraction of grasses (red) and

shrubs (blue) for three different root profile configurations.

The key outcome of this simple experiment is demonstration of the influence that

rooting profiles have on competitive interactions. The model user's choice of rooting

profile has the potential to strongly influence the dynamics of competition, and in

doing so influence the partitioning of energy and water.

Dynamic Profiles

As discussed in Chapter 4, the dynamic rooting scheme has the ability to adapt, in

real time, to local environmental conditions. The presence of another PFT in a

computational element can be translated into a change in local conditions. The

competing PFT, through transpiration, will alter the soil moisture profile within the

soil column as well as take up subsurface space due to its rooting structure. The

dynamic rooting scheme can incorporate these influences, and each PFT, at each

time step, will seek to allocate root carbon in order to maximize benefit to itself.

The co-evolved root profiles will reflect the different strategies of the PFTs in light of

competition.
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To illustrate the utility of the dynamic rooting scheme, 3 simulations were

undertaken, each co-evolving the rooting profiles of grasses in the presence of

shrubs on three soil textures (sand, loam and clay).

The results show that the outcome of competition is strongly controlled by soil

texture (Figure 6-6). Sandy soils favor shrubs over the long term while clay soils

never allow shrubs to establish. The dominance of shrubs on sand can be attributed

to the fact that in semi-arid regions, sandy soils are more productive, and therefore

the NPP is greater. The competition model determines the change in fractional area

based on a competition-colonization rate that is strongly controlled by NPP. Hence

the higher NPP afforded by the sandy soil allows slow-growing species, such as

shrubs, a greater opportunity to increase their fractional area. Under poorly-drained

soils, a large proportion of precipitation is lost to surface runoff and evaporation.

This results in less water for plant activity and consequently lower productivity.

Slow-growing species in these environments never produce the required NPP to

counterbalance their mortality rate and thus never establish.
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Dynamic Profiles - Grass and Shrub Competition
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Figure 6-6: Time series of the co-evolution of the vegetation fraction of grass (red) and

shrub (blue) for three soil textures; sand(top panel); loam (middle panel); and clay (bottom

panel) .

Both the sand and loam soil textures result in coexistence of grasses and shrubs,

and in particular the loamy soils results in an almost equal cover of grasses and

shrubs. Walnut Gulch Experimental Watershed consists mainly of loamy soils

suggesting a reason why the watershed is observed to consist of mixed grass and

shrub lands.

The root profiles of the shrubs and grasses that co-evolve on the three soil textures

are displayed in Figure 6-7. The characteristics discussed in Chapter 4 are clearly

evident, with sandy soils resulting in deep rooting profiles and clayey soils resulting

in shallow dense profiles. Interestingly, the co-evolution of grass and shrub profiles

result in profiles that are different from those resulting when the PFTs are simulated

individually (refer back to Chapter 4 for the independent profiles), exhibiting the

model's ability to adapt not only to abiotic conditions but biotic influences as well.
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Figure 6-7: Co-evolved mean root profiles for grasses and shrubs on three different soil
textures; sand (left panel); loam (middle panel); and clay (right panel).

The rooting results above at first may seem counter-intuitive with grasses rooting

underneath shrubs. However, the profiles in Figure 6-7 should be examined in the

context of the vegetation fractions displayed in Figure 6-6. For a sand, shrubs
dominate grasses, and consequently the grass vegetation that does persist, does so

by rooting deeply. For the clay soil, grass dominate since shrubs never establish

due to low volumes of infiltration, consequently the only shrubs that do persist are

those that root very shallowly.

For the sand and loam conditions, moisture is relatively abundant at depth due to

the high conductivity and deep infiltration. When resources are abundant, the best

strategy for both competing PFTs is to avoid direct competition with each other.

This is observed in the niche separation of rooting zones in arid ecosystems, with

different PFTs extracting moisture from different soil layers (Noy-Meir 1973).
However, as resources become limiting, competition becomes inevitable and PFTs

are forced to compete directly for them. The simulations utilizing the dynamic
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rooting scheme on three different soil textures highlight this gradient in resource

availability and competitive interactions. On the sandy soil, the root profiles of the

two PFTs separate, with the grass species (being the more plastic of the two)

rooting in an evenly distributed fashion to considerable depth, while the shrub PFT

roots in the near surface layers to limit direct competition with the grass PFT. In the

simulation on clayey soils, plant-available water is significantly lower due to

evaporation and surface runoff, and resources are consequently limited to the near

surface. Both species respond by occupying the top of the soil column, and

considering the more aggressive water extraction traits of the C4 grass, shrubs are

adversely impacted and never establish a significant vegetation cover.

It should also be noted that the outcome of dynamic co-evolution of rooting profiles

on the loamy soil differs significantly from two of the static profile configurations

tested previously. The overlapping profile and profile with grass above shrub

resulted in long-term dominance by the shrub PFT, to the detriment of the grasses.

However, the dynamic simulation on loam shows that the two PFTS occupy roughly

equal fractions when the rooting strategies are allowed to evolve by themselves.

The static profile simulation with the shrub roots placed above the grass roots is

similar to the profile obtained in the dynamic simulation on loam, which shows a

higher fraction of shrub roots in the near surface, and obtained a similar result in

terms of vegetation fraction. Therefore these results highlight the potential hazards

of using a static rooting profile when investigating competitive plant interactions.

Summary

These static and dynamic experiments illustrate the influence that root profiles have

on competition dynamics. In the logistic rooting cases, the choice of how the root

profile is defined can greatly impact the outcome of competitive interactions. These

impacts can be seen clearly by the relative abundances of each PFT once a dynamic

equilibrium is reached.

The dynamic rooting scheme provides a physically-based method for the co-

evolution of root profiles. The manner in which the root profiles of different PFTs
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interact is controlled not by user-defined profiles, but rather the plant-specific

parameters such as water use efficiency, growth and allocation rates, which

determine the life strategy of the PFT being simulated.

6.3.2 Hillslope Simulations

To further explore the role of roots in determining competitive outcomes, a series of

experiments were carried out on a synthetic domain consisting of two opposing

hillslopes each with a slope of 10 percent. The two slopes consist of ten

computational elements each and drain to the same valley element. The stochastic

climate generator parameterized for Walnut Gulch Experimental Watershed was

used for these experiments. Three soil textures were examined: a highly conductive

sand, poorly draining clay and a loam typical of Walnut Gulch soils. Simulations

were first run with static logistic rooting profiles, setting the grass rooting

parameters above the shrub (Grass D50 = 0.1 m and D95 = 0.6 m; Shrub D50 =

0.3 m and D95 = 1.5 m), then the same conditions were used with the dynamic

rooting scheme. The purpose of running these hillslope experiments is to examine

whether the influences of aspect and lateral redistribution, shown in Chapter 4 to

affect vegetation patterning, have an impact on the co-evolution of mixed grass

and shrub lands.

Competition with Static and Dynamic Rooting Schemes on a Hilislope

The vegetation fractions that result from competitive interactions outcomes using

the logistic profiles (sand: Figure 6-8, loam: Figure 6-9 and clay: Figure 6-10) are

all characterized by a very uniform evolution of grasses and shrubs along the

hillslope. As was discussed in Chapter 4, the hydrology of the hillslope acts in

unison when static rooting profiles are used. For this reason it is not unexpected

that the competition dynamics follow the same patterns.

Interestingly all three soil textures exhibit the influence of aspect. North-facing

slopes have slightly more favorable conditions due to the difference in incoming

radiation and consequently lower evaporation. The shrub PFT, which is a slow-

growing species, is more productive on the north-facing slopes, resulting in a faster
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competition-colonization rate than on the south-facing slopes. The difference in

shrub competition-colonization rates between the two slopes is sufficient to result in

less pressure for grasses on south-facing slopes, resulting in grasses performing

better on these slopes.

All three static simulations also exhibit the signature of inter-annual variability

(Figure 6-11). Although no disturbances were imposed on these simulations, the

natural variability in the volume of seasonal rainfall is sufficient to interrupt the

colonization of the subordinate PFT (grasses) by the dominant PFT (shrubs).
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Figure 6-8: Co-evolution of shrub (top) and grass (bottom) vegetation fractions simulated
on two opposing planar hilislopes over a 100-year period using a logistic rooting profile on

a sandy soil. North facing elements 1-10, south facing elements 12-21 and valley element
11 (dashed line).
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Figure 6-9: Co-evolution of shrub (top) and grass (bottom) vegetation fractions simulated

on two opposing planar hillslopes over a 100-year period using a logistic rooting profile on

a loamy soil. North facing elements 1-10, south facing elements 12-21 and valley element

11 (dashed line).
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Figure 6-10: Co-evolution of shrub (top) and grass (bottom) vegetation fractions simulated

on two opposing planar hillslopes over a 100-year period using a logistic rooting profile on

a clayey soil. North facing elements 1-10, south facing elements 12-21 and valley element

11 (dashed line).
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Seasonal Rainfall Accumulations for Walnut Gulch
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Figure 6-11: Season rainfall accumulations (blue), a 5 year moving average (green) and a
10 moving average over a 100 year simulation.

The next set of experiments applied the dynamic rooting scheme developed in
Chapter 4 to the same hillslopes, and the results are shown in Figure 6-12 to 6-14.
As seen in Chapter 4, the patterns produced along the hillslope with the dynamic
scheme are not as uniform as those produced with static rooting profiles. Within-
slope patterns develop for both PFTs, predominately along the north-facing slopes
that experience less evaporative stress.

Similar to the results shown above for the static root simulations, the development
of shrubs on north-facing slopes is significantly faster than grasses on sandy and
loamy soils. Again, this is a reflection of the life strategy of the shrub - slow growth
- and the difference in the competition-colonization rates of the two slopes. By
comparison, on a clay soil the competitive advantage of the grasses under near-
surface evaporative stress is clearly shown by the lack of shrub establishment.

The simulation on a loam soil exhibits a strong north-south variation in vegetation
composition (Figure 6-13). Interestingly, on the south-facing slope of this
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simulation, grasses grow quickly (years 3-10) but then decline as shrubs begin to

establish between years 10-20. However, from year 20 and for a period of about 30

years there is a secondary growth of grasses. The competition-colonization model

allows shrub to colonize grasses but not vice versa. Grasses therefore only persist if

the colonization rate of the shrub species is compromised.

The incorporation of the competition-colonization model with the tRIBS+VEGGIE

framework allows grasses to influence the colonization rate of the shrub PFT.

Grasses are more aggressive water users and have the ability to build their canopy

rapidly due to their higher assimilation rate of carbon. This gives grasses more

infrastructure through which to transpire water. The life strategy of grasses - use as

much water as possible as quickly as possible - may at first seem self destructive,
but if we consider the environment these plant function types have evolved in, this

strategy is one method to cope with the high variability in resource inputs as well

as the strength of the sinks (evaporation an drainage). Larger initial canopy area

coupled with a higher transpiration rate would result in a fast draw down of the

shared root zone soil moisture. This plant induced soil water stress can be sufficient

to impact the NPP of the shrub species, thereby impacting the shrubs colonization

rate.

If we examine Figure 6-13 in the context of the precipitation accumulations (Figure

6-11) this period of secondary grass growth occurs during a period of prolonged

above average rainfall (as can be seen by the increasing moving averages). This

suggests that water availability during the growing season was abundant, thereby

not limiting the very aggressive growth strategy of the grass PFT.

The reason grasses never return to dominance after that 30-year period can be

explained through the lack of disturbances. Under the current formulation, the only

form of disturbance arises from the variability in climate. Over the short term, and

especially during initial colonization of a hillslope, the most plastic PFT (i.e. grasses)

has the advantage. However, towards the end of the simulation, when shrubs have

established, plasticity is no longer a significant enough advantage to impact the
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competition dynamics. If additional disturbances were included into the simulation

(e.g. fire, grazing), the persistence of grasses would be expected.
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Figure 6-12: Co-evolution of shrub (top) and grass (bottom) vegetation fractions simulated

on two opposing planar hillslopes over a 100 year period using a dynamic rooting profile on

a sandy soil. North facing elements 1-10, south facing elements 12-21 and valley element

11 (dashed line).
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Figure 6-13: Co-evolution of shrub (top) and grass (bottom) vegetation fractions simulated
on two opposing planar hilislopes over a 100 year period using a dynamic rooting profile on
a loamy soil. North facing elements 1-10, south facing elements 12-21 and valley element
11 (dashed line).
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Figure 6-14: Co-evolution of shrub (top) and grass (bottom) vegetation fractions simulated
on two opposing planar hillslopes over a 100 year period using a dynamic rooting profile on
a clayey soil. North facing elements 1-10, south facing elements 12-21 and valley element
11 (dashed line).
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To analyze how the root systems of grasses and shrubs respond to competition, a

time series of the co-evolved root profiles of both PFTs were plotted for three

locations along both hillslopes. The figures displayed below correspond to the

simulation on a loamy soil; similar figures for the sandy and clayey simulations are

presented in Appendix C.

The soil moisture time series at all three locations on the south facing hillslope

share one common feature - that at year 50 shrubs begin to root deep and grasses

shallower. An examination of Figure 6-13 suggests that it is at around year 50 that

the sum of both PFTs vegetation fraction on both slopes reaches a maximum,

suggesting that the hillslope is at carrying capacity or equilibrium. At this point the

subordinate PFT becomes very susceptible to colonization. Years 49 and 54 of the

simulation are characterized by low seasonal rainfall accumulation. The impact of

this can be most clearly seen at the top of the south-facing hillslope, with a sudden

shift in the grass root distribution to a shallower profile as a consequence of rainfall

no longer infiltrating to depth (Figure 6-17). Shrubs also respond to this rainfall

shift by redistributing their rooting structure from a very dense surface

configuration to a more distributed deeper distribution. This abrupt change in

seasonal rainfall volume is significant enough to trigger a change in the rooting

profiles of both PFTs, shifting the profiles from a niche-separated system to an

overlapping system where resources must be competed for.
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Figure 6-15: Time series of the dynamic root distribution and density [gC cm-2 ] for shrubs

(top) and grasses (bottom) on a loamy soil for an element at the bottom of the south-facing

slope.
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series of the dynamic root distribution and density [gC cm- 2] for shrubs

(bottom) on a loamy soil for an element in the middle of the south facing
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Figure 6-17: Time series of the dynamic root distribution and density [gC cm-2] for shrubs

(top) and grasses (bottom) on a loamy soil for an element at the top of the south-facing

slope.

6.4 Summary

This chapter introduces a competition-colonization model, incorporating it into the

framework of tRIBS+VEGGIE. The modifications required to track the dynamics of

multiple PFTS within one computational element, as well as model their competitive

interactions, expand VEGGIE from being able to only model vegetation equilibrium

monocultures to being able to model the complex interactions between PFTs under

non-equilibrium conditions (after disturbances and under non-stationary climates).

The motivation behind this chapter was to try and understand the role that rooting

strategies may have on the outcomes of competitive interactions. The use of static

profiles proved difficult, as it was shown that the choice of profile configuration

strongly influenced the outcome of competition. The new dynamic rooting scheme

offered a solution to this, by allowing the PFTs of interest to co-evolve rooting

profiles while competing for moisture. The individual root profiles reflected the

influence of the other PFT on the local environment.
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A particularly interesting result was obtained when co-evolving grasses and shrubs

were simulated on a loamy soil on two opposing hillslopes. The difference in aspect

in these simulations was enough to result in significantly different vegetation

compositions on each slope. The difference in vegetation covers of each slope may

have implications for erosional processes that may explain the observed difference

in soil depth often seen between north and south facing slopes.

The motivation behind this thesis lies in the recreation, through simulation, of

natural heterogeneity. It was shown that static rooting profiles were not sufficient

to achieve this due to their passive interactions with the local environment. The

dynamic scheme and the competition model both added mechanisms through which

the different plant functional types being simulated could express their life

strategies and interact with their local environment. These inclusions were

adequate to create significant spatial heterogeneity.
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Chapter 7

Research Summary and

Perspectives for Future Studies

7.1 Conclusions

Current vegetation dynamic models focus their effort in understanding and
representing the processes that occur above ground. In semi-arid regions the above
ground dynamics are strongly linked to the availability of soil moisture, yet the
manner in which vegetation interacts with the subsurface is typically temporally and
spatially invariant. In semi-arid regions, soil moisture dynamics can be
characterized as anything but invariant. Therefore, by restricting the vegetation's
ability to adapt and respond to variability restricts imposes unrealistic stressors on
the vegetation.

Chapter 3 examines the traditional approach to root representation through an
examination of the impact of parameters selection for uniform and logistic rooting
profiles on the water balance. The chapter challenges the 'business as usual'
parameterization practice of using one rooting parameter set based solely on the
plant functional type often disregarding soil texture or climate. The chapter,
through the application of a brute force methodology, examines the variability in
transpiration (as a proxy for productivity) over a 100 year simulation period for 2
plant functional types, five soil textures and two climatic regimes. By invoking the
evolutionary principle - that states vegetation co-evolve with local conditional to
make optimal use of available resources - the simulations show that the optimal
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rooting parameter set varies significantly depending on soil texture, climate and

plant functional type. Due to the vast natural spatial variability in soils hydraulic

properties as well as the interaction of local climate regimes with local slope and

aspect, the thought of identifying the appropriate rooting parameters for each

combination of soil-climate-vegetation characteristics is unreasonable. Also

considering that the identification of these site specific rooting parameters are static

(temporally and spatially) they are only really suitable for stationary climates.

As ecohydrological models are being incorporated into sophisticated regional and

climate models to assess the impact of climate change on natural systems,

identifying the appropriate rooting parameter set becomes critical in determining

the correct timing and magnitude of the transpiration flux to the atmosphere as

well as influencing the outcome of competitive interactions on longer timescales

(Chapter 6). The methodology outlined in Chapter 3 cannot cope with the non-

stationarity implied by changing climate scenarios.

Chapter 4 introduces and tests a new temporally and spatially dynamic rooting

scheme for the determination of a plant functional types rooting strategy. The new

scheme allows for the real-time evolution of a plant's rooting profile to local

environmental conditions. The new scheme requires no new parameters and

through the application of a linear optimization approach self determines the

rooting profiles based on local environmental pressures. The scheme utilizes the

sophisticated aboveground vegetation dynamics to determine the extent of

dynamism in the rooting strategy, thereby incorporating the plant functional type's

life strategy into its rooting strategy.

Chapter 5 utilizes this new scheme and evaluates the performance of

tRIBS+VEGGIE over an 11 year period. The new scheme greatly improves the

model's ability to capture the energy and water balance dynamics at sub-basins.

Additionally the model's ability to capture the spatial variability in vegetation cover

over the entire Walnut Gulch Experimental Watershed was greatly improved. This
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exercise highlighted the utility of the new rooting scheme, with different profiles

evolving across the watershed based on local conditions.

Chapter 6 takes a longer view of vegetation dynamics, through the incorporation of

competition-colonization model, the interactions between grasses and shrubs was

examined. The application of this new model with the dynamic rooting scheme

yielded significant hillslope heterogeneity in vegetation cover which was not

previously achieved through the use of prescribed static rooting profiles.

The key contribution of this work is the elucidation of the role of rooting strategies

on the eco-hydrology of semi-arid regions. Through the formulation of a physically

based mechanistic dynamic rooting scheme, and its application at the point,

hillslope and catchment scale, this research has shown the influence rooting

strategies have on capturing the timing and magnitude of energy and water fluxes

from the land surface and the atmosphere as well as their role in the determination

of competitive interactions.

7.2 Recommendation for future work

The focus of this body of work has been the incorporation of a more realistic

representation of the below ground dynamics of vegetation as well as the

incorporation of a competition-colonization module to tRIBS+VEGGIE. These model

developments allow several new questions to be explored, as well as an opportunity

to revisit old questions equipped with the new modeling tools.

Precipitation

The need to better represent the spatial and temporal distribution of precipitation is

necessary to capture the variability in natural vegetations systems. Semi-arid

regions are characterized by their variability in precipitation, and this variability

often takes a spatial as well as temporal from.

One weakness of the model at present is the use of hourly precipitation forcing.

Consequently the model suffers from an inability to produce short duration high
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intensity events. This may have significant implications when determining the

volume of surface runoff produced. The work presented here was not able to

capture the significantly deeper roots observed at the base of hillslopes, this may

be a result of not producing sufficient surface runoff from high intensity events.

Surface Routing Schemes

At present the surface routing is undertaken in the direction of steepest decent

along the hillslope. Once surface runoff reaches the channel, flow is routed using a

kinematic wave approximation. In semi arid regions, channel's are often ephemeral,

and the need to incorporate the channel losses associated with these environments

would greatly improve streamflow estimates.

Nutrients

By choosing to apply this model to semi-arid regions, we have been able to

conveniently avoid the role of nutrients on vegetation evolution assuming that

water is the only limiting resource. The dynamic allocation scheme presented in this

thesis focuses an objective function that is only a function of soil moisture. The

incorporation of nutrients into this objective function would be the next natural

step, thereby requiring the allocation strategy of the vegetation to account for not

only the uptake of water, but also nutrients.

In order to achieve this in the tRIBS+VEGGIE framework, the incorporation of the

biogeochemical cycle would be required in order to track the deposition, transport

and uptake of nutrients.

Groundwater

tRIBS+VEGGIE does not have the capability to represent a saturated zone within

the subsurface. As discussed in the Chapter 3 and 4, the ability of vegetation to

reach the groundwater table greatly alters its rooting strategy and consequently

can hydrologically decouple the transpiration flux from the timing of precipitation.

This in turn may have significant impacts on the simulation of local weather and

regional climate.
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Seed Dispersal

The competition-colonization model developed in this thesis assumes an unlimited

seed bank of all the PFTs present in the computations element. The new model

framework allows PFTs to directly interact with each other within a computational

element, but does not allow the interaction of one PFT with neighboring cells. A

seed dispersal model would allow the relaxation of a limitless seed pool and allow

for the simulation of vegetation invasion.

Disturbance

The competition-colonization model presented in Chapter 6 assumes no

disturbance. However, the dynamics of grasses and shrubs have been shown to be

strongly controlled by exogenous disturbances (eg fire and grazing). Therefore in

order to accurately represent the competition dynamics of a natural system, the

role of disturbances may play a critical role in determining the overall dynamic

equilibrium we observe in natural landscapes.

Observations of Root Dynamic

Finally, this thesis proposes a rooting scheme that has the ability to adapt to local

environment conditions. This scheme is based on observations often made at one

instant in time. The need for in-situ monitoring of the rootzone is required to

determine the extent to which vegetation dynamically alter their rooting

architecture. Laboratory experiments coupled with field observations will allow us to

better constrain the dynamic allocation scheme thereby producing more realistic

results.
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Appendix A

Spatially and Temporally

Invariant Root Distributions -

Additional Water Balance Figures

Appendix A is a supplement to Chapter 3.

Uniform Root Profile Water Balance Components
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Figure: Mean annual water balance components of a 100 year simulation for grasses and
shrubs on sand at WGEW and Loma Ridge. Bar outlined in red indicates the rooting depth
that corresponds to the maximum mean annual transpiration.
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Figure: Mean annual water balance components of a 100 year simulation for grasses and
shrubs on sandy loam at WGEW and Loma Ridge. Bar outlined in red indicates the rooting
depth that corresponds to the maximum mean annual transpiration.
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0.9

0.8

0.7

,20.6

0.5

OA

0.3

0.2

0.1

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Rooting Depth [ml Rooting Depth [m] Rooting Depth [ml Rooting Depth Cml

Figure: Mean annual water balance components of a 100 year simulation for grasses and

shrubs on loam at WGEW and Loma Ridge. Bar outlined in red indicates the rooting depth

that corresponds to the maximum mean annual transpiration.
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Figure: Mean annual water balance components of a 100 year simulation for grasses and

shrubs on clay loam at WGEW and Loma Ridge. Bar outlined in red indicates the rooting

depth that corresponds to the maximum mean annual transpiration.
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Figure: Mean annual water balance components of a 100 year simulation for grasses and
shrubs on clay at WGEW and Loma Ridge. Bar outlined in red indicates the rooting depth

that corresponds to the maximum mean annual transpiration.
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Logistic Root Profile Water Balance Components - Walnut Gulch

Experimental Watershed

Mean Annual Transpiration - Grass

45

E
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100 150 00 150 50 100 150 20 40 60 80 100 10 20 30 40 50

Figure: Mean annual transpiration for a grass on five soil textures over a 100 year

simulation for Walnut Gulch Experimental Catchment, Arizona. Black filled circles indicate

parameter combinations simulated; White filled circle is the D50 and D95 parameter

combination that resulted in the maximum mean transpiration, i.e. the white circle

indicates the location of the optimal rooting profile.
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Figure: Mean annual evaporation for a grass on five soil textures over a 100 year simulation

for Walnut Gulch Experimental Catchment, Arizona. Black filled circles indicate parameter

combinations simulated.
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Mean Annual Drainaae - Grass
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Figure: Mean annual drainage for a grass on five soil textures over a 100 year simulation for
Walnut Gulch Experimental Catchment, Arizona. Black filled circles indicate parameter

combinations simulated.
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Figure: Mean annual surface runoff for a grass on five soil textures over a 100 year

simulation for Walnut Gulch Experimental Catchment, Arizona. Black filled circles indicate

parameter combinations simulated.
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Mean Annual Transpiration -Shrub
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Figure: Mean annual transpiration for a shrub on five soil textures over a 100 year

simulation for Walnut Gulch Experimental Catchment, Arizona. Black filled circles indicate

parameter combinations simulated.
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Figure: Mean annual evaporation for a shrub on five soil textures over a 100 year simulation

for Walnut Gulch Experimental Catchment, Arizona. Black filled circles indicate parameter

combinations simulated.
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Moan Annual Drainage . Shrub
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Figure: Mean annual drainage for a shrub on five soil textures over a 100 year simulation

for Walnut Gulch Experimental Catchment, Arizona. Black filled circles indicate parameter

combinations simulated.
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Figure: Mean annual surface runoff for a shrub on five soil textures over a 100 year

simulation for Walnut Gulch Experimental Catchment, Arizona. Black filled circles indicate

parameter combinations simulated.
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Logistic Root Profile Water Balance Components - Loma Ridge

Mean Annual Transpiration -Grass
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Figure: Mean annual transpiration for a grass on five soil textures over a 100 year

simulation for Loma Ridge, California. Black filled circles indicate parameter combinations

simulated.
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Figure: Mean annual evaporation for a grass on five soil textures over a 100 year simulation

for Loma Ridge, California. Black filled circles indicate parameter combinations simulated.
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Mean Annual Drainage - Grass
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Figure: Mean annual drainage for a grass on five soil textures over a 100 year simulation for

Loma Ridge, California. Black filled circles indicate parameter combinations simulated.
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Figure: Mean annual surface runoff for a grass on five soil textures over a 100 year
simulation for Loma Ridge, California. Black filled circles indicate parameter combinations
simulated.
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Mean Annual Transpiration- Shrub
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Figure: Mean annual transpiration for a shrub on five soil textures over a 100 year

simulation for Loma Ridge, California. Black filled circles indicate parameter combinations

simulated.
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Mean Annual Drainage - Shrub
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Figure: Mean annual drainage for a shrub on five soil textures over a 100 year simulation
for Loma Ridge, California. Black filled circles indicate parameter combinations simulated.
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Figure: Mean annual surface runoff for a shrub on five soil textures over a 100 year

simulation for Loma Ridge, California. Black filled circles indicate parameter combinations

simulated.
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Appendix B

Linear Programming and the

Simplex Method

In determining the allocation of root carbon within the root zone, a linear

programming (or linear optimization) method was utilized. Linear optimization

concerns itself with the following: Given a vector of N independent variable (x, x 2,
... xN), the objective function;

maximize z = a01 x1 + a0 2x 2 + -+ aoNxN

subject to the following primary constraints;

X1 0, X2 > 0, ... , XN>

and simultaneously subject to M=m 1+m2+m3 additional constraints of the form;

mi :aix 1 + ai2x 2 + ... + aiNXN bi; i 1, 2,... 1

M2 :aix 1 + aj2x 2 + ... + ajNN bj =m+ 1 m+ 2... m +M2

M3 aklxl+ ak 2 x 2 + ... + akNXN=bk k= M 1 +M2 +1,M 1  2. .- , 1 +m 2 + 3

Of the feasible vectors that satisfy the above constraints, the one that maximizes

the objective function is identified as the optimal solution.
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The restricted normal form of the above problem is one that has no inequality

constraints of the form of the m1 or m2 constraints. For computational efficiency,
rewriting the inequality constraints is highly desirable. This can be achieved through

the inclusion of slack variables and an auxiliary objective function.

A unique slack variable, y, is added (or subtracted depending on the sign

convention of the inequality) as below;

mi : a1ix 1 + aizX2 + ... + aiNXN +i= b; i -- 1

M2 : aj 1 X + aj 2 X2 + + ajNXN =j j m 1 + 1,m,+ 2, ... , 1 + M 2

To find a feasible basic starting vector we introduce additional artificial nonnegative

variables, z. Each artificial variable can be written in terms of the constraints as

follows;

zi = bi - ag1 x1 - ai2x 2 - ---.- aiNN ~y; i = -- m1

zj = bj - ailxl - aj2X2 - ...- aNXN +Y j 1 + 1, m1 + 2,..., m1 + m

Zk = bk - ak1X1 ~ ak2x2 ~ -- ~ akNXN; k = m 1 + m 2 + 1, 1 + m 2 + 2,...,m 1 + M2 + M3

Once we have created the artificial variables it is possible to rewrite the original

objective function in terms of the new variable and create the auxiliary objective

function.

z = E_(-Z,) + EX i(-zj) + E3(-zk)

In order to solve the original problem we must first apply the simplex method to

the auxiliary objective function and the constraints that contain the slack variables.

The auxiliary function is maximized when the z's are all zero. This results in the

problem only containing x and y variables. This initial phase also acts as a check for

a feasible solution. If the solution of auxiliary objective function does not return all
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zeros then the problem is ill-posed with either an insufficient number of constraints

or a set of constraints that are internally inconsistent.

Now that an initial feasible vector has been identified, the problem can be solved

using the new set of constraints containing the slack variables with the original

objective function. The simplex routine requires the construction of a matrix which

includes all the coefficients of the constraints. The entries in the slack variables only

distinguish the sign of the inequality and are not required by the routing as long as

the sign convention above is applied. The size of the matrix is N+1 columns and M

rows.

Table: Constraints input format for simplex routine.

b Xi X 2  ... XN Y1 Y2 M-N Vm1+m2

z1 b, all a12  ... a1N - 0 ... 0

Z2 b2 a21  a22  ... a2N 0 -1 ... 0

ZM bM aM1 aM2 ... aMN 0 0 ... -1

-221-



-222-



Appendix C

Climate Experiment Root Profiles

Appendix C contains all the transpiration optima images for each climate scenario

that was conducted in Chapter 4.

Table: A series of experiments conducted to examine the influence that changes in climate

may have on the water balance. Pa [mm] -annual mean precipitation; t, [hrs] -monthly

mean interstorm period; t, [hrs] -monthly mean storm duration; r [mm hr-1] -monthly

mean storm intensity. Shaded boxes signify experiments that differ from the base case. The

interstorm period, storm duration and storm intensity parameters vary on a month-to-

month basis.

Scenario Annual Return Storm Storm Wet
Precipitation Period Duration Intensity Season

Current Conditions Pa tr ts r JAS

Higher Intensity Pa 2 * tr ts 2 * r JAS

Longer Duration Pa 2 * tr 2 * ts r JAS

Decreased Annual (-50%) Pa * 0.5 tr 0.51/ 2 * 0.51/2 * r JAS

Decreased Annual (-25%) Pa * 0.75 tr 0.751/2 * t 0.751/2 * r JAS

Increased Annual (+25%) Pa * 1.25 tr 1.251/2 * t 1.251/2 * r JAS

Increased Annual (+50%) Pa * 1.5 tr 1.51/2 *t 1.51/2 * r JAS

Seasonal Late Shift Pa tr ts r ASO

Seasonal Early Shift Pa tr ts r JJA
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Figure: Mean annual transpiration for a grass on five soil textures over a 100 year
simulation for Walnut Gulch Experimental Catchment, Arizona. Black filled circles indicate
parameter combinations simulated; White filled circle is the D50 and D95 parameter
combination that resulted in the maximum mean transpiration, i.e. the white circle
indicates the location of the optimal rooting profile.
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Figure: Rooting profiles for optimal logistic scheme (red) and dynamic rooting scheme
(blue) for a grass on a sand over a 100 year simulation for Walnut Gulch Experimental
Catchment, Arizona.
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Higher Intensity
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Figure: Mean annual transpiration for a grass on five soil textures over a 100 year

simulation for the higher intensity climate scenario. White filled circle is the D50 and D95

parameter combination that resulted in the maximum mean transpiration, Green filled circle

is the optimal based on unaltered climate conditions.
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Figure: Rooting profiles for optimal logistic scheme (red) and dynamic rooting scheme

(blue) for a grass on a sand over a 100 year simulation for the higher intensity climate

scenario.
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Longer Duration
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Figure: Mean annual transpiration for a grass on five soil textures over a 100 year
simulation for the longer duration climate scenario. White filled circle is the D50 and D95
parameter combination that resulted in the maximum mean transpiration, Green filled circle
is the optimal based on unaltered climate conditions.
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Decrease MAP (-50%)
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Figure: Mean annual transpiration for a grass on five soil textures over a 100 year

simulation for the decrease in mean annual precipitation by 50% climate scenario. White

filled circle is the D50 and D95 parameter combination that resulted in the maximum mean

transpiration, Green filled circle is the optimal based on unaltered climate conditions.
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Figure: Rooting profiles for optimal logistic scheme (red) and dynamic rooting scheme

(blue) for a grass on a sand over a 100 year simulation for the decrease in mean annual

precipitation by 50% climate scenario.
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Decrease MAP (-25%)
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Figure: Mean annual transpiration for a grass on five soil textures over a 100 year
simulation for the decrease in mean annual precipitation by 25% climate scenario. White
filled circle is the D50 and D95 parameter combination that resulted in the maximum mean
transpiration, Green filled circle is the optimal based on unaltered climate conditions.
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Figure: Rooting profiles for optimal logistic scheme (red) and dynamic rooting scheme
(blue) for a grass on a sand over a 100 year simulation for the decrease in mean annual
precipitation by 25% climate scenario.
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Increase MAP (+25%)
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Figure: Mean annual transpiration for a grass on five soil textures over a 100 year

simulation for the increase in mean annual precipitation by 25% climate scenario. White

filled circle is the D50 and D95 parameter combination that resulted in the maximum mean

transpiration, Green filled circle is the optimal based on unaltered climate conditions.
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Figure: Rooting profiles for optimal logistic scheme (red) and dynamic rooting scheme

(blue) for a grass on a sand over a 100 year simulation for the increase in mean annual

precipitation by 25% climate scenario.
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Increase MAP (+50%)
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Figure: Mean annual transpiration for a grass on five soil textures over a 100 year
simulation for the increase in mean annual precipitation by 50% climate scenario. White
filled circle is the D50 and D95 parameter combination that resulted in the maximum mean
transpiration, Green filled circle is the optimal based on unaltered climate conditions.
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Figure: Rooting profiles for optimal
(blue) for a grass on a sand over a 1
precipitation by 50% climate scenario.
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Figure: Mean annual transpiration for a grass on five soil textures over a 100 year
simulation for the one month delay in rainfall season climate scenario. White filled circle is
the D50 and D95 parameter combination that resulted in the maximum mean transpiration,
Green filled circle is the optimal based on unaltered climate conditions.
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(blue) for a grass on a sand over a 100 year simulation for the one month delay in rainfall
season climate scenario.
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is the D50 and D95 parameter combination that resulted in the maximum mean
transpiration, Green filled circle is the optimal based on unaltered climate conditions.
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rainfall season climate scenario.
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Appendix D

Validation Results Using Uniform

and Logistic Rooting Schemes
Appendix D is a supplement to Chapter 5, all the figures presented for the dynamic

scheme evaluation were also constructed for the uniform and logistic profiles and

are presented below.
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Kendall - Uniform Rooting Scheme
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Figure: Energy Balance Hourly Error Histograms for Kendall using a uniform rooting

scheme. a) Net Radiation; b) Latent Heat Flux; c) Ground Heat Flux; and d) Sensible Heat

Flux.
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Figure: Comparison of observed and modeled mean monthly energy balance components for

Kendall using a uniform rooting scheme. a) Net Radiation; b) Sensible Heat Flux; c) Ground

Heat Flux; and d) Latent Heat Flux and Precipitation.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance

components for August 2005 at Kendall using the uniform rooting scheme.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2006 at Kendall using the uniform rooting scheme.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2007 at Kendall using the uniform rooting scheme.
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Figure: Comparison of modeled (blue) and MODIS 8 day composite 1km x 1km (red) Leaf

Area Index at Kendall using the uniform rooting scheme.
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Figure: Comparison of modeled and observed soil moisture at Kendall using the uniform

rooting scheme. a) Rainfall [mm]; b) 5cm volumetric soil moisture [-]; c) 15cm volumetric

soil moisture [-] ; and d) 30cm volumetric soil moisture [-].
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Figure: Comparison of observed and modeled mean monthly energy balance components for

Kendall using a logistic rooting scheme. a) Net Radiation; b) Sensible Heat Flux; c) Ground

Heat Flux; and d) Latent Heat Flux and Precipitation.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance

components for August 2005 at Kendall using the logistic rooting scheme.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2006 at Kendall using the logistic rooting scheme.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2007 at Kendall using the logistic rooting scheme.
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Figure: Comparison of modeled (blue) and MODIS 8 day composite 1km x 1km (red) Leaf

Area Index at Kendall using the logistic rooting scheme.
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Figure: Comparison of modeled and observed soil moisture at Kendall using the logistic

rooting scheme. a) Rainfall [mm]; b) 5cm volumetric soil moisture [-]; c) 15cm volumetric

soil moisture [-] ; and d) 30cm volumetric soil moisture [-].
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Figure: Energy Balance Hourly Error Histograms for Kendall using a dynamic rooting
scheme. a) Net Radiation; b) Latent Heat Flux; c) Ground Heat Flux; and d) Sensible Heat
Flux.
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Figure: Comparison of observed and modeled mean monthly energy balance components for

Kendall using a dynamic rooting scheme. a) Net Radiation; b) Sensible Heat Flux; c) Ground

Heat Flux; and d) Latent Heat Flux and Precipitation.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance

components for August 2005 at Kendall using the dynamic rooting scheme.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2006 at Kendall using the dynamic rooting scheme.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2007 at Kendall using the dynamic rooting scheme.

-244-



-tRIBS+VEGGI
MODIS Obs

MODIS LAI vs Modeled LAI - Kendall

0.8-

0.6

0.4

0.2k

200 2004
Year

Figure: Comparison of modeled (blue) and MODIS 8 day composite 1km x 1km (red) Leaf

Area Index at Kendall using the dynamic rooting scheme.
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Figure: Comparison of modeled and observed soil moisture at Kendall using the dynamic

rooting scheme. a) Rainfall [mm]; b) 5cm volumetric soil moisture [-]; c) 15cm volumetric

soil moisture [-] ; and d) 30cm volumetric soil moisture [-].
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Luckyhills - Uniform Scheme
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Figure: Energy Balance Hourly Error Histograms for Lucky Hills using a uniform rooting

scheme. a) Net Radiation; b) Latent Heat Flux; c) Ground Heat Flux; and d) Sensible Heat

Flux.
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Figure: Comparison of observed and modeled mean monthly energy balance components for
Lucky Hills using a uniform rooting scheme. a) Net Radiation; b) Sensible Heat Flux; c)
Ground Heat Flux; and d) Latent Heat Flux and Precipitation.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2005 at Lucky Hills using the uniform rooting scheme.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance

components for August 2006 at Lucky Hills using the uniform rooting scheme.

Aug, 2007

-- Moi Obse

0

so

20

0 5 10 s 20 30
Ows

Figure: Time series comparison of modeled (blue) and observed (red) energy balance

components for August 2007 at Lucky Hills using the uniform rooting scheme.
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Figure: Comparison of modeled (blue) and MODIS 8 day composite 1km x 1km (red) Leaf

Area Index at Lucky Hills using the uniform rooting scheme.
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Figure: Comparison of modeled and observed soil moisture at Lucky Hills using the uniform

rooting scheme. a) Rainfall [mm]; b) 5cm volumetric soil moisture [-]; c) 15cm volumetric

soil moisture [-] ; and d) 30cm volumetric soil moisture [-].
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Luckyhills - Logistic Scheme
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Figure: Energy Balance Hourly Error Histograms for Lucky Hills using a logistic rooting

scheme. a) Net Radiation; b) Latent Heat Flux; c) Ground Heat Flux; and d) Sensible Heat

Flux.
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Figure: Comparison of observed and modeled mean monthly energy balance components for

Lucky Hills using a logistic rooting scheme. a) Net Radiation; b) Sensible Heat Flux; c)

Ground Heat Flux; and d) Latent Heat Flux and Precipitation.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance

components for August 2005 at Lucky Hills using the logistic rooting scheme.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2006 at Lucky Hills using the logistic rooting scheme.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2007 at Lucky Hills using the logistic rooting scheme.
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Figure: Comparison of modeled (blue) and MODIS 8 day composite 1km x 1km (red) Leaf

Area Index at Lucky Hills using the logistic rooting scheme.
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Figure: Comparison of modeled and observed soil moisture at Lucky Hills using the logistic

rooting scheme. a) Rainfall [mm]; b) 5cm volumetric soil moisture [-]; c) 15cm volumetric

soil moisture [-] ; and d) 30cm volumetric soil moisture [-].
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Figure: Comparison of hourly modeled and observed volumetric soil moisture at a) 5cm; b)
15cm ; and c) 30cm at Lucky Hills using the logistic rooting profile.
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Figure: Comparison of observed and modeled mean monthly energy balance components for

Lucky Hills using a dynamic rooting scheme. a) Net Radiation; b) Sensible Heat Flux; c)

Ground Heat Flux; and d) Latent Heat Flux and Precipitation.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance

components for August 2005 at Lucky Hills using the dynamic rooting scheme.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2006 at Lucky Hills using the dynamic rooting scheme.
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Figure: Time series comparison of modeled (blue) and observed (red) energy balance
components for August 2007 at Lucky Hills using the dynamic rooting scheme.
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Figure: Comparison of modeled (blue) and MODIS 8 day composite 1km x

Area Index at Lucky Hills using the dynamic rooting scheme.
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Figure: Comparison of modeled and observed soil moisture at Lucky Hills using the dynamic

rooting scheme. a) Rainfall [mm]; b) 5cm volumetric soil moisture [-]; c) 15cm volumetric

soil moisture [-] ; and d) 30cm volumetric soil moisture [-].
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Figure: Comparison of hourly modeled and observed volumetric soil moisture at a) 5cm; b)
15cm ; and c) 30cm at Lucky Hills using the dynamic rooting profile.
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Appendix E

Competition Hilislope Plots
Appendix E is a supplement to

rooting profiles for each of the
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20

15

. 10

5

North

Static Profiles on Sand

Chapter 6. This appendix includes additional hillslope

dynamic simulations conducted.
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Figure: Co-evolution of shrub (top) and grass (bottom) vegetation fractions simulated on

two opposing planar hillslopes over a 100 year period using a logistic rooting profile on a

sandy soil. North facing elements 1-10, south facing elements 12-21 and valley element 11

(dashed line).
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Figure: Co-evolution of shrub (top) and grass (bottom) vegetation fractions simulated on
two opposing planar hilislopes over a 100 year period using a dynamic rooting profile on a
sandy soil. North facing elements 1-10, south facing elements 12-21 and valley element 11
(dashed line).
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Figure: Time series of the dynamic root distribution and density [gC cm-2] for shrubs (top)
and grasses (bottom) on a sandy soil for a element at the bottom of the south facing slope.
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South Facing (Mid) - Shrub Roots Density Time Series
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Figure: Time series of the dynamic root distribution and density [gC cm-2 ] for shrubs (top)

and grasses (bottom) on a sandy soil for a element in the middle of the south facing slope.
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Figure: Time series of the dynamic root distribution and density [gC cm-2 ] for shrubs (top)

and grasses (bottom) on a sandy soil for a element at the top of the south facing slope.
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North Facing (Bottom) - Shrub Roots Density Time Series
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Figure: Time series of the dynamic root distribution and density [gC cm-2 ] for shrubs (top)
and grasses (bottom) on a sandy soil for a element at the bottom of the north facing slope.
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Figure: Time series of the dynamic root distribution and density [gC cm-2 ] for shrubs (top)
and grasses (bottom) on a sandy soil for a element in the middle of the north facing slope.
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North Facing (Top) - Shrub Roots Density Time Series
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Figure: Time series of the dynamic root distribution and density [gC cm-2] for shrubs (top)

and grasses (bottom) on a sandy soil for a element at the top of the north facing slope.
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Loamy Soil
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Figure: Co-evolution of shrub (top) and grass (bottom) vegetation fractions simulated on
two opposing planar hillslopes over a 100 year period using a logistic rooting profile on a
loamy soil. North facing elements 1-10, south facing elements 12-21 and valley element 11
(dashed line).
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Figure: Co-evolution of shrub (top) and grass (bottom) vegetation fractions simulated on

two opposing planar hillslopes over a 100 year period using a dynamic rooting profile on a

loamy soil. North facing elements 1-10, south facing elements 12-21 and valley element 11

(dashed line).
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Figure: Time series of the dynamic root distribution and density [gC cm-2 ] for shrubs (top)

and grasses (bottom) on a loamy soil for a element at the bottom of the south facing slope.

-267-



South Facing (Mid) - Shrub Roots Density Time Series
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dynamic root distribution and density [gC cm-2 ] for shrubs (top)
loamy soil for a element in the middle of the south facing slope.

South Facing (Top) - Shrub Roots Density Time Series

30 40 50 60 70 80 90
Time [yrs]

South Facing (Top) - Grass Root Density Time Series

50
Time [yrs

R '0

6

4

2

100

100

Figure: Time series of the dynamic root distribution and density [gC cm- 2] for shrubs (top)
and grasses (bottom) on a loamy soil for a element at the top of the south facing slope.
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North Facing (Bottom) - Shrub Roots Density Time Series
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Figure: Time series of the dynamic root distribution and density [gC cm-2] for shrubs (top)
and grasses (bottom) on a loamy soil for a element at the bottom of the north facing slope.
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Figure: Time series of the dynamic root distribution and density [gC cm-2 ] for shrubs (top)

and grasses (bottom) on a loamy soil for a element in the middle of the north facing slope.
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North Facing (Top) - Shrub Roots Density Time Series
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Figure: Time series of the dynamic root distribution and density [gC cm-2 ] for shrubs (top)

and grasses (bottom) on a loamy soil for a element at the top of the north facing slope.
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Figure: Co-evolution of shrub (top) and grass (bottom) vegetation fractions simulated on

two opposing planar hillslopes over a 100 year period using a logistic rooting profile on a

clayey soil. North facing elements 1-10, south facing elements 12-21 and valley element 11

(dashed line).
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Figure: Co-evolution of shrub (top) and grass (bottom) vegetation fractions simulated on
two opposing planar hillslopes over a 100 year period using a dynamic rooting profile on a
clayey soil. North facing elements 1-10, south facing elements 12-21 and valley element 11
(dashed line).
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South Facing (Bottom) - Shrub Roots Density Time Series
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Figure: Time series of the dynamic root distribution and density [gC cm-2] for shrubs (top)

and grasses (bottom) on a clayey soil for a element at the bottom of the south facing slope.
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Figure: Time series of the dynamic root distribution and density [gC CM-2] for shrubs (top)

and grasses (bottom) on a clayey soil for a element in the middle of the south facing slope.
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South Facing (Top) - Shrub Roots Density Time Series
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Figure: Time series of the dynamic root distribution and density [gC cm-2 ]
and grasses (bottom) on a clayey soil for a element at the top of the south

for shrubs (top)

facing slope.
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Figure: Time series of the dynamic root distribution and density [gC cm-2] for shrubs (top)

and grasses (bottom) on a clayey soil for a element at the bottom of the north facing slope.
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North Facing (Mid) - Shrub Roots Density Time Series

~~v v M-W -7-,

- - -- - - - - -- - - - - - - - -- - - - j I
10 20 30 40 50 60 70 80 90 100

Time [yrs]

0012

001

0008

0006

0004

o002

0

North Facing (Mid) - Grass Root Density Time Series

-L ~ i

10 20 30 40 50 60 70 80
Time [yrs]

x 10

4

3

2

il 0
90 100

Figure: Time series of the dynamic root distribution and density [gC cm-2] for shrubs (top)

and grasses (bottom) on a clayey soil for a element in the middle of the north facing slope.
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Figure: Time series of the dynamic root distribution and density [gC cm- 2] for shrubs (top)

and grasses (bottom) on a clayey soil for a element at the top of the north facing slope.
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