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Abstract

The range of geologic problems that may be addressed by U-Pb geochronology is
governed by the precision to which U-Pb dates can be measured, expressed as their
estimated uncertainties. Accurate and precise knowledge of both the value and un-
certainty of an isotopic date are imperative to its correct interpretation. This thesis
focuses on quantitatively addressing the large volume of information that contributes
to the calculation of published high-precision U-Pb dates. A new algorithm (Chap-
ter 2) outlines the equations that transform measured isotope ratios, along with a
host of laboratory and instrumental parameters, into a U-Pb date. The algorithm
propagates all known random and systematic uncertainties, resulting in an adaptable
framework will remain usable as analytical and computational advances change the
main uncertainty contributions. The data reduction and uncertainty propagation al-
gorithm, as well as a new method for calculating weighted means that correctly treats
systematic uncertainties, have been incorporated into the open-source software pro-
gram U-PbRedux. Chapter 3 explores the mechanisms of isotopic fractionation, the
largest instrumental correction to measured U-Pb data, using a new linear regression
algorithm. The algorithm rapidly regresses a straight line through large datasets in
multiple dimensions using a novel simplification to the maximum likelihood objective
equation, and is used to demonstrate that Pb undergoes mass-independent fraction-
ation in the source of a thermal ionization mass spectrometer. Chapter 4 addresses
the largest source of systematic uncertainty considered when confederating datasets
from different labs, the calibration of the tracer used for isotope dilution. The cal-
ibration assumes only first-principles mass and purity measurements traceable to SI
units, then defines a measurement model that utilizes >105 measurements in a series
of overdetermined inverse problems to estimate the tracer isotopic composition. The
result is a reduction by a factor of almost four in the tracer uncertainty contribution
to a U-Pb date. In Chapter 5, I use the new algorithms to explore regional geol-
ogy. High-precision U-Pb dates from the metamorphic core of the North Cascades



and from ash beds in three fluvial basins that flank it show that Eocene magmatism,
solid-state deformation, and exhumation of the metamorphic core are coincident with
rapid basin subsidence.

Thesis Supervisor: Samuel A. Bowring
Title: Robert R. Shrock Professor of Geology



Acknowledgments

I would like to thank my family and friends for their support, and in particular the

past and present denizens of the MIT Isotope Geochemistry Laboratory, who have

become both family and friends.



6



Contents

1 Introduction

2 An Algorithm for U-Pb Isotope Dilution Data Reduction and Un-

certainty Propagation

2.1 Introduction.. . . . . . . . . . . . . . . . ..

2.2 U-Pb Data Reduction . . . . . . . ........

2.2.1 Inputs . . . . . . . . . . . . . . . . . . .

2.2.2 Data Reduction.. . . . . . . . . . ..

2.3 Uncertainty Propagation Principles. . . . ..

2.3.1 Determining the Uncertainties of Inputs

2.3.2 Uncertainty Propagation Equation

2.3.3 Covariance and Correlation. . . . ..

2.4 Propagating Uncertainty with Matrices..

2.4.1 Covariance and Jacobian Matrices .

2.4.2 Calculating the Total Derivative .....

2.4.3 Uncertainty Propagation Equation

2.5 W eighted Means . . . . . . . . . . . . . . . . . .

2.5.1 Conventional Weighted Mean of Independ

2.5.2 The Date Covariance Matrix . . . . . . .

2.5.3 Generalized Weighted Mean of Correlated

2.5.4 Application to U-Pb Geochronology . . .

2.6 Verification by Monte Carlo Method . . . . . .

. . . . . . . . . . . . 22

. . . . . . . . . . . . 24

. . . . . . . . . . . . 25

. . . . . . . . . . . . 28

. . . . . . . . . . . . 39

. . . . . . . . . . . . 39

. . . . . . . . . . . . 41

. . . . . . . . 43

. . . . . . . . . . . . 44

. . . . . . . . . . . . 45

. . . . . . . . . . . . 47

. . . . . . . . 49

. . . . . . . . . . . . 50

ent Data . . . . . . 50

. . . . . . . . . 52

D ata . . . . . . . . 54

. . . . . . . . . . . . 57

. . . . . . . . . . . . 58

2.6.1 Monte Carlo Experimental Setup . . . . . . . . .



2.6.2 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.7 Conclusions............ . . . . . . . . . . . . . . . . . . . .

2.8 Appendix: Disequilibrium Corrections and Initial Common Pb Models

2.8.1 Th correction derivation . . . . . . . . . . . . . . . . . . . . .

2.8.2 Th correction implementation... . . . . . . . . . . . . . . .

2.8.3 Pa correction . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.8.4 Simultaneous Th- and Pa-correction . . . . . . . . . ......

2.8.5 Initial Common Pb Correction . . . . . . . . . . . . . . . . . .

2.9 Figure captions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Straight Line Regression through Data With Correlated Uncertai

ties in Two or More Dimensions

3.1 Introduction........ . . . . . . . . . . . . . . . . . . . . . . ..

3.2 Estimation of Regression Parameters. . . . . . . . . . . . . . . ..

3.2.1 Vector from a Point to a Line . . . . . . . . . . . . . . . . . .

3.2.2 Maximum Likelihood and the Minimum Distance.... . ..

3.2.3 Probability Density and Likelihood Functions . . . . . . . . .

3.3 Solving for the Best Fit Line . . . . . . . . . . . . . . . . . . . . . . .

3.3.1 Uncertainty in Fit Parameters . . . . . . . . . . . . . . . . . .

3.3.2 Other Linear Regression Algorithms . . . . . . . . . . . . . . .

3.4 Application to Kinetic Isotope Fractionation... . . . . . . . . ..

3.4.1 Rayleigh and Exponential Fractionation Equations . . . . . .

3.4.2 Application to Pb Measurements by TIMS . . . . . . . . . . .

3.5 Isochrons, Mixing Lines, and the Statistics of Compositional Data . .

3.5.1 Some Pitfalls of Conventional Multivariate Statistics for Isotope

R atios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.5.2 Application of Compositional Data Methods to Exponential

M ass Fractionation. . . . . . . . . . . . . . . . . . . . . ..

3.6 Summary and Conclusions......... . . . . . . . . . . . . . ..

n-

79

80

83

83

84

87

88

89

90

92

93

95

98

99

100

102



3.7 Appendix A: Second Derivatives of log-Likelihood Equation for Best

Fit Line...... . . . . . . . . . . . . . . . . . . . . . . . . . . .. 103

3.8 Appendix B: Multivariate weighted mean . . . . . . . . . . . . . . . . 103

3.9 Figure captions 105

4 Evaluating Analytical and Systematic Uncertainty

Tracer Calibration

4.1 Introduction . . . . . . . . . . . . . . . . . . . ..

4.1.1 First Principles...... . . . . . . . . . . .

4.2 Application of Inverse Methods. . . . . . . . . ..

4.2.1 Measurement Model. . . . . . . . . . . ..

4.2.2 Solving the Inverse Problem . . . . . . . . . .

4.3 Inter-calibration of Pb and U standards . . . .....

4.3.1 U Standard Inter-calibration . . . . . . . . . .

4.3.2 Pb Standard Inter-calibration . . . . . . . . .

4.4 Determining the Pb IC of the Tracer and Blank . . .

4.4.1 Determining the mixing line parameters . . .

4.4.2 R esults . . . . . . . . . . . . . . . . . . . . . .

4.4.3 Application to TIMS Pb measurements .

in Mixed U-Pb

111

. . . . . . . . . 112

. . . . . . . . . 113

. . . . . . . . . 115

. . . . . . . . . 115

. . . . . . . . . 116

. . . . . . . . . 118

. . . . . . . . . 119

. . . . . . . . . 119

. . . . . . . . . 126

..... . . . 127

. . . . . . . . . 130

. . . . . . . . . 131

4.5 Determining the U IC of the Tracer with Critical Mixtures . . . . .

4.5.1 M odel. . . . . . . . . . . . . . . . . . . . . . . . . . . ..

4.5.2 Algorithm and Results . . . . . . . . . . . . . . . . . . . . .

4.5.3 Correlation with Sample 238U/ 2 35U . . . . . . . . . . . . . .

4.5.4 Sample Fractionation Correction with a 2 3 3U-2 3 5U Tracer . .

4.6 U/Pb Ratios of the Gravimetric Standards . . . . . . . . . . . . . .

4.6.1 Uncertainty in Mass Determinations... . . . . . . . . ..

4.6.2 Uncertainty in Purity of Pb Isotopic Standards.... . ..

4.6.3 Purity of U Isotopic Standards . . . . . . . . . . . . . . . . .

4.6.4 Gravimetric U/Pb ratio. . . . . . . . . . . . . . . . . ..

4.7 Gravimetric-Tracer Mixtures . . . . . . . . . . . . . . . . . . . . . .

132

133

135

136

137

138

138

139

141

141

142



4.7.1 Equations.. . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.7.2 Algorithm and Results... . . . . . . . . . . . . . . . . . . 145

4.8 Discussion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.9 Conclusions.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.10 Figure captions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5 Exhumation of the North Cascades core coincident with rapid sedi-

mentation in adjacent nonmarine basins 161

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2 Geologic Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3 U-Pb dates in the Skagit Gneiss . . . . . . . . . . . . . . . . . . . . . 163

5.4 U-Pb dates in non-marine basins . . . . . . . . . . . . . . . . . . . . 165

5.5 Discussion ... . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 166

5.6 Conclusions............. . . . . . . . . . . . . . . . . . .. 167

10



List of Figures

2-1 Flow chart for U-Pb data reduction... . . . . . . . . . . . . . . . 75

2-2 U-Pb sample components . . . . . . . . . . . . . . . . . . . . . . . . 76

2-3 Uncertainty propagation in one dimension . . . . . . . . . . . ... 77

2-4 Monte Carlo simulation results....... . . . . . . . . . . . . . . 77

3-1 Linear regression parameters . . . . . . . . . . . . . . . . . . . . . . 108

3-2 Maximum likelihood by Cholesky transformation . . . . . . . ... 108

3-3 Observed isotopic fractionation for a single analysis of NBS 982 . . . 109

4-1 Mass independent fractionation of Pb. . . . . . . . . . . . . . ... 156

4-2 Monte Carlo simulations of the best-fit value of 2osPb/ 206Pb of NBS

982. ........ .... ......... . ... .............. 157

4-3 Measurements of the laboratory Pb blank isotopic composition. . . . 158

4-4 Probability distribution functions for the purity of four commonly used

Pb standards. ..... . . . . . . . . . . . . . . . . . . . . . . ... 158

4-5 Relative uncertainty contribution (2o-, ppm) to the 20 6 Pb/ 238 U date

from uncertainty in the tracer IC. . . . . . . . . . . . . . . . . . . . 159

5-1 North Cascades map and U-Pb data . . . . . . . . . . . . . . . . . . 168



12



List of Tables

2.1 M easured Isotope Ratios . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2 Isotopic Tracer Parameters . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3 Laboratory and Sample Parameters . . . . . . . . . . . . . . . . . . . 74

3.1 Maximum likelihood estimates, uncertainties, and correlation coeffi-

cients for the best fit line parameters to the NBS 982 Pb fractionation

data. ....... ... ......... .................... 107

4.1 Weighted mean 23 8 U/ 2 3 5U values and their random, and combined ran-

dom and systematic uncertainties for the U isotopic standards CRM

112a, CRM 115, and CRM U500 used for tracer calibration. Reported

ratios are all fractionation-corrected using IRMM 3636(a) (Verbruggen

et al., 2008) for fractionation correction. . . . . . . . . . . . . . . . . 152

4.2 Matrix of correlation coefficients between the uncertainties reported in

T able 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.3 Least squares solutions, random, and combined random and systematic

uncertainties for the the Pb isotopic standards NBS 981, NBS 982,

and Puratronic Pb used for tracer calibration, calculated with data

reported in Amelin and Davis (2006) . . . . . . . . . . . . . . . . . . 153

4.4 Matrix of correlation coefficients between the uncertainties in the Pb

ICs used for tracer calibration. These uncertainties are correlated be-

cause they share common sources of uncertainty, largely due to com-

mon ratios being used for the fractionation correction. Correlation

coefficients close to -1 or 1 indicate a high degree of correlation. . . . 153



4.5 Results of linear fit for tracer - blank mixing line . . . . . . . . . . . . 154

4.6 Correlation coefficient matrix for ET535 and loading blank Pb IC. . . 154

4.7 Derivatives of the U IC of ET(2)535 with respect to IRMM 3636. These

values can be used to determine the covariance between a measured

2 3 8 U/ 2 35 U and the tracer, for propagating uncertainty in U-Pb dates. 154

4.8 The U isotopic composition of ET(2)535 from the critical mixture ex-

periment. The tracer was mixed with CRM 112a and SRM U500,

whose ICs, uncertainties, and correlation coefficient are given in Sec-

tion 4.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.9 Purities of Pb isotopic standards measured by glow discharge mass

spectrometry, with estimated symmetric 95% confidence intervals . . 155

4.10 Results of the gravimetric solution - tracer mixtures. . . . . . . . . . 155

5.1 U-Pb Data Table 1...... . . . . . . . . . . . . . . . . . . . . . . 169

5.2 U-Pb Data Table 2......... . . . . . . . . . . . . . . . . . . . 170

5.3 U-Pb Data Table 3... . . . . . . . . . . . . . . . . . . . . . . . . 171



Chapter 1

Introduction

The power of a high-precision U-Pb dataset largely lies in the techniques ability to

produce an absolute measure of geologic time with the smallest possibly uncertain-

ties. Indeed, the range of geologic problems that U-Pb data is employed to solve,

from global timescale calibration to regional geologic correlations, is determined by

the achievable precision. At the cutting edge of geochronology awaits new discoveries

made possible by technical and computational improvements and the insights they

afford. This thesis takes a statistical approach to the analysis of U-Pb geochrono-

logical data, and seeks to provide the tools required for the next generation of U-Pb

geochronology.

As U-Pb analytical techniques have advanced, formerly small sources of uncer-

tainty have become increasingly important, and thus previous simplifications for data

reduction and uncertainty propagation are no longer valid. Newly prominent analyt-

ical uncertainty contributions include instrumental and laboratory parameters, like

the isotopic composition of the laboratory Pb blank and the magnitude and even

the mode of isotopic fractionation. Uncertainty contributions from systematic effects

include the isotopic composition of the tracer used for isotope dilution calculations.

These uncertainty components combine to determine the overall uncertainty budget

of a U-Pb analysis.

Although previous efforts have treated propagation of correlated uncertainties for

the U-Pb system, the equations, uncertainties, and correlations have been limited in



number and subject to simplification during propagation through intermediary calcu-

lations. Chapter 2 provides a new computational framework for U-Pb data reduction

and uncertainty propagation using linear algebraic methods. Rather than modify-

ing notable past algorithms, this contribution re-derives the governing equations that

transform the raw data and inputs for U-Pb geochronology into U-Pb and Pb-Pb

dates. A linear uncertainty propagation algorithm with an important extension for

systematic uncertainties is proved to approximate the true probability density func-

tions of all calculated U-Pb and Pb-Pb dates to sufficient numerical precision using

Monte Carlo methods.

The contents of this chapter have been previously published in an article in Geo-

chemistry, Geophysics, Geosystems: McLean, N. M., Bowring, J. F., and Bowring,

S. A. (2011) An algorithm for U-Pb isotope dilution data reduction and uncertainty

propagation. Geochem. Geophys. Geosyst. doi: 10.1029/2010GC003478 along with

a companion paper that describes an open source software package, U PbRedux,

that employs the new algorithms to create a dynamic visualizations and archive the

data in a public database.

Chapter 3 delves more deeply into the statistics of isotope ratio data. Linear re-

gression algorithms are used frequently for measured data that contain non-negligible

uncertainties in each variable. The highly-cited algorithm of York (1968) solves the

linear regression problem for data with correlated uncertainties in two dimensions, but

it omits an important term for evaluating confidence intervals about the regression

line and it is not generalizable to higher dimensions. I apply the maximum likelihood

method to determine the best-fit line and its uncertainty through data with correlated

uncertainties in any number of dimensions, notably simplifying the resulting vector

equations for rapid computation.

The new algorithm is then used to reduce a large dataset of highly time-resolved Pb

measurements made with a silica gel activator on a thermal ionization mass spectrom-

eter (TIMS). I test the commonly made assumption that isotopic fractionation, or

the preferential evaporation, ionization, and detection of lighter isotopes over heavier

ones, is exponentially mass-dependent. If this hypothesis is true, then the measured



data should fall along a line in log-ratio space with a predictable direction vector

(slope). Instead, measured isotope log-ratios fall along a different line, whose direc-

tion vector components with odd-numbered isotopic mass (here, 20 7Pb) is significantly

different than those predicted by the mass-dependent theory. This mass-independent

fractionation (MIF) effect has been described for other isotopic systems, such as Cd,

Hf, Hg, and Tl in natural and laboratory settings, but it has never been shown to act

systematically on Pb analyses.

The discovery and quantification of systematic MIF during Pb analyses using the

new linear regression algorithm impacts high precision U-Pb dates. The degree of

MIF observed in this paper and in Chapter 4 would increase the estimated amount

of 2 01Pb by up to 0.03%, depending on analytical parameters. This change would

make 2 0 6Pb/ 2 3 8 U dates, which play an important role in Phanerozoic timescale cal-

ibration, older by close to the same factor, and 2 0 7Pb/ 2 0 6 Pb dates, which are used

to date Paleozoic and older rocks and meteorites, younger by about 0.01%. Both of

the changes are significant compared with the analytical uncertainties achievable on

weighted means of large datasets.

This chapter will be submitted to Geochimica et Cosmochimica Acta.

Chapter 4 applies many of the techniques and results of Chapters 2 and 3 to the

problem of calibrating a mixed U-Pb isotopic tracer created by the EARTHTIME ini-

tiative to facilitate collaborative timescale calibration. Because a thermal ionization

mass spectrometer is not capable of measuring Pb and U at the same time, the ratio

of U and Pb, and therefore the U-Pb date of a sample, cannot be directly determined

by TIMS. Instead, an isotopic tracer with known amounts of the artificially enriched

isotopes 2 3 5U and 2 05Pb are added to the sample, and the sample and tracer are mea-

sured together. The ratios of the sample to the tracer isotopes for each element are

then combined with the ratio of 23 5U to 2 05Pb in the tracer to indirectly determine

the samples U/Pb ratio, a method known as isotope dilution (the ID in ID-TIMS).

In this way, all sample U/Pb ratios are measured relative to the tracer U/Pb ratio.

To determine the U/Pb ratio of the tracer, I assume only measurements that can

be traced back to first principles measurements of mass and purity, and therefore to SI



units. These systematic uncertainties are then propagated through a series of inverse

problems that combine data measured from mixtures of the tracer and gravimetrically

calibrated solutions to constrain the isotopic composition (IC) of the tracer. As an

intermediate step, the ICs of many important Pb and U standards are inter-calibrated

with one another and for the first time relate their uncertainties to one another and

back to SI units. The tracer calibration uncertainty derived in this way is smaller by

a factor of almost four than previously assumed, reducing an important component

of systematic uncertainty common to all U-Pb analyses made with the EARTHTIME

tracers. Other tracers may be calibrated using the same numerical methods and

fundamental assumptions, facilitating inter-laboratory comparison and collaboration

at the sub-per-mil level.

This chapter will be submitted, along with a companion paper that describes the

creation of the EARTHTIME tracers, to Geochimica et Cosmochimica Acta.

The fifth and final chapter of this thesis explores the application of high-precision

U-Pb geochronology to the geology of the North Cascades, Washington. The North

Cascades metamorphic core is the southern terminus of the Coast Plutonic Complex,

and represents the exhumed root of a Cretaceous continental magmatic arc. Biotite,

muscovite, and hornblende "Ar- 39 Ar cooling dates from the Cascades core overlap at

ca. 45-48 Ma and imply rapid Eocene exhumation. Flanking the Cascades core is a

series of deep nonmarine, fault-bounded basins that have long been thought to be the

same age. A major unresolved question in the geologic history of the North Cascades

is how the two are related.

Using U-Pb dates of zircons in igneous intrusion with solid-state deformation

throughout the metamorphic core of the North Cascades, I demonstrate a previ-

ously unrecognized widespread episode of Eocene magmatism that follows a period

of Paleocene quiescence. Three nonmarine basins contain volcanic tuffs with deposi-

tional ages that overlap with the timing of magmatism in the metamorphic core and

"0Ar-39 Ar cooling ages. Taken together, available age constraints imply a dynamic

relationship between rapid basin development and exhumation of the North Cascades

core, consistent with a degree of coupling between the upper and lower crust during



the major plate transition to the modern Cascades arc.

This paper was written for submission to Geology.
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Chapter 2

An Algorithm for U-Pb Isotope

Dilution Data Reduction and

Uncertainty Propagation

Abstract

High precision U-Pb geochronology by isotope dilution thermal ionization mass spec-

trometry (ID-TIMS) is integral to a variety of earth science disciplines, but its ulti-

mate resolving power is quantified by the uncertainties of calculated U-Pb dates. As

analytical techniques have advanced, formerly small sources of uncertainty are increas-

ingly important, and thus previous simplifications for data reduction and uncertainty

propagation are no longer valid. Although notable previous efforts have treated prop-

agation of correlated uncertainties for the U-Pb system, the equations, uncertainties,

and correlations have been limited in number and subject to simplification during

propagation through intermediary calculations. We derive and present a transparent

U-Pb data reduction algorithm that transforms raw isotopic data and measured or

assumed laboratory parameters into the isotopic ratios and dates geochronologists

interpret without making assumptions about the relative size of sample components.

To propagate uncertainties and their correlations, we describe, in detail, a linear al-



gebraic algorithm that incorporates all input uncertainties and correlations without

limiting or simplifying covariance terms to propagate them though intermediate calcu-

lations. Finally, a weighted mean algorithm is presented that utilizes matrix elements

from the uncertainty propagation algorithm to propagate random and systematic un-

certainties for data comparison between other U-Pb labs and other geochronometers.

The linear uncertainty propagation algorithms are verified with Monte Carlo simula-

tions of several typical analyses. We propose that our algorithms be considered by

the community for implementation to improve the collaborative science envisioned by

the EARTHTIME initiative.

2.1 Introduction

U-Pb geochronology by isotope dilution thermal ionization mass spectrometry (ID-

TIMS) has become the gold standard for calibrating geologic time due to precisely

determined uranium decay constants, high-precision measurement methods, and an

internal check for open-system behavior provided by the dual decay of 211U and
238U. Precise, accurate ID-TIMS dates have been used to test and calibrate detailed

tectonic models (e.g. Schoene et al. (2008)), determine the timing and tempo of mass

extinctions and ecological recovery (Bowring et al., 1998), calibrate a global geologic

timescale (Davydov et al., 2010), and establish a precise chronology for the early

solar system (Amelin et al., 2002). These results rely on analysis and interpretation

of precisely measured data, for which correct and transparent data reduction and

error propagation are imperative.

U-Pb ID-TIMS dates are measured by dissolving a U-bearing phase with a mixed

isotopic tracer enriched in isotopes of U and Pb, then purifying the U and Pb from

the resulting solution. The ratios of Pb and U in the sample to those in the tracer

are measured precisely by TIMS to determine radiogenic isotope ratios of U and

Pb, which are used to calculate dates. The relatively high precision of ID-TIMS

dates stems from clean laboratory protocols, which minimize the magnitude and

uncertainty of the laboratory blank correction, stable isotope beams with per mil



level isotopic fractionation, which minimize measurement uncertainties, and well-

characterized isotopic tracers, which leverage the ability of the TIMS to accurately

measure isotope ratios. The accuracy of the most common geochronometer, zircon, is

greatly enhanced by the chemical abrasion method, or CA-TIMS (Mattinson, 2005a),

which minimizes or eliminates any correction for loss of Pb.

The last decade of developments in mass spectrometry, clean laboratory protocols,

and pre-treatment of zircons has increased measurement precision and decreased the

magnitude of corrections for common Pb (Pbc) and open system behavior. However,

the algorithms presently used for U-Pb data reduction and uncertainty propagation

still maintain many simplifications and omissions better suited to past datasets. Fur-

thermore, as random sources of uncertainty, such as ion counting statistics, have been

reduced, systematic uncertainties such as calibration of the isotopic tracer have come

to dominate the overall uncertainty budget. Thus, the quality of data has outstripped

the algorithms for data reduction.

Several recent inter-laboratory comparisons between established ID-TIMS U-Pb

geochronology labs have revealed statistically significant discrepancies in measure-

ments of the same samples. These differences likely arise from the now dominant sys-

tematic uncertainties, and represent a significant impediment to data inter-comparison

in collaborative science. In order to achieve the external reproducibility required by,

for example timescale calibration, a common framework that transforms raw data into

geological interpretation and correctly propagates systematic uncertainties is critical.

The geochronology community would be well served by agreeing upon and adopt-

ing a universally accepted data reduction and uncertainty propagation algorithm for

publishing and archiving data.

Rather than modifying notable past data reduction and uncertainty propagation

algorithms (e.g., Ludwig, 1980; Roddick, 1987; Schmitz and Schoene, 2007), this con-

tribution re-derives the governing equations that transform the raw data and inputs

for U-Pb ID-TIMS geochronology into U-Pb and Pb-Pb dates. The equations support

dating U-bearing phases with and without initial common Pb, use of several mixed

U-Pb tracers, and include corrections for initial daughter isotope disequilibrium and



for time-varying instrumental parameters like isotopic fractionation.

A novel algorithm for propagating the input uncertainties precludes neglecting or

simplifying terms in the complicated expressions for the uncertainty of U-Pb dates,

thus incorporating all known sources of error. Utilizing matrices of covariance terms

and partial derivatives, the uncertainty propagation algorithm also determines the

statistical relationships between the U-Pb and Pb-Pb dates and is capable of break-

ing down the uncertainty contributions from individual sources. Contributions to the

combined uncertainty from random and systematic components can then be prop-

agated separately for each analysis, including only those systematic uncertainties

necessary to compare datasets. This algorithm is extensible, so that it can accom-

modate future improvements in analytical methods and the uncertainty correlations

arising from tracer calibrations or inter-calibrated U decay constants.

Data reduction and uncertainty propagation algorithms are packaged in the open-

source, publicly distributed program U-PbRedux, which includes a laboratory work-

flow manager and an interactive graphical user interface that performs statistical

calculations and plotting (Bowring et al., 2011). U-PbRedux is also capable of ex-

porting all of the calculated dates, interpretations, and supporting data to an online

database, then downloading datasets for further interpretation and compilation with

new data from multiple users. Community adoption of a common, transparent al-

gorithm like the one in U-Pb-Redux would ensure that data from different users in

different labs can be compared and combined.

2.2 U-Pb Data Reduction

A number of corrections and calculations are required to transform measured isotopic

ratios and lab parameters into meaningful isotopic dates, as illustrated in Figure 2-1.

If isobaric interferences are present, they must be measured and subtracted before

each isotope ratio is corrected for instrumental mass fractionation, or mass bias,

caused by lighter isotopes evaporating and ionizing more easily than heavier isotopes.

The numerator and denominator of a measured, corrected isotope ratio then repre-



sent mixtures of multiple components: the parent or radiogenic daughter isotope;

the isotopic tracer used; common Pb and U added during laboratory procedures,

known as laboratory blank; and if present, initial common Pb incorporated during

crystallization of the phase (Figure 2-2).

There are three ways to calculate isotopic dates from fractionation- and interference-

corrected ratios. If the isotopic composition (IC) of the common Pb components are

known, they may be subtracted along with the tracer contribution to directly de-

termine radiogenic isotope ratios; along with appropriate decay constants, these de-

termine the isotopic date. Alternatively, after subtracting the estimated laboratory

blank and isotopic tracer contributions, the resulting isotope ratios may represent

variable mixtures of a single initial common Pb isotopic composition and an amount

of radiogenic Pb proportional to the amount of parent isotope present. Assuming a

closed system, both the sample date and the isotopic composition of the initial com-

mon Pb can be calculated using an isochron technique. Finally, a linear regression

through discordant U-Pb analyses can be extrapolated to concordia intercepts that

may be interpreted in terms of a single episode of open system behavior.

This section explores the inputs required and the mechanism used for accurate U-

Pb data reduction. Text accompanying each equation in the data reduction algorithm

explains its applicability and purpose.

2.2.1 Inputs

A weighted mean, isochron, or concordia intercept date is calculated from a number

of paired U and Pb analyses, here termed 'fractions' (Bowring et al., 2011). Examples

include single mineral grains or grain fragments, as well as a bulk leach or a whole rock

analysis. Between twenty and forty separate input variables are required to calculate

an isotopic date for each fraction, and each is described below. These inputs, as well

as the symbols used to represent them in the following data reduction algorithm, are

listed in Table 2.1, Table 2.2, and Table 2.3.

All data must be reduced with a self-consistent set of physical constants, such as

decay constants and atomic masses. Decay constants used for isotopic date calcu-



lation and disequilibrium correction include those for 2 3 1Pa, 230Th, 2 3 2Th, 2 3 5U, and

238 U. The atomic masses of the isotopes, which are the only inputs not assigned an

uncertainty, are used to convert between masses and moles of elements or isotopes.

An isotopic tracer is a mixture of well-determined quantities of enriched isotopes.

The equations presented here apply to the most commonly used isotopic tracers for

U-Pb ID-TIMS geochronology, which are enriched in either 2 0 5Pb or both 2 0 2 Pb and
2 0 5Pb, as well as either 2 3 5U, both 2 3 3U and 2 35U, or both 2 3 3 U and 2 3 6U. In addition

to the enriched isotopes, tracer solutions inevitably contain minor amounts of other

naturally occurring isotopes, whose proportions must be known for full characteriza-

tion of the U and Pb IC of the tracer. Finally, isotope dilution calculations utilize

the concentrations of the artificial Pb and U isotopes (Table 2.2).

Fractions analyzed on the same mass spectrometer with the same laboratory pro-

cedures will have additional parameters in common. For elements with at least two

enriched isotopes present in the tracer, isotopic fractionation during each run can be

calculated either on average or point-by-point by comparing the known ratio to the

measured ratio (see Sections 2.2.2, 2.2.2, and 2.2.2). However, if only one enriched

isotope is present (e.g. a single 2 0 5Pb or 2 3 5U tracer), the magnitude and variability of

mass-dependent fractionation must be assessed by repeated analyses of a standard for

input to data reduction. A linear fractionation law is used here for ID-TIMS analyses,

which is virtually indistinguishable from an exponential or power law correction at

low (ca. 0.1% per u) magnitudes of isotopic fractionation.

Two methods to allocate common Pb are implemented in U-PbRedux. The first

assumes that all common Pb (Pbc) in the analysis is laboratory blank. This assump-

tion is justified when total procedural blank measurements are the same magnitude

as the total common Pb measurements of analyses, as demonstrated for chemically

abraded zircon (e.g. Davydov et al. (2010)). The laboratory blank isotopic composi-

tion should be measured for each sample preparation procedure (e.g., HCl- vs. HBr-

based anion exchange chemistry), then subtracted from each analysis, as described in

Sections 2.2.2 and 2.2.2.

When the dated phase contains initial common Pb, its IC can be determined



in one of three ways. With no a priori knowledge, a terrestrial Pb ore model like

that of Stacey and Kramers (1975) or Cumming and Richards (1975) can be used to

estimate its IC, using the approximate age of the sample. Leaching experiments on co-

magmatic low-U phases such as alkali feldspar, if present, can precisely determine the

initial common Pb IC (Housh and Bowring, 1991). Finally, if several fractions formed

closed systems at the same time, share the same initial Pb isotopic composition, and

remained closed systems until analysis, then an isochron approach may be used to

solve for both their initial common Pb IC and date simultaneously.

Several additional parameters are needed to reduce U data (Table 2.3). Unless

it has been determined independently, the user must specify the 2 3 8U/ 2 3 5U ratio of

the sample. Canonically, this value has been accepted as 137.88 (Steiger and Jager,

1977), but recent studies have shown that it may vary significantly in nature (Stirling

et al., 2007; Weyer et al., 2008; Brennecka et al., 2010). The mass and the 2 3 8 U/ 2 3 5U

ratio of the U blank are also necessary. Finally, if the U is measured as a UO+ species

with a mixed 2 3 3 U- 2 3 5U tracer, the 180/160 ratio of the uranium oxide is used to

correct for the isobaric interferences of 233U160180 or 233U160 180 on 23 5U1601 60.

Initial isotopic disequilibrium in either the 2 38 U or 2 3 5U decay chains can result in

systematic errors due to excess or deficit radiogenic daughter. In U-Pb geochronology,

it is often assumed that the magma from which the dated phase crystallized was close

to secular equilibrium. As the phase crystallizes, it may preferentially incorporate

or exclude an intermediate daughter element from the 2 3 8 U or 2 3 5U decay chain. For

instance, monazite preferentially incorporates 23 0Th in the 2 3 8 U decay chain (Schsrer,

1984), while zircon excludes it (Mattinson, 1973), resulting in enrichment or deple-

tion in 20 6Pb, respectively. The magnitude of the disequilibrium correction is modeled

using the 2 0sPb content of a mineral to determine its Th/U ratio, then comparing

to a user-input Th/U ratio of the magma. Another long-lived intermediate daughter

isotope is 2 3 1Pa, in the 2 3 5U decay chain. Because there is no abundant long-lived Pa

isotope, the initial 231Pa/ 2 3 5U activity ratio or the ratio of Pa and U distribution coef-

ficients must be input by the user to make this correction, described in Appendix 2.8.

Although multiple analyses may share many of the above parameters, each will



have a unique set of measured Pb and U ratios. The measured ratios are the same

as those needed for tracer characterization: the ratio of each naturally occurring

isotope to a tracer isotope, and if multiple enriched isotopes are present, their ratio

to one another (Table 2.1). The mass of tracer solution added to the analysis before

measurement is also required to calculate the molar quantities of the sample and

tracer isotopes.

2.2.2 Data Reduction

The algorithm that transforms the input parameters into isotopic dates can be broken

down into three stages: Pb calculations, U calculations, and isotopic date determi-

nation. Each category entails calculation of multiple intermediate parameters, and

the algorithm depends upon the tracer used and whether or not initial common Pb

is present. Figure 2-1 illustrates the data reduction algorithm as a flow chart, with

numbered ovals corresponding to the text section where each calculation appears.

Pb calculations

The Pb calculations are detailed in the top left panel of Figure 2-1 and the ovals

contain section references to the text that follows.

Tracer

Isotope dilution uses a known quantity of a synthetic tracer isotope to determine

the unknown amount of sample present. 2osPb is ubiquitously used as the artificially

enriched Pb isotope, and its abundance can be calculated from the measured mass of

the tracer and its known concentration of 2 0 Pb.

moles (2 05 Pb)t = conc( 205 Pb)tr masstr (2.1)

If a 2 02 Pb-20 5Pb tracer is used, the linear isotopic fractionation factor c Pb is pro-



portional to the difference between the measured and true 2 0 2Pb/ 2 0 Pb ratios.

1 [ - ( 202Pb> /( 202Pb 1aPb 205 Pb) 205Pb) m 2eas2

If a tracer containing only 2 1 5Pb is used, then aPb must be determined from repeated

measurements of an isotopic standard, such as NBS981 or NBS982, or from other

analyses with the 2 0 2Pb-2 0 5Pb tracer.

Because 2 0 4 Pb is has no radiogenic component, the fractionation-corrected 2 0 4Pb/ 20 5Pb

ratio can be used to determine the mass of common Pb (Pbc). Figure 2-2 illustrates

the relationship between sample Pb components.

2Pb ) 20 Pb)m - aPb) (2.3)
P fc mbeas

Laboratory blank and initial common Pb

If initial common Pb is present, then the 2 0 4Pb in the analysis must be apportioned

between tracer, laboratory blank, and initial common Pb contributions. These rel-

ative contributions are illustrated in Figure 2-2a. When the isotopic composition of

the initial common Pb has not been or cannot be measured directly, a popular alter-

native, albeit imperfect, is to use a Pb ore evolution model such as that of Stacey

and Kramers (1975), which is reproduced in Appendix 2.8.

When initial common Pb is present, the total common Pb is apportioned by

assuming the mass of the laboratory Pb blank, usually an average of several con-

temporaneous total procedural blank measurements. To calculate the moles of each

isotope present from its mass and isotopic composition, it is helpful to first calculate

the grams of laboratory Pb blank per mole of 21 4Pb in the blank:

grams(Pb) grams(204Pb) ( 206 Pb)N grams( 206 Pb)
mole( 204Pb)] bi mole( 204 Pb) 204Pb Ib iC( 20 6 Pb)

(rPb)b grams(2O7Pb) (208Pb) grams(208Pb) (2.4)
204 Pb mole(207Pb) 204Pb mole(208Pb)

29



The moles of 2 04Pb in the laboratory blank can now be determined from the blank

mass input by the user,

~204 b /[s l grams(Pb) ~moles(Pb)bl = ass(Pb) mole( 204Pb)_ I
(2.5)

and the moles 2 0 6Pb, 2 0 7Pb, and 208Pb

(2.5) and the Pb blank IC.

moles( 2 06 Pb) bl

moles( 2 0 7Pb) bl

in the laboratory blank are computed using

-0 *mass(Pb)bl
204 p /' bl

grams(Pb)
mole( 204 Pb)I bi

( 207 Pb )- mass(Pb)bl204 
bib

I grams(Pb)
mole( 204 Pb) _ bi

(2.6)

(2.7)

. mass(Pb)bl

moles( 208 Pb)bl = [a (bl (2.8)
grams(Pb)

mole(204Pb)] bi

The total molar quantity of 2 0 4Pb from common Pb, composed of both initial

common Pb and laboratory blank, is the total moles of 2 0 4 Pb analyzed minus the

contribution from the tracer.

'204\ '205 br 204Pb ( 204Pbmoles (20Pb) - moles (Pb), 2 0 5 Pb 2 0 5Pb
- b )fc P tr-

(2.9)

Because the total common Pb is composed of laboratory blank Pb and initial Pbc,

the additional 2 04 Pbc in excess of the laboratory blank is assumed to be initial Pbc.

moles (204 Pb) = moles (204Pb)t - moles 204Pb) (2.10)

The initial Pbc contributions to other Pb isotopes can be calculated from the

initial 2 04 Pbc using the initial common Pb IC determined by the user or from a



model, such as equations (2.100) to (2.105).

moles (206 Pb) cor=

moles (207 Pb) cor=

moles (2 0 8 Pb) cor=

(2 6 PbJ rnoles (204 Pb)COM206 P b) O

204 Pb -moles( 204Pb)

204Pb)I 
cor20 8 Pb -moles( 20 4 Pb)

204 Pb)COr -crn

Laboratory blank, no initial common Pb

When the dated phase incorporates no initial common Pb, the moles of 204 Pb in the

laboratory blank can be expressed as the total moles of 2 04 Pb in the analysis minus

any contribution from the tracer (Figure 2-2b). The moles of 204Pb in the laboratory

blank, along with its average isotopic composition, are then used to calculate the

moles of 2 01Pb, 207Pb, and 2 0 8Pb in the laboratory blank.

moles (204 Pb)bl moles (20 5Pb)t.

moles( 2 06 Pb)bl moles (2 05 Pb)t.

moles (20 7Pb)bl moles (2 0 5Pb)t-

moles (20 8 Pb)bl moles (205Pb)t.

20 4 Pb 204 Pb
205~ 205Pb Jfc Pb tr(206 Pb (204 Pb f_( 204 Pb 1
OPb)bl[ kPb/fc k\0 PbtrJ(207 Pb> ( 20 4 Pb~c ( 204 Pb~
2 Pb )61l K 0 Pb /f 0 Pb ,/tr(208 Pb~ [ 204 Pb~c ( 204 Pb~

204 b/b[K 205 b 205 b ]

-b -6 PbP

The total mass of laboratory blank Pb, frequently reported in data tables, should be

calculated from the moles of Pb isotopes in the blank and their gram-atomic masses.

Radiogenic and sample Pb

The tracer IC, along with the moles of laboratory blank and initial Pbc, provide

enough information to determine the radiogenic components of 2 0oPb, 2 0 7Pb, and
20 8Pb in the analysis. First, the measured ratios of Pb isotopes relative to 2 05Pb

in the tracer are fractionation corrected, and the tracer contribution is subtracted.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)



Multiplying this by the moles of 2osPb in the tracer gives the molar quantity of each

Pb isotope in the sample, from which the Pb blank and initial Pbc components are

subtracted.

moles (206 Pb)r =

moles (207 Pb)rad =

moles (208 Pb)rd =

moles (20 5Pb), [- mea - (1 + ar) - ( 0 P[05 206 Pb ~ 206 Pb /
- moles( 2 0 6 Pb) bl - noles( 2 06 Pb) cor

ml(205 Pb)trE 207 Pb (I+2~)-207 Pbmoles (2 205bPb)-me + 2 aPb) - tr

- mole s( 2 07Pb) b - moles( 2 0 7Pb) corn

(25 ( 2 08 Pb (I + 3acb) ( 2 08 Pb "
moles (25 Pb) . m 20ea5 1 5Pb +tr3

- moles (2 0
8Pb) bl - moles (20 8Pb) cor

If an isochron technique is employed, the initial Pbc isotopic composition for a

group of fractions is calculated or constrained at the same time as their date. Only

the common Pb from the laboratory blank and tracer should be subtracted in this

case, leaving the mass of each isotope of Pb from the sample.

moles (206 Pb), 1 moles(2 osPb), 2 Pb -e- (1 + aPb) -205Pb )trl
- moles( 20 6 Pb)bl

moles( 207Pb), 1 =

moles (208Pb),,, =

'205\ t ( 2 07 Pb'moles(22Pb). 05Pb a

- moles (20 7 Pb) bl

moles (20
2Pb), - (2  

ea-

- moles (208 Pb)bl

(1 + 2apb) -

(1 + 3aPb) -

U calculations

The U calculations are detailed in the bottom left panel of Figure 2-1 and the ovals

contain section references to the text that follows.

(2.18)

(2.19)

(2.20)

(2.21)

(207 Pb >205 Pb JtrJ

(208 Pb >
20 bUr

(2.22)

(2.23)



Oxide correction

Uranium is commonly measured by TIMS in two forms, as a metal (U+) species, or

as an oxide (UO). Although the oxide species ionizes more efficiently, it introduces

possible isobaric interferences. About 99.8% of oxygen is 160 and 0.2% is 10. Using a

mixed 2 3 3 U- 2 3 5U tracer, the "0 creates a significant isobaric interference: 2 33 U180 160

(mass = 267) on 2 3 5U160 160 (mass = 267). Because both U180 160 and U160180

permutations are possible, the 2 33 U0 2 with one "0 will be approximately (0.2%

180 abundance) x (2 UO 2 permutations) = 0.4% as abundant as 2 3 3 UI 60 160. The

precise correction depends on the 180/160 in the UO+ species, which can be measured

during the analysis on high-intensity ion beams, or inferred for smaller samples from

the mean value of the larger runs.

Because the isobaric interference is underneath the 235U peak, both the measured
2 3 8U/ 2 3 5U oxide (mass 270/267) and 2 3 3 U/ 2 3 5U oxide (mass 265/267) ratios must be

corrected.
___ (265UO2

2 3 3 U 2 67U0 2 Imcas
235U oC 1 - 2 (180o ( 2 5U02 (224

160o 2 7  
2 /meas

238U 27U02 )meas
235U oc 1 - 2 (10 ( 2 U0 2 (2

16oUox 267UO2/meas

U blank and tracer masses

Regardless of the tracer used, the mass of both the U blank and tracer contributions

are calculated from their input masses and isotopic compositions.

o (235 mass(U)bl (2.26)
U)bl grams(23 5U) (238U> grams( 238 U)

mole(235U) ±k.235Ufb, mole(238 U)

moles( 238U) - 23 8 U)- moles (235U)bl (2.27)

moles (2 3 5U), = conc( 2 3 5 U), -masstr (2.28)



238u) = 23U) -moles (23 5 U), (2.29)moles )r = 235u r4

If the tracer contains the synthetic isotope 233U, then its molar quantity must also

be calculated before determining the radiogenic components of the sample.

moles (233U) ( 233U) moles (mU), (2.30)

Simultaneous fractionation correction and isotope dilution:

A: Fractionation correction and isotope dilution for a mixed 2 3 3U- 23 5U

tracer

Using a mixed 23 3U- 23 5U tracer, such as the EARTHTIME-distributed 'ET535 tracer',

requires simultaneous fractionation correction and isotope dilution, and blank and

tracer subtraction calculations. This yields an expression for both the amount of

parent U present and the linear fractionation factor au.

To begin, the contributions to the three measured U isotopes are (Figure 2-2)

moles (23 3 U), = moles (23 3 U)

moles(2 35 u )to moles (2 3 5 u )+tr moles( 23 5U) i + moles (235 U ) sp

moles (238U)o = moles (238U)tr + moles( 238U)bl + moles (238 U) sp

(2.31)

(2.32)

(2.33)

After fractionation correction, the oxide-corrected ratios in (2.24) and (2.25) or

the 2 33U/ 2 35 U and 2 3 8U/ 2 35 U ratios measured as a metal represent the molar ratios of

the quantities in equations (2.31) and (2.33) to those in (2.32).

-33 (1 - 2 a u) =238u \
238 - (1 + 3au) =23 u )OC

moles(23 3U)tr

moles(23 5U)tr + moles(235 U), + moles( 235 U) (.

moles( 238 U)tr + moles(238 U)b1 + moles( 238 U) (3
(2.35)

moles(235U) t + moles(235 U)b1 + moles(235 U)SP

The two equations (2.34) and (2.35) have three unknowns, au and the moles of
235U and 2 3 8 U. The rest of the terms are defined in equations (2.26) to (2.30). To



eliminate a variable, the moles of 238U can be expressed as the moles of 23 5U multiplied

by the 23 8U/ 2 3 5U of the sample. Making this substitution and solving the system of

equations for the moles of 2 3 5U in the sample and au yields

235u (238U ) 233U 0.mls23moles(235U) = 3 23iU /(3U) moles(233U)

-5 ( -8u) . (moles (235u) b + moles(235U )tr)

+ 2 moles (238U), + moles (2381U) )1
5( 238U 2 (238U (2.36)

oc spi

The moles of 2 3 8U in the sample can now be determined using the 2 3 8U/ 2 3 5U ratio

of the sample.

238u 235 u (~238U),1(-7moles (238 U) - moles (235U) (n3) (2.37)

Although the solution to the system of equations in (2.34) and (2.35) yields an

expression for au, a simpler expression is obtained by substituting the moles of 2 3 5U

in the sample derived in (2.36) into equation (2.34), then solving for au.

/ =-moles 233u [ 233 uT (moles (235u) +moles (23 5U), +moles(235 U),12 -tr j(2k). ~±moles tr b3ui

(2.38)

B: Fractionation correction and isotope dilution for a single 2 3 5U tracer

As with Pb, fractionation for a single-isotope tracer must be determined by repeated

analyses of a standard. For U isotope measurements by TIMS, a single 2 3 5U tracer is

most common, with isotopic fractionation determined by repeated analysis of CRM

U500. Only the 2 3 8U/ 2 3 5U ratio is measured, no oxide correction is needed, and the

components of 2 3 8 U and 2 3 5U are given by equation (2.35). Representing the the

sample 2 3 8 U as the moles of 2 3 5U multiplied by the 2 3 8 U/ 2 3 5U of the sample, the

resulting equation may be solved for the moles of 2 3 5U.



moles( 238 U)bl + moles( 238U)r - e 3au) (moles(235U)bl + moles(235U)t)

238u (1 + 3au) - 238u

25 meas (25 spl

The moles of 2 3 8U is calculated with equation (2.37).

C: Fractionation correction and isotope dilution for a mixed 2 3 3 U- 2 3 6U

tracer

Using a mixed 2 3 3 U- 2 3 6 U tracer, the magnitude of isotopic fractionation au can be

determined for each ratio measured, or on the mean of the measured ratios.

S_ (233U 233 U 1au = 1 - 6 t. 28 ma (2.40)3 ~ 23 6 uJ ktr 36u ,/meas ]

The moles of 2 3 6U in the tracer is equal to the concentration of 2 3 6U in the tracer

multiplied by the measured tracer mass,

moles( 2 36 U)t = conc( 2 36 U), - masst, (2.41)

If the U is analyzed as an oxide species, then the measured 2 3 8U/ 2 36 U requires

oxide correction for the isobaric interference of 2 3 6U180 160 (mass 270) on 2 3 8U 160 160

(mass 270), analogous to the case presented in Section 2.2.2 for a 2 3 3 U- 2 3 5U tracer.

Neglecting the insignificant isobaric interference of 2 3 5U170 160 on 2 3 6U160 160 because

the tracer and sample 2 3 5U and the 170 abundances are all relatively small, the oxide-

corrected uranium ratios become

233u ) 3U( )meas (2.42)

mnoles (23 U)S, = (2.39)



238u 270 UO2  2 (18 (2.43)
236u oc 268U2 /meas 16 0 J

where the result of equation (2.42) can be used to calculate the magnitude of isotopic

fractionation in equation (2.40).

Using the 2 38 U/ 2 3 6 U measured as a metal or oxide-corrected in equation (2.43)

and solving for the moles of 2 3 8 U in the sample yields

23u oes(23u 238u 238umoles(2 3 8 U) moles (2 3 6 U [236U (1 + 2 a) - 236um\ u eas U tr
- moles( 238U) b

(2.44)

where the moles of 2 3 8 U in the blank is calculated with equation (2.27).

The moles of 2 3 5U in the sample is then determined using the 2 3 8U/ 2 35 U of the

sample,

moles( 235u spl - moles (238U) P1 238u (2.45)

Calculation of Isotopic Ratios

Radiogenic isotope ratios, whose components have been corrected for fractionation

and interferences as well as blank and tracer contributions, are used to calculate

radiogenic isotope dates. They are also used for plotting conventional (Wetherill)

and Tera-Wasserburg-type concordia diagrams.

207Pb
206 Pb rad

206p P
238u )rad

2o7Pb

235u )raa

moles(207 Pb),ad

moles( 206 Pb)rad

moles(206Pb)rad

noles(238 U),l

moles (207Pb),,
moles( 23 U),l

(2.46)

(2.47)

(2.48)



Isotopic Dates

A radiogenic isotope date for either the 238U or 23 U system can be derived by solving

the isotopic decay equation, D/P = et - 1 for t, the time elapsed, where D/P is the

present radiogenic daughter to parent ratio.

t26/238 = log 206Pb + (2.49)
A238  u rad

t2A7/235 = [ 1g 23 5 + (2.50)
A235 23u ,2a

To calculate a 2 0 7 Pb/ 2 06Pb date, it is not possible to solve

207 Pb 238u exp (A235 t 2o7 / 206) - 1 (2.51)206 Pb Jrad 235u , exp (A238 -t 207/ 206) - 1

directly for t. Instead, Newton's Method, an iterative numerical solution, is used by

U-Pb-Redux.

Equations to correct the isotopic dates for initial daughter isotope disequilibrium

are derived in Appendix 2.8.

Isochron Ratios and Dates

Alternatively, an isochron approach uses sample isotope ratios that incorporate an

initial Pbc component (equations 2.21 to 2.23) to determine both the isotopic date

and the common Pb IC. Both two-axis plots, common in meteorite and carbonate

U-Pb studies (e.g., Patterson, 1956; Moorbath et al., 1987), and three axis plots

(Ludwig, 1998a) that make optimum use of both U decay schemes are used.

Isotopic ratios popularly used in isochron calculations include 2 0 7 Pb/ 2 0 6Pb, 2 04 Pb/ 2 0 6 Pb,
238U/ 206Pb, 204Pb/ 207Pb, 238U/ 207Pb, 235U/ 207Pb, 238U/ 204Pb, and 235U/ 204Pb, which

may be calculated using the equations for sample molar quantities above.



2.3 Uncertainty Propagation Principles

In the terminology of metrology, uncertainty and error have different meanings. The

uncertainty of a measured parameter refers to the dispersion of the values that could

reasonably be attributed to it (BIPM et al., 2008b), while an error is the difference

between the true (but unknown) value and the measured value.

Uncertainty propagation transforms a set of several inputs, with their associated

uncertainties, into the uncertainties in one or more outputs. This transformation

depends upon the values and uncertainties of the inputs as well as the sensitivity of the

output(s) to them. There are several algorithms that can perform this transformation,

but the most popular are linear uncertainty propagation and the Monte Carlo method

(MCM).

Linear uncertainty propagation approximates functions in the neighborhood of

their observed value by their derivative, and uses the observed values and uncertain-

ties, assumed to be normally distributed, to find the maximum liklihood estimate of

the output value. Instead of making these assumptions, the MCM uses many simula-

tions of the uncertain value of each input to propagate their probability distribution

through the data reduction equations, directly determining the expected distribution

of the output. Although the MCM makes fewer assumptions, it requires 105 to 106

iterations and can thus be slow to implement for large datasets (BIPM et al., 2008a).

For precisely measured data, the linear approximation returns the same quality re-

sult in significantly less time, as demonstrated in Section 2.6. U-PbRedux uses this

approach in order to reduce large datasets and drive interactive visualizations.

2.3.1 Determining the Uncertainties of Inputs

Uncertainties in ID-TIMS measurements ultimately derive from either mass deter-

minations with a balance (e.g., the mass of the tracer or the masses of the isotopic

reference materials used to make gravimetrically calibrated solutions) or from iso-

tope ratio determinations made with a TIMS. For routine ID-TIMS analyses, mass

determinations contribute only negligibly to the analytical uncertainty budget, and



isotope ratio determinations contribute most. There are three common techniques

for measuring isotope ratios with TIMS: with a static array of Faraday collectors, by

a single ion counting detector such as a Daly or SEM (secondary electron multiplier),

or with a combination of the two, and measurement uncertainty derives from different

sources with each technique.

A fixed array of Faraday collectors at unit mass spacing can be used to measure

very large (>-100pg) Pb* samples and average-size (>~1ng) U samples as either

metal (U+) or oxide (UOf) species. Static measurements using Faraday detectors

have the advantage of measuring all isotopes simultaneously. However, the amplifier

circuits containing large (1011 or 1012 Q) resistors that are used to measure the ion

beam supply some small but constant Johnson-Nyquist (thermal) noise to each sig-

nal, in addition to the 'shot' noise proportional to the ion beam intensity. Each of

these uncertainty contributions manifests itself in the baseline-corrected isotopic ratio

measurements. For sufficiently large, stable signals, successive static Faraday isotope

ratio measurements should approximate multivariate normal distributions, and their

mean and uncertainty can be directly input into uncertainty propagation algorithms.

The ion counter, by converting a single ion beam at a time into an electron mul-

tiplier or photomultiplier signal, is not subject to the Johnson-Nyquist noise of large

resistors. However, because it is used to measure smaller (<-0.2 pA) ion beams, the

signal to noise ratio is generally lower due to shot noise. Several effects specific to ion

counters also contribute to the isotope ratio uncertainty, including dark noise (essen-

tially Johnson-Nyquist noise in the electron/photomultiplier circuit) and dead time,

or the inability to resolve closely spaced ion arrivals. While the dark noise can be

averaged out with a sufficiently long baseline determination, the dead time must be

measured and monitored closely to ensure the accuracy of ratios significantly greater

or less than one (e.g. 2 0 6Pb/ 204 Pb for a radiogenic sample). Single collector mea-

surements are subject to further uncertainty from interpolation between successive

ion beam measurements as the ion beam grows and decays with time (e.g., Ludwig,

2009).

In order to measure small (<0.2 pA or ~ 106 cps) 2 04 Pb signals on an ion



counter concurrent with static measurements of 2 0 5Pb to 2 0sPb on Faraday detec-

tors, a 'FaraDaly' routine is employed. The routine consists of two cycles, the first

with 2 14 Pb in the ion counter and 20 5Pb through 20sPb beams in the high mass Fara-

day detectors, alternating with a second cycle with 21 5Pb in the ion counter and 2 0 1Pb

to 2 0 8Pb beams in the Faraday detectors. The relative Faraday/ion counter gain for

each cycle can be derived from the 2 0 6Pb/ 2 0 5Pb ratio measured on the Faradays in

the first cycle vs. the 2 0 6Pb/ 20 5Pb ratio measured in the second cycle, with the 2 0 5Pb

beam on the ion counter; ratios involving 2 04Pb from the first cycle can then be

corrected for this relative gain. Because the number of measured isotope ratios to
2 0 4 Pb is half that of the other isotopes, conventional covariance estimation techniques

(see Section 2.3.3) are invalid, and an expectation-maximization algorithm must be

employed (Dempster et al., 1977).

2.3.2 Uncertainty Propagation Equation

The linear uncertainty propagation equation can be derived from the Taylor series

expansion of a function f(x) around the point x = ,

f(z + AX) = f(r) + Ax f'(t) + Ax 2 2! + - (2.52)
2!

the deviation of the function from its value at x = x is expressed as the sum of the

terms after f(z), beginning with the first-order term Ax f'(x). For a deviation of

Ax = o near x = x, a first-order approximation of the average deviation of y = f(x)

is
dy

O y y eX, (2.53)
do

where 4 is evaluated at x = x. Squaring both sides yields the conventional lin-dx

ear uncertainty propagation equation for a function of a single variable, illustrated

geometrically in Figure 2-3:

The expected value of Ax 2 , or (X, - t)2 for a series of measurements x about



the mean 7 is the variance of x, denoted o. Likewise, a is the resulting square of

the average deviation in y = f(x) due to the scatter in the measurements xi. The

derivative is evaluated at x = T. In dropping the higher-order terms from the Taylor

series, beginning with the Ax 2 term, this approach assumes that the uncertainty in

x is relatively small compared to the curvature of f(x), or that the function is locally

linear at the scale of ax (see Figure 2-3).

Linear uncertainty propagation for multiple inputs requires the multivariate form

of the Taylor series, here expressed for two variables z = f(x, y),

f (z + Ax, 9 + Ay) = f (z, 9) (2.55)

+ [AX fx (T, ) + Ay fV (zT )]

+ 2![Ax2f2(t, y) + 2AxAy fx y(xT, ) + Ay 2f f(y, Y).

where fx and f22 are the first and second derivatives of f(x, y) with respect to x,

respectively. The higher-order terms may again be dropped, assuming that uncer-

tainties are small and the differentiated functions are locally linear at the scale the

uncertainties of their inputs. The linear term in equation (2.56) again represents the

deviation from the measured value z = f(x, y) encountered at a distance (Ax, Ay)

from (t, g). Squaring the second term on the right hand side of equation (2.56) yields

Az2  ~Ax 2f 2 + 2Ax Ay f2(z, y) fy (2, g) (2.56)

+ Ay 2fy(_t, 9)2 .

Thus the expression for the variance of a function of two variables introduces a new

term, the expected value of AxAy, or (xi -t)(yi -g), which is known as the covariance

between x and y and denoted a,,. Writing out the derivatives in equation (2.57),

which are evaluated at (x, y) = (., g), and making the above substitutions yields the

conventional linear uncertainty propagation equation:

(dz 2  dz dz dz

+22, = (dz + 2+ d . (2.57)T \dx} X dx dy Y dy

42



2.3.3 Covariance and Correlation

When two uncertainties are correlated, both are dependent on a common parameter

or effect. One example of correlated uncertainties is between two measured isotope

ratios with the same isotope in the denominator, such as the measured 2 01Pb/ 204 Pb

and 211Pb/ 204 Pb of a radiogenic sample or between the 201Pb/ 205Pb and 2 0 7Pb/ 20 5Pb

of an under-spiked sample. In the first case, the uncertainty in the measurement of

the less abundant 204Pb denominator isotope is large, and the uncertainties of the

two ratios will be highly correlated because most of the uncertainty in each isotope

ratio derives from a common source, the 204Pb measurement. If the uncertainty in

the denominator isotope is relatively small compared to those in the numerators, such

as the second case above, then their uncertainties are less correlated, since most of

the uncertainty in each ratio is contributed by the independent measurements of the

numerator isotopes, the less abundant 20 6Pb and 207Pb.

In both cases above, the correlation between a pair of measured isotope ratios can

be determined empirically from the discrete measured data. The covariance is defined

as the expected value of AxAy, or (x - T)(y - g) above. An unbiased estimate

of the covariance, c, can be calculated from a discrete sample of n independent

measurements of x and y as

2 1258J = S (X - z) (yi -y) (2.58)
i=1

The correlation coefficient pxy is commonly cited because it does not depend on the

magnitude of the uncertainty of x or y. It has a range of [-1, 1] inclusive and can be

calculated from the covariance term above, PXy = Q7y/(Jx oxy).

If discreet input data are not available, the covariance between two measured iso-

tope ratios can be estimated using the uncertainty of a third isotope ratio that is

the quotient of the first two (Schmitz and Schoene, 2007). For instance, the covari-

ance between the measured 20 6Pb/ 204 Pb and 207 Pb/ 204 Pb ratios could be estimated

using their uncertainties and the uncertainty in the 20 6Pb/ 207 Pb ratios from the same

dataset. This approach assumes that the mean and standard error of all three ratios



are calculated from the same n measurements, i.e. that no data have been discarded

one ratio and not another.

Other examples of variables with correlated uncertainties include isotope ratios

or dates that have been subjected to a common correction, such as fractionation

correction or blank and tracer subtraction. For instance, if x and y above are functions

of a set of common variables a, b, ... , then

2 2 Mx 2y dx dy, 2 Y 'dy Ex dy)]+ (-90 ab +o +oC r' +±+...(2.59)S ad-a d-a- Idb db [ da+ db db d

Here, a, b, ... could for instance be the tracer IC and enriched isotope concentrations,

whose uncertainties and covariance structure, a, b, ab2 , ... are input by the user,

and the calculated variables x and y could be the radiogenic 20 6Pb/ 2 3 8 U and 2 0 7Pb/
2 35 U ratios. Because the variables x and y are interchangeable in equation (2.59), the

covariance of x with y is the same as the covariance of y with x: au2 = a .

Equations (2.57) and (2.59) can be expanded for any number of variables and

corresponding uncertainties. However, for each new variable added to equation (2.57),

a new variance term must be added, as well as covariance terms for each new pair of

variables created. The number of covariance terms grows as n 2, so that if 35 inputs and

uncertainties required to reduce U-Pb data, up to 630 terms are required to completely

describe their uncertainty. Furthermore, determining the total derivatives of the

each output with respect to the each input through the complex series of equations

presented in Section 2.2 is a daunting task by hand, but it is required for detailed

linear analysis. The covariance terms and derivatives are most easily combined for

uncertainty propagation by organizing them into covariance and Jacobian matrices,

respectively, and employing linear algebraic techniques.

2.4 Propagating Uncertainty with Matrices

A linear algebraic framework is advantageous for uncertainty propagation because it

efficiently organizes the covariance and derivative terms presented above into matri-



ces. Matrix multiplication is computationally fast, which enables rapid updates as

the analyst explores parameter space in the graphical user interface of U-Pb-Redux.

Derivatives of the intermediate reduction parameters and outputs calculated in equa-

tions (2.2) to (2.51) can be organized into Jacobian matrices (Section 2.4.1) according

to simple rules, a process that can be automated with software (Bowring et al., 2011),

ensuring accuracy in what would be many complex equations expressed longhand.

The variance and covariance structure of the input variables are arranged in a single

covariance matrix (Section 2.4.1), and all other correlation determinations are the

product of straightforward matrix multiplication, so there is no propagation of uncer-

tainty through multiple intermediate formulations. In this way, matrix representation

ensures that covariance terms are carried through the entire uncertainty propagation

calculation, and terms that may become important in the future are never ignored

for simplicity. Finally, covariance and Jacobian matrices can be formulated with a

block structure if analytical, tracer, and/or decay constant uncertainties are consid-

ered independent, so that matrix multiplication is broken down into small, quickly

calculated pieces.

2.4.1 Covariance and Jacobian Matrices

Uncertainty propagation using matrix multiplication utilizes two types of matrices,

covariance matrices and Jacobian matrices. A covariance matrix describes the uncer-

tainties of a set of variables and how they relate to one another. For n variables, it

takes the form
o r 2 a 2 2 - ' n~1 1l In.

072 a2 2
1 2  2 '' - 2n

2 2 2
U1n '2n - - n

Matrix elements in the first row and first column of the covariance matrix relate

to the first variable, elements in the second row or second column to the second

variable, and so on. Terms on the diagonal of the covariance matrix (e.g. a and

0') are variances; the off-diagonal elements are covariance terms. For instance, the



matrix element in the first row and second column is the covariance between the first

and second variable, 22. The covariance matrix is symmetric because o 2 = o1.

Independent, uncorrelated variables have zero covariance.

The other component of linear algebraic uncertainty propagation, a Jacobian ma-

trix, describes a linear transformation from the input parameters to the output vari-

ables. In the context of uncertainty propagation, the Jacobian matrix approximates

the sensitivity of output variables to small changes in their input parameters as the

partial derivative of the function of the output with respect to each input. For a set

of m functions fi to fm of n variables x1 to xv, a Jacobian matrix takes the form

fi 0f2 _fm~

OX Ox1  O x 1

Ofi Of2 Ofm
J1 = 9X2 Ox 2  Ox2

Ofi 0f2 Ofm

OXV, O9xn 09X

Each row of the Jacobian corresponds to an input variable, x1, x 2, ... and each col-

umn an output, fi(x1 , x 2 , .. -), f 2 (X 1 , x 2 , ... ). Every entry in the matrix is the

partial derivative of the column variable with respect to the row variable. If the

function fi is not defined in terms of the input xi, then the value of the partial

derivative Ofi/Bx is zero. These derivatives may be calculated after analytical dif-

ferentiation(e.g., Schmitz and Schoene, 2007; Bowring et al., 2011) or approximated

numerically (e.g., Roddick, 1987; Scaillet, 2000).

The data reduction equations (2.2) to (2.51) in Section 2.2 do not express the

output variables (e.g. the 2 0 6Pb/ 2 3 8 U date) as a lengthy single function of the input

parameters (e.g. the measured 2 0 6Pb/ 2 0 5Pb). The output isotopic dates and ratios are

instead most straightforwardly written in terms of a series of intermediate parameters

(e.g., moles( 2 06 Pb)b1 ), which accomplish the calculation in several steps. However, the

uncertainty propagation algorithm presented in equation (2.57) requires the partial

derivatives of the output z with respect to the inputs x and y.



2.4.2 Calculating the Total Derivative

Because the output isotopic dates and ratios are not defined directly as a function

of the input parameters, their partial derivatives are not defined as well. When

several intermediate steps precede a final output, its total derivative is required for

uncertainty propagation, which incorporates each way the output is contingent upon

the input. For instance, the 2 0 7Pb/ 2 0 6Pb date depends on the measured 2 04 Pb/ 2 0 5Pb in

two ways. The measured 2 04 Pb/ 2 0 5Pb is first fractionation corrected in equation (2.3),

then used to calculate both the moles of 2 06Pb and of 2 01Pb in the laboratory blank

in equations (2.15) and (2.16). The moles of blank of both isotopes are subsequently

subtracted from the measured moles 2 06Pb and 2 07Pb in equations (2.18) and (2.19)

to determine the radiogenic 20 7Pb/ 2 0 6 Pb ratio (equation 2.46) and the 2 0 7 Pb/ 2 0 6 Pb

date (equation 2.51). Thus the uncertainty in the 2 0 7Pb/ 2 0 6Pb date receives two

contributions from the 204Pb/ 205Pb uncertainty - from the moles 20 6Pb and 207Pb.

Both contributions are included in the total derivative.

In a linear algebraic framework, total derivatives are calculated by multiplying

two or more Jacobian matrices. The rightmost matrix in the matrix product contains

partial derivatives of the first set of intermediate parameters with respect to the inputs

that define them. For instance, the first Jacobian matrix could contain the moles of
2 1 5Pb in the tracer (equation 2.1) and the fractionation-corrected 2 0 4 Pb/ 2 0 5Pb ratio

(equation 2.3), which are both defined in terms of input parameters. If this matrix

is left-multiplied by another Jacobian matrix containing the partial derivatives of the

moles of 2 0 6Pb and 2 07Pb in the blank (equations 2.15 and 2.16) with respect to the

moles of 2 0 5Pb in the tracer and the fractionation-corrected 2 04 Pb/ 20 5Pb ratio, the

product will include the total derivative of the moles of 20 6Pb and 2 07Pb in the blank

with respect to the input parameters.

If fi and f2 are functions of the input parameters x1 and x2, and gi and g2 are in

turn functions of fi and f2, then the total derivative of the functions gi and g2 with



respect to x1 and x 2 is the product of two Jacobian matrices, J1 and J2[ dg1  dg2 1~ Of f2 1 F 091 0g2 1
dxi dxi _ Ox 1 Ox 1  Ofi f (2.60)dg1  dg2  Ofi Of2  0g1  09g2

. dx 2  dx 2 . L Ox2  Ox2 . L 0f2 Of2 J

or J J1 J2

The first column of the matrix product J is the total derivative of the output function

gi with respect to each of the input variables x1 and x2 ; the second column contains

the derivatives of g2. Expanding the matrix multiplication for the element in the first

row and column of J reveals

dg1 _891 Bfi 091 0f2
--- = - - + 0(2.61)
dx Ofi Oxi Of2 Ox,

which is the equation for the total derivative of gi with respect to x1.

To propagate uncertainties for a more complex system, matrix Ji of equation (2.60)

can be modified so that it contains rows for n input parameters (X1 , x 2 , .. . xn) and

columns for m intermediate parameters (fi, f2, -.. fin), where those parameters are

expressed as functions of the input parameters. Matrix J 2 must be adjusted as well

to contain m rows for the intermediate parameters in J 1, with p columns for the next

set of intermediate parameters 91, 92, ... go. Further Jacobian matrices J 3, J 4 , ...

can be added until the the final set of output parameters has been reached.

This technique is utilized in U-PbRedux. The partial derivatives of the data

reduction equations in Section 2.2 and Appendix 2.8 are calculated during data re-

duction. These are arranged into approximately ten Jacobian matrices, depending

on the tracer and common Pb correction scheme employed, that start with the input

variables, step through the intermediate variables, and end with the output isotope

ratios and dates. The product is the Jacobian matrix J, a linearized model of the

data reduction equations that contains the total derivatives of the isotopic dates and

ratios in Sections 2.2.2 and 2.2.2 and Appendix 2.8 with respect to the user-input

parameters in Tables 2.2 to 2.1.



2.4.3 Uncertainty Propagation Equation

Using the covariance and Jacobian matrices assembled above, the uncertainty propa-

gation equation for z = f(x, y) (equation 2.57), can be restated as a matrix product,

- [dz 1
2 ~dz dz 2- a- 2 dxO2 = = jTEj (2.62)_dx dy L2 2 dz

XY _ dy .

To calculate the uncertainty and covariance between multiple outputs, the outermost

Jacobian matrix contains a column for each output. The matrix product then yields

the covariance matrix of the output parameters. For example, if w is also a function

of x and y, then by calculating the product

[ dz dw T dz dw
or 2 2 or 2 262

z zw dx dx x xy dx dx (263
2 2dz dw 2 2 zd

azw aw Oxy 9Y _dy dy _L dy dy _

the uncertainty in w, or, and the covariance between z and w, o- 2 fall out.

The covariance matrix E can be expanded for any number of inputs, and the Ja-

cobian matrix J can represent the product of several intermediate Jacobian matrices

J 1 , J 2 , . . . . In this way, uncertainty propagation for a complex system of inputs,

intermediate parameters, and related outputs is represented by a single matrix equa-

tion. Because J contains the total derivatives of the outputs with respect to the

inputs, covariance terms do not need to be calculated in uncertainty propagation ex-

pressions for every intermediate parameter. The intermediate parameters can now be

defined as parameters of interest instead of being formulated to facilitate covariance

calculations. An illustration of the U-Pb uncertainty propagation algorithm with

populated covariance and Jacobian matrices can be found in the Auxiliary Data for

this article.



2.5 Weighted Means

The goal of calculating a weighted mean is to report a single date and uncertainty

that best represents the knowledge accumulated by a set of measurements that are

assumed to represent a single population with normally distributed uncertainties.

Every weighted mean algorithm involves assigning weights, or multipliers which sum

to unity, to the measurements, then summing the weighted data. The arithmetic

mean gives each of n measurements an equal weight of 1/n, but a weighted mean

may assign a unique weight to each datum so that precise data is weighted more

heavily.

2.5.1 Conventional Weighted Mean of Independent Data

For the weighted mean t of n independent measurements ti, ... t, the weights a, .a..

are inversely proportional to the variance of each date, or, ... 2 , so that

2 i=1 0-

where the denominator is used to normalize the sum of the weights. Thus the weighted

mean t is

n = t i =n (2.64)
i i11

This choice of weights minimizes the sum of the squared difference between each date

and the mean, divided by the date's variance,

S t 2  (2.65)

The statistic S has a x 2 distribution with n - 1 degrees of freedom. The quotient

S/(n - 1) is the 'mean square of weighted deviates' (MSWD) (e.g. Wendt and Carl

(1991)), which characterizes the goodness of fit, or how well the weighted mean f

describes the data ti. MSWD values close to one indicate that the scatter in the data

t can be explained by their uncertainties oj. Values much lower or greater than one



may indicate that the uncertainties have been over- or under-estimated, respectively.

Minimizing S, which also minimizes the MSWD and the uncertainty of t, concurrently

maximizes the probability that, given the measurements ti,... t", the mean is f.

The uncertainty of f can be derived using the conventional uncertainty propagation

equation. The derivative of t with respect to a date, tj in equation (2.64) is

if 1

Assuming that the dates t,.... t, have uncorrelated uncertainties, the variance of f,
according to the uncertainty propagation equation (2.57) is

[722. 72] = n [()2/ (i n ))2 0Q]

Combining numerator terms and factoring out a common denominator yields,

n 2] n )2

Finally, dividing out a o term in the numerator gives the form X/X 2 , which simplifies

to

o= 1 . (2.66)

Equations (2.64) and (2.66) assume, however, that each of the measured dates tj

are independent: that none of their uncertainties share a common systematic con-

tribution. Although these equations can be used to propagate random analytical

uncertainties, they cannot assess the systematic contribution of tracer or decay con-

stant uncertainties to a weighted mean date. In the past, systematic errors have been

added in quadrature after equations (2.64) and (2.66) are evaluated with analytical

uncertainties. However, this approach cannot accurately handle several important

scenarios.

First, if a systematic variable affects each analysis differently, it is unclear which



magnitude to add in quadrature. One example is combining analyses with different

ratios of tracer to sample. Because the magnitude of the tracer subtraction is different

for each, the uncertainty contribution from the subtraction is also different. Also, be-

cause the estimated IC of the tracer differs from the true value (within uncertainty),

tracer subtraction will introduce some scatter in the results. If the estimated tracer
206 Pb/ 20 5Pb ratio is greater than, but within uncertainty of, the true 20 6Pb/ 205 Pb ra-

tio, then the moles of radiogenic 20 6Pb in under-spiked analyses will be over-corrected

for the 20 6Pb in the tracer in equation (2.18), and over-spiked analyses will be over-

corrected even further. This scatter, which is introduced by a systematic source,

must be considered along with the scatter from random effects during calculation of

weighted mean statistics, so that it is not interpreted as 'geologic scatter.'

Second, it is unclear how to propagate uncertainty which has both a random com-

ponent and a systematic component with equations (2.64) and (2.66). For instance,

correction for Pb fractionation using a single-isotope Pb tracer is usually performed

by repeatedly analyzing a certified reference material, e.g. NBS981. The random

uncertainty propagated in the fractionation correction is often taken as the long-term

reproducibility of this standard, but the uncertainty also contains a systematic com-

ponent related to the uncertainty in the certified IC of NBS981. The latter cannot be

reduced by repeated analyses, which would occur if this uncertainty were considered

as analytical and included in o in equation (2.66).

The solution to both of the scenarios above is to treat systematic uncertainties as

uncertainty correlations between analyses, yielding a weighted mean, its uncertainty,

and an MSWD that is not artificially deflated by misattributed uncertainties.

2.5.2 The Date Covariance Matrix

As Section 2.3.3 details, correlations arise between calculated values when they rely on

common parameters. In the case of weighted mean U-Pb dates, two large uncertainty

contributions from common parameters are the IC and U/Pb ratio of the tracer, and

the decay constant uncertainties. The covariance matrix for a measured dataset of

isotopic dates can be constructed with each date's variance (1- uncertainty, squared)



on its diagonal. The variance includes uncertainty contributions from both random an

systematic effects. Off-diagonal elements characterize the correlation between pairs

of dates. Along with the numerical dates themselves, the date covariance matrix,

E, can then be used to calculate a generalized weighted mean (Lyons et al., 1988;

Valassi, 2003) that accounts for both random and systematic uncertainties.

The date covariance matrix can be calculated using the linear algebraic methods

presented in Section 2.4.3. The total derivative of each date with respect to each

common variable is calculated when multiplying Jacobian matrices during the uncer-

tainty propagation for each fraction (Section 2.4). For instance in equation (2.60),

the total derivatives for the output variable g1 with respect to the inputs xi, x 2 are

found in the first column and first two rows of matrix J.

Analogously, each column of the product of the Jacobian matrices of the U-Pb

uncertainty propagation equations contains the derivatives of the one of the outputs,

for instance the 20 6Pb/ 2 3 8 U date. Several rows in this column contain the derivatives

with respect to variables shared with the other dates, such as the tracer parameters

and the decay constants. The m rows corresponding to the systematically varying

uncertainties in the column corresponding to the 20 6Pb/ 2 3 8 U date can be extracted

from the Jacobian matrix for each of the n fractions to be averaged. The resulting

columns are appended to create a new m by n Jacobian matrix, Jt. Each column of

the new matrix corresponds to the 206Pb/ 238U date of the n fractions, and each row

corresponds to one of the m systematically varying parameters.

Using Jt and the input covariance matrix for the set of common variables, the

systematic covariance matrix Et, for the dates can be calculated using equation (2.62),

Ets = jT s(2.67)

where E, is the m by m covariance matrix of the systematic uncertainties to be prop-

agated and Et, is the n by n covariance matrix describing the systematic uncertainty

contributions to the n dates. Another n by n covariance matrix Et, describes the

random (analytical) uncertainties for each date, with the analytical variance for each



date on its diagonal. The covariance matrix E for the dates is then the sum of the

random and systematic components of uncertainty,

E = Ets + Etr (2.68)

2.5.3 Generalized Weighted Mean of Correlated Data

The derivation for a generalized weighted mean of correlated measurements is anal-

ogous to the derivation for the conventional weighted mean above. Following Lyons

et al. (1988), the best linear unbiased estimate (BLUE) of the generalized weighted

mean, t, given the correlated measurements ti,... t, is a weighted linear sum of the

the data that simultaneously minimizes the uncertainty of the estimate t and the

MSWD, maximizing the probability that i is the mean of the data. The general-

ized weighted mean can be represented by a sum of scalar products as in equation

(2.64), or equivalently as the dot product of two vectors, hereafter displayed in bold,

containing the weights and the observed data

n

ai ti = at (2.69)

Unlike the conventional weighted mean, there is no simple formula for the gen-

eralized weighted mean weights. Instead, the vector of weights, a, is determined

using the fact that it minimizes the uncertainty in t. Analogous to the 'conventional'

weighted mean derivation, the derivative of t with respect to the vector of measured

dates t is

B a

The resulting vector of derivatives is the Jacobian matrix of the function t. Along

with the covariance matrix for the measured dates derived in Section 2.5.2, the Jaco-

bian matrix can be substituted into equation (2.62), the linear algebraic uncertainty

propagation equation, to yield,

a = ET a (2.70)



where E is the covariance matrix of the dates. Minimizing o? subject to the constraint
t

that the sum of the weights in a is unity is most easily accomplished with a Lagrange

multiplier.

A common strategy for solving constrained minimization problems, a Lagrange

multiplier is introduced to find the extrema of the function f(a) subject to the

constraint g(a) = c. Here, f(a) is equation (2.70) and the constraint that the sum

of the weights equal unity can be restated as a vector product, all = 1, where 1 is a

n-component column vector of ones. At an extremum of f(a), the gradients of f(a)

and g(a) are parallel, although not necessarily the same magnitude. Thus,

Vf(a) = -AVg(a)

and A is known as the Lagrange multiplier. Utilizing the linearity of the gradient

operator, such that Vf + Vg = V(f + g), both terms can be moved to the left hand

side of the equation and combined. Enforcing the constraint that g(a) = c gives

V [f(a) + A - (g(a) - c)] = 0

where 0 is a matrix of zeros. Substituting the generalized weighted mean equation

and constraints yields the gradient of a function F,

VF = V [aTE a + A. (aTl - 1)] = 0

The gradient may be decomposed into the partial derivatives with respect to the

two variables, a and A, which both evaluate to zero. Because the covariance matrix

E is symmetric, ET = E, producing two equations,

=Oa +E)a+A1 = 2Ea+A1 = 0 (2.71)

=A al1 = 0 (2.72)

with two unknowns, A and a.



A solution to this system of equations is found by first solving equation (2.71) for

a, then substituting this expression into equation (2.72) and evaluating the transpose,

a= - AE-11
2

- AE-11 1 = A1T E-11= 1
2 2

Where E-1 is the inverse of the date covariance matrix. Because 1rE-1l is a scalar

quantity, it can be moved to the denominator. The resulting equation can be solved

for A and substituted back into equation (2.71), yielding

A = -2/(1rE-11)

2Ea + [-2/(1rE11)] 1 = 0

Finally, solving for a gives

a= (2.73)

To evaluate the generalized weighted mean, the expression for a in equation (2.73)

can be substituted into equation (2.69), producing the equation for the generalized

weighed mean,

The expression for a in equation (2.73) can also be substituted into equation (2.70),

yielding

Evaluating the transpose and canceling terms in the numerator yields the form x/x 2,

which simplifies to

2 =(2.75)

The variance of the generalized weighed mean is thus equal to the reciprocal of the



sum of the terms in the inverse covariance matrix E- 1. For the special case when the

uncertainties in all dates are independent, E and thus E-1 become diagonal matrices

and equation (2.75) evaluates to equation (2.66).

Analogous to equation (2.65), the goodness of fit, or degree to which the weighted

mean T fits the observed data ti, is described by the statistic

S =r T E- 1 r (2.76)

where r is the vector of residuals ri = ti - t. S has a X' distribution with n - 1

degrees of freedom, and dividing S by n - 1 yields the familiar MSWD.

2.5.4 Application to U-Pb Geochronology

For U-Pb geochronology by ID-TIMS, the largest systematic uncertainty contribu-

tions come from the tracer IC and enriched isotope concentrations and from the

uncertainty in the decay constants. While analytical uncertainties alone are used to

compare U-Pb analyses measured with the same tracer, it is necessary to propagate

the tracer uncertainties in order to compare with U-Pb analyses measured with a

different tracer. Comparison of U-Pb dates with other decay systems, such as "Ar-
39 Ar, requires propagating the U decay constant uncertainties as well. These three

uncertainties are often represented in the form ±X/Y/Z, where X is the analytical

uncertainty, Y includes the analytical and tracer contributions, and Z includes the

analytical, tracer and decay constant uncertainties (e.g., Schoene and Bowring, 2006).

The generalized weighted mean algorithm is used by U-PbRedux to calculate X,

Y, and Z. The covariance matrix Et, of random uncertainties is first assembled by

placing the analytical uncertainties for each of n dates along the diagonal of an n by

n matrix Et,. Evaluating equations (2.73) to (2.76) with E = Et, is mathematically

equivalent to using equations (2.64) to (2.66) for independent measurements, and

gives the uncertainty X.

Following Section 2.5.2, covariance matrices for the dates which contain the tracer

and decay constant uncertainties are assembled using equation (2.67). To calculate



Y, only the tracer parameter uncertainties are included in Et, and to calculate Z,

both the tracer and decay constant uncertainties are present. The matrix Et, for the

tracer and decay constants also contains elements for any covariance between the two,

which would be incurred if for instance the 2 .U decay constant were re-calibated to

the 238U decay constant using closed system zircon analyses spiked with the same

tracer (Schoene et al., 2006; Mattinson, 2010).

The MSWD calculated using equation (2.76) for the generalized weighted mean is

different for X, Y, and Z. We recommend using the MSWD calculated for Z because

it accurately incorporates all sources of scatter.

2.6 Verification by Monte Carlo Method

The linear uncertainty propagation equations presented above are based upon several

important assumptions. First, in order to interpret output covariance matrices in

terms of confidence intervals, for example that ±2o approximates a 95% confidence

interval (CI) about an isotopic date, the uncertainties of the inputs are all assumed to

have normal (Gaussian) probability distributions. This assumption is typically justi-

fied using the central limit theorem, which states that the mean of many small random

effects is approximately normally distributed, even if the probability distribution of

the effects are not.

Most, if not all, uncertainties for ID-TIMS measurements are observed to be nor-

mally distributed. The isotope measurements in the numerator and denominator of

isotope ratios are assumed to be controlled by Poisson processes, which yield asym-

metric Poisson probability distributions for low count rates. However, at the count

rates (generally >10 cps) and integration times (generally >100 s total) usually used

for U-Pb geochronology by ID-TIMS, these distributions can be closely approximated

as Gaussian. In addition, the uncertainties in isotope ratios also contain contribu-

tions from other sources, such as resistor noise and beam interpolation. Although

a Student's t-distribution is appropriate for discrete data with finite degrees of free-

dom, U-Pb analyses typically contain >50 ratio measurements, at which point the



Student's t and the normal distributions are almost identical.

Other input uncertainties, such as isotopic fractionation or the blank isotopic com-

position, can often be measured with higher precision than their external variability.

For instance, the variability in the Pb blank IC is most likely due to variable mag-

nitude contributions from various Pb contamination sources, such as ion exchange

chemistry and sample loading. The average effect of these small variations, as pre-

dicted by the central limit theorem, is an observed normal distribution. This reasoning

is also extended to unobservable quantities, such as the Th/U ratio of the magma

used for 2 3 0Th-correction of 2 0 6Pb/ 23 8 U dates (e.g. Crowley et al., 2007).

Another assumption made by linear uncertainty propagation, illustrated in Fig-

ure 2-3, is that the magnitude of the input uncertainties are small, so that the function

y = f(x) is locally linear at the scale of ox. This is equivalent to the assumption that

the higher order terms in the Taylor series in equation (2.56) are insignificant. Because

the data reduction equations are not linear - they involve division, exponentiation,

and logarithms - this assumption depends upon the magnitude of the observed input

uncertainties. To test whether linear uncertainty propagation algorithm implemented

in U-PbRedux accurately models the uncertainty of isotopic dates with typical ID-

TIMS input uncertainties, the Monte Carlo method (MCM) is used.

2.6.1 Monte Carlo Experimental Setup

Implementation of MCM begins by specifying a probability distribution for each input

variable (BIPM et al., 2008a; Cox and Siebert, 2006). For this implementation, all

input variables are assumed to have multivariate normal probability distributions, but

MCM can also be implemented with other (e.g. uniform) input distributions. Next,

a pseudorandom number generator is used to produce a random sample, known as a

Monte Carlo trial, from the input probability distribution for each parameter. These

values are used to calculate the output variables, e.g. isotopic dates, and then the

process is repeated Al times. The resulting distribution of the M values for an output

approximates its probability distribution, and if several outputs are calculated from

the same input trials, the result approximates their joint probability distribution,



which describes their correlation as well.

There are multiple ways to interpret the output of a Monte Carlo model. If the M

calculated output variables are normally distributed, then two standard deviations

about the mean is a good estimate of the 95% CI. When the results are not normally

distributed, then multiple 95% CIs can be reported. The two most popular are the

95% CI that is symmetric about the mean of the distribution and the shortest 95%

CI (BIPM et al., 2008a). For probability distributions close to normal, the form of

the first is most familiar and is used here.

2.6.2 Results

The MCM has been utilized before for U-Pb data (Briqueu and de la Boisse, 1990),

but never in the context of calculating radiogenic U-Pb dates from measured data or

testing a U -Pb uncertainty propagation algorithm. Here we present data for three

ID-TIMS zircon analyses with typical analytical uncertainties. The mathematical

programming environment MATLAB was used to generate M = 106 multivariate

normal Monte Carlo trials from the measured and estimated input parameters and

uncertainties. The results of Monte Carlo method modeling are plotted as histograms

and best-fit normal distributions and presented in Figure 2-4.

The first analysis modeled by MCM is an Eocene zircon with a Pb*/Pbc, or

ratio of total radiogenic to common Pb, of ~18. The measured 206Pb/ 205Pb and
2 0 7Pb/ 2 0 5Pb uncertainties are 0.025% and 0.090%, respectively. U-PbRedux cal-

culates a 2 0 6Pb/ 238 U date of 47.860 i 0.041 Ma (2-). Visual inspection of the

histogram in Figure 2-4a reveals that the Monte Carlo trials closely approximate a

normal distribution. The mean and twice the standard deviation of the 106 trials

yields 47.860 ± 0.041 Ma (2a), agreeing to the numerical precision represented by

two significant figures in the reported uncertainty. The 2 07Pb/ 2 3 5U date for this anal-

ysis was also modeled by MCM, although this date is not usually reported in this

age range because it is generally less precise. The Monte Carlo trials plotted in Fig-

ure 2-4b are also normally distributed, and the date calculated by U-PbRedux and

the Monte Carlo results both agree at 48.12 ± 0.33 Ma (2o).



The second analysis modeled is an Archean zircon with a Pb*/Pbc of -85 and

measured 2 0 6Pb/ 2 0 5Pb and 2 0 7 Pb/ 2 0 5Pb uncertainties of 0.022% and 0.029%, respec-

tively. A histogram showing Monte Carlo evaluations of the 2 0 7Pb/ 2 0 6 Pb date is

presented in Figure 2-4c, and approximates a normal distribution closely. The date

and uncertainty of 2576.0 ± 1.5 (2cr) calculated by U-PbRedux again agree with

the mean and two standard deviations of the 106 Monte Carlo realizations within

numerical precision.

Finally, a < IMa zircon from the Bishop Tuff with a Pb*/Pbc of 4.6 and a

measured 2 0 6Pb/ 2 05 Pb uncertainty of 0.054% was modeled with MCM. For an analysis

this young, the uncertainties in the 2 3 0Th correction (Appendix 2.8) dominate the

uncertainty budget. Here, the Th/U of the magma was assumed to have the same

variability as Th/U ratios measured in melt inclusions in quartz phenocrysts, 2.81 t

0.32 (2o-) (Crowley et al., 2007). Visual inspection of the histogram in Figure 2-4d

reveals a distribution slightly skewed to the left. This results from a non-linearity

in the 2 3 0 Th correction: Monte Carlo trials with lower magma Th/U values result

in a range of Th-corrections, rather than trials with higher Th/U magma values

where the near-maximum correction is made. The linear uncertainty propagation

algorithm employed by U-PbRedux, calculates a 230Th-corrected 2 0 6Pb/ 2 3 8U date of

768.6 i 3.3 ka (2o-). This is approximated closely by the mean and symmetric 95%

confidence interval calculated from the Monte Carlo realizations of 768.5 i 3.3 ka,

with a difference between the expected values of only 78 years.

2.7 Conclusions

We propose that the ID-TIMS community adopt a common U-Pb data reduction and

uncertainty propagation algorithm for reporting, comparing, and archiving a rapidly

growing amount of isotopic data. An ideal algorithm must provide a transparent

model to calculate dates from input measurement, tracer, and laboratory parameters

for a variety of tracers and for phases with and without initial common Pb, incor-

porating initial daughter product disequilibrium corrections. This model should also



propagate the uncertainties in each input parameter, as well as any possible corre-

lations between them, to determine the uncertainties and correlations between the

variety of output isotopic ratios and dates geochronologists plot and interpret. Fi-

nally, a mechanism is required for combining several analyses into a single maximum

likelihood estimate of the date and uncertainty they represent, incorporating random

and multiple systematic uncertainties.

A new set of data reduction and uncertainty estimation algorithms fulfill these cri-

teria and are embedded in the open source software package U-PbRedux. Uncertainty

propagation using the linear algebraic expression of covariance and Jacobian matrices

is highly extensible, so that relationships between inputs, intermediate parameters,

and outputs are easily codified and calculations are computationally inexpensive. This

approach also determines the dependence of each measurement on often complexly

related systematic uncertainties. If these systematic uncertainties are expressed as

correlations between the dates being averaged, then the same linear algebraic linear

uncertainty propagation techniques can be used to to calculate the weighted mean

dates and statistics.

Interpreting uncertainties propagated linearly as confidence intervals assumes the

model is linear at the scale of the input uncertainties. This assumption is tested and

verified with Monte Carlo simulations of three typical zircon analyses, which show

that typical ID-TIMS uncertainties yield normal distributions that agree with linear

uncertainty propagation calculations.

2.8 Appendix: Disequilibrium Corrections and Ini-

tial Common Pb Models

The U-Pb data reduction equations presented in Section 2.2 assume that one daugh-

ter atom of 2 01Pb or 2 07Pb is created from the decay of each parent atom of 2 38U or
23 5u, respectively. However, the path from U to Pb in each system proceeds through

a series of alpha and beta decays that produce a chain of intermediate daughter nu-



clides before yielding a Pb atom. The U-series decay chain is at 'secular equilibrium'

when all isotopes have the same activity (equal to its decay constant multiplied by

its atomic abundance), so that each intermediate daughter is being created from the

nuclide before it in the chain at the same rate as it is decaying to the next daugh-

ter nuclide. This results in a higher abundance of daughter nuclides with longer

half lives. Chemical processes that fractionate the parent and intermediate daugh-

ter nuclides disturb the secular equilibrium abundance ratios, creating intermediate

daughter product disequilibrium.

For instance, the elements U and Th are fractionated during crystallization of a

dated phase if their distribution coefficients in that phase differ (i.e., DTh # Du).

This affects the longest-lived intermediate daughter product in the 238 U decay chain,
230Th (t11 2 ~ 76 kyr). Th is relatively incompatible compared to U during crystal-

lization of zircon, for example, resulting in a 230Th deficiency, and it is compatible

in monazite, resulting in 230Th excess (Mattinson, 1973; Schirer, 1984). In order

for the 230 Th to return to secular equilibrium, it must accumulate at the expense of
206Pb production in zircon or decay back to secular equilibrium levels in monazite,

generating excess 20 6Pb. The resulting age correction for zircon is bounded: if Th is

completely excluded from the crystal, the maximum correction of 1/A230 ~ 110 kyr

is made to the 20 6Pb/ 238U date. However, if the mineral incorporates excess 230Th,

then no upper bound exists on the theoretical magnitude of the age correction.

2.8.1 Th correction derivation

Initial 230Th disequilibrium in the 238U decay chain necessitates a correction to the

molar quantity of 20 6Pb in the conventional age equation, D = P(eAt - 1):

moles ( 2 0 6Pb) = moles (238u), . (eA23st20/ 2 3s _

+ moles(230Th)init - moles (230Th)eqbm (2.77)

where toh is the 206Pb/ 238U date of the sample corrected for initial 230Th disequi-206/238

librium. The difference between the moles of 230Th at initial crystallization and the



moles of 23 0Th at secular equilibrium is negative if Th has been excluded from the

mineral, decreasing the moles of 20 Pb subsequently produced, or positive if Th has

been preferentially included into the mineral, generating excess 2 0 6Pb.

Molar quantities in equation (2.77) can be expressed as isotopic abundance ratios

by dividing through by the moles of parent isotope, 2 38 U. Due to the long half life of
2 3 8U (~4.5 Gyr), its atomic abundance is assumed to be the same at crystallization

and after returning to secular equilibrium, which occurs after about six half lives of

the longest lived intermediate daughter, or -460 kyr, if all 2 3 0 Th is excluded.

(206Pb A23 th 230Th ( 23 oTh
238 = 238 20/238 - 1 + 2823U(2.78)

rad iiU eigbm

The Th/U ratios on the right hand side of equation (2.78) can be expressed as

activity ratios by multiplying the atomic abundance of each isotope by its decay con-

stant. Equality is maintained by multiplying the resulting expression by the reciprocal

of the decay constant ratio.

230Th ( 230Th _ A238 A230 
230Th A230 230Th

238U in 238u /eqbm A230  A238  
238 U Jinit A238  238U /eqbm

A238  
230Th 230Th (2.79)

230 (_ 238U [238U(279A init . eqbm

where the square brackets enclose activity ratios.

Both activity ratios in expression (2.79) may be transformed into measurable

parameters. The degree of initial isotopic disequilibrium depends on the ratio between

the distribution coefficients DTh and DU. Each distribution coefficient describes the

ratio of the molar abundance of Th and U in the sample to the molar abundance in

the magma. This expression can be rearranged so that the the abundance ratio of

sample isotopes is in the numerator and the corresponding magma abundance ratio

is in the denominator.

DTh - Thsp, / Thmagma (Th/U)8 (8
Du Uspi / Umagma (Th/U)magma



Fractionation of specific isotopes, such as 2 3 0 Th and 2 38 U, follow the same rule, yield-

ing an equivalent expression in terms of the initial molar 2 3 0 Th/ 2 3 8U ratio of the

sample and the magma. The molar ratio can again be converted to an activity ratio

by multiplying each isotope by its decay constant.

(Th/U)si (230 Th/ 238 U)init A23 0/A238 (2.81)
(Th/U)magma (230Th/ 238 U)magma A230 /A238

The numerator and denominator become activity ratios, denoted by square brackets.

Assuming that the magma is at secular equilibrium at crystallization, its activity

ratio [230Th/ 238 U]magma = 1.

(Th/U)spi [230Th/ 238U ] init 230Th (2.82)
(Th/U)magma [230Th/238U ]magma 238U _ init

Thus, the initial [230Th/ 238 U] activity ratio is equivalent to the ratio of distribution

coefficients DTh / Du, and the Th/U of the sample divided by the Th/U of the

magma. Instead of assuming the magma to be at secular equilibrium, both may

be multiplied by the [230Th/ 238U] activity ratio of the magma to yield the initial

[230 Th/ 238 U] activity ratio at crystallization if constraints exist on its value.

Finally, the [230Th/ 238 U] activity ratio of the sample after it has attained secular

equilibrium is also equal to one,

230Th 1 (2.83)S23 I eqbm

Substituting the re-cast activity ratios in (2.82) and (2.83) into (2.79), then sub-

stituting this expression into (2.78) yields the conventional equation for the 230Th-

corrected 206Pb/ 238 U date (e.g., Schsrer, 1984),

206b A28tTh A238 Th )P/(Th=Pb A2 206/238 _ ( ( _ 11 (2.84)
238U rad A230 U )i Umagma

Alternately, if the ratio of distribution coefficients DTh/DU is better constrained

than the Th/U of the magma, the left side of equation (2.80) can be substituted into



equation (2.84),

206___ A238 _tTh A238 (DTh
rad _e 206/238 - 1 + -- 1 (2.85)

\U rad A230  Du

2.8.2 Th correction implementation

In order to calculate the 230Th-corrected 2 0 6Pb/ 2 3 8 U date in equation (2.84), an es-

timate of the Th/U of the magma is required; the Th/U of the sample may be

calculated from available data. Because the Th/U of the magma is expressed as an

atomic abundance ratio, the total atomic abundances of Th and U in the sample are

required, which are each the sum of the abundances of the respective major isotopes.

The atomic abundance of U in the sample, moles(U),,1 , is the sum of the moles of
238U and 235U,

moles(U)S,, = moles( 23 8 U),P1 + moles( 2 3 5 U)1, (2.86)

The element Th has a single major isotope, 2 3 2Th; the second largest contribution,

from the 2 30 Th in the 2 3 8 U decay chain, is negligible. Due to the long half-life of 23 2 Th

(-14 Gyr), there is no significant difference between the abundance of Th at present

and during crystallization. The atomic abundance of 23 2Th in the sample can be

back-calculated from the moles of radiogenic 2 08 Pb derived in equation (2.23) and the
230Th-corrected date of the sample. The moles of 2 3 2Th in the sample is given by a

rearrangement of the isotopic decay equation, D/P = eAt - 1,

moles ( 232 Th)S1 - moles ( 2 0 8 Pb),ad (2.87)
moles(232Th),, -_aah8

exp(A 2 3 2 20/238-

where toh is the230Th-corrected 206Pb/ 238U date.

The expressions in (2.86) and (2.87) can be substituted into equation (2.84) to

yield a new equation

(206 b ' 
2 .tTh A23826Pb A238 -2/238 _

238u /ra A230



moles(20 8 Pb)ad A e A23 2 -t 2o6/23s8~ Th
moles(U),,, U )ma

This equation cannot be solved directly for th/ 2 3 8, so U-PbRedux utilizes Newton's

Method, an iterative numerical solution.

Alternately, equation (2.85) can be solved directly for tTh if the ratio of dis-

tribution coefficients is known,

t = log 8b + 1 - ( - 1 (2.88)

Using the 230Th-corrected 2 0 6Pb/ 2 3 8 U date calculated in equation (2.88) or (2.88),

it is possible to calculate the moles of 2 3 2Th in the sample (equation 2.87), as well as

the Th-corrected moles of 20 6Pb,

moles(206Pb)d = moles (2 38 U), (eA23-t206/23s - 1) (2.89)

and the Th-corrected 2 0 6Pb/ 23 8 U ratio used in the conventional concordia plot,

206Pb Th Moles(206P Th
238uT -r~ad(2.90)

2 rad moles(238U)pi

A 2 3 0Th correction is most often applied to samples younger than ca. 500 Ma,

whose uncertainties are comparable to the magnitude of the correction. The 207Pb/ 206Pb

date is not often used for young (< ca. 2 Ga) samples because it is sensitive to the

low abundance of 2 0 7Pb in young samples. However, Amelin et al. (2010) show that

evolving laboratory and mass spectrometry techniques applied to early solar system

studies offer ever-finer resolving power at >4.5 Ga suggesting that Th correction may

become necessary. The 230Th-corrected radiogenic 2 0 7Pb/ 2 0 6 Pb ratio is

207)PbTh moles( 2 0 7Pb)rad (2.91)
Pbjrad moles (206Pb)Th

As with the un-corrected 2 0 7Pb/ 206 Pb date, a solution for tTh/206 cannot be reached



analytically for the equation

207Pb Th 
238u ' exp (A235 - 2107 / 2 06 - 1

206 Pb 235u / A ) (2.92)
rad U sp exp A238- 1

Instead, Newton's Method is employed by U-Pb-Redux.

2.8.3 Pa correction

The longest-lived intermediate daughter product in the 2 3 5U decay chain is 2 3 1 Pa, with

a half life of -33 kyr. Analogous to 2 3 0 Th in the 23 8U decay chain, the [2 3 1Pa/ 2 3 5U]

activity ratio may be perturbed during crystallization from a magma at secular equi-

librium. Unlike the 2 3 0 Th correction, however, there is no way to back-calculate the

initial Pa/U ratio of the dated phase, as with the 2 0 8 Pb daughter of 2 3 2 Th in equation

(2.88). Instead, correction requires the initial [2 3 1Pa/ 2 3 5U] activity ratio at crystal-

lization or Dpa/Du, the ratio of the Pa and U distribution coefficients in the dated

phase. Derivation of the the 23 1Pa correction equations parallels the 2 3 0Th equations

presented above.

The 2 3 1Pa-corrected 20 7Pb/ 2 3 5U date, tPa can be calculated in the same man-

ner as equation (2.88).

Pa [207Pb A235  -231Patlog +3 U 1 - 23 UIp- (2.93)$207/235 =35ugA235 235u'3A235  Arad 231  . UI

Likewise, 231Pa-corrected moles of 20aPb can be calculated using the corrected
20 7Pb/ 235U date,

moles (2oPb)a d moles (2 35U) 1 (e 207/2 35 - 1) (2.94)

and then used to calculate the 231 Pa-corrected radiogenic 2 0 7 Pb/ 20 6Pb ratio,

207Pb Pa moles(2O7Pb),(P2
206p206moe _"d (295)P'rad moe( 2~rad



and the 231 Pa-corrected radiogenic 2 0 7Pb/ 2 3 5 U ratio,

207Pb Pa
235u /rad

moles(207Pb) "

moles( 235u), 1
(2.96)

for Tera-Wasserburg and conventional concordia plots.

To calculate a 231 Pa-corrected 2 0 7 Pb/ 2 0 6 Pb date, it is not possible to solve

207 Pb Pa
206 Pb)rad (238U 11235u sp

exp (A235  t 207/ 206) - 1

exp (A238 - t207/206) - 1
(2.97)

207/206. Instead, an iterative numerical solution such as Newton's Method

must be employed.

2.8.4 Simultaneous Th- and Pa-correction

Finally, the 207Pb/ 206Pb ratio and date may be corrected for both 230 Th and 23 1Pa

disequilibrium using equations (2.89) and (2.94).

2O7Pb ThPa
206 Pb )rad

moles(207Pb) a

moles (206 b)Th

To calculate a 230Th- and 2 3 1 Pa-corrected 20 7Pb/ 2 06Pb date, it is not possible to

207Pb
206 P ThP

,ra

i'~
-1 . ti 1~

( 2 3 8U \ expy 2 3 5  2o7/ 2 0 6 )
235 )8P . t'j)-

Us exp (A238 t207/20o6-
(2.99)

in terms ofth/2 Instead, an iterative numerical solution is used.

2.8.5 Initial Common Pb Correction

Following Stacey and Kramers (1975), for fractions with estimated dates between

4.57 and 3.7 Ga,

solve

(2.98)



20 4 Pb1C 7.19 . [e(A238-4.57xio9) - e(A23-tPbc)] 1 +9.307

2 0 7Pb _ 7.19 . e(A2354.57x109) e(A23 5
-tPbc)

204Pb fcom 137.88 ) -

= 33.21 . [e(A232457xio9) _ e(A232-tPbcI + 29.487

(2.100)

(2.101)

(2.102)

and for fractions younger than 3.7 Ga,

2 oPb r
207Pb
2 04 Pb )O

9.74 -[e(A238-3.7x 109)

9.74 . (A233.xio9
137.88

- e(A238-tPbc) + 11.152

- e(A235-tPbc) ±12.998

( - 36.84 - e(A23237x 1o9) _ e(A232tPc + 31.23
(24 I corn 

312

(2.103)

(2.104)

(2.105)

(0 P20 Jb)O



2.9 Figure captions

Figure 2-1: Diagrammatic representation of the data reduction algorithm. Data re-

duction begins with the input parameters in the boxes at left. Sections 2.2.2 and 2.2.2

describe how the blank and tracer parameters are combined to calculate their molar

abundances. These are then used to correct the measured ratios in Sections 2.2.2 and

2.2.2 in order to determine the moles of parent Pb and radiogenic U, respectively.

Finally, Sections 2.2.2 and 2.2.2 calculate radiogenic U/Pb ratios and and, using the

isotopic decay constants, isotopic dates.

Figure 2-2: Cartoon illustrating the relative contributions of Pb and U sample

components for typical U-Pb ID-TIMS analyses, broken down by isotope. Column

heights are not shown to scale. (a) Relative abundance of Pb isotopes in a phase

that incorporates initial common Pb (Pbc). Determination of the radiogenic 2 0 Pb,
2 0 7 Pb, and 2 0sPb shown in red requires subtracting the tracer, blank, and initial Pbc

contributions from the top of each column. The tracer contribution is estimated

from the 2 0 1Pb abundance and the tracer isotopic composition (IC) and the Pb blank

contribution is estimated laboratory measurements. The remaining 204Pb is assumed

to be initial Pbc; its contributions to the radiogenic isotopes are subtracted using

the initial Pbc IC, leaving only the radiogenic component. (b) For a phase with no

initial Pbc, only tracer and blank contributions need to be subtracted to determine

the radiogenic component. The 2 14Pb contribution from the tracer is subtracted first

using the 2 01Pb abundance of the tracer, and the remaining 2 0 4Pb is assumed to be

laboratory Pb blank. Subtracting the blank contributions to 2 0 6Pb, 207Pb, and 2 0sPb

using the blank IC yields their radiogenic components. (c) Relative abundance of U

isotopes. The isotopic tracer may contain any combination of 2 3 3 U, 2 3 5U, and/or 2 3 6U.

The tracer, blank, and sample U contributions to each isotope are deconvolved by

solving a system of equations that incorporates the IC of each.

Figure 2-3: Illustration of linear uncertainty propagation for a single input pa-

rameter. Uncertainty in the x direction (ox) of the point (x, y) results in an uncer-

tainty oy in the function y = f(x) that is proportional to the partial derivative of y



with respect to x. This estimate is accurate if the function f(x) can be approximated

by its derivative at the scale of ox.

Figure 2-4: Histograms illustrating the results of 106 Monte Carlo simulations for

three representative ID-TIMS zircon analyses. Red curves are normal distributions

corresponding to the date and uncertainty calculated by U-PbRedux. (a) Monte Carlo

simulations of the 20 6Pb/ 2 3 8 U date of an Eocene zircon, (b) the 2 0 7Pb/ 2 3 5U date of

the same analysis, and (c) the 2 0 7Pb/ 2 0 6Pb date of an Archean zircon are normally

distributed, with the same mean and uncertainty calculated by U-Pb-Redux. The

distribution of Monte Carlo trials for a young Th-corrected Bishop Tuff grain (d)

is slightly right-skewed but can be closely approximated by its linear uncertainty

propagation result.
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Table 2.3: Laboratory and Sample Parameters

Pb Blank
206Pb>
204 Pb )bl

207 Pb

208 Pb
204 Pb 1b

mass(Pb)b1

Fractionation
Correction

aPb

au

Initial Pbc
206Pb>
204 Pb)com

{207 Pb
204 Pb fcom
208 Pb
204 Pb com

Disequilibrium
Correction

{Th
\U /magma

231Pa
235u I SP

Uranium

238u
235u )}s1

238u
235U Ibi

180>(160 )U x
mass(U)bl

Physical
Constants

A238, A235, A232
A231, A230

grams (204 Pb)
mole(204Pb)
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Figure 2-1: Flow chart for U-Pb data reduction

Key
Input Parameter

Q Intermediate Result

Section in Text

Table 3



Key

Tracer
Blank
Initial Pbc
Parent/Radiogenic

202Pb 2"Pb 205Pb 20Pb 
207Pb 20Pb

Pb relative isotopic abundances, initial common Pb present

202Pb 2"4Pb 205Pb 20Pb 207Pb 2"Pb
Pb relative isotopic abundances, no initial common Pb present

0

233u 235u 236u 23U
U relative isotopic abundances

Figure 2-2: U-Pb sample components
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Chapter 3

Straight Line Regression through

Data With Correlated

Uncertainties in Two or More

Dimensions

Abstract

Linear regression algorithms are used frequently for measured data that contain non-

negligible uncertainties in each variable. For the general case of correlated measure-

ment uncertainties between variables that differ from one analysis to the next, the

popular algorithm of York (1968) calculates the maximum likelihood estimate for

line parameters and their uncertainties. However, it considers only two-dimensional

data and omits the uncertainty correlation between the slope and y-intercept, an

important term for evaluating confidence intervals away from the origin. This con-

tribution applies the maximum likelihood method to straight line regression through

data in any number of dimensions to calculate a vector-valued slope and intercept

as well as the covariance matrix that describes their uncertainties and uncertainty

correlations. The algorithm is applied to Pb data measured by TIMS with a silica



gel activator that define a fractionation line in a three dimensional log-ratio space.

While the log-ratios of even mass number Pb isotopes follow the slope predicted by

mass-dependent fractionation with a Rayleigh or exponential law within calculated

uncertainties, the log-ratio containing the odd mass number isotope 207Pb diverges

significantly, exhibiting mass-independent fractionation. The straight line regression

algorithm is appropriate for fractionation lines that form linear trends in log-ratio

space, but not for isochrons or mixing lines, which are predicted to be linear only

when plotted as isotope or compositional ratios.

3.1 Introduction

It is not possible to measure a physical quantity with perfect accuracy and infinite

precision. To estimate the degree to which the analysis corresponds to its true value,

analysts assign uncertainties to the data, usually based on the variability of repeated

measurements. Each repeated measurement often consists of multiple variables, like

elemental or isotope ratios. The number of variables defines the dimension of the

dataset, so that three variables can be plotted in a three-dimensional space, and

so on. A series of repeated measurements of the same physical quantity, like the

isotopic composition of a sample, can then be summarized by the mean of the repeated

measurements and by their covariance matrix, which describes the uncertainty in each

of the measured variables and the uncertainty correlations between them.

When multiple analyses fall on a line or plane in any number of dimensions, they

can be described by a linear model AX = B, where A and B are predictor and

response variables respectively, and elements of X are the model parameters, such

as the slope and y-intercept. To calculate the best fit parameters, the definition of

'best' determines the regression technique used. The most familiar, ordinary least

squares (OLS) in two dimensions, assumes that a noisy response variable, usually

plotted on the y-axis, is a linear function of a predictor variable, usually plotted on

the x-axis, which is not assigned uncertainty. The OLS algorithm can be extended

to any number of dimensions, for instance determining the best fit plane to three



variables. OLS minimizes the squares of the (vertical) distances from the measured

data points to the regression line or plane, where this distance is measured on the

uncertain response variable only. Since it ignores any uncertainty in the predicor

variable, OLS is not an appropriate regression algorithm for data with non-negligible

measurement uncertainties in all measured variables.

Another least squares approach, termed total least squares (TLS, Golub, 1973;

Van Huffel and Markovsky, 1991), and also known as orthogonal regression, Deming

regression, or reduced major axis regression (Sokal and Rohlf, 1995), minimizes the

perpendicular distance between each point and the regression line or plane. While

this model incorporates uncertainty in all variables, its simplest formulation assumes

the uncertainties, for instance in both the x- and y- directions, are the same magni-

tude. Additionally, conventional TLS assumes the data are homoscedastic, or that

each analysis has the same covariance matrix. For most applications in geo- and

cosmochemistry, these assumptions do not hold: the variables plotted on each axis

have different uncertainties that are often correlated, such as when the same isotope

appears in the denominator of each isotope ratio, or all variables plotted are subject

to the same correction. Separate analyses are frequently independent of one another

but have different uncertainties, depending for instance on ion beam intensity, and

thus are heteroscedastic.

In order to fit heteroscedastic data with correlated uncertainties, more sophis-

ticated algorithms weight the influence of each measurement according to its un-

certainty. For instance, a weighted OLS algorithm divides each squared (vertical)

distance by its variance, then minimizes the sum of the resulting ratios. Weighted

or generalized TLS approaches, (e.g., Van Huffel and Vandewalle, 1989; Markovsky

and Van Huffel, 2007), treat correlated uncertainties in both response variables and

regressor variables, but not uncertainty correlations between them.

However, a variant termed elementwise-weighted total least squares (EW-TLS)

solves the general regression case for multiple measurements of any linear system

with heteroscedastic independent data points that have unique covariance matrices

(Kukush and Van Huffel, 2004; Markovsky et al., 2006). When the uncertainties are



assumed to be normally distributed, EW-TLS yields the maximum likelihood estimate

(MLE) of the model parameters (Markovsky et al., 2006), meaning that the best fit

parameters maximize a likelihood function that considers all the measured data, their

uncertainties, and the normally-distributed measurement model, explained in detail

in Section 3.2. Likewise, the general MLE of Sohn and Menke (2002) to linear and

non-linear regression models for correlated data additionally allow for uncertainty

correlations between analyses. The highly cited York (1968) algorithm is a special

case of EW-TLS, calculating the MLE of the slope and y-intercept for a line in two

dimensions, as well as their uncertainties.

This contribution focuses on a more general scenario than that of York (1968):

a straight line (one-dimensional) fit to heteroscedastic data with correlated, ap-

proximately normally distributed uncertainties for two or more variables. Recently

published applications include, but are not limited to, kinetic isotope fractionation

lines (Bizzarro et al., 2011; Zhang et al., 2011), trace element partitioning data

(Balta et al., 2011), and multiple isotope system plots, e.g. EHf vS. ENd in Ver-

voort et al. (2011). Although many two-component mixing lines, such as common

Pb in 2 0 6Pb/ 2 0 4 Pb - 2 0 7 Pb/ 2 0 4Pb -2 0 8 Pb/ 2 0 4Pb space and isochrons, for instance in
20 7Pb/ 2 0 6 Pb - 2 04 Pb/ 20 6Pb coordinates, create linear arrays of data, they are not

suitable for linear regression because they contain ratios of major compositional com-

ponents. This caveat is explored in Section 3.5.

Because the EW-TLS algorithm is a general case of the straight line model pre-

sented here, its previously derived statistical properties, such as convergence of the

estimated fit parameters in probability to the true fit parameters as the number of

measurements approaches infinity (Kukush and Van Huffel, 2004), apply here as well.

However, by restricting the focus from multi-dimensional fit surfaces to a straight line,

the resulting algorithm may be simplified and its solution optimized. For instance,

terms involving the singular value or Cholesky decomposition of the inverse covariance

matrix in (Markovsky et al., 2006) divide out in equation (3.12), precluding costly

linear algebra.

The solution presented here, set in terms of the parametric equation for a line



p = a + vt instead of its linear algebra AX ~ B equivalent, is also easier to pose in

terms of the parameters of interest. This is demonstrated in the example application

to kinetic isotope fractionation lines in Section 3.4. The parametric equation for a

line is also directly analogous to established methods of compositional data analysis

(Egozcue et al., 2003).

3.2 Estimation of Regression Parameters

The general case of straight line regression involves determining the best fit line

through n measured data points pi, (i = 1... n), in k dimensions, where each mea-

sured datum has a unique covariance matrix Ej. In this model, each pi is a k x 1

column vector for a single measurement that contains the value of each variable mea-

sured. E is its k x k covariance matrix, with variance terms for each variable on the

diagonal and covariance terms that describe the uncertainty correlations between the

variables on the off diagonals. The best fit line through the data can be expressed

in terms of a direction vector, v, and an arbitrary point on the line, a, which form

the parametric expression for a line, a + vt. This algorithm solves for the maximum

likelihood estimates of a and v, which are both k x 1 column vectors, as well as

their uncertainties and uncertainty correlations. Fig. 3-1 illustrates the straight line

regression problem for k = 3 dimensions.

3.2.1 Vector from a Point to a Line

Every regression algorithm depends on determining the difference, known as a resid-

ual, between a measured data point and the best fit line. To calculate the residual,

first translating both the line and all measured points by -a simplifies the expres-

sion for the regression line. The new location of measured data point i is (pi - a),

and points on the line can now be expressed simply as vt. Next, the perpendicular

projection Pi of each translated point onto the line is

v T
pi = - (pV - a) (3.1)

v v
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where T denotes the transpose. Note that Pi is in the translated coordinate system,

so that Pi +a is the point's projection in the original coordinate system. The residual

vector ri, or the misfit between the measured data point and its projection Pi, is

v T
ri = (pv - a) - (pi = (p - a) 3.2)

Because it is a vector difference, equation (3.2) does not depend on the reference

frame. The magnitude of ri represents the shortest Euclidean distance from the

measured point to the best fit line. However, this distance does not consider the

measured data uncertainties, embodied in the covariance matrices Ei, and so does not

necessarily represent the best reconciliation of the model line and the data. Likewise,

when the data in any of the k axes are expressed in different units (e.g. meters

and seconds), then this distance contains terms from each unit, mixing apples and

oranges. The solution presented below, known as statistical normalization, can be

used to construct probability distribution and likelihood functions for the measured

data and line fit parameters.

3.2.2 Maximum Likelihood and the Minimum Distance

The uncertainty in the measurement of the point pi is quantified with its covariance

matrix Ei, which contains variances along its diagonal and covariances as off-diagonal

elements. The shape of this uncertainty, the probability density function describes

the relative probability that the true value of a measurement is in the vicinity of a

point x. Here, x represents an arbitrary position, expressed as a k x 1 column vector.

If the data are normally distributed, the multivariate probability density function at

any point x in the vicinity of the measurement pi with covariance matrix Ei can be

expressed as

1
f (x | pi, Ei) = ( 1 exp(p (X - pi)T 1 (x - Pi)) (3.3)



where | is the matrix determinant and E-1 is the inverse of the covariance matrix. For

a normally distributed univariate measurement (k = 1), the probability distribution

function takes the shape of the well known 'bell curve'.

In any number of dimensions, a surface of constant probability density around the

point pi is the locus of all points x that satisfy

(x - pi)T E-1 (x - pi) = c2 , (3.4)

the exponential term in equation (3.3). The variable c in equation (3.4) is known as

the Mahalanobis distance, and is analogous to the distance, in standard deviations,

from p to x. In one dimension, the endpoints of a lo- confidence interval have c = 1;

in two dimensions, the ellipse with c = 1 is the l uncertainty ellipse.

In Fig. 3-2a, the perpendicular projection from the measured point to the line

a + vt is not the best estimate of where the point actually falls on the line: in this

case, the perpendicular vector intersects the line outside the lo- uncertainty ellipse,

but the line extends inside the ellipse elsewhere. The concept of orthogonal projection

outlined above can be used only in the space where the Mahalanobis distance in

equation (3.4) is the same same as the Euclidean distance d, where

d 2 1 P)(x - pi). (3.5)

In a space where the Euclidean and Mahalanobis distances agree, the covariance

matrix and its inverse in equation (3.4) are both the identity matrix I, whose uncer-

tainty ellipse is the circle (Fig. 3-2b), or a sphere or its higher-dimensional analog.

The linear transform that maps the inverse covariance matrix to the identity matrix

is given by U, the upper triangular matrix produced by Cholesky decomposition of

the inverse covariance matrix:

E- = UTU (3.6)

where U has dimensions k x k. Manipulating equation (3.6), it can be shown that the

inverse covariance matrix becomes the identity matrix after a linear transformation



UEUT = I. (3.7)

For a given measurement vector p and line parameters a and v, the linear trans-

formation is applied by premultiplying each column vector by U. The residual vector

in equation (3.2) becomes

Ur = U(p - a) - Up = U(p - a) TVUV U(p - a) (3.8)
(Uv)TUV

and the squared Mahalanobis distance is the inner product of the residual with itself:

||Uri| 2 = [U(p - a) -V(Uv)
T  U(p - a)]T [U(p - a) UV(Uv) T U(p - a)

(UV)TUVr(V)U
(3.9)

Equations (3.10) through (3.13) simplify this cumbersome expression. Factoring out

a U from each term above and simplifying (Uv)T to vTUT yields

v vTUT vTvTUT

||Ur|| 2 = [U (p - a) vTUTUv U(p - a))] [U ((p - a) - v TU TUv U(p - a))]

(3.10)

Transposing the two terms in brackets in the first term of equation (3.10) yields

IUr| 2 = (p - a) -v TUv U(p - a) UTU (p - a) - vTUT U(p - a)

(3.11)

Substituting E -1 = UTU from the definition of the Cholesky decomposition in equa-

tion (3.6) yields

||Ur| 2  (p - a) -vTE- (p - a) E-1 (p - a)- vVTE-1 (p -a) (3.12)

In this way, the upper Cholesky decomposition matrices factor out, precluding

the need to calculate them. Finally, multiplying out the terms in parentheses and

factoring yields a simplified expression for the squared Mahalanobis distance from the



measured point to the best fit line

a) -(vTE-1(p - a))2  (3.13)||Ur||2 = (p - a)T 7-4 vT ply v'

The sum of the expression for the squared Mahalanobis distance in equation (3.13)

over all measured data points pi, (i = 1... n) represents the 'sum of squares' to be

minimized.

3.2.3 Probability Density and Likelihood Functions

To prove that minimizing the sum of the squares generates the maximum likelihood

estimate for the line parameters, the expression in equation (3.13) can be used to

build a probability density function for the each measurement, analogous to equation

(3.3). The function

f(pi I a, v) = (2)k/2 1/2 exp ((p - a)TE- (pi - a) (v T E 1(p,- a))2]

(3.14)

describes the probability that a point in the vicinity of pi belongs to the line a + vt.

Given a dataset of n independent measurements P = (pi, P2, ... p,) of the lin-

ear array a + vt, the joint density function f (pi, P2, . . . p a, v) = f(pi a, v) -

f(P2 a, v) . ... f(p, l a, v) defines the probability function of the entire measured

dataset P given any line parameters a and v. Since the measured data is fixed, we

are instead interested in the likelihood function of the regression parameters given

the measured data L(a, v I P), which is equal to the joint probability density function

above:
n

L(a,v I P) = f(P | a, v) = 7 f (pi I a, v) (3.15)
i=1

Although the large product is not easily manipulated or differentiated, taking the

natural logarithm converts the product of exponentials to a sum:

n

InL(a,v I P) Zln f(pi I a, v) (3.16)
i=1
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To avoid confusion with the traditional covariance matrix notation E, all summation

symbols will include their upper and lower limits explicitly, as above.

3.3 Solving for the Best Fit Line

The best fit line maximizes the likelihood function L(a, v I P) of the regression pa-

rameters a and v given the measured data points P. Taking the natural logarithm

of the likelihood function is a monotone transformation, so that maximizing the log-

likelihood ln L(a, v I P) simultaneously maximizes the likelihood function itself. Sub-

stituting the probability density function for a point pi on the line a + vt in equation

(3.14) into the likelihood function in equation (3.16) yields

ln L(a, v I P) = 2 (pi - a)TE;l(pi - a) (VTE y(p, - a)) 2  Inj I+kln(27)2 V-j" [ IT[V J
(3.17)

where |Ejl is the determinant of the measured covariance matrix.

The maximum likelihood estimate of the line parameters a and v for the line a+vt

maximizes the log-likelihood equation. This maximum occurs where the derivatives

of equation (3.17) with respect to a and p are equal to zero. Differentiating yields a

system of 2k equations, with the elements of a and v as 2k unknowns:

BlnL (pi - a)T (E;1 - ElvvTE-l)
o~a VTE-= 0 (3.18)Sa vT Eylvi=1

BlnL VTElvvT E;-(p - a)E (pi - a) - (vT 1(p a)

(3.19)

where 0 is a vector of zeros with length k.

Although the system of equations (3.18) and (3.19) contains 2k equations with 2k

unknowns, the same line may be defined by any point a on the line and a direction

vector v of any length. Thus the above system has an infinite number of solutions.

A unique solution may be reached by setting the first component of a to zero, the



multi-dimensional analogue of a y-intercept, and setting the first component of v to

one, the multi-dimensional analogue of the slope. With these substitutions, the above

2k equations in 2(k - 1) variables will have a unique solution at a best fit a and V.

The solution may be reached quickly with a non-linear equation solver included in

common mathematical software packages such as MATLAB.

However, for datasets that are far from the origin, setting a component of a to

zero will result in a poorly conditioned covariance matrices for the line fit parameters,

with highly correlated uncertainties between the components of a and v. Numerical

stability is improved by instead setting any one a component to its value in the

multivariate weighed mean of the measured data P. The weighted mean, presented

in 3.8 is also an excellent initial estimate for a in the numerical solution of equations

(3.18) and (3.19).

3.3.1 Uncertainty in Fit Parameters

The uncertainty in the best fit line parameters a and V are estimated by calculating

the Fisher Information Matrix, I, the negative second derivative of the likelihood

function with respect to the best fit parameters. I takes the form

'n L &2lnL1
BaaT &ggTI
2 In L 02 In L (3.20)

vaT VVT

Because the first components of vectors a and V have been specified explicitly,

these components have zero uncertainty. For other the k - 1 components of each

vector, as well as the covariances between them, the covariance matrix Eav is calcu-

lated by removing the rows and columns 1 and k + 1 corresponding to the specified

components, generating a 2(k - 1) x 2(k - 1) matrix, then calculating the matrix

inverse of the shortened Fisher information matrix,

Zav = I (3.21)



where 2, is I with the appropriate rows and columns removed. The same result is

reached by calculating the pseudoinverse of I with the rows and columns correspond-

ing to the specified components set to zero. The second derivatives in equation (3.20)

are included in 3.7.

To determine whether the uncertainties in the fit parameters are valid, or if the

straight line model is reasonable for the observed data, a statistical goodness of fit test

is required. The reduced chi-square (X ed), known in the geochronology community

as the MSWD or mean squared weighted deviation (Wendt and Carl, 1991), relates

the average ratio of the squared offset between the measurement and the model to its

variance, or expected value:

-1 (meas. - model)2

Xred -- df (.2i=1 meas.

The expression inside the summation of equation (3.22) is analogous to equation

(3.13), the squared distance from the measured point to the line weighted by its inverse

covariance matrix. A line fit in any number of dimensions has df = (k - 1) (n - 2)

degrees of freedom, where k - 1 represents the number of independent directions the

measurement can deviate from the straight line and n - 2 is the number of vector-

valued measurements minus the two line fit parameters a and v. Thus,

(k~ -E '(pn -2- )~ (,a a) )2

1 (VT- 2Z

X 21d (pi - a)T -1(pi - a) -(3.23)
(k - 1) (n - 2) _ VTI V _

The expected value of X is 1, with a probability density function that approaches a

normal distribution with increasing degrees of freedom that has a standard deviation

of (2/df)1 /2 (Wendt and Carl, 1991).

3.3.2 Other Linear Regression Algorithms

The solutions to equations (3.18) and (3.19) and the covariance matrix calculated

with equation (3.21) can be shown to reduce to the two special cases of uncertainty-

weighted line fitting currently used by the geochemistry and geochronology commu-



nities. A detailed history of parametric regression algorithms in earth sciences can

be found in Howarth (2001).

In a series of related papers, York (1966, 1968) and York et al. (2004) offer incre-

mentally improved algorithms for straight-line fitting in two dimensions by iteratively

solving simultaneously for the MLE line parameters and uncertainties. Crucially, the

objective equation presented here in equation (3.13) with k = 2 and ai = 0, vi = 1

simplifies to Equation 2 of York (1968). The linear regression algorithm of Sohn and

Menke (2002), which is generalizable to higher dimensions, is also equivalent to the

MLE presented here.

Although the algorithm presented here and those in York (1968), York et al.

(2004), and Sohn and Menke (2002) converge to the same solution for the line fit

parameters, equations (3.18) and (3.19) above can be solved without determining the

line parameter uncertainties at the same time, which are here given explicitly using

these best fit line parameters in 3.7. Divorcing the uncertainty calculation proffers

flexibility and faster convergence when using this fitting procedure as part of a larger,

more computationally intensive algorithm or with very large data sets, such as the

one presented in Section 3.4. Note that the York (1968) paper additionally omits the

covariance term between the uncertainties in the slope and y-intercept, although this

is corrected in (York et al., 2004). This term becomes important when constructing

confidence intervals for the regression line when the measured data is far from the

origin.

The maximum likelihood method used here is also employed by Titterington and

Halliday (1979) for two-dimensional linear regression through data with correlated

uncertainties. The equations for the first and second derivatives of the likelihood

equations in the Titterington and Halliday (1979) appendix are special cases of equa-

tions (3.18), (3.19) and 3.7. York et al. (2004) show that the expressions for the

uncertainties in the fit parameters for both the least-squares and MLE approach are

equivalent.

The other multi-dimensional line fit commonly used in geochronology are for three-

dimensional linear arrays, first described for 23 0Th/U isochrons in Ludwig and Tit-



terington (1994) and utilized again for 'Total Pb/U Isochrons' in Ludwig (1998b). In

the explicitly MLE-motivated former publication, the first (unnumbered) equation in

the Appendix is equivalent to equation (3.17) for k = 3 and ai = 0, vi = 1, and the

second partial derivatives given later are equivalent to the general case given here in

3.7. In the latter publication, Equation 33 is a special case of equation (3.13) above

with the same constraints. Note the matrix form of the second partial derivatives

given in 3.7 avoid the rapidly rising number of partial derivative terms required when

computing the partial derivatives separately for each line parameter. For instance, 18

separate partial second derivatives are not needed for k = 4, 32 for k = 5, and so on.

3.4 Application to Kinetic Isotope Fractionation

Kinetic isotope fractionation between isotopologues, or isotopic molecules, occurs

when a chemical reaction occurs irreversibly with different rate constants for each

isotopologue (Young et al., 2002). The rate constants depend in large part on the ef-

fective masses of the isotopologues, and are often assumed proportional to the inverse

square root of their effective mass (Bigeleisen, 1949; Young et al., 2002). In the case

of evaporation of Pb from a hot filament in a thermal ionization mass spectrometer

(TIMS), the reaction product Pb is instantaneously removed by ionization and ac-

celeration by the mass spectrometer or by rapid pumping at high vacuum. Thus, in

addition to an instantaneous fractionation due to the differing rate constants, there

is a time-progressive depletion of the species with the faster rate constant (usually

the lighter isotopologue), known as a reservoir effect. The two assumptions, that the

ratio of the reaction constants depend on the inverse square root of the mass but not

on time or temperature, and that Pb evaporated from the filament is instantaneously

removed, generate a differential equation that relates the quantity of sample con-

sumed to the isotopic composition of the instantaneous reaction products, which are

analyzed by TIMS when ionized. The solution to this differential equation is known

as the 'Rayleigh law' (Russell et al., 1978; Habfast, 1998).



3.4.1 Rayleigh and Exponential Fractionation Equations

The Rayleigh law for two isotopes a and b with masses Ma and Mb is

mea) corr " b M/Ma - 1 (3.24)

where corr and meas denote true (fractionation-corrected) and measured isotope

ratios, and (b/bo) is the fraction of isotope b remaining on the filament.

Not all observations by TIMS of fractionating samples follow the predictions made

by the Rayleigh law (e.g., Russell et al., 1978), and the progressive depletion model

does not apply to a constantly refreshed reservoir, as for inductively-coupled plasma

mass spectrometry (ICP-MS). A popular (e.g., Boyet and Carlson, 2006; Amelin et al.,

2009) empirical law, which is also an approximate solution to the Rayleigh equation,

is the exponential fractionation law (Russell et al., 1978; Habfast, 1998; Albarede

et al., 2004). The exponential fractionation equation for the same scenario above is

(-a ( a - - (3.25)b o, b mesMa

where B is the mass fractionation factor, which may change during the course of an

analysis and vary between analyses.

For both fractionation laws, it is possible to derive a linear equation relating

the fractionation-corrected log-ratio of isotopes to the measured log-ratio. For the

Rayleigh law, taking the natural logarithm of both sides and rearranging terms yields

ln ( ) In a 1 In -: - _ 1) . n( ) (3.26)

and for the exponential law,

In -a In -a + In (3.27)
b o meas Ma

Three-isotope systems whose fractionation is governed by either the Rayleigh or



exponential law (i.e. changing (b/bo) or #) will generate linear arrays when plotted

as ln(a/b)meas VS. ln(c/b)meas. This relationship is often exploited to assess or cor-

rect the effects isotopic fractionation (Marechal et al., 1999; Bizzarro et al., 2011).

For the simpler exponential fractionation equation, the line can be expressed para-

metrically as passing through the log-ratio of the corrected isotopic composition (IC)

(ln(c/b)corr, ln(a/b)corr) with a two-component direction vector (ln(Mb/Mc), ln(Mb/Ma))

and fractionation factor 3, where () denotes a transposed column vector. It follows

that the log-ratio of the corrected IC is analogous to a above, the direction vector,

which depends on the ratios of the isotopic masses has its analog in v, and 3 becomes

the location parameter t.

For the Rayleigh law, a plot of ln(a/b)meas vs. ln(c/b)meas passes through the point

(ln(c/b) + 1 ln(M/Mc), ln(a/b) + 1 ln(Mb/Ma)) with a direction vector ( Mb/Mc -

1, VMb/Ma - 1). Unlike the exponential law, the Rayleigh law does not predict

that the observed fractionation line will go through the true IC of the sample, and

the predicted slopes for the two are different. If the true IC is known to sufficient

absolute precision, this property may be used to distinguish between the two laws.

In the absence of a well-known standard IC, the difference in the predicted slopes

provides a sensitive test for the applicability of each law.

The linear equations above may be scaled up to systems with any number of iso-

topes (e.g., Sr, Ti, Nd, Pb), producing straight lines in log-ratio space with dimension

k equal to the number of isotopes present minus one. Isotopic fractionation behav-

ior can be evaluated by calculating the means pi of log-ratios to a common isotope

along with their covariance matrices Ej, then fitting a straight line to the data. It

is important to note that if pi and Ej are estimated from multiple measurements,

then mean and covariance calculations must be performed after the log-ratios are

evaluated. In other words, one must calculate the mean and covariance matrix of the

log-ratios rather than the logarithm of the mean and covariance matrix of the mea-

sured ratios. Using a common compositional variable (e.g. an isotope abundance)

as the denominator of log-ratios is the additive log-ratio transform (alr) of Aitchison

(1986), a well-established analytical technique for compositional data discussed in



Section 3.5.2.

3.4.2 Application to Pb Measurements by TIMS

Precise isotope ratio measurements of Pb by TIMS are used for high precision geo- and

cosmochronology (Amelin et al., 2009; Davydov et al., 2010), geochemistry (Fekia-

cova et al., 2007; Abouchami et al., 2005), and isotope standard inter-calibration

(Thirlwall, 2000; Doucelance and Manhes, 2001). To empirically evaluate isotopic

fractionation of Pb during TIMS analysis, a large (- 50 ng) sample of the standard

NBS 982 (Catanzaro et al., 1968) was loaded with a silica gel activator (Gerstenberger

and Haase, 1997) on a Re filament and run to exhaustion. The ion beams of 2 0 4Pb,
2 0 5Pb, 2 0 6Pb, and 2 0 8Pb were measured on a static Faraday array in 100-millisecond

integrations, alternating between 40 seconds baseline measured at half-mass and 75

seconds on-peak. The entire run consists of 51000 on-peak and 27200 baseline inte-

grations, provided in the electronic annex EA-1.

After correcting for baselines and propagating baseline uncertainties, the natural

logarithms of the 20 4 Pb, 207Pb, and 2 0 8Pb intensity divided by the 20 6Pb intensity

were evaluated for each integration. The mean and covariance matrix of every 25

log-ratios were calculated for a total of n = 2040 pi and >j, where each p has

the form (log( 2o4Pb/ 20 6Pb), log( 207Pb/ 206Pb), log( 20 8Pb/ 206Pb)). The short integra-

tion times and limited number of integrations per mean (2.5 seconds total per data

point) attempts to separate the covariance due to random signal noise from the lin-

ear fractionation trend. The three-dimensional measured data, plotted as a pair of

two-dimensional projections, is presented in Fig. 3-3.

The solution to the system of equations (3.18) and (3.19) was calculated with

the commercial mathematical software MATLAB using the built-in 'fsolve' function,

which employs the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt,

1963). The MATLAB code is provided as electronic annex EA-2. For this calculation

with n = 2040 means in k = 3 dimensions, the code takes ~ 20 seconds to compile

on a 2.4 GHz laptop computer. The maximum likelihood estimate of the regression

parameters a and v and their uncertainties are listed in Table 3.1 and the best fit line



is plotted in green in Fig. 3-3a, along with its 2o uncertainty envelope in Fig. 3-3b.

For a straight line fit, one component of a and v must be explicitly specified, and

the other components are calculated using these values. Here, the values of a 3 and v 3

were chosen to be 0.00016 and 1, respectively, so that a corresponds to the point on

the observed line with a 208 Pb/ 20 6Pb of 1.00016 (Catanzaro et al., 1968) and the first

two direction vector components are the slopes of the first two variables when plotted

against the third. Thus the first and second components of a and v are conditional

upon the explicitly specified value of the third component. Likewise, the covariance

matrix Eav describes the conditional probability distribution of the unknown param-

eters, here a1 , a2, vi, and v 2 , given a3 = 0.00016 and v 3 = 1. Changing the specified

values of a 3 and v 3 would change both the values and uncertainties of the new best fit

line parameters, but not the location of the best fit line or its uncertainty envelope.

The reduced chi-square statistic (x,2ed, equation 3.23) for this linear fit is 1.197 for

(3 - 1)(2040 - 2) 4076 degrees of freedom. The predicted standard deviation of

X2ed is (2/4076)1/2 0.022, so that the observed X2d is significantly greater than its

expected value of 1. Possible reasons for the elevated X2e include heavy-tailed non-

Gaussian probability distributions for the measured data or non-linear evolution of

the log-ratios, such as intermittent presence of isobaric interferences or subtly chang-

ing fractionation behavior with time. Although the latter possibilities are difficult to

rule out, the former is altogether likely considering the dearth of detailed noise char-

acterization of mass spectrometer measurements, especially at the 100 ms conversion

rate of the analog-digital converter. In this case, the robust linear regression algo-

rithm for k = 2 dimensions developed by Powell et al. (2002) could be adapted to a

higher-dimensional straight line model, such as that given by Sohn and Menke (2002).

Because the X ed is so close to unity, inflating the uncertainties by V1.197 = 1.094 or

using a robust regression technique will not change the conclusions that follow.

In the upper two plots of Fig. 3-3, which are projections of the data onto the

log( 204 Pb/ 206 Pb) vs. log(2 0sPb/ 206Pb) plane, the best fit line agrees with the predicted

mass-dependent fractionation (MDF) line using both the exponential or Rayleigh laws

(see also Table 3.1). However, the observed and mass-dependent fractionation lines



diverge significantly in the log( 2 7 Pb/ 20sPb) vs. log( 208Pb/ 206Pb) projection.

The horizontal or vertical position of the mass-dependent fractionation line is

uncertain for a NBS 982 Pb analysis: the absolute uncertainty of the IC is known to

only to ca. 180 ppm (2o-) (Catanzaro et al., 1968), and the analysis itself necessarily

includes a loading blank of uncertain mass and isotopic composition. Additionally,

the sample was run as a static analysis, and no effort was made to cancel small

differences in Faraday collector or amplifier efficiencies. None of these variables affect

the predicted slope of the fractionation line, which depends on the masses of the

isotopes alone (Albarede and Beard, 2004). Thus, the systematic difference in odd

mass number 2 0 7 Pb behavior relative to the even masses can be reliably attributed to

mass independent fraction (MIF) during the analysis.

MIF has been described in several heavy element isotopic systems, such as Cd,

Hf, Hg, TI, and U in laboratory and natural settings (see references in Epov et al.,

2011), and may be the result of nuclear field shift (Bigeleisen, 1996) or nuclear spin

(Buchachenko, 1995) effects. Both mechanisms predict systematic differences in the

fractionation of odd isotopes over even ones, as observed here. The magnitude of the

nuclear field shift effect is inversely proportional to the absolute temperature of the

system, which is typically > 1400 K during TIMS analysis, implicating the nuclear

spin effect. However, the reactions responsible for producing Pb+ ions from a silica

gel activator are complex (Kessinger et al., 2001), and no theoretical predictions yet

exist for the magnitude of the nuclear field shift effect (e.g., Schauble, 2007).

For large (> 1 ng) Pb loads analyzed with a silica gel activator by TIMS, MIF

or an 'odd-even effect' has been postulated by several authors, including Thirlwall

(2000), Doucelance and Manhes (2001), and most recently by Amelin et al. (2005),

who also incorporate a 102Pb-20 5Pb tracer. In contrast to the data reported in these

references, the magnitude of mass-independent fractionation observed here is constant

during the course of the analysis, reflected by the linear fractionation trend. Thus

the fractionation correction equations for log-ratios need not be abandoned, and may



be amended with an additional term of the form

In ( =':n() 3 In +#n (M) +In("')] (3.28)

where ' describes the ratio between an isotope's apparent atomic mass on the fraction-

ation line and its true mass. The observed NBS 982 Pb fractionation trend is fit by this

modified exponential law with 7204Pb = 7206Pb =7208Pb = 1 and 7Y207Pb = 0.999828.

Accurate fractionation correction for precise Pb measurements by TIMS requires

both a mass-dependent and a mass-independent correction. This may be true espe-

cially for Pb measurements made with a 205Pb tracer, an additional odd-mass isotope.

If the values of 7205Pb and Y207Pb are observed to vary between analyses, this additional

uncertainty should be considered when interpreting high-precision datasets.

3.5 Isochrons, Mixing Lines, and the Statistics of

Compositional Data

The exponential and Rayleigh fractionation laws presented in Section 3.4 predict lin-

ear trends in log-ratio coordinates, but contain exponential terms in isotope ratio

coordinates. In contrast, isotopic mixing lines and isochron relationships have linear

trends only in the (non-logged) isotope ratio coordinates. Fitting a straight line to

these models thus requires evaluating means and covariance matrices and minimiz-

ing weighted distances in isotope ratio space. There are a number of fundamental

problems with all three calculations, which are outlined in full in Aitchison (1986),

as well as (e.g., Aitchison, 1984, 1992; Pawlowsky-Glahn and Egozcue, 2006), but

have been largely ignored by the isotope geochemistry community. The basic prob-

lem is that within a set of isotope ratios or compositional components is an implicit

constraint: the sum of the (non-negative) fractional components, is equal to 1, or

100%. Recognizing the unit sum constraint has led to a rich literature on composi-

tional data analysis, and ignoring this constraint manifests itself in several intuitively

unpredictable ways, detailed in Aitchison (1986), with two symptoms outlined briefly



below. The non-linear regression algorithm required by isochron and convex mixing

models is beyond the scope of this work.

3.5.1 Some Pitfalls of Conventional Multivariate Statistics

for Isotope Ratios

Consider evaluating the arithmetic means F1 and f 2 of n measurements of the isotope

ratios r1 = (a/b) and r 2 = (c/b). For the same n measurements, the arithmetic mean

f 3 of r3 =(a/c) is not fi/f 2. Therefore, any statistical inference made, for instance an

age derived from an isochron, will depend on the arbitrary choice of numerator and

denominator isotopes when the ratios are measured: expressing the system in terms

of r2 and r3 instead of r 1 and r2 or their reciprocals would yield different results. Note

that the same problem applies to ratios expressed in c or 3 notation.

This problem does not extend to the log-ratios utilized in Section 3.4. For instance,

the arithmetic means R1 and R2 of n measured log-ratios R1 = log(a/b) and R2

log(c/b) can be subtracted to calculate the mean R 3 of R 3 = log(a/c). Transforming

back to (non-logged) isotope ratio space by evaluating fi = exp(R 1 ), f 2 = exp(R 2 ),

and 63 = exp(R 3 ) generates a self-consistent set of means, so that 1/ 2 = r3 . Because

R is the arithmetic mean of the measured log-ratios, i is the geometric mean of the

isotope ratios.

Using the covariance matrix of the measured isotope ratios to define a multivari-

ate normal probability distribution function (e.g., Ludwig, 2003; McLean et al., 2011)

has several related shortcomings. First, the multivariate normal distribution assigns

a finite probability over all positive and negative real numbers, which is inappropri-

ate for isotope ratios that are assumed to always be greater than or equal to zero.

Although this effect is negligible for analyses with small uncertainties far from zero,

it is more pronounced for measurements with larger uncertainties and low absolute

values. For instance, the inverse Pb isochron in Fig. 2 of Amelin et al. (2009) features

several highly radiogenic analyses with large leverage on the Pb-Pb date whose 2-

uncertainty ellipses overlap negative 2 0 4Pb/ 20 6Pb values.



In contrast, log-ratios are permitted to be negative, since the exponential function

that transforms back to (non-logged) isotope ratios generates only positive values.

The assumption of a normal distribution for the log-ratios is equivalent to assuming

a log-normal distribution for the isotope ratios themselves. This difference becomes

smaller for increasing precision and distance from a zero value, and the distinction for

data near detection limits merits further investigation with empirical data. However,

the fact that the log-normal distribution is defined only over positive values represents

a step in the right direction.

Both internal inconsistencies outlined above become less severe as data

3.5.2 Application of Compositional Data Methods to Expo-

nential Mass Fractionation

The exponential fractionation correction equations (3.25) and (3.27) in Section 3.4.1

are cumbersome, especially when the presence of three or more isotopes necessitate

a system of pairwise equations. However, the same relationship for all isotopes can

also be written succinctly as a linear function of compositional vectors, using the

operators appropriate for compositional data:

Xcorr Xmeas e (# 0 mass) (3.29)

In this equation, both Xmeas and mass are compositional data vectors, which ex-

press the relative proportion of each component and sum to a constant, for instance

1 or 100%. Thus a typical measured Pb IC (2 04 Pb/ 206Pb, 2 07Pb/ 206 Pb, 208 Pb/ 206Pb) of

(0.0273, 0.4668, 0.9989) from Section 3.4 becomes xmeas ~ (0.011, 0.4011, 0.1872, 0.4007),

where the four components correspond to the fractional abundances of 204 Pb, 20 6Pb,
207Pb, and 20sPb.

Normalization to a constant sum, in this case unity, performs the same function

as evaluating ratios instead of utilizing absolute intensities or abundances. Only the

ratios of the isotopic masses are used in equations (3.25) and (3.27) as well, and so they

too form a compositional data vector and can be normalized to the same constant.
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Note that the arbitrary fractionation factor # used in equation (3.29) has the opposite

sign as that used in equations (3.25) and (3.27), so that the same corrected Pb IC

would be calculated using for instance # 1.4 in equation (3.25) and 3 -1.4 in

equation (3.29).

The two operations e and 0 in equation (3.29), known as perturbation and power

transformation respectively, are the compositional analogues of addition and multi-

plication. As defined by Aitchison (1986) for D total compositional components, they

are

x E y = C(xlyi, x 2y 2 , ... XDYD) (3.30)

#@y = C (y, y2, . .. YD) (3.31)

where the closure operator C is simply normalizes the resulting vector components to

a constant sum.

Transforming the compositional data vectors into log-ratios with a common de-

nominator (e.g., 2 0 6Pb in the example) is the additive log-ratio transform (alr) of

Aitchison (1986), which is familiar to isotope geochemists as the natural sample space

for plotting exponential fractionation trends as straight lines.

After performing the alr, the analogy of the perturbation and power transform to

addition and multiplication become clear. For instance, the [log(Mb/Ma) +log(7b/7)a]

term in equation (3.28) can be rewritten as an expression for a modified 'effective'

mass vector for isotopes undergoing mass independent fractionation,

mass = mass e gamma (3.32)

Multiplying mass' by / in equation (3.28) becomes a power transform, so that a

modified form of the exponential equation, including mass independent effects, is

xcorr = Xmeas e (3 @ mass') (3.33)

Thus, the complicated system of equations needed to describe the behavior of multi-
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ple isotopes exhibiting mass-independent fractionation takes an elegant linear form,

analogous to the line a + vt. Here, the a is the measured isotopic composition repre-

sented by the xmeas, the slope vector v is the effective masses mass', and the position

parameter t is the fractionation parameter /.

3.6 Summary and Conclusions

Although a number of straight line regression algorithms are used by the geochemical

community, none treat the general case of data with correlated uncertainties in two or

more dimensions. The best fit line parameters are those that maximize their likelihood

function, and are found by setting the derivative of the log-likelihood function to zero.

Uncertainties in the regression parameters are then determined by using the second

derivatives of the log-likelihood equation.

Isotopic fractionation is often modeled by linear functions in log-ratio space, such

as the Rayleigh and exponential laws. An experiment testing their applicability to

Pb analysis by TIMS shows that progressive fractionation during an analysis is well

fit by a linear trend. Although the mass-dependent fractionation prediction made

by the linear and Rayleigh laws hold for even mass number Pb isotopes, 27Pb ex-

hibits constant-magnitude mass-independent fractionation throughout the analysis,

described by a modified exponential fractionation law.

For compositional data, the linear regression algorithm is valid only when the data

are treated as log-ratios. Models that are not linear in this space, such as isochrons

and mixing lines, cannot be fit by a line because self-consistent means, covariance

matrices, and distances cannot be calculated in isotope ratio space. The established

field of compositional data analysis can be used to extend the findings herein.
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3.7 Appendix A: Second Derivatives of log-Likelihood

Equation for Best Fit Line

8 2 InL E i; EvvT (

BaaT vTE-1V=1

2 In L n 2(pi - a)T -V Tv -1 _ vT -1 -1 v(p, - a)T -1 + (pi - a)T -1 -1

BavT vTE1V 2  (3.35)i= 1

02 In L (2 InL)T (3.36)
OvaT BavT (.6

L [vT v) 2 (2v -(pt - v)Et'(pi - a)vT -1

+ v E - vE- 1 (pi - a)(p, - a)TE 1 - (vTE-1(p, - a)) 2  
1

- 2 vT (p, - a 1 v (pi - a)T -

- 4 vT -1 T -IvvTE7 1 (pi - a) E-1 (pi - a)

- (vTE - (p, - a)) 2  _lv)VTE i]

(vTE iv) 4  (3.37)

3.8 Appendix B: Multivariate weighted mean

Equation (3.3) is the multivariate probability density function at any point x in

the vicinity of the measurement pi with covariance matrix Ej. For a dataset of n

measurements P = (pi, P2, ... pn), the multivariate weighted mean p can be derived

using a maximum likelihood calculation similar to that of the best fit line. Using the

probability distribution function in (3.3) to form a likelihood function for p in analogy

to equations (3.14) and (3.15),

ln L(p|P, E) oc ln f(pi, E E 1) = [(p - p) T EI (pi - p)] (3.38)
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Setting the derivative of the log-likelihood function with respect to p to zero and

solving for the maximum likelihood estimate of P yields

n, (pi - 0 (3.39)

n n
-11

.E i= .i i=140.

This explicit estimate for the multivariate weighted mean is a special case of the im-

plicitly defined weighted mean in the presence of overdispersion in Vermeesch (2010).

The covariance matrix for P is the inverse of its Fisher Information Matrix I,

S= 2  nC (3.41)

=I- =(3.42)

This choice of P minimizes

Xred kT 11 E [ p)] (343)
k(n - 1

the expression for the reduced chi-square sum, also known as the MSWD.
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3.9 Figure captions

Figure 3-1: Projection from a measured data point to the best fit line in three

dimensions. The best fit line contains the point a (light blue), and follows the direction

vector v (dark blue arrow). Any point on the line can be given by the expression

a + vt. The closest point on the line to the measured data point pi (red) is its

perpendicular projection to the line pfi, in green. The vector difference between pi

and Pi is known as the residual vector ri, shown as a green line segment.

Figure 3-2: a) The point p with covariance matrix E depicted as a 1a uncer-

tainty ellipse (Mahalanobis distance = 1) is predicted to lie on the line a + vt. The

perpendicular projection from the point to the line is not the best estimate of the

point's location on the line.

b) The system in (a) with an applied linear transform defined by the matrix U, here

a stretching along the horizontal axis. In the transformed system, Euclidean distance

is the same as Mahalanobis distance, and the best residual (solid line segment) is

determined by the perpendicular projection algorithm of Section 3.2.1.

c) Although it is not part of the fitting algorithm, the inverse linear transform U- 1

may be applied to restore the original system. The restored maximum likelihood

residual is not the perpendicular vector between the point and the line.

Figure 3-3: Observed isotopic fractionation for a single analysis of Pb standard

NBS 982, measured by TIMS using a silica gel activator. Data is plotted in log-ratio

space (black axes), with isotope ratio values given on the opposite axis in red.

a) Plots of all measured data, as log-ratios log( 204 Pb/ 206Pb) and log( 207Pb/ 2 0 6 Pb)

vs. log( 208 Pb/ 20 6Pb). Each blue measured value represents the mean of 25 consecutive

100-millisecond integrations. The dark green line is the best fit line to the three-

dimensional data. For reference, the mass-dependent fractionation line predicted by

the exponential equation is plotted in red. While the observed components of the

direction vector in 2 0 4 Pb-206Pb-20 8 Pb space, involving all even isotopes, is the same as

the predicted MDF line, the log(2 07Pb/ 20 6Pb) slope component diverges significantly.

The black box marks the plot limits in (b).
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b) A closeup of data in (a), plotted with the same conventions. A 2o uncertainty

ellipse is displayed for every twenty-fifth measured mean, with the others omitted for

clarity. The 2o- uncertainty envelope for the best fit line is plotted with green dashed

lines.
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Table 3.1: Maximum likelihood estimates, uncer-
tainties, and correlation coefficients for the best fit
line parameters to the NBS 982 Pb fractionation
data.

value ±2o- exp." Ray.b

ai -3.604198 0.000061
a 2  -0.7613001 0.0000041
a 3C 0.00016 -
vi -0.993 0.040 -1.009 -1.014
v 2  0.4836 0.0027 0.5014 0.5020
V3c I

Matrix of correlation coefficients for uncertainties
in fit parameters:

a, a2  v1 V2
a1  1
a2  0.032 1
vi 0.726 0.021 1
V2 0.021 0.721 0.028 1
a value predicted by exponential law
b value predicted by Rayleigh law
C value set explicitly

107



Pi

Figure 3-1: Linear regression parameters

U U-
Ur-

P>< Up

UEUt=

Figure 3-2: Maximum likelihood by Cholesky transformation
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Figure 3-3: Observed isotopic fractionation for a single analysis of NBS 982
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Chapter 4

Evaluating Analytical and

Systematic Uncertainty in Mixed

U-Pb Tracer Calibration

Abstract

U-Pb isotope dilution thermal ionization mass spectrometry (ID-TIMS) dates are

among the most precise and accurate available, and as such they underpin much of

the geologic timescale. U/Pb isotope ratio determinations by ID-TIMS can be made

to very high precision, but they are affected by systematic uncertainties from several

sources, including the isotopic standards used to calibrate instrumental mass fraction-

ation, the isotopic composition (IC) and U/Pb ratio of gravimetric solutions used to

calibrate the tracer solution, and the ICs of the tracer and blank that are subtracted

from each analysis. When considered with decay constant uncertainties and correc-

tions for intermediate daughter excess/deficiencies, these provide a fundamental limi-

tation on the absolute uncertainties achievable by ID-TIMS. The EARTHTIME effort

to calibrate mixed (20 2Pb)-205Pb-2 33 U_2 3 5U tracer for community use provides an op-

portunity to unravel the correlations between the tracer parameters and between the

tracer and major components of systematic uncertainty. This contribution conditions
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the tracer calibration parameters on first-principles measurements of mass and purity

that are traceable to SI units. Because the calculated tracer isotope ratios all depend

on a common set of measurements, their uncertainties are correlated. For U-Pb date

determinations, accounting for the uncertainty correlations reveals that uncertainties

in the 2 0 6Pb/ 2 3 8 U ratio, and therefore the 2 0 6Pb/ 2 3 8 U date, are expected to be roughly

half of the total uncertainty in the 2 3 5U/ 2 05Pb ratio. Combined with new, more accu-

rate purity measurements, the tracer uncertainty contribution to 2 0 6Pb/ 2 3 8U dates is

found to be <300 ppm. Calibration of other existing tracer with this algorithm using

the same a priori constraints will be relatable to the EARTHTIME tracer and to SI

units, and may achieve similar precision.

4.1 Introduction

The elements Pb and U cannot be measured simultaneously on a thermal ionization

mass spectrometer (TIMS). Instead, U/Pb ratios are measured relative to a tracer

that contains a mixture of synthetically enriched U and Pb isotopes. Measuring one

element at a time, the ratios of natural Pb and U isotopes to their counterparts in

the tracer can be used, along with the U/Pb ratio of the tracer, to calculate the U/Pb

ratios of the sample and therefore its U-Pb date. This procedure is known as isotope

dilution (ID), and the known U/Pb ratio of the tracer that it exploits underlies the

accuracy and precision of U-Pb geochronology.

In addition to the artificially enriched isotopes which comprise the majority of

Pb and U in the tracer, there is inevitably some contamination by small amounts of

naturally occurring, non-enriched isotopes. These derive from impurities in the en-

riched isotopes or from the acids and laboratory procedures used to create the tracer.

Knowledge of the amount of these naturally occurring isotopes in the tracer relative

to the enriched isotopes is required so that their contribution may be subtracted from

the measured Pb and U to determine the amount of Pb and U in the sample.

Systematic uncertainties in the tracer isotopic composition (IC) control how re-

sults from different labs, and to some extent different isotopic decay systems, are com-
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pared and confederated to calibrate the geologic timescale. As part of the EARTH-

TIME initiative, two mixed U-Pb tracers were created at MIT in 2004-2005. The first,

'ET535', is a high-purity mixed 2 0 5Pb-2 3 3 U- 2 3 5U tracer, and the second, 'ET2535',

additionally contains 2 0 2 Pb. All four of these isotopes are rare to absent in natural

systems, with 2 3 5U the most abundant at ca. 0.7% of naturally occurring U. A com-

panion paper (Condon et al., 2011) describes the mass spectrometry and metrology

required to calibrate the solutions. This paper details the statistical models behind

the calculation of the maximum likelihood estimates for the tracer isotopic composi-

tion.

4.1.1 First Principles

The U-Pb system is known as the 'gold standard' of geochronology, primarily because

its two decay systems, 238U to 206Pb and 235U to 207Pb, under many circumstances

provide an internal check on the presence of open-system behavior, and because the

U decay constants are particularly well-determined (Jaffey et al., 1971). By counting

the number of U decays for each isotope, then making several calculations involving

the detector geometry and the purity of the isotopes present, known as a measurement

model, Jaffey et al. (1971) relate the U decay constants to the fundamental SI unit

of time, the second. Because the detector setup and U purity measurements are not

known perfectly, the resulting uncertainties in the decay constant must be considered

when relating U-Pb data to dates with that use different decay constants, such as

Ar-Ar dates. Thus, it is the measurement, its uncertainties, and a model that relates

the measurement to SI units

The decay constant is important, but it is not the only systematic variable required

to relate a U-Pb date to SI units. Because the U/Pb ratio measurement is separated,

with the use of the isotopic tracer, into separate sample/tracer ratio measurements

for Pb and U, the U/Pb ratio of the sample depends on the U-Pb ratio of the tracer

as well. This paper details the measurement model required to relate the tracer IC

to SI units.

As with the decay constant determinations of Jaffey et al. (1971), the connec-
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tion between the first principles determinations in SI units, principally measurements

of mass, and the final results is made with a measurement model, a documented

framework of equations and algorithms that transform measured data into useful pa-

rameters, here the tracer IC. The measured data in this framework may be refined in

the future and then easily incorporated into the whole, producing new tracer values,

but retaining the same uncertainty structure. It is important to clearly establish the

assumptions and reference values used to calibrate the tracer, as well as their internal

consistency. For instance, the EARTHTIME tracer solution is calibrated against the

gravimetrically determined 20 8Pb/ 2 0 6Pb of NBS 981 for Pb and 2 3 3 U/ 2 3 6 U of CRM

3636 for U.

The wealth of data from the tracer calibration exercise provides the opportu-

nity to evaluate the dependence of calculated U-Pb and Pb-Pb dates on systematic

uncertainties, which at their most fundamental level are weighing and purity mea-

surements. The primary goal is to establish tracer values and uncertainties in this

absolute reference frame. This first enables rigorous inter-comparison between U-Pb

data measured with different tracers that are both calibrated to the same reference

materials-even if youre not using the ET tracer, you can still calibrate your own

tracer to the same set of gravimetric solutions-and second provides an important

datum for comparing between isotopic decay systems (e.g. U-Pb and Ar-Ar).

Outline of the Tracer Calibration Algorithm

1. Inter-calibrate Pb and U ICs of all isotopic standards used for tracer calibration.

2. Interpret total procedural blank measurements as tracer-blank mixing lines to

estimate the IC of non-enriched tracer isotopes.

3. Use critical mixtures of the tracer and multiple U isotopic standards to estimate

the U IC of the tracer.

4. Determine the U/Pb ratios of the gravimetric solutions using measurements of

mass, purity, and the ICs of their constituent Pb and U standards.
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5. Combine results from all previous calculations to estimate the 2 3 5U/ 2 0 5Pb and
2 0 2Pb/ 2 05 Pb ratio of the tracer using mixtures of the tracer with three gravi-

metric solutions.

4.2 Application of Inverse Methods

4.2.1 Measurement Model

Relating the isotopic composition of the tracer to first principles measurements re-

quires a large quantity of data: over 105 measured isotope ratios are used by the

algorithms that follow. Each measured isotope ratio contains information about the

mixture of components being analyzed, which include the small but unavoidable Pb

and U contamination known as laboratory blank, along with the tracer, a gravimetric

solution, or both. Unraveling the ICs and relative proportions of each component is

made more difficult by isotopic fractionation, or the preferential evaporation, ioniza-

tion and/or detection of lighter isotopes over heavier ones, which changes in magni-

tude during the course of long analyses. Thus, a measured ratio may be expressed

as a ratio of its summed components, modified by a correction factor for isotopic

fractionation. A system of equations composed of these nonlinear functions, one for

each measured ratio, is known as the measurement model, and its formulation is the

first step of tracer calibration.

The model parameters, such as the ICs and relative proportions of the tracer,

isotopic standards, and blank, as well as the magnitude of isotopic fractionation, fall

into several categories. The parameters measured by first principles, which underpin

the tracer calibration, have values that are known a priori, with systematic uncer-

tainties, and their value and uncertainty remain unchanged with the addition of new

information. Other parameters, such as the relative quantity of the blank in an anal-

ysis, can be estimated from prior experience, but if they can be further constrained

by the isotope ratio measurements and the measurement model, then their value is

allowed to change within the a priori limits. Finally, there are free model parameters,
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such as the IC of the tracer, that have essentially no a priori information and which

are constrained by both the assumed systematic variables and the measured isotope

ratios through the measurement model.

If there are more measured isotope ratios than parameters to solve for, then the

measurement model is overdetermined. When formulated as an inverse problem (e.g.

Tarantola and Valette, 1982a,b; Tarantola, 2005), the measurement model may be

expressed as d = G(m), where d is a vector of data, in this case isotope ratio

measurements, and G(m) is the (nonlinear) function of the the model parameters m

that explains the measured data.

4.2.2 Solving the Inverse Problem

The best choice of the parameter values iri minimizes the misfit between the observed

values of the isotope ratios on the left hand side of the equations with the values

predicted by the right-hand side. The misfit applies both to the difference between the

data and the model predictions, d-G(m), which should agree within the uncertainties

of the measured data, and the difference between any prior constraints on the model

parameters and the best fit values, mprior - ii. These differences are weighted by

the measured uncertainties for the data and the a priori uncertainties in the model

parameters. The free model parameters considered unknowns are given diffuse priors,

or large initial uncertainties, which are then resolved by considering the constraints

supplied by the measured data and other better-constrained model parameters.

The misfit or objective function whose minimum is the solution to the inverse

problem is (Tarantola, 2005)

S = (d - G(rhn))TCD (d - G(i)) + (mprior - iin)TCi-l (mprior - rii) (4.1)

where CD and CM are the covariance matrices of the measured data and the prior

model parameter estimates, respectively. To minimize S, a stable preconditioned

steepest descent method is employed (Tarantola, 2005). The algorithm calculates

the gradient, or multi-dimensional direction in which the value of S is most rapidly
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decreasing, then uses an estimate of the curvature of the S to estimate a trial mini-

mum value. At the trial minimum, a new gradient and curvature are estimated, and

the procedure may be iterated until convergence. The resulting estimate rh is the

maximum likelihood estimate of the model parameter values.

To evaluate the measurement uncertainties, or the joint conditional density func-

tion of the model parameters treated as unknowns given the estimates of systematic

variables, near-zero uncertainties were assigned to the systematic variables, and the

overdetermined non-linear system was solved using these values. The measurement

uncertainties are calculated by approximating the function G(1h) with its Jacobian

matrix evaluated at the solution, denoted G. The matrix G has a row for each

measured isotope ratio and a column for each model parameter, and contains the

derivative of each of the predicted measured isotope ratio with respect to the model

parameters. The measured uncertainties are estimated using

0o "as = Cm - Cm GT (G Cm GT + CD) 'G CM (4.2)

which can be derived from equation (4.1), the objective function (Tarantola, 2005).

In order to evaluate the component of uncertainty arising from systematic effects,

the entire nonlinear inverse problem can be solved for A Monte Carlo realizations of

the systematic parameters, created with a pseudorandom number generator to have

the desired probability density function, usually a multivariate Gaussian. The value

of M here ranges from 104 to 107, depending on the computational difficulty of the

calculation. The systematic parameters, such as the assumed 20 8 Pb/ 20 6Pb ratio of

NBS 981, can either be given infinitesimally small prior uncertainties to ensure that

the model converges to the input value, or can be omitted from m entirely.

For the model parameters treated as unknowns, the distribution of the M resulting

solutions defines the probability distribution of the model parameters resulting from

the input systematic uncertainties. Because the model G(m) is nonlinear, even if

the uncertainties in the measured data and systematic variables all have Gaussian

distributions, the calculated uncertainties in the other output model parameters, such
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as the ' 35U/ 20 5Pb of the tracer, may be significantly non-Gaussian. The departure

from the normal distribution depends on both the degree of non-linearity of the system

at the value of the solution and the size of the input uncertainties. Solving the least

squares system for many Monte Carlo realizations of the systematic variables provides

a way to evaluate the probability distribution of the output model parameters without

assuming that the model is locally linear. The normality of the Monte Carlo-modeled

solutions can be checked by plotting the data as a histogram or a Q-Q plot, or

with a Kolmogorov-Smirnov (K-S) test, which compares the observed Monte-Carlo

distribution with the theoretically predicted normal distribution with the same mean

and standard deviation.

If the systematic uncertainties in the model parameters are confirmed to be nor-

mally distributed, they can be estimated by evaluating the mean and covariance

matrix of the M estimates of ii, denoted Cu. The total systematic and measure-

ment uncertainty can then be expressed as the sum of the measured and systematic

covariance matrices:

C tot crnmeas + CgjsS(43O M=OE" " (4.3)

4.3 Inter-calibration of Pb and U standards

In order to determine the U-Pb ratio of the ET(2)535 tracers, each was mixed with

three gravimetric solutions that have known U and Pb concentrations. The solutions

are composed of three different Pb standards, NBS 981 and 982 from the National

Bureau of Standards and 'Puratronic Pb' from Alfa Aesar, along with two different

U standards, CRM 112a and CRM 115. An additional U standard, U500, was used

to separately evaluate the U IC of the tracers. The tracer U IC is then used in the

fractionation correction equations for the gravimetric-tracer mixture data reduction.

Because all six isotopic standards are used to determine the tracer U/Pb ratio,

their uncertainties all contribute to the final uncertainty budget of the tracer IC,

and any correlation between the uncertainties in their ICs must be considered when

averaging the results from the three gravimetric solutions. This uncertainty correla-
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tion results from relating the ICs of the standards to SI units, accomplished for both

U and Pb by measuring the isotope ratios of the standards against an independent

gravimetrically calibrated isotope ratio, a process known as inter-calibration.

4.3.1 U Standard Inter-calibration

To relate the isotopic compositions of the U standards to one another, we measured

each against IRMM 3636(a), which was fabricated by weighing highly isotopically

pure 2 3 3 U and 2 36U and mixing them in a 1:1 ratio (Verbruggen et al., 2008). Because

the artificial isotopes that comprise IRMM 3636(a) have been weighed against an

in-house kilogram reference, its precisely determined 2 3 3 U/ 2 36 U is traceable to the SI

system, and ICs that have been measured against it are relatable to the SI through

their measurement uncertainties and to one another by tracing each measurement

back to SI units.

In this way, the 2 3 8 U/ 23 5U ratios and uncertainties for the standards SRM U500

and CRM 112a can be related using the supplementary data from Condon et al.

(2010), which reports the derivative or linear dependence of each measured IC with

respect to IRMM 3636. New CRM115 data is provided in the supplementary data of

this publication, and is reduced using the same algorithms as Condon et al. (2010).

No correlations between the isotope ratio uncertainties are reported on the IRMM

3636 certificate of analysis, so they are assumed to be uncorrelated. The uncertainty in

the IC of IRMM 3636a is treated here as a systematic uncertainty among the standard

analyses. CRM 115 and CRM U500 are both synthetic standards and thus contain

236U, a common fission byproduct. The 2 3 6U/ 2 3 5U values for each were measured for

un-spiked aliquots, then this source of 2 3 6U was subtracted before using the 2 3 6U/ 233 U

of IRMM 3636(a) to determine the magnitude of isotopic fractionation.

4.3.2 Pb Standard Inter-calibration

Unlike the well-calibrated IRMM-3636(a) solution for U, there is no gravimetrically

calibrated mixture of synthetically produced isotopes against which Pb isotopic stan-
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dards can be measured. However, the NBS 981, 982, and 983 standards have been

calibrated by sample-standard bracketing with mixtures of high-purity 2o8Pb and

20 6Pb that were gravimetrically mixed to mimic the 2 0 8Pb/ 2 0 6Pb of the standards

(Catanzao et al., 1968). As such, these determinations may be considered traceable

to SI units.

However, modern mass spectrometric measurements are significantly more precise,

and modern laboratory protocols have significantly lower contamination levels, or

laboratory blanks, which may bias the measurements. Because the original high-

purity 2 08Pb and 2 0 6Pb used by Catanzao et al. are no longer available, the absolute

uncertainties with respect to SI units cannot be improved with new measurements, but

the relative uncertainties between the Pb standards may be significantly refined. For

this purpose, we assume the gravimetrically traceable 20 8 Pb/ 2 0 6Pb of Catanzao et al.

(1968) of 2.1681 i 0.0008 (2cr), and use a series of measurements of each gravimetric

solution against a common 2 02 Pb-2 0 5Pb tracer to relate the ICs of the Pb standards to

one another. Because the 2o- uncertainty in the2 0 8 Pb/ 2 0 6Pb of NBS 981 in Catanzao

et al. (1968) is derived from a 95% confidence interval calculated with linear, rather

than quadratic addition, it is likely to be a conservative estimate of the true precision

of the original measurement.

Model

To inter-calibrate the Pb isotopic standards against a 20 2Pb-2 0 5Pb tracer, while moni-

toring the effect of a BaPO 2 isobaric interference, six masses must be measured. The

contributions to each measured mass may be broken down as follows,

2 0 1tot = 20 1BaPO2

2 0 2 tot = 202Pbtr + 202 BaPO 2

2 0 4 tot = 204Pbgr + 204 Pbbl + 204Pbtr + 204BaPO 2

2 0 5 tot = 2 0 5Pbtr + 2 0 5BaPO2 (4.4)
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2 0 6 tot = 2 0 6Pbgr + 2 0 6Pbbl + 2 0 6 Pbt

2 0 7 tot = 2 07Pbgr + 2 0 7 Pbb1 + 207Pbtr

2 0 8 tot = 208 Pbgr + 208PbbI + 2osPbtr

where gr denotes a contribution from the Pb standard used in the gravimetric U-Pb

solution, tr from the tracer, and bi from the laboratory blank.

The moles of each isotope of Pb can be normalized to 2 02 Pb, which occurs only

in the tracer. Likewise, the BaPO2 can be normalized to the polyatomic ion with

molecular weight 205.

201/tot 202 Pbtr = 201BaPO2/ 20'BaPO 2

202tot/ 202 Pbtr - 1+ 202BaPO2 / 205BaPO 2

204tot/ 202 Pbtr 2 04Pbgr/ 20 2 Pbtr + 2 04 Pbb1 / 202 Pbtr + 204 Pbtr / 20 2 Pbtr + 204 BaPO 2/ 205BaPO 2

205tot / 202 Pbtr = 20 5Pbtr / 202 Pbtr + 1 (4.5)

206tot/ 202 Pbtr = 206Pbgr/ 202 Pbtr + 20 6Pbb1 / 202 Pbtr + 20 6Pbtr/ 20 2Pbtr

207tot / 202Pbtr = 207Pbgr/ 202 Pbtr + 207Pbb1 / 202 Pbtr + 2 0 7Pbtr/ 202 Pbtr

208tot/ 2 0 2Pbtr = 2 08 Pbgr/202 Pbtr + 208Pbbl/ 2 0 2 Pbtr + 2 0 8 Pbtr/ 2 0 2 Pbtr

The molar Pb ratios may be recast in terms of the ratio of gravimetric solution

and laboratory blank Pb to that in the tracer and the ICs of the three components.

Likewise, the BaPO 2 contribution to each measured mass may be recast in terms of

the ratio of BaPO 2 to tracer and the BaPO2 IC. This is accomplished by defining

r62gt and r62bt as the ratio of the 2 0 6Pb contribution from the gravimetric solution

and the laoraroty blank to the 2 02Pb contribution from the tracer, respectively, and

r52BaPb as the ratio of the 20 5BaPO 2 to the 2 0 2 Pb contribution from the tracer

. The tracer IC is then expressed as the isotope ratios r25t, r42t, r62t, and r72t,

representing (2 02 Pb/ 2 0 5Pb)tr, (2 0 4 Pb/ 2 02Pb)tr, and so on, and likewise for r46b, r76b,
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r86b for the blank IC; r46g, r76g, r86g for the gravimetric Pb standard IC; and

rl5Ba, r25Ba, and r45Ba for the ratios of BaPO2 components. The measured signal

at each mass can then be written as

201tot/ 202Pbt, = r15Ba . r52BaPb

202tot/ 202Pbtr 1 + r25Ba -r52BaPb

204tt/ 202 Pbt, = r42t + r46g -r62gt + r46b r62bt + r45Ba -r52BaPb

205tot/ 202 Pbt, = 1/r25t + r52BaPb (4.6)

206tot/ 202 Pbtr = r62t + r62gt + r62bt

207tot/ 202 Pbtr = r62t + r76g- r62gt + r76b r62bt

208tot/ 202 Pbtr = r82t + r86g r62gt + r86b r62bt

Finally, the left hand side of equations (4.6) can be expressed as measured isotope

ratios with 20 6tot in the denominator. The right hand side of each equation must then

be divided through by r62t + r62gt + r62bt. To equate the measured isotope ratios

to the true IC of the sample, isotopic fractionation, or the preferential evaporation,

ionization, and/or detection of light isotopes over heavier ones, must be considered as

well. We use the a modified exponential fractionation law (Russell et al., 1978), which

has been shown empirically to closely model measured Pb isotopic data analyzed with

a silica gel emitter (McLean, 2011).

Pb has also been observed to exhibit mass-independent fractionation (MIF), with

odd-numbered isotopes preferentially evaporating and/or ionizing relative to the mass-

dependent trend predicted by exponential fractionation (Doucelance and Manhes,

2001; Amelin et al., 2005; McLean, 2011). For large loads effectively free of isobaric

interferences, this effect has been observed to remain constant throughout the analy-

sis of a sample loaded on a single filament, and can be parameterized a factor -y that

is unique to each isotope and is expected to be 1 for even-mass number isotopes. The

modified exponential equation for two isotopes a and b thus takes the form (McLean,
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2011)

- = b -Al (4.7)

where Ma and Mb are the atomic masses of isotopes a and b, and (a/b)m and (a/b)tue

are the measured and true (fractionation-corrected) isotope ratios, respectively. For

clarity, the 3 in equation (4.7) has the opposite sign but same absolute value as the

conventional exponential fractionation equation.

Assuming 7202 = 7204 = 7206 - 720s = 1, then dividing through by 206tot/ 20 2Pbt,

and adding the modified exponential fractionation term to the resulting Pb isotope

ratios produces the system of equations

r15Ba -r52BaPb'
r r62t + r62gti + r62bt

1 A 202  r25Ba -r52BaPb,.
r62t + r62gti + r62bti M206  r62t + r62gt + r62bti

r42t + r46g -r62gt' + r46b -r62bt (M2043 r45Ba -r52BaPb
r46m'

r62t + r62gti + r62bti M 20 6  r62t + r62gti + r62bti

1/r25t M/205 -7hj10 r52BaPb,.
r r62t + r62gti + r62bt M20 6  + r62t + r62gti + r62bt (4.8)

r72t + r76g - r62gt + r76b - r62bt M207 Y207
r76m' - r62t + r62gti + r62bti M206

r82t + r86g -r62gt + r86b - r62bt M208

8 r62t + r62gti + r62bt A 206

where the superscripted index i refers to an analysis and the subscripted index j
refers to an individual measured value. Thus each measurement must be corrected by

a unique r52BaPb, or magnitude of BaPO2 isobaric interference, and 1, or magnitude

of isotopic fractionation, which both change during the course of the analysis. Each

analysis, which consists of multiple measurements, has a unique value for r62gt and

r62bt, which express the relative quantities of tracer, blank, and gravimetric solution,

as well as 720s and 7207, which quantify the degree of MIF for the odd-mass number

Pb isotopes. Variables without indices, such as the tracer, Pb standard, blank, and
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BaPO 2 ICs, are assumed to be constant for all analyses of the same gravimetric Pb

standard.

Algorithm

The six equations in the system (4.8) describe the anticipated outcome of measuring a

mixture of Pb isotopic standard with laboratory blank and a 2 0 2Pb- 20 5Pb tracer that

is undergoing mass-independent fractionation in the presence of a BaPO2 isobaric

interference. Several of the variables on the right hand side of equations (4.8), along

with their uncertainties, can be constrained a priori. For instance, the IC of the

non-enriched tracer components, along with an average loading blank mass and their

uncertainties, can be estimated with the algorithm in Section 4.4. The approximate

BaPO2 IC is calculated from the approximate natural abundances of its component

elements (B6hlke et al., 2005), which is assumed to fractionate by 0.1% per u during

analysis, and is assigned a 2% prior uncertainty. The relative uncertainties in the

isotopic masses of the Pb isotopes are at the ppb level (Audi et al., 2003), and their

uncertainties are not propagated here. Finally, a single gravimetric Pb standard

isotope ratio is required to calibrate r25t, the 2 0 2 Pb/ 20 5Pb ratio of the tracer, which

can then be used to fractionation-correct the remaining two gravimetric standard Pb

ICs.

Parameters treated as unknowns include r25t, the 2 02 Pb/ 2 0 5 Pb ratio of the tracer,

and the Pb ICs of the gravimetric solutions, excluding the single assumed ratio.

Although the gravimetric solution and tracer masses were weighed prior to mixing,

a far more precise estimate of their ratio, represented by r62gt, can be calculated

using the mass spectrometry measurements, and so this parameter is treated as an

unknown. Finally, the three parameters that describe an instantaneous state of mass-

independent fractionation, 7205, '7207, and #, are treated as unknowns.

Thus several measurements of several Pb standards mixed with the same 202Pb-

205 tracer define a system of equations, and the model in (4.8) relates the measured

values to the parameters of interest.
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Results

To inter-calibrate the Pb isotopic standards used to create the gravimetric solutions,

we employed the measurements reported in Amelin and Davis (2006). The Amelin

and Davis data is used instead of separate measurements utilizing ET2535 in order to

avoid a large expenditure of relatively scarce 2 0 2Pb. Thus smaller loads of the gravi-

metric solutions with ET(2)535, which cannot be used to resolve mass-independent

fractionation with high precision, can be used to calibrate the U/Pb ratio of the tracer

using accurate Pb standard ICs derived from published data.

Only the highest-precision data reported were used for each standard: ten NBS

981, nine NBS 982, and four Puratronic Pb analyses. Each is reported as several

block means and standard errors, with isotope ratios relative to 2 0 6Pb, as in equa-

tions (4.8), and the measured ratio uncertainties are assumed to be uncorrelated.

To avoid uncorrected isobaric interferences, which usually occur at the beginning

or end of an analysis and significantly displace the block mean from the trend de-

fined by the majority of the data, all block data for each analysis were plotted in
2 02 Pb/ 20 6Pb-204 Pb/ 20 6Pb-207 Pb/ 20 6Pb-20 8 Pb/ 206Pb coordinates, and any outliers were

rejected from further consideration. Plots of the included and excluded block data

are shown in the electronic supplement.

After outlier rejection, there are 160 blocks each of NBS 981 and NBS 982, and

36 blocks of Puratronic Pb, each consisting of six measured ratios and uncertainties,

for a total of 2136 isotope ratio measurements. This is the length of the vector d

in the model described above. These data can be used to constrain the 824 model

parameters in the vector m needed to describe them: three Pb ratios for each gravi-

metric Pb standard, five Pb ratios for the IC of the tracer used, three BaPO 2 isotope

ratios, three Pb blank ratios, a separate value of r62bt, r62gt, 7207, and 7205 for each

of the 23 analyses and a separate # and r52BaPb for each of the 356 included blocks.

This defines an over-determined system that can be solved by conventional non-linear

least squares techniques. We employed an iterative method known as preconditioned

gradient descent (Tarantola, 2005) to minimize the misfit function in equation (4.1),
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which was executed in MATLAB. Initial values for the model parameters were cal-

culated using a linearized form of equations (4.8), and the derivatives required were

calculated analytically for each iteration. The MATLAB code is provided in the

electronic supplement.

In this model, the assumed 2osPb/ 20 Pb ratio of NBS 981, as well as the blank,

and BaPO 2 ICs and the ratios of 2 04 Pb, 2 06Pb, 2 0 7Pb, and 2 0 8Pb, to 2 0 2 Pb in the tracer

act as systematic uncertainties, whose values and uncertainties are known a priori.

The measurement uncertainties are calculated by approximating the function G(iii)

with its Jacobian matrix evaluated at the solution, denoted G. The matrix G has

2136 rows and 824 columns that contain the derivative of each of the 2136 predicted

values with respect to the 824 model parameters. The measured uncertainties are

estimated using equation (4.2).

The data plotted in Fig. 4-2 for the 2 0 8 Pb/ 2 0 6Pb of NBS 982 confirms that the

modeled output data is well-approximated by a Gaussian distribution, and the same

holds for the other isotope ratios of the gravimetric Pb standards. The results of all

Monte Carlo trials are included in the electronic supplement.

The systematic uncertainties in the model parameters may therefore be estimated

by evaluating the mean and covariance matrix of the 5000 estimates of ii, denoted

CTf". The total systematic and measurement uncertainties, estimated with equations

(4.2) and (4.3) are given in Table 4.3, and the correlation coefficients between them,

derived from Ct, are provided in Table 4.4.

4.4 Determining the Pb IC of the Tracer and Blank

It is not possible to accurately measure the isotopic composition of the tracer and

the loading blank independently. Loading any quantity of tracer involves admixture

with a silica gel activator, which has a finite Pb blank, and possibly introducing

more blank by pipetting the combined solution onto the filament and later exposing

it to atmosphere. The IC of the Pb blank is problematic to analyze alone because

small (e.g. < 0.3 pg) blanks produce weak ion beams (less than ca. 20 Cps 2 04 Pb and
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800 cps 20 8Pb) that are difficult to peak center and focus for accurate measurement.

In addition to the average IC of the Pb blank, its variability from load to load is

an important uncertainty contribution to both the tracer calibration exercise and

analyses of geologic materials (McLean et al., 2011). The practice of combining

several Pb blanks into a single analysis averages out and therefore underestimates

the blank IC variability, analogous to multi-grain TIMS analyses of heterogeneous

age populations.

However, if the loading blank and tracer are measured together, a linear regression

algorithm can be used to estimate each. Loading and analyzing several different

masses of tracer using the same amount of silica gel establishes a two-component

mixing line between the blank IC and the tracer IC. When plotted in 2 04 Pb/ 2 0 5Pb -
206pb/ 205 Pb _ 207 Pb/ 205 Pb - 208pb/20 5Pb coordinates, the tracer IC occupies a unique

point on this line and the blank IC is defined by its slope. The correct tracer and

blank IC together are important for accurately interpreting U-Pb data, especially

data with lower Pb*/Pbc ratios.

4.4.1 Determining the mixing line parameters

The algorithm presented in McLean (2011) calculates the best fit line through data

with correlated uncertainties in two or more dimensions, and is well-suited to a four-

dimensional mixing model. In this model, a measured mixture of tracer and blank
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falls on a mixing line that follows the equation

204Pb 204Pb
20 20 Pb I 1

mix tr

206 P 206p P t(206 P b l\oPb )Mix ( 05Pb + , 0Pb fe (.9
207Pb 207Pb> ( 207Pb

Pbmi 2 0 Pb/, 2 04Pb/Ib

208 Pb 208Pb ( 208 Pb
2 0 5Pb )Mix 2 05Pb /, 2 0 4 Pb fbi

where mix, tr, and bl, correspond to the mixture, tracer, and blank components,

respectively, and #b is the ratio of the moles of 2 04 Pb contributed from the blank to

the moles of 20 5Pb from the tracer, which varies from analysis to analysis. This is a

parametric equation for a line of the form pi = a + v ti, where a is a point on the

line corresponding to the tracer IC, as above, and vector v describes the direction

in which the tracer composition is perturbed by the addition of loading blank. Each

measured mixture IC pi is assigned an uncertainty in the form of a covariance matrix

that incorporates measurement and fractionation-correction effects.

Using the measurement uncertainties to weight the line fit assumes that the de-

viation of each measurement from the best fit line is due only to the assigned mea-

surement uncertainty and that the blank has a single, constant IC. In a dataset of

measured tracer-blank mixes, the IC of the blank is expected to vary because it is

a mixture of Pb contributions from several sources. For this experiment, the Pb

blank combines Pb in the silica gel emitter, Pb obtained from the phosphoric and

hydrochloric acid used to dry down the tracer, Pb on the surface of the beaker used

for drying and the inner surface of the pipette used for loading, as well as any partic-

ulate matter from the inside of the laminar flow bench on which the sample was dried

down. Although these often sum to <0.3 pg of total Pb blank (e.g., Rioux et al.,

2010), the ICs of the sources are likely variable, as are their relative contributions,
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resulting in a Pb blank with variable IC. This would create scatter from the mixing

line between the tracer IC (assumed constant) and the mean blank IC beyond that

expected from measurement uncertainties alone.

A dataset comprising 18 measurements of loading blank-tracer mixtures exhibit

overdispersion, with an MSWD of 39. To correctly account for the blank IC variability

as an additional source of scatter, an uncertainty term must be added to each point

that is proportional in magnitude to the amount of blank present. Thus, a point on the

mixing line close to the IC of the tracer would be perturbed minimally, while a point

farther away would be more sensitive to variation in the blank IC. The overdispersion

will affect the measured 20 6Pb/ 205Pb, 207 Pb/ 20 5Pb, and 20 8Pb/ 205Pb relative to the

measured 2 04 Pb/ 2 0 5Pb, and these effects will be correlated: the blank IC is expected

to be variable, but to generally trend between more and less radiogenic Pb ICs.

To calculate the variability in the blank IC from the measured data, a trial tracer

IC was first determined by fitting a line to the measurement data using the mea-

surement uncertainties only. This trial tracer IC was subtracted from each measured

mixture, and the measurement and fractionation correction uncertainties were prop-

agated to calculate 20 6Pb/ 204Pb, 20 7Pb/ 204Pb, and 208 Pb/ 204 Pb ratios and covariance

matrices for each measurement. The scatter in the resulting estimated blank ICs

cannot be explained by measurement uncertainties alone (Fig. 4-3).

Neglecting the measurement uncertainties and calculating the 2o- covariance el-

lipse for the discrete ratio data will overestimate the true variability of the tracer,

since it does not consider the extra scatter caused by measurement uncertainties. Al-

ternatively, the scatter in the Pb blank ICs may result from the sum of two different

multivariate normal distributions: the individual measurement uncertainty unique to

each data point and a blank IC variability that affects all data points. The maximum

likelihood estimate of the covariance matrix for this 'extra scatter' (Vermeesch, 2010)

is shown in green in Figure 4-3. It is smaller than the discrete data covariance ellipse,

and the lower correlation coefficients demonstrate that part of the high correlation of

the measured data is due to the high correlation of the measured uncertainties.

In order to account for the excess scatter from the variable Pb blank IC, the
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overdispersion covariance matrix must be added to the uncertainty in each measured

data point, multiplied by a factor proportional to the distance from the point to the

tracer IC. This factor increases linearly with distance along the line from the tracer

IC, where it is zero. A new line was fit to the data with these increased uncertainties,

a tracer IC chosen, and the overdispersion calculated; iterating these steps quickly

converges on the tracer IC, and the uncertainties in the line parameters now reflect

all sources of scatter.

4.4.2 Results

Estimates for the tracer and blank ICs are given in Table 4.5. Although the tracer IC

is constrained to be on the mixing line, there are only two physical constraints on its

location. First, the isotope ratios that comprise it must not be negative. Second, the

proposed IC must have less of the common Pb components than the analysis with

the highest ratio of tracer to blank. These two endpoints define a line segment along

which the tracer IC must lie, and it will be shown that the location chosen does not

influence the value or uncertainty budget of an analysis that his been corrected for

both tracer and blank. The tracer IC in Table 4.5 has been arbitrarily chosen to have

a composition halfway between the two possible endpoints of this line segment, and

its 2- uncertainty is set to the half-length of the segment.

The line fit algorithm of McLean (2011) outputs uncertainties for a point on the

line (the tracer IC) and the slope of the line (the blank IC), given in Table 4.5. The

uncertainties in the tracer IC ratios are strongly correlated, as are the blank IC ratios,

with correlation coefficients given in Table 4.6. The magnitude of the uncertainties in

the tracer IC and their correlation define an uncertainty envelope around the tracer

IC that is parallel to the tracer-blank mixing line. One way to see this is that the

ratios of the tracer IC uncertainties approximate the blank IC ratios: for instance, the

ratio of the 2 0 8 Pb/ 20 5Pb uncertainty to the 2 0 6Pb/ 2 0 5 Pb uncertainty is approximately

equal to the 20 6Pb/ 2 0 4Pb of the blank.
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4.4.3 Application to TIMS Pb measurements

Although the blank and tracer ICs may be expressed separately, both components

must be subtracted from routine analyses. Therefore it is their sum, which is con-

strained to fall along the mixing line, that is of interest. There are two approaches to

blank subtraction currently employed for TIMS analyses, used when analyses contain

204Pb masses consistent with total procedural blank measurements (e.g., chemically

abraded zircon) or contain initial common Pb (e.g. titanite, apatite) (McLean et al.,

2011).

In the first, all 2 0 Pb comes from the tracer and all 2 04Pb from either the tracer or

the blank. The measured and fractionation-corrected 2 0 4 Pb/ 20 5Pb defines a unique lo-

cation on the tracer-blank mixing line. The corresponding 206Pb/ 205 Pb, 20 7Pb/ 205Pb,

and 2 0 8Pb/ 2 0 5 Pb on the line are those of the tracer-blank mixture, which are sub-

tracted from the measured, fractionation-corrected ratio and used for isotope dilution

(McLean et al., 2011). Both the uncertainties in the mixing line parameters and the

measured 2 04Pb/ 205 Pb are propagated into the tracer- and blank-corrected ratios.

In the second, the mass of the Pb blank is assumed, generally the average of several

spiked total procedural blank analyses, and the estimated masses of tracer and blank

are subtracted together from the fractionation-corrected measured IC of the sample.

The rest of the common Pb (including 204Pb) is considered part of the sample, so

the measured 2 14Pb/ 2 0 5Pb is no longer restricted to tracer and blank components. To

find determine the moles of a given isotope in the sample, for instance 206Pb, first the

moles of total procedural blank is determined (equation 15 of McLean et al., 2011),

ml( 20 6 Pb ~ mo( 2 05 btb .
206 Pb~ ( 206 Pb "~1 (4.10)

moles (2Pb) = moles(2Pb)tp - 05pb - 20 5 ( 4.

and the total procedural blank is subtracted from a subsequent analysis

ml( 2 0 6 P) /205\ 2 06 Pb ( 2 0 6 Pbtr _ moles(2 06 PU.A
moles (0Pb),,l = moles (Pb),,p, - 0 - 0 -poes(0Howverfthee w o t Pb i

However, if the tracer IC was onl the measured tracer-blank mixing line, but its
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location was chosen incorrectly, then its (incorrect) IC could be expressed as

206 Pb 206p P (206 P
2o6Pb (2 05Pb ± 204Pb f-(A) (4.12)2OPb k)70 5Pb~tr + 04Pb ~bl

where (A#) is proportional to the incorrect displacement along the tracer-blank mix-

ing line. Calculating equations (4.10) and (4.11) with (2 0 4Pb/ 20 5Pb)'tr, the resulting

difference between the calculated values of moles(2 0 6 Pb),,, is

A moles( 2 0 Pb), = [moles( 205Pb)tb - moles(205 Pb)tpbl (A 2) 4.13)

According to equation (4.13), an incorrect choice of the location for the tracer IC

on the tracer-blank mixing line incurs an error that is proportional to the difference

in the moles of 2 0 5Pb added to the sample and to the total procedural blank, or for

several total procedural blanks, their mean. Because this parameter is under operator

control, any systematic errors from an incorrect tracer IC specification can be reduced

or eliminated with careful spiking.

4.5 Determining the U IC of the Tracer with Crit-

ical Mixtures

The biggest barrier to making accurate measurements of the IC of an unknown solu-

tion, such as the tracer, is the unknown and variable magnitude of isotopic fractiona-

tion. Since the tracer contains both 2 3 3 U and 2 35U, it cannot be internally corrected for

fractionation after mixing with a well-characterized 233U/ 236U or 238U/ 235U solution.

Measurement of a critical mixture (Krogh, 1964; Hofmann, 1971) circumvents

this difficulty by utilizing a mixture of an isotopic standard and the tracer at the IC

where mixing lines and fractionation lines are parallel. Mixtures of the U isotopic

standards SRM U500 and CRM 112a, whose 2 3 8 U/ 2 3 5U were determined against the

certified 2 3 3 U/ 2 36 U of IRMM 3636 in Condon et al. (2010), with the mixed with the

same 233U-2 3 5U solution used to make ET(2)535. Measurements of the pure solution
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also provide an additional constraint: they must lie on a fractionation line that goes

through the true tracer U IC.

Although the critical mixture idea was formulated using a linear fractionation law,

it applies to an exponential fractionation law as well. The trend predicted by variable-

magnitude exponential fractionation, which deviates from its linear approximation

less than 10ppm over observed isotopic fractionation values, is very close to parallel

to the mixing line in the vicinity of the critical mixture. Although the magnitude of

isotopic fractionation and the proportions of the mixed

In the same way that data from several constraints on the IC of Pb standards

were confederated to calculate the best estimate of several model parameters simul-

taneously in Section 4.3.2, many measurements of the tracer, measured both on its

own and mixed in critical mixture proportions can be combined to constrain the U

IC of the tracer. The solution and minimization take a similar form.

4.5.1 Model

The isotopic composition of all critical mixtures and tracer ICs were measured as

U0 2 . The most abundant oxygen isotope is 160, followed by 180, and their ratio

varies during the course of each analysis as 160 becomes more depleted. Therefore

233u, 2 3 5U, and 2 3 8U were measured at masses 265, 267, and 270, corresponding to

U0 2 polyatomic ions with two 160 atoms. The isobaric interference of 2 3 3U160 180

on 233 U160 160 depends on the 180/160 ratio of the sample, which was monitored by

measuring the 2 3 8U160' 80 at mass 272 or, for measurements of pure tracer with little
238U, 235U160180 at mass 269 (McLean et al., 2011). Isobaric interference corrections

were made on each cycle, and the mean and standard error of the resulting U ratios

represent the best estimate of the fractionated IC of the sample.

Expressing the components that make up a mixture of the ET(2)535 tracer with

a standard, such as SRM U500 of CRM 112a,

2 3 3 tot = 233t,
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2 3 5 tot = 2 3 5 st + 2 3 5 b1 + 2 3 5 tr (4.14)

2 3 8 tot = 2 3 8 st + 2 3 8 b1 + 2 3 8 tr

where st denotes the contribution from an isotopic standard, tr from the tracer, and

bl from the blank.

Normalizing all the components to the moles of 235U in the tracer results in

2 3 3 tot/235tr = (233tr/235tr)

2 3 5tot/ 2 3 5tr = ( 2 3 5st/235tr) + ( 2 35b/235tr) + ( 2 35tr/235tr) (4.15)

238tot/235tr = (238st/235tr) + ( 2 38bl/235tr) + ( 2 3 8tr/235tr)

Recasting the mixed component ratios (235bl/235tr) as (2 3 8 bl/235tr) / (2 38bl/235bl)

and (235t/235tr) as (238,t/235tr) / (238,t/235,t) yields

2 3 3 tot/ 2 3 5tr = r35t

235tot/235tr = r85st/r85s + r85bt/r85b + 1 (4.16)

238tot/235tr = r85st + r85bt + r85t

where r35t and r85t are the tracer parameters that are being determined, r85b and

r85s are the 238U/ 235U of the blank and the isotopic standard, respectively, and r85st

and r85bt are the moles of 238U in the standard and blank, respectively, relative to

the moles of 235U in the tracer.

Dividing through by 235tot/235tr yields the U ratios as commonly measured. In

order to equate the true and measured ratios, an exponential fractionation term is

added as well.

i ~ r35t M233 3
r35mi =3t__ (4.17)1 + r85bti/r85b + r85sti/r85s Ml235 /

r85bt + r85st + r85t M238
1 + r85bti/r85b + r85sti/r85s M235
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where M, denotes the isotopic mass of x and the superscript i denotes variables that

change from one analysis to the next. These two equations apply to each measurement

of a critical mixture made, regardless of the isotopic standard used. For measurements

of the tracer only, which also include a loading blank, the r85s and r85st terms may

be dropped.

4.5.2 Algorithm and Results

To solve for the U IC of ET(2)535, we use multiple critical mixture IC measurements

with both SRM U500 and CRM 112a as isotopic standards, as well as several mea-

surements of pure tracer alone. All U loads were estimated to be 500 ng, and U blanks

0.1 pg, resulting in a value of 4 x 10- for r85bt, which is assigned a 100% prior rel-

ative uncertainty to account for loading blank mass variability. The 2 3 8 U/ 2 3 5U of the

blank is estimated to be 137.82, an average of terrestrial sources relative to IRMM

3636 (Hiess et al., in review), with no uncertainty assigned because the magnitude of

the blank subtraction is nearly negligible.

As with the Pb standard inter-calibration, a least squares inverse solution to the

large system of overdetermined equations in (4.17) created by several measurements

is reached by a preconditioned gradient descent method. The unknown variables, in

this case r35t and r85t, the U IC of the tracer, as well as the sample/spike ratio of

each measurement r85st' and the magnitude of isotopic fractionation #3 are assigned

large prior relative uncertainties. This analysis utilizes 14 measurements of SRM

U500, 12 of CRM 112a, and 7 of pure tracer made at MIT and NIGL.

The uncertainties in r85s terms, the ICs of the U standards used in the critical

mixtures, are treated as a systematic uncertainties. To determine their contribution

to the total uncertainty in the tracer U IC, a Monte Carlo algorithm is employed,

which is used to test the assumption of that the system is locally linear at its least-

squares solution. Monte Carlo realizations of the the 2 3 8 U/ 2 35 U of SRM U500 and

CRM 112a are generated by a pseudorandom number generator with the distribution

given in Tables 4.1 and 4.2, and the uncertainty of each realization is assumed to be

infinitesimally small. The least squares solution is then calculated for 104 Monte Carlo
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realizations of the U standard ICs, and their variability represents the systematic

uncertainty contribution from the U standard ICs. This estimate is combined with the

measurement uncertainties derived by solving the system at the maximum likelihood

estimate of the U standard ICs to calculate the total uncertainty in the U IC of the

tracer (equation 4.3).

The results of the critical mixtures measurement are presented in Table 4.8. The

null hypothesis that the Monte Carlo realizations used to calculate the systematic

uncertainty contribution are normally distributed is accepted by a K-S test with a

p-value of 0.9 for both the 2 3 3 U/ 2 3 5U and 2 38U/ 2 3 5U of the tracer. This result permits

addition of the measurement and systematic uncertainty covariance matrices, the

multivariate analog of quadratic uncertainty addition.

4.5.3 Correlation with Sample 238 U/ 235U

In an important development for high-precision U-Pb geo- and cosmochronology, the
2 3 8U/ 2 3 5U of accessory minerals has been found to vary beyond measurement preci-

sion (Hiess et al., in review). In order to determine the 2 3 8 U/ 2 3 5U of each accessory

mineral, its IC can be measured against IRMM 3636. Thus, in the same way that

the U IC of the tracer can be traced to the IC of IRMM 3636, so can a precisely

determined 2 38 U/ 2 3 5 U value, and the uncertainties of both are therefore correlated.

Since uncertainties in both the tracer and sample U IC are used to determine the

total uncertainty budget for a U-Pb date, this correlation must be calculated and

included in the uncertainty propagation.

To assess their degree of correlation, the derivative of the mean 2 3 8 U/ 2 3 5U for

the sample and the tracer IC must be evaluated relative to the IC of IRMM 3636.

For the specific accessory phases measured in Hiess et al. (in review), as well as the

reported average zircon 2 3 8U/ 2 3 5U of 137.817 ± 0.040, these derivatives are found in

the Supporting Online Materials. For the tracer U ratios, the derivatives are reported

in Table 4.7, along with the derivatives of the tracer 2 3 5U/ 2 0 5Pb derived in Section 4.7.

The covariance between the tracer and sample ICs can be calculated with a Jacobian
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matrix, or matrix of partial derivatives, and a covariance, using the equation

Ets JTE36 3 6 J (4.18)

where J is a Jacobian matrix that contains the derivatives of the tracer and sample

IC with respect to the IC of IRMM 3636, like that presented in Table 4.7, and E3636 is

the covariance matrix for the IRMM 3636 IC. The resulting tracer-sample covariance

matrix Et, contains, as its off-diagonal components, covariance terms that relate the

tracer and sample IC, which can be used in a U-Pb uncertainty propagation algorithm

such as McLean et al. (2011).

4.5.4 Sample Fractionation Correction with a 233U- 235U Tracer

The true IC of the mixture is known to lie on a mixing line between the ICs of

the tracer and sample, both of which are required for this calculation. For a finite

fractionation factor, #, the measured IC lies off of the mixing line, along a fraction-

ation line from the true IC on the mixing line to the measured IC of the sample.

Geometrically, fractionation correction entails finding the point on the mixing line

whose fractionation line goes through the measured datum. However, at the critical

mixture IC used above, the fractionation line is parallel to the mixing line. Any er-

ror in the measurement or IC of the sample or tracer (even within arbitrarily small

uncertainties) will result in a discrepancy between the mixing line and the measured

data that cannot be corrected back to the mixing line along the parallel fractionation

line. For ICs close to the critical mixture IC, fractionation lines are subparallel to the

mixing line, and small errors (for instance, within assumed uncertainties), can result

in large, erroneous extrapolation distances back to the mixing line. For this reason,
233 U_23 5U tracers are not optimized for ICs near the critical mixture, and the 23 3U

/ 235U of the tracer should be manipulated to avoid these sample-tracer ratios. For

ET(2)535, U ICs near the critical mixture occur for very young under-spiked sam-

ples. For instance, a 3 Ma sample with a 2 0 6Pb/ 2 0 5Pb near 4.25 yields measured 2 3 8 U

/ 2 3 5U values near 55, magnifying small errors in the measurement or estimate of the
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sample 238U/ 235U. The simplest practical solution is to disregard the double-spike

fractionation determination and instead use an average U fractionation value based

on past determinations with smaller 238 U/ 235U values.

4.6 U/Pb Ratios of the Gravimetric Standards

In order to determine the U/Pb ratio of each gravimetric solution, three aliquots

of high-purity Pb and U standards were weighed then dissolved in acid in three

independent labs, creating solutions whose U/Pb ratios are gravimetrically calibrated.

The uncertainty in the U/Pb ratio of each gravimetric solution is a function of the

uncertainties in the masses of the standards and their purities. The procedures by

which the three gravimetric solutions were mixed in independent labs is included in

Condon et al. (2011).

The 235U/ 20 5Pb and 202 Pb/ 205 Pb ratio of the tracer were determined against three

separate gravimetric solutions for several reasons. First, the uncertainties due to

the mass measurements of the Pb and U metal used to make the solutions, as well

as their purities, are major contributions to the uncertainty in the U/Pb ratio of the

gravimetric solutions, and therefore the U/Pb ratio of the tracer. Evaluating the mean

U/Pb tracer ratio over multiple independently mixed solutions averages out some of

this uncertainty. Also, the different 20 6 Pb/ 238U ratios of the solutions, ranging from

0.094 for the RP solution to 0.017 for the ET solution, allow for varied sample/tracer

ratios for each element when mixed with a tracer with a constant 235U/ 205Pb. Using

multiple sample/tracer ratios and Pb and U ratios for internal fractionation correction

allows an additional check for internal consistency between results.

4.6.1 Uncertainty in Mass Determinations

The masses of the Pb and U standards were determined before the metals were

dissolved to create the gravimetric solutions. Although care was taken to remove

oxidation and surface contamination before weighing on precise balances, each mass

measurement has finite uncertainty. Because the ultimate parameter of interest is
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the U/Pb ratio of the solutions, any scale bias that is linearly proportional to the

measured mass will divide out. Thus we propagate only the uncertainty determined

from the reproducibility of successive measurements of calibration weights and the

Pb and U metals.

Each measured mass is adjusted for the mass of air that is above the scale during

taring and then displaced by the metal when it is weighed. Since the displaced air

mass is present during the taring but not during metal measurement, the true mass

of the metal is somewhat greater than the measured mass, and may be corrected with

the equation

masscorr = massmeas - 1 Pair (4.19)
Pmetal)

where Pair and Pmetal are the densities of air and metal being weighed. The density

of air ranged between 1.195 and 1.205 kg/m 3 , calculated using an ideal gas law and

the ambient barometric pressure, humidity, and lab temperature on the days the

metals were weighted. The densities of metallic U and Pb were calculated using their

measured isotopic compositions and standard unit cell parameters. After buoyancy

correction, each mass of Pb is heavier by 106 ppm and each U by 63 ppm, increasing

the calculated U/Pb ratio of the solution by 43 ± 1 ppm (2a).

4.6.2 Uncertainty in Purity of Pb Isotopic Standards

Although the purity, or the assay, of both NBS standards and the Puratronic Pb

are certified, these measurements are often dated, contain no supporting information,

and are quoted with conservative uncertainties (e.g. >99.995%). A purity quotation

in this form is unhelpful because there is no expected value or probability density

function (pdf) from which to construct confidence intervals or perform uncertainty

analysis. In order to better quantify the purity of the Pb isotopic standards used

here, the purities of NBS 981, 982, 983, and Puratronic Pb were measured by glow

discharge mass spectrometry at the GD-MS facility of the National Research Council

(NRC) of Canada. The raw data appears in the electronic supplement.

Analysis by GD-MS entails sputtering a solid sample that forms the cathode of a
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steady-state electrical discharge in a enclosure filled with Ar gas, where the sputtered

atoms are ionized by an argon plasma. Ionized elements from Li to U are accelerated

into a magnetic sector mass spectrometer, where they are separated and their relative

abundances are measured, with a detection limit well below 1 ppb (King et al., 1995).

Traceability to SI units within stated uncertainties was established at the NRC by

analysis of international reference standards (ref?).

Elemental concentrations from GD-MS are reported in two formats. If a signifi-

cant isobaric interference exists at the same mass to charge ratios as the element of

interest, observed as an elevated baseline in the mass scan, then its concentration

is reported as '<X ppb'. This result may reasonably be interpreted as a uniform

probability distribution function with limits at zero and X ppb. If no significant iso-

baric interference is detected, then the concentration is reported without the less than

symbol, and repeated standard analyses indicate the concentration of each element

may be represented as with a triangular pdf, illustrated in Fig. 4-4. The triangular

distribution has a mean and mode at the stated concentration, and upper and lower

limits at ±50% of the measured value.

The purity of each Pb standard is defined as the difference between unity and

the sum of all the impurities. Since the pdfs for the impurities are not Gaussian,

uncertainty propagation by quadratic summation is not applicable. Instead, we em-

ploy a Monte Carlo approach, where a randomly generated realization from the pdf

of each element's concentration is summed to produce a model value for the total

impurity concentration. This process was iterated 107 times for each standard, and

the resulting distribution of purities, normalized to unity, is an accurate estimate

of the pdf for the purities. The pdf is closely approximated by a histogram of the

Monte Carlo realizations with small bin sizes, illustrated in Fig. 4-4. Because the

pdfs of each elemental concentration are symmetric, the pdf of the total impurities

is also symmetric, and the maximum likelihood estimate and 95% confidence interval

for each standard may be expressed as a symmetric range about the mean, listed in

Table 4.9.
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4.6.3 Purity of U Isotopic Standards

The purities of the U standards used to make the gravimetric solutions, CRM 112a

and CRM 115, have been recently certified to significantly higher precision than the

older Pb standards. In a Sept. 2010 revision of the CRM 112a certificate of analysis

by the New Brunswick Laboratory, the total impurity concentration is reported as 223

pg/g U, which equates to a purity of 0.999777 g U/g metal, and the total uncertainty

in the assay is reported as 0.00006 g U/g metal, expressed as an approximate 95%

confidence interval calculated with a k = 2 coverage factor. The coverage factor and

confidence interval width together imply that the modeled distribution is Gaussian,

with a standard deviation of 0.00003 g U/g metal. Likewise, the CRM 115 purity is

reported as 0.999770 ± 0.000046, with the same coverage factor and stated confidence

interval, translating to a standard deviation of 0.000023.

4.6.4 Gravimetric U/Pb ratio

The U/Pb ratio of the gravimetric solution is most conveniently expressed as its
2 0 6 pb/ 2 3 8 U ratio, which can be determined from the total moles of each isotope

present. The moles of 2 0 6Pb in the gravimetric solution is

moles( 2 0 6Pb) = mass(Pbgrav) -purity(Pbgrav)204 Pb 20 7Pb 20 8 Pb
M 204 - 20Pb) + M206 + M 207 - 206Pb + A 208' 206Pb

9 gr / gr /gr

(4.20)

and likewise the moles of 2 3 8U in the solution is

moles( 2 38 U) mass(Ugrav) -purity(Ugrav) (4.21)
234u/ 

238uM234  
238U /+ 235  

235U ) + M2382U}gr UIgr

and the 2 0 6 Pb/ 2 38 U ratio of the gravimetric solution is simply the quotient of equations

(4.20) and (4.21).
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4.7 Gravimetric-Tracer Mixtures

In order to determine the U/Pb ratio of the tracer, expressed as the ratio of two of its

enriched isotopes, 2 3 5U/ 2 0 5Pb, as well as its 2 0 2 Pb/ 2 0 5Pb, the tracer was mixed with

the series of three gravimetric solutions described in Section 4.6. Measuring the U/Pb

ratio of the tracer against the known U/Pb ratio of a gravimetric solution is the inverse

of measuring a sample U/Pb ratio with the tracer: the known ICs of the gravimetric

solution Pb and U components can be used to fractionation-correct the measured Pb

and U tracer/sample ratios, then the known U/Pb ratio of the gravimetric solution is

used to determine the U/Pb ratio of the tracer. The small contributions of laboratory

blank and non-enriched tracer isotopes complicate the calculation, but as with the

Pb standard inter-calibration and U critical mixtures, the resulting mixture can be

represented by a system of non-linear equations, and the best estimate of the tracer

parameters reached with a non-linear least squares approach.

4.7.1 Equations

Unlike the data used in the Pb isotopic standard inter-calibration in Section 4.3, the

gravimetric-tracer Pb measurements, made at both NIGL and MIT, do not monitor

the BaPO 2 interference. Because the Pb and U were loaded and run on the same

filament, Pb at lower temperature, then U as U0 2 at higher temperature, the Pb

was not run to the high temperatures at which BaPO 2 becomes a significant isobaric

interference. Additionally, because the 20 4 Pb abundance is always less than an order

of magnitude smaller than the other Pb isotopes, it does not contribute meaningfully

to tracer calibration calculations, and has been ignored here. These omissions result

in a simpler isotopic contribution budget than that used for the Pb standard inter-

calibration.

2 0 2tot = 2 0 2 Pbtr

2 0 5tot = 2 0 5Pbtr
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206tot = 2 0 6Pbgr + 206Pbb1 + 2 0 6Pbtr

2 0 7 tot = 2 0 7 Pbgr + 2 0 7Pbbl + 2 0 7 Pbtr

2 0 8 tot = 208Pbgr + 208Pbbl + 208Pbtr

where tr, gr, and bi correspond to the tracer, gravimetric, and blank components,

respectively, which sum to the total abundance of each isotope, denoted tot.

Normalizing equations (4.22) to 2 0 5Pb, which is present in both ET535 and ET2535

tracers but not in the gravimetric solutions, yields

* ( 206 Pb1205Pbtr

* ( 20 7Pbb1
205Pbtr

* (2o8Pbbi)
205Pbt,

( 206 Pbtr
2 0 5Pbt,

* ( 20 7Pbtr
20 5Pbtr

* ( 20 8 Pbtr+ 205Pbtr

The isotope ratios on the right hand side of equations (4.23) can be re-cast in terms

of the isotope ratios of the gravimetric, tracer, and blank components. For instance,

the ratio of 20 7Pb in the blank to 205 in the tracer can be expressed as the 2 0 7Pb/ 2 0 6Pb

of the blank, derived in Section 4.4, multiplied by the ratio of the moles of 20 6Pb in the

blank to the moles of 2 0 5Pb in the tracer. Additionally, the isotope ratios on the left

hand side of equations (4.23) can be expressed as measured isotope ratios when the

'true' isotope ratios on the right hand side are modified by fractionation correction

factor (equation 4.7). With these two substitutions, equations (4.23) become

202Pb
205Pbfm

206Pb )
205 b m i

202Pb ( A202
20 5Pb A \1 205 72'05

[ 206 pbg, ( 206PbbI
. 2 osPbt, 205Pbtr,

143

(4.24)

2 0 2
tot

20 5Pbt,

2 0 6 tot

20 5Pbtr

2 0 7
tot

20 5Pbtr

2 0 8
tot

205Pbt,

202 Pbt)
20 5Pbtr

20 5Pbtr

205Pbt,

208Pbt,
20 5Pb, 9

(4.23)

(4.22)

206Pb -A1206

2osPb r ( M205 - 72'05)



2O7Pb -( 207 Pb (20 6Pbgr 207 Pb) 20 6Pbbl ( 207Pb ( M207 -707W20 5Pb I . 206Pb ) 205Pbtr) 20 6Pbfbl 205Pbt}f + 205Pbr M205 7os

208/ 208p 206 P + ( 208 P 206 Pbbl+ ( 208 P 2082 Pb 2 OPbj bgr+ k )(j 2Pb}l \ 2 b M20
2 0 5Pb) 20 6Pb )gr 20 5Pbtr 2 06Pb 20Pbt + 205Pb) M2 0 5 . 7205

where i denotes a variable that changes from load to load and j denotes a variable that

additionally changes from block to block. In this system, the variables correspond-

ing to the blank, tracer, and gravimetric solution Pb ICs are all treated as known

variables, with maximum likelihood estimates and uncertainties reported above. The

ratio of the blank to the tracer, embodied in the variable (2 0 6Pbb1/ 20 5Pbtr), can be

estimated from tracer mass used and total procedural blank measurements. Following

McLean (2011), the mass-independent fractionation parameterized with the y terms

is assumed to remain constant for each load but vary between loads, and the abso-

lute magnitude of fractionation, 3, changes during the course of each analysis. For

gravimetric solution mixtures with ET535, the first equation that includes 2 0 2 Pb is

ignored.

For the corresponding U measurement, the same system used for the critical mix-

tures in equations (4.17) applies. Because the magnitude of isotopic fractionation

changes dramatically during the long gravimetric-tracer mixture analyses, the param-

eter # is allowed to change from block to block. The paired Pb and U measurements

combine to form a large overdetermined system of equations, with each block of data

contributing five or six measured ratios, depending on whether 2 0 2Pb is present.

Using the gravimetric solution 2 0 6Pb/ 2 3 8 U calculated from equations (4.20) and

(4.21), and the ( 2 3 8Ugr/ 2 3 5Utr) from equations (4.17), the term (2 0 6Pbr/2 0 5Pbtr) can

be recast as
206 p 235 U (4.25)
205Pbtr) 20 ( 23 8U r 2 3 5Utr)

Substituting the right-hand side expression (4.25) into equations (4.24), along with

equations (4.17) for U measurements, creates a system of five equations for ET535

measurements, or six equations for ET2535 measurements that relate measured Pb

and U isotope ratios to the gravimetric and tracer solution ICs and their U/Pb ratios.
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4.7.2 Algorithm and Results

A total of 46 paired Pb and U measurements were analyzed at NIGL and MIT: 19

with the RP solution, 14 with ET, and 13 with JMM. Of these mixtures, 15 used

ET2535 and 31 used ET535. The Pb and U for each mix were loaded together on

Re filaments, with the Pb run as a metal and U as UO' polyatomic ion, described in

Condon et al. (2011). Between 100 and 600 independent isotope ratios were measured

for each Pb and U solution, provided in the electronic supplement. The mean of

each block, defined as 20 consecutive ratio measurements, was evaluated along with

the multivariate analog of its squared standard error, the covariance matrix for all

isotope ratios divided by n - 1 = 19 degrees of freedom. A total of 212 blocks of

Pb were measured with ET2535, 579 with ET535, and 644 blocks of U, for a total of

212 x 4 + 579 x 3 + 644 x 2 = 3873 ratio means.

The most important model parameters in the system described above are the
2 35U/ 2 0 5Pb and the 2 0 2 Pb/ 2 0 5Pb of the tracer. In order to solve for these, the following

variables must be determined for each analysis: the mass-independent fractionation

parameters 7205 and 720 7, and the ratio of gravimetric solution to tracer, parameterized

by ( 23 8 Ugr/ 2 3 5 Ut,). These variables are assigned initial values based on a linearized

solution to the model and assigned diffuse priors. Additionally, the 2 0 7 Pb/ 2 06 Pb and
2 0 8 pb/ 20 6Pb of the laboratory blank are known to vary between loads, along with the

mass of the Pb and U blanks themselves. The blank IC for for each bead is assigned

the prior uncertainty derived in Section 4.4, and the Pb and U blank mass initial

values are 0.3 and 0.1 pg, respectively, and given a 100% relative uncertainty, which

lets the least-squares algorithm determine the blank mass for each load that best fits

the data. Finally, an initial value for the magnitude of isotopic fractionation for each

block, p , was estimated for each Pb and U block using a simple linearized model

and assigned a diffuse prior. In total, there are 1759 unknowns constrained by 3873

isotope ratio measurements, so the system itself is overdetermined.

For the gravimetric mixtures, the uncertainties in the gravimetric solution Pb

and U ICs, the tracer minor isotope IC, and the U/Pb ratios of the gravimetric
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solutions are all treated as systematic uncertainties. To model their effects, Monte

Carlo simulations of each were created using the probability distribution functions for

the Pb and U ICs of the standards, as well as their purities and mass determinations.

Monte Carlo realizations of the gravimetric solution 2 0 6 Pb/ 2 38 U values include the

non-Gaussian probability distribution functions for the Pb purities derived from the

GD-MS measurements, and thus themselves are not normally distributed. The non-

linear least squares model with the data and model parameters described above was

solved for 2000 Monte Carlo realizations of the systematic effects.

Testing the distribution of the Monte Carlo realizations of the 2 3 5U/ 2 0 5Pb and the
20 2Pb/ 2 0 5Pb of the tracer, the null hypothesis that the distributions are Gaussian is

accepted with a p-value of 0.89 and 0.97, respectively. Although the'distribution of

the Pb standard purities, which are included in this calculation, are not Gaussian,

they are overwhelmed by other uncertainties, notably the 20sPb/ 2 0 6 Pb of NBS 981 and

the 2 3 3 U/ 2 3 6 U of IRMM 3636, both of which are assumed to be normally distributed.

Therefore, the systematic uncertainties may be combined using equation (4.2) with

the measurement uncertainties for the 2 3 5U/ 20 5Pb and the 2 0 2 Pb/ 2 0 5 Pb using equation

(4.3). The results are given in Table 4.10.

4.8 Discussion

The highest precision dates produced by U-Pb geochronology, used to calibrate the

geologic timescale from the Paleozoic through the Cenozoic, are 2 0 6Pb/ 2 3 8 U dates.

For samples younger than about 500 Ma, both 2 3 8 U and 206 Pb are more abundant

than their 2 3 5U and 2 0 7Pb counterparts, and the uncertainty in the 2 0 7Pb/ 2 0 6Pb date is

still dominated by the blank correction to the small amount of ingrown 2 0 7Pb, whose

parent isotope 2 3 5U is significantly less abundant than 2 38 U. Analysis of the total

contribution of the tracer calibration uncertainties to the uncertainty in a 2 0 6Pb/ 2 3 8U

date is performed with a simplified data reduction scheme. The only isotopes con-

sidered are 202 Pb, 20 5Pb, and 20 6Pb along with 233U, 235U, and 238U. Using the tracer

parameters calculated above along with reasonable sample/tracer ratios and a range
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of frequently observed fractionation factors, hypothetical measured ratios correspond-

ing to a range of dates were calculated. For instance, a 100 Ma sample with a sample

2 3 8 U/ 2 3 5U ratio of 137.814 and a sample/tracer (2 3 8Uspi/ 2 3 5 Utr) ratio of 1 will have

a measured 2 0 6Pb/ 20 5Pb ratio of about 1.56 and 2 38 U/ 2 3 5U ratio of 0.988, assuming

typical magnitudes of isotopic fractionation of 0.2% per u for Pb and 0.1% per u for

U.

Using the measured values calculated in this way, a 2 0 6Pb/ 2 3 8 U ratio can be cal-

culated by fractionation-correcting the measured 20 6Pb/ 2 0 5 Pb and 2 3 8 U/ 2 3 5U ratios

using the 2 0 2 Pb/ 2 0 5Pb and 2 33 U/ 2 3 5U ratios, then utilizing the isotope dilution for-

mula 206pb 206Pb (238U 235U (.6238U ) 205Pb f /23)U f 205Pb),tr(

where fc denotes a measured, fractionation-corrected ratio. The 2 0 6Pb/ 2 38 U can then

be used to calculate a date.

There are three pertinent tracer parameters whose uncertainty must be considered:

the 202 Pb/ 205 Pb, 233 U/ 235U, and 235U/ 205 Pb ratios. Because both the 235U/ 20 5Pb and

the 2 0 2Pb/ 2 0 5Pb derive much of their uncertainty from the a priori uncertainty of

the 20 8Pb/ 2 0 6Pb of NBS 981, their uncertainties are highly correlated. The result

is a relatively large, negative correlation coefficient, which indicates that a positive

error in the 2 0 2 Pb/ 20 5Pb is likely correlated with a negative error in the 2 3 5U/ 2 0 5Pb,

and vice versa. The two effects partially cancel one another: a higher 2 0 2 Pb/ 2 0 5Pb

results in a smaller fractionation correction and therefore less apparent 20 6Pb, but

the lower 2 3 5U/ 2 0 5Pb increases the apparent 20 6Pb/ 2 38 U (equation 4.26). Likewise, the
235 U/ 205Pb and 233 U/ 235U both depend on the 233 U/ 236 U of IRMM 3636, and therefore

their uncertainties are also correlated. In this case, the correlation is positive, and an

increase in the tracer 2 3 3 U/ 2 35U results in a smaller fractionation correction and less

apparent 2 3 8U, which is partially offset by the larger likely 2 3 5U/ 2 0 5Pb.

In this way, the uncertainty correlations between the 2 3 5 U/ 2 0 5Pb and both the
202 Pb/ 205 Pb and 233 U/ 235U act to decrease the overall uncertainty in the 20 6Pb/ 238U

date. As Figure 4-5 shows, ignoring the all covariances between the tracer ratios
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results in an overestimation of the tracer uncertainty contribution by a factor of al-

most two. The only published U-Pb uncertainty propagation algorithm to include the

required covariance terms is McLean et al. (2011), which permits uncertainty correla-

tions between all tracer parameters. Current version of the ICs and uncertainties of

both ET535 and ET2535 are available for download into the associated U-PbRedux

software package through the EARTHTIME initiative.

4.9 Conclusions

Correct tracer uncertainty propagation is essential to accurate, precise U-Pb iso-

tope dilution geochronology. This contribution presents a measurement model that

links first-principles mass and purity measurements to a complete description of the

EARTHTIME (2 0 2 Pb)-2 05 Pb-2 33 U- 2 35U tracer isotopic composition, using a series mix-

tures between the tracer and gravimetric solutions with known U/Pb ratios and iso-

topic compositions. The foundation of the tracer calibration depends upon two sets

of measurements: the gravimetrically determined 21sPb/ 2 0 6Pb of NBS 981 and the
2 3 3 U/ 2 3 6 U of IRMM 3636, and the weights and purities of the the three Pb stan-

dards and two U standards used to make three independently calibrated gravimetric

solutions. Because the tracer ratios with the strongest influence on U-Pb dates,

the 202 Pb/ 205 Pb, 233U/ 235U, and 23 5U/ 20 5Pb ratios, are mutually dependent on the

first-principles measurements, their uncertainties are significantly correlated. This

correlation acts to decrease the overall uncertainty contribution to U-Pb dates due to

tracer calibration.

The improvement presented here over the commonly assumed tracer calibration

uncertainty of ca. 0.1% to <300 ppm represents a significant contribution to the

resolution of inter-laboratory comparisons. Other labs using the same algorithms and

should be able to collaboratively combine U-Pb data at the sub per-mil level, which

approaches modern measurement uncertainties. The converse is also true: a precise

tracer calibration is capable of revealing sub-per-mil variation between collaborating

laboratories that may be due to previously unrecognized instrument calibration or
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laboratory blank biases. Finally, by establishing U-Pb dates in an absolute reference

frame, this tracer calibration legitimizes further efforts at inter-calibrating the U

decay constants (e.g., Schoene et al., 2006; Mattinson, 2010), as well as the U-Pb and

"Ar- 3 9Ar systems (e.g., Renne et al., 2010).
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4.10 Figure captions

Figure 4-1: Measurements of MIF for the mixtures of Pb isotopic standards and

a 20 2Pb-2 05Pb tracer. Data is from Amelin and Davis (2006) along with newer mea-

surements. The red data is from mixtures of NBS 981, green NBS 982, and blue

Puratronic Pb. The black cross on the gray 1:1 line is the predicted behavior using

a mass-dependent exponential fractionation law. Ellipses are 2o- or -86% confidence

intervals with all sources of uncertainty propagated.

Figure 4-2: Five thousand Monte Carlo simulations of the effect of systematic

uncertainties on the best-fit value of 2 0 8 Pb/ 2 0 6Pb of NBS 982.

a) Probability plot of all Monte Carlo solutions. An ideal Gaussian distribution with

the mean and standard deviation of the Monte Carlo solutions should plot on the

diagonal red line.

b) Histogram of Monte Carlo solutions with overlaid Gaussian distribution (red) with

the observed mean and standard deviation. Both plots demonstrate that the Monte

Carlo solutions are well-approximated by a Gaussian distribution, confirmed by a

one-sided K-S test.

Figure 4-3: Measurements of the blank isotopic composition after subtracting

the final tracer IC, then propagating measurement and systematic uncertainties. All

ellipses are 2o-, or -86% confidence intervals. The measurement and fractionation

uncertainties for each datum are plotted with blue. The covariance ellipse for the

discrete dataset is represented by the large red dashed ellipse, which does not account

for the scatter in the blank ICs due to measurement uncertainty. The green ellipse

is the termed the overdispersion, which separates the positively correlated variability

in the blank IC from the even more correlated measurement uncertainties.

Figure 4-4: Probability distribution functions for the purity of four commonly

used Pb standards, derived by summing elemental abundances measured by GD-MS.

The inset shows the probability distribution functions assumed for the individual el-

ements measured. In the presence of isobaric interferences, the true concentration is

assumed to be between the measured value and zero, with equal relative probability
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along this interval. For a measurement free of isobaric interference, the true concen-

tration is assumed to be within ±50% of the measured value, with the measured value

being the most probable.

Figure 4-5: Relative uncertainty contribution (2o, ppm) to the 2 0 6 Pb/ 2 3 8 U date

from uncertainty in the tracer IC. a) The black line indicates the correct relative un-

certainty contribution as a function of 2 06 Pb/ 2 38 U date. The red, green, and blue lines

show the calculated uncertainty contribution if the covariance terms that belong to

the tracer 233U/ 235U, 202 Pb/ 205Pb, or all tracer variables, respectively, are neglected.

b) The tracer contribution to the 2 0 6Pb/ 2 38 U date uncertainty varies with the magni-

tude of isotopic fractionation. The shaded region encloses commonly observed values:

Pb from 0.1 to 0.3% per u, and U from 0 to 0.2% per u.
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Table 4.1: Weighted mean 2 3 8U/ 23 5U values and their random, and
combined random and systematic uncertainties for the U isotopic stan-
dards CRM 112a, CRM 115, and CRM U500 used for tracer cali-
bration. Reported ratios are all fractionation-corrected using IRMM
3636(a) (Verbruggen et al., 2008) for fractionation correction.

2 3 8U/ 23 5U ±2o ±2o-b MSWD n (beads)

CRM 112ac 137.841 0.011 0.024 1.4 7
CRM 115 491.548 0.039 0.086 0.7 4
CRM U500c 0.999781 0.000077 0.00017 1.0 35
a propagating only components of uncertainty arising from random effects

during measurement
b propagating components of uncertainty arising from systematic and random

effects
data from Condon et al. (2010)

Matrix of correlation coefficients between the uncertainties reported in

CRM CRM CRM
112a 115 U500

CRM 112a 1
CRM 115 0.825 1
CRM U500 0.914 0.897 1
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Table 4.3: Least squares solutions, random, and combined random
and systematic uncertainties for the the Pb isotopic standards NBS
981, NBS 982, and Puratronic Pb used for tracer calibration, calcu-
lated with data reported in Amelin and Davis (2006)

204Pb/ 206Pb
207Pb/ 206Pbc
208p P206Pbc

wtd. mean

0.0590074
0.914683
2.1681

i2oa

0.0000016
0.000011

i2o b

0.000022
0.00015
0.0008

n (blocks)

160

204 b206Pb 0.0272058 0.0000021 0.000010
2 0 7 Pb/ 2 0 6 Pb 0.466967 0.000026 0.00008 160
2 0 8 Pb/ 2 0 6 Pb 1.000249 0.000056 0.00039
204 Pb/ 206 Pb
207 Pb/ 206Pb
208 Pb/ 206 Pb

0.0548861
0.856720
2.10227

0.0000044
0.000046
0.00011

0.000021
0.00015
0.00079

a propagating only components of uncertainty arising from random effects
during measurement

b propagating components of uncertainty arising from systematic and random
effects

C value from Catanzao et al. (1968), uncertainty regarded as systematic

Table 4.4: Matrix of correlation coefficients between the uncertainties in the Pb ICs
used for tracer calibration. These uncertainties are correlated because they share
common sources of uncertainty, largely due to common ratios being used for the
fractionation correction. Correlation coefficients close to -1 or 1 indicate a high degree
of correlation.

NBS 981 NBS 982 Puratronic Pb
204 Pb 207 Pb 208 Pb 204 Pb 207Pb 208Pb 2 04 Pb 207Pb 208Pb
zoeP-b zoe-Pb zO ~b zo'P~b zoePb zo6ePb zo6Pb zo5Pb zo6Pb

204 Pb/ 206Pb 1
207Pb/ 2 0 6Pb -0.974 1
208 Pb/ 206 Pb -0.990 0.991 1
2 04 Pb/ 2 0 6Pb 0.939 -0.960 -0.958 1
2 07Pb/ 2 0 6Pb -0.875 0.809 0.846 -0.753 1
2 0 8 Pb/2 0 6Pb -0.965 0.919 0.950 -0.883 0.943 1
2 0 4 Pb/ 206Pb 0.974 0.958 -0.973 0.933 -0.848 -0.942 1
2 07Pb/ 20 6 Pb -0.941 0.939 0.948 -0.909 0.815 0.909 -0.948 1
2 08 Pb/ 20 6Pb -0.982 0.975 0.988 -0.947 0.850 0.950 -0.986 0.961 1
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Table 4.5: Results of linear fit for tracer - blank mixing line

ET535 ET2535 Pb blank
value ±2o- value ±2o value ±2o

2 04 Pb/ 2O5Pba 0.000090 0.000018 0.000130 0.000050 2 0 6Pb/ 2 0 4Pb 18.41 0.48
2 0 6 Pb/ 20 5 Pb 0.00039 0.00034 0.00093 0.00092 2 0 7 Pb/ 20 4Pb 15.41 0.29
20 7 Pb/ 20 5Pb 0.00030 0.00028 0.00077 0.00077 2 0 8Pb/ 2 0 4 Pb 37.61 1.13
208 Pb/ 20 5 Pb 0.00074 0.00070 0.0019 0.0019
a This value is chosen arbitrarily to be half the distance from a null composition to the analysis with

the highest ratio of tracer to blank (see Section 4.4.2).

Table 4.6: Correlation coefficient matrix for ET535 and loading blank Pb IC.

ET535 Pb IC blank Pb IC
204Pb 206Pb 207Pb 208Pb 206Pb 20 7Pb 208Pb

zPb zPb z b o zoP zo4Pb 2 Pb
L 204 Pb/ 20 5Pb 1

~ 0 Pb/20 Pb 0.980 1
207 Pb/ 20 5Pb 0.989 0.992 1
208 Pb/ 20 5 Pb 0.974 0.987 0.992 1
2 0 6Pb/ 2 0 4 Pb 0 -0.136 -0.076 -0.114 1

c 2 07Pb/ 2 04 Pb 0 -0.103 -0.100 -0.135 0.755 1
- 2 0 8 Pb/ 2 04Pb 0 -0.099 -0.086 -0.156 0.729 0.864 1

Table 4.7: Derivatives of the U IC of ET(2)535 with respect to IRMM 3636. These
values can be used to determine the covariance between a measured 2 3 8U/ 2 3 5U and
the tracer, for propagating uncertainty in U-Pb dates.

ET(2)535

233u 238u 235u

23 3U/ 236U 0.6707 0.002907 99.79
23 4U/ 236 U -.001262 4.209 x 10-6 -0.1951
235U/ 236 U -0.8686 0.005051 -121.8

p 2 3 8U/ 2 3 6 U 0.4466 -0.001505 68.93
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Table 4.8: The U isotopic composition of ET(2)535 from
the critical mixture experiment. The tracer was mixed with
CRM 112a and SRM U500, whose ICs, uncertainties, and
correlation coefficient are given in Section 4.3.1.

MLE ±2ora ± 2 o-b pC

233 U/ 235U 0.995062 0.000009 0.00011
238 U/ 235U 0.00307993 0.00000064 0.00000080 0
a propagating only components of uncertainty arising from random

effects during measurement
b propagating components of uncertainty arising from systematic

and random effects
C correlation coefficient between 233U/ 235U and 238U/ 235U, with all

uncertainties propagated

Table 4.9: Purities of Pb isotopic standards measured by glow
trometry, with estimated symmetric 95% confidence intervals

purity 95%CI

NBS 981 0.9999986 ±0.0000009
NBS 982 0.9999767 ±0.0000072
NBS 983 0.9999862 ±0.0000033
Puratronic 0.9999890 ±0.0000047

discharge mass spec-

Table 4.10: Results of the gravimetric solution - tracer
mixtures.

MLE ±2or ± 2 o-b pC

202 Pb/ 205Pb 0.999239 0.000019 0.00053 -0.915
235U/ 20 5Pb 100.2329 0.0022 0.047
a propagating only components of uncertainty arising from

random effects during measurement
b propagating components of uncertainty arising from

systematic and random effects
C correlation coefficient between 20 2Pb/ 205Pb and 235 U/20 5Pb, with all uncertainties propagated
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Chapter 5

Exhumation of the North Cascades

core coincident with rapid

sedimentation in adjacent

nonmarine basins

Abstract

New high-precision zircon U-Pb geochronology demonstrates that igneous intrusion

and ductile deformation in the North Cascades metamorphic core was ongoing during

initiation and rapid infilling of proximal thick nonmarine basins. The youngest U-

Pb dates from the crystalline core approximately coincide with "Ar- 3 9Ar cooling

dates of biotite, muscovite, and hornblende, consistent with rapid cooling. Taken

together, available age constraints imply a dynamic relationship between rapid basin

development and exhumation of the North Cascades core, consistent with a degree of

coupling between the upper and lower crust during the major plate transition to the

modern Cascades arc.
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5.1 Introduction

The North Cascades metamorphic core is the southern terminus of the Coast Plutonic

Complex, a 100 km wide belt of Cretaceous to Tertiary plutons and heterogeneous

gneisses that parallels the western margin of North America through Canada and into

southern Alaska. Since ca. 100 Ma, the North Cascades and the western Cordillera

have shared a history of oblique subduction, west-vergent thrust stacking, and arc

magmatism (e.g., Rubin et al., 1990). These crustal processes combined to yield

thickened crust (speculated Moho depths of >55 km) in the late Cretaceous arc

(Miller and Paterson, 2001). Subsequent episodic transtension and transpression

are expressed in part by faults with complex dip-slip histories, such as the Straight

Creek, Entiat, Leavenworth, and Ross Lake faults and the Dinkleman Decollment

(Tabor et al., 1987, 2003). It has long been recognized that exhumation of the North

Cascades metamorphic core was broadly coeval with sediment accumulation in the

thick fluvial basins that flank it (Haugerud et al., 1991). A major unresolved question

in the geologic history of the North Cascades is how the exhumation and sediment

accumulation are related. High precision U-Pb geochronology provides an effective

tool for testing temporal relationships, and by extension cause-and-effect hypotheses.

Modern (2o) uncertainties for zircon 2 0 6Pb/ 2 3 8 U dates at ca. 50 Ma are often less

than 0.1%, or better than ±50 kyr, capable of resolving closely spaced events in the

shallow and deep crust.

5.2 Geologic Setting

The North Cascades metamorphic core is dissected by the brittle, high-angle Entiat

fault into the Wenatchee block to the southwest and the Chelan block to the north-

east (Fig. 5-1b). The two blocks have different thermal histories: while the Chelan

block was metamorphosed and intruded throughout 96-45 Ma arc magmatism and

has Eocene 40Ar- 39Ar cooling ages, the Wenatchee block records only Cretaceous

magmatism (Tabor et al., 1987). The Skagit Gneiss (Fig. 5-1b) occupies much of the

162



Chelan block and is composed of heterogeneous gneisses with peak pressures up to

9-10 kbar (e.g., Whitney, 1992) juxtaposed against terranes of amphibolite facies and

lower (Misch, 1966). These rocks are thought to once have been part of a thick (Miller

and Paterson, 2001) contractional arc of a wide Andean-type plateau Whitney et al.

(2004). A recently developed contrarian view (Hildebrand, 2009) is that the Coast

Plutonic Complex magmatism is the result of west-dipping slab failure and breakoff

before the modern east-dipping subduction regime.

Contemporaneous with ductile deformation and continued magmatism in the

North Cascades core is the deposition of thick sequences of non-marine sedimen-

tary rocks in a series of fault-bounded transtensional basins, including the Chuckanut

basin in northwestern Washington, the Swauk basin immediately to the south of the

metamorphic core, and the Chumstick basin, which occupies a graben-like structure

between the Wenatchee and Chelan blocks. Zircon fission track dates (Gresens et al.,

1981; Johnson, 1984) and palynology indicate that the basins are Eocene, but all three

basins lack a high-precision chronology. Subsidence history is difficult to determine

from present-day fault configurations due to complex syndeformational fault rotation,

but may be assessed by dating volcanic ash layers within the basins, which may then

be compared with dates from the Cascades core.

5.3 U-Pb dates in the Skagit Gneiss

In order constrain the relationship between earlier deformation and metamorphism

and to identify intrusions and fabrics involved in exhumation, 1:24K scale mapping

was carried out on in three across-strike transects in the Skagit Gneiss. Using field and

cross-cutting relationships, the youngest orthogneiss bodies were singled out for zir-

con U-Pb dating. U-Pb dates of zircons from orthogneisses and other non-deformed

intrusive bodies constrain protolith crystallization. Modern high-precision (<0.1%

relative uncertainty) U-Pb dates of complex igneous intrusions frequently exhibit re-

solvable variability, on the order of 10s to 100s of kyr, interpreted as a xenocrystic

or autocrystic component (e.g., Matzel et al., 2006). However, the youngest zircon
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date, after pre-treatment by chemical abrasion techniques to reduce Pb loss (Mattin-

son, 2005b), can be interpreted reliably as a maximum crystallization date. Although

early reconnaissance geochronology in the Skagit Gneiss (Mattinson, 1972; Miller and

Bowring, 1990) indicated largely Cretaceous crystallization followed by Eocene cool-

ing, detailed geochronology has revealed significant Eocene magmatism and ductile

deformation following a period of Paleocene quiescence. Our new dates extend the

full length of the Skagit Gneiss and are described here from south to north.

The Rainbow Falls orthogneiss and the Purple Creek orthogneiss are hornblende-

biotite tonalitic gneisses from the central Skagit gneiss (Michels, 2008). Each contains

a penetrative solid-state foliation and lineation defined by elongate quartz and aligned

biotite and hornblende crystals. Field relationships indicate that both bodies intrude

older poly-deformed tonalitic gneiss. The youngest 20 6Pb/ 23 8 U zircon dates from the

Rainbow Falls orthogneiss define a weighted mean of 48.160 ± 0.031 Ma, and the

four youngest dates from the Purple Creek orthogneiss define a weighted mean of

49.385 ± 0.032 Ma (Fig. 5-1d). Both samples contain older zircons likely inherited

from older intrusions, and youngest dates are interpreted to reflect crystallization of

the parent bodies.

In the northern Skagit Gneiss, two samples with Eocene crystallization dates ex-

hibit solid-state deformation. In the northwestern Skagit Gneiss, a sheet of mylonitic

hornblende-biotite tonalite 'flecked gneiss' (Miller et al., 2009) contains plagioclase

phenocrysts cored by small euhedral sphene. Contacts between the flecked gneiss

and its host tonalitic orthogneiss are subparallel to regional foliation, suggesting they

were deformed together during regional folding. Three 20 6Pb/ 2 3 8 U zircon dates agree

with a weighted mean of 47.210 ± 0.020 Ma, with an MSWD of 0.70. The granodi-

oritic Diablo Lake orthogneiss (Wintzer, 2009) outcrops as a ~1 km 2 body in the

north-central Skagit Gneiss, and as late dikes intruding older polydeformed gneisses

nearby. Elongate quartz grains and aligned biotite and plagioclase define a promi-

nent lineation. Three overlapping zircon 2 0 6Pb/ 23 8U dates have a weighted mean of

44.856 ± 0.023 Ma, with a MSWD of 2.3.
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5.4 U-Pb dates in non-marine basins

Volcanic tuffs have been described in the Chuckanut, Swauk, and Chumstick basins

(Evans and Johnson, 1989; McClincy, 1986). Zircon 2 01Pb/ 238 U data can be used to

precisely constrain the depositional dates of the tuffs, but only five of the 20 sampled

tuffs contained populations of Eocene zircons interpreted as pyroclastic in origin.

Other sampled tuffs, which have been mapped over large aerial extent, contain zircons

whose dates exceed available constraints, and are therefore detrital or from reworked

volcanics. Detrital zircon data from these tuffs are included in the supplementary

data.

The Chuckanut Formation is composed of up to 5000-7000 m of nonmarine sand-

stone, mudstone, and conglomerate (Johnson, 1984), interpreted as fluvial infill during

Eocene regional extension and subsidence (Evans and Ristow, 1994). The oldest mem-

ber of the Chuckanut Formation, the Bellingham Bay member (Fig. 5-1c), contains

a single recognized lithic tuff. Eleven new zircon 20 6Pb/ 238U dates range from 56.7

to 57.5 Ma, varying significantly within measurement uncertainties, with no analyses

younger than 56.69 t 0.13 Ma. We interpret the spread of zircon dates to reflect

protracted zircon growth history in the volcanic source of the tuff, and the youngest

date, which overlaps the five youngest zircon analyses within 2o uncertainty to reflect

the best estimate of the time of deposition.

The Swauk Formation comprises a maximum thickness of 4800 m of arkosic sand-

stone, shale and conglomerate in the Swauk basin between the Straight Creek and

Leavenworth fault zones (Tabor et al., 1984). Sandstones in the upper Swauk forma-

tion are interbedded with thick silicic tuffs, the Silver Pass Volcanics, that are pri-

marily dacitic to andesitic in composition and reach a maximum thickness of ~1800

m at the type locality of Silver Pass. A sample of welded ash flow tuff collected at

Silver Pass exhibits complex zircon systematics, with a ~1 Ma range in zircon dates

from 52.2 to 51.2 Ma. The youngest four analyses overlap with a weighted mean of

51.345 ± 0.032 Ma with a MSWD of 0.92, interpreted as the best estimate of the time

of eruption.
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Farther east, adjacent to the Cascades core, the Chumstick Formation is a fault-

bounded sequence of interbedded sandstone, conglomerate, and shale (Gresens et al.,

1981), and contains abundant tuffs interbedded with continental fluvial and lacustrine

sediments (McClincy, 1986). Two ashes from the Mission Creek and Clark Canyon

tuffs yield tight populations of 206Pb/2 38 U zircon dates of 48.169±0.021, and 47.976±

0.016 Ma (Fig. 5-1d).

5.5 Discussion

New U-Pb dates of deformed orthogneiss bodies encompass an episode of Eocene mag-

matism that straddles a time-transgressive transition from hot, ductile mid-crustal

rocks to an exhumed upper crustal section intruded by Eocene plutons that record

upper-crustal pressures. Ductile deformation in the southern Skagit Gneiss was lo-

cally complete by the intrusion of the non-deformed ca. 49 Ma Sunrise Lake pluton

and the ca. 48 Ma Cooper Mountain batholith. In the northern Skagit, the ca. 48

Ma Golden Horn batholith displays no solid-state fabric and rapid cooling is dated

by ca. 48-45 Ma hornblende and biotite cooling ages in the gneiss complex (e.g., Wer-

nicke and Getty, 1997; Tabor et al., 2003). Thus the relatively young orthogneiss

dates reflect maximum ages of local rather than regional strain fields. However, the

late magmatism overlaps the regional 40Ar- 39Ar cooling ages, implying that, at least

in a limited sense, the Cascades arc was still active during the transition to unroofing

and exhumation.

The thickness of the Chumstick stratigraphic section between the Mission Creek

and Clark Canyon tuffs is estimated to be ca. 3000 m (McClincy, 1986; Evans, 1991).

Although these estimates are complicated by local faulting and limited outcrop of

continuous sections, an estimated age difference of 193 ± 38 kyr yields an average

sediment accumulation rate of 15 mm/yr during this interval. Furthermore, the

Swauk and Chumstick tuffs also pre-date basin-wide folding events. In the Swauk

basin, the folding must occur before the intrusion of the 47 ± 1 Ma Teanaway basalt

flows and dikes.
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The best previous date for the Chuckanut basin was a 49.9 t 1.2 Ma zircon fission

track analysis (Johnson, 1984) of the same tuff from Clayton beach, about 1225

m above the base of the Chuckanut Drive section of the Bellingham Bay Member

(Breedlovestrout, 2010). Adopting the new, older age of 56.7±0.1 Ma implies that the

Chuckanut basin contains the Paleocene-Eocene boundary, at ca. 55.8 Ma (Charles

et al., 2011). This revises downward estimated ages for the abundant floral and

vertebrate faunal assemblages preserved in the Chuckanut, which record evidence for

humid tropical forests as well as bird, reptile, and mammal tracks (Mustoe et al.,

2007).

5.6 Conclusions

During a relatively short interval (55-45 Ma), the crystalline core of the North Cas-

cades experienced a late episode of magmatism and ductile deformation, followed

closely by rapid exhumation that was coeval with basin initiation and subsidence,

as well as brittle extension outside the metamorphic core. To a first approximation,

exposure of the metamorphic core of the North Cascades resembles the extensional

core complexes of the Omineca belt farther east.
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Fig 1. A. Location map of North Cascades crystalline core and adjacen fluvial basins.
B. Enlarged geologic map. Colors indicate Eocene basins (yellow), extrusive volcanics
(green), crystalline core (pink), Eocene plutons (red), and the Skagit Gneiss (purple). Stars
indicate sample locailities and are keyed to basin stratigraphic sections and U-Pb data. From
youngest to oldest, the crystalline samples are 1. Diablo Lake Orthogneiss, 2. "flecked
gneiss" on Hwy 20, 3. Rainbow Falls orthogneiss, and 4. the Purple Creeek orthogneiss.
Volcanic tuff samples are 5. Mission Creek tuff, 6. Clark Canyon tuff, 7. Silver Pass volca-
nics, and 8. Clayton beach ash bed. C. Stratigraphic sections for nonmarine basins, with
enumerated tuff samples. D. U-Pb ID-TIMS zircon data. Sample numbering follows that in
(b) and (c). Dates are shown as 2a uncertainty envelopes (95% confidence intervals), and
weighed means are indicated with a black vertical line. The dark and light gray rectangles
around the weighted mean indicate lo and 2a weighted mean uncertainties, respectively.
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Table 5.1: U-Pb Data Table 1

Isotopic Dates (Ma)a Composition Isotope Ratios
206 pbb ± 20 7 Pb Pbc Pb* d Th e 20 6Pbf 20 6Pbag ± 207 Pbg i h 207 Pbg ±
238U 2- 23TU 2a (pg) Pbc U zoPb -23U 2o% 23TU 2-% P zo5Pb 2o%

NMNC 366-2: Chumstick Formation, Clark Canyon tuff
zI 47.956 0.041 48.12 0.33 0.85 18 0.47 1118 0.0074669 0.086 0.04853 0.71 0.545 0.04714 0.66
z2 47976 0.061 47.93 0.87 0.95 7 0.49 461 0.0074700 0.13 0.04833 1.9 0.654 0.04693 1.8
z7 47.975 0.052 48.36 0.55 0.53 12 0.49 759 0.0074699 0.11 0.04878 1.2 0.514 0.04736 1.1
z1O 47,975 0.031 48.01 0.23 0.54 27 0.52 1627 0.0074698 0.065 0.04841 0.49 0.367 0.04701 0.47

z11 48.027 0.040 48.28 0.24 0.34 25 0.43 1537 0.0074779 0.083 0.04870 0.52 0.527 0.04723 0.48
z12 47.959 0.032 48.12 0.16 0.50 40 0.60 2321 0.0074674 0.067 0.04853 0.35 0.327 0.04713 0.33
NC-203. Chuckanut Formation, Clayton Beach ash
c 69 80 0.45 75.6 5.2 1.05 2 0.31 161 0.010887 0.65 0.0773 7.2 0.426 0.0516 7.0
f 57.13 0.27 54.5 3.2 0.40 3 0.48 200 0.008901 0.47 0.0551 6.1 0.338 0.0450 5.9
g 56.99 0.21 58.7 2.5 0.39 4 0.40 244 0.008879 0.38 0.0595 4.4 0.253 0.0487 4.3
j 75.475 0.083 75.22 0.62 0.37 34 0.26 2193 0.011777 0.11 0.07690 0.85 0.605 0.04742 0.79
k 61.27 0.11 60.93 0.99 0.22 11 0.36 730 0.009550 0.18 0.0618 1.7 0.392 0.04704 1.6
1 56.69 0.13 57.5 1.1 0.24 11 0.46 675 0.008833 0.23 0.0582 1.9 0.523 0.04790 1.8
m 57.210 0.075 57.6 1.2 0.19 10 0.35 668 0.008914 0.13 0.0583 2.2 0.280 0.0476 2.2
n 56.970 0.048 56.98 0.43 0.23 26 0.59 1532 0.0088766 0.085 0.05773 0.78 0.260 0.04724 0.77
o 56,862 0.066 57.19 0.50 0.28 22 0.35 1435 0.008860 0.12 0.05794 0.89 0.520 0.04752 0.84

p 57.056 0.075 56.85 0.73 0.35 13 0.46 832 0.008890 0.13 0.05759 1.3 0.394 0.04706 1.3
q 56.98 0.20 58.2 2.6 0.53 4 0.57 241 0.008878 0.36 0.0590 4.6 0.271 0.0483 4.5
s 58.58 0.16 59.6 1.8 0.57 5 0.30 360 0.009129 0.27 0.0605 3.2 0.191 0.0481 3.1
u 57.41 0.21 57.4 2.6 0.62 4 0.58 230 0.008945 0.37 0.0582 4.7 0.261 0.0473 4.6
v 56.86 0.16 57.0 1.9 0.27 5 0.35 311 0.008859 0.27 0.0577 3.5 0.291 0.0474 3.4
w 56.913 0.094 57.22 0.87 0.43 11 0.49 690 0.008868 0.17 0.05797 1.6 0.368 0.04749 1.5
zy 57.01 0.26 56.7 3.7 0.31 2 0.31 139 0.008883 0.46 0.0574 6.8 0.747 0.0470 6.4
zz 56.80 0.13 56.5 1.6 0.39 4 0.46 290 0.008850 0.23 0.0573 2.9 0.781 0.0470 2.8
a Isotopic dates calculated using the decay constants A238  1.55125 x 10-10 and A235 = 9.8485 x 10-10 of Jaffey et al., (1971).
b Corrected for initial Th/U disequilibrium using radiogenic 208Pb and Th/Umagma = 4.
C Total mass of common Pb.
d Ratio of radiogenic Pb (including 208 Pb) to common Pb.
e Th contents calculated from radiogenic 208Pb and the Th-corrected 206Pb/ 238 U date.
f Measured ratio corrected for fractionation and tracer contribution only.
9 Measured ratios corrected for fractionation, tracer, and blank.
h Correlation coefficient between Th-corrected 206Pb/ 238U and 207Pb/ 235U ratios.
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Table 5.2: U-Pb Data Table 2

Isotopic Dates (Ma)a Composition Isotope Ratios

20 6Pbb i 20 7Pb i Pb6  Pb*d The 20 6Pbf 20 6Pbg ± 20 7Pb ± h 20 7Pbg i
2  2a 23U 2o (pg) Pbc U zoP-b 238U 20% 23 U 2a% P 20WPb 2o%

NC-190: Swauk Formation: Silver Pass volcanics
zi 51.332 0.070 51.24 0.58 0.55 12 0.33 753 0.007995 0.14 0.05176 1.2 0.599 0.04705 1.1
z3 51.40 0.11 51.8 1.2 0.65 6 0.44 391 0.008006 0.22 0.0524 2.3 0.423 0.0475 2.2
z4 52.249 0.073 54.32 0.63 0.42 12 0.35 768 0.008138 0.14 0.05495 1.2 0.572 0.04907 1.1
z5 51.299 0.086 51.65 0.58 0.94 13 0.48 786 0.007989 0.17 0.05218 1.2 0.457 0.04746 1.1
z6 51.74 0.12 52.5 1.1 0.93 7 0.33 440 0.008059 0.24 0.0531 2.1 0.594 0.04785 2.0
z7 51.595 0.098 52.1 1.2 0.63 5 0.27 353 0.008036 0.19 0.0526 2.4 0.711 0.0476 2.3
z8 51.359 0.042 51.56 0.32 0.66 18 0.31 1129 0.0079989 0.082 0.05209 0.64 0.572 0.04732 0.60
z9 51.49 0.11 50.9 1.3 0.56 5 0.22 328 0.008019 0.22 0.0515 2.5 0.750 0.0466 2.4
z13 51.422 0.061 51.55 0.48 0.45 15 0.32 935 0.0080087 0.12 0.05208 0.96 0.503 0.04726 0.91
z14 51.491 0.068 52.29 0.68 0.37 11 0.26 712 0.008019 0.13 0.05285 1.3 0.547 0.04789 1.3
z15 51.864 0.089 53.0 1.2 0.37 7 0.28 462 0.008078 0.17 0.0536 2.2 0.709 0.0482 2.1
STC62-1: Chumstick Formation, Mission Creek tuff
z1 48.136 0.048 48.26 0.75 0.31 14 0.37 876 0.0074950 0.099 0.04867 1.6 0.747 0.04719 1.5
z2 48.190 0.044 48.41 0.27 0.39 28 0.59 1670 0.0075035 0.092 0.04883 0.58 0.256 0.04729 0.56
z3 48.180 0.050 48.15 0.50 0.33 13 0.38 838 0.0075020 0.10 0.04857 1.1 0.714 0.04705 0.98
z4 48.169 0.040 47.99 0.43 0.37 16 0.49 983 0.0075002 0.082 0.04840 0.92 0.564 0.04689 0.87
z6 68.384 0.050 68.30 0.26 0.57 38 0.39 2370 0.0106645 0.074 0.06958 0.39 0.424 0.04739 0.37
z7 48.164 0.063 48.20 0.75 0.57 11 0.43 708 0.0074994 0.13 0.04862 1.6 0.344 0.04711 1.6
z8 48.13 0.12 48.0 1.5 0.66 5 0.55 341 0.007495 0.25 0.0484 3.2 0.286 0.0470 3.2
a Isotopic dates calculated using the decay constants A238 = 1.55125 x 10-10 and A235 = 9.8485 x 10-10 of Jaffey et al., (1971).b Corrected for initial Th/U disequilibrium using radiogenic 208Pb and Th/Umagma = 4.
' Total mass of common Pb.
d Ratio of radiogenic Pb (including 208Pb) to common Pb.
e Th contents calculated from radiogenic 208Pb and the Th-corrected 206Pb/ 238U date.
f Measured ratio corrected for fractionation and tracer contribution only.
9 Measured ratios corrected for fractionation, tracer, and blank.
h Correlation coefficient between Th-corrected 20 6Pb/ 238U and 207Pb/ 235U ratios.
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Table 5.3: U-Pb Data Table 3

Isotopic Dates (Ma)a Composition Isotope Ratios

206 Pbb ± 207 Pb Pb.c Pb*d The 20 6Pbf 206Pbag ± 20 7Pb ± h 207Pb9 i
238U 2a -237U 2o (pg) Pbc U 2 4P " 2o% 2nU 2-% P 206b 2o%

SGC-54.: Purple Creek orthogneiss
Lib 51.59 0.19 51.2 2.5 0.44 3 0.32 218 0.008035 0.38 0.0517 5.0 0.206 0.0468 4.9
s5z 49.362 0.066 50.21 0.72 0.58 11 0.53 688 0.007687 0.13 0.05069 1.5 0.244 0.04792 1.4
s1O 49.428 0.057 49.86 0.63 0.32 13 0.35 824 0.0076970 0.12 0.05033 1.3 0.239 0.04752 1.3
s21 49.353 0.059 49.70 0.62 0.47 13 0.36 831 0.0076852 0.12 0.05017 1.3 0.345 0.04744 1.3
zS1 53.618 0.067 53.56 0.65 0.42 13 0.20 855 0.008352 0.12 0.05417 1.2 0.372 0.04713 1.2
zs3 62.942 0.058 63.84 0.53 0.34 19 0.25 1249 0.0098118 0.092 0.06490 0.85 0.303 0.04805 0.83
zS11 49.396 0.086 49.2 1.1 0.40 7 0.18 480 0.007692 0.18 0.0496 2.3 0.293 0.0469 2.2
SGC-2: Rainbow Falls orthogneiss
s3z 48.172 0.045 48.17 0.46 0.57 15 0.17 1045 0.0075007 0.094 0.04859 0.98 0.273 0.04708 0.96
s4z 52.23 0.13 53.7 1.6 0.57 5 0.22 332 0.008135 0.25 0.0543 3.1 0.234 0.0485 3.0
s9z 48.123 0.074 48.26 0.87 0.59 8 0.26 551 0.007493 0.15 0.04867 1.8 0.226 0.04721 1.8
s23z 56.82 0.10 57.0 1.3 0.81 6 0.19 439 0.008853 0.18 0.0577 2.3 0.226 0.0474 2.3
z22 48.114 0.085 48.2 1.1 1.02 7 0.23 450 0.007492 0.18 0.0486 2.3 0.227 0.0472 2.2

zs5 48.196 0.068 48.24 0.81 0.40 10 0.26 655 0.007504 0.14 0.04866 1.7 0.325 0.04712 1.7
H20FG: 'flecked gneiss'
z1 47.203 0.038 47.363 0.090 0.38 78 0.18 5129 0.0073492 0.080 0.047751 0.19 0.034 0.047228 0.21
z2 47.199 0.034 47.29 0.24 0.46 26 0.22 1705 0.0073487 0.072 0.04768 0.51 0.663 0.04716 0.47
z3 66.944 0.041 66.87 0.13 0.39 112 0.12 7480 0.0104388 0.061 0.06807 0.21 0.571 0.047370 0.18
z6 47.226 0.034 47.33 0.38 0.90 19 0.33 1232 0.0073528 0.072 0.04771 0.83 0.584 0.04716 0.79
NC-197: Diablo Lake orthogneiss
z1 44.827 0.054 45.01 0.61 0.61 12 0.28 765 0.0069780 0.12 0.04532 1.4 0.249 0.04721 1.4
z2 44.831 0.040 44.72 0.34 0.70 22 0.27 1421 0.0069786 0.089 0.04502 0.77 0.249 0.04690 0.76
z5 44.884 0.033 44.86 0.15 0.54 57 0.31 3646 0.0069869 0.073 0.04517 0.34 0.422 0.04700 0.32
a Isotopic dates calculated using the decay constants A238  1.55125 x 10-10 and A235 = 9.8485 x 10-10 of Jaffey et al., (1971).
b Corrected for initial Th/U disequilibrium using radiogenic 208Pb and Th/Umagma = 4.
C Total mass of common Pb.
d Ratio of radiogenic Pb (including 208Pb) to common Pb.
e Th contents calculated from radiogenic 208Pb and the Th-corrected 20 6Pb/ 238U date.
f Measured ratio corrected for fractionation and tracer contribution only.
9 Measured ratios corrected for fractionation, tracer, and blank.
h Correlation coefficient between Th-corrected 206Pb/ 238U and 207Pb/ 235U ratios.
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